Add testcase of PR c++/92542, already fixed.
[official-gcc.git] / gcc / haifa-sched.c
blob1d3de7b6a762f33bec4c28127970c31e9d7a7a5b
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "dumpfile.h"
147 #include "print-rtl.h"
148 #include "function-abi.h"
150 #ifdef INSN_SCHEDULING
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
160 live_range_shrinkage_p = true;
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
167 live_range_shrinkage_p = false;
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
174 int issue_rate;
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
279 /* Queues, etc. */
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
359 /* Scheduling clock. */
360 static int clock_var;
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
378 static int may_trap_exp (const_rtx, int);
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
392 static int haifa_luid_for_non_insn (rtx x);
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
413 void (* sched_init_only_bb) (basic_block, basic_block);
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
427 return MAX (INSN_TICK (insn) - clock_var, 0);
430 static int
431 may_trap_exp (const_rtx x, int is_store)
433 enum rtx_code code;
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
445 if (code == MEM)
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
459 else
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
490 return insn_class;
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
504 static int
505 haifa_classify_rtx (const_rtx x)
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
511 if (GET_CODE (x) == PARALLEL)
513 int i, len = XVECLEN (x, 0);
515 for (i = len - 1; i >= 0; i--)
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
523 else
525 code = GET_CODE (x);
526 switch (code)
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
554 insn_class = tmp_class;
557 return insn_class;
561 haifa_classify_insn (const_rtx insn)
563 return haifa_classify_rtx (PATTERN (insn));
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = param_max_modulo_backtrack_attempts;
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
605 /* Helpers for delay hashing. */
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
614 /* Returns a hash value for X, based on hashing just I1. */
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
619 return htab_hash_pointer (x->i1);
622 /* Return true if I1 of pair X is the same as that of pair Y. */
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
627 return x->i1 == y;
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
637 /* Returns a hash value for X, based on hashing just I2. */
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
642 return htab_hash_pointer (x->i2);
645 /* Return true if I2 of pair X is the same as that of pair Y. */
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
650 return x->i2 == y;
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
668 delay_htab_i2->clear_slot (slot);
670 return 1;
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
684 delay_htab->clear_slot (pslot);
685 return 1;
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
690 if (INSN_UID (p->i2) < maxuid)
692 *pprev = p;
693 pprev = &p->next_same_i1;
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
740 if (!delay_htab)
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
757 struct delay_pair *pair;
759 if (!delay_htab)
760 return NULL;
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
790 if (!delay_htab)
791 return;
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
809 if (sched_verbose >= 4)
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
828 /* Forward declarations. */
830 static int priority (rtx_insn *, bool force_recompute = false);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
897 #endif /* INSN_SCHEDULING */
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
907 #else
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* The number of registers that the function would need to save before it
940 uses them, and the number of fixed_regs. Helpers for calculating of
941 sched_class_regs_num. */
942 static int call_saved_regs_num[N_REG_CLASSES];
943 static int fixed_regs_num[N_REG_CLASSES];
945 /* Initiate register pressure relative info for scheduling the current
946 region. Currently it is only clearing register mentioned in the
947 current region. */
948 void
949 sched_init_region_reg_pressure_info (void)
951 bitmap_clear (region_ref_regs);
954 /* PRESSURE[CL] describes the pressure on register class CL. Update it
955 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
956 LIVE tracks the set of live registers; if it is null, assume that
957 every birth or death is genuine. */
958 static inline void
959 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
961 enum reg_class pressure_class;
963 pressure_class = sched_regno_pressure_class[regno];
964 if (regno >= FIRST_PSEUDO_REGISTER)
966 if (pressure_class != NO_REGS)
968 if (birth_p)
970 if (!live || bitmap_set_bit (live, regno))
971 pressure[pressure_class]
972 += (ira_reg_class_max_nregs
973 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
975 else
977 if (!live || bitmap_clear_bit (live, regno))
978 pressure[pressure_class]
979 -= (ira_reg_class_max_nregs
980 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
984 else if (pressure_class != NO_REGS
985 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
987 if (birth_p)
989 if (!live || bitmap_set_bit (live, regno))
990 pressure[pressure_class]++;
992 else
994 if (!live || bitmap_clear_bit (live, regno))
995 pressure[pressure_class]--;
1000 /* Initiate current register pressure related info from living
1001 registers given by LIVE. */
1002 static void
1003 initiate_reg_pressure_info (bitmap live)
1005 int i;
1006 unsigned int j;
1007 bitmap_iterator bi;
1009 for (i = 0; i < ira_pressure_classes_num; i++)
1010 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1011 bitmap_clear (curr_reg_live);
1012 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1013 if (sched_pressure == SCHED_PRESSURE_MODEL
1014 || current_nr_blocks == 1
1015 || bitmap_bit_p (region_ref_regs, j))
1016 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1019 /* Mark registers in X as mentioned in the current region. */
1020 static void
1021 setup_ref_regs (rtx x)
1023 int i, j;
1024 const RTX_CODE code = GET_CODE (x);
1025 const char *fmt;
1027 if (REG_P (x))
1029 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1030 return;
1032 fmt = GET_RTX_FORMAT (code);
1033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1034 if (fmt[i] == 'e')
1035 setup_ref_regs (XEXP (x, i));
1036 else if (fmt[i] == 'E')
1038 for (j = 0; j < XVECLEN (x, i); j++)
1039 setup_ref_regs (XVECEXP (x, i, j));
1043 /* Initiate current register pressure related info at the start of
1044 basic block BB. */
1045 static void
1046 initiate_bb_reg_pressure_info (basic_block bb)
1048 unsigned int i ATTRIBUTE_UNUSED;
1049 rtx_insn *insn;
1051 if (current_nr_blocks > 1)
1052 FOR_BB_INSNS (bb, insn)
1053 if (NONDEBUG_INSN_P (insn))
1054 setup_ref_regs (PATTERN (insn));
1055 initiate_reg_pressure_info (df_get_live_in (bb));
1056 if (bb_has_eh_pred (bb))
1057 for (i = 0; ; ++i)
1059 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1061 if (regno == INVALID_REGNUM)
1062 break;
1063 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1064 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1065 regno, true);
1069 /* Save current register pressure related info. */
1070 static void
1071 save_reg_pressure (void)
1073 int i;
1075 for (i = 0; i < ira_pressure_classes_num; i++)
1076 saved_reg_pressure[ira_pressure_classes[i]]
1077 = curr_reg_pressure[ira_pressure_classes[i]];
1078 bitmap_copy (saved_reg_live, curr_reg_live);
1081 /* Restore saved register pressure related info. */
1082 static void
1083 restore_reg_pressure (void)
1085 int i;
1087 for (i = 0; i < ira_pressure_classes_num; i++)
1088 curr_reg_pressure[ira_pressure_classes[i]]
1089 = saved_reg_pressure[ira_pressure_classes[i]];
1090 bitmap_copy (curr_reg_live, saved_reg_live);
1093 /* Return TRUE if the register is dying after its USE. */
1094 static bool
1095 dying_use_p (struct reg_use_data *use)
1097 struct reg_use_data *next;
1099 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1100 if (NONDEBUG_INSN_P (next->insn)
1101 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1102 return false;
1103 return true;
1106 /* Print info about the current register pressure and its excess for
1107 each pressure class. */
1108 static void
1109 print_curr_reg_pressure (void)
1111 int i;
1112 enum reg_class cl;
1114 fprintf (sched_dump, ";;\t");
1115 for (i = 0; i < ira_pressure_classes_num; i++)
1117 cl = ira_pressure_classes[i];
1118 gcc_assert (curr_reg_pressure[cl] >= 0);
1119 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1120 curr_reg_pressure[cl],
1121 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1123 fprintf (sched_dump, "\n");
1126 /* Determine if INSN has a condition that is clobbered if a register
1127 in SET_REGS is modified. */
1128 static bool
1129 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1131 rtx pat = PATTERN (insn);
1132 gcc_assert (GET_CODE (pat) == COND_EXEC);
1133 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1135 sd_iterator_def sd_it;
1136 dep_t dep;
1137 haifa_change_pattern (insn, ORIG_PAT (insn));
1138 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1139 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1140 TODO_SPEC (insn) = HARD_DEP;
1141 if (sched_verbose >= 2)
1142 fprintf (sched_dump,
1143 ";;\t\tdequeue insn %s because of clobbered condition\n",
1144 (*current_sched_info->print_insn) (insn, 0));
1145 return true;
1148 return false;
1151 /* This function should be called after modifying the pattern of INSN,
1152 to update scheduler data structures as needed. */
1153 static void
1154 update_insn_after_change (rtx_insn *insn)
1156 sd_iterator_def sd_it;
1157 dep_t dep;
1159 dfa_clear_single_insn_cache (insn);
1161 sd_it = sd_iterator_start (insn,
1162 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1163 while (sd_iterator_cond (&sd_it, &dep))
1165 DEP_COST (dep) = UNKNOWN_DEP_COST;
1166 sd_iterator_next (&sd_it);
1169 /* Invalidate INSN_COST, so it'll be recalculated. */
1170 INSN_COST (insn) = -1;
1171 /* Invalidate INSN_TICK, so it'll be recalculated. */
1172 INSN_TICK (insn) = INVALID_TICK;
1174 /* Invalidate autoprefetch data entry. */
1175 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1176 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1177 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1178 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1182 /* Two VECs, one to hold dependencies for which pattern replacements
1183 need to be applied or restored at the start of the next cycle, and
1184 another to hold an integer that is either one, to apply the
1185 corresponding replacement, or zero to restore it. */
1186 static vec<dep_t> next_cycle_replace_deps;
1187 static vec<int> next_cycle_apply;
1189 static void apply_replacement (dep_t, bool);
1190 static void restore_pattern (dep_t, bool);
1192 /* Look at the remaining dependencies for insn NEXT, and compute and return
1193 the TODO_SPEC value we should use for it. This is called after one of
1194 NEXT's dependencies has been resolved.
1195 We also perform pattern replacements for predication, and for broken
1196 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1197 false. */
1199 static ds_t
1200 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1202 ds_t new_ds;
1203 sd_iterator_def sd_it;
1204 dep_t dep, modify_dep = NULL;
1205 int n_spec = 0;
1206 int n_control = 0;
1207 int n_replace = 0;
1208 bool first_p = true;
1210 if (sd_lists_empty_p (next, SD_LIST_BACK))
1211 /* NEXT has all its dependencies resolved. */
1212 return 0;
1214 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1215 return HARD_DEP;
1217 /* If NEXT is intended to sit adjacent to this instruction, we don't
1218 want to try to break any dependencies. Treat it as a HARD_DEP. */
1219 if (SCHED_GROUP_P (next))
1220 return HARD_DEP;
1222 /* Now we've got NEXT with speculative deps only.
1223 1. Look at the deps to see what we have to do.
1224 2. Check if we can do 'todo'. */
1225 new_ds = 0;
1227 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1229 rtx_insn *pro = DEP_PRO (dep);
1230 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1232 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1233 continue;
1235 if (ds)
1237 n_spec++;
1238 if (first_p)
1240 first_p = false;
1242 new_ds = ds;
1244 else
1245 new_ds = ds_merge (new_ds, ds);
1247 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1249 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1251 n_control++;
1252 modify_dep = dep;
1254 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1256 else if (DEP_REPLACE (dep) != NULL)
1258 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1260 n_replace++;
1261 modify_dep = dep;
1263 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1267 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1269 if (!dbg_cnt (sched_breakdep))
1270 return HARD_DEP;
1271 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1273 struct dep_replacement *desc = DEP_REPLACE (dep);
1274 if (desc != NULL)
1276 if (desc->insn == next && !for_backtrack)
1278 gcc_assert (n_replace == 1);
1279 apply_replacement (dep, true);
1281 DEP_STATUS (dep) |= DEP_CANCELLED;
1284 return 0;
1287 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1289 rtx_insn *pro, *other;
1290 rtx new_pat;
1291 rtx cond = NULL_RTX;
1292 bool success;
1293 rtx_insn *prev = NULL;
1294 int i;
1295 unsigned regno;
1297 if ((current_sched_info->flags & DO_PREDICATION) == 0
1298 || (ORIG_PAT (next) != NULL_RTX
1299 && PREDICATED_PAT (next) == NULL_RTX))
1300 return HARD_DEP;
1302 pro = DEP_PRO (modify_dep);
1303 other = real_insn_for_shadow (pro);
1304 if (other != NULL_RTX)
1305 pro = other;
1307 cond = sched_get_reverse_condition_uncached (pro);
1308 regno = REGNO (XEXP (cond, 0));
1310 /* Find the last scheduled insn that modifies the condition register.
1311 We can stop looking once we find the insn we depend on through the
1312 REG_DEP_CONTROL; if the condition register isn't modified after it,
1313 we know that it still has the right value. */
1314 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1315 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1317 HARD_REG_SET t;
1319 find_all_hard_reg_sets (prev, &t, true);
1320 if (TEST_HARD_REG_BIT (t, regno))
1321 return HARD_DEP;
1322 if (prev == pro)
1323 break;
1325 if (ORIG_PAT (next) == NULL_RTX)
1327 ORIG_PAT (next) = PATTERN (next);
1329 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1330 success = haifa_change_pattern (next, new_pat);
1331 if (!success)
1332 return HARD_DEP;
1333 PREDICATED_PAT (next) = new_pat;
1335 else if (PATTERN (next) != PREDICATED_PAT (next))
1337 bool success = haifa_change_pattern (next,
1338 PREDICATED_PAT (next));
1339 gcc_assert (success);
1341 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1342 return DEP_CONTROL;
1345 if (PREDICATED_PAT (next) != NULL_RTX)
1347 int tick = INSN_TICK (next);
1348 bool success = haifa_change_pattern (next,
1349 ORIG_PAT (next));
1350 INSN_TICK (next) = tick;
1351 gcc_assert (success);
1354 /* We can't handle the case where there are both speculative and control
1355 dependencies, so we return HARD_DEP in such a case. Also fail if
1356 we have speculative dependencies with not enough points, or more than
1357 one control dependency. */
1358 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1359 || (n_spec > 0
1360 /* Too few points? */
1361 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1362 || n_control > 0
1363 || n_replace > 0)
1364 return HARD_DEP;
1366 return new_ds;
1369 /* Pointer to the last instruction scheduled. */
1370 static rtx_insn *last_scheduled_insn;
1372 /* Pointer to the last nondebug instruction scheduled within the
1373 block, or the prev_head of the scheduling block. Used by
1374 rank_for_schedule, so that insns independent of the last scheduled
1375 insn will be preferred over dependent instructions. */
1376 static rtx_insn *last_nondebug_scheduled_insn;
1378 /* Pointer that iterates through the list of unscheduled insns if we
1379 have a dbg_cnt enabled. It always points at an insn prior to the
1380 first unscheduled one. */
1381 static rtx_insn *nonscheduled_insns_begin;
1383 /* Compute cost of executing INSN.
1384 This is the number of cycles between instruction issue and
1385 instruction results. */
1387 insn_sched_cost (rtx_insn *insn)
1389 int cost;
1391 if (sched_fusion)
1392 return 0;
1394 if (sel_sched_p ())
1396 if (recog_memoized (insn) < 0)
1397 return 0;
1399 cost = insn_default_latency (insn);
1400 if (cost < 0)
1401 cost = 0;
1403 return cost;
1406 cost = INSN_COST (insn);
1408 if (cost < 0)
1410 /* A USE insn, or something else we don't need to
1411 understand. We can't pass these directly to
1412 result_ready_cost or insn_default_latency because it will
1413 trigger a fatal error for unrecognizable insns. */
1414 if (recog_memoized (insn) < 0)
1416 INSN_COST (insn) = 0;
1417 return 0;
1419 else
1421 cost = insn_default_latency (insn);
1422 if (cost < 0)
1423 cost = 0;
1425 INSN_COST (insn) = cost;
1429 return cost;
1432 /* Compute cost of dependence LINK.
1433 This is the number of cycles between instruction issue and
1434 instruction results.
1435 ??? We also use this function to call recog_memoized on all insns. */
1437 dep_cost_1 (dep_t link, dw_t dw)
1439 rtx_insn *insn = DEP_PRO (link);
1440 rtx_insn *used = DEP_CON (link);
1441 int cost;
1443 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1444 return DEP_COST (link);
1446 if (delay_htab)
1448 struct delay_pair *delay_entry;
1449 delay_entry
1450 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1451 if (delay_entry)
1453 if (delay_entry->i1 == insn)
1455 DEP_COST (link) = pair_delay (delay_entry);
1456 return DEP_COST (link);
1461 /* A USE insn should never require the value used to be computed.
1462 This allows the computation of a function's result and parameter
1463 values to overlap the return and call. We don't care about the
1464 dependence cost when only decreasing register pressure. */
1465 if (recog_memoized (used) < 0)
1467 cost = 0;
1468 recog_memoized (insn);
1470 else
1472 enum reg_note dep_type = DEP_TYPE (link);
1474 cost = insn_sched_cost (insn);
1476 if (INSN_CODE (insn) >= 0)
1478 if (dep_type == REG_DEP_ANTI)
1479 cost = 0;
1480 else if (dep_type == REG_DEP_OUTPUT)
1482 cost = (insn_default_latency (insn)
1483 - insn_default_latency (used));
1484 if (cost <= 0)
1485 cost = 1;
1487 else if (bypass_p (insn))
1488 cost = insn_latency (insn, used);
1492 if (targetm.sched.adjust_cost)
1493 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1494 dw);
1496 if (cost < 0)
1497 cost = 0;
1500 DEP_COST (link) = cost;
1501 return cost;
1504 /* Compute cost of dependence LINK.
1505 This is the number of cycles between instruction issue and
1506 instruction results. */
1508 dep_cost (dep_t link)
1510 return dep_cost_1 (link, 0);
1513 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1514 INSN_PRIORITY explicitly. */
1515 void
1516 increase_insn_priority (rtx_insn *insn, int amount)
1518 if (!sel_sched_p ())
1520 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1521 if (INSN_PRIORITY_KNOWN (insn))
1522 INSN_PRIORITY (insn) += amount;
1524 else
1526 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1527 Use EXPR_PRIORITY instead. */
1528 sel_add_to_insn_priority (insn, amount);
1532 /* Return 'true' if DEP should be included in priority calculations. */
1533 static bool
1534 contributes_to_priority_p (dep_t dep)
1536 if (DEBUG_INSN_P (DEP_CON (dep))
1537 || DEBUG_INSN_P (DEP_PRO (dep)))
1538 return false;
1540 /* Critical path is meaningful in block boundaries only. */
1541 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1542 DEP_PRO (dep)))
1543 return false;
1545 if (DEP_REPLACE (dep) != NULL)
1546 return false;
1548 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1549 then speculative instructions will less likely be
1550 scheduled. That is because the priority of
1551 their producers will increase, and, thus, the
1552 producers will more likely be scheduled, thus,
1553 resolving the dependence. */
1554 if (sched_deps_info->generate_spec_deps
1555 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1556 && (DEP_STATUS (dep) & SPECULATIVE))
1557 return false;
1559 return true;
1562 /* Compute the number of nondebug deps in list LIST for INSN. */
1564 static int
1565 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1567 sd_iterator_def sd_it;
1568 dep_t dep;
1569 int dbgcount = 0, nodbgcount = 0;
1571 if (!MAY_HAVE_DEBUG_INSNS)
1572 return sd_lists_size (insn, list);
1574 FOR_EACH_DEP (insn, list, sd_it, dep)
1576 if (DEBUG_INSN_P (DEP_CON (dep)))
1577 dbgcount++;
1578 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1579 nodbgcount++;
1582 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1584 return nodbgcount;
1587 bool sched_fusion;
1589 /* Compute the priority number for INSN. */
1590 static int
1591 priority (rtx_insn *insn, bool force_recompute)
1593 if (! INSN_P (insn))
1594 return 0;
1596 /* We should not be interested in priority of an already scheduled insn. */
1597 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1599 if (force_recompute || !INSN_PRIORITY_KNOWN (insn))
1601 int this_priority = -1;
1603 if (sched_fusion)
1605 int this_fusion_priority;
1607 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1608 &this_fusion_priority, &this_priority);
1609 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1611 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1612 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1613 has some forward deps but all of them are ignored by
1614 contributes_to_priority hook. At the moment we set priority of
1615 such insn to 0. */
1616 this_priority = insn_sched_cost (insn);
1617 else
1619 rtx_insn *prev_first, *twin;
1620 basic_block rec;
1622 /* For recovery check instructions we calculate priority slightly
1623 different than that of normal instructions. Instead of walking
1624 through INSN_FORW_DEPS (check) list, we walk through
1625 INSN_FORW_DEPS list of each instruction in the corresponding
1626 recovery block. */
1628 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1629 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1630 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1632 prev_first = PREV_INSN (insn);
1633 twin = insn;
1635 else
1637 prev_first = NEXT_INSN (BB_HEAD (rec));
1638 twin = PREV_INSN (BB_END (rec));
1643 sd_iterator_def sd_it;
1644 dep_t dep;
1646 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1648 rtx_insn *next;
1649 int next_priority;
1651 next = DEP_CON (dep);
1653 if (BLOCK_FOR_INSN (next) != rec)
1655 int cost;
1657 if (!contributes_to_priority_p (dep))
1658 continue;
1660 if (twin == insn)
1661 cost = dep_cost (dep);
1662 else
1664 struct _dep _dep1, *dep1 = &_dep1;
1666 init_dep (dep1, insn, next, REG_DEP_ANTI);
1668 cost = dep_cost (dep1);
1671 next_priority = cost + priority (next);
1673 if (next_priority > this_priority)
1674 this_priority = next_priority;
1678 twin = PREV_INSN (twin);
1680 while (twin != prev_first);
1683 if (this_priority < 0)
1685 gcc_assert (this_priority == -1);
1687 this_priority = insn_sched_cost (insn);
1690 INSN_PRIORITY (insn) = this_priority;
1691 INSN_PRIORITY_STATUS (insn) = 1;
1694 return INSN_PRIORITY (insn);
1697 /* Macros and functions for keeping the priority queue sorted, and
1698 dealing with queuing and dequeuing of instructions. */
1700 /* For each pressure class CL, set DEATH[CL] to the number of registers
1701 in that class that die in INSN. */
1703 static void
1704 calculate_reg_deaths (rtx_insn *insn, int *death)
1706 int i;
1707 struct reg_use_data *use;
1709 for (i = 0; i < ira_pressure_classes_num; i++)
1710 death[ira_pressure_classes[i]] = 0;
1711 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1712 if (dying_use_p (use))
1713 mark_regno_birth_or_death (0, death, use->regno, true);
1716 /* Setup info about the current register pressure impact of scheduling
1717 INSN at the current scheduling point. */
1718 static void
1719 setup_insn_reg_pressure_info (rtx_insn *insn)
1721 int i, change, before, after, hard_regno;
1722 int excess_cost_change;
1723 machine_mode mode;
1724 enum reg_class cl;
1725 struct reg_pressure_data *pressure_info;
1726 int *max_reg_pressure;
1727 static int death[N_REG_CLASSES];
1729 gcc_checking_assert (!DEBUG_INSN_P (insn));
1731 excess_cost_change = 0;
1732 calculate_reg_deaths (insn, death);
1733 pressure_info = INSN_REG_PRESSURE (insn);
1734 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1735 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1736 for (i = 0; i < ira_pressure_classes_num; i++)
1738 cl = ira_pressure_classes[i];
1739 gcc_assert (curr_reg_pressure[cl] >= 0);
1740 change = (int) pressure_info[i].set_increase - death[cl];
1741 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1742 after = MAX (0, max_reg_pressure[i] + change
1743 - sched_class_regs_num[cl]);
1744 hard_regno = ira_class_hard_regs[cl][0];
1745 gcc_assert (hard_regno >= 0);
1746 mode = reg_raw_mode[hard_regno];
1747 excess_cost_change += ((after - before)
1748 * (ira_memory_move_cost[mode][cl][0]
1749 + ira_memory_move_cost[mode][cl][1]));
1751 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1754 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1755 It tries to make the scheduler take register pressure into account
1756 without introducing too many unnecessary stalls. It hooks into the
1757 main scheduling algorithm at several points:
1759 - Before scheduling starts, model_start_schedule constructs a
1760 "model schedule" for the current block. This model schedule is
1761 chosen solely to keep register pressure down. It does not take the
1762 target's pipeline or the original instruction order into account,
1763 except as a tie-breaker. It also doesn't work to a particular
1764 pressure limit.
1766 This model schedule gives us an idea of what pressure can be
1767 achieved for the block and gives us an example of a schedule that
1768 keeps to that pressure. It also makes the final schedule less
1769 dependent on the original instruction order. This is important
1770 because the original order can either be "wide" (many values live
1771 at once, such as in user-scheduled code) or "narrow" (few values
1772 live at once, such as after loop unrolling, where several
1773 iterations are executed sequentially).
1775 We do not apply this model schedule to the rtx stream. We simply
1776 record it in model_schedule. We also compute the maximum pressure,
1777 MP, that was seen during this schedule.
1779 - Instructions are added to the ready queue even if they require
1780 a stall. The length of the stall is instead computed as:
1782 MAX (INSN_TICK (INSN) - clock_var, 0)
1784 (= insn_delay). This allows rank_for_schedule to choose between
1785 introducing a deliberate stall or increasing pressure.
1787 - Before sorting the ready queue, model_set_excess_costs assigns
1788 a pressure-based cost to each ready instruction in the queue.
1789 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1790 (ECC for short) and is effectively measured in cycles.
1792 - rank_for_schedule ranks instructions based on:
1794 ECC (insn) + insn_delay (insn)
1796 then as:
1798 insn_delay (insn)
1800 So, for example, an instruction X1 with an ECC of 1 that can issue
1801 now will win over an instruction X0 with an ECC of zero that would
1802 introduce a stall of one cycle. However, an instruction X2 with an
1803 ECC of 2 that can issue now will lose to both X0 and X1.
1805 - When an instruction is scheduled, model_recompute updates the model
1806 schedule with the new pressures (some of which might now exceed the
1807 original maximum pressure MP). model_update_limit_points then searches
1808 for the new point of maximum pressure, if not already known. */
1810 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1811 from surrounding debug information. */
1812 #define MODEL_BAR \
1813 ";;\t\t+------------------------------------------------------\n"
1815 /* Information about the pressure on a particular register class at a
1816 particular point of the model schedule. */
1817 struct model_pressure_data {
1818 /* The pressure at this point of the model schedule, or -1 if the
1819 point is associated with an instruction that has already been
1820 scheduled. */
1821 int ref_pressure;
1823 /* The maximum pressure during or after this point of the model schedule. */
1824 int max_pressure;
1827 /* Per-instruction information that is used while building the model
1828 schedule. Here, "schedule" refers to the model schedule rather
1829 than the main schedule. */
1830 struct model_insn_info {
1831 /* The instruction itself. */
1832 rtx_insn *insn;
1834 /* If this instruction is in model_worklist, these fields link to the
1835 previous (higher-priority) and next (lower-priority) instructions
1836 in the list. */
1837 struct model_insn_info *prev;
1838 struct model_insn_info *next;
1840 /* While constructing the schedule, QUEUE_INDEX describes whether an
1841 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1842 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1843 old_queue records the value that QUEUE_INDEX had before scheduling
1844 started, so that we can restore it once the schedule is complete. */
1845 int old_queue;
1847 /* The relative importance of an unscheduled instruction. Higher
1848 values indicate greater importance. */
1849 unsigned int model_priority;
1851 /* The length of the longest path of satisfied true dependencies
1852 that leads to this instruction. */
1853 unsigned int depth;
1855 /* The length of the longest path of dependencies of any kind
1856 that leads from this instruction. */
1857 unsigned int alap;
1859 /* The number of predecessor nodes that must still be scheduled. */
1860 int unscheduled_preds;
1863 /* Information about the pressure limit for a particular register class.
1864 This structure is used when applying a model schedule to the main
1865 schedule. */
1866 struct model_pressure_limit {
1867 /* The maximum register pressure seen in the original model schedule. */
1868 int orig_pressure;
1870 /* The maximum register pressure seen in the current model schedule
1871 (which excludes instructions that have already been scheduled). */
1872 int pressure;
1874 /* The point of the current model schedule at which PRESSURE is first
1875 reached. It is set to -1 if the value needs to be recomputed. */
1876 int point;
1879 /* Describes a particular way of measuring register pressure. */
1880 struct model_pressure_group {
1881 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1882 struct model_pressure_limit limits[N_REG_CLASSES];
1884 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1885 on register class ira_pressure_classes[PCI] at point POINT of the
1886 current model schedule. A POINT of model_num_insns describes the
1887 pressure at the end of the schedule. */
1888 struct model_pressure_data *model;
1891 /* Index POINT gives the instruction at point POINT of the model schedule.
1892 This array doesn't change during main scheduling. */
1893 static vec<rtx_insn *> model_schedule;
1895 /* The list of instructions in the model worklist, sorted in order of
1896 decreasing priority. */
1897 static struct model_insn_info *model_worklist;
1899 /* Index I describes the instruction with INSN_LUID I. */
1900 static struct model_insn_info *model_insns;
1902 /* The number of instructions in the model schedule. */
1903 static int model_num_insns;
1905 /* The index of the first instruction in model_schedule that hasn't yet been
1906 added to the main schedule, or model_num_insns if all of them have. */
1907 static int model_curr_point;
1909 /* Describes the pressure before each instruction in the model schedule. */
1910 static struct model_pressure_group model_before_pressure;
1912 /* The first unused model_priority value (as used in model_insn_info). */
1913 static unsigned int model_next_priority;
1916 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1917 at point POINT of the model schedule. */
1918 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1919 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1921 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1922 after point POINT of the model schedule. */
1923 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1924 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1926 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1927 of the model schedule. */
1928 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1929 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1931 /* Information about INSN that is used when creating the model schedule. */
1932 #define MODEL_INSN_INFO(INSN) \
1933 (&model_insns[INSN_LUID (INSN)])
1935 /* The instruction at point POINT of the model schedule. */
1936 #define MODEL_INSN(POINT) \
1937 (model_schedule[POINT])
1940 /* Return INSN's index in the model schedule, or model_num_insns if it
1941 doesn't belong to that schedule. */
1943 static int
1944 model_index (rtx_insn *insn)
1946 if (INSN_MODEL_INDEX (insn) == 0)
1947 return model_num_insns;
1948 return INSN_MODEL_INDEX (insn) - 1;
1951 /* Make sure that GROUP->limits is up-to-date for the current point
1952 of the model schedule. */
1954 static void
1955 model_update_limit_points_in_group (struct model_pressure_group *group)
1957 int pci, max_pressure, point;
1959 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1961 /* We may have passed the final point at which the pressure in
1962 group->limits[pci].pressure was reached. Update the limit if so. */
1963 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1964 group->limits[pci].pressure = max_pressure;
1966 /* Find the point at which MAX_PRESSURE is first reached. We need
1967 to search in three cases:
1969 - We've already moved past the previous pressure point.
1970 In this case we search forward from model_curr_point.
1972 - We scheduled the previous point of maximum pressure ahead of
1973 its position in the model schedule, but doing so didn't bring
1974 the pressure point earlier. In this case we search forward
1975 from that previous pressure point.
1977 - Scheduling an instruction early caused the maximum pressure
1978 to decrease. In this case we will have set the pressure
1979 point to -1, and we search forward from model_curr_point. */
1980 point = MAX (group->limits[pci].point, model_curr_point);
1981 while (point < model_num_insns
1982 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1983 point++;
1984 group->limits[pci].point = point;
1986 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1987 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1991 /* Make sure that all register-pressure limits are up-to-date for the
1992 current position in the model schedule. */
1994 static void
1995 model_update_limit_points (void)
1997 model_update_limit_points_in_group (&model_before_pressure);
2000 /* Return the model_index of the last unscheduled use in chain USE
2001 outside of USE's instruction. Return -1 if there are no other uses,
2002 or model_num_insns if the register is live at the end of the block. */
2004 static int
2005 model_last_use_except (struct reg_use_data *use)
2007 struct reg_use_data *next;
2008 int last, index;
2010 last = -1;
2011 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2012 if (NONDEBUG_INSN_P (next->insn)
2013 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2015 index = model_index (next->insn);
2016 if (index == model_num_insns)
2017 return model_num_insns;
2018 if (last < index)
2019 last = index;
2021 return last;
2024 /* An instruction with model_index POINT has just been scheduled, and it
2025 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2026 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2027 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2029 static void
2030 model_start_update_pressure (struct model_pressure_group *group,
2031 int point, int pci, int delta)
2033 int next_max_pressure;
2035 if (point == model_num_insns)
2037 /* The instruction wasn't part of the model schedule; it was moved
2038 from a different block. Update the pressure for the end of
2039 the model schedule. */
2040 MODEL_REF_PRESSURE (group, point, pci) += delta;
2041 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2043 else
2045 /* Record that this instruction has been scheduled. Nothing now
2046 changes between POINT and POINT + 1, so get the maximum pressure
2047 from the latter. If the maximum pressure decreases, the new
2048 pressure point may be before POINT. */
2049 MODEL_REF_PRESSURE (group, point, pci) = -1;
2050 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2051 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2053 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2054 if (group->limits[pci].point == point)
2055 group->limits[pci].point = -1;
2060 /* Record that scheduling a later instruction has changed the pressure
2061 at point POINT of the model schedule by DELTA (which might be 0).
2062 Update GROUP accordingly. Return nonzero if these changes might
2063 trigger changes to previous points as well. */
2065 static int
2066 model_update_pressure (struct model_pressure_group *group,
2067 int point, int pci, int delta)
2069 int ref_pressure, max_pressure, next_max_pressure;
2071 /* If POINT hasn't yet been scheduled, update its pressure. */
2072 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2073 if (ref_pressure >= 0 && delta != 0)
2075 ref_pressure += delta;
2076 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2078 /* Check whether the maximum pressure in the overall schedule
2079 has increased. (This means that the MODEL_MAX_PRESSURE of
2080 every point <= POINT will need to increase too; see below.) */
2081 if (group->limits[pci].pressure < ref_pressure)
2082 group->limits[pci].pressure = ref_pressure;
2084 /* If we are at maximum pressure, and the maximum pressure
2085 point was previously unknown or later than POINT,
2086 bring it forward. */
2087 if (group->limits[pci].pressure == ref_pressure
2088 && !IN_RANGE (group->limits[pci].point, 0, point))
2089 group->limits[pci].point = point;
2091 /* If POINT used to be the point of maximum pressure, but isn't
2092 any longer, we need to recalculate it using a forward walk. */
2093 if (group->limits[pci].pressure > ref_pressure
2094 && group->limits[pci].point == point)
2095 group->limits[pci].point = -1;
2098 /* Update the maximum pressure at POINT. Changes here might also
2099 affect the maximum pressure at POINT - 1. */
2100 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2101 max_pressure = MAX (ref_pressure, next_max_pressure);
2102 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2104 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2105 return 1;
2107 return 0;
2110 /* INSN has just been scheduled. Update the model schedule accordingly. */
2112 static void
2113 model_recompute (rtx_insn *insn)
2115 struct {
2116 int last_use;
2117 int regno;
2118 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2119 struct reg_use_data *use;
2120 struct reg_pressure_data *reg_pressure;
2121 int delta[N_REG_CLASSES];
2122 int pci, point, mix, new_last, cl, ref_pressure, queue;
2123 unsigned int i, num_uses, num_pending_births;
2124 bool print_p;
2126 /* The destinations of INSN were previously live from POINT onwards, but are
2127 now live from model_curr_point onwards. Set up DELTA accordingly. */
2128 point = model_index (insn);
2129 reg_pressure = INSN_REG_PRESSURE (insn);
2130 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2132 cl = ira_pressure_classes[pci];
2133 delta[cl] = reg_pressure[pci].set_increase;
2136 /* Record which registers previously died at POINT, but which now die
2137 before POINT. Adjust DELTA so that it represents the effect of
2138 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2139 registers that will be born in the range [model_curr_point, POINT). */
2140 num_uses = 0;
2141 num_pending_births = 0;
2142 bitmap_clear (tmp_bitmap);
2143 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2145 new_last = model_last_use_except (use);
2146 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2148 gcc_assert (num_uses < ARRAY_SIZE (uses));
2149 uses[num_uses].last_use = new_last;
2150 uses[num_uses].regno = use->regno;
2151 /* This register is no longer live after POINT - 1. */
2152 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2153 num_uses++;
2154 if (new_last >= 0)
2155 num_pending_births++;
2159 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2160 Also set each group pressure limit for POINT. */
2161 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2163 cl = ira_pressure_classes[pci];
2164 model_start_update_pressure (&model_before_pressure,
2165 point, pci, delta[cl]);
2168 /* Walk the model schedule backwards, starting immediately before POINT. */
2169 print_p = false;
2170 if (point != model_curr_point)
2173 point--;
2174 insn = MODEL_INSN (point);
2175 queue = QUEUE_INDEX (insn);
2177 if (queue != QUEUE_SCHEDULED)
2179 /* DELTA describes the effect of the move on the register pressure
2180 after POINT. Make it describe the effect on the pressure
2181 before POINT. */
2182 i = 0;
2183 while (i < num_uses)
2185 if (uses[i].last_use == point)
2187 /* This register is now live again. */
2188 mark_regno_birth_or_death (NULL, delta,
2189 uses[i].regno, true);
2191 /* Remove this use from the array. */
2192 uses[i] = uses[num_uses - 1];
2193 num_uses--;
2194 num_pending_births--;
2196 else
2197 i++;
2200 if (sched_verbose >= 5)
2202 if (!print_p)
2204 fprintf (sched_dump, MODEL_BAR);
2205 fprintf (sched_dump, ";;\t\t| New pressure for model"
2206 " schedule\n");
2207 fprintf (sched_dump, MODEL_BAR);
2208 print_p = true;
2211 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2212 point, INSN_UID (insn),
2213 str_pattern_slim (PATTERN (insn)));
2214 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2216 cl = ira_pressure_classes[pci];
2217 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2218 point, pci);
2219 fprintf (sched_dump, " %s:[%d->%d]",
2220 reg_class_names[ira_pressure_classes[pci]],
2221 ref_pressure, ref_pressure + delta[cl]);
2223 fprintf (sched_dump, "\n");
2227 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2228 might have changed as well. */
2229 mix = num_pending_births;
2230 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2232 cl = ira_pressure_classes[pci];
2233 mix |= delta[cl];
2234 mix |= model_update_pressure (&model_before_pressure,
2235 point, pci, delta[cl]);
2238 while (mix && point > model_curr_point);
2240 if (print_p)
2241 fprintf (sched_dump, MODEL_BAR);
2244 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2245 check whether the insn's pattern needs restoring. */
2246 static bool
2247 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2249 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2250 return false;
2252 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2254 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2255 gcc_assert (next == DEP_CON (dep));
2257 else
2259 struct dep_replacement *desc = DEP_REPLACE (dep);
2260 if (desc->insn != next)
2262 gcc_assert (*desc->loc == desc->orig);
2263 return false;
2266 return true;
2269 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2270 pressure on CL from P to P'. We use this to calculate a "base ECC",
2271 baseECC (CL, X), for each pressure class CL and each instruction X.
2272 Supposing X changes the pressure on CL from P to P', and that the
2273 maximum pressure on CL in the current model schedule is MP', then:
2275 * if X occurs before or at the next point of maximum pressure in
2276 the model schedule and P' > MP', then:
2278 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2280 The idea is that the pressure after scheduling a fixed set of
2281 instructions -- in this case, the set up to and including the
2282 next maximum pressure point -- is going to be the same regardless
2283 of the order; we simply want to keep the intermediate pressure
2284 under control. Thus X has a cost of zero unless scheduling it
2285 now would exceed MP'.
2287 If all increases in the set are by the same amount, no zero-cost
2288 instruction will ever cause the pressure to exceed MP'. However,
2289 if X is instead moved past an instruction X' with pressure in the
2290 range (MP' - (P' - P), MP'), the pressure at X' will increase
2291 beyond MP'. Since baseECC is very much a heuristic anyway,
2292 it doesn't seem worth the overhead of tracking cases like these.
2294 The cost of exceeding MP' is always based on the original maximum
2295 pressure MP. This is so that going 2 registers over the original
2296 limit has the same cost regardless of whether it comes from two
2297 separate +1 deltas or from a single +2 delta.
2299 * if X occurs after the next point of maximum pressure in the model
2300 schedule and P' > P, then:
2302 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2304 That is, if we move X forward across a point of maximum pressure,
2305 and if X increases the pressure by P' - P, then we conservatively
2306 assume that scheduling X next would increase the maximum pressure
2307 by P' - P. Again, the cost of doing this is based on the original
2308 maximum pressure MP, for the same reason as above.
2310 * if P' < P, P > MP, and X occurs at or after the next point of
2311 maximum pressure, then:
2313 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2315 That is, if we have already exceeded the original maximum pressure MP,
2316 and if X might reduce the maximum pressure again -- or at least push
2317 it further back, and thus allow more scheduling freedom -- it is given
2318 a negative cost to reflect the improvement.
2320 * otherwise,
2322 baseECC (CL, X) = 0
2324 In this case, X is not expected to affect the maximum pressure MP',
2325 so it has zero cost.
2327 We then create a combined value baseECC (X) that is the sum of
2328 baseECC (CL, X) for each pressure class CL.
2330 baseECC (X) could itself be used as the ECC value described above.
2331 However, this is often too conservative, in the sense that it
2332 tends to make high-priority instructions that increase pressure
2333 wait too long in cases where introducing a spill would be better.
2334 For this reason the final ECC is a priority-adjusted form of
2335 baseECC (X). Specifically, we calculate:
2337 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2338 baseP = MAX { P (X) | baseECC (X) <= 0 }
2340 Then:
2342 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2344 Thus an instruction's effect on pressure is ignored if it has a high
2345 enough priority relative to the ones that don't increase pressure.
2346 Negative values of baseECC (X) do not increase the priority of X
2347 itself, but they do make it harder for other instructions to
2348 increase the pressure further.
2350 This pressure cost is deliberately timid. The intention has been
2351 to choose a heuristic that rarely interferes with the normal list
2352 scheduler in cases where that scheduler would produce good code.
2353 We simply want to curb some of its worst excesses. */
2355 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2357 Here we use the very simplistic cost model that every register above
2358 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2359 measures instead, such as one based on MEMORY_MOVE_COST. However:
2361 (1) In order for an instruction to be scheduled, the higher cost
2362 would need to be justified in a single saving of that many stalls.
2363 This is overly pessimistic, because the benefit of spilling is
2364 often to avoid a sequence of several short stalls rather than
2365 a single long one.
2367 (2) The cost is still arbitrary. Because we are not allocating
2368 registers during scheduling, we have no way of knowing for
2369 sure how many memory accesses will be required by each spill,
2370 where the spills will be placed within the block, or even
2371 which block(s) will contain the spills.
2373 So a higher cost than 1 is often too conservative in practice,
2374 forcing blocks to contain unnecessary stalls instead of spill code.
2375 The simple cost below seems to be the best compromise. It reduces
2376 the interference with the normal list scheduler, which helps make
2377 it more suitable for a default-on option. */
2379 static int
2380 model_spill_cost (int cl, int from, int to)
2382 from = MAX (from, sched_class_regs_num[cl]);
2383 return MAX (to, from) - from;
2386 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2387 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2388 P' = P + DELTA. */
2390 static int
2391 model_excess_group_cost (struct model_pressure_group *group,
2392 int point, int pci, int delta)
2394 int pressure, cl;
2396 cl = ira_pressure_classes[pci];
2397 if (delta < 0 && point >= group->limits[pci].point)
2399 pressure = MAX (group->limits[pci].orig_pressure,
2400 curr_reg_pressure[cl] + delta);
2401 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2404 if (delta > 0)
2406 if (point > group->limits[pci].point)
2407 pressure = group->limits[pci].pressure + delta;
2408 else
2409 pressure = curr_reg_pressure[cl] + delta;
2411 if (pressure > group->limits[pci].pressure)
2412 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2413 pressure);
2416 return 0;
2419 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2420 if PRINT_P. */
2422 static int
2423 model_excess_cost (rtx_insn *insn, bool print_p)
2425 int point, pci, cl, cost, this_cost, delta;
2426 struct reg_pressure_data *insn_reg_pressure;
2427 int insn_death[N_REG_CLASSES];
2429 calculate_reg_deaths (insn, insn_death);
2430 point = model_index (insn);
2431 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2432 cost = 0;
2434 if (print_p)
2435 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2436 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2438 /* Sum up the individual costs for each register class. */
2439 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2441 cl = ira_pressure_classes[pci];
2442 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2443 this_cost = model_excess_group_cost (&model_before_pressure,
2444 point, pci, delta);
2445 cost += this_cost;
2446 if (print_p)
2447 fprintf (sched_dump, " %s:[%d base cost %d]",
2448 reg_class_names[cl], delta, this_cost);
2451 if (print_p)
2452 fprintf (sched_dump, "\n");
2454 return cost;
2457 /* Dump the next points of maximum pressure for GROUP. */
2459 static void
2460 model_dump_pressure_points (struct model_pressure_group *group)
2462 int pci, cl;
2464 fprintf (sched_dump, ";;\t\t| pressure points");
2465 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2467 cl = ira_pressure_classes[pci];
2468 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2469 curr_reg_pressure[cl], group->limits[pci].pressure);
2470 if (group->limits[pci].point < model_num_insns)
2471 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2472 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2473 else
2474 fprintf (sched_dump, "end]");
2476 fprintf (sched_dump, "\n");
2479 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2481 static void
2482 model_set_excess_costs (rtx_insn **insns, int count)
2484 int i, cost, priority_base, priority;
2485 bool print_p;
2487 /* Record the baseECC value for each instruction in the model schedule,
2488 except that negative costs are converted to zero ones now rather than
2489 later. Do not assign a cost to debug instructions, since they must
2490 not change code-generation decisions. Experiments suggest we also
2491 get better results by not assigning a cost to instructions from
2492 a different block.
2494 Set PRIORITY_BASE to baseP in the block comment above. This is the
2495 maximum priority of the "cheap" instructions, which should always
2496 include the next model instruction. */
2497 priority_base = 0;
2498 print_p = false;
2499 for (i = 0; i < count; i++)
2500 if (INSN_MODEL_INDEX (insns[i]))
2502 if (sched_verbose >= 6 && !print_p)
2504 fprintf (sched_dump, MODEL_BAR);
2505 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2506 model_dump_pressure_points (&model_before_pressure);
2507 fprintf (sched_dump, MODEL_BAR);
2508 print_p = true;
2510 cost = model_excess_cost (insns[i], print_p);
2511 if (cost <= 0)
2513 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2514 priority_base = MAX (priority_base, priority);
2515 cost = 0;
2517 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2519 if (print_p)
2520 fprintf (sched_dump, MODEL_BAR);
2522 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2523 instruction. */
2524 for (i = 0; i < count; i++)
2526 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2527 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2528 if (cost > 0 && priority > priority_base)
2530 cost += priority_base - priority;
2531 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2537 /* Enum of rank_for_schedule heuristic decisions. */
2538 enum rfs_decision {
2539 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2540 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2541 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2542 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2543 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };
2545 /* Corresponding strings for print outs. */
2546 static const char *rfs_str[RFS_N] = {
2547 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2548 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2549 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2550 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2551 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };
2553 /* Statistical breakdown of rank_for_schedule decisions. */
2554 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2555 static rank_for_schedule_stats_t rank_for_schedule_stats;
2557 /* Return the result of comparing insns TMP and TMP2 and update
2558 Rank_For_Schedule statistics. */
2559 static int
2560 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2562 ++rank_for_schedule_stats.stats[decision];
2563 if (result < 0)
2564 INSN_LAST_RFS_WIN (tmp) = decision;
2565 else if (result > 0)
2566 INSN_LAST_RFS_WIN (tmp2) = decision;
2567 else
2568 gcc_unreachable ();
2569 return result;
2572 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2573 keeping normal insns in original order. */
2575 static int
2576 rank_for_schedule_debug (const void *x, const void *y)
2578 rtx_insn *tmp = *(rtx_insn * const *) y;
2579 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2581 /* Schedule debug insns as early as possible. */
2582 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2583 return -1;
2584 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2585 return 1;
2586 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2587 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2588 else
2589 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2592 /* Returns a positive value if x is preferred; returns a negative value if
2593 y is preferred. Should never return 0, since that will make the sort
2594 unstable. */
2596 static int
2597 rank_for_schedule (const void *x, const void *y)
2599 rtx_insn *tmp = *(rtx_insn * const *) y;
2600 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2601 int tmp_class, tmp2_class;
2602 int val, priority_val, info_val, diff;
2604 if (live_range_shrinkage_p)
2606 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2607 code. */
2608 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2609 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2610 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2611 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2612 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2613 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2614 /* Sort by INSN_LUID (original insn order), so that we make the
2615 sort stable. This minimizes instruction movement, thus
2616 minimizing sched's effect on debugging and cross-jumping. */
2617 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2618 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2621 /* The insn in a schedule group should be issued the first. */
2622 if (flag_sched_group_heuristic &&
2623 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2624 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2625 tmp, tmp2);
2627 /* Make sure that priority of TMP and TMP2 are initialized. */
2628 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2630 if (sched_fusion)
2632 /* The instruction that has the same fusion priority as the last
2633 instruction is the instruction we picked next. If that is not
2634 the case, we sort ready list firstly by fusion priority, then
2635 by priority, and at last by INSN_LUID. */
2636 int a = INSN_FUSION_PRIORITY (tmp);
2637 int b = INSN_FUSION_PRIORITY (tmp2);
2638 int last = -1;
2640 if (last_nondebug_scheduled_insn
2641 && !NOTE_P (last_nondebug_scheduled_insn)
2642 && BLOCK_FOR_INSN (tmp)
2643 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2644 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2646 if (a != last && b != last)
2648 if (a == b)
2650 a = INSN_PRIORITY (tmp);
2651 b = INSN_PRIORITY (tmp2);
2653 if (a != b)
2654 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2655 else
2656 return rfs_result (RFS_FUSION,
2657 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2659 else if (a == b)
2661 gcc_assert (last_nondebug_scheduled_insn
2662 && !NOTE_P (last_nondebug_scheduled_insn));
2663 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2665 a = abs (INSN_PRIORITY (tmp) - last);
2666 b = abs (INSN_PRIORITY (tmp2) - last);
2667 if (a != b)
2668 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2669 else
2670 return rfs_result (RFS_FUSION,
2671 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2673 else if (a == last)
2674 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2675 else
2676 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2679 if (sched_pressure != SCHED_PRESSURE_NONE)
2681 /* Prefer insn whose scheduling results in the smallest register
2682 pressure excess. */
2683 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2684 + insn_delay (tmp)
2685 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2686 - insn_delay (tmp2))))
2687 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2690 if (sched_pressure != SCHED_PRESSURE_NONE
2691 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2692 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2694 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2695 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2698 /* If we are doing backtracking in this schedule, prefer insns that
2699 have forward dependencies with negative cost against an insn that
2700 was already scheduled. */
2701 if (current_sched_info->flags & DO_BACKTRACKING)
2703 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2704 if (priority_val)
2705 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2708 /* Prefer insn with higher priority. */
2709 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2711 if (flag_sched_critical_path_heuristic && priority_val)
2712 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2714 if (param_sched_autopref_queue_depth >= 0)
2716 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2717 if (autopref != 0)
2718 return autopref;
2721 /* Prefer speculative insn with greater dependencies weakness. */
2722 if (flag_sched_spec_insn_heuristic && spec_info)
2724 ds_t ds1, ds2;
2725 dw_t dw1, dw2;
2726 int dw;
2728 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2729 if (ds1)
2730 dw1 = ds_weak (ds1);
2731 else
2732 dw1 = NO_DEP_WEAK;
2734 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2735 if (ds2)
2736 dw2 = ds_weak (ds2);
2737 else
2738 dw2 = NO_DEP_WEAK;
2740 dw = dw2 - dw1;
2741 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2742 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2745 info_val = (*current_sched_info->rank) (tmp, tmp2);
2746 if (flag_sched_rank_heuristic && info_val)
2747 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2749 /* Compare insns based on their relation to the last scheduled
2750 non-debug insn. */
2751 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2753 dep_t dep1;
2754 dep_t dep2;
2755 rtx_insn *last = last_nondebug_scheduled_insn;
2757 /* Classify the instructions into three classes:
2758 1) Data dependent on last schedule insn.
2759 2) Anti/Output dependent on last scheduled insn.
2760 3) Independent of last scheduled insn, or has latency of one.
2761 Choose the insn from the highest numbered class if different. */
2762 dep1 = sd_find_dep_between (last, tmp, true);
2764 if (dep1 == NULL || dep_cost (dep1) == 1)
2765 tmp_class = 3;
2766 else if (/* Data dependence. */
2767 DEP_TYPE (dep1) == REG_DEP_TRUE)
2768 tmp_class = 1;
2769 else
2770 tmp_class = 2;
2772 dep2 = sd_find_dep_between (last, tmp2, true);
2774 if (dep2 == NULL || dep_cost (dep2) == 1)
2775 tmp2_class = 3;
2776 else if (/* Data dependence. */
2777 DEP_TYPE (dep2) == REG_DEP_TRUE)
2778 tmp2_class = 1;
2779 else
2780 tmp2_class = 2;
2782 if ((val = tmp2_class - tmp_class))
2783 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2786 /* Prefer instructions that occur earlier in the model schedule. */
2787 if (sched_pressure == SCHED_PRESSURE_MODEL)
2789 diff = model_index (tmp) - model_index (tmp2);
2790 if (diff != 0)
2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2794 /* Prefer the insn which has more later insns that depend on it.
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2801 if (flag_sched_dep_count_heuristic && val != 0)
2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2804 /* Sort by INSN_COST rather than INSN_LUID. This means that instructions
2805 which take longer to execute are prioritised and it leads to more
2806 dual-issue opportunities on in-order cores which have this feature. */
2808 if (INSN_COST (tmp) != INSN_COST (tmp2))
2809 return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
2810 tmp, tmp2);
2812 /* If insns are equally good, sort by INSN_LUID (original insn order),
2813 so that we make the sort stable. This minimizes instruction movement,
2814 thus minimizing sched's effect on debugging and cross-jumping. */
2815 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2818 /* Resort the array A in which only element at index N may be out of order. */
2820 HAIFA_INLINE static void
2821 swap_sort (rtx_insn **a, int n)
2823 rtx_insn *insn = a[n - 1];
2824 int i = n - 2;
2826 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2828 a[i + 1] = a[i];
2829 i -= 1;
2831 a[i + 1] = insn;
2834 /* Add INSN to the insn queue so that it can be executed at least
2835 N_CYCLES after the currently executing insn. Preserve insns
2836 chain for debugging purposes. REASON will be printed in debugging
2837 output. */
2839 HAIFA_INLINE static void
2840 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2842 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2843 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2844 int new_tick;
2846 gcc_assert (n_cycles <= max_insn_queue_index);
2847 gcc_assert (!DEBUG_INSN_P (insn));
2849 insn_queue[next_q] = link;
2850 q_size += 1;
2852 if (sched_verbose >= 2)
2854 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2855 (*current_sched_info->print_insn) (insn, 0));
2857 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2860 QUEUE_INDEX (insn) = next_q;
2862 if (current_sched_info->flags & DO_BACKTRACKING)
2864 new_tick = clock_var + n_cycles;
2865 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2866 INSN_TICK (insn) = new_tick;
2868 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2869 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2871 must_backtrack = true;
2872 if (sched_verbose >= 2)
2873 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2878 /* Remove INSN from queue. */
2879 static void
2880 queue_remove (rtx_insn *insn)
2882 gcc_assert (QUEUE_INDEX (insn) >= 0);
2883 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2884 q_size--;
2885 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2888 /* Return a pointer to the bottom of the ready list, i.e. the insn
2889 with the lowest priority. */
2891 rtx_insn **
2892 ready_lastpos (struct ready_list *ready)
2894 gcc_assert (ready->n_ready >= 1);
2895 return ready->vec + ready->first - ready->n_ready + 1;
2898 /* Add an element INSN to the ready list so that it ends up with the
2899 lowest/highest priority depending on FIRST_P. */
2901 HAIFA_INLINE static void
2902 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2904 if (!first_p)
2906 if (ready->first == ready->n_ready)
2908 memmove (ready->vec + ready->veclen - ready->n_ready,
2909 ready_lastpos (ready),
2910 ready->n_ready * sizeof (rtx));
2911 ready->first = ready->veclen - 1;
2913 ready->vec[ready->first - ready->n_ready] = insn;
2915 else
2917 if (ready->first == ready->veclen - 1)
2919 if (ready->n_ready)
2920 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2921 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2922 ready_lastpos (ready),
2923 ready->n_ready * sizeof (rtx));
2924 ready->first = ready->veclen - 2;
2926 ready->vec[++(ready->first)] = insn;
2929 ready->n_ready++;
2930 if (DEBUG_INSN_P (insn))
2931 ready->n_debug++;
2933 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2934 QUEUE_INDEX (insn) = QUEUE_READY;
2936 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2937 && INSN_EXACT_TICK (insn) < clock_var)
2939 must_backtrack = true;
2943 /* Remove the element with the highest priority from the ready list and
2944 return it. */
2946 HAIFA_INLINE static rtx_insn *
2947 ready_remove_first (struct ready_list *ready)
2949 rtx_insn *t;
2951 gcc_assert (ready->n_ready);
2952 t = ready->vec[ready->first--];
2953 ready->n_ready--;
2954 if (DEBUG_INSN_P (t))
2955 ready->n_debug--;
2956 /* If the queue becomes empty, reset it. */
2957 if (ready->n_ready == 0)
2958 ready->first = ready->veclen - 1;
2960 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2961 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2963 return t;
2966 /* The following code implements multi-pass scheduling for the first
2967 cycle. In other words, we will try to choose ready insn which
2968 permits to start maximum number of insns on the same cycle. */
2970 /* Return a pointer to the element INDEX from the ready. INDEX for
2971 insn with the highest priority is 0, and the lowest priority has
2972 N_READY - 1. */
2974 rtx_insn *
2975 ready_element (struct ready_list *ready, int index)
2977 gcc_assert (ready->n_ready && index < ready->n_ready);
2979 return ready->vec[ready->first - index];
2982 /* Remove the element INDEX from the ready list and return it. INDEX
2983 for insn with the highest priority is 0, and the lowest priority
2984 has N_READY - 1. */
2986 HAIFA_INLINE static rtx_insn *
2987 ready_remove (struct ready_list *ready, int index)
2989 rtx_insn *t;
2990 int i;
2992 if (index == 0)
2993 return ready_remove_first (ready);
2994 gcc_assert (ready->n_ready && index < ready->n_ready);
2995 t = ready->vec[ready->first - index];
2996 ready->n_ready--;
2997 if (DEBUG_INSN_P (t))
2998 ready->n_debug--;
2999 for (i = index; i < ready->n_ready; i++)
3000 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3001 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3002 return t;
3005 /* Remove INSN from the ready list. */
3006 static void
3007 ready_remove_insn (rtx_insn *insn)
3009 int i;
3011 for (i = 0; i < readyp->n_ready; i++)
3012 if (ready_element (readyp, i) == insn)
3014 ready_remove (readyp, i);
3015 return;
3017 gcc_unreachable ();
3020 /* Calculate difference of two statistics set WAS and NOW.
3021 Result returned in WAS. */
3022 static void
3023 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3024 const rank_for_schedule_stats_t *now)
3026 for (int i = 0; i < RFS_N; ++i)
3027 was->stats[i] = now->stats[i] - was->stats[i];
3030 /* Print rank_for_schedule statistics. */
3031 static void
3032 print_rank_for_schedule_stats (const char *prefix,
3033 const rank_for_schedule_stats_t *stats,
3034 struct ready_list *ready)
3036 for (int i = 0; i < RFS_N; ++i)
3037 if (stats->stats[i])
3039 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3041 if (ready != NULL)
3042 /* Print out insns that won due to RFS_<I>. */
3044 rtx_insn **p = ready_lastpos (ready);
3046 fprintf (sched_dump, ":");
3047 /* Start with 1 since least-priority insn didn't have any wins. */
3048 for (int j = 1; j < ready->n_ready; ++j)
3049 if (INSN_LAST_RFS_WIN (p[j]) == i)
3050 fprintf (sched_dump, " %s",
3051 (*current_sched_info->print_insn) (p[j], 0));
3053 fprintf (sched_dump, "\n");
3057 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3058 of array. */
3059 static void
3060 ready_sort_debug (struct ready_list *ready)
3062 int i;
3063 rtx_insn **first = ready_lastpos (ready);
3065 for (i = 0; i < ready->n_ready; ++i)
3066 if (!DEBUG_INSN_P (first[i]))
3067 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3069 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3072 /* Sort non-debug insns in the ready list READY by ascending priority.
3073 Assumes that all debug insns are separated from the real insns. */
3074 static void
3075 ready_sort_real (struct ready_list *ready)
3077 int i;
3078 rtx_insn **first = ready_lastpos (ready);
3079 int n_ready_real = ready->n_ready - ready->n_debug;
3081 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3082 for (i = 0; i < n_ready_real; ++i)
3083 setup_insn_reg_pressure_info (first[i]);
3084 else if (sched_pressure == SCHED_PRESSURE_MODEL
3085 && model_curr_point < model_num_insns)
3086 model_set_excess_costs (first, n_ready_real);
3088 rank_for_schedule_stats_t stats1;
3089 if (sched_verbose >= 4)
3090 stats1 = rank_for_schedule_stats;
3092 if (n_ready_real == 2)
3093 swap_sort (first, n_ready_real);
3094 else if (n_ready_real > 2)
3095 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3097 if (sched_verbose >= 4)
3099 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3100 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3104 /* Sort the ready list READY by ascending priority. */
3105 static void
3106 ready_sort (struct ready_list *ready)
3108 if (ready->n_debug > 0)
3109 ready_sort_debug (ready);
3110 else
3111 ready_sort_real (ready);
3114 /* PREV is an insn that is ready to execute. Adjust its priority if that
3115 will help shorten or lengthen register lifetimes as appropriate. Also
3116 provide a hook for the target to tweak itself. */
3118 HAIFA_INLINE static void
3119 adjust_priority (rtx_insn *prev)
3121 /* ??? There used to be code here to try and estimate how an insn
3122 affected register lifetimes, but it did it by looking at REG_DEAD
3123 notes, which we removed in schedule_region. Nor did it try to
3124 take into account register pressure or anything useful like that.
3126 Revisit when we have a machine model to work with and not before. */
3128 if (targetm.sched.adjust_priority)
3129 INSN_PRIORITY (prev) =
3130 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3133 /* Advance DFA state STATE on one cycle. */
3134 void
3135 advance_state (state_t state)
3137 if (targetm.sched.dfa_pre_advance_cycle)
3138 targetm.sched.dfa_pre_advance_cycle ();
3140 if (targetm.sched.dfa_pre_cycle_insn)
3141 state_transition (state,
3142 targetm.sched.dfa_pre_cycle_insn ());
3144 state_transition (state, NULL);
3146 if (targetm.sched.dfa_post_cycle_insn)
3147 state_transition (state,
3148 targetm.sched.dfa_post_cycle_insn ());
3150 if (targetm.sched.dfa_post_advance_cycle)
3151 targetm.sched.dfa_post_advance_cycle ();
3154 /* Advance time on one cycle. */
3155 HAIFA_INLINE static void
3156 advance_one_cycle (void)
3158 advance_state (curr_state);
3159 if (sched_verbose >= 4)
3160 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3163 /* Update register pressure after scheduling INSN. */
3164 static void
3165 update_register_pressure (rtx_insn *insn)
3167 struct reg_use_data *use;
3168 struct reg_set_data *set;
3170 gcc_checking_assert (!DEBUG_INSN_P (insn));
3172 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3173 if (dying_use_p (use))
3174 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3175 use->regno, false);
3176 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3177 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3178 set->regno, true);
3181 /* Set up or update (if UPDATE_P) max register pressure (see its
3182 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3183 after insn AFTER. */
3184 static void
3185 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3187 int i, p;
3188 bool eq_p;
3189 rtx_insn *insn;
3190 static int max_reg_pressure[N_REG_CLASSES];
3192 save_reg_pressure ();
3193 for (i = 0; i < ira_pressure_classes_num; i++)
3194 max_reg_pressure[ira_pressure_classes[i]]
3195 = curr_reg_pressure[ira_pressure_classes[i]];
3196 for (insn = NEXT_INSN (after);
3197 insn != NULL_RTX && ! BARRIER_P (insn)
3198 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3199 insn = NEXT_INSN (insn))
3200 if (NONDEBUG_INSN_P (insn))
3202 eq_p = true;
3203 for (i = 0; i < ira_pressure_classes_num; i++)
3205 p = max_reg_pressure[ira_pressure_classes[i]];
3206 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3208 eq_p = false;
3209 INSN_MAX_REG_PRESSURE (insn)[i]
3210 = max_reg_pressure[ira_pressure_classes[i]];
3213 if (update_p && eq_p)
3214 break;
3215 update_register_pressure (insn);
3216 for (i = 0; i < ira_pressure_classes_num; i++)
3217 if (max_reg_pressure[ira_pressure_classes[i]]
3218 < curr_reg_pressure[ira_pressure_classes[i]])
3219 max_reg_pressure[ira_pressure_classes[i]]
3220 = curr_reg_pressure[ira_pressure_classes[i]];
3222 restore_reg_pressure ();
3225 /* Update the current register pressure after scheduling INSN. Update
3226 also max register pressure for unscheduled insns of the current
3227 BB. */
3228 static void
3229 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3231 int i;
3232 int before[N_REG_CLASSES];
3234 for (i = 0; i < ira_pressure_classes_num; i++)
3235 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3236 update_register_pressure (insn);
3237 for (i = 0; i < ira_pressure_classes_num; i++)
3238 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3239 break;
3240 if (i < ira_pressure_classes_num)
3241 setup_insn_max_reg_pressure (insn, true);
3244 /* Set up register pressure at the beginning of basic block BB whose
3245 insns starting after insn AFTER. Set up also max register pressure
3246 for all insns of the basic block. */
3247 void
3248 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3250 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3251 initiate_bb_reg_pressure_info (bb);
3252 setup_insn_max_reg_pressure (after, false);
3255 /* If doing predication while scheduling, verify whether INSN, which
3256 has just been scheduled, clobbers the conditions of any
3257 instructions that must be predicated in order to break their
3258 dependencies. If so, remove them from the queues so that they will
3259 only be scheduled once their control dependency is resolved. */
3261 static void
3262 check_clobbered_conditions (rtx_insn *insn)
3264 HARD_REG_SET t;
3265 int i;
3267 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3268 return;
3270 find_all_hard_reg_sets (insn, &t, true);
3272 restart:
3273 for (i = 0; i < ready.n_ready; i++)
3275 rtx_insn *x = ready_element (&ready, i);
3276 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3278 ready_remove_insn (x);
3279 goto restart;
3282 for (i = 0; i <= max_insn_queue_index; i++)
3284 rtx_insn_list *link;
3285 int q = NEXT_Q_AFTER (q_ptr, i);
3287 restart_queue:
3288 for (link = insn_queue[q]; link; link = link->next ())
3290 rtx_insn *x = link->insn ();
3291 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3293 queue_remove (x);
3294 goto restart_queue;
3300 /* Return (in order):
3302 - positive if INSN adversely affects the pressure on one
3303 register class
3305 - negative if INSN reduces the pressure on one register class
3307 - 0 if INSN doesn't affect the pressure on any register class. */
3309 static int
3310 model_classify_pressure (struct model_insn_info *insn)
3312 struct reg_pressure_data *reg_pressure;
3313 int death[N_REG_CLASSES];
3314 int pci, cl, sum;
3316 calculate_reg_deaths (insn->insn, death);
3317 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3318 sum = 0;
3319 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3321 cl = ira_pressure_classes[pci];
3322 if (death[cl] < reg_pressure[pci].set_increase)
3323 return 1;
3324 sum += reg_pressure[pci].set_increase - death[cl];
3326 return sum;
3329 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3331 static int
3332 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3334 unsigned int height1, height2;
3335 unsigned int priority1, priority2;
3337 /* Prefer instructions with a higher model priority. */
3338 if (insn1->model_priority != insn2->model_priority)
3339 return insn1->model_priority > insn2->model_priority;
3341 /* Combine the length of the longest path of satisfied true dependencies
3342 that leads to each instruction (depth) with the length of the longest
3343 path of any dependencies that leads from the instruction (alap).
3344 Prefer instructions with the greatest combined length. If the combined
3345 lengths are equal, prefer instructions with the greatest depth.
3347 The idea is that, if we have a set S of "equal" instructions that each
3348 have ALAP value X, and we pick one such instruction I, any true-dependent
3349 successors of I that have ALAP value X - 1 should be preferred over S.
3350 This encourages the schedule to be "narrow" rather than "wide".
3351 However, if I is a low-priority instruction that we decided to
3352 schedule because of its model_classify_pressure, and if there
3353 is a set of higher-priority instructions T, the aforementioned
3354 successors of I should not have the edge over T. */
3355 height1 = insn1->depth + insn1->alap;
3356 height2 = insn2->depth + insn2->alap;
3357 if (height1 != height2)
3358 return height1 > height2;
3359 if (insn1->depth != insn2->depth)
3360 return insn1->depth > insn2->depth;
3362 /* We have no real preference between INSN1 an INSN2 as far as attempts
3363 to reduce pressure go. Prefer instructions with higher priorities. */
3364 priority1 = INSN_PRIORITY (insn1->insn);
3365 priority2 = INSN_PRIORITY (insn2->insn);
3366 if (priority1 != priority2)
3367 return priority1 > priority2;
3369 /* Use the original rtl sequence as a tie-breaker. */
3370 return insn1 < insn2;
3373 /* Add INSN to the model worklist immediately after PREV. Add it to the
3374 beginning of the list if PREV is null. */
3376 static void
3377 model_add_to_worklist_at (struct model_insn_info *insn,
3378 struct model_insn_info *prev)
3380 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3381 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3383 insn->prev = prev;
3384 if (prev)
3386 insn->next = prev->next;
3387 prev->next = insn;
3389 else
3391 insn->next = model_worklist;
3392 model_worklist = insn;
3394 if (insn->next)
3395 insn->next->prev = insn;
3398 /* Remove INSN from the model worklist. */
3400 static void
3401 model_remove_from_worklist (struct model_insn_info *insn)
3403 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3404 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3406 if (insn->prev)
3407 insn->prev->next = insn->next;
3408 else
3409 model_worklist = insn->next;
3410 if (insn->next)
3411 insn->next->prev = insn->prev;
3414 /* Add INSN to the model worklist. Start looking for a suitable position
3415 between neighbors PREV and NEXT, testing at most param_max_sched_ready_insns
3416 insns either side. A null PREV indicates the beginning of the list and
3417 a null NEXT indicates the end. */
3419 static void
3420 model_add_to_worklist (struct model_insn_info *insn,
3421 struct model_insn_info *prev,
3422 struct model_insn_info *next)
3424 int count;
3426 count = param_max_sched_ready_insns;
3427 if (count > 0 && prev && model_order_p (insn, prev))
3430 count--;
3431 prev = prev->prev;
3433 while (count > 0 && prev && model_order_p (insn, prev));
3434 else
3435 while (count > 0 && next && model_order_p (next, insn))
3437 count--;
3438 prev = next;
3439 next = next->next;
3441 model_add_to_worklist_at (insn, prev);
3444 /* INSN may now have a higher priority (in the model_order_p sense)
3445 than before. Move it up the worklist if necessary. */
3447 static void
3448 model_promote_insn (struct model_insn_info *insn)
3450 struct model_insn_info *prev;
3451 int count;
3453 prev = insn->prev;
3454 count = param_max_sched_ready_insns;
3455 while (count > 0 && prev && model_order_p (insn, prev))
3457 count--;
3458 prev = prev->prev;
3460 if (prev != insn->prev)
3462 model_remove_from_worklist (insn);
3463 model_add_to_worklist_at (insn, prev);
3467 /* Add INSN to the end of the model schedule. */
3469 static void
3470 model_add_to_schedule (rtx_insn *insn)
3472 unsigned int point;
3474 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3475 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3477 point = model_schedule.length ();
3478 model_schedule.quick_push (insn);
3479 INSN_MODEL_INDEX (insn) = point + 1;
3482 /* Analyze the instructions that are to be scheduled, setting up
3483 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3484 instructions to model_worklist. */
3486 static void
3487 model_analyze_insns (void)
3489 rtx_insn *start, *end, *iter;
3490 sd_iterator_def sd_it;
3491 dep_t dep;
3492 struct model_insn_info *insn, *con;
3494 model_num_insns = 0;
3495 start = PREV_INSN (current_sched_info->next_tail);
3496 end = current_sched_info->prev_head;
3497 for (iter = start; iter != end; iter = PREV_INSN (iter))
3498 if (NONDEBUG_INSN_P (iter))
3500 insn = MODEL_INSN_INFO (iter);
3501 insn->insn = iter;
3502 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3504 con = MODEL_INSN_INFO (DEP_CON (dep));
3505 if (con->insn && insn->alap < con->alap + 1)
3506 insn->alap = con->alap + 1;
3509 insn->old_queue = QUEUE_INDEX (iter);
3510 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3512 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3513 if (insn->unscheduled_preds == 0)
3514 model_add_to_worklist (insn, NULL, model_worklist);
3516 model_num_insns++;
3520 /* The global state describes the register pressure at the start of the
3521 model schedule. Initialize GROUP accordingly. */
3523 static void
3524 model_init_pressure_group (struct model_pressure_group *group)
3526 int pci, cl;
3528 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3530 cl = ira_pressure_classes[pci];
3531 group->limits[pci].pressure = curr_reg_pressure[cl];
3532 group->limits[pci].point = 0;
3534 /* Use index model_num_insns to record the state after the last
3535 instruction in the model schedule. */
3536 group->model = XNEWVEC (struct model_pressure_data,
3537 (model_num_insns + 1) * ira_pressure_classes_num);
3540 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3541 Update the maximum pressure for the whole schedule. */
3543 static void
3544 model_record_pressure (struct model_pressure_group *group,
3545 int point, int pci, int pressure)
3547 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3548 if (group->limits[pci].pressure < pressure)
3550 group->limits[pci].pressure = pressure;
3551 group->limits[pci].point = point;
3555 /* INSN has just been added to the end of the model schedule. Record its
3556 register-pressure information. */
3558 static void
3559 model_record_pressures (struct model_insn_info *insn)
3561 struct reg_pressure_data *reg_pressure;
3562 int point, pci, cl, delta;
3563 int death[N_REG_CLASSES];
3565 point = model_index (insn->insn);
3566 if (sched_verbose >= 2)
3568 if (point == 0)
3570 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3571 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3573 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3574 point, INSN_UID (insn->insn), insn->model_priority,
3575 insn->depth + insn->alap, insn->depth,
3576 INSN_PRIORITY (insn->insn),
3577 str_pattern_slim (PATTERN (insn->insn)));
3579 calculate_reg_deaths (insn->insn, death);
3580 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3581 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3583 cl = ira_pressure_classes[pci];
3584 delta = reg_pressure[pci].set_increase - death[cl];
3585 if (sched_verbose >= 2)
3586 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3587 curr_reg_pressure[cl], delta);
3588 model_record_pressure (&model_before_pressure, point, pci,
3589 curr_reg_pressure[cl]);
3591 if (sched_verbose >= 2)
3592 fprintf (sched_dump, "\n");
3595 /* All instructions have been added to the model schedule. Record the
3596 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3598 static void
3599 model_record_final_pressures (struct model_pressure_group *group)
3601 int point, pci, max_pressure, ref_pressure, cl;
3603 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3605 /* Record the final pressure for this class. */
3606 cl = ira_pressure_classes[pci];
3607 point = model_num_insns;
3608 ref_pressure = curr_reg_pressure[cl];
3609 model_record_pressure (group, point, pci, ref_pressure);
3611 /* Record the original maximum pressure. */
3612 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3614 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3615 max_pressure = ref_pressure;
3616 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3617 while (point > 0)
3619 point--;
3620 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3621 max_pressure = MAX (max_pressure, ref_pressure);
3622 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3627 /* Update all successors of INSN, given that INSN has just been scheduled. */
3629 static void
3630 model_add_successors_to_worklist (struct model_insn_info *insn)
3632 sd_iterator_def sd_it;
3633 struct model_insn_info *con;
3634 dep_t dep;
3636 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3638 con = MODEL_INSN_INFO (DEP_CON (dep));
3639 /* Ignore debug instructions, and instructions from other blocks. */
3640 if (con->insn)
3642 con->unscheduled_preds--;
3644 /* Update the depth field of each true-dependent successor.
3645 Increasing the depth gives them a higher priority than
3646 before. */
3647 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3649 con->depth = insn->depth + 1;
3650 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3651 model_promote_insn (con);
3654 /* If this is a true dependency, or if there are no remaining
3655 dependencies for CON (meaning that CON only had non-true
3656 dependencies), make sure that CON is on the worklist.
3657 We don't bother otherwise because it would tend to fill the
3658 worklist with a lot of low-priority instructions that are not
3659 yet ready to issue. */
3660 if ((con->depth > 0 || con->unscheduled_preds == 0)
3661 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3662 model_add_to_worklist (con, insn, insn->next);
3667 /* Give INSN a higher priority than any current instruction, then give
3668 unscheduled predecessors of INSN a higher priority still. If any of
3669 those predecessors are not on the model worklist, do the same for its
3670 predecessors, and so on. */
3672 static void
3673 model_promote_predecessors (struct model_insn_info *insn)
3675 struct model_insn_info *pro, *first;
3676 sd_iterator_def sd_it;
3677 dep_t dep;
3679 if (sched_verbose >= 7)
3680 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3681 INSN_UID (insn->insn), model_next_priority);
3682 insn->model_priority = model_next_priority++;
3683 model_remove_from_worklist (insn);
3684 model_add_to_worklist_at (insn, NULL);
3686 first = NULL;
3687 for (;;)
3689 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3691 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3692 /* The first test is to ignore debug instructions, and instructions
3693 from other blocks. */
3694 if (pro->insn
3695 && pro->model_priority != model_next_priority
3696 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3698 pro->model_priority = model_next_priority;
3699 if (sched_verbose >= 7)
3700 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3701 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3703 /* PRO is already in the worklist, but it now has
3704 a higher priority than before. Move it at the
3705 appropriate place. */
3706 model_remove_from_worklist (pro);
3707 model_add_to_worklist (pro, NULL, model_worklist);
3709 else
3711 /* PRO isn't in the worklist. Recursively process
3712 its predecessors until we find one that is. */
3713 pro->next = first;
3714 first = pro;
3718 if (!first)
3719 break;
3720 insn = first;
3721 first = insn->next;
3723 if (sched_verbose >= 7)
3724 fprintf (sched_dump, " = %d\n", model_next_priority);
3725 model_next_priority++;
3728 /* Pick one instruction from model_worklist and process it. */
3730 static void
3731 model_choose_insn (void)
3733 struct model_insn_info *insn, *fallback;
3734 int count;
3736 if (sched_verbose >= 7)
3738 fprintf (sched_dump, ";;\t+--- worklist:\n");
3739 insn = model_worklist;
3740 count = param_max_sched_ready_insns;
3741 while (count > 0 && insn)
3743 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3744 INSN_UID (insn->insn), insn->model_priority,
3745 insn->depth + insn->alap, insn->depth,
3746 INSN_PRIORITY (insn->insn));
3747 count--;
3748 insn = insn->next;
3752 /* Look for a ready instruction whose model_classify_priority is zero
3753 or negative, picking the highest-priority one. Adding such an
3754 instruction to the schedule now should do no harm, and may actually
3755 do some good.
3757 Failing that, see whether there is an instruction with the highest
3758 extant model_priority that is not yet ready, but which would reduce
3759 pressure if it became ready. This is designed to catch cases like:
3761 (set (mem (reg R1)) (reg R2))
3763 where the instruction is the last remaining use of R1 and where the
3764 value of R2 is not yet available (or vice versa). The death of R1
3765 means that this instruction already reduces pressure. It is of
3766 course possible that the computation of R2 involves other registers
3767 that are hard to kill, but such cases are rare enough for this
3768 heuristic to be a win in general.
3770 Failing that, just pick the highest-priority instruction in the
3771 worklist. */
3772 count = param_max_sched_ready_insns;
3773 insn = model_worklist;
3774 fallback = 0;
3775 for (;;)
3777 if (count == 0 || !insn)
3779 insn = fallback ? fallback : model_worklist;
3780 break;
3782 if (insn->unscheduled_preds)
3784 if (model_worklist->model_priority == insn->model_priority
3785 && !fallback
3786 && model_classify_pressure (insn) < 0)
3787 fallback = insn;
3789 else
3791 if (model_classify_pressure (insn) <= 0)
3792 break;
3794 count--;
3795 insn = insn->next;
3798 if (sched_verbose >= 7 && insn != model_worklist)
3800 if (insn->unscheduled_preds)
3801 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3802 INSN_UID (insn->insn));
3803 else
3804 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3805 INSN_UID (insn->insn));
3807 if (insn->unscheduled_preds)
3808 /* INSN isn't yet ready to issue. Give all its predecessors the
3809 highest priority. */
3810 model_promote_predecessors (insn);
3811 else
3813 /* INSN is ready. Add it to the end of model_schedule and
3814 process its successors. */
3815 model_add_successors_to_worklist (insn);
3816 model_remove_from_worklist (insn);
3817 model_add_to_schedule (insn->insn);
3818 model_record_pressures (insn);
3819 update_register_pressure (insn->insn);
3823 /* Restore all QUEUE_INDEXs to the values that they had before
3824 model_start_schedule was called. */
3826 static void
3827 model_reset_queue_indices (void)
3829 unsigned int i;
3830 rtx_insn *insn;
3832 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3833 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3836 /* We have calculated the model schedule and spill costs. Print a summary
3837 to sched_dump. */
3839 static void
3840 model_dump_pressure_summary (void)
3842 int pci, cl;
3844 fprintf (sched_dump, ";; Pressure summary:");
3845 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3847 cl = ira_pressure_classes[pci];
3848 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3849 model_before_pressure.limits[pci].pressure);
3851 fprintf (sched_dump, "\n\n");
3854 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3855 scheduling region. */
3857 static void
3858 model_start_schedule (basic_block bb)
3860 model_next_priority = 1;
3861 model_schedule.create (sched_max_luid);
3862 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3864 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3865 initiate_reg_pressure_info (df_get_live_in (bb));
3867 model_analyze_insns ();
3868 model_init_pressure_group (&model_before_pressure);
3869 while (model_worklist)
3870 model_choose_insn ();
3871 gcc_assert (model_num_insns == (int) model_schedule.length ());
3872 if (sched_verbose >= 2)
3873 fprintf (sched_dump, "\n");
3875 model_record_final_pressures (&model_before_pressure);
3876 model_reset_queue_indices ();
3878 XDELETEVEC (model_insns);
3880 model_curr_point = 0;
3881 initiate_reg_pressure_info (df_get_live_in (bb));
3882 if (sched_verbose >= 1)
3883 model_dump_pressure_summary ();
3886 /* Free the information associated with GROUP. */
3888 static void
3889 model_finalize_pressure_group (struct model_pressure_group *group)
3891 XDELETEVEC (group->model);
3894 /* Free the information created by model_start_schedule. */
3896 static void
3897 model_end_schedule (void)
3899 model_finalize_pressure_group (&model_before_pressure);
3900 model_schedule.release ();
3903 /* Prepare reg pressure scheduling for basic block BB. */
3904 static void
3905 sched_pressure_start_bb (basic_block bb)
3907 /* Set the number of available registers for each class taking into account
3908 relative probability of current basic block versus function prologue and
3909 epilogue.
3910 * If the basic block executes much more often than the prologue/epilogue
3911 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3912 nil, so the effective number of available registers is
3913 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3914 * If the basic block executes as often as the prologue/epilogue,
3915 then spill in the block is as costly as in the prologue, so the effective
3916 number of available registers is
3917 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3918 - call_saved_regs_num[cl]).
3919 Note that all-else-equal, we prefer to spill in the prologue, since that
3920 allows "extra" registers for other basic blocks of the function.
3921 * If the basic block is on the cold path of the function and executes
3922 rarely, then we should always prefer to spill in the block, rather than
3923 in the prologue/epilogue. The effective number of available register is
3924 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3925 - call_saved_regs_num[cl]). */
3927 int i;
3928 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3929 int bb_freq = bb->count.to_frequency (cfun);
3931 if (bb_freq == 0)
3933 if (entry_freq == 0)
3934 entry_freq = bb_freq = 1;
3936 if (bb_freq < entry_freq)
3937 bb_freq = entry_freq;
3939 for (i = 0; i < ira_pressure_classes_num; ++i)
3941 enum reg_class cl = ira_pressure_classes[i];
3942 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3943 - fixed_regs_num[cl];
3944 sched_class_regs_num[cl]
3945 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3949 if (sched_pressure == SCHED_PRESSURE_MODEL)
3950 model_start_schedule (bb);
3953 /* A structure that holds local state for the loop in schedule_block. */
3954 struct sched_block_state
3956 /* True if no real insns have been scheduled in the current cycle. */
3957 bool first_cycle_insn_p;
3958 /* True if a shadow insn has been scheduled in the current cycle, which
3959 means that no more normal insns can be issued. */
3960 bool shadows_only_p;
3961 /* True if we're winding down a modulo schedule, which means that we only
3962 issue insns with INSN_EXACT_TICK set. */
3963 bool modulo_epilogue;
3964 /* Initialized with the machine's issue rate every cycle, and updated
3965 by calls to the variable_issue hook. */
3966 int can_issue_more;
3969 /* INSN is the "currently executing insn". Launch each insn which was
3970 waiting on INSN. READY is the ready list which contains the insns
3971 that are ready to fire. CLOCK is the current cycle. The function
3972 returns necessary cycle advance after issuing the insn (it is not
3973 zero for insns in a schedule group). */
3975 static int
3976 schedule_insn (rtx_insn *insn)
3978 sd_iterator_def sd_it;
3979 dep_t dep;
3980 int i;
3981 int advance = 0;
3983 if (sched_verbose >= 1)
3985 struct reg_pressure_data *pressure_info;
3986 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3987 clock_var, (*current_sched_info->print_insn) (insn, 1),
3988 str_pattern_slim (PATTERN (insn)));
3990 if (recog_memoized (insn) < 0)
3991 fprintf (sched_dump, "nothing");
3992 else
3993 print_reservation (sched_dump, insn);
3994 pressure_info = INSN_REG_PRESSURE (insn);
3995 if (pressure_info != NULL)
3997 fputc (':', sched_dump);
3998 for (i = 0; i < ira_pressure_classes_num; i++)
3999 fprintf (sched_dump, "%s%s%+d(%d)",
4000 scheduled_insns.length () > 1
4001 && INSN_LUID (insn)
4002 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4003 reg_class_names[ira_pressure_classes[i]],
4004 pressure_info[i].set_increase, pressure_info[i].change);
4006 if (sched_pressure == SCHED_PRESSURE_MODEL
4007 && model_curr_point < model_num_insns
4008 && model_index (insn) == model_curr_point)
4009 fprintf (sched_dump, ":model %d", model_curr_point);
4010 fputc ('\n', sched_dump);
4013 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4014 update_reg_and_insn_max_reg_pressure (insn);
4016 /* Scheduling instruction should have all its dependencies resolved and
4017 should have been removed from the ready list. */
4018 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4020 /* Reset debug insns invalidated by moving this insn. */
4021 if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
4022 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4023 sd_iterator_cond (&sd_it, &dep);)
4025 rtx_insn *dbg = DEP_PRO (dep);
4026 struct reg_use_data *use, *next;
4028 if (DEP_STATUS (dep) & DEP_CANCELLED)
4030 sd_iterator_next (&sd_it);
4031 continue;
4034 gcc_assert (DEBUG_BIND_INSN_P (dbg));
4036 if (sched_verbose >= 6)
4037 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4038 INSN_UID (dbg));
4040 /* ??? Rather than resetting the debug insn, we might be able
4041 to emit a debug temp before the just-scheduled insn, but
4042 this would involve checking that the expression at the
4043 point of the debug insn is equivalent to the expression
4044 before the just-scheduled insn. They might not be: the
4045 expression in the debug insn may depend on other insns not
4046 yet scheduled that set MEMs, REGs or even other debug
4047 insns. It's not clear that attempting to preserve debug
4048 information in these cases is worth the effort, given how
4049 uncommon these resets are and the likelihood that the debug
4050 temps introduced won't survive the schedule change. */
4051 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4052 df_insn_rescan (dbg);
4054 /* Unknown location doesn't use any registers. */
4055 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4057 struct reg_use_data *prev = use;
4059 /* Remove use from the cyclic next_regno_use chain first. */
4060 while (prev->next_regno_use != use)
4061 prev = prev->next_regno_use;
4062 prev->next_regno_use = use->next_regno_use;
4063 next = use->next_insn_use;
4064 free (use);
4066 INSN_REG_USE_LIST (dbg) = NULL;
4068 /* We delete rather than resolve these deps, otherwise we
4069 crash in sched_free_deps(), because forward deps are
4070 expected to be released before backward deps. */
4071 sd_delete_dep (sd_it);
4074 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4075 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4077 if (sched_pressure == SCHED_PRESSURE_MODEL
4078 && model_curr_point < model_num_insns
4079 && NONDEBUG_INSN_P (insn))
4081 if (model_index (insn) == model_curr_point)
4083 model_curr_point++;
4084 while (model_curr_point < model_num_insns
4085 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4086 == QUEUE_SCHEDULED));
4087 else
4088 model_recompute (insn);
4089 model_update_limit_points ();
4090 update_register_pressure (insn);
4091 if (sched_verbose >= 2)
4092 print_curr_reg_pressure ();
4095 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4096 if (INSN_TICK (insn) > clock_var)
4097 /* INSN has been prematurely moved from the queue to the ready list.
4098 This is possible only if following flags are set. */
4099 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4101 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4102 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4103 INSN_TICK (insn) = clock_var;
4105 check_clobbered_conditions (insn);
4107 /* Update dependent instructions. First, see if by scheduling this insn
4108 now we broke a dependence in a way that requires us to change another
4109 insn. */
4110 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4111 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4113 struct dep_replacement *desc = DEP_REPLACE (dep);
4114 rtx_insn *pro = DEP_PRO (dep);
4115 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4116 && desc != NULL && desc->insn == pro)
4117 apply_replacement (dep, false);
4120 /* Go through and resolve forward dependencies. */
4121 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4122 sd_iterator_cond (&sd_it, &dep);)
4124 rtx_insn *next = DEP_CON (dep);
4125 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4127 /* Resolve the dependence between INSN and NEXT.
4128 sd_resolve_dep () moves current dep to another list thus
4129 advancing the iterator. */
4130 sd_resolve_dep (sd_it);
4132 if (cancelled)
4134 if (must_restore_pattern_p (next, dep))
4135 restore_pattern (dep, false);
4136 continue;
4139 /* Don't bother trying to mark next as ready if insn is a debug
4140 insn. If insn is the last hard dependency, it will have
4141 already been discounted. */
4142 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4143 continue;
4145 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4147 int effective_cost;
4149 effective_cost = try_ready (next);
4151 if (effective_cost >= 0
4152 && SCHED_GROUP_P (next)
4153 && advance < effective_cost)
4154 advance = effective_cost;
4156 else
4157 /* Check always has only one forward dependence (to the first insn in
4158 the recovery block), therefore, this will be executed only once. */
4160 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4161 fix_recovery_deps (RECOVERY_BLOCK (insn));
4165 /* Annotate the instruction with issue information -- TImode
4166 indicates that the instruction is expected not to be able
4167 to issue on the same cycle as the previous insn. A machine
4168 may use this information to decide how the instruction should
4169 be aligned. */
4170 if (issue_rate > 1
4171 && GET_CODE (PATTERN (insn)) != USE
4172 && GET_CODE (PATTERN (insn)) != CLOBBER
4173 && !DEBUG_INSN_P (insn))
4175 if (reload_completed)
4176 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4177 last_clock_var = clock_var;
4180 if (nonscheduled_insns_begin != NULL_RTX)
4181 /* Indicate to debug counters that INSN is scheduled. */
4182 nonscheduled_insns_begin = insn;
4184 return advance;
4187 /* Functions for handling of notes. */
4189 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4190 void
4191 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4193 rtx_insn *from_start;
4195 /* It's easy when have nothing to concat. */
4196 if (from_end == NULL)
4197 return;
4199 /* It's also easy when destination is empty. */
4200 if (*to_endp == NULL)
4202 *to_endp = from_end;
4203 return;
4206 from_start = from_end;
4207 while (PREV_INSN (from_start) != NULL)
4208 from_start = PREV_INSN (from_start);
4210 SET_PREV_INSN (from_start) = *to_endp;
4211 SET_NEXT_INSN (*to_endp) = from_start;
4212 *to_endp = from_end;
4215 /* Delete notes between HEAD and TAIL and put them in the chain
4216 of notes ended by NOTE_LIST. */
4217 void
4218 remove_notes (rtx_insn *head, rtx_insn *tail)
4220 rtx_insn *next_tail, *insn, *next;
4222 note_list = 0;
4223 if (head == tail && !INSN_P (head))
4224 return;
4226 next_tail = NEXT_INSN (tail);
4227 for (insn = head; insn != next_tail; insn = next)
4229 next = NEXT_INSN (insn);
4230 if (!NOTE_P (insn))
4231 continue;
4233 switch (NOTE_KIND (insn))
4235 case NOTE_INSN_BASIC_BLOCK:
4236 continue;
4238 case NOTE_INSN_EPILOGUE_BEG:
4239 if (insn != tail)
4241 remove_insn (insn);
4242 add_reg_note (next, REG_SAVE_NOTE,
4243 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4244 break;
4246 /* FALLTHRU */
4248 default:
4249 remove_insn (insn);
4251 /* Add the note to list that ends at NOTE_LIST. */
4252 SET_PREV_INSN (insn) = note_list;
4253 SET_NEXT_INSN (insn) = NULL_RTX;
4254 if (note_list)
4255 SET_NEXT_INSN (note_list) = insn;
4256 note_list = insn;
4257 break;
4260 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4264 /* A structure to record enough data to allow us to backtrack the scheduler to
4265 a previous state. */
4266 struct haifa_saved_data
4268 /* Next entry on the list. */
4269 struct haifa_saved_data *next;
4271 /* Backtracking is associated with scheduling insns that have delay slots.
4272 DELAY_PAIR points to the structure that contains the insns involved, and
4273 the number of cycles between them. */
4274 struct delay_pair *delay_pair;
4276 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4277 void *fe_saved_data;
4278 /* Data used by the backend. */
4279 void *be_saved_data;
4281 /* Copies of global state. */
4282 int clock_var, last_clock_var;
4283 struct ready_list ready;
4284 state_t curr_state;
4286 rtx_insn *last_scheduled_insn;
4287 rtx_insn *last_nondebug_scheduled_insn;
4288 rtx_insn *nonscheduled_insns_begin;
4289 int cycle_issued_insns;
4291 /* Copies of state used in the inner loop of schedule_block. */
4292 struct sched_block_state sched_block;
4294 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4295 to 0 when restoring. */
4296 int q_size;
4297 rtx_insn_list **insn_queue;
4299 /* Describe pattern replacements that occurred since this backtrack point
4300 was queued. */
4301 vec<dep_t> replacement_deps;
4302 vec<int> replace_apply;
4304 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4305 point. */
4306 vec<dep_t> next_cycle_deps;
4307 vec<int> next_cycle_apply;
4310 /* A record, in reverse order, of all scheduled insns which have delay slots
4311 and may require backtracking. */
4312 static struct haifa_saved_data *backtrack_queue;
4314 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4315 to SET_P. */
4316 static void
4317 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4319 sd_iterator_def sd_it;
4320 dep_t dep;
4321 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4323 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4327 /* Save the current scheduler state so that we can backtrack to it
4328 later if necessary. PAIR gives the insns that make it necessary to
4329 save this point. SCHED_BLOCK is the local state of schedule_block
4330 that need to be saved. */
4331 static void
4332 save_backtrack_point (struct delay_pair *pair,
4333 struct sched_block_state sched_block)
4335 int i;
4336 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4338 save->curr_state = xmalloc (dfa_state_size);
4339 memcpy (save->curr_state, curr_state, dfa_state_size);
4341 save->ready.first = ready.first;
4342 save->ready.n_ready = ready.n_ready;
4343 save->ready.n_debug = ready.n_debug;
4344 save->ready.veclen = ready.veclen;
4345 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4346 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4348 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4349 save->q_size = q_size;
4350 for (i = 0; i <= max_insn_queue_index; i++)
4352 int q = NEXT_Q_AFTER (q_ptr, i);
4353 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4356 save->clock_var = clock_var;
4357 save->last_clock_var = last_clock_var;
4358 save->cycle_issued_insns = cycle_issued_insns;
4359 save->last_scheduled_insn = last_scheduled_insn;
4360 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4361 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4363 save->sched_block = sched_block;
4365 save->replacement_deps.create (0);
4366 save->replace_apply.create (0);
4367 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4368 save->next_cycle_apply = next_cycle_apply.copy ();
4370 if (current_sched_info->save_state)
4371 save->fe_saved_data = (*current_sched_info->save_state) ();
4373 if (targetm.sched.alloc_sched_context)
4375 save->be_saved_data = targetm.sched.alloc_sched_context ();
4376 targetm.sched.init_sched_context (save->be_saved_data, false);
4378 else
4379 save->be_saved_data = NULL;
4381 save->delay_pair = pair;
4383 save->next = backtrack_queue;
4384 backtrack_queue = save;
4386 while (pair)
4388 mark_backtrack_feeds (pair->i2, 1);
4389 INSN_TICK (pair->i2) = INVALID_TICK;
4390 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4391 SHADOW_P (pair->i2) = pair->stages == 0;
4392 pair = pair->next_same_i1;
4396 /* Walk the ready list and all queues. If any insns have unresolved backwards
4397 dependencies, these must be cancelled deps, broken by predication. Set or
4398 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4400 static void
4401 toggle_cancelled_flags (bool set)
4403 int i;
4404 sd_iterator_def sd_it;
4405 dep_t dep;
4407 if (ready.n_ready > 0)
4409 rtx_insn **first = ready_lastpos (&ready);
4410 for (i = 0; i < ready.n_ready; i++)
4411 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4412 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4414 if (set)
4415 DEP_STATUS (dep) |= DEP_CANCELLED;
4416 else
4417 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4420 for (i = 0; i <= max_insn_queue_index; i++)
4422 int q = NEXT_Q_AFTER (q_ptr, i);
4423 rtx_insn_list *link;
4424 for (link = insn_queue[q]; link; link = link->next ())
4426 rtx_insn *insn = link->insn ();
4427 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4428 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4430 if (set)
4431 DEP_STATUS (dep) |= DEP_CANCELLED;
4432 else
4433 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4439 /* Undo the replacements that have occurred after backtrack point SAVE
4440 was placed. */
4441 static void
4442 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4444 while (!save->replacement_deps.is_empty ())
4446 dep_t dep = save->replacement_deps.pop ();
4447 int apply_p = save->replace_apply.pop ();
4449 if (apply_p)
4450 restore_pattern (dep, true);
4451 else
4452 apply_replacement (dep, true);
4454 save->replacement_deps.release ();
4455 save->replace_apply.release ();
4458 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4459 Restore their dependencies to an unresolved state, and mark them as
4460 queued nowhere. */
4462 static void
4463 unschedule_insns_until (rtx_insn *insn)
4465 auto_vec<rtx_insn *> recompute_vec;
4467 /* Make two passes over the insns to be unscheduled. First, we clear out
4468 dependencies and other trivial bookkeeping. */
4469 for (;;)
4471 rtx_insn *last;
4472 sd_iterator_def sd_it;
4473 dep_t dep;
4475 last = scheduled_insns.pop ();
4477 /* This will be changed by restore_backtrack_point if the insn is in
4478 any queue. */
4479 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4480 if (last != insn)
4481 INSN_TICK (last) = INVALID_TICK;
4483 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4484 modulo_insns_scheduled--;
4486 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4487 sd_iterator_cond (&sd_it, &dep);)
4489 rtx_insn *con = DEP_CON (dep);
4490 sd_unresolve_dep (sd_it);
4491 if (!MUST_RECOMPUTE_SPEC_P (con))
4493 MUST_RECOMPUTE_SPEC_P (con) = 1;
4494 recompute_vec.safe_push (con);
4498 if (last == insn)
4499 break;
4502 /* A second pass, to update ready and speculation status for insns
4503 depending on the unscheduled ones. The first pass must have
4504 popped the scheduled_insns vector up to the point where we
4505 restart scheduling, as recompute_todo_spec requires it to be
4506 up-to-date. */
4507 while (!recompute_vec.is_empty ())
4509 rtx_insn *con;
4511 con = recompute_vec.pop ();
4512 MUST_RECOMPUTE_SPEC_P (con) = 0;
4513 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4515 TODO_SPEC (con) = HARD_DEP;
4516 INSN_TICK (con) = INVALID_TICK;
4517 if (PREDICATED_PAT (con) != NULL_RTX)
4518 haifa_change_pattern (con, ORIG_PAT (con));
4520 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4521 TODO_SPEC (con) = recompute_todo_spec (con, true);
4525 /* Restore scheduler state from the topmost entry on the backtracking queue.
4526 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4527 overwrite with the saved data.
4528 The caller must already have called unschedule_insns_until. */
4530 static void
4531 restore_last_backtrack_point (struct sched_block_state *psched_block)
4533 int i;
4534 struct haifa_saved_data *save = backtrack_queue;
4536 backtrack_queue = save->next;
4538 if (current_sched_info->restore_state)
4539 (*current_sched_info->restore_state) (save->fe_saved_data);
4541 if (targetm.sched.alloc_sched_context)
4543 targetm.sched.set_sched_context (save->be_saved_data);
4544 targetm.sched.free_sched_context (save->be_saved_data);
4547 /* Do this first since it clobbers INSN_TICK of the involved
4548 instructions. */
4549 undo_replacements_for_backtrack (save);
4551 /* Clear the QUEUE_INDEX of everything in the ready list or one
4552 of the queues. */
4553 if (ready.n_ready > 0)
4555 rtx_insn **first = ready_lastpos (&ready);
4556 for (i = 0; i < ready.n_ready; i++)
4558 rtx_insn *insn = first[i];
4559 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4560 INSN_TICK (insn) = INVALID_TICK;
4563 for (i = 0; i <= max_insn_queue_index; i++)
4565 int q = NEXT_Q_AFTER (q_ptr, i);
4567 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4569 rtx_insn *x = link->insn ();
4570 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4571 INSN_TICK (x) = INVALID_TICK;
4573 free_INSN_LIST_list (&insn_queue[q]);
4576 free (ready.vec);
4577 ready = save->ready;
4579 if (ready.n_ready > 0)
4581 rtx_insn **first = ready_lastpos (&ready);
4582 for (i = 0; i < ready.n_ready; i++)
4584 rtx_insn *insn = first[i];
4585 QUEUE_INDEX (insn) = QUEUE_READY;
4586 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4587 INSN_TICK (insn) = save->clock_var;
4591 q_ptr = 0;
4592 q_size = save->q_size;
4593 for (i = 0; i <= max_insn_queue_index; i++)
4595 int q = NEXT_Q_AFTER (q_ptr, i);
4597 insn_queue[q] = save->insn_queue[q];
4599 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4601 rtx_insn *x = link->insn ();
4602 QUEUE_INDEX (x) = i;
4603 TODO_SPEC (x) = recompute_todo_spec (x, true);
4604 INSN_TICK (x) = save->clock_var + i;
4607 free (save->insn_queue);
4609 toggle_cancelled_flags (true);
4611 clock_var = save->clock_var;
4612 last_clock_var = save->last_clock_var;
4613 cycle_issued_insns = save->cycle_issued_insns;
4614 last_scheduled_insn = save->last_scheduled_insn;
4615 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4616 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4618 *psched_block = save->sched_block;
4620 memcpy (curr_state, save->curr_state, dfa_state_size);
4621 free (save->curr_state);
4623 mark_backtrack_feeds (save->delay_pair->i2, 0);
4625 gcc_assert (next_cycle_replace_deps.is_empty ());
4626 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4627 next_cycle_apply = save->next_cycle_apply.copy ();
4629 free (save);
4631 for (save = backtrack_queue; save; save = save->next)
4633 mark_backtrack_feeds (save->delay_pair->i2, 1);
4637 /* Discard all data associated with the topmost entry in the backtrack
4638 queue. If RESET_TICK is false, we just want to free the data. If true,
4639 we are doing this because we discovered a reason to backtrack. In the
4640 latter case, also reset the INSN_TICK for the shadow insn. */
4641 static void
4642 free_topmost_backtrack_point (bool reset_tick)
4644 struct haifa_saved_data *save = backtrack_queue;
4645 int i;
4647 backtrack_queue = save->next;
4649 if (reset_tick)
4651 struct delay_pair *pair = save->delay_pair;
4652 while (pair)
4654 INSN_TICK (pair->i2) = INVALID_TICK;
4655 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4656 pair = pair->next_same_i1;
4658 undo_replacements_for_backtrack (save);
4660 else
4662 save->replacement_deps.release ();
4663 save->replace_apply.release ();
4666 if (targetm.sched.free_sched_context)
4667 targetm.sched.free_sched_context (save->be_saved_data);
4668 if (current_sched_info->restore_state)
4669 free (save->fe_saved_data);
4670 for (i = 0; i <= max_insn_queue_index; i++)
4671 free_INSN_LIST_list (&save->insn_queue[i]);
4672 free (save->insn_queue);
4673 free (save->curr_state);
4674 free (save->ready.vec);
4675 free (save);
4678 /* Free the entire backtrack queue. */
4679 static void
4680 free_backtrack_queue (void)
4682 while (backtrack_queue)
4683 free_topmost_backtrack_point (false);
4686 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4687 may have to postpone the replacement until the start of the next cycle,
4688 at which point we will be called again with IMMEDIATELY true. This is
4689 only done for machines which have instruction packets with explicit
4690 parallelism however. */
4691 static void
4692 apply_replacement (dep_t dep, bool immediately)
4694 struct dep_replacement *desc = DEP_REPLACE (dep);
4695 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4697 next_cycle_replace_deps.safe_push (dep);
4698 next_cycle_apply.safe_push (1);
4700 else
4702 bool success;
4704 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4705 return;
4707 if (sched_verbose >= 5)
4708 fprintf (sched_dump, "applying replacement for insn %d\n",
4709 INSN_UID (desc->insn));
4711 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4712 gcc_assert (success);
4714 rtx_insn *insn = DEP_PRO (dep);
4716 /* Recompute priority since dependent priorities may have changed. */
4717 priority (insn, true);
4718 update_insn_after_change (desc->insn);
4720 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4721 fix_tick_ready (desc->insn);
4723 if (backtrack_queue != NULL)
4725 backtrack_queue->replacement_deps.safe_push (dep);
4726 backtrack_queue->replace_apply.safe_push (1);
4731 /* We have determined that a pattern involved in DEP must be restored.
4732 If IMMEDIATELY is false, we may have to postpone the replacement
4733 until the start of the next cycle, at which point we will be called
4734 again with IMMEDIATELY true. */
4735 static void
4736 restore_pattern (dep_t dep, bool immediately)
4738 rtx_insn *next = DEP_CON (dep);
4739 int tick = INSN_TICK (next);
4741 /* If we already scheduled the insn, the modified version is
4742 correct. */
4743 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4744 return;
4746 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4748 next_cycle_replace_deps.safe_push (dep);
4749 next_cycle_apply.safe_push (0);
4750 return;
4754 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4756 if (sched_verbose >= 5)
4757 fprintf (sched_dump, "restoring pattern for insn %d\n",
4758 INSN_UID (next));
4759 haifa_change_pattern (next, ORIG_PAT (next));
4761 else
4763 struct dep_replacement *desc = DEP_REPLACE (dep);
4764 bool success;
4766 if (sched_verbose >= 5)
4767 fprintf (sched_dump, "restoring pattern for insn %d\n",
4768 INSN_UID (desc->insn));
4769 tick = INSN_TICK (desc->insn);
4771 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4772 gcc_assert (success);
4774 rtx_insn *insn = DEP_PRO (dep);
4776 if (QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
4778 /* Recompute priority since dependent priorities may have changed. */
4779 priority (insn, true);
4782 update_insn_after_change (desc->insn);
4784 if (backtrack_queue != NULL)
4786 backtrack_queue->replacement_deps.safe_push (dep);
4787 backtrack_queue->replace_apply.safe_push (0);
4790 INSN_TICK (next) = tick;
4791 if (TODO_SPEC (next) == DEP_POSTPONED)
4792 return;
4794 if (sd_lists_empty_p (next, SD_LIST_BACK))
4795 TODO_SPEC (next) = 0;
4796 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4797 TODO_SPEC (next) = HARD_DEP;
4800 /* Perform pattern replacements that were queued up until the next
4801 cycle. */
4802 static void
4803 perform_replacements_new_cycle (void)
4805 int i;
4806 dep_t dep;
4807 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4809 int apply_p = next_cycle_apply[i];
4810 if (apply_p)
4811 apply_replacement (dep, true);
4812 else
4813 restore_pattern (dep, true);
4815 next_cycle_replace_deps.truncate (0);
4816 next_cycle_apply.truncate (0);
4819 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4820 instructions we've previously encountered, a set bit prevents
4821 recursion. BUDGET is a limit on how far ahead we look, it is
4822 reduced on recursive calls. Return true if we produced a good
4823 estimate, or false if we exceeded the budget. */
4824 static bool
4825 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4827 sd_iterator_def sd_it;
4828 dep_t dep;
4829 int earliest = INSN_TICK (insn);
4831 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4833 rtx_insn *pro = DEP_PRO (dep);
4834 int t;
4836 if (DEP_STATUS (dep) & DEP_CANCELLED)
4837 continue;
4839 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4840 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4841 else
4843 int cost = dep_cost (dep);
4844 if (cost >= budget)
4845 return false;
4846 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4848 if (!estimate_insn_tick (processed, pro, budget - cost))
4849 return false;
4851 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4852 t = INSN_TICK_ESTIMATE (pro) + cost;
4853 if (earliest == INVALID_TICK || t > earliest)
4854 earliest = t;
4857 bitmap_set_bit (processed, INSN_LUID (insn));
4858 INSN_TICK_ESTIMATE (insn) = earliest;
4859 return true;
4862 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4863 infinite resources) the cycle in which the delayed shadow can be issued.
4864 Return the number of cycles that must pass before the real insn can be
4865 issued in order to meet this constraint. */
4866 static int
4867 estimate_shadow_tick (struct delay_pair *p)
4869 auto_bitmap processed;
4870 int t;
4871 bool cutoff;
4873 cutoff = !estimate_insn_tick (processed, p->i2,
4874 max_insn_queue_index + pair_delay (p));
4875 if (cutoff)
4876 return max_insn_queue_index;
4877 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4878 if (t > 0)
4879 return t;
4880 return 0;
4883 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4884 recursively resolve all its forward dependencies. */
4885 static void
4886 resolve_dependencies (rtx_insn *insn)
4888 sd_iterator_def sd_it;
4889 dep_t dep;
4891 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4892 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4893 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4894 return;
4896 if (sched_verbose >= 4)
4897 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4899 if (QUEUE_INDEX (insn) >= 0)
4900 queue_remove (insn);
4902 scheduled_insns.safe_push (insn);
4904 /* Update dependent instructions. */
4905 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4906 sd_iterator_cond (&sd_it, &dep);)
4908 rtx_insn *next = DEP_CON (dep);
4910 if (sched_verbose >= 4)
4911 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4912 INSN_UID (next));
4914 /* Resolve the dependence between INSN and NEXT.
4915 sd_resolve_dep () moves current dep to another list thus
4916 advancing the iterator. */
4917 sd_resolve_dep (sd_it);
4919 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4921 resolve_dependencies (next);
4923 else
4924 /* Check always has only one forward dependence (to the first insn in
4925 the recovery block), therefore, this will be executed only once. */
4927 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4933 /* Return the head and tail pointers of ebb starting at BEG and ending
4934 at END. */
4935 void
4936 get_ebb_head_tail (basic_block beg, basic_block end,
4937 rtx_insn **headp, rtx_insn **tailp)
4939 rtx_insn *beg_head = BB_HEAD (beg);
4940 rtx_insn * beg_tail = BB_END (beg);
4941 rtx_insn * end_head = BB_HEAD (end);
4942 rtx_insn * end_tail = BB_END (end);
4944 /* Don't include any notes or labels at the beginning of the BEG
4945 basic block, or notes at the end of the END basic blocks. */
4947 if (LABEL_P (beg_head))
4948 beg_head = NEXT_INSN (beg_head);
4950 while (beg_head != beg_tail)
4951 if (NOTE_P (beg_head))
4952 beg_head = NEXT_INSN (beg_head);
4953 else if (DEBUG_INSN_P (beg_head))
4955 rtx_insn * note, *next;
4957 for (note = NEXT_INSN (beg_head);
4958 note != beg_tail;
4959 note = next)
4961 next = NEXT_INSN (note);
4962 if (NOTE_P (note))
4964 if (sched_verbose >= 9)
4965 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4967 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4969 if (BLOCK_FOR_INSN (note) != beg)
4970 df_insn_change_bb (note, beg);
4972 else if (!DEBUG_INSN_P (note))
4973 break;
4976 break;
4978 else
4979 break;
4981 *headp = beg_head;
4983 if (beg == end)
4984 end_head = beg_head;
4985 else if (LABEL_P (end_head))
4986 end_head = NEXT_INSN (end_head);
4988 while (end_head != end_tail)
4989 if (NOTE_P (end_tail))
4990 end_tail = PREV_INSN (end_tail);
4991 else if (DEBUG_INSN_P (end_tail))
4993 rtx_insn * note, *prev;
4995 for (note = PREV_INSN (end_tail);
4996 note != end_head;
4997 note = prev)
4999 prev = PREV_INSN (note);
5000 if (NOTE_P (note))
5002 if (sched_verbose >= 9)
5003 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5005 reorder_insns_nobb (note, note, end_tail);
5007 if (end_tail == BB_END (end))
5008 BB_END (end) = note;
5010 if (BLOCK_FOR_INSN (note) != end)
5011 df_insn_change_bb (note, end);
5013 else if (!DEBUG_INSN_P (note))
5014 break;
5017 break;
5019 else
5020 break;
5022 *tailp = end_tail;
5025 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5028 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5030 while (head != NEXT_INSN (tail))
5032 if (!NOTE_P (head) && !LABEL_P (head))
5033 return 0;
5034 head = NEXT_INSN (head);
5036 return 1;
5039 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5040 previously found among the insns. Insert them just before HEAD. */
5041 rtx_insn *
5042 restore_other_notes (rtx_insn *head, basic_block head_bb)
5044 if (note_list != 0)
5046 rtx_insn *note_head = note_list;
5048 if (head)
5049 head_bb = BLOCK_FOR_INSN (head);
5050 else
5051 head = NEXT_INSN (bb_note (head_bb));
5053 while (PREV_INSN (note_head))
5055 set_block_for_insn (note_head, head_bb);
5056 note_head = PREV_INSN (note_head);
5058 /* In the above cycle we've missed this note. */
5059 set_block_for_insn (note_head, head_bb);
5061 SET_PREV_INSN (note_head) = PREV_INSN (head);
5062 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5063 SET_PREV_INSN (head) = note_list;
5064 SET_NEXT_INSN (note_list) = head;
5066 if (BLOCK_FOR_INSN (head) != head_bb)
5067 BB_END (head_bb) = note_list;
5069 head = note_head;
5072 return head;
5075 /* When we know we are going to discard the schedule due to a failed attempt
5076 at modulo scheduling, undo all replacements. */
5077 static void
5078 undo_all_replacements (void)
5080 rtx_insn *insn;
5081 int i;
5083 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5085 sd_iterator_def sd_it;
5086 dep_t dep;
5088 /* See if we must undo a replacement. */
5089 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5090 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5092 struct dep_replacement *desc = DEP_REPLACE (dep);
5093 if (desc != NULL)
5094 validate_change (desc->insn, desc->loc, desc->orig, 0);
5099 /* Return first non-scheduled insn in the current scheduling block.
5100 This is mostly used for debug-counter purposes. */
5101 static rtx_insn *
5102 first_nonscheduled_insn (void)
5104 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5105 ? nonscheduled_insns_begin
5106 : current_sched_info->prev_head);
5110 insn = next_nonnote_nondebug_insn (insn);
5112 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5114 return insn;
5117 /* Move insns that became ready to fire from queue to ready list. */
5119 static void
5120 queue_to_ready (struct ready_list *ready)
5122 rtx_insn *insn;
5123 rtx_insn_list *link;
5124 rtx_insn *skip_insn;
5126 q_ptr = NEXT_Q (q_ptr);
5128 if (dbg_cnt (sched_insn) == false)
5129 /* If debug counter is activated do not requeue the first
5130 nonscheduled insn. */
5131 skip_insn = first_nonscheduled_insn ();
5132 else
5133 skip_insn = NULL;
5135 /* Add all pending insns that can be scheduled without stalls to the
5136 ready list. */
5137 for (link = insn_queue[q_ptr]; link; link = link->next ())
5139 insn = link->insn ();
5140 q_size -= 1;
5142 if (sched_verbose >= 2)
5143 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5144 (*current_sched_info->print_insn) (insn, 0));
5146 /* If the ready list is full, delay the insn for 1 cycle.
5147 See the comment in schedule_block for the rationale. */
5148 if (!reload_completed
5149 && (ready->n_ready - ready->n_debug > param_max_sched_ready_insns
5150 || (sched_pressure == SCHED_PRESSURE_MODEL
5151 /* Limit pressure recalculations to
5152 param_max_sched_ready_insns instructions too. */
5153 && model_index (insn) > (model_curr_point
5154 + param_max_sched_ready_insns)))
5155 && !(sched_pressure == SCHED_PRESSURE_MODEL
5156 && model_curr_point < model_num_insns
5157 /* Always allow the next model instruction to issue. */
5158 && model_index (insn) == model_curr_point)
5159 && !SCHED_GROUP_P (insn)
5160 && insn != skip_insn)
5162 if (sched_verbose >= 2)
5163 fprintf (sched_dump, "keeping in queue, ready full\n");
5164 queue_insn (insn, 1, "ready full");
5166 else
5168 ready_add (ready, insn, false);
5169 if (sched_verbose >= 2)
5170 fprintf (sched_dump, "moving to ready without stalls\n");
5173 free_INSN_LIST_list (&insn_queue[q_ptr]);
5175 /* If there are no ready insns, stall until one is ready and add all
5176 of the pending insns at that point to the ready list. */
5177 if (ready->n_ready == 0)
5179 int stalls;
5181 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5183 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5185 for (; link; link = link->next ())
5187 insn = link->insn ();
5188 q_size -= 1;
5190 if (sched_verbose >= 2)
5191 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5192 (*current_sched_info->print_insn) (insn, 0));
5194 ready_add (ready, insn, false);
5195 if (sched_verbose >= 2)
5196 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5198 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5200 advance_one_cycle ();
5202 break;
5205 advance_one_cycle ();
5208 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5209 clock_var += stalls;
5210 if (sched_verbose >= 2)
5211 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5212 stalls, clock_var);
5216 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5217 prematurely move INSN from the queue to the ready list. Currently,
5218 if a target defines the hook 'is_costly_dependence', this function
5219 uses the hook to check whether there exist any dependences which are
5220 considered costly by the target, between INSN and other insns that
5221 have already been scheduled. Dependences are checked up to Y cycles
5222 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5223 controlling this value.
5224 (Other considerations could be taken into account instead (or in
5225 addition) depending on user flags and target hooks. */
5227 static bool
5228 ok_for_early_queue_removal (rtx_insn *insn)
5230 if (targetm.sched.is_costly_dependence)
5232 int n_cycles;
5233 int i = scheduled_insns.length ();
5234 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5236 while (i-- > 0)
5238 int cost;
5240 rtx_insn *prev_insn = scheduled_insns[i];
5242 if (!NOTE_P (prev_insn))
5244 dep_t dep;
5246 dep = sd_find_dep_between (prev_insn, insn, true);
5248 if (dep != NULL)
5250 cost = dep_cost (dep);
5252 if (targetm.sched.is_costly_dependence (dep, cost,
5253 flag_sched_stalled_insns_dep - n_cycles))
5254 return false;
5258 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5259 break;
5262 if (i == 0)
5263 break;
5267 return true;
5271 /* Remove insns from the queue, before they become "ready" with respect
5272 to FU latency considerations. */
5274 static int
5275 early_queue_to_ready (state_t state, struct ready_list *ready)
5277 rtx_insn *insn;
5278 rtx_insn_list *link;
5279 rtx_insn_list *next_link;
5280 rtx_insn_list *prev_link;
5281 bool move_to_ready;
5282 int cost;
5283 state_t temp_state = alloca (dfa_state_size);
5284 int stalls;
5285 int insns_removed = 0;
5288 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5289 function:
5291 X == 0: There is no limit on how many queued insns can be removed
5292 prematurely. (flag_sched_stalled_insns = -1).
5294 X >= 1: Only X queued insns can be removed prematurely in each
5295 invocation. (flag_sched_stalled_insns = X).
5297 Otherwise: Early queue removal is disabled.
5298 (flag_sched_stalled_insns = 0)
5301 if (! flag_sched_stalled_insns)
5302 return 0;
5304 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5306 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5308 if (sched_verbose > 6)
5309 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5311 prev_link = 0;
5312 while (link)
5314 next_link = link->next ();
5315 insn = link->insn ();
5316 if (insn && sched_verbose > 6)
5317 print_rtl_single (sched_dump, insn);
5319 memcpy (temp_state, state, dfa_state_size);
5320 if (recog_memoized (insn) < 0)
5321 /* non-negative to indicate that it's not ready
5322 to avoid infinite Q->R->Q->R... */
5323 cost = 0;
5324 else
5325 cost = state_transition (temp_state, insn);
5327 if (sched_verbose >= 6)
5328 fprintf (sched_dump, "transition cost = %d\n", cost);
5330 move_to_ready = false;
5331 if (cost < 0)
5333 move_to_ready = ok_for_early_queue_removal (insn);
5334 if (move_to_ready == true)
5336 /* move from Q to R */
5337 q_size -= 1;
5338 ready_add (ready, insn, false);
5340 if (prev_link)
5341 XEXP (prev_link, 1) = next_link;
5342 else
5343 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5345 free_INSN_LIST_node (link);
5347 if (sched_verbose >= 2)
5348 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5349 (*current_sched_info->print_insn) (insn, 0));
5351 insns_removed++;
5352 if (insns_removed == flag_sched_stalled_insns)
5353 /* Remove no more than flag_sched_stalled_insns insns
5354 from Q at a time. */
5355 return insns_removed;
5359 if (move_to_ready == false)
5360 prev_link = link;
5362 link = next_link;
5363 } /* while link */
5364 } /* if link */
5366 } /* for stalls.. */
5368 return insns_removed;
5372 /* Print the ready list for debugging purposes.
5373 If READY_TRY is non-zero then only print insns that max_issue
5374 will consider. */
5375 static void
5376 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5378 rtx_insn **p;
5379 int i;
5381 if (ready->n_ready == 0)
5383 fprintf (sched_dump, "\n");
5384 return;
5387 p = ready_lastpos (ready);
5388 for (i = 0; i < ready->n_ready; i++)
5390 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5391 continue;
5393 fprintf (sched_dump, " %s:%d",
5394 (*current_sched_info->print_insn) (p[i], 0),
5395 INSN_LUID (p[i]));
5396 if (sched_pressure != SCHED_PRESSURE_NONE)
5397 fprintf (sched_dump, "(cost=%d",
5398 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5399 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5400 if (INSN_TICK (p[i]) > clock_var)
5401 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5402 if (sched_pressure == SCHED_PRESSURE_MODEL)
5403 fprintf (sched_dump, ":idx=%d",
5404 model_index (p[i]));
5405 if (sched_pressure != SCHED_PRESSURE_NONE)
5406 fprintf (sched_dump, ")");
5408 fprintf (sched_dump, "\n");
5411 /* Print the ready list. Callable from debugger. */
5412 static void
5413 debug_ready_list (struct ready_list *ready)
5415 debug_ready_list_1 (ready, NULL);
5418 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5419 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5420 replaces the epilogue note in the correct basic block. */
5421 void
5422 reemit_notes (rtx_insn *insn)
5424 rtx note;
5425 rtx_insn *last = insn;
5427 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5429 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5431 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5433 last = emit_note_before (note_type, last);
5434 remove_note (insn, note);
5435 df_insn_create_insn_record (last);
5440 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5441 static void
5442 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5444 if (PREV_INSN (insn) != last)
5446 basic_block bb;
5447 rtx_insn *note;
5448 int jump_p = 0;
5450 bb = BLOCK_FOR_INSN (insn);
5452 /* BB_HEAD is either LABEL or NOTE. */
5453 gcc_assert (BB_HEAD (bb) != insn);
5455 if (BB_END (bb) == insn)
5456 /* If this is last instruction in BB, move end marker one
5457 instruction up. */
5459 /* Jumps are always placed at the end of basic block. */
5460 jump_p = control_flow_insn_p (insn);
5462 gcc_assert (!jump_p
5463 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5464 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5465 || (common_sched_info->sched_pass_id
5466 == SCHED_EBB_PASS));
5468 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5470 BB_END (bb) = PREV_INSN (insn);
5473 gcc_assert (BB_END (bb) != last);
5475 if (jump_p)
5476 /* We move the block note along with jump. */
5478 gcc_assert (nt);
5480 note = NEXT_INSN (insn);
5481 while (NOTE_NOT_BB_P (note) && note != nt)
5482 note = NEXT_INSN (note);
5484 if (note != nt
5485 && (LABEL_P (note)
5486 || BARRIER_P (note)))
5487 note = NEXT_INSN (note);
5489 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5491 else
5492 note = insn;
5494 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5495 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5497 SET_NEXT_INSN (note) = NEXT_INSN (last);
5498 SET_PREV_INSN (NEXT_INSN (last)) = note;
5500 SET_NEXT_INSN (last) = insn;
5501 SET_PREV_INSN (insn) = last;
5503 bb = BLOCK_FOR_INSN (last);
5505 if (jump_p)
5507 fix_jump_move (insn);
5509 if (BLOCK_FOR_INSN (insn) != bb)
5510 move_block_after_check (insn);
5512 gcc_assert (BB_END (bb) == last);
5515 df_insn_change_bb (insn, bb);
5517 /* Update BB_END, if needed. */
5518 if (BB_END (bb) == last)
5519 BB_END (bb) = insn;
5522 SCHED_GROUP_P (insn) = 0;
5525 /* Return true if scheduling INSN will finish current clock cycle. */
5526 static bool
5527 insn_finishes_cycle_p (rtx_insn *insn)
5529 if (SCHED_GROUP_P (insn))
5530 /* After issuing INSN, rest of the sched_group will be forced to issue
5531 in order. Don't make any plans for the rest of cycle. */
5532 return true;
5534 /* Finishing the block will, apparently, finish the cycle. */
5535 if (current_sched_info->insn_finishes_block_p
5536 && current_sched_info->insn_finishes_block_p (insn))
5537 return true;
5539 return false;
5542 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5543 we're expecting a memory WRITE or not, check that the insn is relevant to
5544 the autoprefetcher modelling code. Return true iff that is the case.
5545 If it is relevant, record the base register of the memory op in BASE and
5546 the offset in OFFSET. */
5548 static bool
5549 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5551 if (GET_CODE (pat) != SET)
5552 return false;
5554 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5555 if (!MEM_P (mem))
5556 return false;
5558 struct address_info info;
5559 decompose_mem_address (&info, mem);
5561 /* TODO: Currently only (base+const) addressing is supported. */
5562 if (info.base == NULL || !REG_P (*info.base)
5563 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5564 return false;
5566 *base = *info.base;
5567 *offset = info.disp ? INTVAL (*info.disp) : 0;
5568 return true;
5571 /* Functions to model cache auto-prefetcher.
5573 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5574 memory prefetches if it sees instructions with consequitive memory accesses
5575 in the instruction stream. Details of such hardware units are not published,
5576 so we can only guess what exactly is going on there.
5577 In the scheduler, we model abstract auto-prefetcher. If there are memory
5578 insns in the ready list (or the queue) that have same memory base, but
5579 different offsets, then we delay the insns with larger offsets until insns
5580 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5581 is "1", then we look at the ready list; if it is N>1, then we also look
5582 through N-1 queue entries.
5583 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5584 among its heuristics.
5585 Param value of "-1" disables modelling of the auto-prefetcher. */
5587 /* Initialize autoprefetcher model data for INSN. */
5588 static void
5589 autopref_multipass_init (const rtx_insn *insn, int write)
5591 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5593 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5594 data->base = NULL_RTX;
5595 data->offset = 0;
5596 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5597 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5599 rtx pat = PATTERN (insn);
5601 /* We have a multi-set insn like a load-multiple or store-multiple.
5602 We care about these as long as all the memory ops inside the PARALLEL
5603 have the same base register. We care about the minimum and maximum
5604 offsets from that base but don't check for the order of those offsets
5605 within the PARALLEL insn itself. */
5606 if (GET_CODE (pat) == PARALLEL)
5608 int n_elems = XVECLEN (pat, 0);
5610 int i, offset;
5611 rtx base, prev_base = NULL_RTX;
5612 int min_offset = INT_MAX;
5614 for (i = 0; i < n_elems; i++)
5616 rtx set = XVECEXP (pat, 0, i);
5617 if (GET_CODE (set) != SET)
5618 return;
5620 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5621 return;
5623 /* Ensure that all memory operations in the PARALLEL use the same
5624 base register. */
5625 if (i > 0 && REGNO (base) != REGNO (prev_base))
5626 return;
5627 prev_base = base;
5628 min_offset = MIN (min_offset, offset);
5631 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5632 with prev_base as the base and min_offset containing the offset. */
5633 gcc_assert (prev_base);
5634 data->base = prev_base;
5635 data->offset = min_offset;
5636 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5637 return;
5640 /* Otherwise this is a single set memory operation. */
5641 rtx set = single_set (insn);
5642 if (set == NULL_RTX)
5643 return;
5645 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5646 &data->offset))
5647 return;
5649 /* This insn is relevant for the auto-prefetcher.
5650 The base and offset fields will have been filled in the
5651 analyze_set_insn_for_autopref call above. */
5652 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5655 /* Helper function for rank_for_schedule sorting. */
5656 static int
5657 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5659 int r = 0;
5660 for (int write = 0; write < 2 && !r; ++write)
5662 autopref_multipass_data_t data1
5663 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5664 autopref_multipass_data_t data2
5665 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5667 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5668 autopref_multipass_init (insn1, write);
5670 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5671 autopref_multipass_init (insn2, write);
5673 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5674 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5676 if (!irrel1 && !irrel2)
5677 r = data1->offset - data2->offset;
5678 else
5679 r = irrel2 - irrel1;
5682 return r;
5685 /* True if header of debug dump was printed. */
5686 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5688 /* Helper for autopref_multipass_dfa_lookahead_guard.
5689 Return "1" if INSN1 should be delayed in favor of INSN2. */
5690 static int
5691 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5692 const rtx_insn *insn2, int write)
5694 autopref_multipass_data_t data1
5695 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5696 autopref_multipass_data_t data2
5697 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5699 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5700 autopref_multipass_init (insn2, write);
5701 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5702 return 0;
5704 if (rtx_equal_p (data1->base, data2->base)
5705 && data1->offset > data2->offset)
5707 if (sched_verbose >= 2)
5709 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5711 fprintf (sched_dump,
5712 ";;\t\tnot trying in max_issue due to autoprefetch "
5713 "model: ");
5714 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5717 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5720 return 1;
5723 return 0;
5726 /* General note:
5728 We could have also hooked autoprefetcher model into
5729 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5730 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5731 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5732 unblocked). We don't bother about this yet because target of interest
5733 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5735 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5736 Return "1" if INSN1 should not be considered in max_issue due to
5737 auto-prefetcher considerations. */
5739 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5741 int r = 0;
5743 /* Exit early if the param forbids this or if we're not entering here through
5744 normal haifa scheduling. This can happen if selective scheduling is
5745 explicitly enabled. */
5746 if (!insn_queue || param_sched_autopref_queue_depth <= 0)
5747 return 0;
5749 if (sched_verbose >= 2 && ready_index == 0)
5750 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5752 for (int write = 0; write < 2; ++write)
5754 autopref_multipass_data_t data1
5755 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5757 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5758 autopref_multipass_init (insn1, write);
5759 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5760 continue;
5762 if (ready_index == 0
5763 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5764 /* We allow only a single delay on priviledged instructions.
5765 Doing otherwise would cause infinite loop. */
5767 if (sched_verbose >= 2)
5769 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5771 fprintf (sched_dump,
5772 ";;\t\tnot trying in max_issue due to autoprefetch "
5773 "model: ");
5774 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5777 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5779 continue;
5782 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5784 rtx_insn *insn2 = get_ready_element (i2);
5785 if (insn1 == insn2)
5786 continue;
5787 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5788 if (r)
5790 if (ready_index == 0)
5792 r = -1;
5793 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5795 goto finish;
5799 if (param_sched_autopref_queue_depth == 1)
5800 continue;
5802 /* Everything from the current queue slot should have been moved to
5803 the ready list. */
5804 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5806 int n_stalls = param_sched_autopref_queue_depth - 1;
5807 if (n_stalls > max_insn_queue_index)
5808 n_stalls = max_insn_queue_index;
5810 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5812 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5813 link != NULL_RTX;
5814 link = link->next ())
5816 rtx_insn *insn2 = link->insn ();
5817 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5818 write);
5819 if (r)
5821 /* Queue INSN1 until INSN2 can issue. */
5822 r = -stalls;
5823 if (ready_index == 0)
5824 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5825 goto finish;
5831 finish:
5832 if (sched_verbose >= 2
5833 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5834 && (ready_index == ready.n_ready - 1 || r < 0))
5835 /* This does not /always/ trigger. We don't output EOL if the last
5836 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5837 called. We can live with this. */
5838 fprintf (sched_dump, "\n");
5840 return r;
5843 /* Define type for target data used in multipass scheduling. */
5844 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5845 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5846 #endif
5847 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5849 /* The following structure describe an entry of the stack of choices. */
5850 struct choice_entry
5852 /* Ordinal number of the issued insn in the ready queue. */
5853 int index;
5854 /* The number of the rest insns whose issues we should try. */
5855 int rest;
5856 /* The number of issued essential insns. */
5857 int n;
5858 /* State after issuing the insn. */
5859 state_t state;
5860 /* Target-specific data. */
5861 first_cycle_multipass_data_t target_data;
5864 /* The following array is used to implement a stack of choices used in
5865 function max_issue. */
5866 static struct choice_entry *choice_stack;
5868 /* This holds the value of the target dfa_lookahead hook. */
5869 int dfa_lookahead;
5871 /* The following variable value is maximal number of tries of issuing
5872 insns for the first cycle multipass insn scheduling. We define
5873 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5874 need this constraint if all real insns (with non-negative codes)
5875 had reservations because in this case the algorithm complexity is
5876 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5877 might be incomplete and such insn might occur. For such
5878 descriptions, the complexity of algorithm (without the constraint)
5879 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5880 static int max_lookahead_tries;
5882 /* The following function returns maximal (or close to maximal) number
5883 of insns which can be issued on the same cycle and one of which
5884 insns is insns with the best rank (the first insn in READY). To
5885 make this function tries different samples of ready insns. READY
5886 is current queue `ready'. Global array READY_TRY reflects what
5887 insns are already issued in this try. The function stops immediately,
5888 if it reached the such a solution, that all instruction can be issued.
5889 INDEX will contain index of the best insn in READY. The following
5890 function is used only for first cycle multipass scheduling.
5892 PRIVILEGED_N >= 0
5894 This function expects recognized insns only. All USEs,
5895 CLOBBERs, etc must be filtered elsewhere. */
5897 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5898 bool first_cycle_insn_p, int *index)
5900 int n, i, all, n_ready, best, delay, tries_num;
5901 int more_issue;
5902 struct choice_entry *top;
5903 rtx_insn *insn;
5905 if (sched_fusion)
5906 return 0;
5908 n_ready = ready->n_ready;
5909 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5910 && privileged_n <= n_ready);
5912 /* Init MAX_LOOKAHEAD_TRIES. */
5913 if (max_lookahead_tries == 0)
5915 max_lookahead_tries = 100;
5916 for (i = 0; i < issue_rate; i++)
5917 max_lookahead_tries *= dfa_lookahead;
5920 /* Init max_points. */
5921 more_issue = issue_rate - cycle_issued_insns;
5922 gcc_assert (more_issue >= 0);
5924 /* The number of the issued insns in the best solution. */
5925 best = 0;
5927 top = choice_stack;
5929 /* Set initial state of the search. */
5930 memcpy (top->state, state, dfa_state_size);
5931 top->rest = dfa_lookahead;
5932 top->n = 0;
5933 if (targetm.sched.first_cycle_multipass_begin)
5934 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5935 ready_try, n_ready,
5936 first_cycle_insn_p);
5938 /* Count the number of the insns to search among. */
5939 for (all = i = 0; i < n_ready; i++)
5940 if (!ready_try [i])
5941 all++;
5943 if (sched_verbose >= 2)
5945 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5946 debug_ready_list_1 (ready, ready_try);
5949 /* I is the index of the insn to try next. */
5950 i = 0;
5951 tries_num = 0;
5952 for (;;)
5954 if (/* If we've reached a dead end or searched enough of what we have
5955 been asked... */
5956 top->rest == 0
5957 /* or have nothing else to try... */
5958 || i >= n_ready
5959 /* or should not issue more. */
5960 || top->n >= more_issue)
5962 /* ??? (... || i == n_ready). */
5963 gcc_assert (i <= n_ready);
5965 /* We should not issue more than issue_rate instructions. */
5966 gcc_assert (top->n <= more_issue);
5968 if (top == choice_stack)
5969 break;
5971 if (best < top - choice_stack)
5973 if (privileged_n)
5975 n = privileged_n;
5976 /* Try to find issued privileged insn. */
5977 while (n && !ready_try[--n])
5981 if (/* If all insns are equally good... */
5982 privileged_n == 0
5983 /* Or a privileged insn will be issued. */
5984 || ready_try[n])
5985 /* Then we have a solution. */
5987 best = top - choice_stack;
5988 /* This is the index of the insn issued first in this
5989 solution. */
5990 *index = choice_stack [1].index;
5991 if (top->n == more_issue || best == all)
5992 break;
5996 /* Set ready-list index to point to the last insn
5997 ('i++' below will advance it to the next insn). */
5998 i = top->index;
6000 /* Backtrack. */
6001 ready_try [i] = 0;
6003 if (targetm.sched.first_cycle_multipass_backtrack)
6004 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6005 ready_try, n_ready);
6007 top--;
6008 memcpy (state, top->state, dfa_state_size);
6010 else if (!ready_try [i])
6012 tries_num++;
6013 if (tries_num > max_lookahead_tries)
6014 break;
6015 insn = ready_element (ready, i);
6016 delay = state_transition (state, insn);
6017 if (delay < 0)
6019 if (state_dead_lock_p (state)
6020 || insn_finishes_cycle_p (insn))
6021 /* We won't issue any more instructions in the next
6022 choice_state. */
6023 top->rest = 0;
6024 else
6025 top->rest--;
6027 n = top->n;
6028 if (memcmp (top->state, state, dfa_state_size) != 0)
6029 n++;
6031 /* Advance to the next choice_entry. */
6032 top++;
6033 /* Initialize it. */
6034 top->rest = dfa_lookahead;
6035 top->index = i;
6036 top->n = n;
6037 memcpy (top->state, state, dfa_state_size);
6038 ready_try [i] = 1;
6040 if (targetm.sched.first_cycle_multipass_issue)
6041 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6042 ready_try, n_ready,
6043 insn,
6044 &((top - 1)
6045 ->target_data));
6047 i = -1;
6051 /* Increase ready-list index. */
6052 i++;
6055 if (targetm.sched.first_cycle_multipass_end)
6056 targetm.sched.first_cycle_multipass_end (best != 0
6057 ? &choice_stack[1].target_data
6058 : NULL);
6060 /* Restore the original state of the DFA. */
6061 memcpy (state, choice_stack->state, dfa_state_size);
6063 return best;
6066 /* The following function chooses insn from READY and modifies
6067 READY. The following function is used only for first
6068 cycle multipass scheduling.
6069 Return:
6070 -1 if cycle should be advanced,
6071 0 if INSN_PTR is set to point to the desirable insn,
6072 1 if choose_ready () should be restarted without advancing the cycle. */
6073 static int
6074 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6075 rtx_insn **insn_ptr)
6077 if (dbg_cnt (sched_insn) == false)
6079 if (nonscheduled_insns_begin == NULL_RTX)
6080 nonscheduled_insns_begin = current_sched_info->prev_head;
6082 rtx_insn *insn = first_nonscheduled_insn ();
6084 if (QUEUE_INDEX (insn) == QUEUE_READY)
6085 /* INSN is in the ready_list. */
6087 ready_remove_insn (insn);
6088 *insn_ptr = insn;
6089 return 0;
6092 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6093 gcc_assert (QUEUE_INDEX (insn) >= 0);
6094 return -1;
6097 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6098 || DEBUG_INSN_P (ready_element (ready, 0)))
6100 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6101 *insn_ptr = ready_remove_first_dispatch (ready);
6102 else
6103 *insn_ptr = ready_remove_first (ready);
6105 return 0;
6107 else
6109 /* Try to choose the best insn. */
6110 int index = 0, i;
6111 rtx_insn *insn;
6113 insn = ready_element (ready, 0);
6114 if (INSN_CODE (insn) < 0)
6116 *insn_ptr = ready_remove_first (ready);
6117 return 0;
6120 /* Filter the search space. */
6121 for (i = 0; i < ready->n_ready; i++)
6123 ready_try[i] = 0;
6125 insn = ready_element (ready, i);
6127 /* If this insn is recognizable we should have already
6128 recognized it earlier.
6129 ??? Not very clear where this is supposed to be done.
6130 See dep_cost_1. */
6131 gcc_checking_assert (INSN_CODE (insn) >= 0
6132 || recog_memoized (insn) < 0);
6133 if (INSN_CODE (insn) < 0)
6135 /* Non-recognized insns at position 0 are handled above. */
6136 gcc_assert (i > 0);
6137 ready_try[i] = 1;
6138 continue;
6141 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6143 ready_try[i]
6144 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6145 (insn, i));
6147 if (ready_try[i] < 0)
6148 /* Queue instruction for several cycles.
6149 We need to restart choose_ready as we have changed
6150 the ready list. */
6152 change_queue_index (insn, -ready_try[i]);
6153 return 1;
6156 /* Make sure that we didn't end up with 0'th insn filtered out.
6157 Don't be tempted to make life easier for backends and just
6158 requeue 0'th insn if (ready_try[0] == 0) and restart
6159 choose_ready. Backends should be very considerate about
6160 requeueing instructions -- especially the highest priority
6161 one at position 0. */
6162 gcc_assert (ready_try[i] == 0 || i > 0);
6163 if (ready_try[i])
6164 continue;
6167 gcc_assert (ready_try[i] == 0);
6168 /* INSN made it through the scrutiny of filters! */
6171 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6173 *insn_ptr = ready_remove_first (ready);
6174 if (sched_verbose >= 4)
6175 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6176 (*current_sched_info->print_insn) (*insn_ptr, 0));
6177 return 0;
6179 else
6181 if (sched_verbose >= 4)
6182 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6183 (*current_sched_info->print_insn)
6184 (ready_element (ready, index), 0));
6186 *insn_ptr = ready_remove (ready, index);
6187 return 0;
6192 /* This function is called when we have successfully scheduled a
6193 block. It uses the schedule stored in the scheduled_insns vector
6194 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6195 append the scheduled insns; TAIL is the insn after the scheduled
6196 block. TARGET_BB is the argument passed to schedule_block. */
6198 static void
6199 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6201 unsigned int i;
6202 rtx_insn *insn;
6204 last_scheduled_insn = prev_head;
6205 for (i = 0;
6206 scheduled_insns.iterate (i, &insn);
6207 i++)
6209 if (control_flow_insn_p (last_scheduled_insn)
6210 || current_sched_info->advance_target_bb (*target_bb, insn))
6212 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6214 if (sched_verbose)
6216 rtx_insn *x;
6218 x = next_real_insn (last_scheduled_insn);
6219 gcc_assert (x);
6220 dump_new_block_header (1, *target_bb, x, tail);
6223 last_scheduled_insn = bb_note (*target_bb);
6226 if (current_sched_info->begin_move_insn)
6227 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6228 move_insn (insn, last_scheduled_insn,
6229 current_sched_info->next_tail);
6230 if (!DEBUG_INSN_P (insn))
6231 reemit_notes (insn);
6232 last_scheduled_insn = insn;
6235 scheduled_insns.truncate (0);
6238 /* Examine all insns on the ready list and queue those which can't be
6239 issued in this cycle. TEMP_STATE is temporary scheduler state we
6240 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6241 have been issued for the current cycle, which means it is valid to
6242 issue an asm statement.
6244 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6245 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6246 we only leave insns which have an INSN_EXACT_TICK. */
6248 static void
6249 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6250 bool shadows_only_p, bool modulo_epilogue_p)
6252 int i, pass;
6253 bool sched_group_found = false;
6254 int min_cost_group = 0;
6256 if (sched_fusion)
6257 return;
6259 for (i = 0; i < ready.n_ready; i++)
6261 rtx_insn *insn = ready_element (&ready, i);
6262 if (SCHED_GROUP_P (insn))
6264 sched_group_found = true;
6265 break;
6269 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6270 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6271 gets queued, then all other insns get queued for one cycle later. */
6272 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6274 int n = ready.n_ready;
6275 for (i = 0; i < n; i++)
6277 rtx_insn *insn = ready_element (&ready, i);
6278 int cost = 0;
6279 const char *reason = "resource conflict";
6281 if (DEBUG_INSN_P (insn))
6282 continue;
6284 if (sched_group_found && !SCHED_GROUP_P (insn)
6285 && ((pass == 0) || (min_cost_group >= 1)))
6287 if (pass == 0)
6288 continue;
6289 cost = min_cost_group;
6290 reason = "not in sched group";
6292 else if (modulo_epilogue_p
6293 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6295 cost = max_insn_queue_index;
6296 reason = "not an epilogue insn";
6298 else if (shadows_only_p && !SHADOW_P (insn))
6300 cost = 1;
6301 reason = "not a shadow";
6303 else if (recog_memoized (insn) < 0)
6305 if (!first_cycle_insn_p
6306 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6307 || asm_noperands (PATTERN (insn)) >= 0))
6308 cost = 1;
6309 reason = "asm";
6311 else if (sched_pressure != SCHED_PRESSURE_NONE)
6313 if (sched_pressure == SCHED_PRESSURE_MODEL
6314 && INSN_TICK (insn) <= clock_var)
6316 memcpy (temp_state, curr_state, dfa_state_size);
6317 if (state_transition (temp_state, insn) >= 0)
6318 INSN_TICK (insn) = clock_var + 1;
6320 cost = 0;
6322 else
6324 int delay_cost = 0;
6326 if (delay_htab)
6328 struct delay_pair *delay_entry;
6329 delay_entry
6330 = delay_htab->find_with_hash (insn,
6331 htab_hash_pointer (insn));
6332 while (delay_entry && delay_cost == 0)
6334 delay_cost = estimate_shadow_tick (delay_entry);
6335 if (delay_cost > max_insn_queue_index)
6336 delay_cost = max_insn_queue_index;
6337 delay_entry = delay_entry->next_same_i1;
6341 memcpy (temp_state, curr_state, dfa_state_size);
6342 cost = state_transition (temp_state, insn);
6343 if (cost < 0)
6344 cost = 0;
6345 else if (cost == 0)
6346 cost = 1;
6347 if (cost < delay_cost)
6349 cost = delay_cost;
6350 reason = "shadow tick";
6353 if (cost >= 1)
6355 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6356 min_cost_group = cost;
6357 ready_remove (&ready, i);
6358 /* Normally we'd want to queue INSN for COST cycles. However,
6359 if SCHED_GROUP_P is set, then we must ensure that nothing
6360 else comes between INSN and its predecessor. If there is
6361 some other insn ready to fire on the next cycle, then that
6362 invariant would be broken.
6364 So when SCHED_GROUP_P is set, just queue this insn for a
6365 single cycle. */
6366 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6367 if (i + 1 < n)
6368 break;
6371 if (i == n)
6372 pass++;
6376 /* Called when we detect that the schedule is impossible. We examine the
6377 backtrack queue to find the earliest insn that caused this condition. */
6379 static struct haifa_saved_data *
6380 verify_shadows (void)
6382 struct haifa_saved_data *save, *earliest_fail = NULL;
6383 for (save = backtrack_queue; save; save = save->next)
6385 int t;
6386 struct delay_pair *pair = save->delay_pair;
6387 rtx_insn *i1 = pair->i1;
6389 for (; pair; pair = pair->next_same_i1)
6391 rtx_insn *i2 = pair->i2;
6393 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6394 continue;
6396 t = INSN_TICK (i1) + pair_delay (pair);
6397 if (t < clock_var)
6399 if (sched_verbose >= 2)
6400 fprintf (sched_dump,
6401 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6402 ", not ready\n",
6403 INSN_UID (pair->i1), INSN_UID (pair->i2),
6404 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6405 earliest_fail = save;
6406 break;
6408 if (QUEUE_INDEX (i2) >= 0)
6410 int queued_for = INSN_TICK (i2);
6412 if (t < queued_for)
6414 if (sched_verbose >= 2)
6415 fprintf (sched_dump,
6416 ";;\t\tfailed delay requirements for %d/%d"
6417 " (%d->%d), queued too late\n",
6418 INSN_UID (pair->i1), INSN_UID (pair->i2),
6419 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6420 earliest_fail = save;
6421 break;
6427 return earliest_fail;
6430 /* Print instructions together with useful scheduling information between
6431 HEAD and TAIL (inclusive). */
6432 static void
6433 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6435 fprintf (sched_dump, ";;\t| insn | prio |\n");
6437 rtx_insn *next_tail = NEXT_INSN (tail);
6438 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6440 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6441 const char *pattern = (NOTE_P (insn)
6442 ? "note"
6443 : str_pattern_slim (PATTERN (insn)));
6445 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6446 INSN_UID (insn), priority, pattern);
6448 if (sched_verbose >= 4)
6450 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6451 fprintf (sched_dump, "nothing");
6452 else
6453 print_reservation (sched_dump, insn);
6455 fprintf (sched_dump, "\n");
6459 /* Use forward list scheduling to rearrange insns of block pointed to by
6460 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6461 region. */
6463 bool
6464 schedule_block (basic_block *target_bb, state_t init_state)
6466 int i;
6467 bool success = modulo_ii == 0;
6468 struct sched_block_state ls;
6469 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6470 int sort_p, advance, start_clock_var;
6472 /* Head/tail info for this block. */
6473 rtx_insn *prev_head = current_sched_info->prev_head;
6474 rtx_insn *next_tail = current_sched_info->next_tail;
6475 rtx_insn *head = NEXT_INSN (prev_head);
6476 rtx_insn *tail = PREV_INSN (next_tail);
6478 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6479 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6480 find_modifiable_mems (head, tail);
6482 /* We used to have code to avoid getting parameters moved from hard
6483 argument registers into pseudos.
6485 However, it was removed when it proved to be of marginal benefit
6486 and caused problems because schedule_block and compute_forward_dependences
6487 had different notions of what the "head" insn was. */
6489 gcc_assert (head != tail || INSN_P (head));
6491 haifa_recovery_bb_recently_added_p = false;
6493 backtrack_queue = NULL;
6495 /* Debug info. */
6496 if (sched_verbose)
6498 dump_new_block_header (0, *target_bb, head, tail);
6500 if (sched_verbose >= 2)
6502 dump_insn_stream (head, tail);
6503 memset (&rank_for_schedule_stats, 0,
6504 sizeof (rank_for_schedule_stats));
6508 if (init_state == NULL)
6509 state_reset (curr_state);
6510 else
6511 memcpy (curr_state, init_state, dfa_state_size);
6513 /* Clear the ready list. */
6514 ready.first = ready.veclen - 1;
6515 ready.n_ready = 0;
6516 ready.n_debug = 0;
6518 /* It is used for first cycle multipass scheduling. */
6519 temp_state = alloca (dfa_state_size);
6521 if (targetm.sched.init)
6522 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6524 /* We start inserting insns after PREV_HEAD. */
6525 last_scheduled_insn = prev_head;
6526 last_nondebug_scheduled_insn = NULL;
6527 nonscheduled_insns_begin = NULL;
6529 gcc_assert ((NOTE_P (last_scheduled_insn)
6530 || DEBUG_INSN_P (last_scheduled_insn))
6531 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6533 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6534 queue. */
6535 q_ptr = 0;
6536 q_size = 0;
6538 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6539 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6541 /* Start just before the beginning of time. */
6542 clock_var = -1;
6544 /* We need queue and ready lists and clock_var be initialized
6545 in try_ready () (which is called through init_ready_list ()). */
6546 (*current_sched_info->init_ready_list) ();
6548 if (sched_pressure)
6549 sched_pressure_start_bb (*target_bb);
6551 /* The algorithm is O(n^2) in the number of ready insns at any given
6552 time in the worst case. Before reload we are more likely to have
6553 big lists so truncate them to a reasonable size. */
6554 if (!reload_completed
6555 && ready.n_ready - ready.n_debug > param_max_sched_ready_insns)
6557 ready_sort_debug (&ready);
6558 ready_sort_real (&ready);
6560 /* Find first free-standing insn past param_max_sched_ready_insns.
6561 If there are debug insns, we know they're first. */
6562 for (i = param_max_sched_ready_insns + ready.n_debug; i < ready.n_ready;
6563 i++)
6564 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6565 break;
6567 if (sched_verbose >= 2)
6569 fprintf (sched_dump,
6570 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6571 debug_ready_list (&ready);
6572 fprintf (sched_dump,
6573 ";;\t\t before reload => truncated to %d insns\n", i);
6576 /* Delay all insns past it for 1 cycle. If debug counter is
6577 activated make an exception for the insn right after
6578 nonscheduled_insns_begin. */
6580 rtx_insn *skip_insn;
6582 if (dbg_cnt (sched_insn) == false)
6583 skip_insn = first_nonscheduled_insn ();
6584 else
6585 skip_insn = NULL;
6587 while (i < ready.n_ready)
6589 rtx_insn *insn;
6591 insn = ready_remove (&ready, i);
6593 if (insn != skip_insn)
6594 queue_insn (insn, 1, "list truncated");
6596 if (skip_insn)
6597 ready_add (&ready, skip_insn, true);
6601 /* Now we can restore basic block notes and maintain precise cfg. */
6602 restore_bb_notes (*target_bb);
6604 last_clock_var = -1;
6606 advance = 0;
6608 gcc_assert (scheduled_insns.length () == 0);
6609 sort_p = TRUE;
6610 must_backtrack = false;
6611 modulo_insns_scheduled = 0;
6613 ls.modulo_epilogue = false;
6614 ls.first_cycle_insn_p = true;
6616 /* Loop until all the insns in BB are scheduled. */
6617 while ((*current_sched_info->schedule_more_p) ())
6619 perform_replacements_new_cycle ();
6622 start_clock_var = clock_var;
6624 clock_var++;
6626 advance_one_cycle ();
6628 /* Add to the ready list all pending insns that can be issued now.
6629 If there are no ready insns, increment clock until one
6630 is ready and add all pending insns at that point to the ready
6631 list. */
6632 queue_to_ready (&ready);
6634 gcc_assert (ready.n_ready);
6636 if (sched_verbose >= 2)
6638 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6639 debug_ready_list (&ready);
6641 advance -= clock_var - start_clock_var;
6643 while (advance > 0);
6645 if (ls.modulo_epilogue)
6647 int stage = clock_var / modulo_ii;
6648 if (stage > modulo_last_stage * 2 + 2)
6650 if (sched_verbose >= 2)
6651 fprintf (sched_dump,
6652 ";;\t\tmodulo scheduled succeeded at II %d\n",
6653 modulo_ii);
6654 success = true;
6655 goto end_schedule;
6658 else if (modulo_ii > 0)
6660 int stage = clock_var / modulo_ii;
6661 if (stage > modulo_max_stages)
6663 if (sched_verbose >= 2)
6664 fprintf (sched_dump,
6665 ";;\t\tfailing schedule due to excessive stages\n");
6666 goto end_schedule;
6668 if (modulo_n_insns == modulo_insns_scheduled
6669 && stage > modulo_last_stage)
6671 if (sched_verbose >= 2)
6672 fprintf (sched_dump,
6673 ";;\t\tfound kernel after %d stages, II %d\n",
6674 stage, modulo_ii);
6675 ls.modulo_epilogue = true;
6679 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6680 if (ready.n_ready == 0)
6681 continue;
6682 if (must_backtrack)
6683 goto do_backtrack;
6685 ls.shadows_only_p = false;
6686 cycle_issued_insns = 0;
6687 ls.can_issue_more = issue_rate;
6688 for (;;)
6690 rtx_insn *insn;
6691 int cost;
6692 bool asm_p;
6694 if (sort_p && ready.n_ready > 0)
6696 /* Sort the ready list based on priority. This must be
6697 done every iteration through the loop, as schedule_insn
6698 may have readied additional insns that will not be
6699 sorted correctly. */
6700 ready_sort (&ready);
6702 if (sched_verbose >= 2)
6704 fprintf (sched_dump,
6705 ";;\t\tReady list after ready_sort: ");
6706 debug_ready_list (&ready);
6710 /* We don't want md sched reorder to even see debug isns, so put
6711 them out right away. */
6712 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6713 && (*current_sched_info->schedule_more_p) ())
6715 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6717 rtx_insn *insn = ready_remove_first (&ready);
6718 gcc_assert (DEBUG_INSN_P (insn));
6719 (*current_sched_info->begin_schedule_ready) (insn);
6720 scheduled_insns.safe_push (insn);
6721 last_scheduled_insn = insn;
6722 advance = schedule_insn (insn);
6723 gcc_assert (advance == 0);
6724 if (ready.n_ready > 0)
6725 ready_sort (&ready);
6729 if (ls.first_cycle_insn_p && !ready.n_ready)
6730 break;
6732 resume_after_backtrack:
6733 /* Allow the target to reorder the list, typically for
6734 better instruction bundling. */
6735 if (sort_p
6736 && (ready.n_ready == 0
6737 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6739 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6740 ls.can_issue_more
6741 = targetm.sched.reorder (sched_dump, sched_verbose,
6742 ready_lastpos (&ready),
6743 &ready.n_ready, clock_var);
6744 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6745 ls.can_issue_more
6746 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6747 ready.n_ready
6748 ? ready_lastpos (&ready) : NULL,
6749 &ready.n_ready, clock_var);
6752 restart_choose_ready:
6753 if (sched_verbose >= 2)
6755 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6756 clock_var);
6757 debug_ready_list (&ready);
6758 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6759 print_curr_reg_pressure ();
6762 if (ready.n_ready == 0
6763 && ls.can_issue_more
6764 && reload_completed)
6766 /* Allow scheduling insns directly from the queue in case
6767 there's nothing better to do (ready list is empty) but
6768 there are still vacant dispatch slots in the current cycle. */
6769 if (sched_verbose >= 6)
6770 fprintf (sched_dump,";;\t\tSecond chance\n");
6771 memcpy (temp_state, curr_state, dfa_state_size);
6772 if (early_queue_to_ready (temp_state, &ready))
6773 ready_sort (&ready);
6776 if (ready.n_ready == 0
6777 || !ls.can_issue_more
6778 || state_dead_lock_p (curr_state)
6779 || !(*current_sched_info->schedule_more_p) ())
6780 break;
6782 /* Select and remove the insn from the ready list. */
6783 if (sort_p)
6785 int res;
6787 insn = NULL;
6788 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6790 if (res < 0)
6791 /* Finish cycle. */
6792 break;
6793 if (res > 0)
6794 goto restart_choose_ready;
6796 gcc_assert (insn != NULL_RTX);
6798 else
6799 insn = ready_remove_first (&ready);
6801 if (sched_pressure != SCHED_PRESSURE_NONE
6802 && INSN_TICK (insn) > clock_var)
6804 ready_add (&ready, insn, true);
6805 advance = 1;
6806 break;
6809 if (targetm.sched.dfa_new_cycle
6810 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6811 insn, last_clock_var,
6812 clock_var, &sort_p))
6813 /* SORT_P is used by the target to override sorting
6814 of the ready list. This is needed when the target
6815 has modified its internal structures expecting that
6816 the insn will be issued next. As we need the insn
6817 to have the highest priority (so it will be returned by
6818 the ready_remove_first call above), we invoke
6819 ready_add (&ready, insn, true).
6820 But, still, there is one issue: INSN can be later
6821 discarded by scheduler's front end through
6822 current_sched_info->can_schedule_ready_p, hence, won't
6823 be issued next. */
6825 ready_add (&ready, insn, true);
6826 break;
6829 sort_p = TRUE;
6831 if (current_sched_info->can_schedule_ready_p
6832 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6833 /* We normally get here only if we don't want to move
6834 insn from the split block. */
6836 TODO_SPEC (insn) = DEP_POSTPONED;
6837 goto restart_choose_ready;
6840 if (delay_htab)
6842 /* If this insn is the first part of a delay-slot pair, record a
6843 backtrack point. */
6844 struct delay_pair *delay_entry;
6845 delay_entry
6846 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6847 if (delay_entry)
6849 save_backtrack_point (delay_entry, ls);
6850 if (sched_verbose >= 2)
6851 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6855 /* DECISION is made. */
6857 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6859 modulo_insns_scheduled++;
6860 modulo_last_stage = clock_var / modulo_ii;
6862 if (TODO_SPEC (insn) & SPECULATIVE)
6863 generate_recovery_code (insn);
6865 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6866 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6868 /* Update counters, etc in the scheduler's front end. */
6869 (*current_sched_info->begin_schedule_ready) (insn);
6870 scheduled_insns.safe_push (insn);
6871 gcc_assert (NONDEBUG_INSN_P (insn));
6872 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6874 if (recog_memoized (insn) >= 0)
6876 memcpy (temp_state, curr_state, dfa_state_size);
6877 cost = state_transition (curr_state, insn);
6878 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6879 gcc_assert (cost < 0);
6880 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6881 cycle_issued_insns++;
6882 asm_p = false;
6884 else
6885 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6886 || asm_noperands (PATTERN (insn)) >= 0);
6888 if (targetm.sched.variable_issue)
6889 ls.can_issue_more =
6890 targetm.sched.variable_issue (sched_dump, sched_verbose,
6891 insn, ls.can_issue_more);
6892 /* A naked CLOBBER or USE generates no instruction, so do
6893 not count them against the issue rate. */
6894 else if (GET_CODE (PATTERN (insn)) != USE
6895 && GET_CODE (PATTERN (insn)) != CLOBBER)
6896 ls.can_issue_more--;
6897 advance = schedule_insn (insn);
6899 if (SHADOW_P (insn))
6900 ls.shadows_only_p = true;
6902 /* After issuing an asm insn we should start a new cycle. */
6903 if (advance == 0 && asm_p)
6904 advance = 1;
6906 if (must_backtrack)
6907 break;
6909 if (advance != 0)
6910 break;
6912 ls.first_cycle_insn_p = false;
6913 if (ready.n_ready > 0)
6914 prune_ready_list (temp_state, false, ls.shadows_only_p,
6915 ls.modulo_epilogue);
6918 do_backtrack:
6919 if (!must_backtrack)
6920 for (i = 0; i < ready.n_ready; i++)
6922 rtx_insn *insn = ready_element (&ready, i);
6923 if (INSN_EXACT_TICK (insn) == clock_var)
6925 must_backtrack = true;
6926 clock_var++;
6927 break;
6930 if (must_backtrack && modulo_ii > 0)
6932 if (modulo_backtracks_left == 0)
6933 goto end_schedule;
6934 modulo_backtracks_left--;
6936 while (must_backtrack)
6938 struct haifa_saved_data *failed;
6939 rtx_insn *failed_insn;
6941 must_backtrack = false;
6942 failed = verify_shadows ();
6943 gcc_assert (failed);
6945 failed_insn = failed->delay_pair->i1;
6946 /* Clear these queues. */
6947 perform_replacements_new_cycle ();
6948 toggle_cancelled_flags (false);
6949 unschedule_insns_until (failed_insn);
6950 while (failed != backtrack_queue)
6951 free_topmost_backtrack_point (true);
6952 restore_last_backtrack_point (&ls);
6953 if (sched_verbose >= 2)
6954 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6955 /* Delay by at least a cycle. This could cause additional
6956 backtracking. */
6957 queue_insn (failed_insn, 1, "backtracked");
6958 advance = 0;
6959 if (must_backtrack)
6960 continue;
6961 if (ready.n_ready > 0)
6962 goto resume_after_backtrack;
6963 else
6965 if (clock_var == 0 && ls.first_cycle_insn_p)
6966 goto end_schedule;
6967 advance = 1;
6968 break;
6971 ls.first_cycle_insn_p = true;
6973 if (ls.modulo_epilogue)
6974 success = true;
6975 end_schedule:
6976 if (!ls.first_cycle_insn_p || advance)
6977 advance_one_cycle ();
6978 perform_replacements_new_cycle ();
6979 if (modulo_ii > 0)
6981 /* Once again, debug insn suckiness: they can be on the ready list
6982 even if they have unresolved dependencies. To make our view
6983 of the world consistent, remove such "ready" insns. */
6984 restart_debug_insn_loop:
6985 for (i = ready.n_ready - 1; i >= 0; i--)
6987 rtx_insn *x;
6989 x = ready_element (&ready, i);
6990 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6991 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6993 ready_remove (&ready, i);
6994 goto restart_debug_insn_loop;
6997 for (i = ready.n_ready - 1; i >= 0; i--)
6999 rtx_insn *x;
7001 x = ready_element (&ready, i);
7002 resolve_dependencies (x);
7004 for (i = 0; i <= max_insn_queue_index; i++)
7006 rtx_insn_list *link;
7007 while ((link = insn_queue[i]) != NULL)
7009 rtx_insn *x = link->insn ();
7010 insn_queue[i] = link->next ();
7011 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7012 free_INSN_LIST_node (link);
7013 resolve_dependencies (x);
7018 if (!success)
7019 undo_all_replacements ();
7021 /* Debug info. */
7022 if (sched_verbose)
7024 fprintf (sched_dump, ";;\tReady list (final): ");
7025 debug_ready_list (&ready);
7028 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7029 /* Sanity check -- queue must be empty now. Meaningless if region has
7030 multiple bbs. */
7031 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7032 else if (modulo_ii == 0)
7034 /* We must maintain QUEUE_INDEX between blocks in region. */
7035 for (i = ready.n_ready - 1; i >= 0; i--)
7037 rtx_insn *x;
7039 x = ready_element (&ready, i);
7040 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7041 TODO_SPEC (x) = HARD_DEP;
7044 if (q_size)
7045 for (i = 0; i <= max_insn_queue_index; i++)
7047 rtx_insn_list *link;
7048 for (link = insn_queue[i]; link; link = link->next ())
7050 rtx_insn *x;
7052 x = link->insn ();
7053 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7054 TODO_SPEC (x) = HARD_DEP;
7056 free_INSN_LIST_list (&insn_queue[i]);
7060 if (sched_pressure == SCHED_PRESSURE_MODEL)
7061 model_end_schedule ();
7063 if (success)
7065 commit_schedule (prev_head, tail, target_bb);
7066 if (sched_verbose)
7067 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7069 else
7070 last_scheduled_insn = tail;
7072 scheduled_insns.truncate (0);
7074 if (!current_sched_info->queue_must_finish_empty
7075 || haifa_recovery_bb_recently_added_p)
7077 /* INSN_TICK (minimum clock tick at which the insn becomes
7078 ready) may be not correct for the insn in the subsequent
7079 blocks of the region. We should use a correct value of
7080 `clock_var' or modify INSN_TICK. It is better to keep
7081 clock_var value equal to 0 at the start of a basic block.
7082 Therefore we modify INSN_TICK here. */
7083 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7086 if (targetm.sched.finish)
7088 targetm.sched.finish (sched_dump, sched_verbose);
7089 /* Target might have added some instructions to the scheduled block
7090 in its md_finish () hook. These new insns don't have any data
7091 initialized and to identify them we extend h_i_d so that they'll
7092 get zero luids. */
7093 sched_extend_luids ();
7096 /* Update head/tail boundaries. */
7097 head = NEXT_INSN (prev_head);
7098 tail = last_scheduled_insn;
7100 if (sched_verbose)
7102 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7103 INSN_UID (head), INSN_UID (tail));
7105 if (sched_verbose >= 2)
7107 dump_insn_stream (head, tail);
7108 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7109 NULL);
7112 fprintf (sched_dump, "\n");
7115 head = restore_other_notes (head, NULL);
7117 current_sched_info->head = head;
7118 current_sched_info->tail = tail;
7120 free_backtrack_queue ();
7122 return success;
7125 /* Set_priorities: compute priority of each insn in the block. */
7128 set_priorities (rtx_insn *head, rtx_insn *tail)
7130 rtx_insn *insn;
7131 int n_insn;
7132 int sched_max_insns_priority =
7133 current_sched_info->sched_max_insns_priority;
7134 rtx_insn *prev_head;
7136 if (head == tail && ! INSN_P (head))
7137 gcc_unreachable ();
7139 n_insn = 0;
7141 prev_head = PREV_INSN (head);
7142 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7144 if (!INSN_P (insn))
7145 continue;
7147 n_insn++;
7148 (void) priority (insn);
7150 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7152 sched_max_insns_priority = MAX (sched_max_insns_priority,
7153 INSN_PRIORITY (insn));
7156 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7158 return n_insn;
7161 /* Set sched_dump and sched_verbose for the desired debugging output. */
7162 void
7163 setup_sched_dump (void)
7165 sched_verbose = sched_verbose_param;
7166 sched_dump = dump_file;
7167 if (!dump_file)
7168 sched_verbose = 0;
7171 /* Allocate data for register pressure sensitive scheduling. */
7172 static void
7173 alloc_global_sched_pressure_data (void)
7175 if (sched_pressure != SCHED_PRESSURE_NONE)
7177 int i, max_regno = max_reg_num ();
7179 if (sched_dump != NULL)
7180 /* We need info about pseudos for rtl dumps about pseudo
7181 classes and costs. */
7182 regstat_init_n_sets_and_refs ();
7183 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7184 sched_regno_pressure_class
7185 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7186 for (i = 0; i < max_regno; i++)
7187 sched_regno_pressure_class[i]
7188 = (i < FIRST_PSEUDO_REGISTER
7189 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7190 : ira_pressure_class_translate[reg_allocno_class (i)]);
7191 curr_reg_live = BITMAP_ALLOC (NULL);
7192 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7194 saved_reg_live = BITMAP_ALLOC (NULL);
7195 region_ref_regs = BITMAP_ALLOC (NULL);
7197 if (sched_pressure == SCHED_PRESSURE_MODEL)
7198 tmp_bitmap = BITMAP_ALLOC (NULL);
7200 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7201 that we calculate register pressure for. */
7202 for (int c = 0; c < ira_pressure_classes_num; ++c)
7204 enum reg_class cl = ira_pressure_classes[c];
7206 call_saved_regs_num[cl] = 0;
7207 fixed_regs_num[cl] = 0;
7209 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7211 unsigned int regno = ira_class_hard_regs[cl][i];
7212 if (fixed_regs[regno])
7213 ++fixed_regs_num[cl];
7214 else if (!crtl->abi->clobbers_full_reg_p (regno))
7215 ++call_saved_regs_num[cl];
7221 /* Free data for register pressure sensitive scheduling. Also called
7222 from schedule_region when stopping sched-pressure early. */
7223 void
7224 free_global_sched_pressure_data (void)
7226 if (sched_pressure != SCHED_PRESSURE_NONE)
7228 if (regstat_n_sets_and_refs != NULL)
7229 regstat_free_n_sets_and_refs ();
7230 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7232 BITMAP_FREE (region_ref_regs);
7233 BITMAP_FREE (saved_reg_live);
7235 if (sched_pressure == SCHED_PRESSURE_MODEL)
7236 BITMAP_FREE (tmp_bitmap);
7237 BITMAP_FREE (curr_reg_live);
7238 free (sched_regno_pressure_class);
7242 /* Initialize some global state for the scheduler. This function works
7243 with the common data shared between all the schedulers. It is called
7244 from the scheduler specific initialization routine. */
7246 void
7247 sched_init (void)
7249 /* Disable speculative loads in their presence if cc0 defined. */
7250 if (HAVE_cc0)
7251 flag_schedule_speculative_load = 0;
7253 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7254 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7256 if (live_range_shrinkage_p)
7257 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7258 else if (flag_sched_pressure
7259 && !reload_completed
7260 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7261 sched_pressure = ((enum sched_pressure_algorithm)
7262 param_sched_pressure_algorithm);
7263 else
7264 sched_pressure = SCHED_PRESSURE_NONE;
7266 if (sched_pressure != SCHED_PRESSURE_NONE)
7267 ira_setup_eliminable_regset ();
7269 /* Initialize SPEC_INFO. */
7270 if (targetm.sched.set_sched_flags)
7272 spec_info = &spec_info_var;
7273 targetm.sched.set_sched_flags (spec_info);
7275 if (spec_info->mask != 0)
7277 spec_info->data_weakness_cutoff
7278 = (param_sched_spec_prob_cutoff * MAX_DEP_WEAK) / 100;
7279 spec_info->control_weakness_cutoff
7280 = (param_sched_spec_prob_cutoff * REG_BR_PROB_BASE) / 100;
7282 else
7283 /* So we won't read anything accidentally. */
7284 spec_info = NULL;
7287 else
7288 /* So we won't read anything accidentally. */
7289 spec_info = 0;
7291 /* Initialize issue_rate. */
7292 if (targetm.sched.issue_rate)
7293 issue_rate = targetm.sched.issue_rate ();
7294 else
7295 issue_rate = 1;
7297 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7298 /* Don't use max_issue with reg_pressure scheduling. Multipass
7299 scheduling and reg_pressure scheduling undo each other's decisions. */
7300 && sched_pressure == SCHED_PRESSURE_NONE)
7301 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7302 else
7303 dfa_lookahead = 0;
7305 /* Set to "0" so that we recalculate. */
7306 max_lookahead_tries = 0;
7308 if (targetm.sched.init_dfa_pre_cycle_insn)
7309 targetm.sched.init_dfa_pre_cycle_insn ();
7311 if (targetm.sched.init_dfa_post_cycle_insn)
7312 targetm.sched.init_dfa_post_cycle_insn ();
7314 dfa_start ();
7315 dfa_state_size = state_size ();
7317 init_alias_analysis ();
7319 if (!sched_no_dce)
7320 df_set_flags (DF_LR_RUN_DCE);
7321 df_note_add_problem ();
7323 /* More problems needed for interloop dep calculation in SMS. */
7324 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7326 df_rd_add_problem ();
7327 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7330 df_analyze ();
7332 /* Do not run DCE after reload, as this can kill nops inserted
7333 by bundling. */
7334 if (reload_completed)
7335 df_clear_flags (DF_LR_RUN_DCE);
7337 regstat_compute_calls_crossed ();
7339 if (targetm.sched.init_global)
7340 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7342 alloc_global_sched_pressure_data ();
7344 curr_state = xmalloc (dfa_state_size);
7347 static void haifa_init_only_bb (basic_block, basic_block);
7349 /* Initialize data structures specific to the Haifa scheduler. */
7350 void
7351 haifa_sched_init (void)
7353 setup_sched_dump ();
7354 sched_init ();
7356 scheduled_insns.create (0);
7358 if (spec_info != NULL)
7360 sched_deps_info->use_deps_list = 1;
7361 sched_deps_info->generate_spec_deps = 1;
7364 /* Initialize luids, dependency caches, target and h_i_d for the
7365 whole function. */
7367 sched_init_bbs ();
7369 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7370 basic_block bb;
7371 FOR_EACH_BB_FN (bb, cfun)
7372 bbs.quick_push (bb);
7373 sched_init_luids (bbs);
7374 sched_deps_init (true);
7375 sched_extend_target ();
7376 haifa_init_h_i_d (bbs);
7379 sched_init_only_bb = haifa_init_only_bb;
7380 sched_split_block = sched_split_block_1;
7381 sched_create_empty_bb = sched_create_empty_bb_1;
7382 haifa_recovery_bb_ever_added_p = false;
7384 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7385 before_recovery = 0;
7386 after_recovery = 0;
7388 modulo_ii = 0;
7391 /* Finish work with the data specific to the Haifa scheduler. */
7392 void
7393 haifa_sched_finish (void)
7395 sched_create_empty_bb = NULL;
7396 sched_split_block = NULL;
7397 sched_init_only_bb = NULL;
7399 if (spec_info && spec_info->dump)
7401 char c = reload_completed ? 'a' : 'b';
7403 fprintf (spec_info->dump,
7404 ";; %s:\n", current_function_name ());
7406 fprintf (spec_info->dump,
7407 ";; Procedure %cr-begin-data-spec motions == %d\n",
7408 c, nr_begin_data);
7409 fprintf (spec_info->dump,
7410 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7411 c, nr_be_in_data);
7412 fprintf (spec_info->dump,
7413 ";; Procedure %cr-begin-control-spec motions == %d\n",
7414 c, nr_begin_control);
7415 fprintf (spec_info->dump,
7416 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7417 c, nr_be_in_control);
7420 scheduled_insns.release ();
7422 /* Finalize h_i_d, dependency caches, and luids for the whole
7423 function. Target will be finalized in md_global_finish (). */
7424 sched_deps_finish ();
7425 sched_finish_luids ();
7426 current_sched_info = NULL;
7427 insn_queue = NULL;
7428 sched_finish ();
7431 /* Free global data used during insn scheduling. This function works with
7432 the common data shared between the schedulers. */
7434 void
7435 sched_finish (void)
7437 haifa_finish_h_i_d ();
7438 free_global_sched_pressure_data ();
7439 free (curr_state);
7441 if (targetm.sched.finish_global)
7442 targetm.sched.finish_global (sched_dump, sched_verbose);
7444 end_alias_analysis ();
7446 regstat_free_calls_crossed ();
7448 dfa_finish ();
7451 /* Free all delay_pair structures that were recorded. */
7452 void
7453 free_delay_pairs (void)
7455 if (delay_htab)
7457 delay_htab->empty ();
7458 delay_htab_i2->empty ();
7462 /* Fix INSN_TICKs of the instructions in the current block as well as
7463 INSN_TICKs of their dependents.
7464 HEAD and TAIL are the begin and the end of the current scheduled block. */
7465 static void
7466 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7468 /* Set of instructions with corrected INSN_TICK. */
7469 auto_bitmap processed;
7470 /* ??? It is doubtful if we should assume that cycle advance happens on
7471 basic block boundaries. Basically insns that are unconditionally ready
7472 on the start of the block are more preferable then those which have
7473 a one cycle dependency over insn from the previous block. */
7474 int next_clock = clock_var + 1;
7476 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7477 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7478 across different blocks. */
7479 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7481 if (INSN_P (head))
7483 int tick;
7484 sd_iterator_def sd_it;
7485 dep_t dep;
7487 tick = INSN_TICK (head);
7488 gcc_assert (tick >= MIN_TICK);
7490 /* Fix INSN_TICK of instruction from just scheduled block. */
7491 if (bitmap_set_bit (processed, INSN_LUID (head)))
7493 tick -= next_clock;
7495 if (tick < MIN_TICK)
7496 tick = MIN_TICK;
7498 INSN_TICK (head) = tick;
7501 if (DEBUG_INSN_P (head))
7502 continue;
7504 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7506 rtx_insn *next;
7508 next = DEP_CON (dep);
7509 tick = INSN_TICK (next);
7511 if (tick != INVALID_TICK
7512 /* If NEXT has its INSN_TICK calculated, fix it.
7513 If not - it will be properly calculated from
7514 scratch later in fix_tick_ready. */
7515 && bitmap_set_bit (processed, INSN_LUID (next)))
7517 tick -= next_clock;
7519 if (tick < MIN_TICK)
7520 tick = MIN_TICK;
7522 if (tick > INTER_TICK (next))
7523 INTER_TICK (next) = tick;
7524 else
7525 tick = INTER_TICK (next);
7527 INSN_TICK (next) = tick;
7534 /* Check if NEXT is ready to be added to the ready or queue list.
7535 If "yes", add it to the proper list.
7536 Returns:
7537 -1 - is not ready yet,
7538 0 - added to the ready list,
7539 0 < N - queued for N cycles. */
7541 try_ready (rtx_insn *next)
7543 ds_t old_ts, new_ts;
7545 old_ts = TODO_SPEC (next);
7547 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7548 && (old_ts == HARD_DEP
7549 || old_ts == DEP_POSTPONED
7550 || (old_ts & SPECULATIVE)
7551 || old_ts == DEP_CONTROL));
7553 new_ts = recompute_todo_spec (next, false);
7555 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7556 gcc_assert (new_ts == old_ts
7557 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7558 else if (current_sched_info->new_ready)
7559 new_ts = current_sched_info->new_ready (next, new_ts);
7561 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7562 have its original pattern or changed (speculative) one. This is due
7563 to changing ebb in region scheduling.
7564 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7565 has speculative pattern.
7567 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7568 control-speculative NEXT could have been discarded by sched-rgn.c
7569 (the same case as when discarded by can_schedule_ready_p ()). */
7571 if ((new_ts & SPECULATIVE)
7572 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7573 need to change anything. */
7574 && new_ts != old_ts)
7576 int res;
7577 rtx new_pat;
7579 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7581 res = haifa_speculate_insn (next, new_ts, &new_pat);
7583 switch (res)
7585 case -1:
7586 /* It would be nice to change DEP_STATUS of all dependences,
7587 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7588 so we won't reanalyze anything. */
7589 new_ts = HARD_DEP;
7590 break;
7592 case 0:
7593 /* We follow the rule, that every speculative insn
7594 has non-null ORIG_PAT. */
7595 if (!ORIG_PAT (next))
7596 ORIG_PAT (next) = PATTERN (next);
7597 break;
7599 case 1:
7600 if (!ORIG_PAT (next))
7601 /* If we gonna to overwrite the original pattern of insn,
7602 save it. */
7603 ORIG_PAT (next) = PATTERN (next);
7605 res = haifa_change_pattern (next, new_pat);
7606 gcc_assert (res);
7607 break;
7609 default:
7610 gcc_unreachable ();
7614 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7615 either correct (new_ts & SPECULATIVE),
7616 or we simply don't care (new_ts & HARD_DEP). */
7618 gcc_assert (!ORIG_PAT (next)
7619 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7621 TODO_SPEC (next) = new_ts;
7623 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7625 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7626 control-speculative NEXT could have been discarded by sched-rgn.c
7627 (the same case as when discarded by can_schedule_ready_p ()). */
7628 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7630 change_queue_index (next, QUEUE_NOWHERE);
7632 return -1;
7634 else if (!(new_ts & BEGIN_SPEC)
7635 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7636 && !IS_SPECULATION_CHECK_P (next))
7637 /* We should change pattern of every previously speculative
7638 instruction - and we determine if NEXT was speculative by using
7639 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7640 pat too, so skip them. */
7642 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7643 gcc_assert (success);
7644 ORIG_PAT (next) = 0;
7647 if (sched_verbose >= 2)
7649 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7650 (*current_sched_info->print_insn) (next, 0));
7652 if (spec_info && spec_info->dump)
7654 if (new_ts & BEGIN_DATA)
7655 fprintf (spec_info->dump, "; data-spec;");
7656 if (new_ts & BEGIN_CONTROL)
7657 fprintf (spec_info->dump, "; control-spec;");
7658 if (new_ts & BE_IN_CONTROL)
7659 fprintf (spec_info->dump, "; in-control-spec;");
7661 if (TODO_SPEC (next) & DEP_CONTROL)
7662 fprintf (sched_dump, " predicated");
7663 fprintf (sched_dump, "\n");
7666 adjust_priority (next);
7668 return fix_tick_ready (next);
7671 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7672 static int
7673 fix_tick_ready (rtx_insn *next)
7675 int tick, delay;
7677 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7679 int full_p;
7680 sd_iterator_def sd_it;
7681 dep_t dep;
7683 tick = INSN_TICK (next);
7684 /* if tick is not equal to INVALID_TICK, then update
7685 INSN_TICK of NEXT with the most recent resolved dependence
7686 cost. Otherwise, recalculate from scratch. */
7687 full_p = (tick == INVALID_TICK);
7689 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7691 rtx_insn *pro = DEP_PRO (dep);
7692 int tick1;
7694 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7696 tick1 = INSN_TICK (pro) + dep_cost (dep);
7697 if (tick1 > tick)
7698 tick = tick1;
7700 if (!full_p)
7701 break;
7704 else
7705 tick = -1;
7707 INSN_TICK (next) = tick;
7709 delay = tick - clock_var;
7710 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7711 delay = QUEUE_READY;
7713 change_queue_index (next, delay);
7715 return delay;
7718 /* Move NEXT to the proper queue list with (DELAY >= 1),
7719 or add it to the ready list (DELAY == QUEUE_READY),
7720 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7721 static void
7722 change_queue_index (rtx_insn *next, int delay)
7724 int i = QUEUE_INDEX (next);
7726 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7727 && delay != 0);
7728 gcc_assert (i != QUEUE_SCHEDULED);
7730 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7731 || (delay < 0 && delay == i))
7732 /* We have nothing to do. */
7733 return;
7735 /* Remove NEXT from wherever it is now. */
7736 if (i == QUEUE_READY)
7737 ready_remove_insn (next);
7738 else if (i >= 0)
7739 queue_remove (next);
7741 /* Add it to the proper place. */
7742 if (delay == QUEUE_READY)
7743 ready_add (readyp, next, false);
7744 else if (delay >= 1)
7745 queue_insn (next, delay, "change queue index");
7747 if (sched_verbose >= 2)
7749 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7750 (*current_sched_info->print_insn) (next, 0));
7752 if (delay == QUEUE_READY)
7753 fprintf (sched_dump, " into ready\n");
7754 else if (delay >= 1)
7755 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7756 else
7757 fprintf (sched_dump, " removed from ready or queue lists\n");
7761 static int sched_ready_n_insns = -1;
7763 /* Initialize per region data structures. */
7764 void
7765 sched_extend_ready_list (int new_sched_ready_n_insns)
7767 int i;
7769 if (sched_ready_n_insns == -1)
7770 /* At the first call we need to initialize one more choice_stack
7771 entry. */
7773 i = 0;
7774 sched_ready_n_insns = 0;
7775 scheduled_insns.reserve (new_sched_ready_n_insns);
7777 else
7778 i = sched_ready_n_insns + 1;
7780 ready.veclen = new_sched_ready_n_insns + issue_rate;
7781 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7783 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7785 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7786 sched_ready_n_insns,
7787 sizeof (*ready_try));
7789 /* We allocate +1 element to save initial state in the choice_stack[0]
7790 entry. */
7791 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7792 new_sched_ready_n_insns + 1);
7794 for (; i <= new_sched_ready_n_insns; i++)
7796 choice_stack[i].state = xmalloc (dfa_state_size);
7798 if (targetm.sched.first_cycle_multipass_init)
7799 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7800 .target_data));
7803 sched_ready_n_insns = new_sched_ready_n_insns;
7806 /* Free per region data structures. */
7807 void
7808 sched_finish_ready_list (void)
7810 int i;
7812 free (ready.vec);
7813 ready.vec = NULL;
7814 ready.veclen = 0;
7816 free (ready_try);
7817 ready_try = NULL;
7819 for (i = 0; i <= sched_ready_n_insns; i++)
7821 if (targetm.sched.first_cycle_multipass_fini)
7822 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7823 .target_data));
7825 free (choice_stack [i].state);
7827 free (choice_stack);
7828 choice_stack = NULL;
7830 sched_ready_n_insns = -1;
7833 static int
7834 haifa_luid_for_non_insn (rtx x)
7836 gcc_assert (NOTE_P (x) || LABEL_P (x));
7838 return 0;
7841 /* Generates recovery code for INSN. */
7842 static void
7843 generate_recovery_code (rtx_insn *insn)
7845 if (TODO_SPEC (insn) & BEGIN_SPEC)
7846 begin_speculative_block (insn);
7848 /* Here we have insn with no dependencies to
7849 instructions other then CHECK_SPEC ones. */
7851 if (TODO_SPEC (insn) & BE_IN_SPEC)
7852 add_to_speculative_block (insn);
7855 /* Helper function.
7856 Tries to add speculative dependencies of type FS between instructions
7857 in deps_list L and TWIN. */
7858 static void
7859 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7861 sd_iterator_def sd_it;
7862 dep_t dep;
7864 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7866 ds_t ds;
7867 rtx_insn *consumer;
7869 consumer = DEP_CON (dep);
7871 ds = DEP_STATUS (dep);
7873 if (/* If we want to create speculative dep. */
7875 /* And we can do that because this is a true dep. */
7876 && (ds & DEP_TYPES) == DEP_TRUE)
7878 gcc_assert (!(ds & BE_IN_SPEC));
7880 if (/* If this dep can be overcome with 'begin speculation'. */
7881 ds & BEGIN_SPEC)
7882 /* Then we have a choice: keep the dep 'begin speculative'
7883 or transform it into 'be in speculative'. */
7885 if (/* In try_ready we assert that if insn once became ready
7886 it can be removed from the ready (or queue) list only
7887 due to backend decision. Hence we can't let the
7888 probability of the speculative dep to decrease. */
7889 ds_weak (ds) <= ds_weak (fs))
7891 ds_t new_ds;
7893 new_ds = (ds & ~BEGIN_SPEC) | fs;
7895 if (/* consumer can 'be in speculative'. */
7896 sched_insn_is_legitimate_for_speculation_p (consumer,
7897 new_ds))
7898 /* Transform it to be in speculative. */
7899 ds = new_ds;
7902 else
7903 /* Mark the dep as 'be in speculative'. */
7904 ds |= fs;
7908 dep_def _new_dep, *new_dep = &_new_dep;
7910 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7911 sd_add_dep (new_dep, false);
7916 /* Generates recovery code for BEGIN speculative INSN. */
7917 static void
7918 begin_speculative_block (rtx_insn *insn)
7920 if (TODO_SPEC (insn) & BEGIN_DATA)
7921 nr_begin_data++;
7922 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7923 nr_begin_control++;
7925 create_check_block_twin (insn, false);
7927 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7930 static void haifa_init_insn (rtx_insn *);
7932 /* Generates recovery code for BE_IN speculative INSN. */
7933 static void
7934 add_to_speculative_block (rtx_insn *insn)
7936 ds_t ts;
7937 sd_iterator_def sd_it;
7938 dep_t dep;
7939 auto_vec<rtx_insn *, 10> twins;
7941 ts = TODO_SPEC (insn);
7942 gcc_assert (!(ts & ~BE_IN_SPEC));
7944 if (ts & BE_IN_DATA)
7945 nr_be_in_data++;
7946 if (ts & BE_IN_CONTROL)
7947 nr_be_in_control++;
7949 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7950 gcc_assert (!TODO_SPEC (insn));
7952 DONE_SPEC (insn) |= ts;
7954 /* First we convert all simple checks to branchy. */
7955 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7956 sd_iterator_cond (&sd_it, &dep);)
7958 rtx_insn *check = DEP_PRO (dep);
7960 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7962 create_check_block_twin (check, true);
7964 /* Restart search. */
7965 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7967 else
7968 /* Continue search. */
7969 sd_iterator_next (&sd_it);
7972 auto_vec<rtx_insn *> priorities_roots;
7973 clear_priorities (insn, &priorities_roots);
7975 while (1)
7977 rtx_insn *check, *twin;
7978 basic_block rec;
7980 /* Get the first backward dependency of INSN. */
7981 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7982 if (!sd_iterator_cond (&sd_it, &dep))
7983 /* INSN has no backward dependencies left. */
7984 break;
7986 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7987 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7988 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7990 check = DEP_PRO (dep);
7992 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7993 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7995 rec = BLOCK_FOR_INSN (check);
7997 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7998 haifa_init_insn (twin);
8000 sd_copy_back_deps (twin, insn, true);
8002 if (sched_verbose && spec_info->dump)
8003 /* INSN_BB (insn) isn't determined for twin insns yet.
8004 So we can't use current_sched_info->print_insn. */
8005 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8006 INSN_UID (twin), rec->index);
8008 twins.safe_push (twin);
8010 /* Add dependences between TWIN and all appropriate
8011 instructions from REC. */
8012 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8014 rtx_insn *pro = DEP_PRO (dep);
8016 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8018 /* INSN might have dependencies from the instructions from
8019 several recovery blocks. At this iteration we process those
8020 producers that reside in REC. */
8021 if (BLOCK_FOR_INSN (pro) == rec)
8023 dep_def _new_dep, *new_dep = &_new_dep;
8025 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8026 sd_add_dep (new_dep, false);
8030 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8032 /* Remove all dependencies between INSN and insns in REC. */
8033 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8034 sd_iterator_cond (&sd_it, &dep);)
8036 rtx_insn *pro = DEP_PRO (dep);
8038 if (BLOCK_FOR_INSN (pro) == rec)
8039 sd_delete_dep (sd_it);
8040 else
8041 sd_iterator_next (&sd_it);
8045 /* We couldn't have added the dependencies between INSN and TWINS earlier
8046 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8047 unsigned int i;
8048 rtx_insn *twin;
8049 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8051 dep_def _new_dep, *new_dep = &_new_dep;
8053 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8054 sd_add_dep (new_dep, false);
8057 calc_priorities (priorities_roots);
8060 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8061 void *
8062 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8064 gcc_assert (new_nmemb >= old_nmemb);
8065 p = XRESIZEVAR (void, p, new_nmemb * size);
8066 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8067 return p;
8070 /* Helper function.
8071 Find fallthru edge from PRED. */
8072 edge
8073 find_fallthru_edge_from (basic_block pred)
8075 edge e;
8076 basic_block succ;
8078 succ = pred->next_bb;
8079 gcc_assert (succ->prev_bb == pred);
8081 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8083 e = find_fallthru_edge (pred->succs);
8085 if (e)
8087 gcc_assert (e->dest == succ || e->dest->index == EXIT_BLOCK);
8088 return e;
8091 else
8093 e = find_fallthru_edge (succ->preds);
8095 if (e)
8097 gcc_assert (e->src == pred);
8098 return e;
8102 return NULL;
8105 /* Extend per basic block data structures. */
8106 static void
8107 sched_extend_bb (void)
8109 /* The following is done to keep current_sched_info->next_tail non null. */
8110 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8111 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8112 if (NEXT_INSN (end) == 0
8113 || (!NOTE_P (insn)
8114 && !LABEL_P (insn)
8115 /* Don't emit a NOTE if it would end up before a BARRIER. */
8116 && !BARRIER_P (next_nondebug_insn (end))))
8118 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8119 /* Make note appear outside BB. */
8120 set_block_for_insn (note, NULL);
8121 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8125 /* Init per basic block data structures. */
8126 void
8127 sched_init_bbs (void)
8129 sched_extend_bb ();
8132 /* Initialize BEFORE_RECOVERY variable. */
8133 static void
8134 init_before_recovery (basic_block *before_recovery_ptr)
8136 basic_block last;
8137 edge e;
8139 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8140 e = find_fallthru_edge_from (last);
8142 if (e)
8144 /* We create two basic blocks:
8145 1. Single instruction block is inserted right after E->SRC
8146 and has jump to
8147 2. Empty block right before EXIT_BLOCK.
8148 Between these two blocks recovery blocks will be emitted. */
8150 basic_block single, empty;
8152 /* If the fallthrough edge to exit we've found is from the block we've
8153 created before, don't do anything more. */
8154 if (last == after_recovery)
8155 return;
8157 adding_bb_to_current_region_p = false;
8159 single = sched_create_empty_bb (last);
8160 empty = sched_create_empty_bb (single);
8162 /* Add new blocks to the root loop. */
8163 if (current_loops != NULL)
8165 add_bb_to_loop (single, (*current_loops->larray)[0]);
8166 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8169 single->count = last->count;
8170 empty->count = last->count;
8171 BB_COPY_PARTITION (single, last);
8172 BB_COPY_PARTITION (empty, last);
8174 redirect_edge_succ (e, single);
8175 make_single_succ_edge (single, empty, 0);
8176 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8177 EDGE_FALLTHRU);
8179 rtx_code_label *label = block_label (empty);
8180 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8181 BB_END (single));
8182 JUMP_LABEL (x) = label;
8183 LABEL_NUSES (label)++;
8184 haifa_init_insn (x);
8186 emit_barrier_after (x);
8188 sched_init_only_bb (empty, NULL);
8189 sched_init_only_bb (single, NULL);
8190 sched_extend_bb ();
8192 adding_bb_to_current_region_p = true;
8193 before_recovery = single;
8194 after_recovery = empty;
8196 if (before_recovery_ptr)
8197 *before_recovery_ptr = before_recovery;
8199 if (sched_verbose >= 2 && spec_info->dump)
8200 fprintf (spec_info->dump,
8201 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8202 last->index, single->index, empty->index);
8204 else
8205 before_recovery = last;
8208 /* Returns new recovery block. */
8209 basic_block
8210 sched_create_recovery_block (basic_block *before_recovery_ptr)
8212 rtx_insn *barrier;
8213 basic_block rec;
8215 haifa_recovery_bb_recently_added_p = true;
8216 haifa_recovery_bb_ever_added_p = true;
8218 init_before_recovery (before_recovery_ptr);
8220 barrier = get_last_bb_insn (before_recovery);
8221 gcc_assert (BARRIER_P (barrier));
8223 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8225 rec = create_basic_block (label, label, before_recovery);
8227 /* A recovery block always ends with an unconditional jump. */
8228 emit_barrier_after (BB_END (rec));
8230 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8231 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8233 if (sched_verbose && spec_info->dump)
8234 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8235 rec->index);
8237 return rec;
8240 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8241 and emit necessary jumps. */
8242 void
8243 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8244 basic_block second_bb)
8246 int edge_flags;
8248 /* This is fixing of incoming edge. */
8249 /* ??? Which other flags should be specified? */
8250 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8251 /* Partition type is the same, if it is "unpartitioned". */
8252 edge_flags = EDGE_CROSSING;
8253 else
8254 edge_flags = 0;
8256 edge e2 = single_succ_edge (first_bb);
8257 edge e = make_edge (first_bb, rec, edge_flags);
8259 /* TODO: The actual probability can be determined and is computed as
8260 'todo_spec' variable in create_check_block_twin and
8261 in sel-sched.c `check_ds' in create_speculation_check. */
8262 e->probability = profile_probability::very_unlikely ();
8263 rec->count = e->count ();
8264 e2->probability = e->probability.invert ();
8266 rtx_code_label *label = block_label (second_bb);
8267 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8268 BB_END (rec));
8269 JUMP_LABEL (jump) = label;
8270 LABEL_NUSES (label)++;
8272 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8273 /* Partition type is the same, if it is "unpartitioned". */
8275 /* Rewritten from cfgrtl.c. */
8276 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8278 /* We don't need the same note for the check because
8279 any_condjump_p (check) == true. */
8280 CROSSING_JUMP_P (jump) = 1;
8282 edge_flags = EDGE_CROSSING;
8284 else
8285 edge_flags = 0;
8287 make_single_succ_edge (rec, second_bb, edge_flags);
8288 if (dom_info_available_p (CDI_DOMINATORS))
8289 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8292 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8293 INSN is a simple check, that should be converted to branchy one. */
8294 static void
8295 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8297 basic_block rec;
8298 rtx_insn *label, *check, *twin;
8299 rtx check_pat;
8300 ds_t fs;
8301 sd_iterator_def sd_it;
8302 dep_t dep;
8303 dep_def _new_dep, *new_dep = &_new_dep;
8304 ds_t todo_spec;
8306 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8308 if (!mutate_p)
8309 todo_spec = TODO_SPEC (insn);
8310 else
8312 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8313 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8315 todo_spec = CHECK_SPEC (insn);
8318 todo_spec &= SPECULATIVE;
8320 /* Create recovery block. */
8321 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8323 rec = sched_create_recovery_block (NULL);
8324 label = BB_HEAD (rec);
8326 else
8328 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8329 label = NULL;
8332 /* Emit CHECK. */
8333 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8335 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8337 /* To have mem_reg alive at the beginning of second_bb,
8338 we emit check BEFORE insn, so insn after splitting
8339 insn will be at the beginning of second_bb, which will
8340 provide us with the correct life information. */
8341 check = emit_jump_insn_before (check_pat, insn);
8342 JUMP_LABEL (check) = label;
8343 LABEL_NUSES (label)++;
8345 else
8346 check = emit_insn_before (check_pat, insn);
8348 /* Extend data structures. */
8349 haifa_init_insn (check);
8351 /* CHECK is being added to current region. Extend ready list. */
8352 gcc_assert (sched_ready_n_insns != -1);
8353 sched_extend_ready_list (sched_ready_n_insns + 1);
8355 if (current_sched_info->add_remove_insn)
8356 current_sched_info->add_remove_insn (insn, 0);
8358 RECOVERY_BLOCK (check) = rec;
8360 if (sched_verbose && spec_info->dump)
8361 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8362 (*current_sched_info->print_insn) (check, 0));
8364 gcc_assert (ORIG_PAT (insn));
8366 /* Initialize TWIN (twin is a duplicate of original instruction
8367 in the recovery block). */
8368 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8370 sd_iterator_def sd_it;
8371 dep_t dep;
8373 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8374 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8376 struct _dep _dep2, *dep2 = &_dep2;
8378 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8380 sd_add_dep (dep2, true);
8383 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8384 haifa_init_insn (twin);
8386 if (sched_verbose && spec_info->dump)
8387 /* INSN_BB (insn) isn't determined for twin insns yet.
8388 So we can't use current_sched_info->print_insn. */
8389 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8390 INSN_UID (twin), rec->index);
8392 else
8394 ORIG_PAT (check) = ORIG_PAT (insn);
8395 HAS_INTERNAL_DEP (check) = 1;
8396 twin = check;
8397 /* ??? We probably should change all OUTPUT dependencies to
8398 (TRUE | OUTPUT). */
8401 /* Copy all resolved back dependencies of INSN to TWIN. This will
8402 provide correct value for INSN_TICK (TWIN). */
8403 sd_copy_back_deps (twin, insn, true);
8405 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8406 /* In case of branchy check, fix CFG. */
8408 basic_block first_bb, second_bb;
8409 rtx_insn *jump;
8411 first_bb = BLOCK_FOR_INSN (check);
8412 second_bb = sched_split_block (first_bb, check);
8414 sched_create_recovery_edges (first_bb, rec, second_bb);
8416 sched_init_only_bb (second_bb, first_bb);
8417 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8419 jump = BB_END (rec);
8420 haifa_init_insn (jump);
8423 /* Move backward dependences from INSN to CHECK and
8424 move forward dependences from INSN to TWIN. */
8426 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8427 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8429 rtx_insn *pro = DEP_PRO (dep);
8430 ds_t ds;
8432 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8433 check --TRUE--> producer ??? or ANTI ???
8434 twin --TRUE--> producer
8435 twin --ANTI--> check
8437 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8438 check --ANTI--> producer
8439 twin --ANTI--> producer
8440 twin --ANTI--> check
8442 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8443 check ~~TRUE~~> producer
8444 twin ~~TRUE~~> producer
8445 twin --ANTI--> check */
8447 ds = DEP_STATUS (dep);
8449 if (ds & BEGIN_SPEC)
8451 gcc_assert (!mutate_p);
8452 ds &= ~BEGIN_SPEC;
8455 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8456 sd_add_dep (new_dep, false);
8458 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8460 DEP_CON (new_dep) = twin;
8461 sd_add_dep (new_dep, false);
8465 /* Second, remove backward dependencies of INSN. */
8466 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8467 sd_iterator_cond (&sd_it, &dep);)
8469 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8470 || mutate_p)
8471 /* We can delete this dep because we overcome it with
8472 BEGIN_SPECULATION. */
8473 sd_delete_dep (sd_it);
8474 else
8475 sd_iterator_next (&sd_it);
8478 /* Future Speculations. Determine what BE_IN speculations will be like. */
8479 fs = 0;
8481 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8482 here. */
8484 gcc_assert (!DONE_SPEC (insn));
8486 if (!mutate_p)
8488 ds_t ts = TODO_SPEC (insn);
8490 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8491 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8493 /* Luckiness of future speculations solely depends upon initial
8494 BEGIN speculation. */
8495 if (ts & BEGIN_DATA)
8496 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8497 if (ts & BEGIN_CONTROL)
8498 fs = set_dep_weak (fs, BE_IN_CONTROL,
8499 get_dep_weak (ts, BEGIN_CONTROL));
8501 else
8502 CHECK_SPEC (check) = CHECK_SPEC (insn);
8504 /* Future speculations: call the helper. */
8505 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8507 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8509 /* Which types of dependencies should we use here is,
8510 generally, machine-dependent question... But, for now,
8511 it is not. */
8513 if (!mutate_p)
8515 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8516 sd_add_dep (new_dep, false);
8518 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8519 sd_add_dep (new_dep, false);
8521 else
8523 if (spec_info->dump)
8524 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8525 (*current_sched_info->print_insn) (insn, 0));
8527 /* Remove all dependencies of the INSN. */
8529 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8530 | SD_LIST_BACK
8531 | SD_LIST_RES_BACK));
8532 while (sd_iterator_cond (&sd_it, &dep))
8533 sd_delete_dep (sd_it);
8536 /* If former check (INSN) already was moved to the ready (or queue)
8537 list, add new check (CHECK) there too. */
8538 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8539 try_ready (check);
8541 /* Remove old check from instruction stream and free its
8542 data. */
8543 sched_remove_insn (insn);
8546 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8547 sd_add_dep (new_dep, false);
8549 else
8551 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8552 sd_add_dep (new_dep, false);
8555 if (!mutate_p)
8556 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8557 because it'll be done later in add_to_speculative_block. */
8559 auto_vec<rtx_insn *> priorities_roots;
8561 clear_priorities (twin, &priorities_roots);
8562 calc_priorities (priorities_roots);
8566 /* Removes dependency between instructions in the recovery block REC
8567 and usual region instructions. It keeps inner dependences so it
8568 won't be necessary to recompute them. */
8569 static void
8570 fix_recovery_deps (basic_block rec)
8572 rtx_insn *note, *insn, *jump;
8573 auto_vec<rtx_insn *, 10> ready_list;
8574 auto_bitmap in_ready;
8576 /* NOTE - a basic block note. */
8577 note = NEXT_INSN (BB_HEAD (rec));
8578 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8579 insn = BB_END (rec);
8580 gcc_assert (JUMP_P (insn));
8581 insn = PREV_INSN (insn);
8585 sd_iterator_def sd_it;
8586 dep_t dep;
8588 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8589 sd_iterator_cond (&sd_it, &dep);)
8591 rtx_insn *consumer = DEP_CON (dep);
8593 if (BLOCK_FOR_INSN (consumer) != rec)
8595 sd_delete_dep (sd_it);
8597 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8598 ready_list.safe_push (consumer);
8600 else
8602 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8604 sd_iterator_next (&sd_it);
8608 insn = PREV_INSN (insn);
8610 while (insn != note);
8612 /* Try to add instructions to the ready or queue list. */
8613 unsigned int i;
8614 rtx_insn *temp;
8615 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8616 try_ready (temp);
8618 /* Fixing jump's dependences. */
8619 insn = BB_HEAD (rec);
8620 jump = BB_END (rec);
8622 gcc_assert (LABEL_P (insn));
8623 insn = NEXT_INSN (insn);
8625 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8626 add_jump_dependencies (insn, jump);
8629 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8630 instruction data. */
8631 static bool
8632 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8634 int t;
8636 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8637 if (!t)
8638 return false;
8640 update_insn_after_change (insn);
8641 return true;
8644 /* -1 - can't speculate,
8645 0 - for speculation with REQUEST mode it is OK to use
8646 current instruction pattern,
8647 1 - need to change pattern for *NEW_PAT to be speculative. */
8649 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8651 gcc_assert (current_sched_info->flags & DO_SPECULATION
8652 && (request & SPECULATIVE)
8653 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8655 if ((request & spec_info->mask) != request)
8656 return -1;
8658 if (request & BE_IN_SPEC
8659 && !(request & BEGIN_SPEC))
8660 return 0;
8662 return targetm.sched.speculate_insn (insn, request, new_pat);
8665 static int
8666 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8668 gcc_assert (sched_deps_info->generate_spec_deps
8669 && !IS_SPECULATION_CHECK_P (insn));
8671 if (HAS_INTERNAL_DEP (insn)
8672 || SCHED_GROUP_P (insn))
8673 return -1;
8675 return sched_speculate_insn (insn, request, new_pat);
8678 /* Print some information about block BB, which starts with HEAD and
8679 ends with TAIL, before scheduling it.
8680 I is zero, if scheduler is about to start with the fresh ebb. */
8681 static void
8682 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8684 if (!i)
8685 fprintf (sched_dump,
8686 ";; ======================================================\n");
8687 else
8688 fprintf (sched_dump,
8689 ";; =====================ADVANCING TO=====================\n");
8690 fprintf (sched_dump,
8691 ";; -- basic block %d from %d to %d -- %s reload\n",
8692 bb->index, INSN_UID (head), INSN_UID (tail),
8693 (reload_completed ? "after" : "before"));
8694 fprintf (sched_dump,
8695 ";; ======================================================\n");
8696 fprintf (sched_dump, "\n");
8699 /* Unlink basic block notes and labels and saves them, so they
8700 can be easily restored. We unlink basic block notes in EBB to
8701 provide back-compatibility with the previous code, as target backends
8702 assume, that there'll be only instructions between
8703 current_sched_info->{head and tail}. We restore these notes as soon
8704 as we can.
8705 FIRST (LAST) is the first (last) basic block in the ebb.
8706 NB: In usual case (FIRST == LAST) nothing is really done. */
8707 void
8708 unlink_bb_notes (basic_block first, basic_block last)
8710 /* We DON'T unlink basic block notes of the first block in the ebb. */
8711 if (first == last)
8712 return;
8714 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8716 /* Make a sentinel. */
8717 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8718 bb_header[last->next_bb->index] = 0;
8720 first = first->next_bb;
8723 rtx_insn *prev, *label, *note, *next;
8725 label = BB_HEAD (last);
8726 if (LABEL_P (label))
8727 note = NEXT_INSN (label);
8728 else
8729 note = label;
8730 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8732 prev = PREV_INSN (label);
8733 next = NEXT_INSN (note);
8734 gcc_assert (prev && next);
8736 SET_NEXT_INSN (prev) = next;
8737 SET_PREV_INSN (next) = prev;
8739 bb_header[last->index] = label;
8741 if (last == first)
8742 break;
8744 last = last->prev_bb;
8746 while (1);
8749 /* Restore basic block notes.
8750 FIRST is the first basic block in the ebb. */
8751 static void
8752 restore_bb_notes (basic_block first)
8754 if (!bb_header)
8755 return;
8757 /* We DON'T unlink basic block notes of the first block in the ebb. */
8758 first = first->next_bb;
8759 /* Remember: FIRST is actually a second basic block in the ebb. */
8761 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8762 && bb_header[first->index])
8764 rtx_insn *prev, *label, *note, *next;
8766 label = bb_header[first->index];
8767 prev = PREV_INSN (label);
8768 next = NEXT_INSN (prev);
8770 if (LABEL_P (label))
8771 note = NEXT_INSN (label);
8772 else
8773 note = label;
8774 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8776 bb_header[first->index] = 0;
8778 SET_NEXT_INSN (prev) = label;
8779 SET_NEXT_INSN (note) = next;
8780 SET_PREV_INSN (next) = note;
8782 first = first->next_bb;
8785 free (bb_header);
8786 bb_header = 0;
8789 /* Helper function.
8790 Fix CFG after both in- and inter-block movement of
8791 control_flow_insn_p JUMP. */
8792 static void
8793 fix_jump_move (rtx_insn *jump)
8795 basic_block bb, jump_bb, jump_bb_next;
8797 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8798 jump_bb = BLOCK_FOR_INSN (jump);
8799 jump_bb_next = jump_bb->next_bb;
8801 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8802 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8804 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8805 /* if jump_bb_next is not empty. */
8806 BB_END (jump_bb) = BB_END (jump_bb_next);
8808 if (BB_END (bb) != PREV_INSN (jump))
8809 /* Then there are instruction after jump that should be placed
8810 to jump_bb_next. */
8811 BB_END (jump_bb_next) = BB_END (bb);
8812 else
8813 /* Otherwise jump_bb_next is empty. */
8814 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8816 /* To make assertion in move_insn happy. */
8817 BB_END (bb) = PREV_INSN (jump);
8819 update_bb_for_insn (jump_bb_next);
8822 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8823 static void
8824 move_block_after_check (rtx_insn *jump)
8826 basic_block bb, jump_bb, jump_bb_next;
8827 vec<edge, va_gc> *t;
8829 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8830 jump_bb = BLOCK_FOR_INSN (jump);
8831 jump_bb_next = jump_bb->next_bb;
8833 update_bb_for_insn (jump_bb);
8835 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8836 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8838 unlink_block (jump_bb_next);
8839 link_block (jump_bb_next, bb);
8841 t = bb->succs;
8842 bb->succs = 0;
8843 move_succs (&(jump_bb->succs), bb);
8844 move_succs (&(jump_bb_next->succs), jump_bb);
8845 move_succs (&t, jump_bb_next);
8847 df_mark_solutions_dirty ();
8849 common_sched_info->fix_recovery_cfg
8850 (bb->index, jump_bb->index, jump_bb_next->index);
8853 /* Helper function for move_block_after_check.
8854 This functions attaches edge vector pointed to by SUCCSP to
8855 block TO. */
8856 static void
8857 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8859 edge e;
8860 edge_iterator ei;
8862 gcc_assert (to->succs == 0);
8864 to->succs = *succsp;
8866 FOR_EACH_EDGE (e, ei, to->succs)
8867 e->src = to;
8869 *succsp = 0;
8872 /* Remove INSN from the instruction stream.
8873 INSN should have any dependencies. */
8874 static void
8875 sched_remove_insn (rtx_insn *insn)
8877 sd_finish_insn (insn);
8879 change_queue_index (insn, QUEUE_NOWHERE);
8880 current_sched_info->add_remove_insn (insn, 1);
8881 delete_insn (insn);
8884 /* Clear priorities of all instructions, that are forward dependent on INSN.
8885 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8886 be invoked to initialize all cleared priorities. */
8887 static void
8888 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8890 sd_iterator_def sd_it;
8891 dep_t dep;
8892 bool insn_is_root_p = true;
8894 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8896 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8898 rtx_insn *pro = DEP_PRO (dep);
8900 if (INSN_PRIORITY_STATUS (pro) >= 0
8901 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8903 /* If DEP doesn't contribute to priority then INSN itself should
8904 be added to priority roots. */
8905 if (contributes_to_priority_p (dep))
8906 insn_is_root_p = false;
8908 INSN_PRIORITY_STATUS (pro) = -1;
8909 clear_priorities (pro, roots_ptr);
8913 if (insn_is_root_p)
8914 roots_ptr->safe_push (insn);
8917 /* Recompute priorities of instructions, whose priorities might have been
8918 changed. ROOTS is a vector of instructions whose priority computation will
8919 trigger initialization of all cleared priorities. */
8920 static void
8921 calc_priorities (rtx_vec_t roots)
8923 int i;
8924 rtx_insn *insn;
8926 FOR_EACH_VEC_ELT (roots, i, insn)
8927 priority (insn);
8931 /* Add dependences between JUMP and other instructions in the recovery
8932 block. INSN is the first insn the recovery block. */
8933 static void
8934 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8938 insn = NEXT_INSN (insn);
8939 if (insn == jump)
8940 break;
8942 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8944 dep_def _new_dep, *new_dep = &_new_dep;
8946 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8947 sd_add_dep (new_dep, false);
8950 while (1);
8952 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8955 /* Extend data structures for logical insn UID. */
8956 void
8957 sched_extend_luids (void)
8959 int new_luids_max_uid = get_max_uid () + 1;
8961 sched_luids.safe_grow_cleared (new_luids_max_uid);
8964 /* Initialize LUID for INSN. */
8965 void
8966 sched_init_insn_luid (rtx_insn *insn)
8968 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8969 int luid;
8971 if (i >= 0)
8973 luid = sched_max_luid;
8974 sched_max_luid += i;
8976 else
8977 luid = -1;
8979 SET_INSN_LUID (insn, luid);
8982 /* Initialize luids for BBS.
8983 The hook common_sched_info->luid_for_non_insn () is used to determine
8984 if notes, labels, etc. need luids. */
8985 void
8986 sched_init_luids (bb_vec_t bbs)
8988 int i;
8989 basic_block bb;
8991 sched_extend_luids ();
8992 FOR_EACH_VEC_ELT (bbs, i, bb)
8994 rtx_insn *insn;
8996 FOR_BB_INSNS (bb, insn)
8997 sched_init_insn_luid (insn);
9001 /* Free LUIDs. */
9002 void
9003 sched_finish_luids (void)
9005 sched_luids.release ();
9006 sched_max_luid = 1;
9009 /* Return logical uid of INSN. Helpful while debugging. */
9011 insn_luid (rtx_insn *insn)
9013 return INSN_LUID (insn);
9016 /* Extend per insn data in the target. */
9017 void
9018 sched_extend_target (void)
9020 if (targetm.sched.h_i_d_extended)
9021 targetm.sched.h_i_d_extended ();
9024 /* Extend global scheduler structures (those, that live across calls to
9025 schedule_block) to include information about just emitted INSN. */
9026 static void
9027 extend_h_i_d (void)
9029 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9030 if (reserve > 0
9031 && ! h_i_d.space (reserve))
9033 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9034 sched_extend_target ();
9038 /* Initialize h_i_d entry of the INSN with default values.
9039 Values, that are not explicitly initialized here, hold zero. */
9040 static void
9041 init_h_i_d (rtx_insn *insn)
9043 if (INSN_LUID (insn) > 0)
9045 INSN_COST (insn) = -1;
9046 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9047 INSN_TICK (insn) = INVALID_TICK;
9048 INSN_EXACT_TICK (insn) = INVALID_TICK;
9049 INTER_TICK (insn) = INVALID_TICK;
9050 TODO_SPEC (insn) = HARD_DEP;
9051 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9052 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9053 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9054 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9058 /* Initialize haifa_insn_data for BBS. */
9059 void
9060 haifa_init_h_i_d (bb_vec_t bbs)
9062 int i;
9063 basic_block bb;
9065 extend_h_i_d ();
9066 FOR_EACH_VEC_ELT (bbs, i, bb)
9068 rtx_insn *insn;
9070 FOR_BB_INSNS (bb, insn)
9071 init_h_i_d (insn);
9075 /* Finalize haifa_insn_data. */
9076 void
9077 haifa_finish_h_i_d (void)
9079 int i;
9080 haifa_insn_data_t data;
9081 reg_use_data *use, *next_use;
9082 reg_set_data *set, *next_set;
9084 FOR_EACH_VEC_ELT (h_i_d, i, data)
9086 free (data->max_reg_pressure);
9087 free (data->reg_pressure);
9088 for (use = data->reg_use_list; use != NULL; use = next_use)
9090 next_use = use->next_insn_use;
9091 free (use);
9093 for (set = data->reg_set_list; set != NULL; set = next_set)
9095 next_set = set->next_insn_set;
9096 free (set);
9100 h_i_d.release ();
9103 /* Init data for the new insn INSN. */
9104 static void
9105 haifa_init_insn (rtx_insn *insn)
9107 gcc_assert (insn != NULL);
9109 sched_extend_luids ();
9110 sched_init_insn_luid (insn);
9111 sched_extend_target ();
9112 sched_deps_init (false);
9113 extend_h_i_d ();
9114 init_h_i_d (insn);
9116 if (adding_bb_to_current_region_p)
9118 sd_init_insn (insn);
9120 /* Extend dependency caches by one element. */
9121 extend_dependency_caches (1, false);
9123 if (sched_pressure != SCHED_PRESSURE_NONE)
9124 init_insn_reg_pressure_info (insn);
9127 /* Init data for the new basic block BB which comes after AFTER. */
9128 static void
9129 haifa_init_only_bb (basic_block bb, basic_block after)
9131 gcc_assert (bb != NULL);
9133 sched_init_bbs ();
9135 if (common_sched_info->add_block)
9136 /* This changes only data structures of the front-end. */
9137 common_sched_info->add_block (bb, after);
9140 /* A generic version of sched_split_block (). */
9141 basic_block
9142 sched_split_block_1 (basic_block first_bb, rtx after)
9144 edge e;
9146 e = split_block (first_bb, after);
9147 gcc_assert (e->src == first_bb);
9149 /* sched_split_block emits note if *check == BB_END. Probably it
9150 is better to rip that note off. */
9152 return e->dest;
9155 /* A generic version of sched_create_empty_bb (). */
9156 basic_block
9157 sched_create_empty_bb_1 (basic_block after)
9159 return create_empty_bb (after);
9162 /* Insert PAT as an INSN into the schedule and update the necessary data
9163 structures to account for it. */
9164 rtx_insn *
9165 sched_emit_insn (rtx pat)
9167 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9168 haifa_init_insn (insn);
9170 if (current_sched_info->add_remove_insn)
9171 current_sched_info->add_remove_insn (insn, 0);
9173 (*current_sched_info->begin_schedule_ready) (insn);
9174 scheduled_insns.safe_push (insn);
9176 last_scheduled_insn = insn;
9177 return insn;
9180 /* This function returns a candidate satisfying dispatch constraints from
9181 the ready list. */
9183 static rtx_insn *
9184 ready_remove_first_dispatch (struct ready_list *ready)
9186 int i;
9187 rtx_insn *insn = ready_element (ready, 0);
9189 if (ready->n_ready == 1
9190 || !INSN_P (insn)
9191 || INSN_CODE (insn) < 0
9192 || !active_insn_p (insn)
9193 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9194 return ready_remove_first (ready);
9196 for (i = 1; i < ready->n_ready; i++)
9198 insn = ready_element (ready, i);
9200 if (!INSN_P (insn)
9201 || INSN_CODE (insn) < 0
9202 || !active_insn_p (insn))
9203 continue;
9205 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9207 /* Return ith element of ready. */
9208 insn = ready_remove (ready, i);
9209 return insn;
9213 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9214 return ready_remove_first (ready);
9216 for (i = 1; i < ready->n_ready; i++)
9218 insn = ready_element (ready, i);
9220 if (!INSN_P (insn)
9221 || INSN_CODE (insn) < 0
9222 || !active_insn_p (insn))
9223 continue;
9225 /* Return i-th element of ready. */
9226 if (targetm.sched.dispatch (insn, IS_CMP))
9227 return ready_remove (ready, i);
9230 return ready_remove_first (ready);
9233 /* Get number of ready insn in the ready list. */
9236 number_in_ready (void)
9238 return ready.n_ready;
9241 /* Get number of ready's in the ready list. */
9243 rtx_insn *
9244 get_ready_element (int i)
9246 return ready_element (&ready, i);
9249 #endif /* INSN_SCHEDULING */