Add testcase of PR c++/92542, already fixed.
[official-gcc.git] / gcc / tree-loop-distribution.c
bloba4f0b1effbe735370e7c69e9dd78c04770ef633a
1 /* Loop distribution.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass performs loop distribution: for example, the loop
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
29 is transformed to
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
85 TODO:
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "tree.h"
97 #include "gimple.h"
98 #include "cfghooks.h"
99 #include "tree-pass.h"
100 #include "ssa.h"
101 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "cfganal.h"
104 #include "gimple-iterator.h"
105 #include "gimplify-me.h"
106 #include "stor-layout.h"
107 #include "tree-cfg.h"
108 #include "tree-ssa-loop-manip.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop.h"
111 #include "tree-into-ssa.h"
112 #include "tree-ssa.h"
113 #include "cfgloop.h"
114 #include "tree-scalar-evolution.h"
115 #include "tree-vectorizer.h"
116 #include "tree-eh.h"
117 #include "gimple-fold.h"
120 #define MAX_DATAREFS_NUM \
121 ((unsigned) param_loop_max_datarefs_for_datadeps)
123 /* Threshold controlling number of distributed partitions. Given it may
124 be unnecessary if a memory stream cost model is invented in the future,
125 we define it as a temporary macro, rather than a parameter. */
126 #define NUM_PARTITION_THRESHOLD (4)
128 /* Hashtable helpers. */
130 struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
132 static inline hashval_t hash (const data_dependence_relation *);
133 static inline bool equal (const data_dependence_relation *,
134 const data_dependence_relation *);
137 /* Hash function for data dependence. */
139 inline hashval_t
140 ddr_hasher::hash (const data_dependence_relation *ddr)
142 inchash::hash h;
143 h.add_ptr (DDR_A (ddr));
144 h.add_ptr (DDR_B (ddr));
145 return h.end ();
148 /* Hash table equality function for data dependence. */
150 inline bool
151 ddr_hasher::equal (const data_dependence_relation *ddr1,
152 const data_dependence_relation *ddr2)
154 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
159 #define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
161 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
162 struct rdg_vertex
164 /* The statement represented by this vertex. */
165 gimple *stmt;
167 /* Vector of data-references in this statement. */
168 vec<data_reference_p> datarefs;
170 /* True when the statement contains a write to memory. */
171 bool has_mem_write;
173 /* True when the statement contains a read from memory. */
174 bool has_mem_reads;
177 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
178 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
179 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
180 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
181 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
182 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
183 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
184 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
186 /* Data dependence type. */
188 enum rdg_dep_type
190 /* Read After Write (RAW). */
191 flow_dd = 'f',
193 /* Control dependence (execute conditional on). */
194 control_dd = 'c'
197 /* Dependence information attached to an edge of the RDG. */
199 struct rdg_edge
201 /* Type of the dependence. */
202 enum rdg_dep_type type;
205 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
207 /* Kind of distributed loop. */
208 enum partition_kind {
209 PKIND_NORMAL,
210 /* Partial memset stands for a paritition can be distributed into a loop
211 of memset calls, rather than a single memset call. It's handled just
212 like a normal parition, i.e, distributed as separate loop, no memset
213 call is generated.
215 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
216 loop nest as deep as possible. As a result, parloop achieves better
217 parallelization by parallelizing deeper loop nest. This hack should
218 be unnecessary and removed once distributed memset can be understood
219 and analyzed in data reference analysis. See PR82604 for more. */
220 PKIND_PARTIAL_MEMSET,
221 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
224 /* Type of distributed loop. */
225 enum partition_type {
226 /* The distributed loop can be executed parallelly. */
227 PTYPE_PARALLEL = 0,
228 /* The distributed loop has to be executed sequentially. */
229 PTYPE_SEQUENTIAL
232 /* Builtin info for loop distribution. */
233 struct builtin_info
235 /* data-references a kind != PKIND_NORMAL partition is about. */
236 data_reference_p dst_dr;
237 data_reference_p src_dr;
238 /* Base address and size of memory objects operated by the builtin. Note
239 both dest and source memory objects must have the same size. */
240 tree dst_base;
241 tree src_base;
242 tree size;
243 /* Base and offset part of dst_base after stripping constant offset. This
244 is only used in memset builtin distribution for now. */
245 tree dst_base_base;
246 unsigned HOST_WIDE_INT dst_base_offset;
249 /* Partition for loop distribution. */
250 struct partition
252 /* Statements of the partition. */
253 bitmap stmts;
254 /* True if the partition defines variable which is used outside of loop. */
255 bool reduction_p;
256 location_t loc;
257 enum partition_kind kind;
258 enum partition_type type;
259 /* Data references in the partition. */
260 bitmap datarefs;
261 /* Information of builtin parition. */
262 struct builtin_info *builtin;
265 /* Partitions are fused because of different reasons. */
266 enum fuse_type
268 FUSE_NON_BUILTIN = 0,
269 FUSE_REDUCTION = 1,
270 FUSE_SHARE_REF = 2,
271 FUSE_SAME_SCC = 3,
272 FUSE_FINALIZE = 4
275 /* Description on different fusing reason. */
276 static const char *fuse_message[] = {
277 "they are non-builtins",
278 "they have reductions",
279 "they have shared memory refs",
280 "they are in the same dependence scc",
281 "there is no point to distribute loop"};
284 /* Dump vertex I in RDG to FILE. */
286 static void
287 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
289 struct vertex *v = &(rdg->vertices[i]);
290 struct graph_edge *e;
292 fprintf (file, "(vertex %d: (%s%s) (in:", i,
293 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
294 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
296 if (v->pred)
297 for (e = v->pred; e; e = e->pred_next)
298 fprintf (file, " %d", e->src);
300 fprintf (file, ") (out:");
302 if (v->succ)
303 for (e = v->succ; e; e = e->succ_next)
304 fprintf (file, " %d", e->dest);
306 fprintf (file, ")\n");
307 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
308 fprintf (file, ")\n");
311 /* Call dump_rdg_vertex on stderr. */
313 DEBUG_FUNCTION void
314 debug_rdg_vertex (struct graph *rdg, int i)
316 dump_rdg_vertex (stderr, rdg, i);
319 /* Dump the reduced dependence graph RDG to FILE. */
321 static void
322 dump_rdg (FILE *file, struct graph *rdg)
324 fprintf (file, "(rdg\n");
325 for (int i = 0; i < rdg->n_vertices; i++)
326 dump_rdg_vertex (file, rdg, i);
327 fprintf (file, ")\n");
330 /* Call dump_rdg on stderr. */
332 DEBUG_FUNCTION void
333 debug_rdg (struct graph *rdg)
335 dump_rdg (stderr, rdg);
338 static void
339 dot_rdg_1 (FILE *file, struct graph *rdg)
341 int i;
342 pretty_printer buffer;
343 pp_needs_newline (&buffer) = false;
344 buffer.buffer->stream = file;
346 fprintf (file, "digraph RDG {\n");
348 for (i = 0; i < rdg->n_vertices; i++)
350 struct vertex *v = &(rdg->vertices[i]);
351 struct graph_edge *e;
353 fprintf (file, "%d [label=\"[%d] ", i, i);
354 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
355 pp_flush (&buffer);
356 fprintf (file, "\"]\n");
358 /* Highlight reads from memory. */
359 if (RDG_MEM_READS_STMT (rdg, i))
360 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
362 /* Highlight stores to memory. */
363 if (RDG_MEM_WRITE_STMT (rdg, i))
364 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
366 if (v->succ)
367 for (e = v->succ; e; e = e->succ_next)
368 switch (RDGE_TYPE (e))
370 case flow_dd:
371 /* These are the most common dependences: don't print these. */
372 fprintf (file, "%d -> %d \n", i, e->dest);
373 break;
375 case control_dd:
376 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
377 break;
379 default:
380 gcc_unreachable ();
384 fprintf (file, "}\n\n");
387 /* Display the Reduced Dependence Graph using dotty. */
389 DEBUG_FUNCTION void
390 dot_rdg (struct graph *rdg)
392 /* When debugging, you may want to enable the following code. */
393 #ifdef HAVE_POPEN
394 FILE *file = popen ("dot -Tx11", "w");
395 if (!file)
396 return;
397 dot_rdg_1 (file, rdg);
398 fflush (file);
399 close (fileno (file));
400 pclose (file);
401 #else
402 dot_rdg_1 (stderr, rdg);
403 #endif
406 /* Returns the index of STMT in RDG. */
408 static int
409 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
411 int index = gimple_uid (stmt);
412 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
413 return index;
416 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
417 the index of DEF in RDG. */
419 static void
420 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
422 use_operand_p imm_use_p;
423 imm_use_iterator iterator;
425 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
427 struct graph_edge *e;
428 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
430 if (use < 0)
431 continue;
433 e = add_edge (rdg, idef, use);
434 e->data = XNEW (struct rdg_edge);
435 RDGE_TYPE (e) = flow_dd;
439 /* Creates an edge for the control dependences of BB to the vertex V. */
441 static void
442 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
443 int v, control_dependences *cd)
445 bitmap_iterator bi;
446 unsigned edge_n;
447 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
448 0, edge_n, bi)
450 basic_block cond_bb = cd->get_edge_src (edge_n);
451 gimple *stmt = last_stmt (cond_bb);
452 if (stmt && is_ctrl_stmt (stmt))
454 struct graph_edge *e;
455 int c = rdg_vertex_for_stmt (rdg, stmt);
456 if (c < 0)
457 continue;
459 e = add_edge (rdg, c, v);
460 e->data = XNEW (struct rdg_edge);
461 RDGE_TYPE (e) = control_dd;
466 /* Creates the edges of the reduced dependence graph RDG. */
468 static void
469 create_rdg_flow_edges (struct graph *rdg)
471 int i;
472 def_operand_p def_p;
473 ssa_op_iter iter;
475 for (i = 0; i < rdg->n_vertices; i++)
476 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
477 iter, SSA_OP_DEF)
478 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
481 /* Creates the edges of the reduced dependence graph RDG. */
483 static void
484 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
486 int i;
488 for (i = 0; i < rdg->n_vertices; i++)
490 gimple *stmt = RDG_STMT (rdg, i);
491 if (gimple_code (stmt) == GIMPLE_PHI)
493 edge_iterator ei;
494 edge e;
495 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
496 if (flow_bb_inside_loop_p (loop, e->src))
497 create_edge_for_control_dependence (rdg, e->src, i, cd);
499 else
500 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
505 class loop_distribution
507 private:
508 /* The loop (nest) to be distributed. */
509 vec<loop_p> loop_nest;
511 /* Vector of data references in the loop to be distributed. */
512 vec<data_reference_p> datarefs_vec;
514 /* If there is nonaddressable data reference in above vector. */
515 bool has_nonaddressable_dataref_p;
517 /* Store index of data reference in aux field. */
519 /* Hash table for data dependence relation in the loop to be distributed. */
520 hash_table<ddr_hasher> *ddrs_table;
522 /* Array mapping basic block's index to its topological order. */
523 int *bb_top_order_index;
524 /* And size of the array. */
525 int bb_top_order_index_size;
527 /* Build the vertices of the reduced dependence graph RDG. Return false
528 if that failed. */
529 bool create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts, loop_p loop);
531 /* Initialize STMTS with all the statements of LOOP. We use topological
532 order to discover all statements. The order is important because
533 generate_loops_for_partition is using the same traversal for identifying
534 statements in loop copies. */
535 void stmts_from_loop (class loop *loop, vec<gimple *> *stmts);
538 /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
539 LOOP, and one edge per flow dependence or control dependence from control
540 dependence CD. During visiting each statement, data references are also
541 collected and recorded in global data DATAREFS_VEC. */
542 struct graph * build_rdg (class loop *loop, control_dependences *cd);
544 /* Merge PARTITION into the partition DEST. RDG is the reduced dependence
545 graph and we update type for result partition if it is non-NULL. */
546 void partition_merge_into (struct graph *rdg,
547 partition *dest, partition *partition,
548 enum fuse_type ft);
551 /* Return data dependence relation for data references A and B. The two
552 data references must be in lexicographic order wrto reduced dependence
553 graph RDG. We firstly try to find ddr from global ddr hash table. If
554 it doesn't exist, compute the ddr and cache it. */
555 data_dependence_relation * get_data_dependence (struct graph *rdg,
556 data_reference_p a,
557 data_reference_p b);
560 /* In reduced dependence graph RDG for loop distribution, return true if
561 dependence between references DR1 and DR2 leads to a dependence cycle
562 and such dependence cycle can't be resolved by runtime alias check. */
563 bool data_dep_in_cycle_p (struct graph *rdg, data_reference_p dr1,
564 data_reference_p dr2);
567 /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
568 PARTITION1's type after merging PARTITION2 into PARTITION1. */
569 void update_type_for_merge (struct graph *rdg,
570 partition *partition1, partition *partition2);
573 /* Returns a partition with all the statements needed for computing
574 the vertex V of the RDG, also including the loop exit conditions. */
575 partition *build_rdg_partition_for_vertex (struct graph *rdg, int v);
577 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
578 if it forms builtin memcpy or memmove call. */
579 void classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
580 data_reference_p dst_dr, data_reference_p src_dr);
582 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
583 For the moment we detect memset, memcpy and memmove patterns. Bitmap
584 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions.
585 Returns true if there is a reduction in all partitions and we
586 possibly did not mark PARTITION as having one for this reason. */
588 bool
589 classify_partition (loop_p loop,
590 struct graph *rdg, partition *partition,
591 bitmap stmt_in_all_partitions);
594 /* Returns true when PARTITION1 and PARTITION2 access the same memory
595 object in RDG. */
596 bool share_memory_accesses (struct graph *rdg,
597 partition *partition1, partition *partition2);
599 /* For each seed statement in STARTING_STMTS, this function builds
600 partition for it by adding depended statements according to RDG.
601 All partitions are recorded in PARTITIONS. */
602 void rdg_build_partitions (struct graph *rdg,
603 vec<gimple *> starting_stmts,
604 vec<partition *> *partitions);
606 /* Compute partition dependence created by the data references in DRS1
607 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
608 not NULL, we record dependence introduced by possible alias between
609 two data references in ALIAS_DDRS; otherwise, we simply ignore such
610 dependence as if it doesn't exist at all. */
611 int pg_add_dependence_edges (struct graph *rdg, int dir, bitmap drs1,
612 bitmap drs2, vec<ddr_p> *alias_ddrs);
615 /* Build and return partition dependence graph for PARTITIONS. RDG is
616 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
617 is true, data dependence caused by possible alias between references
618 is ignored, as if it doesn't exist at all; otherwise all depdendences
619 are considered. */
620 struct graph *build_partition_graph (struct graph *rdg,
621 vec<struct partition *> *partitions,
622 bool ignore_alias_p);
624 /* Given reduced dependence graph RDG merge strong connected components
625 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
626 possible alias between references is ignored, as if it doesn't exist
627 at all; otherwise all depdendences are considered. */
628 void merge_dep_scc_partitions (struct graph *rdg, vec<struct partition *>
629 *partitions, bool ignore_alias_p);
631 /* This is the main function breaking strong conected components in
632 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
633 relations for runtime alias check in ALIAS_DDRS. */
634 void break_alias_scc_partitions (struct graph *rdg, vec<struct partition *>
635 *partitions, vec<ddr_p> *alias_ddrs);
638 /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
639 ALIAS_DDRS contains ddrs which need runtime alias check. */
640 void finalize_partitions (class loop *loop, vec<struct partition *>
641 *partitions, vec<ddr_p> *alias_ddrs);
643 /* Distributes the code from LOOP in such a way that producer statements
644 are placed before consumer statements. Tries to separate only the
645 statements from STMTS into separate loops. Returns the number of
646 distributed loops. Set NB_CALLS to number of generated builtin calls.
647 Set *DESTROY_P to whether LOOP needs to be destroyed. */
648 int distribute_loop (class loop *loop, vec<gimple *> stmts,
649 control_dependences *cd, int *nb_calls, bool *destroy_p,
650 bool only_patterns_p);
652 /* Compute topological order for basic blocks. Topological order is
653 needed because data dependence is computed for data references in
654 lexicographical order. */
655 void bb_top_order_init (void);
657 void bb_top_order_destroy (void);
659 public:
661 /* Getter for bb_top_order. */
663 inline int get_bb_top_order_index_size (void)
665 return bb_top_order_index_size;
668 inline int get_bb_top_order_index (int i)
670 return bb_top_order_index[i];
673 unsigned int execute (function *fun);
677 /* If X has a smaller topological sort number than Y, returns -1;
678 if greater, returns 1. */
679 static int
680 bb_top_order_cmp_r (const void *x, const void *y, void *loop)
682 loop_distribution *_loop =
683 (loop_distribution *) loop;
685 basic_block bb1 = *(const basic_block *) x;
686 basic_block bb2 = *(const basic_block *) y;
688 int bb_top_order_index_size = _loop->get_bb_top_order_index_size ();
690 gcc_assert (bb1->index < bb_top_order_index_size
691 && bb2->index < bb_top_order_index_size);
692 gcc_assert (bb1 == bb2
693 || _loop->get_bb_top_order_index(bb1->index)
694 != _loop->get_bb_top_order_index(bb2->index));
696 return (_loop->get_bb_top_order_index(bb1->index) -
697 _loop->get_bb_top_order_index(bb2->index));
700 bool
701 loop_distribution::create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts,
702 loop_p loop)
704 int i;
705 gimple *stmt;
707 FOR_EACH_VEC_ELT (stmts, i, stmt)
709 struct vertex *v = &(rdg->vertices[i]);
711 /* Record statement to vertex mapping. */
712 gimple_set_uid (stmt, i);
714 v->data = XNEW (struct rdg_vertex);
715 RDGV_STMT (v) = stmt;
716 RDGV_DATAREFS (v).create (0);
717 RDGV_HAS_MEM_WRITE (v) = false;
718 RDGV_HAS_MEM_READS (v) = false;
719 if (gimple_code (stmt) == GIMPLE_PHI)
720 continue;
722 unsigned drp = datarefs_vec.length ();
723 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
724 return false;
725 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
727 data_reference_p dr = datarefs_vec[j];
728 if (DR_IS_READ (dr))
729 RDGV_HAS_MEM_READS (v) = true;
730 else
731 RDGV_HAS_MEM_WRITE (v) = true;
732 RDGV_DATAREFS (v).safe_push (dr);
733 has_nonaddressable_dataref_p |= may_be_nonaddressable_p (dr->ref);
736 return true;
739 void
740 loop_distribution::stmts_from_loop (class loop *loop, vec<gimple *> *stmts)
742 unsigned int i;
743 basic_block *bbs = get_loop_body_in_custom_order (loop, this, bb_top_order_cmp_r);
745 for (i = 0; i < loop->num_nodes; i++)
747 basic_block bb = bbs[i];
749 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
750 gsi_next (&bsi))
751 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
752 stmts->safe_push (bsi.phi ());
754 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
755 gsi_next (&bsi))
757 gimple *stmt = gsi_stmt (bsi);
758 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
759 stmts->safe_push (stmt);
763 free (bbs);
766 /* Free the reduced dependence graph RDG. */
768 static void
769 free_rdg (struct graph *rdg)
771 int i;
773 for (i = 0; i < rdg->n_vertices; i++)
775 struct vertex *v = &(rdg->vertices[i]);
776 struct graph_edge *e;
778 for (e = v->succ; e; e = e->succ_next)
779 free (e->data);
781 if (v->data)
783 gimple_set_uid (RDGV_STMT (v), -1);
784 (RDGV_DATAREFS (v)).release ();
785 free (v->data);
789 free_graph (rdg);
792 struct graph *
793 loop_distribution::build_rdg (class loop *loop, control_dependences *cd)
795 struct graph *rdg;
797 /* Create the RDG vertices from the stmts of the loop nest. */
798 auto_vec<gimple *, 10> stmts;
799 stmts_from_loop (loop, &stmts);
800 rdg = new_graph (stmts.length ());
801 if (!create_rdg_vertices (rdg, stmts, loop))
803 free_rdg (rdg);
804 return NULL;
806 stmts.release ();
808 create_rdg_flow_edges (rdg);
809 if (cd)
810 create_rdg_cd_edges (rdg, cd, loop);
812 return rdg;
816 /* Allocate and initialize a partition from BITMAP. */
818 static partition *
819 partition_alloc (void)
821 partition *partition = XCNEW (struct partition);
822 partition->stmts = BITMAP_ALLOC (NULL);
823 partition->reduction_p = false;
824 partition->loc = UNKNOWN_LOCATION;
825 partition->kind = PKIND_NORMAL;
826 partition->type = PTYPE_PARALLEL;
827 partition->datarefs = BITMAP_ALLOC (NULL);
828 return partition;
831 /* Free PARTITION. */
833 static void
834 partition_free (partition *partition)
836 BITMAP_FREE (partition->stmts);
837 BITMAP_FREE (partition->datarefs);
838 if (partition->builtin)
839 free (partition->builtin);
841 free (partition);
844 /* Returns true if the partition can be generated as a builtin. */
846 static bool
847 partition_builtin_p (partition *partition)
849 return partition->kind > PKIND_PARTIAL_MEMSET;
852 /* Returns true if the partition contains a reduction. */
854 static bool
855 partition_reduction_p (partition *partition)
857 return partition->reduction_p;
860 void
861 loop_distribution::partition_merge_into (struct graph *rdg,
862 partition *dest, partition *partition, enum fuse_type ft)
864 if (dump_file && (dump_flags & TDF_DETAILS))
866 fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
867 fprintf (dump_file, " Part 1: ");
868 dump_bitmap (dump_file, dest->stmts);
869 fprintf (dump_file, " Part 2: ");
870 dump_bitmap (dump_file, partition->stmts);
873 dest->kind = PKIND_NORMAL;
874 if (dest->type == PTYPE_PARALLEL)
875 dest->type = partition->type;
877 bitmap_ior_into (dest->stmts, partition->stmts);
878 if (partition_reduction_p (partition))
879 dest->reduction_p = true;
881 /* Further check if any data dependence prevents us from executing the
882 new partition parallelly. */
883 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
884 update_type_for_merge (rdg, dest, partition);
886 bitmap_ior_into (dest->datarefs, partition->datarefs);
890 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
891 the LOOP. */
893 static bool
894 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
896 imm_use_iterator imm_iter;
897 use_operand_p use_p;
899 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
901 if (is_gimple_debug (USE_STMT (use_p)))
902 continue;
904 basic_block use_bb = gimple_bb (USE_STMT (use_p));
905 if (!flow_bb_inside_loop_p (loop, use_bb))
906 return true;
909 return false;
912 /* Returns true when STMT defines a scalar variable used after the
913 loop LOOP. */
915 static bool
916 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
918 def_operand_p def_p;
919 ssa_op_iter op_iter;
921 if (gimple_code (stmt) == GIMPLE_PHI)
922 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
924 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
925 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
926 return true;
928 return false;
931 /* Return a copy of LOOP placed before LOOP. */
933 static class loop *
934 copy_loop_before (class loop *loop)
936 class loop *res;
937 edge preheader = loop_preheader_edge (loop);
939 initialize_original_copy_tables ();
940 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
941 gcc_assert (res != NULL);
942 free_original_copy_tables ();
943 delete_update_ssa ();
945 return res;
948 /* Creates an empty basic block after LOOP. */
950 static void
951 create_bb_after_loop (class loop *loop)
953 edge exit = single_exit (loop);
955 if (!exit)
956 return;
958 split_edge (exit);
961 /* Generate code for PARTITION from the code in LOOP. The loop is
962 copied when COPY_P is true. All the statements not flagged in the
963 PARTITION bitmap are removed from the loop or from its copy. The
964 statements are indexed in sequence inside a basic block, and the
965 basic blocks of a loop are taken in dom order. */
967 static void
968 generate_loops_for_partition (class loop *loop, partition *partition,
969 bool copy_p)
971 unsigned i;
972 basic_block *bbs;
974 if (copy_p)
976 int orig_loop_num = loop->orig_loop_num;
977 loop = copy_loop_before (loop);
978 gcc_assert (loop != NULL);
979 loop->orig_loop_num = orig_loop_num;
980 create_preheader (loop, CP_SIMPLE_PREHEADERS);
981 create_bb_after_loop (loop);
983 else
985 /* Origin number is set to the new versioned loop's num. */
986 gcc_assert (loop->orig_loop_num != loop->num);
989 /* Remove stmts not in the PARTITION bitmap. */
990 bbs = get_loop_body_in_dom_order (loop);
992 if (MAY_HAVE_DEBUG_BIND_STMTS)
993 for (i = 0; i < loop->num_nodes; i++)
995 basic_block bb = bbs[i];
997 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
998 gsi_next (&bsi))
1000 gphi *phi = bsi.phi ();
1001 if (!virtual_operand_p (gimple_phi_result (phi))
1002 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1003 reset_debug_uses (phi);
1006 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1008 gimple *stmt = gsi_stmt (bsi);
1009 if (gimple_code (stmt) != GIMPLE_LABEL
1010 && !is_gimple_debug (stmt)
1011 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1012 reset_debug_uses (stmt);
1016 for (i = 0; i < loop->num_nodes; i++)
1018 basic_block bb = bbs[i];
1019 edge inner_exit = NULL;
1021 if (loop != bb->loop_father)
1022 inner_exit = single_exit (bb->loop_father);
1024 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
1026 gphi *phi = bsi.phi ();
1027 if (!virtual_operand_p (gimple_phi_result (phi))
1028 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1029 remove_phi_node (&bsi, true);
1030 else
1031 gsi_next (&bsi);
1034 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
1036 gimple *stmt = gsi_stmt (bsi);
1037 if (gimple_code (stmt) != GIMPLE_LABEL
1038 && !is_gimple_debug (stmt)
1039 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1041 /* In distribution of loop nest, if bb is inner loop's exit_bb,
1042 we choose its exit edge/path in order to avoid generating
1043 infinite loop. For all other cases, we choose an arbitrary
1044 path through the empty CFG part that this unnecessary
1045 control stmt controls. */
1046 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
1048 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
1049 gimple_cond_make_true (cond_stmt);
1050 else
1051 gimple_cond_make_false (cond_stmt);
1052 update_stmt (stmt);
1054 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1056 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1057 gimple_switch_set_index
1058 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
1059 update_stmt (stmt);
1061 else
1063 unlink_stmt_vdef (stmt);
1064 gsi_remove (&bsi, true);
1065 release_defs (stmt);
1066 continue;
1069 gsi_next (&bsi);
1073 free (bbs);
1076 /* If VAL memory representation contains the same value in all bytes,
1077 return that value, otherwise return -1.
1078 E.g. for 0x24242424 return 0x24, for IEEE double
1079 747708026454360457216.0 return 0x44, etc. */
1081 static int
1082 const_with_all_bytes_same (tree val)
1084 unsigned char buf[64];
1085 int i, len;
1087 if (integer_zerop (val)
1088 || (TREE_CODE (val) == CONSTRUCTOR
1089 && !TREE_CLOBBER_P (val)
1090 && CONSTRUCTOR_NELTS (val) == 0))
1091 return 0;
1093 if (real_zerop (val))
1095 /* Only return 0 for +0.0, not for -0.0, which doesn't have
1096 an all bytes same memory representation. Don't transform
1097 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
1098 switch (TREE_CODE (val))
1100 case REAL_CST:
1101 if (!real_isneg (TREE_REAL_CST_PTR (val)))
1102 return 0;
1103 break;
1104 case COMPLEX_CST:
1105 if (!const_with_all_bytes_same (TREE_REALPART (val))
1106 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
1107 return 0;
1108 break;
1109 case VECTOR_CST:
1111 unsigned int count = vector_cst_encoded_nelts (val);
1112 unsigned int j;
1113 for (j = 0; j < count; ++j)
1114 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
1115 break;
1116 if (j == count)
1117 return 0;
1118 break;
1120 default:
1121 break;
1125 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
1126 return -1;
1128 len = native_encode_expr (val, buf, sizeof (buf));
1129 if (len == 0)
1130 return -1;
1131 for (i = 1; i < len; i++)
1132 if (buf[i] != buf[0])
1133 return -1;
1134 return buf[0];
1137 /* Generate a call to memset for PARTITION in LOOP. */
1139 static void
1140 generate_memset_builtin (class loop *loop, partition *partition)
1142 gimple_stmt_iterator gsi;
1143 tree mem, fn, nb_bytes;
1144 tree val;
1145 struct builtin_info *builtin = partition->builtin;
1146 gimple *fn_call;
1148 /* The new statements will be placed before LOOP. */
1149 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1151 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1152 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1153 false, GSI_CONTINUE_LINKING);
1154 mem = builtin->dst_base;
1155 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1156 false, GSI_CONTINUE_LINKING);
1158 /* This exactly matches the pattern recognition in classify_partition. */
1159 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1160 /* Handle constants like 0x15151515 and similarly
1161 floating point constants etc. where all bytes are the same. */
1162 int bytev = const_with_all_bytes_same (val);
1163 if (bytev != -1)
1164 val = build_int_cst (integer_type_node, bytev);
1165 else if (TREE_CODE (val) == INTEGER_CST)
1166 val = fold_convert (integer_type_node, val);
1167 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1169 tree tem = make_ssa_name (integer_type_node);
1170 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1171 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1172 val = tem;
1175 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1176 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1177 gimple_set_location (fn_call, partition->loc);
1178 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1179 fold_stmt (&gsi);
1181 if (dump_file && (dump_flags & TDF_DETAILS))
1183 fprintf (dump_file, "generated memset");
1184 if (bytev == 0)
1185 fprintf (dump_file, " zero\n");
1186 else
1187 fprintf (dump_file, "\n");
1191 /* Generate a call to memcpy for PARTITION in LOOP. */
1193 static void
1194 generate_memcpy_builtin (class loop *loop, partition *partition)
1196 gimple_stmt_iterator gsi;
1197 gimple *fn_call;
1198 tree dest, src, fn, nb_bytes;
1199 enum built_in_function kind;
1200 struct builtin_info *builtin = partition->builtin;
1202 /* The new statements will be placed before LOOP. */
1203 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1205 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1206 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1207 false, GSI_CONTINUE_LINKING);
1208 dest = builtin->dst_base;
1209 src = builtin->src_base;
1210 if (partition->kind == PKIND_MEMCPY
1211 || ! ptr_derefs_may_alias_p (dest, src))
1212 kind = BUILT_IN_MEMCPY;
1213 else
1214 kind = BUILT_IN_MEMMOVE;
1216 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1217 false, GSI_CONTINUE_LINKING);
1218 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1219 false, GSI_CONTINUE_LINKING);
1220 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1221 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1222 gimple_set_location (fn_call, partition->loc);
1223 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1224 fold_stmt (&gsi);
1226 if (dump_file && (dump_flags & TDF_DETAILS))
1228 if (kind == BUILT_IN_MEMCPY)
1229 fprintf (dump_file, "generated memcpy\n");
1230 else
1231 fprintf (dump_file, "generated memmove\n");
1235 /* Remove and destroy the loop LOOP. */
1237 static void
1238 destroy_loop (class loop *loop)
1240 unsigned nbbs = loop->num_nodes;
1241 edge exit = single_exit (loop);
1242 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1243 basic_block *bbs;
1244 unsigned i;
1246 bbs = get_loop_body_in_dom_order (loop);
1248 gimple_stmt_iterator dst_gsi = gsi_after_labels (exit->dest);
1249 bool safe_p = single_pred_p (exit->dest);
1250 for (unsigned i = 0; i < nbbs; ++i)
1252 /* We have made sure to not leave any dangling uses of SSA
1253 names defined in the loop. With the exception of virtuals.
1254 Make sure we replace all uses of virtual defs that will remain
1255 outside of the loop with the bare symbol as delete_basic_block
1256 will release them. */
1257 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1258 gsi_next (&gsi))
1260 gphi *phi = gsi.phi ();
1261 if (virtual_operand_p (gimple_phi_result (phi)))
1262 mark_virtual_phi_result_for_renaming (phi);
1264 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1266 gimple *stmt = gsi_stmt (gsi);
1267 tree vdef = gimple_vdef (stmt);
1268 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1269 mark_virtual_operand_for_renaming (vdef);
1270 /* Also move and eventually reset debug stmts. We can leave
1271 constant values in place in case the stmt dominates the exit.
1272 ??? Non-constant values from the last iteration can be
1273 replaced with final values if we can compute them. */
1274 if (gimple_debug_bind_p (stmt))
1276 tree val = gimple_debug_bind_get_value (stmt);
1277 gsi_move_before (&gsi, &dst_gsi);
1278 if (val
1279 && (!safe_p
1280 || !is_gimple_min_invariant (val)
1281 || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
1283 gimple_debug_bind_reset_value (stmt);
1284 update_stmt (stmt);
1287 else
1288 gsi_next (&gsi);
1292 redirect_edge_pred (exit, src);
1293 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1294 exit->flags |= EDGE_FALLTHRU;
1295 cancel_loop_tree (loop);
1296 rescan_loop_exit (exit, false, true);
1298 i = nbbs;
1301 --i;
1302 delete_basic_block (bbs[i]);
1304 while (i != 0);
1306 free (bbs);
1308 set_immediate_dominator (CDI_DOMINATORS, dest,
1309 recompute_dominator (CDI_DOMINATORS, dest));
1312 /* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
1314 static bool
1315 generate_code_for_partition (class loop *loop,
1316 partition *partition, bool copy_p)
1318 switch (partition->kind)
1320 case PKIND_NORMAL:
1321 case PKIND_PARTIAL_MEMSET:
1322 /* Reductions all have to be in the last partition. */
1323 gcc_assert (!partition_reduction_p (partition)
1324 || !copy_p);
1325 generate_loops_for_partition (loop, partition, copy_p);
1326 return false;
1328 case PKIND_MEMSET:
1329 generate_memset_builtin (loop, partition);
1330 break;
1332 case PKIND_MEMCPY:
1333 case PKIND_MEMMOVE:
1334 generate_memcpy_builtin (loop, partition);
1335 break;
1337 default:
1338 gcc_unreachable ();
1341 /* Common tail for partitions we turn into a call. If this was the last
1342 partition for which we generate code, we have to destroy the loop. */
1343 if (!copy_p)
1344 return true;
1345 return false;
1348 data_dependence_relation *
1349 loop_distribution::get_data_dependence (struct graph *rdg, data_reference_p a,
1350 data_reference_p b)
1352 struct data_dependence_relation ent, **slot;
1353 struct data_dependence_relation *ddr;
1355 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1356 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1357 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1358 ent.a = a;
1359 ent.b = b;
1360 slot = ddrs_table->find_slot (&ent, INSERT);
1361 if (*slot == NULL)
1363 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1364 compute_affine_dependence (ddr, loop_nest[0]);
1365 *slot = ddr;
1368 return *slot;
1371 bool
1372 loop_distribution::data_dep_in_cycle_p (struct graph *rdg,
1373 data_reference_p dr1,
1374 data_reference_p dr2)
1376 struct data_dependence_relation *ddr;
1378 /* Re-shuffle data-refs to be in topological order. */
1379 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1380 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1381 std::swap (dr1, dr2);
1383 ddr = get_data_dependence (rdg, dr1, dr2);
1385 /* In case of no data dependence. */
1386 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1387 return false;
1388 /* For unknown data dependence or known data dependence which can't be
1389 expressed in classic distance vector, we check if it can be resolved
1390 by runtime alias check. If yes, we still consider data dependence
1391 as won't introduce data dependence cycle. */
1392 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1393 || DDR_NUM_DIST_VECTS (ddr) == 0)
1394 return !runtime_alias_check_p (ddr, NULL, true);
1395 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1396 return true;
1397 else if (DDR_REVERSED_P (ddr)
1398 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1399 return false;
1401 return true;
1404 void
1405 loop_distribution::update_type_for_merge (struct graph *rdg,
1406 partition *partition1,
1407 partition *partition2)
1409 unsigned i, j;
1410 bitmap_iterator bi, bj;
1411 data_reference_p dr1, dr2;
1413 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1415 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1417 dr1 = datarefs_vec[i];
1418 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1420 dr2 = datarefs_vec[j];
1421 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1422 continue;
1424 /* Partition can only be executed sequentially if there is any
1425 data dependence cycle. */
1426 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1428 partition1->type = PTYPE_SEQUENTIAL;
1429 return;
1435 partition *
1436 loop_distribution::build_rdg_partition_for_vertex (struct graph *rdg, int v)
1438 partition *partition = partition_alloc ();
1439 auto_vec<int, 3> nodes;
1440 unsigned i, j;
1441 int x;
1442 data_reference_p dr;
1444 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1446 FOR_EACH_VEC_ELT (nodes, i, x)
1448 bitmap_set_bit (partition->stmts, x);
1450 for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1452 unsigned idx = (unsigned) DR_INDEX (dr);
1453 gcc_assert (idx < datarefs_vec.length ());
1455 /* Partition can only be executed sequentially if there is any
1456 unknown data reference. */
1457 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1458 || !DR_INIT (dr) || !DR_STEP (dr))
1459 partition->type = PTYPE_SEQUENTIAL;
1461 bitmap_set_bit (partition->datarefs, idx);
1465 if (partition->type == PTYPE_SEQUENTIAL)
1466 return partition;
1468 /* Further check if any data dependence prevents us from executing the
1469 partition parallelly. */
1470 update_type_for_merge (rdg, partition, partition);
1472 return partition;
1475 /* Given PARTITION of LOOP and RDG, record single load/store data references
1476 for builtin partition in SRC_DR/DST_DR, return false if there is no such
1477 data references. */
1479 static bool
1480 find_single_drs (class loop *loop, struct graph *rdg, partition *partition,
1481 data_reference_p *dst_dr, data_reference_p *src_dr)
1483 unsigned i;
1484 data_reference_p single_ld = NULL, single_st = NULL;
1485 bitmap_iterator bi;
1487 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1489 gimple *stmt = RDG_STMT (rdg, i);
1490 data_reference_p dr;
1492 if (gimple_code (stmt) == GIMPLE_PHI)
1493 continue;
1495 /* Any scalar stmts are ok. */
1496 if (!gimple_vuse (stmt))
1497 continue;
1499 /* Otherwise just regular loads/stores. */
1500 if (!gimple_assign_single_p (stmt))
1501 return false;
1503 /* But exactly one store and/or load. */
1504 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1506 tree type = TREE_TYPE (DR_REF (dr));
1508 /* The memset, memcpy and memmove library calls are only
1509 able to deal with generic address space. */
1510 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1511 return false;
1513 if (DR_IS_READ (dr))
1515 if (single_ld != NULL)
1516 return false;
1517 single_ld = dr;
1519 else
1521 if (single_st != NULL)
1522 return false;
1523 single_st = dr;
1528 if (!single_st)
1529 return false;
1531 /* Bail out if this is a bitfield memory reference. */
1532 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1533 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1534 return false;
1536 /* Data reference must be executed exactly once per iteration of each
1537 loop in the loop nest. We only need to check dominance information
1538 against the outermost one in a perfect loop nest because a bb can't
1539 dominate outermost loop's latch without dominating inner loop's. */
1540 basic_block bb_st = gimple_bb (DR_STMT (single_st));
1541 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1542 return false;
1544 if (single_ld)
1546 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1547 /* Direct aggregate copy or via an SSA name temporary. */
1548 if (load != store
1549 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1550 return false;
1552 /* Bail out if this is a bitfield memory reference. */
1553 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1554 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1555 return false;
1557 /* Load and store must be in the same loop nest. */
1558 basic_block bb_ld = gimple_bb (DR_STMT (single_ld));
1559 if (bb_st->loop_father != bb_ld->loop_father)
1560 return false;
1562 /* Data reference must be executed exactly once per iteration.
1563 Same as single_st, we only need to check against the outermost
1564 loop. */
1565 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1566 return false;
1568 edge e = single_exit (bb_st->loop_father);
1569 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1570 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1571 if (dom_ld != dom_st)
1572 return false;
1575 *src_dr = single_ld;
1576 *dst_dr = single_st;
1577 return true;
1580 /* Given data reference DR in LOOP_NEST, this function checks the enclosing
1581 loops from inner to outer to see if loop's step equals to access size at
1582 each level of loop. Return 2 if we can prove this at all level loops;
1583 record access base and size in BASE and SIZE; save loop's step at each
1584 level of loop in STEPS if it is not null. For example:
1586 int arr[100][100][100];
1587 for (i = 0; i < 100; i++) ;steps[2] = 40000
1588 for (j = 100; j > 0; j--) ;steps[1] = -400
1589 for (k = 0; k < 100; k++) ;steps[0] = 4
1590 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
1592 Return 1 if we can prove the equality at the innermost loop, but not all
1593 level loops. In this case, no information is recorded.
1595 Return 0 if no equality can be proven at any level loops. */
1597 static int
1598 compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1599 tree *size, vec<tree> *steps = NULL)
1601 location_t loc = gimple_location (DR_STMT (dr));
1602 basic_block bb = gimple_bb (DR_STMT (dr));
1603 class loop *loop = bb->loop_father;
1604 tree ref = DR_REF (dr);
1605 tree access_base = build_fold_addr_expr (ref);
1606 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1607 int res = 0;
1609 do {
1610 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1611 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1612 return res;
1614 access_base = CHREC_LEFT (scev_fn);
1615 if (tree_contains_chrecs (access_base, NULL))
1616 return res;
1618 tree scev_step = CHREC_RIGHT (scev_fn);
1619 /* Only support constant steps. */
1620 if (TREE_CODE (scev_step) != INTEGER_CST)
1621 return res;
1623 enum ev_direction access_dir = scev_direction (scev_fn);
1624 if (access_dir == EV_DIR_UNKNOWN)
1625 return res;
1627 if (steps != NULL)
1628 steps->safe_push (scev_step);
1630 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1631 /* Compute absolute value of scev step. */
1632 if (access_dir == EV_DIR_DECREASES)
1633 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1635 /* At each level of loop, scev step must equal to access size. In other
1636 words, DR must access consecutive memory between loop iterations. */
1637 if (!operand_equal_p (scev_step, access_size, 0))
1638 return res;
1640 /* Access stride can be computed for data reference at least for the
1641 innermost loop. */
1642 res = 1;
1644 /* Compute DR's execution times in loop. */
1645 tree niters = number_of_latch_executions (loop);
1646 niters = fold_convert_loc (loc, sizetype, niters);
1647 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1648 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1650 /* Compute DR's overall access size in loop. */
1651 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1652 niters, scev_step);
1653 /* Adjust base address in case of negative step. */
1654 if (access_dir == EV_DIR_DECREASES)
1656 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1657 scev_step, access_size);
1658 access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
1660 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1662 *base = access_base;
1663 *size = access_size;
1664 /* Access stride can be computed for data reference at each level loop. */
1665 return 2;
1668 /* Allocate and return builtin struct. Record information like DST_DR,
1669 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1671 static struct builtin_info *
1672 alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1673 tree dst_base, tree src_base, tree size)
1675 struct builtin_info *builtin = XNEW (struct builtin_info);
1676 builtin->dst_dr = dst_dr;
1677 builtin->src_dr = src_dr;
1678 builtin->dst_base = dst_base;
1679 builtin->src_base = src_base;
1680 builtin->size = size;
1681 return builtin;
1684 /* Given data reference DR in loop nest LOOP, classify if it forms builtin
1685 memset call. */
1687 static void
1688 classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1690 gimple *stmt = DR_STMT (dr);
1691 tree base, size, rhs = gimple_assign_rhs1 (stmt);
1693 if (const_with_all_bytes_same (rhs) == -1
1694 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1695 || (TYPE_MODE (TREE_TYPE (rhs))
1696 != TYPE_MODE (unsigned_char_type_node))))
1697 return;
1699 if (TREE_CODE (rhs) == SSA_NAME
1700 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1701 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1702 return;
1704 int res = compute_access_range (loop, dr, &base, &size);
1705 if (res == 0)
1706 return;
1707 if (res == 1)
1709 partition->kind = PKIND_PARTIAL_MEMSET;
1710 return;
1713 poly_uint64 base_offset;
1714 unsigned HOST_WIDE_INT const_base_offset;
1715 tree base_base = strip_offset (base, &base_offset);
1716 if (!base_offset.is_constant (&const_base_offset))
1717 return;
1719 struct builtin_info *builtin;
1720 builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
1721 builtin->dst_base_base = base_base;
1722 builtin->dst_base_offset = const_base_offset;
1723 partition->builtin = builtin;
1724 partition->kind = PKIND_MEMSET;
1727 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1728 if it forms builtin memcpy or memmove call. */
1730 void
1731 loop_distribution::classify_builtin_ldst (loop_p loop, struct graph *rdg,
1732 partition *partition,
1733 data_reference_p dst_dr,
1734 data_reference_p src_dr)
1736 tree base, size, src_base, src_size;
1737 auto_vec<tree> dst_steps, src_steps;
1739 /* Compute access range of both load and store. */
1740 int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1741 if (res != 2)
1742 return;
1743 res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1744 if (res != 2)
1745 return;
1747 /* They much have the same access size. */
1748 if (!operand_equal_p (size, src_size, 0))
1749 return;
1751 /* Load and store in loop nest must access memory in the same way, i.e,
1752 their must have the same steps in each loop of the nest. */
1753 if (dst_steps.length () != src_steps.length ())
1754 return;
1755 for (unsigned i = 0; i < dst_steps.length (); ++i)
1756 if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1757 return;
1759 /* Now check that if there is a dependence. */
1760 ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1762 /* Classify as memcpy if no dependence between load and store. */
1763 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1765 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1766 partition->kind = PKIND_MEMCPY;
1767 return;
1770 /* Can't do memmove in case of unknown dependence or dependence without
1771 classical distance vector. */
1772 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1773 || DDR_NUM_DIST_VECTS (ddr) == 0)
1774 return;
1776 unsigned i;
1777 lambda_vector dist_v;
1778 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1779 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1781 unsigned dep_lev = dependence_level (dist_v, num_lev);
1782 /* Can't do memmove if load depends on store. */
1783 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1784 return;
1787 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1788 partition->kind = PKIND_MEMMOVE;
1789 return;
1792 bool
1793 loop_distribution::classify_partition (loop_p loop,
1794 struct graph *rdg, partition *partition,
1795 bitmap stmt_in_all_partitions)
1797 bitmap_iterator bi;
1798 unsigned i;
1799 data_reference_p single_ld = NULL, single_st = NULL;
1800 bool volatiles_p = false, has_reduction = false;
1802 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1804 gimple *stmt = RDG_STMT (rdg, i);
1806 if (gimple_has_volatile_ops (stmt))
1807 volatiles_p = true;
1809 /* If the stmt is not included by all partitions and there is uses
1810 outside of the loop, then mark the partition as reduction. */
1811 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1813 /* Due to limitation in the transform phase we have to fuse all
1814 reduction partitions. As a result, this could cancel valid
1815 loop distribution especially for loop that induction variable
1816 is used outside of loop. To workaround this issue, we skip
1817 marking partition as reudction if the reduction stmt belongs
1818 to all partitions. In such case, reduction will be computed
1819 correctly no matter how partitions are fused/distributed. */
1820 if (!bitmap_bit_p (stmt_in_all_partitions, i))
1821 partition->reduction_p = true;
1822 else
1823 has_reduction = true;
1827 /* Simple workaround to prevent classifying the partition as builtin
1828 if it contains any use outside of loop. For the case where all
1829 partitions have the reduction this simple workaround is delayed
1830 to only affect the last partition. */
1831 if (partition->reduction_p)
1832 return has_reduction;
1834 /* Perform general partition disqualification for builtins. */
1835 if (volatiles_p
1836 || !flag_tree_loop_distribute_patterns)
1837 return has_reduction;
1839 /* Find single load/store data references for builtin partition. */
1840 if (!find_single_drs (loop, rdg, partition, &single_st, &single_ld))
1841 return has_reduction;
1843 partition->loc = gimple_location (DR_STMT (single_st));
1845 /* Classify the builtin kind. */
1846 if (single_ld == NULL)
1847 classify_builtin_st (loop, partition, single_st);
1848 else
1849 classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
1850 return has_reduction;
1853 bool
1854 loop_distribution::share_memory_accesses (struct graph *rdg,
1855 partition *partition1, partition *partition2)
1857 unsigned i, j;
1858 bitmap_iterator bi, bj;
1859 data_reference_p dr1, dr2;
1861 /* First check whether in the intersection of the two partitions are
1862 any loads or stores. Common loads are the situation that happens
1863 most often. */
1864 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1865 if (RDG_MEM_WRITE_STMT (rdg, i)
1866 || RDG_MEM_READS_STMT (rdg, i))
1867 return true;
1869 /* Then check whether the two partitions access the same memory object. */
1870 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1872 dr1 = datarefs_vec[i];
1874 if (!DR_BASE_ADDRESS (dr1)
1875 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1876 continue;
1878 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1880 dr2 = datarefs_vec[j];
1882 if (!DR_BASE_ADDRESS (dr2)
1883 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1884 continue;
1886 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1887 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1888 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1889 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1890 return true;
1894 return false;
1897 /* For each seed statement in STARTING_STMTS, this function builds
1898 partition for it by adding depended statements according to RDG.
1899 All partitions are recorded in PARTITIONS. */
1901 void
1902 loop_distribution::rdg_build_partitions (struct graph *rdg,
1903 vec<gimple *> starting_stmts,
1904 vec<partition *> *partitions)
1906 auto_bitmap processed;
1907 int i;
1908 gimple *stmt;
1910 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1912 int v = rdg_vertex_for_stmt (rdg, stmt);
1914 if (dump_file && (dump_flags & TDF_DETAILS))
1915 fprintf (dump_file,
1916 "ldist asked to generate code for vertex %d\n", v);
1918 /* If the vertex is already contained in another partition so
1919 is the partition rooted at it. */
1920 if (bitmap_bit_p (processed, v))
1921 continue;
1923 partition *partition = build_rdg_partition_for_vertex (rdg, v);
1924 bitmap_ior_into (processed, partition->stmts);
1926 if (dump_file && (dump_flags & TDF_DETAILS))
1928 fprintf (dump_file, "ldist creates useful %s partition:\n",
1929 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1930 bitmap_print (dump_file, partition->stmts, " ", "\n");
1933 partitions->safe_push (partition);
1936 /* All vertices should have been assigned to at least one partition now,
1937 other than vertices belonging to dead code. */
1940 /* Dump to FILE the PARTITIONS. */
1942 static void
1943 dump_rdg_partitions (FILE *file, vec<partition *> partitions)
1945 int i;
1946 partition *partition;
1948 FOR_EACH_VEC_ELT (partitions, i, partition)
1949 debug_bitmap_file (file, partition->stmts);
1952 /* Debug PARTITIONS. */
1953 extern void debug_rdg_partitions (vec<partition *> );
1955 DEBUG_FUNCTION void
1956 debug_rdg_partitions (vec<partition *> partitions)
1958 dump_rdg_partitions (stderr, partitions);
1961 /* Returns the number of read and write operations in the RDG. */
1963 static int
1964 number_of_rw_in_rdg (struct graph *rdg)
1966 int i, res = 0;
1968 for (i = 0; i < rdg->n_vertices; i++)
1970 if (RDG_MEM_WRITE_STMT (rdg, i))
1971 ++res;
1973 if (RDG_MEM_READS_STMT (rdg, i))
1974 ++res;
1977 return res;
1980 /* Returns the number of read and write operations in a PARTITION of
1981 the RDG. */
1983 static int
1984 number_of_rw_in_partition (struct graph *rdg, partition *partition)
1986 int res = 0;
1987 unsigned i;
1988 bitmap_iterator ii;
1990 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
1992 if (RDG_MEM_WRITE_STMT (rdg, i))
1993 ++res;
1995 if (RDG_MEM_READS_STMT (rdg, i))
1996 ++res;
1999 return res;
2002 /* Returns true when one of the PARTITIONS contains all the read or
2003 write operations of RDG. */
2005 static bool
2006 partition_contains_all_rw (struct graph *rdg,
2007 vec<partition *> partitions)
2009 int i;
2010 partition *partition;
2011 int nrw = number_of_rw_in_rdg (rdg);
2013 FOR_EACH_VEC_ELT (partitions, i, partition)
2014 if (nrw == number_of_rw_in_partition (rdg, partition))
2015 return true;
2017 return false;
2021 loop_distribution::pg_add_dependence_edges (struct graph *rdg, int dir,
2022 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
2024 unsigned i, j;
2025 bitmap_iterator bi, bj;
2026 data_reference_p dr1, dr2, saved_dr1;
2028 /* dependence direction - 0 is no dependence, -1 is back,
2029 1 is forth, 2 is both (we can stop then, merging will occur). */
2030 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
2032 dr1 = datarefs_vec[i];
2034 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
2036 int res, this_dir = 1;
2037 ddr_p ddr;
2039 dr2 = datarefs_vec[j];
2041 /* Skip all <read, read> data dependence. */
2042 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
2043 continue;
2045 saved_dr1 = dr1;
2046 /* Re-shuffle data-refs to be in topological order. */
2047 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
2048 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
2050 std::swap (dr1, dr2);
2051 this_dir = -this_dir;
2053 ddr = get_data_dependence (rdg, dr1, dr2);
2054 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2056 this_dir = 0;
2057 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
2058 DR_BASE_ADDRESS (dr2));
2059 /* Be conservative. If data references are not well analyzed,
2060 or the two data references have the same base address and
2061 offset, add dependence and consider it alias to each other.
2062 In other words, the dependence cannot be resolved by
2063 runtime alias check. */
2064 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
2065 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
2066 || !DR_INIT (dr1) || !DR_INIT (dr2)
2067 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
2068 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
2069 || res == 0)
2070 this_dir = 2;
2071 /* Data dependence could be resolved by runtime alias check,
2072 record it in ALIAS_DDRS. */
2073 else if (alias_ddrs != NULL)
2074 alias_ddrs->safe_push (ddr);
2075 /* Or simply ignore it. */
2077 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
2079 if (DDR_REVERSED_P (ddr))
2080 this_dir = -this_dir;
2082 /* Known dependences can still be unordered througout the
2083 iteration space, see gcc.dg/tree-ssa/ldist-16.c. */
2084 if (DDR_NUM_DIST_VECTS (ddr) != 1)
2085 this_dir = 2;
2086 /* If the overlap is exact preserve stmt order. */
2087 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
2088 DDR_NB_LOOPS (ddr)))
2090 /* Else as the distance vector is lexicographic positive swap
2091 the dependence direction. */
2092 else
2093 this_dir = -this_dir;
2095 else
2096 this_dir = 0;
2097 if (this_dir == 2)
2098 return 2;
2099 else if (dir == 0)
2100 dir = this_dir;
2101 else if (this_dir != 0 && dir != this_dir)
2102 return 2;
2103 /* Shuffle "back" dr1. */
2104 dr1 = saved_dr1;
2107 return dir;
2110 /* Compare postorder number of the partition graph vertices V1 and V2. */
2112 static int
2113 pgcmp (const void *v1_, const void *v2_)
2115 const vertex *v1 = (const vertex *)v1_;
2116 const vertex *v2 = (const vertex *)v2_;
2117 return v2->post - v1->post;
2120 /* Data attached to vertices of partition dependence graph. */
2121 struct pg_vdata
2123 /* ID of the corresponding partition. */
2124 int id;
2125 /* The partition. */
2126 struct partition *partition;
2129 /* Data attached to edges of partition dependence graph. */
2130 struct pg_edata
2132 /* If the dependence edge can be resolved by runtime alias check,
2133 this vector contains data dependence relations for runtime alias
2134 check. On the other hand, if the dependence edge is introduced
2135 because of compilation time known data dependence, this vector
2136 contains nothing. */
2137 vec<ddr_p> alias_ddrs;
2140 /* Callback data for traversing edges in graph. */
2141 struct pg_edge_callback_data
2143 /* Bitmap contains strong connected components should be merged. */
2144 bitmap sccs_to_merge;
2145 /* Array constains component information for all vertices. */
2146 int *vertices_component;
2147 /* Vector to record all data dependence relations which are needed
2148 to break strong connected components by runtime alias checks. */
2149 vec<ddr_p> *alias_ddrs;
2152 /* Initialize vertice's data for partition dependence graph PG with
2153 PARTITIONS. */
2155 static void
2156 init_partition_graph_vertices (struct graph *pg,
2157 vec<struct partition *> *partitions)
2159 int i;
2160 partition *partition;
2161 struct pg_vdata *data;
2163 for (i = 0; partitions->iterate (i, &partition); ++i)
2165 data = new pg_vdata;
2166 pg->vertices[i].data = data;
2167 data->id = i;
2168 data->partition = partition;
2172 /* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2173 dependence relations to the EDGE if DDRS isn't NULL. */
2175 static void
2176 add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2178 struct graph_edge *e = add_edge (pg, i, j);
2180 /* If the edge is attached with data dependence relations, it means this
2181 dependence edge can be resolved by runtime alias checks. */
2182 if (ddrs != NULL)
2184 struct pg_edata *data = new pg_edata;
2186 gcc_assert (ddrs->length () > 0);
2187 e->data = data;
2188 data->alias_ddrs = vNULL;
2189 data->alias_ddrs.safe_splice (*ddrs);
2193 /* Callback function for graph travesal algorithm. It returns true
2194 if edge E should skipped when traversing the graph. */
2196 static bool
2197 pg_skip_alias_edge (struct graph_edge *e)
2199 struct pg_edata *data = (struct pg_edata *)e->data;
2200 return (data != NULL && data->alias_ddrs.length () > 0);
2203 /* Callback function freeing data attached to edge E of graph. */
2205 static void
2206 free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2208 if (e->data != NULL)
2210 struct pg_edata *data = (struct pg_edata *)e->data;
2211 data->alias_ddrs.release ();
2212 delete data;
2216 /* Free data attached to vertice of partition dependence graph PG. */
2218 static void
2219 free_partition_graph_vdata (struct graph *pg)
2221 int i;
2222 struct pg_vdata *data;
2224 for (i = 0; i < pg->n_vertices; ++i)
2226 data = (struct pg_vdata *)pg->vertices[i].data;
2227 delete data;
2231 /* Build and return partition dependence graph for PARTITIONS. RDG is
2232 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2233 is true, data dependence caused by possible alias between references
2234 is ignored, as if it doesn't exist at all; otherwise all depdendences
2235 are considered. */
2237 struct graph *
2238 loop_distribution::build_partition_graph (struct graph *rdg,
2239 vec<struct partition *> *partitions,
2240 bool ignore_alias_p)
2242 int i, j;
2243 struct partition *partition1, *partition2;
2244 graph *pg = new_graph (partitions->length ());
2245 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2247 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2249 init_partition_graph_vertices (pg, partitions);
2251 for (i = 0; partitions->iterate (i, &partition1); ++i)
2253 for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2255 /* dependence direction - 0 is no dependence, -1 is back,
2256 1 is forth, 2 is both (we can stop then, merging will occur). */
2257 int dir = 0;
2259 /* If the first partition has reduction, add back edge; if the
2260 second partition has reduction, add forth edge. This makes
2261 sure that reduction partition will be sorted as the last one. */
2262 if (partition_reduction_p (partition1))
2263 dir = -1;
2264 else if (partition_reduction_p (partition2))
2265 dir = 1;
2267 /* Cleanup the temporary vector. */
2268 alias_ddrs.truncate (0);
2270 dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2271 partition2->datarefs, alias_ddrs_p);
2273 /* Add edge to partition graph if there exists dependence. There
2274 are two types of edges. One type edge is caused by compilation
2275 time known dependence, this type cannot be resolved by runtime
2276 alias check. The other type can be resolved by runtime alias
2277 check. */
2278 if (dir == 1 || dir == 2
2279 || alias_ddrs.length () > 0)
2281 /* Attach data dependence relations to edge that can be resolved
2282 by runtime alias check. */
2283 bool alias_edge_p = (dir != 1 && dir != 2);
2284 add_partition_graph_edge (pg, i, j,
2285 (alias_edge_p) ? &alias_ddrs : NULL);
2287 if (dir == -1 || dir == 2
2288 || alias_ddrs.length () > 0)
2290 /* Attach data dependence relations to edge that can be resolved
2291 by runtime alias check. */
2292 bool alias_edge_p = (dir != -1 && dir != 2);
2293 add_partition_graph_edge (pg, j, i,
2294 (alias_edge_p) ? &alias_ddrs : NULL);
2298 return pg;
2301 /* Sort partitions in PG in descending post order and store them in
2302 PARTITIONS. */
2304 static void
2305 sort_partitions_by_post_order (struct graph *pg,
2306 vec<struct partition *> *partitions)
2308 int i;
2309 struct pg_vdata *data;
2311 /* Now order the remaining nodes in descending postorder. */
2312 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2313 partitions->truncate (0);
2314 for (i = 0; i < pg->n_vertices; ++i)
2316 data = (struct pg_vdata *)pg->vertices[i].data;
2317 if (data->partition)
2318 partitions->safe_push (data->partition);
2322 void
2323 loop_distribution::merge_dep_scc_partitions (struct graph *rdg,
2324 vec<struct partition *> *partitions,
2325 bool ignore_alias_p)
2327 struct partition *partition1, *partition2;
2328 struct pg_vdata *data;
2329 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2330 int i, j, num_sccs = graphds_scc (pg, NULL);
2332 /* Strong connected compoenent means dependence cycle, we cannot distribute
2333 them. So fuse them together. */
2334 if ((unsigned) num_sccs < partitions->length ())
2336 for (i = 0; i < num_sccs; ++i)
2338 for (j = 0; partitions->iterate (j, &partition1); ++j)
2339 if (pg->vertices[j].component == i)
2340 break;
2341 for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2342 if (pg->vertices[j].component == i)
2344 partition_merge_into (NULL, partition1,
2345 partition2, FUSE_SAME_SCC);
2346 partition1->type = PTYPE_SEQUENTIAL;
2347 (*partitions)[j] = NULL;
2348 partition_free (partition2);
2349 data = (struct pg_vdata *)pg->vertices[j].data;
2350 data->partition = NULL;
2355 sort_partitions_by_post_order (pg, partitions);
2356 gcc_assert (partitions->length () == (unsigned)num_sccs);
2357 free_partition_graph_vdata (pg);
2358 free_graph (pg);
2361 /* Callback function for traversing edge E in graph G. DATA is private
2362 callback data. */
2364 static void
2365 pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2367 int i, j, component;
2368 struct pg_edge_callback_data *cbdata;
2369 struct pg_edata *edata = (struct pg_edata *) e->data;
2371 /* If the edge doesn't have attached data dependence, it represents
2372 compilation time known dependences. This type dependence cannot
2373 be resolved by runtime alias check. */
2374 if (edata == NULL || edata->alias_ddrs.length () == 0)
2375 return;
2377 cbdata = (struct pg_edge_callback_data *) data;
2378 i = e->src;
2379 j = e->dest;
2380 component = cbdata->vertices_component[i];
2381 /* Vertices are topologically sorted according to compilation time
2382 known dependences, so we can break strong connected components
2383 by removing edges of the opposite direction, i.e, edges pointing
2384 from vertice with smaller post number to vertice with bigger post
2385 number. */
2386 if (g->vertices[i].post < g->vertices[j].post
2387 /* We only need to remove edges connecting vertices in the same
2388 strong connected component to break it. */
2389 && component == cbdata->vertices_component[j]
2390 /* Check if we want to break the strong connected component or not. */
2391 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2392 cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2395 /* This is the main function breaking strong conected components in
2396 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2397 relations for runtime alias check in ALIAS_DDRS. */
2398 void
2399 loop_distribution::break_alias_scc_partitions (struct graph *rdg,
2400 vec<struct partition *> *partitions,
2401 vec<ddr_p> *alias_ddrs)
2403 int i, j, k, num_sccs, num_sccs_no_alias;
2404 /* Build partition dependence graph. */
2405 graph *pg = build_partition_graph (rdg, partitions, false);
2407 alias_ddrs->truncate (0);
2408 /* Find strong connected components in the graph, with all dependence edges
2409 considered. */
2410 num_sccs = graphds_scc (pg, NULL);
2411 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2412 compilation time known dependences are merged before this function. */
2413 if ((unsigned) num_sccs < partitions->length ())
2415 struct pg_edge_callback_data cbdata;
2416 auto_bitmap sccs_to_merge;
2417 auto_vec<enum partition_type> scc_types;
2418 struct partition *partition, *first;
2420 /* If all partitions in a SCC have the same type, we can simply merge the
2421 SCC. This loop finds out such SCCS and record them in bitmap. */
2422 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2423 for (i = 0; i < num_sccs; ++i)
2425 for (j = 0; partitions->iterate (j, &first); ++j)
2426 if (pg->vertices[j].component == i)
2427 break;
2429 bool same_type = true, all_builtins = partition_builtin_p (first);
2430 for (++j; partitions->iterate (j, &partition); ++j)
2432 if (pg->vertices[j].component != i)
2433 continue;
2435 if (first->type != partition->type)
2437 same_type = false;
2438 break;
2440 all_builtins &= partition_builtin_p (partition);
2442 /* Merge SCC if all partitions in SCC have the same type, though the
2443 result partition is sequential, because vectorizer can do better
2444 runtime alias check. One expecption is all partitions in SCC are
2445 builtins. */
2446 if (!same_type || all_builtins)
2447 bitmap_clear_bit (sccs_to_merge, i);
2450 /* Initialize callback data for traversing. */
2451 cbdata.sccs_to_merge = sccs_to_merge;
2452 cbdata.alias_ddrs = alias_ddrs;
2453 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2454 /* Record the component information which will be corrupted by next
2455 graph scc finding call. */
2456 for (i = 0; i < pg->n_vertices; ++i)
2457 cbdata.vertices_component[i] = pg->vertices[i].component;
2459 /* Collect data dependences for runtime alias checks to break SCCs. */
2460 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2462 /* Run SCC finding algorithm again, with alias dependence edges
2463 skipped. This is to topologically sort partitions according to
2464 compilation time known dependence. Note the topological order
2465 is stored in the form of pg's post order number. */
2466 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2467 gcc_assert (partitions->length () == (unsigned) num_sccs_no_alias);
2468 /* With topological order, we can construct two subgraphs L and R.
2469 L contains edge <x, y> where x < y in terms of post order, while
2470 R contains edge <x, y> where x > y. Edges for compilation time
2471 known dependence all fall in R, so we break SCCs by removing all
2472 (alias) edges of in subgraph L. */
2473 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2476 /* For SCC that doesn't need to be broken, merge it. */
2477 for (i = 0; i < num_sccs; ++i)
2479 if (!bitmap_bit_p (sccs_to_merge, i))
2480 continue;
2482 for (j = 0; partitions->iterate (j, &first); ++j)
2483 if (cbdata.vertices_component[j] == i)
2484 break;
2485 for (k = j + 1; partitions->iterate (k, &partition); ++k)
2487 struct pg_vdata *data;
2489 if (cbdata.vertices_component[k] != i)
2490 continue;
2492 /* Update postorder number so that merged reduction partition is
2493 sorted after other partitions. */
2494 if (!partition_reduction_p (first)
2495 && partition_reduction_p (partition))
2497 gcc_assert (pg->vertices[k].post < pg->vertices[j].post);
2498 pg->vertices[j].post = pg->vertices[k].post;
2500 partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
2501 (*partitions)[k] = NULL;
2502 partition_free (partition);
2503 data = (struct pg_vdata *)pg->vertices[k].data;
2504 gcc_assert (data->id == k);
2505 data->partition = NULL;
2506 /* The result partition of merged SCC must be sequential. */
2507 first->type = PTYPE_SEQUENTIAL;
2512 sort_partitions_by_post_order (pg, partitions);
2513 free_partition_graph_vdata (pg);
2514 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2515 free_graph (pg);
2517 if (dump_file && (dump_flags & TDF_DETAILS))
2519 fprintf (dump_file, "Possible alias data dependence to break:\n");
2520 dump_data_dependence_relations (dump_file, *alias_ddrs);
2524 /* Compute and return an expression whose value is the segment length which
2525 will be accessed by DR in NITERS iterations. */
2527 static tree
2528 data_ref_segment_size (struct data_reference *dr, tree niters)
2530 niters = size_binop (MINUS_EXPR,
2531 fold_convert (sizetype, niters),
2532 size_one_node);
2533 return size_binop (MULT_EXPR,
2534 fold_convert (sizetype, DR_STEP (dr)),
2535 fold_convert (sizetype, niters));
2538 /* Return true if LOOP's latch is dominated by statement for data reference
2539 DR. */
2541 static inline bool
2542 latch_dominated_by_data_ref (class loop *loop, data_reference *dr)
2544 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2545 gimple_bb (DR_STMT (dr)));
2548 /* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2549 data dependence relations ALIAS_DDRS. */
2551 static void
2552 compute_alias_check_pairs (class loop *loop, vec<ddr_p> *alias_ddrs,
2553 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2555 unsigned int i;
2556 unsigned HOST_WIDE_INT factor = 1;
2557 tree niters_plus_one, niters = number_of_latch_executions (loop);
2559 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2560 niters = fold_convert (sizetype, niters);
2561 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2563 if (dump_file && (dump_flags & TDF_DETAILS))
2564 fprintf (dump_file, "Creating alias check pairs:\n");
2566 /* Iterate all data dependence relations and compute alias check pairs. */
2567 for (i = 0; i < alias_ddrs->length (); i++)
2569 ddr_p ddr = (*alias_ddrs)[i];
2570 struct data_reference *dr_a = DDR_A (ddr);
2571 struct data_reference *dr_b = DDR_B (ddr);
2572 tree seg_length_a, seg_length_b;
2574 if (latch_dominated_by_data_ref (loop, dr_a))
2575 seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2576 else
2577 seg_length_a = data_ref_segment_size (dr_a, niters);
2579 if (latch_dominated_by_data_ref (loop, dr_b))
2580 seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2581 else
2582 seg_length_b = data_ref_segment_size (dr_b, niters);
2584 unsigned HOST_WIDE_INT access_size_a
2585 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2586 unsigned HOST_WIDE_INT access_size_b
2587 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2588 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2589 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2591 dr_with_seg_len_pair_t dr_with_seg_len_pair
2592 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2593 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b),
2594 /* ??? Would WELL_ORDERED be safe? */
2595 dr_with_seg_len_pair_t::REORDERED);
2597 comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2600 if (tree_fits_uhwi_p (niters))
2601 factor = tree_to_uhwi (niters);
2603 /* Prune alias check pairs. */
2604 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2605 if (dump_file && (dump_flags & TDF_DETAILS))
2606 fprintf (dump_file,
2607 "Improved number of alias checks from %d to %d\n",
2608 alias_ddrs->length (), comp_alias_pairs->length ());
2611 /* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2612 checks and version LOOP under condition of these runtime alias checks. */
2614 static void
2615 version_loop_by_alias_check (vec<struct partition *> *partitions,
2616 class loop *loop, vec<ddr_p> *alias_ddrs)
2618 profile_probability prob;
2619 basic_block cond_bb;
2620 class loop *nloop;
2621 tree lhs, arg0, cond_expr = NULL_TREE;
2622 gimple_seq cond_stmts = NULL;
2623 gimple *call_stmt = NULL;
2624 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2626 /* Generate code for runtime alias checks if necessary. */
2627 gcc_assert (alias_ddrs->length () > 0);
2629 if (dump_file && (dump_flags & TDF_DETAILS))
2630 fprintf (dump_file,
2631 "Version loop <%d> with runtime alias check\n", loop->num);
2633 compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2634 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2635 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2636 is_gimple_val, NULL_TREE);
2638 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
2639 bool cancelable_p = flag_tree_loop_vectorize;
2640 if (cancelable_p)
2642 unsigned i = 0;
2643 struct partition *partition;
2644 for (; partitions->iterate (i, &partition); ++i)
2645 if (!partition_builtin_p (partition))
2646 break;
2648 /* If all partitions are builtins, distributing it would be profitable and
2649 we don't want to cancel the runtime alias checks. */
2650 if (i == partitions->length ())
2651 cancelable_p = false;
2654 /* Generate internal function call for loop distribution alias check if the
2655 runtime alias check should be cancelable. */
2656 if (cancelable_p)
2658 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2659 2, NULL_TREE, cond_expr);
2660 lhs = make_ssa_name (boolean_type_node);
2661 gimple_call_set_lhs (call_stmt, lhs);
2663 else
2664 lhs = cond_expr;
2666 prob = profile_probability::guessed_always ().apply_scale (9, 10);
2667 initialize_original_copy_tables ();
2668 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2669 prob, prob.invert (), true);
2670 free_original_copy_tables ();
2671 /* Record the original loop number in newly generated loops. In case of
2672 distribution, the original loop will be distributed and the new loop
2673 is kept. */
2674 loop->orig_loop_num = nloop->num;
2675 nloop->orig_loop_num = nloop->num;
2676 nloop->dont_vectorize = true;
2677 nloop->force_vectorize = false;
2679 if (call_stmt)
2681 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2682 loop could be destroyed. */
2683 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2684 gimple_call_set_arg (call_stmt, 0, arg0);
2685 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2688 if (cond_stmts)
2690 gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2691 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2693 update_ssa (TODO_update_ssa);
2696 /* Return true if loop versioning is needed to distrubute PARTITIONS.
2697 ALIAS_DDRS are data dependence relations for runtime alias check. */
2699 static inline bool
2700 version_for_distribution_p (vec<struct partition *> *partitions,
2701 vec<ddr_p> *alias_ddrs)
2703 /* No need to version loop if we have only one partition. */
2704 if (partitions->length () == 1)
2705 return false;
2707 /* Need to version loop if runtime alias check is necessary. */
2708 return (alias_ddrs->length () > 0);
2711 /* Compare base offset of builtin mem* partitions P1 and P2. */
2713 static int
2714 offset_cmp (const void *vp1, const void *vp2)
2716 struct partition *p1 = *(struct partition *const *) vp1;
2717 struct partition *p2 = *(struct partition *const *) vp2;
2718 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2719 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2720 return (o2 < o1) - (o1 < o2);
2723 /* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2724 case optimization transforming below code:
2726 __builtin_memset (&obj, 0, 100);
2727 _1 = &obj + 100;
2728 __builtin_memset (_1, 0, 200);
2729 _2 = &obj + 300;
2730 __builtin_memset (_2, 0, 100);
2732 into:
2734 __builtin_memset (&obj, 0, 400);
2736 Note we don't have dependence information between different partitions
2737 at this point, as a result, we can't handle nonadjacent memset builtin
2738 partitions since dependence might be broken. */
2740 static void
2741 fuse_memset_builtins (vec<struct partition *> *partitions)
2743 unsigned i, j;
2744 struct partition *part1, *part2;
2745 tree rhs1, rhs2;
2747 for (i = 0; partitions->iterate (i, &part1);)
2749 if (part1->kind != PKIND_MEMSET)
2751 i++;
2752 continue;
2755 /* Find sub-array of memset builtins of the same base. Index range
2756 of the sub-array is [i, j) with "j > i". */
2757 for (j = i + 1; partitions->iterate (j, &part2); ++j)
2759 if (part2->kind != PKIND_MEMSET
2760 || !operand_equal_p (part1->builtin->dst_base_base,
2761 part2->builtin->dst_base_base, 0))
2762 break;
2764 /* Memset calls setting different values can't be merged. */
2765 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2766 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2767 if (!operand_equal_p (rhs1, rhs2, 0))
2768 break;
2771 /* Stable sort is required in order to avoid breaking dependence. */
2772 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2773 offset_cmp);
2774 /* Continue with next partition. */
2775 i = j;
2778 /* Merge all consecutive memset builtin partitions. */
2779 for (i = 0; i < partitions->length () - 1;)
2781 part1 = (*partitions)[i];
2782 if (part1->kind != PKIND_MEMSET)
2784 i++;
2785 continue;
2788 part2 = (*partitions)[i + 1];
2789 /* Only merge memset partitions of the same base and with constant
2790 access sizes. */
2791 if (part2->kind != PKIND_MEMSET
2792 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2793 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2794 || !operand_equal_p (part1->builtin->dst_base_base,
2795 part2->builtin->dst_base_base, 0))
2797 i++;
2798 continue;
2800 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2801 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2802 int bytev1 = const_with_all_bytes_same (rhs1);
2803 int bytev2 = const_with_all_bytes_same (rhs2);
2804 /* Only merge memset partitions of the same value. */
2805 if (bytev1 != bytev2 || bytev1 == -1)
2807 i++;
2808 continue;
2810 wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2811 wi::to_wide (part1->builtin->size));
2812 /* Only merge adjacent memset partitions. */
2813 if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2815 i++;
2816 continue;
2818 /* Merge partitions[i] and partitions[i+1]. */
2819 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2820 part1->builtin->size,
2821 part2->builtin->size);
2822 partition_free (part2);
2823 partitions->ordered_remove (i + 1);
2827 void
2828 loop_distribution::finalize_partitions (class loop *loop,
2829 vec<struct partition *> *partitions,
2830 vec<ddr_p> *alias_ddrs)
2832 unsigned i;
2833 struct partition *partition, *a;
2835 if (partitions->length () == 1
2836 || alias_ddrs->length () > 0)
2837 return;
2839 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2840 bool same_type_p = true;
2841 enum partition_type type = ((*partitions)[0])->type;
2842 for (i = 0; partitions->iterate (i, &partition); ++i)
2844 same_type_p &= (type == partition->type);
2845 if (partition_builtin_p (partition))
2847 num_builtin++;
2848 continue;
2850 num_normal++;
2851 if (partition->kind == PKIND_PARTIAL_MEMSET)
2852 num_partial_memset++;
2855 /* Don't distribute current loop into too many loops given we don't have
2856 memory stream cost model. Be even more conservative in case of loop
2857 nest distribution. */
2858 if ((same_type_p && num_builtin == 0
2859 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2860 || (loop->inner != NULL
2861 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2862 || (loop->inner == NULL
2863 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
2865 a = (*partitions)[0];
2866 for (i = 1; partitions->iterate (i, &partition); ++i)
2868 partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2869 partition_free (partition);
2871 partitions->truncate (1);
2874 /* Fuse memset builtins if possible. */
2875 if (partitions->length () > 1)
2876 fuse_memset_builtins (partitions);
2879 /* Distributes the code from LOOP in such a way that producer statements
2880 are placed before consumer statements. Tries to separate only the
2881 statements from STMTS into separate loops. Returns the number of
2882 distributed loops. Set NB_CALLS to number of generated builtin calls.
2883 Set *DESTROY_P to whether LOOP needs to be destroyed. */
2886 loop_distribution::distribute_loop (class loop *loop, vec<gimple *> stmts,
2887 control_dependences *cd, int *nb_calls, bool *destroy_p,
2888 bool only_patterns_p)
2890 ddrs_table = new hash_table<ddr_hasher> (389);
2891 struct graph *rdg;
2892 partition *partition;
2893 int i, nbp;
2895 *destroy_p = false;
2896 *nb_calls = 0;
2897 loop_nest.create (0);
2898 if (!find_loop_nest (loop, &loop_nest))
2900 loop_nest.release ();
2901 delete ddrs_table;
2902 return 0;
2905 datarefs_vec.create (20);
2906 has_nonaddressable_dataref_p = false;
2907 rdg = build_rdg (loop, cd);
2908 if (!rdg)
2910 if (dump_file && (dump_flags & TDF_DETAILS))
2911 fprintf (dump_file,
2912 "Loop %d not distributed: failed to build the RDG.\n",
2913 loop->num);
2915 loop_nest.release ();
2916 free_data_refs (datarefs_vec);
2917 delete ddrs_table;
2918 return 0;
2921 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
2923 if (dump_file && (dump_flags & TDF_DETAILS))
2924 fprintf (dump_file,
2925 "Loop %d not distributed: too many memory references.\n",
2926 loop->num);
2928 free_rdg (rdg);
2929 loop_nest.release ();
2930 free_data_refs (datarefs_vec);
2931 delete ddrs_table;
2932 return 0;
2935 data_reference_p dref;
2936 for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
2937 dref->aux = (void *) (uintptr_t) i;
2939 if (dump_file && (dump_flags & TDF_DETAILS))
2940 dump_rdg (dump_file, rdg);
2942 auto_vec<struct partition *, 3> partitions;
2943 rdg_build_partitions (rdg, stmts, &partitions);
2945 auto_vec<ddr_p> alias_ddrs;
2947 auto_bitmap stmt_in_all_partitions;
2948 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
2949 for (i = 1; partitions.iterate (i, &partition); ++i)
2950 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
2952 bool any_builtin = false;
2953 bool reduction_in_all = false;
2954 FOR_EACH_VEC_ELT (partitions, i, partition)
2956 reduction_in_all
2957 |= classify_partition (loop, rdg, partition, stmt_in_all_partitions);
2958 any_builtin |= partition_builtin_p (partition);
2961 /* If we are only distributing patterns but did not detect any,
2962 simply bail out. */
2963 if (only_patterns_p
2964 && !any_builtin)
2966 nbp = 0;
2967 goto ldist_done;
2970 /* If we are only distributing patterns fuse all partitions that
2971 were not classified as builtins. This also avoids chopping
2972 a loop into pieces, separated by builtin calls. That is, we
2973 only want no or a single loop body remaining. */
2974 struct partition *into;
2975 if (only_patterns_p)
2977 for (i = 0; partitions.iterate (i, &into); ++i)
2978 if (!partition_builtin_p (into))
2979 break;
2980 for (++i; partitions.iterate (i, &partition); ++i)
2981 if (!partition_builtin_p (partition))
2983 partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
2984 partitions.unordered_remove (i);
2985 partition_free (partition);
2986 i--;
2990 /* Due to limitations in the transform phase we have to fuse all
2991 reduction partitions into the last partition so the existing
2992 loop will contain all loop-closed PHI nodes. */
2993 for (i = 0; partitions.iterate (i, &into); ++i)
2994 if (partition_reduction_p (into))
2995 break;
2996 for (i = i + 1; partitions.iterate (i, &partition); ++i)
2997 if (partition_reduction_p (partition))
2999 partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
3000 partitions.unordered_remove (i);
3001 partition_free (partition);
3002 i--;
3005 /* Apply our simple cost model - fuse partitions with similar
3006 memory accesses. */
3007 for (i = 0; partitions.iterate (i, &into); ++i)
3009 bool changed = false;
3010 if (partition_builtin_p (into) || into->kind == PKIND_PARTIAL_MEMSET)
3011 continue;
3012 for (int j = i + 1;
3013 partitions.iterate (j, &partition); ++j)
3015 if (share_memory_accesses (rdg, into, partition))
3017 partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
3018 partitions.unordered_remove (j);
3019 partition_free (partition);
3020 j--;
3021 changed = true;
3024 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
3025 accesses when 1 and 2 have similar accesses but not 0 and 1
3026 then in the next iteration we will fail to consider merging
3027 1 into 0,2. So try again if we did any merging into 0. */
3028 if (changed)
3029 i--;
3032 /* Put a non-builtin partition last if we need to preserve a reduction.
3033 ??? This is a workaround that makes sort_partitions_by_post_order do
3034 the correct thing while in reality it should sort each component
3035 separately and then put the component with a reduction or a non-builtin
3036 last. */
3037 if (reduction_in_all
3038 && partition_builtin_p (partitions.last()))
3039 FOR_EACH_VEC_ELT (partitions, i, partition)
3040 if (!partition_builtin_p (partition))
3042 partitions.unordered_remove (i);
3043 partitions.quick_push (partition);
3044 break;
3047 /* Build the partition dependency graph and fuse partitions in strong
3048 connected component. */
3049 if (partitions.length () > 1)
3051 /* Don't support loop nest distribution under runtime alias check
3052 since it's not likely to enable many vectorization opportunities.
3053 Also if loop has any data reference which may be not addressable
3054 since alias check needs to take, compare address of the object. */
3055 if (loop->inner || has_nonaddressable_dataref_p)
3056 merge_dep_scc_partitions (rdg, &partitions, false);
3057 else
3059 merge_dep_scc_partitions (rdg, &partitions, true);
3060 if (partitions.length () > 1)
3061 break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
3065 finalize_partitions (loop, &partitions, &alias_ddrs);
3067 /* If there is a reduction in all partitions make sure the last one
3068 is not classified for builtin code generation. */
3069 if (reduction_in_all)
3071 partition = partitions.last ();
3072 if (only_patterns_p
3073 && partition_builtin_p (partition)
3074 && !partition_builtin_p (partitions[0]))
3076 nbp = 0;
3077 goto ldist_done;
3079 partition->kind = PKIND_NORMAL;
3082 nbp = partitions.length ();
3083 if (nbp == 0
3084 || (nbp == 1 && !partition_builtin_p (partitions[0]))
3085 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
3087 nbp = 0;
3088 goto ldist_done;
3091 if (version_for_distribution_p (&partitions, &alias_ddrs))
3092 version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
3094 if (dump_file && (dump_flags & TDF_DETAILS))
3096 fprintf (dump_file,
3097 "distribute loop <%d> into partitions:\n", loop->num);
3098 dump_rdg_partitions (dump_file, partitions);
3101 FOR_EACH_VEC_ELT (partitions, i, partition)
3103 if (partition_builtin_p (partition))
3104 (*nb_calls)++;
3105 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
3108 ldist_done:
3109 loop_nest.release ();
3110 free_data_refs (datarefs_vec);
3111 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
3112 iter != ddrs_table->end (); ++iter)
3114 free_dependence_relation (*iter);
3115 *iter = NULL;
3117 delete ddrs_table;
3119 FOR_EACH_VEC_ELT (partitions, i, partition)
3120 partition_free (partition);
3122 free_rdg (rdg);
3123 return nbp - *nb_calls;
3127 void loop_distribution::bb_top_order_init (void)
3129 int rpo_num;
3130 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3132 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3133 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3134 rpo_num = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, true);
3135 for (int i = 0; i < rpo_num; i++)
3136 bb_top_order_index[rpo[i]] = i;
3138 free (rpo);
3141 void loop_distribution::bb_top_order_destroy ()
3143 free (bb_top_order_index);
3144 bb_top_order_index = NULL;
3145 bb_top_order_index_size = 0;
3149 /* Given LOOP, this function records seed statements for distribution in
3150 WORK_LIST. Return false if there is nothing for distribution. */
3152 static bool
3153 find_seed_stmts_for_distribution (class loop *loop, vec<gimple *> *work_list)
3155 basic_block *bbs = get_loop_body_in_dom_order (loop);
3157 /* Initialize the worklist with stmts we seed the partitions with. */
3158 for (unsigned i = 0; i < loop->num_nodes; ++i)
3160 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
3161 !gsi_end_p (gsi); gsi_next (&gsi))
3163 gphi *phi = gsi.phi ();
3164 if (virtual_operand_p (gimple_phi_result (phi)))
3165 continue;
3166 /* Distribute stmts which have defs that are used outside of
3167 the loop. */
3168 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3169 continue;
3170 work_list->safe_push (phi);
3172 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3173 !gsi_end_p (gsi); gsi_next (&gsi))
3175 gimple *stmt = gsi_stmt (gsi);
3177 /* Ignore clobbers, they do not have true side effects. */
3178 if (gimple_clobber_p (stmt))
3179 continue;
3181 /* If there is a stmt with side-effects bail out - we
3182 cannot and should not distribute this loop. */
3183 if (gimple_has_side_effects (stmt))
3185 free (bbs);
3186 return false;
3189 /* Distribute stmts which have defs that are used outside of
3190 the loop. */
3191 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3193 /* Otherwise only distribute stores for now. */
3194 else if (!gimple_vdef (stmt))
3195 continue;
3197 work_list->safe_push (stmt);
3200 free (bbs);
3201 return work_list->length () > 0;
3204 /* Given innermost LOOP, return the outermost enclosing loop that forms a
3205 perfect loop nest. */
3207 static class loop *
3208 prepare_perfect_loop_nest (class loop *loop)
3210 class loop *outer = loop_outer (loop);
3211 tree niters = number_of_latch_executions (loop);
3213 /* TODO: We only support the innermost 3-level loop nest distribution
3214 because of compilation time issue for now. This should be relaxed
3215 in the future. Note we only allow 3-level loop nest distribution
3216 when parallelizing loops. */
3217 while ((loop->inner == NULL
3218 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3219 && loop_outer (outer)
3220 && outer->inner == loop && loop->next == NULL
3221 && single_exit (outer)
3222 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3223 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3224 && niters != chrec_dont_know)
3226 loop = outer;
3227 outer = loop_outer (loop);
3230 return loop;
3234 unsigned int
3235 loop_distribution::execute (function *fun)
3237 class loop *loop;
3238 bool changed = false;
3239 basic_block bb;
3240 control_dependences *cd = NULL;
3241 auto_vec<loop_p> loops_to_be_destroyed;
3243 if (number_of_loops (fun) <= 1)
3244 return 0;
3246 bb_top_order_init ();
3248 FOR_ALL_BB_FN (bb, fun)
3250 gimple_stmt_iterator gsi;
3251 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3252 gimple_set_uid (gsi_stmt (gsi), -1);
3253 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3254 gimple_set_uid (gsi_stmt (gsi), -1);
3257 /* We can at the moment only distribute non-nested loops, thus restrict
3258 walking to innermost loops. */
3259 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3261 /* Don't distribute multiple exit edges loop, or cold loop when
3262 not doing pattern detection. */
3263 if (!single_exit (loop)
3264 || (!flag_tree_loop_distribute_patterns
3265 && !optimize_loop_for_speed_p (loop)))
3266 continue;
3268 /* Don't distribute loop if niters is unknown. */
3269 tree niters = number_of_latch_executions (loop);
3270 if (niters == NULL_TREE || niters == chrec_dont_know)
3271 continue;
3273 /* Get the perfect loop nest for distribution. */
3274 loop = prepare_perfect_loop_nest (loop);
3275 for (; loop; loop = loop->inner)
3277 auto_vec<gimple *> work_list;
3278 if (!find_seed_stmts_for_distribution (loop, &work_list))
3279 break;
3281 const char *str = loop->inner ? " nest" : "";
3282 dump_user_location_t loc = find_loop_location (loop);
3283 if (!cd)
3285 calculate_dominance_info (CDI_DOMINATORS);
3286 calculate_dominance_info (CDI_POST_DOMINATORS);
3287 cd = new control_dependences ();
3288 free_dominance_info (CDI_POST_DOMINATORS);
3291 bool destroy_p;
3292 int nb_generated_loops, nb_generated_calls;
3293 nb_generated_loops
3294 = distribute_loop (loop, work_list, cd, &nb_generated_calls,
3295 &destroy_p, (!optimize_loop_for_speed_p (loop)
3296 || !flag_tree_loop_distribution));
3297 if (destroy_p)
3298 loops_to_be_destroyed.safe_push (loop);
3300 if (nb_generated_loops + nb_generated_calls > 0)
3302 changed = true;
3303 if (dump_enabled_p ())
3304 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3305 loc, "Loop%s %d distributed: split to %d loops "
3306 "and %d library calls.\n", str, loop->num,
3307 nb_generated_loops, nb_generated_calls);
3309 break;
3312 if (dump_file && (dump_flags & TDF_DETAILS))
3313 fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
3317 if (cd)
3318 delete cd;
3320 if (bb_top_order_index != NULL)
3321 bb_top_order_destroy ();
3323 if (changed)
3325 /* Destroy loop bodies that could not be reused. Do this late as we
3326 otherwise can end up refering to stale data in control dependences. */
3327 unsigned i;
3328 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3329 destroy_loop (loop);
3331 /* Cached scalar evolutions now may refer to wrong or non-existing
3332 loops. */
3333 scev_reset_htab ();
3334 mark_virtual_operands_for_renaming (fun);
3335 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3338 checking_verify_loop_structure ();
3340 return changed ? TODO_cleanup_cfg : 0;
3344 /* Distribute all loops in the current function. */
3346 namespace {
3348 const pass_data pass_data_loop_distribution =
3350 GIMPLE_PASS, /* type */
3351 "ldist", /* name */
3352 OPTGROUP_LOOP, /* optinfo_flags */
3353 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
3354 ( PROP_cfg | PROP_ssa ), /* properties_required */
3355 0, /* properties_provided */
3356 0, /* properties_destroyed */
3357 0, /* todo_flags_start */
3358 0, /* todo_flags_finish */
3361 class pass_loop_distribution : public gimple_opt_pass
3363 public:
3364 pass_loop_distribution (gcc::context *ctxt)
3365 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
3368 /* opt_pass methods: */
3369 virtual bool gate (function *)
3371 return flag_tree_loop_distribution
3372 || flag_tree_loop_distribute_patterns;
3375 virtual unsigned int execute (function *);
3377 }; // class pass_loop_distribution
3379 unsigned int
3380 pass_loop_distribution::execute (function *fun)
3382 return loop_distribution ().execute (fun);
3385 } // anon namespace
3387 gimple_opt_pass *
3388 make_pass_loop_distribution (gcc::context *ctxt)
3390 return new pass_loop_distribution (ctxt);