Merge trunk version 227333 into gupc branch.
[official-gcc.git] / gcc / fold-const.c
blobed59e5266e6901cec30cc64c033b354478481288
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "predict.h"
48 #include "tree.h"
49 #include "gimple.h"
50 #include "rtl.h"
51 #include "flags.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "calls.h"
56 #include "tree-iterator.h"
57 #include "realmpfr.h"
58 #include "insn-config.h"
59 #include "expmed.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "emit-rtl.h"
63 #include "varasm.h"
64 #include "stmt.h"
65 #include "expr.h"
66 #include "tm_p.h"
67 #include "target.h"
68 #include "diagnostic-core.h"
69 #include "intl.h"
70 #include "langhooks.h"
71 #include "md5.h"
72 #include "internal-fn.h"
73 #include "tree-eh.h"
74 #include "gimplify.h"
75 #include "tree-dfa.h"
76 #include "builtins.h"
77 #include "cgraph.h"
78 #include "generic-match.h"
79 #include "optabs.h"
81 #ifndef LOAD_EXTEND_OP
82 #define LOAD_EXTEND_OP(M) UNKNOWN
83 #endif
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
111 static bool negate_mathfn_p (enum built_in_function);
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int operand_equal_for_comparison_p (tree, tree, tree);
119 static int twoval_comparison_p (tree, tree *, tree *, int *);
120 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
121 static tree make_bit_field_ref (location_t, tree, tree,
122 HOST_WIDE_INT, HOST_WIDE_INT, int);
123 static tree optimize_bit_field_compare (location_t, enum tree_code,
124 tree, tree, tree);
125 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
126 HOST_WIDE_INT *,
127 machine_mode *, int *, int *,
128 tree *, tree *);
129 static int simple_operand_p (const_tree);
130 static bool simple_operand_p_2 (tree);
131 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
132 static tree range_predecessor (tree);
133 static tree range_successor (tree);
134 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
135 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
136 static tree unextend (tree, int, int, tree);
137 static tree optimize_minmax_comparison (location_t, enum tree_code,
138 tree, tree, tree);
139 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
140 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
141 static tree fold_binary_op_with_conditional_arg (location_t,
142 enum tree_code, tree,
143 tree, tree,
144 tree, tree, int);
145 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
146 static bool reorder_operands_p (const_tree, const_tree);
147 static tree fold_negate_const (tree, tree);
148 static tree fold_not_const (const_tree, tree);
149 static tree fold_relational_const (enum tree_code, tree, tree, tree);
150 static tree fold_convert_const (enum tree_code, tree, tree);
151 static tree fold_view_convert_expr (tree, tree);
152 static bool vec_cst_ctor_to_array (tree, tree *);
155 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
156 Otherwise, return LOC. */
158 static location_t
159 expr_location_or (tree t, location_t loc)
161 location_t tloc = EXPR_LOCATION (t);
162 return tloc == UNKNOWN_LOCATION ? loc : tloc;
165 /* Similar to protected_set_expr_location, but never modify x in place,
166 if location can and needs to be set, unshare it. */
168 static inline tree
169 protected_set_expr_location_unshare (tree x, location_t loc)
171 if (CAN_HAVE_LOCATION_P (x)
172 && EXPR_LOCATION (x) != loc
173 && !(TREE_CODE (x) == SAVE_EXPR
174 || TREE_CODE (x) == TARGET_EXPR
175 || TREE_CODE (x) == BIND_EXPR))
177 x = copy_node (x);
178 SET_EXPR_LOCATION (x, loc);
180 return x;
183 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
184 division and returns the quotient. Otherwise returns
185 NULL_TREE. */
187 tree
188 div_if_zero_remainder (const_tree arg1, const_tree arg2)
190 widest_int quo;
192 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
193 SIGNED, &quo))
194 return wide_int_to_tree (TREE_TYPE (arg1), quo);
196 return NULL_TREE;
199 /* This is nonzero if we should defer warnings about undefined
200 overflow. This facility exists because these warnings are a
201 special case. The code to estimate loop iterations does not want
202 to issue any warnings, since it works with expressions which do not
203 occur in user code. Various bits of cleanup code call fold(), but
204 only use the result if it has certain characteristics (e.g., is a
205 constant); that code only wants to issue a warning if the result is
206 used. */
208 static int fold_deferring_overflow_warnings;
210 /* If a warning about undefined overflow is deferred, this is the
211 warning. Note that this may cause us to turn two warnings into
212 one, but that is fine since it is sufficient to only give one
213 warning per expression. */
215 static const char* fold_deferred_overflow_warning;
217 /* If a warning about undefined overflow is deferred, this is the
218 level at which the warning should be emitted. */
220 static enum warn_strict_overflow_code fold_deferred_overflow_code;
222 /* Start deferring overflow warnings. We could use a stack here to
223 permit nested calls, but at present it is not necessary. */
225 void
226 fold_defer_overflow_warnings (void)
228 ++fold_deferring_overflow_warnings;
231 /* Stop deferring overflow warnings. If there is a pending warning,
232 and ISSUE is true, then issue the warning if appropriate. STMT is
233 the statement with which the warning should be associated (used for
234 location information); STMT may be NULL. CODE is the level of the
235 warning--a warn_strict_overflow_code value. This function will use
236 the smaller of CODE and the deferred code when deciding whether to
237 issue the warning. CODE may be zero to mean to always use the
238 deferred code. */
240 void
241 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
243 const char *warnmsg;
244 location_t locus;
246 gcc_assert (fold_deferring_overflow_warnings > 0);
247 --fold_deferring_overflow_warnings;
248 if (fold_deferring_overflow_warnings > 0)
250 if (fold_deferred_overflow_warning != NULL
251 && code != 0
252 && code < (int) fold_deferred_overflow_code)
253 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
254 return;
257 warnmsg = fold_deferred_overflow_warning;
258 fold_deferred_overflow_warning = NULL;
260 if (!issue || warnmsg == NULL)
261 return;
263 if (gimple_no_warning_p (stmt))
264 return;
266 /* Use the smallest code level when deciding to issue the
267 warning. */
268 if (code == 0 || code > (int) fold_deferred_overflow_code)
269 code = fold_deferred_overflow_code;
271 if (!issue_strict_overflow_warning (code))
272 return;
274 if (stmt == NULL)
275 locus = input_location;
276 else
277 locus = gimple_location (stmt);
278 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
281 /* Stop deferring overflow warnings, ignoring any deferred
282 warnings. */
284 void
285 fold_undefer_and_ignore_overflow_warnings (void)
287 fold_undefer_overflow_warnings (false, NULL, 0);
290 /* Whether we are deferring overflow warnings. */
292 bool
293 fold_deferring_overflow_warnings_p (void)
295 return fold_deferring_overflow_warnings > 0;
298 /* This is called when we fold something based on the fact that signed
299 overflow is undefined. */
301 static void
302 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
304 if (fold_deferring_overflow_warnings > 0)
306 if (fold_deferred_overflow_warning == NULL
307 || wc < fold_deferred_overflow_code)
309 fold_deferred_overflow_warning = gmsgid;
310 fold_deferred_overflow_code = wc;
313 else if (issue_strict_overflow_warning (wc))
314 warning (OPT_Wstrict_overflow, gmsgid);
317 /* Return true if the built-in mathematical function specified by CODE
318 is odd, i.e. -f(x) == f(-x). */
320 static bool
321 negate_mathfn_p (enum built_in_function code)
323 switch (code)
325 CASE_FLT_FN (BUILT_IN_ASIN):
326 CASE_FLT_FN (BUILT_IN_ASINH):
327 CASE_FLT_FN (BUILT_IN_ATAN):
328 CASE_FLT_FN (BUILT_IN_ATANH):
329 CASE_FLT_FN (BUILT_IN_CASIN):
330 CASE_FLT_FN (BUILT_IN_CASINH):
331 CASE_FLT_FN (BUILT_IN_CATAN):
332 CASE_FLT_FN (BUILT_IN_CATANH):
333 CASE_FLT_FN (BUILT_IN_CBRT):
334 CASE_FLT_FN (BUILT_IN_CPROJ):
335 CASE_FLT_FN (BUILT_IN_CSIN):
336 CASE_FLT_FN (BUILT_IN_CSINH):
337 CASE_FLT_FN (BUILT_IN_CTAN):
338 CASE_FLT_FN (BUILT_IN_CTANH):
339 CASE_FLT_FN (BUILT_IN_ERF):
340 CASE_FLT_FN (BUILT_IN_LLROUND):
341 CASE_FLT_FN (BUILT_IN_LROUND):
342 CASE_FLT_FN (BUILT_IN_ROUND):
343 CASE_FLT_FN (BUILT_IN_SIN):
344 CASE_FLT_FN (BUILT_IN_SINH):
345 CASE_FLT_FN (BUILT_IN_TAN):
346 CASE_FLT_FN (BUILT_IN_TANH):
347 CASE_FLT_FN (BUILT_IN_TRUNC):
348 return true;
350 CASE_FLT_FN (BUILT_IN_LLRINT):
351 CASE_FLT_FN (BUILT_IN_LRINT):
352 CASE_FLT_FN (BUILT_IN_NEARBYINT):
353 CASE_FLT_FN (BUILT_IN_RINT):
354 return !flag_rounding_math;
356 default:
357 break;
359 return false;
362 /* Check whether we may negate an integer constant T without causing
363 overflow. */
365 bool
366 may_negate_without_overflow_p (const_tree t)
368 tree type;
370 gcc_assert (TREE_CODE (t) == INTEGER_CST);
372 type = TREE_TYPE (t);
373 if (TYPE_UNSIGNED (type))
374 return false;
376 return !wi::only_sign_bit_p (t);
379 /* Determine whether an expression T can be cheaply negated using
380 the function negate_expr without introducing undefined overflow. */
382 static bool
383 negate_expr_p (tree t)
385 tree type;
387 if (t == 0)
388 return false;
390 type = TREE_TYPE (t);
392 STRIP_SIGN_NOPS (t);
393 switch (TREE_CODE (t))
395 case INTEGER_CST:
396 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
397 return true;
399 /* Check that -CST will not overflow type. */
400 return may_negate_without_overflow_p (t);
401 case BIT_NOT_EXPR:
402 return (INTEGRAL_TYPE_P (type)
403 && TYPE_OVERFLOW_WRAPS (type));
405 case FIXED_CST:
406 return true;
408 case NEGATE_EXPR:
409 return !TYPE_OVERFLOW_SANITIZED (type);
411 case REAL_CST:
412 /* We want to canonicalize to positive real constants. Pretend
413 that only negative ones can be easily negated. */
414 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
416 case COMPLEX_CST:
417 return negate_expr_p (TREE_REALPART (t))
418 && negate_expr_p (TREE_IMAGPART (t));
420 case VECTOR_CST:
422 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
423 return true;
425 int count = TYPE_VECTOR_SUBPARTS (type), i;
427 for (i = 0; i < count; i++)
428 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
429 return false;
431 return true;
434 case COMPLEX_EXPR:
435 return negate_expr_p (TREE_OPERAND (t, 0))
436 && negate_expr_p (TREE_OPERAND (t, 1));
438 case CONJ_EXPR:
439 return negate_expr_p (TREE_OPERAND (t, 0));
441 case PLUS_EXPR:
442 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
443 || HONOR_SIGNED_ZEROS (element_mode (type)))
444 return false;
445 /* -(A + B) -> (-B) - A. */
446 if (negate_expr_p (TREE_OPERAND (t, 1))
447 && reorder_operands_p (TREE_OPERAND (t, 0),
448 TREE_OPERAND (t, 1)))
449 return true;
450 /* -(A + B) -> (-A) - B. */
451 return negate_expr_p (TREE_OPERAND (t, 0));
453 case MINUS_EXPR:
454 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
455 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
456 && !HONOR_SIGNED_ZEROS (element_mode (type))
457 && reorder_operands_p (TREE_OPERAND (t, 0),
458 TREE_OPERAND (t, 1));
460 case MULT_EXPR:
461 if (TYPE_UNSIGNED (TREE_TYPE (t)))
462 break;
464 /* Fall through. */
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 /* In general we can't negate A / B, because if A is INT_MIN and
476 B is 1, we may turn this into INT_MIN / -1 which is undefined
477 and actually traps on some architectures. But if overflow is
478 undefined, we can negate, because - (INT_MIN / 1) is an
479 overflow. */
480 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
482 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
483 break;
484 /* If overflow is undefined then we have to be careful because
485 we ask whether it's ok to associate the negate with the
486 division which is not ok for example for
487 -((a - b) / c) where (-(a - b)) / c may invoke undefined
488 overflow because of negating INT_MIN. So do not use
489 negate_expr_p here but open-code the two important cases. */
490 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
491 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
492 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
493 return true;
495 else if (negate_expr_p (TREE_OPERAND (t, 0)))
496 return true;
497 return negate_expr_p (TREE_OPERAND (t, 1));
499 case NOP_EXPR:
500 /* Negate -((double)float) as (double)(-float). */
501 if (TREE_CODE (type) == REAL_TYPE)
503 tree tem = strip_float_extensions (t);
504 if (tem != t)
505 return negate_expr_p (tem);
507 break;
509 case CALL_EXPR:
510 /* Negate -f(x) as f(-x). */
511 if (negate_mathfn_p (builtin_mathfn_code (t)))
512 return negate_expr_p (CALL_EXPR_ARG (t, 0));
513 break;
515 case RSHIFT_EXPR:
516 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
517 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
519 tree op1 = TREE_OPERAND (t, 1);
520 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
521 return true;
523 break;
525 default:
526 break;
528 return false;
531 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
532 simplification is possible.
533 If negate_expr_p would return true for T, NULL_TREE will never be
534 returned. */
536 static tree
537 fold_negate_expr (location_t loc, tree t)
539 tree type = TREE_TYPE (t);
540 tree tem;
542 switch (TREE_CODE (t))
544 /* Convert - (~A) to A + 1. */
545 case BIT_NOT_EXPR:
546 if (INTEGRAL_TYPE_P (type))
547 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
548 build_one_cst (type));
549 break;
551 case INTEGER_CST:
552 tem = fold_negate_const (t, type);
553 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
554 || (ANY_INTEGRAL_TYPE_P (type)
555 && !TYPE_OVERFLOW_TRAPS (type)
556 && TYPE_OVERFLOW_WRAPS (type))
557 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
558 return tem;
559 break;
561 case REAL_CST:
562 tem = fold_negate_const (t, type);
563 return tem;
565 case FIXED_CST:
566 tem = fold_negate_const (t, type);
567 return tem;
569 case COMPLEX_CST:
571 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
572 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
573 if (rpart && ipart)
574 return build_complex (type, rpart, ipart);
576 break;
578 case VECTOR_CST:
580 int count = TYPE_VECTOR_SUBPARTS (type), i;
581 tree *elts = XALLOCAVEC (tree, count);
583 for (i = 0; i < count; i++)
585 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
586 if (elts[i] == NULL_TREE)
587 return NULL_TREE;
590 return build_vector (type, elts);
593 case COMPLEX_EXPR:
594 if (negate_expr_p (t))
595 return fold_build2_loc (loc, COMPLEX_EXPR, type,
596 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
597 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
598 break;
600 case CONJ_EXPR:
601 if (negate_expr_p (t))
602 return fold_build1_loc (loc, CONJ_EXPR, type,
603 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
604 break;
606 case NEGATE_EXPR:
607 if (!TYPE_OVERFLOW_SANITIZED (type))
608 return TREE_OPERAND (t, 0);
609 break;
611 case PLUS_EXPR:
612 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
613 && !HONOR_SIGNED_ZEROS (element_mode (type)))
615 /* -(A + B) -> (-B) - A. */
616 if (negate_expr_p (TREE_OPERAND (t, 1))
617 && reorder_operands_p (TREE_OPERAND (t, 0),
618 TREE_OPERAND (t, 1)))
620 tem = negate_expr (TREE_OPERAND (t, 1));
621 return fold_build2_loc (loc, MINUS_EXPR, type,
622 tem, TREE_OPERAND (t, 0));
625 /* -(A + B) -> (-A) - B. */
626 if (negate_expr_p (TREE_OPERAND (t, 0)))
628 tem = negate_expr (TREE_OPERAND (t, 0));
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 tem, TREE_OPERAND (t, 1));
633 break;
635 case MINUS_EXPR:
636 /* - (A - B) -> B - A */
637 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
638 && !HONOR_SIGNED_ZEROS (element_mode (type))
639 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
640 return fold_build2_loc (loc, MINUS_EXPR, type,
641 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
642 break;
644 case MULT_EXPR:
645 if (TYPE_UNSIGNED (type))
646 break;
648 /* Fall through. */
650 case RDIV_EXPR:
651 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
653 tem = TREE_OPERAND (t, 1);
654 if (negate_expr_p (tem))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 TREE_OPERAND (t, 0), negate_expr (tem));
657 tem = TREE_OPERAND (t, 0);
658 if (negate_expr_p (tem))
659 return fold_build2_loc (loc, TREE_CODE (t), type,
660 negate_expr (tem), TREE_OPERAND (t, 1));
662 break;
664 case TRUNC_DIV_EXPR:
665 case ROUND_DIV_EXPR:
666 case EXACT_DIV_EXPR:
667 /* In general we can't negate A / B, because if A is INT_MIN and
668 B is 1, we may turn this into INT_MIN / -1 which is undefined
669 and actually traps on some architectures. But if overflow is
670 undefined, we can negate, because - (INT_MIN / 1) is an
671 overflow. */
672 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
674 const char * const warnmsg = G_("assuming signed overflow does not "
675 "occur when negating a division");
676 tem = TREE_OPERAND (t, 1);
677 if (negate_expr_p (tem))
679 if (INTEGRAL_TYPE_P (type)
680 && (TREE_CODE (tem) != INTEGER_CST
681 || integer_onep (tem)))
682 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
683 return fold_build2_loc (loc, TREE_CODE (t), type,
684 TREE_OPERAND (t, 0), negate_expr (tem));
686 /* If overflow is undefined then we have to be careful because
687 we ask whether it's ok to associate the negate with the
688 division which is not ok for example for
689 -((a - b) / c) where (-(a - b)) / c may invoke undefined
690 overflow because of negating INT_MIN. So do not use
691 negate_expr_p here but open-code the two important cases. */
692 tem = TREE_OPERAND (t, 0);
693 if ((INTEGRAL_TYPE_P (type)
694 && (TREE_CODE (tem) == NEGATE_EXPR
695 || (TREE_CODE (tem) == INTEGER_CST
696 && may_negate_without_overflow_p (tem))))
697 || !INTEGRAL_TYPE_P (type))
698 return fold_build2_loc (loc, TREE_CODE (t), type,
699 negate_expr (tem), TREE_OPERAND (t, 1));
701 break;
703 case NOP_EXPR:
704 /* Convert -((double)float) into (double)(-float). */
705 if (TREE_CODE (type) == REAL_TYPE)
707 tem = strip_float_extensions (t);
708 if (tem != t && negate_expr_p (tem))
709 return fold_convert_loc (loc, type, negate_expr (tem));
711 break;
713 case CALL_EXPR:
714 /* Negate -f(x) as f(-x). */
715 if (negate_mathfn_p (builtin_mathfn_code (t))
716 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
718 tree fndecl, arg;
720 fndecl = get_callee_fndecl (t);
721 arg = negate_expr (CALL_EXPR_ARG (t, 0));
722 return build_call_expr_loc (loc, fndecl, 1, arg);
724 break;
726 case RSHIFT_EXPR:
727 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
728 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
730 tree op1 = TREE_OPERAND (t, 1);
731 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
733 tree ntype = TYPE_UNSIGNED (type)
734 ? signed_type_for (type)
735 : unsigned_type_for (type);
736 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
737 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
738 return fold_convert_loc (loc, type, temp);
741 break;
743 default:
744 break;
747 return NULL_TREE;
750 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
751 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
752 return NULL_TREE. */
754 static tree
755 negate_expr (tree t)
757 tree type, tem;
758 location_t loc;
760 if (t == NULL_TREE)
761 return NULL_TREE;
763 loc = EXPR_LOCATION (t);
764 type = TREE_TYPE (t);
765 STRIP_SIGN_NOPS (t);
767 tem = fold_negate_expr (loc, t);
768 if (!tem)
769 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
770 return fold_convert_loc (loc, type, tem);
773 /* Split a tree IN into a constant, literal and variable parts that could be
774 combined with CODE to make IN. "constant" means an expression with
775 TREE_CONSTANT but that isn't an actual constant. CODE must be a
776 commutative arithmetic operation. Store the constant part into *CONP,
777 the literal in *LITP and return the variable part. If a part isn't
778 present, set it to null. If the tree does not decompose in this way,
779 return the entire tree as the variable part and the other parts as null.
781 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
782 case, we negate an operand that was subtracted. Except if it is a
783 literal for which we use *MINUS_LITP instead.
785 If NEGATE_P is true, we are negating all of IN, again except a literal
786 for which we use *MINUS_LITP instead.
788 If IN is itself a literal or constant, return it as appropriate.
790 Note that we do not guarantee that any of the three values will be the
791 same type as IN, but they will have the same signedness and mode. */
793 static tree
794 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
795 tree *minus_litp, int negate_p)
797 tree var = 0;
799 *conp = 0;
800 *litp = 0;
801 *minus_litp = 0;
803 /* Strip any conversions that don't change the machine mode or signedness. */
804 STRIP_SIGN_NOPS (in);
806 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
807 || TREE_CODE (in) == FIXED_CST)
808 *litp = in;
809 else if (TREE_CODE (in) == code
810 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
811 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
812 /* We can associate addition and subtraction together (even
813 though the C standard doesn't say so) for integers because
814 the value is not affected. For reals, the value might be
815 affected, so we can't. */
816 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
817 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
819 tree op0 = TREE_OPERAND (in, 0);
820 tree op1 = TREE_OPERAND (in, 1);
821 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
822 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
824 /* First see if either of the operands is a literal, then a constant. */
825 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
826 || TREE_CODE (op0) == FIXED_CST)
827 *litp = op0, op0 = 0;
828 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
829 || TREE_CODE (op1) == FIXED_CST)
830 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
832 if (op0 != 0 && TREE_CONSTANT (op0))
833 *conp = op0, op0 = 0;
834 else if (op1 != 0 && TREE_CONSTANT (op1))
835 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
837 /* If we haven't dealt with either operand, this is not a case we can
838 decompose. Otherwise, VAR is either of the ones remaining, if any. */
839 if (op0 != 0 && op1 != 0)
840 var = in;
841 else if (op0 != 0)
842 var = op0;
843 else
844 var = op1, neg_var_p = neg1_p;
846 /* Now do any needed negations. */
847 if (neg_litp_p)
848 *minus_litp = *litp, *litp = 0;
849 if (neg_conp_p)
850 *conp = negate_expr (*conp);
851 if (neg_var_p)
852 var = negate_expr (var);
854 else if (TREE_CODE (in) == BIT_NOT_EXPR
855 && code == PLUS_EXPR)
857 /* -X - 1 is folded to ~X, undo that here. */
858 *minus_litp = build_one_cst (TREE_TYPE (in));
859 var = negate_expr (TREE_OPERAND (in, 0));
861 else if (TREE_CONSTANT (in))
862 *conp = in;
863 else
864 var = in;
866 if (negate_p)
868 if (*litp)
869 *minus_litp = *litp, *litp = 0;
870 else if (*minus_litp)
871 *litp = *minus_litp, *minus_litp = 0;
872 *conp = negate_expr (*conp);
873 var = negate_expr (var);
876 return var;
879 /* Re-associate trees split by the above function. T1 and T2 are
880 either expressions to associate or null. Return the new
881 expression, if any. LOC is the location of the new expression. If
882 we build an operation, do it in TYPE and with CODE. */
884 static tree
885 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
887 if (t1 == 0)
888 return t2;
889 else if (t2 == 0)
890 return t1;
892 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
893 try to fold this since we will have infinite recursion. But do
894 deal with any NEGATE_EXPRs. */
895 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
896 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
898 if (code == PLUS_EXPR)
900 if (TREE_CODE (t1) == NEGATE_EXPR)
901 return build2_loc (loc, MINUS_EXPR, type,
902 fold_convert_loc (loc, type, t2),
903 fold_convert_loc (loc, type,
904 TREE_OPERAND (t1, 0)));
905 else if (TREE_CODE (t2) == NEGATE_EXPR)
906 return build2_loc (loc, MINUS_EXPR, type,
907 fold_convert_loc (loc, type, t1),
908 fold_convert_loc (loc, type,
909 TREE_OPERAND (t2, 0)));
910 else if (integer_zerop (t2))
911 return fold_convert_loc (loc, type, t1);
913 else if (code == MINUS_EXPR)
915 if (integer_zerop (t2))
916 return fold_convert_loc (loc, type, t1);
919 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
920 fold_convert_loc (loc, type, t2));
923 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
924 fold_convert_loc (loc, type, t2));
927 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
928 for use in int_const_binop, size_binop and size_diffop. */
930 static bool
931 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
933 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
934 return false;
935 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
936 return false;
938 switch (code)
940 case LSHIFT_EXPR:
941 case RSHIFT_EXPR:
942 case LROTATE_EXPR:
943 case RROTATE_EXPR:
944 return true;
946 default:
947 break;
950 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
951 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
952 && TYPE_MODE (type1) == TYPE_MODE (type2);
956 /* Combine two integer constants ARG1 and ARG2 under operation CODE
957 to produce a new constant. Return NULL_TREE if we don't know how
958 to evaluate CODE at compile-time. */
960 static tree
961 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
962 int overflowable)
964 wide_int res;
965 tree t;
966 tree type = TREE_TYPE (arg1);
967 signop sign = TYPE_SIGN (type);
968 bool overflow = false;
970 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
971 TYPE_SIGN (TREE_TYPE (parg2)));
973 switch (code)
975 case BIT_IOR_EXPR:
976 res = wi::bit_or (arg1, arg2);
977 break;
979 case BIT_XOR_EXPR:
980 res = wi::bit_xor (arg1, arg2);
981 break;
983 case BIT_AND_EXPR:
984 res = wi::bit_and (arg1, arg2);
985 break;
987 case RSHIFT_EXPR:
988 case LSHIFT_EXPR:
989 if (wi::neg_p (arg2))
991 arg2 = -arg2;
992 if (code == RSHIFT_EXPR)
993 code = LSHIFT_EXPR;
994 else
995 code = RSHIFT_EXPR;
998 if (code == RSHIFT_EXPR)
999 /* It's unclear from the C standard whether shifts can overflow.
1000 The following code ignores overflow; perhaps a C standard
1001 interpretation ruling is needed. */
1002 res = wi::rshift (arg1, arg2, sign);
1003 else
1004 res = wi::lshift (arg1, arg2);
1005 break;
1007 case RROTATE_EXPR:
1008 case LROTATE_EXPR:
1009 if (wi::neg_p (arg2))
1011 arg2 = -arg2;
1012 if (code == RROTATE_EXPR)
1013 code = LROTATE_EXPR;
1014 else
1015 code = RROTATE_EXPR;
1018 if (code == RROTATE_EXPR)
1019 res = wi::rrotate (arg1, arg2);
1020 else
1021 res = wi::lrotate (arg1, arg2);
1022 break;
1024 case PLUS_EXPR:
1025 res = wi::add (arg1, arg2, sign, &overflow);
1026 break;
1028 case MINUS_EXPR:
1029 res = wi::sub (arg1, arg2, sign, &overflow);
1030 break;
1032 case MULT_EXPR:
1033 res = wi::mul (arg1, arg2, sign, &overflow);
1034 break;
1036 case MULT_HIGHPART_EXPR:
1037 res = wi::mul_high (arg1, arg2, sign);
1038 break;
1040 case TRUNC_DIV_EXPR:
1041 case EXACT_DIV_EXPR:
1042 if (arg2 == 0)
1043 return NULL_TREE;
1044 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1045 break;
1047 case FLOOR_DIV_EXPR:
1048 if (arg2 == 0)
1049 return NULL_TREE;
1050 res = wi::div_floor (arg1, arg2, sign, &overflow);
1051 break;
1053 case CEIL_DIV_EXPR:
1054 if (arg2 == 0)
1055 return NULL_TREE;
1056 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1057 break;
1059 case ROUND_DIV_EXPR:
1060 if (arg2 == 0)
1061 return NULL_TREE;
1062 res = wi::div_round (arg1, arg2, sign, &overflow);
1063 break;
1065 case TRUNC_MOD_EXPR:
1066 if (arg2 == 0)
1067 return NULL_TREE;
1068 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1069 break;
1071 case FLOOR_MOD_EXPR:
1072 if (arg2 == 0)
1073 return NULL_TREE;
1074 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1075 break;
1077 case CEIL_MOD_EXPR:
1078 if (arg2 == 0)
1079 return NULL_TREE;
1080 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1081 break;
1083 case ROUND_MOD_EXPR:
1084 if (arg2 == 0)
1085 return NULL_TREE;
1086 res = wi::mod_round (arg1, arg2, sign, &overflow);
1087 break;
1089 case MIN_EXPR:
1090 res = wi::min (arg1, arg2, sign);
1091 break;
1093 case MAX_EXPR:
1094 res = wi::max (arg1, arg2, sign);
1095 break;
1097 default:
1098 return NULL_TREE;
1101 t = force_fit_type (type, res, overflowable,
1102 (((sign == SIGNED || overflowable == -1)
1103 && overflow)
1104 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1106 return t;
1109 tree
1110 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1112 return int_const_binop_1 (code, arg1, arg2, 1);
1115 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1116 constant. We assume ARG1 and ARG2 have the same data type, or at least
1117 are the same kind of constant and the same machine mode. Return zero if
1118 combining the constants is not allowed in the current operating mode. */
1120 static tree
1121 const_binop (enum tree_code code, tree arg1, tree arg2)
1123 /* Sanity check for the recursive cases. */
1124 if (!arg1 || !arg2)
1125 return NULL_TREE;
1127 STRIP_NOPS (arg1);
1128 STRIP_NOPS (arg2);
1130 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1132 if (code == POINTER_PLUS_EXPR)
1133 return int_const_binop (PLUS_EXPR,
1134 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1136 return int_const_binop (code, arg1, arg2);
1139 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1141 machine_mode mode;
1142 REAL_VALUE_TYPE d1;
1143 REAL_VALUE_TYPE d2;
1144 REAL_VALUE_TYPE value;
1145 REAL_VALUE_TYPE result;
1146 bool inexact;
1147 tree t, type;
1149 /* The following codes are handled by real_arithmetic. */
1150 switch (code)
1152 case PLUS_EXPR:
1153 case MINUS_EXPR:
1154 case MULT_EXPR:
1155 case RDIV_EXPR:
1156 case MIN_EXPR:
1157 case MAX_EXPR:
1158 break;
1160 default:
1161 return NULL_TREE;
1164 d1 = TREE_REAL_CST (arg1);
1165 d2 = TREE_REAL_CST (arg2);
1167 type = TREE_TYPE (arg1);
1168 mode = TYPE_MODE (type);
1170 /* Don't perform operation if we honor signaling NaNs and
1171 either operand is a NaN. */
1172 if (HONOR_SNANS (mode)
1173 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1174 return NULL_TREE;
1176 /* Don't perform operation if it would raise a division
1177 by zero exception. */
1178 if (code == RDIV_EXPR
1179 && REAL_VALUES_EQUAL (d2, dconst0)
1180 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1181 return NULL_TREE;
1183 /* If either operand is a NaN, just return it. Otherwise, set up
1184 for floating-point trap; we return an overflow. */
1185 if (REAL_VALUE_ISNAN (d1))
1186 return arg1;
1187 else if (REAL_VALUE_ISNAN (d2))
1188 return arg2;
1190 inexact = real_arithmetic (&value, code, &d1, &d2);
1191 real_convert (&result, mode, &value);
1193 /* Don't constant fold this floating point operation if
1194 the result has overflowed and flag_trapping_math. */
1195 if (flag_trapping_math
1196 && MODE_HAS_INFINITIES (mode)
1197 && REAL_VALUE_ISINF (result)
1198 && !REAL_VALUE_ISINF (d1)
1199 && !REAL_VALUE_ISINF (d2))
1200 return NULL_TREE;
1202 /* Don't constant fold this floating point operation if the
1203 result may dependent upon the run-time rounding mode and
1204 flag_rounding_math is set, or if GCC's software emulation
1205 is unable to accurately represent the result. */
1206 if ((flag_rounding_math
1207 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1208 && (inexact || !real_identical (&result, &value)))
1209 return NULL_TREE;
1211 t = build_real (type, result);
1213 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1214 return t;
1217 if (TREE_CODE (arg1) == FIXED_CST)
1219 FIXED_VALUE_TYPE f1;
1220 FIXED_VALUE_TYPE f2;
1221 FIXED_VALUE_TYPE result;
1222 tree t, type;
1223 int sat_p;
1224 bool overflow_p;
1226 /* The following codes are handled by fixed_arithmetic. */
1227 switch (code)
1229 case PLUS_EXPR:
1230 case MINUS_EXPR:
1231 case MULT_EXPR:
1232 case TRUNC_DIV_EXPR:
1233 if (TREE_CODE (arg2) != FIXED_CST)
1234 return NULL_TREE;
1235 f2 = TREE_FIXED_CST (arg2);
1236 break;
1238 case LSHIFT_EXPR:
1239 case RSHIFT_EXPR:
1241 if (TREE_CODE (arg2) != INTEGER_CST)
1242 return NULL_TREE;
1243 wide_int w2 = arg2;
1244 f2.data.high = w2.elt (1);
1245 f2.data.low = w2.elt (0);
1246 f2.mode = SImode;
1248 break;
1250 default:
1251 return NULL_TREE;
1254 f1 = TREE_FIXED_CST (arg1);
1255 type = TREE_TYPE (arg1);
1256 sat_p = TYPE_SATURATING (type);
1257 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1258 t = build_fixed (type, result);
1259 /* Propagate overflow flags. */
1260 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1261 TREE_OVERFLOW (t) = 1;
1262 return t;
1265 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1267 tree type = TREE_TYPE (arg1);
1268 tree r1 = TREE_REALPART (arg1);
1269 tree i1 = TREE_IMAGPART (arg1);
1270 tree r2 = TREE_REALPART (arg2);
1271 tree i2 = TREE_IMAGPART (arg2);
1272 tree real, imag;
1274 switch (code)
1276 case PLUS_EXPR:
1277 case MINUS_EXPR:
1278 real = const_binop (code, r1, r2);
1279 imag = const_binop (code, i1, i2);
1280 break;
1282 case MULT_EXPR:
1283 if (COMPLEX_FLOAT_TYPE_P (type))
1284 return do_mpc_arg2 (arg1, arg2, type,
1285 /* do_nonfinite= */ folding_initializer,
1286 mpc_mul);
1288 real = const_binop (MINUS_EXPR,
1289 const_binop (MULT_EXPR, r1, r2),
1290 const_binop (MULT_EXPR, i1, i2));
1291 imag = const_binop (PLUS_EXPR,
1292 const_binop (MULT_EXPR, r1, i2),
1293 const_binop (MULT_EXPR, i1, r2));
1294 break;
1296 case RDIV_EXPR:
1297 if (COMPLEX_FLOAT_TYPE_P (type))
1298 return do_mpc_arg2 (arg1, arg2, type,
1299 /* do_nonfinite= */ folding_initializer,
1300 mpc_div);
1301 /* Fallthru ... */
1302 case TRUNC_DIV_EXPR:
1303 case CEIL_DIV_EXPR:
1304 case FLOOR_DIV_EXPR:
1305 case ROUND_DIV_EXPR:
1306 if (flag_complex_method == 0)
1308 /* Keep this algorithm in sync with
1309 tree-complex.c:expand_complex_div_straight().
1311 Expand complex division to scalars, straightforward algorithm.
1312 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1313 t = br*br + bi*bi
1315 tree magsquared
1316 = const_binop (PLUS_EXPR,
1317 const_binop (MULT_EXPR, r2, r2),
1318 const_binop (MULT_EXPR, i2, i2));
1319 tree t1
1320 = const_binop (PLUS_EXPR,
1321 const_binop (MULT_EXPR, r1, r2),
1322 const_binop (MULT_EXPR, i1, i2));
1323 tree t2
1324 = const_binop (MINUS_EXPR,
1325 const_binop (MULT_EXPR, i1, r2),
1326 const_binop (MULT_EXPR, r1, i2));
1328 real = const_binop (code, t1, magsquared);
1329 imag = const_binop (code, t2, magsquared);
1331 else
1333 /* Keep this algorithm in sync with
1334 tree-complex.c:expand_complex_div_wide().
1336 Expand complex division to scalars, modified algorithm to minimize
1337 overflow with wide input ranges. */
1338 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1339 fold_abs_const (r2, TREE_TYPE (type)),
1340 fold_abs_const (i2, TREE_TYPE (type)));
1342 if (integer_nonzerop (compare))
1344 /* In the TRUE branch, we compute
1345 ratio = br/bi;
1346 div = (br * ratio) + bi;
1347 tr = (ar * ratio) + ai;
1348 ti = (ai * ratio) - ar;
1349 tr = tr / div;
1350 ti = ti / div; */
1351 tree ratio = const_binop (code, r2, i2);
1352 tree div = const_binop (PLUS_EXPR, i2,
1353 const_binop (MULT_EXPR, r2, ratio));
1354 real = const_binop (MULT_EXPR, r1, ratio);
1355 real = const_binop (PLUS_EXPR, real, i1);
1356 real = const_binop (code, real, div);
1358 imag = const_binop (MULT_EXPR, i1, ratio);
1359 imag = const_binop (MINUS_EXPR, imag, r1);
1360 imag = const_binop (code, imag, div);
1362 else
1364 /* In the FALSE branch, we compute
1365 ratio = d/c;
1366 divisor = (d * ratio) + c;
1367 tr = (b * ratio) + a;
1368 ti = b - (a * ratio);
1369 tr = tr / div;
1370 ti = ti / div; */
1371 tree ratio = const_binop (code, i2, r2);
1372 tree div = const_binop (PLUS_EXPR, r2,
1373 const_binop (MULT_EXPR, i2, ratio));
1375 real = const_binop (MULT_EXPR, i1, ratio);
1376 real = const_binop (PLUS_EXPR, real, r1);
1377 real = const_binop (code, real, div);
1379 imag = const_binop (MULT_EXPR, r1, ratio);
1380 imag = const_binop (MINUS_EXPR, i1, imag);
1381 imag = const_binop (code, imag, div);
1384 break;
1386 default:
1387 return NULL_TREE;
1390 if (real && imag)
1391 return build_complex (type, real, imag);
1394 if (TREE_CODE (arg1) == VECTOR_CST
1395 && TREE_CODE (arg2) == VECTOR_CST)
1397 tree type = TREE_TYPE (arg1);
1398 int count = TYPE_VECTOR_SUBPARTS (type), i;
1399 tree *elts = XALLOCAVEC (tree, count);
1401 for (i = 0; i < count; i++)
1403 tree elem1 = VECTOR_CST_ELT (arg1, i);
1404 tree elem2 = VECTOR_CST_ELT (arg2, i);
1406 elts[i] = const_binop (code, elem1, elem2);
1408 /* It is possible that const_binop cannot handle the given
1409 code and return NULL_TREE */
1410 if (elts[i] == NULL_TREE)
1411 return NULL_TREE;
1414 return build_vector (type, elts);
1417 /* Shifts allow a scalar offset for a vector. */
1418 if (TREE_CODE (arg1) == VECTOR_CST
1419 && TREE_CODE (arg2) == INTEGER_CST)
1421 tree type = TREE_TYPE (arg1);
1422 int count = TYPE_VECTOR_SUBPARTS (type), i;
1423 tree *elts = XALLOCAVEC (tree, count);
1425 for (i = 0; i < count; i++)
1427 tree elem1 = VECTOR_CST_ELT (arg1, i);
1429 elts[i] = const_binop (code, elem1, arg2);
1431 /* It is possible that const_binop cannot handle the given
1432 code and return NULL_TREE. */
1433 if (elts[i] == NULL_TREE)
1434 return NULL_TREE;
1437 return build_vector (type, elts);
1439 return NULL_TREE;
1442 /* Overload that adds a TYPE parameter to be able to dispatch
1443 to fold_relational_const. */
1445 tree
1446 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1448 if (TREE_CODE_CLASS (code) == tcc_comparison)
1449 return fold_relational_const (code, type, arg1, arg2);
1451 /* ??? Until we make the const_binop worker take the type of the
1452 result as argument put those cases that need it here. */
1453 switch (code)
1455 case COMPLEX_EXPR:
1456 if ((TREE_CODE (arg1) == REAL_CST
1457 && TREE_CODE (arg2) == REAL_CST)
1458 || (TREE_CODE (arg1) == INTEGER_CST
1459 && TREE_CODE (arg2) == INTEGER_CST))
1460 return build_complex (type, arg1, arg2);
1461 return NULL_TREE;
1463 case VEC_PACK_TRUNC_EXPR:
1464 case VEC_PACK_FIX_TRUNC_EXPR:
1466 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1467 tree *elts;
1469 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1470 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1471 if (TREE_CODE (arg1) != VECTOR_CST
1472 || TREE_CODE (arg2) != VECTOR_CST)
1473 return NULL_TREE;
1475 elts = XALLOCAVEC (tree, nelts);
1476 if (!vec_cst_ctor_to_array (arg1, elts)
1477 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1478 return NULL_TREE;
1480 for (i = 0; i < nelts; i++)
1482 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1483 ? NOP_EXPR : FIX_TRUNC_EXPR,
1484 TREE_TYPE (type), elts[i]);
1485 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1486 return NULL_TREE;
1489 return build_vector (type, elts);
1492 case VEC_WIDEN_MULT_LO_EXPR:
1493 case VEC_WIDEN_MULT_HI_EXPR:
1494 case VEC_WIDEN_MULT_EVEN_EXPR:
1495 case VEC_WIDEN_MULT_ODD_EXPR:
1497 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1498 unsigned int out, ofs, scale;
1499 tree *elts;
1501 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1502 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1503 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1504 return NULL_TREE;
1506 elts = XALLOCAVEC (tree, nelts * 4);
1507 if (!vec_cst_ctor_to_array (arg1, elts)
1508 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1509 return NULL_TREE;
1511 if (code == VEC_WIDEN_MULT_LO_EXPR)
1512 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1513 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1514 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1515 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1516 scale = 1, ofs = 0;
1517 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1518 scale = 1, ofs = 1;
1520 for (out = 0; out < nelts; out++)
1522 unsigned int in1 = (out << scale) + ofs;
1523 unsigned int in2 = in1 + nelts * 2;
1524 tree t1, t2;
1526 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1527 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1529 if (t1 == NULL_TREE || t2 == NULL_TREE)
1530 return NULL_TREE;
1531 elts[out] = const_binop (MULT_EXPR, t1, t2);
1532 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1533 return NULL_TREE;
1536 return build_vector (type, elts);
1539 default:;
1542 if (TREE_CODE_CLASS (code) != tcc_binary)
1543 return NULL_TREE;
1545 /* Make sure type and arg0 have the same saturating flag. */
1546 gcc_checking_assert (TYPE_SATURATING (type)
1547 == TYPE_SATURATING (TREE_TYPE (arg1)));
1549 return const_binop (code, arg1, arg2);
1552 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1553 Return zero if computing the constants is not possible. */
1555 tree
1556 const_unop (enum tree_code code, tree type, tree arg0)
1558 switch (code)
1560 CASE_CONVERT:
1561 case FLOAT_EXPR:
1562 case FIX_TRUNC_EXPR:
1563 case FIXED_CONVERT_EXPR:
1564 return fold_convert_const (code, type, arg0);
1566 case ADDR_SPACE_CONVERT_EXPR:
1567 if (integer_zerop (arg0))
1568 return fold_convert_const (code, type, arg0);
1569 break;
1571 case VIEW_CONVERT_EXPR:
1572 return fold_view_convert_expr (type, arg0);
1574 case NEGATE_EXPR:
1576 /* Can't call fold_negate_const directly here as that doesn't
1577 handle all cases and we might not be able to negate some
1578 constants. */
1579 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1580 if (tem && CONSTANT_CLASS_P (tem))
1581 return tem;
1582 break;
1585 case ABS_EXPR:
1586 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1587 return fold_abs_const (arg0, type);
1588 break;
1590 case CONJ_EXPR:
1591 if (TREE_CODE (arg0) == COMPLEX_CST)
1593 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1594 TREE_TYPE (type));
1595 return build_complex (type, TREE_REALPART (arg0), ipart);
1597 break;
1599 case BIT_NOT_EXPR:
1600 if (TREE_CODE (arg0) == INTEGER_CST)
1601 return fold_not_const (arg0, type);
1602 /* Perform BIT_NOT_EXPR on each element individually. */
1603 else if (TREE_CODE (arg0) == VECTOR_CST)
1605 tree *elements;
1606 tree elem;
1607 unsigned count = VECTOR_CST_NELTS (arg0), i;
1609 elements = XALLOCAVEC (tree, count);
1610 for (i = 0; i < count; i++)
1612 elem = VECTOR_CST_ELT (arg0, i);
1613 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1614 if (elem == NULL_TREE)
1615 break;
1616 elements[i] = elem;
1618 if (i == count)
1619 return build_vector (type, elements);
1621 break;
1623 case TRUTH_NOT_EXPR:
1624 if (TREE_CODE (arg0) == INTEGER_CST)
1625 return constant_boolean_node (integer_zerop (arg0), type);
1626 break;
1628 case REALPART_EXPR:
1629 if (TREE_CODE (arg0) == COMPLEX_CST)
1630 return fold_convert (type, TREE_REALPART (arg0));
1631 break;
1633 case IMAGPART_EXPR:
1634 if (TREE_CODE (arg0) == COMPLEX_CST)
1635 return fold_convert (type, TREE_IMAGPART (arg0));
1636 break;
1638 case VEC_UNPACK_LO_EXPR:
1639 case VEC_UNPACK_HI_EXPR:
1640 case VEC_UNPACK_FLOAT_LO_EXPR:
1641 case VEC_UNPACK_FLOAT_HI_EXPR:
1643 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1644 tree *elts;
1645 enum tree_code subcode;
1647 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1648 if (TREE_CODE (arg0) != VECTOR_CST)
1649 return NULL_TREE;
1651 elts = XALLOCAVEC (tree, nelts * 2);
1652 if (!vec_cst_ctor_to_array (arg0, elts))
1653 return NULL_TREE;
1655 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1656 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1657 elts += nelts;
1659 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1660 subcode = NOP_EXPR;
1661 else
1662 subcode = FLOAT_EXPR;
1664 for (i = 0; i < nelts; i++)
1666 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1667 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1668 return NULL_TREE;
1671 return build_vector (type, elts);
1674 case REDUC_MIN_EXPR:
1675 case REDUC_MAX_EXPR:
1676 case REDUC_PLUS_EXPR:
1678 unsigned int nelts, i;
1679 tree *elts;
1680 enum tree_code subcode;
1682 if (TREE_CODE (arg0) != VECTOR_CST)
1683 return NULL_TREE;
1684 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1686 elts = XALLOCAVEC (tree, nelts);
1687 if (!vec_cst_ctor_to_array (arg0, elts))
1688 return NULL_TREE;
1690 switch (code)
1692 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1693 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1694 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1695 default: gcc_unreachable ();
1698 for (i = 1; i < nelts; i++)
1700 elts[0] = const_binop (subcode, elts[0], elts[i]);
1701 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1702 return NULL_TREE;
1705 return elts[0];
1708 default:
1709 break;
1712 return NULL_TREE;
1715 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1716 indicates which particular sizetype to create. */
1718 tree
1719 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1721 return build_int_cst (sizetype_tab[(int) kind], number);
1724 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1725 is a tree code. The type of the result is taken from the operands.
1726 Both must be equivalent integer types, ala int_binop_types_match_p.
1727 If the operands are constant, so is the result. */
1729 tree
1730 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1732 tree type = TREE_TYPE (arg0);
1734 if (arg0 == error_mark_node || arg1 == error_mark_node)
1735 return error_mark_node;
1737 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1738 TREE_TYPE (arg1)));
1740 /* Handle the special case of two integer constants faster. */
1741 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1743 /* And some specific cases even faster than that. */
1744 if (code == PLUS_EXPR)
1746 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1747 return arg1;
1748 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1749 return arg0;
1751 else if (code == MINUS_EXPR)
1753 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1754 return arg0;
1756 else if (code == MULT_EXPR)
1758 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1759 return arg1;
1762 /* Handle general case of two integer constants. For sizetype
1763 constant calculations we always want to know about overflow,
1764 even in the unsigned case. */
1765 return int_const_binop_1 (code, arg0, arg1, -1);
1768 return fold_build2_loc (loc, code, type, arg0, arg1);
1771 /* Given two values, either both of sizetype or both of bitsizetype,
1772 compute the difference between the two values. Return the value
1773 in signed type corresponding to the type of the operands. */
1775 tree
1776 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1778 tree type = TREE_TYPE (arg0);
1779 tree ctype;
1781 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1782 TREE_TYPE (arg1)));
1784 /* If the type is already signed, just do the simple thing. */
1785 if (!TYPE_UNSIGNED (type))
1786 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1788 if (type == sizetype)
1789 ctype = ssizetype;
1790 else if (type == bitsizetype)
1791 ctype = sbitsizetype;
1792 else
1793 ctype = signed_type_for (type);
1795 /* If either operand is not a constant, do the conversions to the signed
1796 type and subtract. The hardware will do the right thing with any
1797 overflow in the subtraction. */
1798 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1799 return size_binop_loc (loc, MINUS_EXPR,
1800 fold_convert_loc (loc, ctype, arg0),
1801 fold_convert_loc (loc, ctype, arg1));
1803 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1804 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1805 overflow) and negate (which can't either). Special-case a result
1806 of zero while we're here. */
1807 if (tree_int_cst_equal (arg0, arg1))
1808 return build_int_cst (ctype, 0);
1809 else if (tree_int_cst_lt (arg1, arg0))
1810 return fold_convert_loc (loc, ctype,
1811 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1812 else
1813 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1814 fold_convert_loc (loc, ctype,
1815 size_binop_loc (loc,
1816 MINUS_EXPR,
1817 arg1, arg0)));
1820 /* A subroutine of fold_convert_const handling conversions of an
1821 INTEGER_CST to another integer type. */
1823 static tree
1824 fold_convert_const_int_from_int (tree type, const_tree arg1)
1826 /* Given an integer constant, make new constant with new type,
1827 appropriately sign-extended or truncated. Use widest_int
1828 so that any extension is done according ARG1's type. */
1829 return force_fit_type (type, wi::to_widest (arg1),
1830 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1831 TREE_OVERFLOW (arg1));
1834 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1835 to an integer type. */
1837 static tree
1838 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1840 bool overflow = false;
1841 tree t;
1843 /* The following code implements the floating point to integer
1844 conversion rules required by the Java Language Specification,
1845 that IEEE NaNs are mapped to zero and values that overflow
1846 the target precision saturate, i.e. values greater than
1847 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1848 are mapped to INT_MIN. These semantics are allowed by the
1849 C and C++ standards that simply state that the behavior of
1850 FP-to-integer conversion is unspecified upon overflow. */
1852 wide_int val;
1853 REAL_VALUE_TYPE r;
1854 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1856 switch (code)
1858 case FIX_TRUNC_EXPR:
1859 real_trunc (&r, VOIDmode, &x);
1860 break;
1862 default:
1863 gcc_unreachable ();
1866 /* If R is NaN, return zero and show we have an overflow. */
1867 if (REAL_VALUE_ISNAN (r))
1869 overflow = true;
1870 val = wi::zero (TYPE_PRECISION (type));
1873 /* See if R is less than the lower bound or greater than the
1874 upper bound. */
1876 if (! overflow)
1878 tree lt = TYPE_MIN_VALUE (type);
1879 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1880 if (REAL_VALUES_LESS (r, l))
1882 overflow = true;
1883 val = lt;
1887 if (! overflow)
1889 tree ut = TYPE_MAX_VALUE (type);
1890 if (ut)
1892 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1893 if (REAL_VALUES_LESS (u, r))
1895 overflow = true;
1896 val = ut;
1901 if (! overflow)
1902 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1904 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1905 return t;
1908 /* A subroutine of fold_convert_const handling conversions of a
1909 FIXED_CST to an integer type. */
1911 static tree
1912 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1914 tree t;
1915 double_int temp, temp_trunc;
1916 unsigned int mode;
1918 /* Right shift FIXED_CST to temp by fbit. */
1919 temp = TREE_FIXED_CST (arg1).data;
1920 mode = TREE_FIXED_CST (arg1).mode;
1921 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1923 temp = temp.rshift (GET_MODE_FBIT (mode),
1924 HOST_BITS_PER_DOUBLE_INT,
1925 SIGNED_FIXED_POINT_MODE_P (mode));
1927 /* Left shift temp to temp_trunc by fbit. */
1928 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1929 HOST_BITS_PER_DOUBLE_INT,
1930 SIGNED_FIXED_POINT_MODE_P (mode));
1932 else
1934 temp = double_int_zero;
1935 temp_trunc = double_int_zero;
1938 /* If FIXED_CST is negative, we need to round the value toward 0.
1939 By checking if the fractional bits are not zero to add 1 to temp. */
1940 if (SIGNED_FIXED_POINT_MODE_P (mode)
1941 && temp_trunc.is_negative ()
1942 && TREE_FIXED_CST (arg1).data != temp_trunc)
1943 temp += double_int_one;
1945 /* Given a fixed-point constant, make new constant with new type,
1946 appropriately sign-extended or truncated. */
1947 t = force_fit_type (type, temp, -1,
1948 (temp.is_negative ()
1949 && (TYPE_UNSIGNED (type)
1950 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1951 | TREE_OVERFLOW (arg1));
1953 return t;
1956 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1957 to another floating point type. */
1959 static tree
1960 fold_convert_const_real_from_real (tree type, const_tree arg1)
1962 REAL_VALUE_TYPE value;
1963 tree t;
1965 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1966 t = build_real (type, value);
1968 /* If converting an infinity or NAN to a representation that doesn't
1969 have one, set the overflow bit so that we can produce some kind of
1970 error message at the appropriate point if necessary. It's not the
1971 most user-friendly message, but it's better than nothing. */
1972 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1973 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1974 TREE_OVERFLOW (t) = 1;
1975 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1976 && !MODE_HAS_NANS (TYPE_MODE (type)))
1977 TREE_OVERFLOW (t) = 1;
1978 /* Regular overflow, conversion produced an infinity in a mode that
1979 can't represent them. */
1980 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1981 && REAL_VALUE_ISINF (value)
1982 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1983 TREE_OVERFLOW (t) = 1;
1984 else
1985 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1986 return t;
1989 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1990 to a floating point type. */
1992 static tree
1993 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1995 REAL_VALUE_TYPE value;
1996 tree t;
1998 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1999 t = build_real (type, value);
2001 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2002 return t;
2005 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2006 to another fixed-point type. */
2008 static tree
2009 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2011 FIXED_VALUE_TYPE value;
2012 tree t;
2013 bool overflow_p;
2015 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2016 TYPE_SATURATING (type));
2017 t = build_fixed (type, value);
2019 /* Propagate overflow flags. */
2020 if (overflow_p | TREE_OVERFLOW (arg1))
2021 TREE_OVERFLOW (t) = 1;
2022 return t;
2025 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2026 to a fixed-point type. */
2028 static tree
2029 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2031 FIXED_VALUE_TYPE value;
2032 tree t;
2033 bool overflow_p;
2034 double_int di;
2036 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2038 di.low = TREE_INT_CST_ELT (arg1, 0);
2039 if (TREE_INT_CST_NUNITS (arg1) == 1)
2040 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2041 else
2042 di.high = TREE_INT_CST_ELT (arg1, 1);
2044 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2045 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2046 TYPE_SATURATING (type));
2047 t = build_fixed (type, value);
2049 /* Propagate overflow flags. */
2050 if (overflow_p | TREE_OVERFLOW (arg1))
2051 TREE_OVERFLOW (t) = 1;
2052 return t;
2055 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2056 to a fixed-point type. */
2058 static tree
2059 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2061 FIXED_VALUE_TYPE value;
2062 tree t;
2063 bool overflow_p;
2065 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2066 &TREE_REAL_CST (arg1),
2067 TYPE_SATURATING (type));
2068 t = build_fixed (type, value);
2070 /* Propagate overflow flags. */
2071 if (overflow_p | TREE_OVERFLOW (arg1))
2072 TREE_OVERFLOW (t) = 1;
2073 return t;
2076 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2077 type TYPE. If no simplification can be done return NULL_TREE. */
2079 static tree
2080 fold_convert_const (enum tree_code code, tree type, tree arg1)
2082 if (TREE_TYPE (arg1) == type)
2083 return arg1;
2085 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2086 || TREE_CODE (type) == OFFSET_TYPE)
2088 if (TREE_CODE (arg1) == INTEGER_CST)
2089 return fold_convert_const_int_from_int (type, arg1);
2090 else if (TREE_CODE (arg1) == REAL_CST)
2091 return fold_convert_const_int_from_real (code, type, arg1);
2092 else if (TREE_CODE (arg1) == FIXED_CST)
2093 return fold_convert_const_int_from_fixed (type, arg1);
2095 else if (TREE_CODE (type) == REAL_TYPE)
2097 if (TREE_CODE (arg1) == INTEGER_CST)
2098 return build_real_from_int_cst (type, arg1);
2099 else if (TREE_CODE (arg1) == REAL_CST)
2100 return fold_convert_const_real_from_real (type, arg1);
2101 else if (TREE_CODE (arg1) == FIXED_CST)
2102 return fold_convert_const_real_from_fixed (type, arg1);
2104 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2106 if (TREE_CODE (arg1) == FIXED_CST)
2107 return fold_convert_const_fixed_from_fixed (type, arg1);
2108 else if (TREE_CODE (arg1) == INTEGER_CST)
2109 return fold_convert_const_fixed_from_int (type, arg1);
2110 else if (TREE_CODE (arg1) == REAL_CST)
2111 return fold_convert_const_fixed_from_real (type, arg1);
2113 return NULL_TREE;
2116 /* Construct a vector of zero elements of vector type TYPE. */
2118 static tree
2119 build_zero_vector (tree type)
2121 tree t;
2123 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2124 return build_vector_from_val (type, t);
2127 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2129 bool
2130 fold_convertible_p (const_tree type, const_tree arg)
2132 tree orig = TREE_TYPE (arg);
2134 if (type == orig)
2135 return true;
2137 if (TREE_CODE (arg) == ERROR_MARK
2138 || TREE_CODE (type) == ERROR_MARK
2139 || TREE_CODE (orig) == ERROR_MARK)
2140 return false;
2142 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2143 return true;
2145 switch (TREE_CODE (type))
2147 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2148 case POINTER_TYPE: case REFERENCE_TYPE:
2149 case OFFSET_TYPE:
2150 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2151 || TREE_CODE (orig) == OFFSET_TYPE)
2152 return true;
2153 return (TREE_CODE (orig) == VECTOR_TYPE
2154 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2156 case REAL_TYPE:
2157 case FIXED_POINT_TYPE:
2158 case COMPLEX_TYPE:
2159 case VECTOR_TYPE:
2160 case VOID_TYPE:
2161 return TREE_CODE (type) == TREE_CODE (orig);
2163 default:
2164 return false;
2168 /* Convert expression ARG to type TYPE. Used by the middle-end for
2169 simple conversions in preference to calling the front-end's convert. */
2171 tree
2172 fold_convert_loc (location_t loc, tree type, tree arg)
2174 tree orig = TREE_TYPE (arg);
2175 tree tem;
2177 if (type == orig)
2178 return arg;
2180 if (TREE_CODE (arg) == ERROR_MARK
2181 || TREE_CODE (type) == ERROR_MARK
2182 || TREE_CODE (orig) == ERROR_MARK)
2183 return error_mark_node;
2185 switch (TREE_CODE (type))
2187 case POINTER_TYPE:
2188 case REFERENCE_TYPE:
2189 /* Handle conversions between pointers to different address spaces. */
2190 if (POINTER_TYPE_P (orig)
2191 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2192 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2193 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2194 /* fall through */
2196 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2197 case OFFSET_TYPE:
2198 if (TREE_CODE (arg) == INTEGER_CST)
2200 tem = fold_convert_const (NOP_EXPR, type, arg);
2201 if (tem != NULL_TREE)
2202 return tem;
2204 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2205 || TREE_CODE (orig) == OFFSET_TYPE)
2206 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2207 if (TREE_CODE (orig) == COMPLEX_TYPE)
2208 return fold_convert_loc (loc, type,
2209 fold_build1_loc (loc, REALPART_EXPR,
2210 TREE_TYPE (orig), arg));
2211 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2212 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2213 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2215 case REAL_TYPE:
2216 if (TREE_CODE (arg) == INTEGER_CST)
2218 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2219 if (tem != NULL_TREE)
2220 return tem;
2222 else if (TREE_CODE (arg) == REAL_CST)
2224 tem = fold_convert_const (NOP_EXPR, type, arg);
2225 if (tem != NULL_TREE)
2226 return tem;
2228 else if (TREE_CODE (arg) == FIXED_CST)
2230 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2231 if (tem != NULL_TREE)
2232 return tem;
2235 switch (TREE_CODE (orig))
2237 case INTEGER_TYPE:
2238 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2239 case POINTER_TYPE: case REFERENCE_TYPE:
2240 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2242 case REAL_TYPE:
2243 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2245 case FIXED_POINT_TYPE:
2246 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2248 case COMPLEX_TYPE:
2249 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2250 return fold_convert_loc (loc, type, tem);
2252 default:
2253 gcc_unreachable ();
2256 case FIXED_POINT_TYPE:
2257 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2258 || TREE_CODE (arg) == REAL_CST)
2260 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2261 if (tem != NULL_TREE)
2262 goto fold_convert_exit;
2265 switch (TREE_CODE (orig))
2267 case FIXED_POINT_TYPE:
2268 case INTEGER_TYPE:
2269 case ENUMERAL_TYPE:
2270 case BOOLEAN_TYPE:
2271 case REAL_TYPE:
2272 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2274 case COMPLEX_TYPE:
2275 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2276 return fold_convert_loc (loc, type, tem);
2278 default:
2279 gcc_unreachable ();
2282 case COMPLEX_TYPE:
2283 switch (TREE_CODE (orig))
2285 case INTEGER_TYPE:
2286 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2287 case POINTER_TYPE: case REFERENCE_TYPE:
2288 case REAL_TYPE:
2289 case FIXED_POINT_TYPE:
2290 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2291 fold_convert_loc (loc, TREE_TYPE (type), arg),
2292 fold_convert_loc (loc, TREE_TYPE (type),
2293 integer_zero_node));
2294 case COMPLEX_TYPE:
2296 tree rpart, ipart;
2298 if (TREE_CODE (arg) == COMPLEX_EXPR)
2300 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2301 TREE_OPERAND (arg, 0));
2302 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2303 TREE_OPERAND (arg, 1));
2304 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2307 arg = save_expr (arg);
2308 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2309 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2310 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2311 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2312 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2315 default:
2316 gcc_unreachable ();
2319 case VECTOR_TYPE:
2320 if (integer_zerop (arg))
2321 return build_zero_vector (type);
2322 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2323 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2324 || TREE_CODE (orig) == VECTOR_TYPE);
2325 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2327 case VOID_TYPE:
2328 tem = fold_ignored_result (arg);
2329 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2331 default:
2332 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2333 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2334 gcc_unreachable ();
2336 fold_convert_exit:
2337 protected_set_expr_location_unshare (tem, loc);
2338 return tem;
2341 /* Return false if expr can be assumed not to be an lvalue, true
2342 otherwise. */
2344 static bool
2345 maybe_lvalue_p (const_tree x)
2347 /* We only need to wrap lvalue tree codes. */
2348 switch (TREE_CODE (x))
2350 case VAR_DECL:
2351 case PARM_DECL:
2352 case RESULT_DECL:
2353 case LABEL_DECL:
2354 case FUNCTION_DECL:
2355 case SSA_NAME:
2357 case COMPONENT_REF:
2358 case MEM_REF:
2359 case INDIRECT_REF:
2360 case ARRAY_REF:
2361 case ARRAY_RANGE_REF:
2362 case BIT_FIELD_REF:
2363 case OBJ_TYPE_REF:
2365 case REALPART_EXPR:
2366 case IMAGPART_EXPR:
2367 case PREINCREMENT_EXPR:
2368 case PREDECREMENT_EXPR:
2369 case SAVE_EXPR:
2370 case TRY_CATCH_EXPR:
2371 case WITH_CLEANUP_EXPR:
2372 case COMPOUND_EXPR:
2373 case MODIFY_EXPR:
2374 case TARGET_EXPR:
2375 case COND_EXPR:
2376 case BIND_EXPR:
2377 break;
2379 default:
2380 /* Assume the worst for front-end tree codes. */
2381 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2382 break;
2383 return false;
2386 return true;
2389 /* Return an expr equal to X but certainly not valid as an lvalue. */
2391 tree
2392 non_lvalue_loc (location_t loc, tree x)
2394 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2395 us. */
2396 if (in_gimple_form)
2397 return x;
2399 if (! maybe_lvalue_p (x))
2400 return x;
2401 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2404 /* When pedantic, return an expr equal to X but certainly not valid as a
2405 pedantic lvalue. Otherwise, return X. */
2407 static tree
2408 pedantic_non_lvalue_loc (location_t loc, tree x)
2410 return protected_set_expr_location_unshare (x, loc);
2413 /* Given a tree comparison code, return the code that is the logical inverse.
2414 It is generally not safe to do this for floating-point comparisons, except
2415 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2416 ERROR_MARK in this case. */
2418 enum tree_code
2419 invert_tree_comparison (enum tree_code code, bool honor_nans)
2421 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2422 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2423 return ERROR_MARK;
2425 switch (code)
2427 case EQ_EXPR:
2428 return NE_EXPR;
2429 case NE_EXPR:
2430 return EQ_EXPR;
2431 case GT_EXPR:
2432 return honor_nans ? UNLE_EXPR : LE_EXPR;
2433 case GE_EXPR:
2434 return honor_nans ? UNLT_EXPR : LT_EXPR;
2435 case LT_EXPR:
2436 return honor_nans ? UNGE_EXPR : GE_EXPR;
2437 case LE_EXPR:
2438 return honor_nans ? UNGT_EXPR : GT_EXPR;
2439 case LTGT_EXPR:
2440 return UNEQ_EXPR;
2441 case UNEQ_EXPR:
2442 return LTGT_EXPR;
2443 case UNGT_EXPR:
2444 return LE_EXPR;
2445 case UNGE_EXPR:
2446 return LT_EXPR;
2447 case UNLT_EXPR:
2448 return GE_EXPR;
2449 case UNLE_EXPR:
2450 return GT_EXPR;
2451 case ORDERED_EXPR:
2452 return UNORDERED_EXPR;
2453 case UNORDERED_EXPR:
2454 return ORDERED_EXPR;
2455 default:
2456 gcc_unreachable ();
2460 /* Similar, but return the comparison that results if the operands are
2461 swapped. This is safe for floating-point. */
2463 enum tree_code
2464 swap_tree_comparison (enum tree_code code)
2466 switch (code)
2468 case EQ_EXPR:
2469 case NE_EXPR:
2470 case ORDERED_EXPR:
2471 case UNORDERED_EXPR:
2472 case LTGT_EXPR:
2473 case UNEQ_EXPR:
2474 return code;
2475 case GT_EXPR:
2476 return LT_EXPR;
2477 case GE_EXPR:
2478 return LE_EXPR;
2479 case LT_EXPR:
2480 return GT_EXPR;
2481 case LE_EXPR:
2482 return GE_EXPR;
2483 case UNGT_EXPR:
2484 return UNLT_EXPR;
2485 case UNGE_EXPR:
2486 return UNLE_EXPR;
2487 case UNLT_EXPR:
2488 return UNGT_EXPR;
2489 case UNLE_EXPR:
2490 return UNGE_EXPR;
2491 default:
2492 gcc_unreachable ();
2497 /* Convert a comparison tree code from an enum tree_code representation
2498 into a compcode bit-based encoding. This function is the inverse of
2499 compcode_to_comparison. */
2501 static enum comparison_code
2502 comparison_to_compcode (enum tree_code code)
2504 switch (code)
2506 case LT_EXPR:
2507 return COMPCODE_LT;
2508 case EQ_EXPR:
2509 return COMPCODE_EQ;
2510 case LE_EXPR:
2511 return COMPCODE_LE;
2512 case GT_EXPR:
2513 return COMPCODE_GT;
2514 case NE_EXPR:
2515 return COMPCODE_NE;
2516 case GE_EXPR:
2517 return COMPCODE_GE;
2518 case ORDERED_EXPR:
2519 return COMPCODE_ORD;
2520 case UNORDERED_EXPR:
2521 return COMPCODE_UNORD;
2522 case UNLT_EXPR:
2523 return COMPCODE_UNLT;
2524 case UNEQ_EXPR:
2525 return COMPCODE_UNEQ;
2526 case UNLE_EXPR:
2527 return COMPCODE_UNLE;
2528 case UNGT_EXPR:
2529 return COMPCODE_UNGT;
2530 case LTGT_EXPR:
2531 return COMPCODE_LTGT;
2532 case UNGE_EXPR:
2533 return COMPCODE_UNGE;
2534 default:
2535 gcc_unreachable ();
2539 /* Convert a compcode bit-based encoding of a comparison operator back
2540 to GCC's enum tree_code representation. This function is the
2541 inverse of comparison_to_compcode. */
2543 static enum tree_code
2544 compcode_to_comparison (enum comparison_code code)
2546 switch (code)
2548 case COMPCODE_LT:
2549 return LT_EXPR;
2550 case COMPCODE_EQ:
2551 return EQ_EXPR;
2552 case COMPCODE_LE:
2553 return LE_EXPR;
2554 case COMPCODE_GT:
2555 return GT_EXPR;
2556 case COMPCODE_NE:
2557 return NE_EXPR;
2558 case COMPCODE_GE:
2559 return GE_EXPR;
2560 case COMPCODE_ORD:
2561 return ORDERED_EXPR;
2562 case COMPCODE_UNORD:
2563 return UNORDERED_EXPR;
2564 case COMPCODE_UNLT:
2565 return UNLT_EXPR;
2566 case COMPCODE_UNEQ:
2567 return UNEQ_EXPR;
2568 case COMPCODE_UNLE:
2569 return UNLE_EXPR;
2570 case COMPCODE_UNGT:
2571 return UNGT_EXPR;
2572 case COMPCODE_LTGT:
2573 return LTGT_EXPR;
2574 case COMPCODE_UNGE:
2575 return UNGE_EXPR;
2576 default:
2577 gcc_unreachable ();
2581 /* Return a tree for the comparison which is the combination of
2582 doing the AND or OR (depending on CODE) of the two operations LCODE
2583 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2584 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2585 if this makes the transformation invalid. */
2587 tree
2588 combine_comparisons (location_t loc,
2589 enum tree_code code, enum tree_code lcode,
2590 enum tree_code rcode, tree truth_type,
2591 tree ll_arg, tree lr_arg)
2593 bool honor_nans = HONOR_NANS (ll_arg);
2594 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2595 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2596 int compcode;
2598 switch (code)
2600 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2601 compcode = lcompcode & rcompcode;
2602 break;
2604 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2605 compcode = lcompcode | rcompcode;
2606 break;
2608 default:
2609 return NULL_TREE;
2612 if (!honor_nans)
2614 /* Eliminate unordered comparisons, as well as LTGT and ORD
2615 which are not used unless the mode has NaNs. */
2616 compcode &= ~COMPCODE_UNORD;
2617 if (compcode == COMPCODE_LTGT)
2618 compcode = COMPCODE_NE;
2619 else if (compcode == COMPCODE_ORD)
2620 compcode = COMPCODE_TRUE;
2622 else if (flag_trapping_math)
2624 /* Check that the original operation and the optimized ones will trap
2625 under the same condition. */
2626 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2627 && (lcompcode != COMPCODE_EQ)
2628 && (lcompcode != COMPCODE_ORD);
2629 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2630 && (rcompcode != COMPCODE_EQ)
2631 && (rcompcode != COMPCODE_ORD);
2632 bool trap = (compcode & COMPCODE_UNORD) == 0
2633 && (compcode != COMPCODE_EQ)
2634 && (compcode != COMPCODE_ORD);
2636 /* In a short-circuited boolean expression the LHS might be
2637 such that the RHS, if evaluated, will never trap. For
2638 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2639 if neither x nor y is NaN. (This is a mixed blessing: for
2640 example, the expression above will never trap, hence
2641 optimizing it to x < y would be invalid). */
2642 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2643 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2644 rtrap = false;
2646 /* If the comparison was short-circuited, and only the RHS
2647 trapped, we may now generate a spurious trap. */
2648 if (rtrap && !ltrap
2649 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2650 return NULL_TREE;
2652 /* If we changed the conditions that cause a trap, we lose. */
2653 if ((ltrap || rtrap) != trap)
2654 return NULL_TREE;
2657 if (compcode == COMPCODE_TRUE)
2658 return constant_boolean_node (true, truth_type);
2659 else if (compcode == COMPCODE_FALSE)
2660 return constant_boolean_node (false, truth_type);
2661 else
2663 enum tree_code tcode;
2665 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2666 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2670 /* Return nonzero if two operands (typically of the same tree node)
2671 are necessarily equal. If either argument has side-effects this
2672 function returns zero. FLAGS modifies behavior as follows:
2674 If OEP_ONLY_CONST is set, only return nonzero for constants.
2675 This function tests whether the operands are indistinguishable;
2676 it does not test whether they are equal using C's == operation.
2677 The distinction is important for IEEE floating point, because
2678 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2679 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2681 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2682 even though it may hold multiple values during a function.
2683 This is because a GCC tree node guarantees that nothing else is
2684 executed between the evaluation of its "operands" (which may often
2685 be evaluated in arbitrary order). Hence if the operands themselves
2686 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2687 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2688 unset means assuming isochronic (or instantaneous) tree equivalence.
2689 Unless comparing arbitrary expression trees, such as from different
2690 statements, this flag can usually be left unset.
2692 If OEP_PURE_SAME is set, then pure functions with identical arguments
2693 are considered the same. It is used when the caller has other ways
2694 to ensure that global memory is unchanged in between. */
2697 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2699 /* If either is ERROR_MARK, they aren't equal. */
2700 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2701 || TREE_TYPE (arg0) == error_mark_node
2702 || TREE_TYPE (arg1) == error_mark_node)
2703 return 0;
2705 /* Similar, if either does not have a type (like a released SSA name),
2706 they aren't equal. */
2707 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2708 return 0;
2710 /* Check equality of integer constants before bailing out due to
2711 precision differences. */
2712 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2713 return tree_int_cst_equal (arg0, arg1);
2715 /* If both types don't have the same signedness, then we can't consider
2716 them equal. We must check this before the STRIP_NOPS calls
2717 because they may change the signedness of the arguments. As pointers
2718 strictly don't have a signedness, require either two pointers or
2719 two non-pointers as well. */
2720 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2721 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2722 return 0;
2724 /* We cannot consider pointers to different address space equal. */
2725 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2726 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2727 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2728 return 0;
2730 /* If both types don't have the same precision, then it is not safe
2731 to strip NOPs. */
2732 if (element_precision (TREE_TYPE (arg0))
2733 != element_precision (TREE_TYPE (arg1)))
2734 return 0;
2736 STRIP_NOPS (arg0);
2737 STRIP_NOPS (arg1);
2739 /* In case both args are comparisons but with different comparison
2740 code, try to swap the comparison operands of one arg to produce
2741 a match and compare that variant. */
2742 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2743 && COMPARISON_CLASS_P (arg0)
2744 && COMPARISON_CLASS_P (arg1))
2746 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2748 if (TREE_CODE (arg0) == swap_code)
2749 return operand_equal_p (TREE_OPERAND (arg0, 0),
2750 TREE_OPERAND (arg1, 1), flags)
2751 && operand_equal_p (TREE_OPERAND (arg0, 1),
2752 TREE_OPERAND (arg1, 0), flags);
2755 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2756 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2757 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2758 return 0;
2760 /* This is needed for conversions and for COMPONENT_REF.
2761 Might as well play it safe and always test this. */
2762 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2763 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2764 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2765 return 0;
2767 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2768 We don't care about side effects in that case because the SAVE_EXPR
2769 takes care of that for us. In all other cases, two expressions are
2770 equal if they have no side effects. If we have two identical
2771 expressions with side effects that should be treated the same due
2772 to the only side effects being identical SAVE_EXPR's, that will
2773 be detected in the recursive calls below.
2774 If we are taking an invariant address of two identical objects
2775 they are necessarily equal as well. */
2776 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2777 && (TREE_CODE (arg0) == SAVE_EXPR
2778 || (flags & OEP_CONSTANT_ADDRESS_OF)
2779 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2780 return 1;
2782 /* Next handle constant cases, those for which we can return 1 even
2783 if ONLY_CONST is set. */
2784 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2785 switch (TREE_CODE (arg0))
2787 case INTEGER_CST:
2788 return tree_int_cst_equal (arg0, arg1);
2790 case FIXED_CST:
2791 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2792 TREE_FIXED_CST (arg1));
2794 case REAL_CST:
2795 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2796 TREE_REAL_CST (arg1)))
2797 return 1;
2800 if (!HONOR_SIGNED_ZEROS (arg0))
2802 /* If we do not distinguish between signed and unsigned zero,
2803 consider them equal. */
2804 if (real_zerop (arg0) && real_zerop (arg1))
2805 return 1;
2807 return 0;
2809 case VECTOR_CST:
2811 unsigned i;
2813 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2814 return 0;
2816 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2818 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2819 VECTOR_CST_ELT (arg1, i), flags))
2820 return 0;
2822 return 1;
2825 case COMPLEX_CST:
2826 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2827 flags)
2828 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2829 flags));
2831 case STRING_CST:
2832 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2833 && ! memcmp (TREE_STRING_POINTER (arg0),
2834 TREE_STRING_POINTER (arg1),
2835 TREE_STRING_LENGTH (arg0)));
2837 case ADDR_EXPR:
2838 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2839 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2840 ? OEP_CONSTANT_ADDRESS_OF | OEP_ADDRESS_OF : 0);
2841 default:
2842 break;
2845 if (flags & OEP_ONLY_CONST)
2846 return 0;
2848 /* Define macros to test an operand from arg0 and arg1 for equality and a
2849 variant that allows null and views null as being different from any
2850 non-null value. In the latter case, if either is null, the both
2851 must be; otherwise, do the normal comparison. */
2852 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2853 TREE_OPERAND (arg1, N), flags)
2855 #define OP_SAME_WITH_NULL(N) \
2856 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2857 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2859 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2861 case tcc_unary:
2862 /* Two conversions are equal only if signedness and modes match. */
2863 switch (TREE_CODE (arg0))
2865 CASE_CONVERT:
2866 case FIX_TRUNC_EXPR:
2867 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2868 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2869 return 0;
2870 break;
2871 default:
2872 break;
2875 return OP_SAME (0);
2878 case tcc_comparison:
2879 case tcc_binary:
2880 if (OP_SAME (0) && OP_SAME (1))
2881 return 1;
2883 /* For commutative ops, allow the other order. */
2884 return (commutative_tree_code (TREE_CODE (arg0))
2885 && operand_equal_p (TREE_OPERAND (arg0, 0),
2886 TREE_OPERAND (arg1, 1), flags)
2887 && operand_equal_p (TREE_OPERAND (arg0, 1),
2888 TREE_OPERAND (arg1, 0), flags));
2890 case tcc_reference:
2891 /* If either of the pointer (or reference) expressions we are
2892 dereferencing contain a side effect, these cannot be equal,
2893 but their addresses can be. */
2894 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2895 && (TREE_SIDE_EFFECTS (arg0)
2896 || TREE_SIDE_EFFECTS (arg1)))
2897 return 0;
2899 switch (TREE_CODE (arg0))
2901 case INDIRECT_REF:
2902 if (!(flags & OEP_ADDRESS_OF)
2903 && (TYPE_ALIGN (TREE_TYPE (arg0))
2904 != TYPE_ALIGN (TREE_TYPE (arg1))))
2905 return 0;
2906 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2907 return OP_SAME (0);
2909 case REALPART_EXPR:
2910 case IMAGPART_EXPR:
2911 return OP_SAME (0);
2913 case TARGET_MEM_REF:
2914 case MEM_REF:
2915 /* Require equal access sizes, and similar pointer types.
2916 We can have incomplete types for array references of
2917 variable-sized arrays from the Fortran frontend
2918 though. Also verify the types are compatible. */
2919 if (!((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2920 || (TYPE_SIZE (TREE_TYPE (arg0))
2921 && TYPE_SIZE (TREE_TYPE (arg1))
2922 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2923 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2924 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2925 && ((flags & OEP_ADDRESS_OF)
2926 || (alias_ptr_types_compatible_p
2927 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2928 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2929 && (MR_DEPENDENCE_CLIQUE (arg0)
2930 == MR_DEPENDENCE_CLIQUE (arg1))
2931 && (MR_DEPENDENCE_BASE (arg0)
2932 == MR_DEPENDENCE_BASE (arg1))
2933 && (TYPE_ALIGN (TREE_TYPE (arg0))
2934 == TYPE_ALIGN (TREE_TYPE (arg1)))))))
2935 return 0;
2936 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2937 return (OP_SAME (0) && OP_SAME (1)
2938 /* TARGET_MEM_REF require equal extra operands. */
2939 && (TREE_CODE (arg0) != TARGET_MEM_REF
2940 || (OP_SAME_WITH_NULL (2)
2941 && OP_SAME_WITH_NULL (3)
2942 && OP_SAME_WITH_NULL (4))));
2944 case ARRAY_REF:
2945 case ARRAY_RANGE_REF:
2946 /* Operands 2 and 3 may be null.
2947 Compare the array index by value if it is constant first as we
2948 may have different types but same value here. */
2949 if (!OP_SAME (0))
2950 return 0;
2951 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2952 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2953 TREE_OPERAND (arg1, 1))
2954 || OP_SAME (1))
2955 && OP_SAME_WITH_NULL (2)
2956 && OP_SAME_WITH_NULL (3));
2958 case COMPONENT_REF:
2959 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2960 may be NULL when we're called to compare MEM_EXPRs. */
2961 if (!OP_SAME_WITH_NULL (0)
2962 || !OP_SAME (1))
2963 return 0;
2964 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2965 return OP_SAME_WITH_NULL (2);
2967 case BIT_FIELD_REF:
2968 if (!OP_SAME (0))
2969 return 0;
2970 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2971 return OP_SAME (1) && OP_SAME (2);
2973 default:
2974 return 0;
2977 case tcc_expression:
2978 switch (TREE_CODE (arg0))
2980 case ADDR_EXPR:
2981 return operand_equal_p (TREE_OPERAND (arg0, 0),
2982 TREE_OPERAND (arg1, 0),
2983 flags | OEP_ADDRESS_OF);
2985 case TRUTH_NOT_EXPR:
2986 return OP_SAME (0);
2988 case TRUTH_ANDIF_EXPR:
2989 case TRUTH_ORIF_EXPR:
2990 return OP_SAME (0) && OP_SAME (1);
2992 case FMA_EXPR:
2993 case WIDEN_MULT_PLUS_EXPR:
2994 case WIDEN_MULT_MINUS_EXPR:
2995 if (!OP_SAME (2))
2996 return 0;
2997 /* The multiplcation operands are commutative. */
2998 /* FALLTHRU */
3000 case TRUTH_AND_EXPR:
3001 case TRUTH_OR_EXPR:
3002 case TRUTH_XOR_EXPR:
3003 if (OP_SAME (0) && OP_SAME (1))
3004 return 1;
3006 /* Otherwise take into account this is a commutative operation. */
3007 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3008 TREE_OPERAND (arg1, 1), flags)
3009 && operand_equal_p (TREE_OPERAND (arg0, 1),
3010 TREE_OPERAND (arg1, 0), flags));
3012 case COND_EXPR:
3013 case VEC_COND_EXPR:
3014 case DOT_PROD_EXPR:
3015 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3017 default:
3018 return 0;
3021 case tcc_vl_exp:
3022 switch (TREE_CODE (arg0))
3024 case CALL_EXPR:
3025 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3026 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3027 /* If not both CALL_EXPRs are either internal or normal function
3028 functions, then they are not equal. */
3029 return 0;
3030 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3032 /* If the CALL_EXPRs call different internal functions, then they
3033 are not equal. */
3034 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3035 return 0;
3037 else
3039 /* If the CALL_EXPRs call different functions, then they are not
3040 equal. */
3041 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3042 flags))
3043 return 0;
3047 unsigned int cef = call_expr_flags (arg0);
3048 if (flags & OEP_PURE_SAME)
3049 cef &= ECF_CONST | ECF_PURE;
3050 else
3051 cef &= ECF_CONST;
3052 if (!cef)
3053 return 0;
3056 /* Now see if all the arguments are the same. */
3058 const_call_expr_arg_iterator iter0, iter1;
3059 const_tree a0, a1;
3060 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3061 a1 = first_const_call_expr_arg (arg1, &iter1);
3062 a0 && a1;
3063 a0 = next_const_call_expr_arg (&iter0),
3064 a1 = next_const_call_expr_arg (&iter1))
3065 if (! operand_equal_p (a0, a1, flags))
3066 return 0;
3068 /* If we get here and both argument lists are exhausted
3069 then the CALL_EXPRs are equal. */
3070 return ! (a0 || a1);
3072 default:
3073 return 0;
3076 case tcc_declaration:
3077 /* Consider __builtin_sqrt equal to sqrt. */
3078 return (TREE_CODE (arg0) == FUNCTION_DECL
3079 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3080 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3081 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3083 default:
3084 return 0;
3087 #undef OP_SAME
3088 #undef OP_SAME_WITH_NULL
3091 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3092 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3094 When in doubt, return 0. */
3096 static int
3097 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3099 int unsignedp1, unsignedpo;
3100 tree primarg0, primarg1, primother;
3101 unsigned int correct_width;
3103 if (operand_equal_p (arg0, arg1, 0))
3104 return 1;
3106 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3107 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3108 return 0;
3110 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3111 and see if the inner values are the same. This removes any
3112 signedness comparison, which doesn't matter here. */
3113 primarg0 = arg0, primarg1 = arg1;
3114 STRIP_NOPS (primarg0);
3115 STRIP_NOPS (primarg1);
3116 if (operand_equal_p (primarg0, primarg1, 0))
3117 return 1;
3119 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3120 actual comparison operand, ARG0.
3122 First throw away any conversions to wider types
3123 already present in the operands. */
3125 primarg1 = get_narrower (arg1, &unsignedp1);
3126 primother = get_narrower (other, &unsignedpo);
3128 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3129 if (unsignedp1 == unsignedpo
3130 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3131 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3133 tree type = TREE_TYPE (arg0);
3135 /* Make sure shorter operand is extended the right way
3136 to match the longer operand. */
3137 primarg1 = fold_convert (signed_or_unsigned_type_for
3138 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3140 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3141 return 1;
3144 return 0;
3147 /* See if ARG is an expression that is either a comparison or is performing
3148 arithmetic on comparisons. The comparisons must only be comparing
3149 two different values, which will be stored in *CVAL1 and *CVAL2; if
3150 they are nonzero it means that some operands have already been found.
3151 No variables may be used anywhere else in the expression except in the
3152 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3153 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3155 If this is true, return 1. Otherwise, return zero. */
3157 static int
3158 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3160 enum tree_code code = TREE_CODE (arg);
3161 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3163 /* We can handle some of the tcc_expression cases here. */
3164 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3165 tclass = tcc_unary;
3166 else if (tclass == tcc_expression
3167 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3168 || code == COMPOUND_EXPR))
3169 tclass = tcc_binary;
3171 else if (tclass == tcc_expression && code == SAVE_EXPR
3172 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3174 /* If we've already found a CVAL1 or CVAL2, this expression is
3175 two complex to handle. */
3176 if (*cval1 || *cval2)
3177 return 0;
3179 tclass = tcc_unary;
3180 *save_p = 1;
3183 switch (tclass)
3185 case tcc_unary:
3186 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3188 case tcc_binary:
3189 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3190 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3191 cval1, cval2, save_p));
3193 case tcc_constant:
3194 return 1;
3196 case tcc_expression:
3197 if (code == COND_EXPR)
3198 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3199 cval1, cval2, save_p)
3200 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3201 cval1, cval2, save_p)
3202 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3203 cval1, cval2, save_p));
3204 return 0;
3206 case tcc_comparison:
3207 /* First see if we can handle the first operand, then the second. For
3208 the second operand, we know *CVAL1 can't be zero. It must be that
3209 one side of the comparison is each of the values; test for the
3210 case where this isn't true by failing if the two operands
3211 are the same. */
3213 if (operand_equal_p (TREE_OPERAND (arg, 0),
3214 TREE_OPERAND (arg, 1), 0))
3215 return 0;
3217 if (*cval1 == 0)
3218 *cval1 = TREE_OPERAND (arg, 0);
3219 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3221 else if (*cval2 == 0)
3222 *cval2 = TREE_OPERAND (arg, 0);
3223 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3225 else
3226 return 0;
3228 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3230 else if (*cval2 == 0)
3231 *cval2 = TREE_OPERAND (arg, 1);
3232 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3234 else
3235 return 0;
3237 return 1;
3239 default:
3240 return 0;
3244 /* ARG is a tree that is known to contain just arithmetic operations and
3245 comparisons. Evaluate the operations in the tree substituting NEW0 for
3246 any occurrence of OLD0 as an operand of a comparison and likewise for
3247 NEW1 and OLD1. */
3249 static tree
3250 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3251 tree old1, tree new1)
3253 tree type = TREE_TYPE (arg);
3254 enum tree_code code = TREE_CODE (arg);
3255 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3257 /* We can handle some of the tcc_expression cases here. */
3258 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3259 tclass = tcc_unary;
3260 else if (tclass == tcc_expression
3261 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3262 tclass = tcc_binary;
3264 switch (tclass)
3266 case tcc_unary:
3267 return fold_build1_loc (loc, code, type,
3268 eval_subst (loc, TREE_OPERAND (arg, 0),
3269 old0, new0, old1, new1));
3271 case tcc_binary:
3272 return fold_build2_loc (loc, code, type,
3273 eval_subst (loc, TREE_OPERAND (arg, 0),
3274 old0, new0, old1, new1),
3275 eval_subst (loc, TREE_OPERAND (arg, 1),
3276 old0, new0, old1, new1));
3278 case tcc_expression:
3279 switch (code)
3281 case SAVE_EXPR:
3282 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3283 old1, new1);
3285 case COMPOUND_EXPR:
3286 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3287 old1, new1);
3289 case COND_EXPR:
3290 return fold_build3_loc (loc, code, type,
3291 eval_subst (loc, TREE_OPERAND (arg, 0),
3292 old0, new0, old1, new1),
3293 eval_subst (loc, TREE_OPERAND (arg, 1),
3294 old0, new0, old1, new1),
3295 eval_subst (loc, TREE_OPERAND (arg, 2),
3296 old0, new0, old1, new1));
3297 default:
3298 break;
3300 /* Fall through - ??? */
3302 case tcc_comparison:
3304 tree arg0 = TREE_OPERAND (arg, 0);
3305 tree arg1 = TREE_OPERAND (arg, 1);
3307 /* We need to check both for exact equality and tree equality. The
3308 former will be true if the operand has a side-effect. In that
3309 case, we know the operand occurred exactly once. */
3311 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3312 arg0 = new0;
3313 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3314 arg0 = new1;
3316 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3317 arg1 = new0;
3318 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3319 arg1 = new1;
3321 return fold_build2_loc (loc, code, type, arg0, arg1);
3324 default:
3325 return arg;
3329 /* Return a tree for the case when the result of an expression is RESULT
3330 converted to TYPE and OMITTED was previously an operand of the expression
3331 but is now not needed (e.g., we folded OMITTED * 0).
3333 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3334 the conversion of RESULT to TYPE. */
3336 tree
3337 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3339 tree t = fold_convert_loc (loc, type, result);
3341 /* If the resulting operand is an empty statement, just return the omitted
3342 statement casted to void. */
3343 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3344 return build1_loc (loc, NOP_EXPR, void_type_node,
3345 fold_ignored_result (omitted));
3347 if (TREE_SIDE_EFFECTS (omitted))
3348 return build2_loc (loc, COMPOUND_EXPR, type,
3349 fold_ignored_result (omitted), t);
3351 return non_lvalue_loc (loc, t);
3354 /* Return a tree for the case when the result of an expression is RESULT
3355 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3356 of the expression but are now not needed.
3358 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3359 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3360 evaluated before OMITTED2. Otherwise, if neither has side effects,
3361 just do the conversion of RESULT to TYPE. */
3363 tree
3364 omit_two_operands_loc (location_t loc, tree type, tree result,
3365 tree omitted1, tree omitted2)
3367 tree t = fold_convert_loc (loc, type, result);
3369 if (TREE_SIDE_EFFECTS (omitted2))
3370 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3371 if (TREE_SIDE_EFFECTS (omitted1))
3372 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3374 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3378 /* Return a simplified tree node for the truth-negation of ARG. This
3379 never alters ARG itself. We assume that ARG is an operation that
3380 returns a truth value (0 or 1).
3382 FIXME: one would think we would fold the result, but it causes
3383 problems with the dominator optimizer. */
3385 static tree
3386 fold_truth_not_expr (location_t loc, tree arg)
3388 tree type = TREE_TYPE (arg);
3389 enum tree_code code = TREE_CODE (arg);
3390 location_t loc1, loc2;
3392 /* If this is a comparison, we can simply invert it, except for
3393 floating-point non-equality comparisons, in which case we just
3394 enclose a TRUTH_NOT_EXPR around what we have. */
3396 if (TREE_CODE_CLASS (code) == tcc_comparison)
3398 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3399 if (FLOAT_TYPE_P (op_type)
3400 && flag_trapping_math
3401 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3402 && code != NE_EXPR && code != EQ_EXPR)
3403 return NULL_TREE;
3405 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3406 if (code == ERROR_MARK)
3407 return NULL_TREE;
3409 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3410 TREE_OPERAND (arg, 1));
3413 switch (code)
3415 case INTEGER_CST:
3416 return constant_boolean_node (integer_zerop (arg), type);
3418 case TRUTH_AND_EXPR:
3419 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3420 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3421 return build2_loc (loc, TRUTH_OR_EXPR, type,
3422 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3423 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3425 case TRUTH_OR_EXPR:
3426 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3427 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3428 return build2_loc (loc, TRUTH_AND_EXPR, type,
3429 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3430 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3432 case TRUTH_XOR_EXPR:
3433 /* Here we can invert either operand. We invert the first operand
3434 unless the second operand is a TRUTH_NOT_EXPR in which case our
3435 result is the XOR of the first operand with the inside of the
3436 negation of the second operand. */
3438 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3439 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3440 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3441 else
3442 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3443 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3444 TREE_OPERAND (arg, 1));
3446 case TRUTH_ANDIF_EXPR:
3447 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3448 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3449 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3450 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3451 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3453 case TRUTH_ORIF_EXPR:
3454 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3455 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3456 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3457 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3458 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3460 case TRUTH_NOT_EXPR:
3461 return TREE_OPERAND (arg, 0);
3463 case COND_EXPR:
3465 tree arg1 = TREE_OPERAND (arg, 1);
3466 tree arg2 = TREE_OPERAND (arg, 2);
3468 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3469 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3471 /* A COND_EXPR may have a throw as one operand, which
3472 then has void type. Just leave void operands
3473 as they are. */
3474 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3475 VOID_TYPE_P (TREE_TYPE (arg1))
3476 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3477 VOID_TYPE_P (TREE_TYPE (arg2))
3478 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3481 case COMPOUND_EXPR:
3482 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3483 return build2_loc (loc, COMPOUND_EXPR, type,
3484 TREE_OPERAND (arg, 0),
3485 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3487 case NON_LVALUE_EXPR:
3488 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3489 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3491 CASE_CONVERT:
3492 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3493 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3495 /* ... fall through ... */
3497 case FLOAT_EXPR:
3498 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3499 return build1_loc (loc, TREE_CODE (arg), type,
3500 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3502 case BIT_AND_EXPR:
3503 if (!integer_onep (TREE_OPERAND (arg, 1)))
3504 return NULL_TREE;
3505 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3507 case SAVE_EXPR:
3508 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3510 case CLEANUP_POINT_EXPR:
3511 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3512 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3513 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3515 default:
3516 return NULL_TREE;
3520 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3521 assume that ARG is an operation that returns a truth value (0 or 1
3522 for scalars, 0 or -1 for vectors). Return the folded expression if
3523 folding is successful. Otherwise, return NULL_TREE. */
3525 static tree
3526 fold_invert_truthvalue (location_t loc, tree arg)
3528 tree type = TREE_TYPE (arg);
3529 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3530 ? BIT_NOT_EXPR
3531 : TRUTH_NOT_EXPR,
3532 type, arg);
3535 /* Return a simplified tree node for the truth-negation of ARG. This
3536 never alters ARG itself. We assume that ARG is an operation that
3537 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3539 tree
3540 invert_truthvalue_loc (location_t loc, tree arg)
3542 if (TREE_CODE (arg) == ERROR_MARK)
3543 return arg;
3545 tree type = TREE_TYPE (arg);
3546 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3547 ? BIT_NOT_EXPR
3548 : TRUTH_NOT_EXPR,
3549 type, arg);
3552 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3553 with code CODE. This optimization is unsafe. */
3554 static tree
3555 distribute_real_division (location_t loc, enum tree_code code, tree type,
3556 tree arg0, tree arg1)
3558 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3559 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3561 /* (A / C) +- (B / C) -> (A +- B) / C. */
3562 if (mul0 == mul1
3563 && operand_equal_p (TREE_OPERAND (arg0, 1),
3564 TREE_OPERAND (arg1, 1), 0))
3565 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3566 fold_build2_loc (loc, code, type,
3567 TREE_OPERAND (arg0, 0),
3568 TREE_OPERAND (arg1, 0)),
3569 TREE_OPERAND (arg0, 1));
3571 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3572 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3573 TREE_OPERAND (arg1, 0), 0)
3574 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3575 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3577 REAL_VALUE_TYPE r0, r1;
3578 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3579 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3580 if (!mul0)
3581 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3582 if (!mul1)
3583 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3584 real_arithmetic (&r0, code, &r0, &r1);
3585 return fold_build2_loc (loc, MULT_EXPR, type,
3586 TREE_OPERAND (arg0, 0),
3587 build_real (type, r0));
3590 return NULL_TREE;
3593 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3594 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3596 static tree
3597 make_bit_field_ref (location_t loc, tree inner, tree type,
3598 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3600 tree result, bftype;
3602 if (bitpos == 0)
3604 tree size = TYPE_SIZE (TREE_TYPE (inner));
3605 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3606 || POINTER_TYPE_P (TREE_TYPE (inner)))
3607 && tree_fits_shwi_p (size)
3608 && tree_to_shwi (size) == bitsize)
3609 return fold_convert_loc (loc, type, inner);
3612 bftype = type;
3613 if (TYPE_PRECISION (bftype) != bitsize
3614 || TYPE_UNSIGNED (bftype) == !unsignedp)
3615 bftype = build_nonstandard_integer_type (bitsize, 0);
3617 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3618 size_int (bitsize), bitsize_int (bitpos));
3620 if (bftype != type)
3621 result = fold_convert_loc (loc, type, result);
3623 return result;
3626 /* Optimize a bit-field compare.
3628 There are two cases: First is a compare against a constant and the
3629 second is a comparison of two items where the fields are at the same
3630 bit position relative to the start of a chunk (byte, halfword, word)
3631 large enough to contain it. In these cases we can avoid the shift
3632 implicit in bitfield extractions.
3634 For constants, we emit a compare of the shifted constant with the
3635 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3636 compared. For two fields at the same position, we do the ANDs with the
3637 similar mask and compare the result of the ANDs.
3639 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3640 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3641 are the left and right operands of the comparison, respectively.
3643 If the optimization described above can be done, we return the resulting
3644 tree. Otherwise we return zero. */
3646 static tree
3647 optimize_bit_field_compare (location_t loc, enum tree_code code,
3648 tree compare_type, tree lhs, tree rhs)
3650 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3651 tree type = TREE_TYPE (lhs);
3652 tree unsigned_type;
3653 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3654 machine_mode lmode, rmode, nmode;
3655 int lunsignedp, runsignedp;
3656 int lvolatilep = 0, rvolatilep = 0;
3657 tree linner, rinner = NULL_TREE;
3658 tree mask;
3659 tree offset;
3661 /* Get all the information about the extractions being done. If the bit size
3662 if the same as the size of the underlying object, we aren't doing an
3663 extraction at all and so can do nothing. We also don't want to
3664 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3665 then will no longer be able to replace it. */
3666 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3667 &lunsignedp, &lvolatilep, false);
3668 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3669 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3670 return 0;
3672 if (!const_p)
3674 /* If this is not a constant, we can only do something if bit positions,
3675 sizes, and signedness are the same. */
3676 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3677 &runsignedp, &rvolatilep, false);
3679 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3680 || lunsignedp != runsignedp || offset != 0
3681 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3682 return 0;
3685 /* See if we can find a mode to refer to this field. We should be able to,
3686 but fail if we can't. */
3687 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3688 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3689 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3690 TYPE_ALIGN (TREE_TYPE (rinner))),
3691 word_mode, false);
3692 if (nmode == VOIDmode)
3693 return 0;
3695 /* Set signed and unsigned types of the precision of this mode for the
3696 shifts below. */
3697 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3699 /* Compute the bit position and size for the new reference and our offset
3700 within it. If the new reference is the same size as the original, we
3701 won't optimize anything, so return zero. */
3702 nbitsize = GET_MODE_BITSIZE (nmode);
3703 nbitpos = lbitpos & ~ (nbitsize - 1);
3704 lbitpos -= nbitpos;
3705 if (nbitsize == lbitsize)
3706 return 0;
3708 if (BYTES_BIG_ENDIAN)
3709 lbitpos = nbitsize - lbitsize - lbitpos;
3711 /* Make the mask to be used against the extracted field. */
3712 mask = build_int_cst_type (unsigned_type, -1);
3713 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3714 mask = const_binop (RSHIFT_EXPR, mask,
3715 size_int (nbitsize - lbitsize - lbitpos));
3717 if (! const_p)
3718 /* If not comparing with constant, just rework the comparison
3719 and return. */
3720 return fold_build2_loc (loc, code, compare_type,
3721 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3722 make_bit_field_ref (loc, linner,
3723 unsigned_type,
3724 nbitsize, nbitpos,
3726 mask),
3727 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3728 make_bit_field_ref (loc, rinner,
3729 unsigned_type,
3730 nbitsize, nbitpos,
3732 mask));
3734 /* Otherwise, we are handling the constant case. See if the constant is too
3735 big for the field. Warn and return a tree of for 0 (false) if so. We do
3736 this not only for its own sake, but to avoid having to test for this
3737 error case below. If we didn't, we might generate wrong code.
3739 For unsigned fields, the constant shifted right by the field length should
3740 be all zero. For signed fields, the high-order bits should agree with
3741 the sign bit. */
3743 if (lunsignedp)
3745 if (wi::lrshift (rhs, lbitsize) != 0)
3747 warning (0, "comparison is always %d due to width of bit-field",
3748 code == NE_EXPR);
3749 return constant_boolean_node (code == NE_EXPR, compare_type);
3752 else
3754 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3755 if (tem != 0 && tem != -1)
3757 warning (0, "comparison is always %d due to width of bit-field",
3758 code == NE_EXPR);
3759 return constant_boolean_node (code == NE_EXPR, compare_type);
3763 /* Single-bit compares should always be against zero. */
3764 if (lbitsize == 1 && ! integer_zerop (rhs))
3766 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3767 rhs = build_int_cst (type, 0);
3770 /* Make a new bitfield reference, shift the constant over the
3771 appropriate number of bits and mask it with the computed mask
3772 (in case this was a signed field). If we changed it, make a new one. */
3773 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3775 rhs = const_binop (BIT_AND_EXPR,
3776 const_binop (LSHIFT_EXPR,
3777 fold_convert_loc (loc, unsigned_type, rhs),
3778 size_int (lbitpos)),
3779 mask);
3781 lhs = build2_loc (loc, code, compare_type,
3782 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3783 return lhs;
3786 /* Subroutine for fold_truth_andor_1: decode a field reference.
3788 If EXP is a comparison reference, we return the innermost reference.
3790 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3791 set to the starting bit number.
3793 If the innermost field can be completely contained in a mode-sized
3794 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3796 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3797 otherwise it is not changed.
3799 *PUNSIGNEDP is set to the signedness of the field.
3801 *PMASK is set to the mask used. This is either contained in a
3802 BIT_AND_EXPR or derived from the width of the field.
3804 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3806 Return 0 if this is not a component reference or is one that we can't
3807 do anything with. */
3809 static tree
3810 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3811 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3812 int *punsignedp, int *pvolatilep,
3813 tree *pmask, tree *pand_mask)
3815 tree outer_type = 0;
3816 tree and_mask = 0;
3817 tree mask, inner, offset;
3818 tree unsigned_type;
3819 unsigned int precision;
3821 /* All the optimizations using this function assume integer fields.
3822 There are problems with FP fields since the type_for_size call
3823 below can fail for, e.g., XFmode. */
3824 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3825 return 0;
3827 /* We are interested in the bare arrangement of bits, so strip everything
3828 that doesn't affect the machine mode. However, record the type of the
3829 outermost expression if it may matter below. */
3830 if (CONVERT_EXPR_P (exp)
3831 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3832 outer_type = TREE_TYPE (exp);
3833 STRIP_NOPS (exp);
3835 if (TREE_CODE (exp) == BIT_AND_EXPR)
3837 and_mask = TREE_OPERAND (exp, 1);
3838 exp = TREE_OPERAND (exp, 0);
3839 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3840 if (TREE_CODE (and_mask) != INTEGER_CST)
3841 return 0;
3844 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3845 punsignedp, pvolatilep, false);
3846 if ((inner == exp && and_mask == 0)
3847 || *pbitsize < 0 || offset != 0
3848 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3849 return 0;
3851 /* If the number of bits in the reference is the same as the bitsize of
3852 the outer type, then the outer type gives the signedness. Otherwise
3853 (in case of a small bitfield) the signedness is unchanged. */
3854 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3855 *punsignedp = TYPE_UNSIGNED (outer_type);
3857 /* Compute the mask to access the bitfield. */
3858 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3859 precision = TYPE_PRECISION (unsigned_type);
3861 mask = build_int_cst_type (unsigned_type, -1);
3863 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3864 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3866 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3867 if (and_mask != 0)
3868 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3869 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3871 *pmask = mask;
3872 *pand_mask = and_mask;
3873 return inner;
3876 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3877 bit positions and MASK is SIGNED. */
3879 static int
3880 all_ones_mask_p (const_tree mask, unsigned int size)
3882 tree type = TREE_TYPE (mask);
3883 unsigned int precision = TYPE_PRECISION (type);
3885 /* If this function returns true when the type of the mask is
3886 UNSIGNED, then there will be errors. In particular see
3887 gcc.c-torture/execute/990326-1.c. There does not appear to be
3888 any documentation paper trail as to why this is so. But the pre
3889 wide-int worked with that restriction and it has been preserved
3890 here. */
3891 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3892 return false;
3894 return wi::mask (size, false, precision) == mask;
3897 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3898 represents the sign bit of EXP's type. If EXP represents a sign
3899 or zero extension, also test VAL against the unextended type.
3900 The return value is the (sub)expression whose sign bit is VAL,
3901 or NULL_TREE otherwise. */
3903 tree
3904 sign_bit_p (tree exp, const_tree val)
3906 int width;
3907 tree t;
3909 /* Tree EXP must have an integral type. */
3910 t = TREE_TYPE (exp);
3911 if (! INTEGRAL_TYPE_P (t))
3912 return NULL_TREE;
3914 /* Tree VAL must be an integer constant. */
3915 if (TREE_CODE (val) != INTEGER_CST
3916 || TREE_OVERFLOW (val))
3917 return NULL_TREE;
3919 width = TYPE_PRECISION (t);
3920 if (wi::only_sign_bit_p (val, width))
3921 return exp;
3923 /* Handle extension from a narrower type. */
3924 if (TREE_CODE (exp) == NOP_EXPR
3925 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3926 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3928 return NULL_TREE;
3931 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3932 to be evaluated unconditionally. */
3934 static int
3935 simple_operand_p (const_tree exp)
3937 /* Strip any conversions that don't change the machine mode. */
3938 STRIP_NOPS (exp);
3940 return (CONSTANT_CLASS_P (exp)
3941 || TREE_CODE (exp) == SSA_NAME
3942 || (DECL_P (exp)
3943 && ! TREE_ADDRESSABLE (exp)
3944 && ! TREE_THIS_VOLATILE (exp)
3945 && ! DECL_NONLOCAL (exp)
3946 /* Don't regard global variables as simple. They may be
3947 allocated in ways unknown to the compiler (shared memory,
3948 #pragma weak, etc). */
3949 && ! TREE_PUBLIC (exp)
3950 && ! DECL_EXTERNAL (exp)
3951 /* Weakrefs are not safe to be read, since they can be NULL.
3952 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
3953 have DECL_WEAK flag set. */
3954 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
3955 /* Loading a static variable is unduly expensive, but global
3956 registers aren't expensive. */
3957 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3960 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3961 to be evaluated unconditionally.
3962 I addition to simple_operand_p, we assume that comparisons, conversions,
3963 and logic-not operations are simple, if their operands are simple, too. */
3965 static bool
3966 simple_operand_p_2 (tree exp)
3968 enum tree_code code;
3970 if (TREE_SIDE_EFFECTS (exp)
3971 || tree_could_trap_p (exp))
3972 return false;
3974 while (CONVERT_EXPR_P (exp))
3975 exp = TREE_OPERAND (exp, 0);
3977 code = TREE_CODE (exp);
3979 if (TREE_CODE_CLASS (code) == tcc_comparison)
3980 return (simple_operand_p (TREE_OPERAND (exp, 0))
3981 && simple_operand_p (TREE_OPERAND (exp, 1)));
3983 if (code == TRUTH_NOT_EXPR)
3984 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
3986 return simple_operand_p (exp);
3990 /* The following functions are subroutines to fold_range_test and allow it to
3991 try to change a logical combination of comparisons into a range test.
3993 For example, both
3994 X == 2 || X == 3 || X == 4 || X == 5
3996 X >= 2 && X <= 5
3997 are converted to
3998 (unsigned) (X - 2) <= 3
4000 We describe each set of comparisons as being either inside or outside
4001 a range, using a variable named like IN_P, and then describe the
4002 range with a lower and upper bound. If one of the bounds is omitted,
4003 it represents either the highest or lowest value of the type.
4005 In the comments below, we represent a range by two numbers in brackets
4006 preceded by a "+" to designate being inside that range, or a "-" to
4007 designate being outside that range, so the condition can be inverted by
4008 flipping the prefix. An omitted bound is represented by a "-". For
4009 example, "- [-, 10]" means being outside the range starting at the lowest
4010 possible value and ending at 10, in other words, being greater than 10.
4011 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4012 always false.
4014 We set up things so that the missing bounds are handled in a consistent
4015 manner so neither a missing bound nor "true" and "false" need to be
4016 handled using a special case. */
4018 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4019 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4020 and UPPER1_P are nonzero if the respective argument is an upper bound
4021 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4022 must be specified for a comparison. ARG1 will be converted to ARG0's
4023 type if both are specified. */
4025 static tree
4026 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4027 tree arg1, int upper1_p)
4029 tree tem;
4030 int result;
4031 int sgn0, sgn1;
4033 /* If neither arg represents infinity, do the normal operation.
4034 Else, if not a comparison, return infinity. Else handle the special
4035 comparison rules. Note that most of the cases below won't occur, but
4036 are handled for consistency. */
4038 if (arg0 != 0 && arg1 != 0)
4040 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4041 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4042 STRIP_NOPS (tem);
4043 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4046 if (TREE_CODE_CLASS (code) != tcc_comparison)
4047 return 0;
4049 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4050 for neither. In real maths, we cannot assume open ended ranges are
4051 the same. But, this is computer arithmetic, where numbers are finite.
4052 We can therefore make the transformation of any unbounded range with
4053 the value Z, Z being greater than any representable number. This permits
4054 us to treat unbounded ranges as equal. */
4055 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4056 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4057 switch (code)
4059 case EQ_EXPR:
4060 result = sgn0 == sgn1;
4061 break;
4062 case NE_EXPR:
4063 result = sgn0 != sgn1;
4064 break;
4065 case LT_EXPR:
4066 result = sgn0 < sgn1;
4067 break;
4068 case LE_EXPR:
4069 result = sgn0 <= sgn1;
4070 break;
4071 case GT_EXPR:
4072 result = sgn0 > sgn1;
4073 break;
4074 case GE_EXPR:
4075 result = sgn0 >= sgn1;
4076 break;
4077 default:
4078 gcc_unreachable ();
4081 return constant_boolean_node (result, type);
4084 /* Helper routine for make_range. Perform one step for it, return
4085 new expression if the loop should continue or NULL_TREE if it should
4086 stop. */
4088 tree
4089 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4090 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4091 bool *strict_overflow_p)
4093 tree arg0_type = TREE_TYPE (arg0);
4094 tree n_low, n_high, low = *p_low, high = *p_high;
4095 int in_p = *p_in_p, n_in_p;
4097 switch (code)
4099 case TRUTH_NOT_EXPR:
4100 /* We can only do something if the range is testing for zero. */
4101 if (low == NULL_TREE || high == NULL_TREE
4102 || ! integer_zerop (low) || ! integer_zerop (high))
4103 return NULL_TREE;
4104 *p_in_p = ! in_p;
4105 return arg0;
4107 case EQ_EXPR: case NE_EXPR:
4108 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4109 /* We can only do something if the range is testing for zero
4110 and if the second operand is an integer constant. Note that
4111 saying something is "in" the range we make is done by
4112 complementing IN_P since it will set in the initial case of
4113 being not equal to zero; "out" is leaving it alone. */
4114 if (low == NULL_TREE || high == NULL_TREE
4115 || ! integer_zerop (low) || ! integer_zerop (high)
4116 || TREE_CODE (arg1) != INTEGER_CST)
4117 return NULL_TREE;
4119 switch (code)
4121 case NE_EXPR: /* - [c, c] */
4122 low = high = arg1;
4123 break;
4124 case EQ_EXPR: /* + [c, c] */
4125 in_p = ! in_p, low = high = arg1;
4126 break;
4127 case GT_EXPR: /* - [-, c] */
4128 low = 0, high = arg1;
4129 break;
4130 case GE_EXPR: /* + [c, -] */
4131 in_p = ! in_p, low = arg1, high = 0;
4132 break;
4133 case LT_EXPR: /* - [c, -] */
4134 low = arg1, high = 0;
4135 break;
4136 case LE_EXPR: /* + [-, c] */
4137 in_p = ! in_p, low = 0, high = arg1;
4138 break;
4139 default:
4140 gcc_unreachable ();
4143 /* If this is an unsigned comparison, we also know that EXP is
4144 greater than or equal to zero. We base the range tests we make
4145 on that fact, so we record it here so we can parse existing
4146 range tests. We test arg0_type since often the return type
4147 of, e.g. EQ_EXPR, is boolean. */
4148 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4150 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4151 in_p, low, high, 1,
4152 build_int_cst (arg0_type, 0),
4153 NULL_TREE))
4154 return NULL_TREE;
4156 in_p = n_in_p, low = n_low, high = n_high;
4158 /* If the high bound is missing, but we have a nonzero low
4159 bound, reverse the range so it goes from zero to the low bound
4160 minus 1. */
4161 if (high == 0 && low && ! integer_zerop (low))
4163 in_p = ! in_p;
4164 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4165 build_int_cst (TREE_TYPE (low), 1), 0);
4166 low = build_int_cst (arg0_type, 0);
4170 *p_low = low;
4171 *p_high = high;
4172 *p_in_p = in_p;
4173 return arg0;
4175 case NEGATE_EXPR:
4176 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4177 low and high are non-NULL, then normalize will DTRT. */
4178 if (!TYPE_UNSIGNED (arg0_type)
4179 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4181 if (low == NULL_TREE)
4182 low = TYPE_MIN_VALUE (arg0_type);
4183 if (high == NULL_TREE)
4184 high = TYPE_MAX_VALUE (arg0_type);
4187 /* (-x) IN [a,b] -> x in [-b, -a] */
4188 n_low = range_binop (MINUS_EXPR, exp_type,
4189 build_int_cst (exp_type, 0),
4190 0, high, 1);
4191 n_high = range_binop (MINUS_EXPR, exp_type,
4192 build_int_cst (exp_type, 0),
4193 0, low, 0);
4194 if (n_high != 0 && TREE_OVERFLOW (n_high))
4195 return NULL_TREE;
4196 goto normalize;
4198 case BIT_NOT_EXPR:
4199 /* ~ X -> -X - 1 */
4200 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4201 build_int_cst (exp_type, 1));
4203 case PLUS_EXPR:
4204 case MINUS_EXPR:
4205 if (TREE_CODE (arg1) != INTEGER_CST)
4206 return NULL_TREE;
4208 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4209 move a constant to the other side. */
4210 if (!TYPE_UNSIGNED (arg0_type)
4211 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4212 return NULL_TREE;
4214 /* If EXP is signed, any overflow in the computation is undefined,
4215 so we don't worry about it so long as our computations on
4216 the bounds don't overflow. For unsigned, overflow is defined
4217 and this is exactly the right thing. */
4218 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4219 arg0_type, low, 0, arg1, 0);
4220 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4221 arg0_type, high, 1, arg1, 0);
4222 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4223 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4224 return NULL_TREE;
4226 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4227 *strict_overflow_p = true;
4229 normalize:
4230 /* Check for an unsigned range which has wrapped around the maximum
4231 value thus making n_high < n_low, and normalize it. */
4232 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4234 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4235 build_int_cst (TREE_TYPE (n_high), 1), 0);
4236 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4237 build_int_cst (TREE_TYPE (n_low), 1), 0);
4239 /* If the range is of the form +/- [ x+1, x ], we won't
4240 be able to normalize it. But then, it represents the
4241 whole range or the empty set, so make it
4242 +/- [ -, - ]. */
4243 if (tree_int_cst_equal (n_low, low)
4244 && tree_int_cst_equal (n_high, high))
4245 low = high = 0;
4246 else
4247 in_p = ! in_p;
4249 else
4250 low = n_low, high = n_high;
4252 *p_low = low;
4253 *p_high = high;
4254 *p_in_p = in_p;
4255 return arg0;
4257 CASE_CONVERT:
4258 case NON_LVALUE_EXPR:
4259 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4260 return NULL_TREE;
4262 if (! INTEGRAL_TYPE_P (arg0_type)
4263 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4264 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4265 return NULL_TREE;
4267 n_low = low, n_high = high;
4269 if (n_low != 0)
4270 n_low = fold_convert_loc (loc, arg0_type, n_low);
4272 if (n_high != 0)
4273 n_high = fold_convert_loc (loc, arg0_type, n_high);
4275 /* If we're converting arg0 from an unsigned type, to exp,
4276 a signed type, we will be doing the comparison as unsigned.
4277 The tests above have already verified that LOW and HIGH
4278 are both positive.
4280 So we have to ensure that we will handle large unsigned
4281 values the same way that the current signed bounds treat
4282 negative values. */
4284 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4286 tree high_positive;
4287 tree equiv_type;
4288 /* For fixed-point modes, we need to pass the saturating flag
4289 as the 2nd parameter. */
4290 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4291 equiv_type
4292 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4293 TYPE_SATURATING (arg0_type));
4294 else
4295 equiv_type
4296 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4298 /* A range without an upper bound is, naturally, unbounded.
4299 Since convert would have cropped a very large value, use
4300 the max value for the destination type. */
4301 high_positive
4302 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4303 : TYPE_MAX_VALUE (arg0_type);
4305 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4306 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4307 fold_convert_loc (loc, arg0_type,
4308 high_positive),
4309 build_int_cst (arg0_type, 1));
4311 /* If the low bound is specified, "and" the range with the
4312 range for which the original unsigned value will be
4313 positive. */
4314 if (low != 0)
4316 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4317 1, fold_convert_loc (loc, arg0_type,
4318 integer_zero_node),
4319 high_positive))
4320 return NULL_TREE;
4322 in_p = (n_in_p == in_p);
4324 else
4326 /* Otherwise, "or" the range with the range of the input
4327 that will be interpreted as negative. */
4328 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4329 1, fold_convert_loc (loc, arg0_type,
4330 integer_zero_node),
4331 high_positive))
4332 return NULL_TREE;
4334 in_p = (in_p != n_in_p);
4338 *p_low = n_low;
4339 *p_high = n_high;
4340 *p_in_p = in_p;
4341 return arg0;
4343 default:
4344 return NULL_TREE;
4348 /* Given EXP, a logical expression, set the range it is testing into
4349 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4350 actually being tested. *PLOW and *PHIGH will be made of the same
4351 type as the returned expression. If EXP is not a comparison, we
4352 will most likely not be returning a useful value and range. Set
4353 *STRICT_OVERFLOW_P to true if the return value is only valid
4354 because signed overflow is undefined; otherwise, do not change
4355 *STRICT_OVERFLOW_P. */
4357 tree
4358 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4359 bool *strict_overflow_p)
4361 enum tree_code code;
4362 tree arg0, arg1 = NULL_TREE;
4363 tree exp_type, nexp;
4364 int in_p;
4365 tree low, high;
4366 location_t loc = EXPR_LOCATION (exp);
4368 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4369 and see if we can refine the range. Some of the cases below may not
4370 happen, but it doesn't seem worth worrying about this. We "continue"
4371 the outer loop when we've changed something; otherwise we "break"
4372 the switch, which will "break" the while. */
4374 in_p = 0;
4375 low = high = build_int_cst (TREE_TYPE (exp), 0);
4377 while (1)
4379 code = TREE_CODE (exp);
4380 exp_type = TREE_TYPE (exp);
4381 arg0 = NULL_TREE;
4383 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4385 if (TREE_OPERAND_LENGTH (exp) > 0)
4386 arg0 = TREE_OPERAND (exp, 0);
4387 if (TREE_CODE_CLASS (code) == tcc_binary
4388 || TREE_CODE_CLASS (code) == tcc_comparison
4389 || (TREE_CODE_CLASS (code) == tcc_expression
4390 && TREE_OPERAND_LENGTH (exp) > 1))
4391 arg1 = TREE_OPERAND (exp, 1);
4393 if (arg0 == NULL_TREE)
4394 break;
4396 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4397 &high, &in_p, strict_overflow_p);
4398 if (nexp == NULL_TREE)
4399 break;
4400 exp = nexp;
4403 /* If EXP is a constant, we can evaluate whether this is true or false. */
4404 if (TREE_CODE (exp) == INTEGER_CST)
4406 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4407 exp, 0, low, 0))
4408 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4409 exp, 1, high, 1)));
4410 low = high = 0;
4411 exp = 0;
4414 *pin_p = in_p, *plow = low, *phigh = high;
4415 return exp;
4418 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4419 type, TYPE, return an expression to test if EXP is in (or out of, depending
4420 on IN_P) the range. Return 0 if the test couldn't be created. */
4422 tree
4423 build_range_check (location_t loc, tree type, tree exp, int in_p,
4424 tree low, tree high)
4426 tree etype = TREE_TYPE (exp), value;
4428 /* Disable this optimization for function pointer expressions
4429 on targets that require function pointer canonicalization. */
4430 if (targetm.have_canonicalize_funcptr_for_compare ()
4431 && TREE_CODE (etype) == POINTER_TYPE
4432 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4433 return NULL_TREE;
4435 if (! in_p)
4437 value = build_range_check (loc, type, exp, 1, low, high);
4438 if (value != 0)
4439 return invert_truthvalue_loc (loc, value);
4441 return 0;
4444 if (low == 0 && high == 0)
4445 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4447 if (low == 0)
4448 return fold_build2_loc (loc, LE_EXPR, type, exp,
4449 fold_convert_loc (loc, etype, high));
4451 if (high == 0)
4452 return fold_build2_loc (loc, GE_EXPR, type, exp,
4453 fold_convert_loc (loc, etype, low));
4455 if (operand_equal_p (low, high, 0))
4456 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4457 fold_convert_loc (loc, etype, low));
4459 if (integer_zerop (low))
4461 if (! TYPE_UNSIGNED (etype))
4463 etype = unsigned_type_for (etype);
4464 high = fold_convert_loc (loc, etype, high);
4465 exp = fold_convert_loc (loc, etype, exp);
4467 return build_range_check (loc, type, exp, 1, 0, high);
4470 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4471 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4473 int prec = TYPE_PRECISION (etype);
4475 if (wi::mask (prec - 1, false, prec) == high)
4477 if (TYPE_UNSIGNED (etype))
4479 tree signed_etype = signed_type_for (etype);
4480 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4481 etype
4482 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4483 else
4484 etype = signed_etype;
4485 exp = fold_convert_loc (loc, etype, exp);
4487 return fold_build2_loc (loc, GT_EXPR, type, exp,
4488 build_int_cst (etype, 0));
4492 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4493 This requires wrap-around arithmetics for the type of the expression.
4494 First make sure that arithmetics in this type is valid, then make sure
4495 that it wraps around. */
4496 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4497 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4498 TYPE_UNSIGNED (etype));
4500 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4502 tree utype, minv, maxv;
4504 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4505 for the type in question, as we rely on this here. */
4506 utype = unsigned_type_for (etype);
4507 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4508 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4509 build_int_cst (TREE_TYPE (maxv), 1), 1);
4510 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4512 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4513 minv, 1, maxv, 1)))
4514 etype = utype;
4515 else
4516 return 0;
4519 high = fold_convert_loc (loc, etype, high);
4520 low = fold_convert_loc (loc, etype, low);
4521 exp = fold_convert_loc (loc, etype, exp);
4523 value = const_binop (MINUS_EXPR, high, low);
4526 if (POINTER_TYPE_P (etype))
4528 if (value != 0 && !TREE_OVERFLOW (value))
4530 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4531 return build_range_check (loc, type,
4532 fold_build_pointer_plus_loc (loc, exp, low),
4533 1, build_int_cst (etype, 0), value);
4535 return 0;
4538 if (value != 0 && !TREE_OVERFLOW (value))
4539 return build_range_check (loc, type,
4540 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4541 1, build_int_cst (etype, 0), value);
4543 return 0;
4546 /* Return the predecessor of VAL in its type, handling the infinite case. */
4548 static tree
4549 range_predecessor (tree val)
4551 tree type = TREE_TYPE (val);
4553 if (INTEGRAL_TYPE_P (type)
4554 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4555 return 0;
4556 else
4557 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4558 build_int_cst (TREE_TYPE (val), 1), 0);
4561 /* Return the successor of VAL in its type, handling the infinite case. */
4563 static tree
4564 range_successor (tree val)
4566 tree type = TREE_TYPE (val);
4568 if (INTEGRAL_TYPE_P (type)
4569 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4570 return 0;
4571 else
4572 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4573 build_int_cst (TREE_TYPE (val), 1), 0);
4576 /* Given two ranges, see if we can merge them into one. Return 1 if we
4577 can, 0 if we can't. Set the output range into the specified parameters. */
4579 bool
4580 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4581 tree high0, int in1_p, tree low1, tree high1)
4583 int no_overlap;
4584 int subset;
4585 int temp;
4586 tree tem;
4587 int in_p;
4588 tree low, high;
4589 int lowequal = ((low0 == 0 && low1 == 0)
4590 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4591 low0, 0, low1, 0)));
4592 int highequal = ((high0 == 0 && high1 == 0)
4593 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4594 high0, 1, high1, 1)));
4596 /* Make range 0 be the range that starts first, or ends last if they
4597 start at the same value. Swap them if it isn't. */
4598 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4599 low0, 0, low1, 0))
4600 || (lowequal
4601 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4602 high1, 1, high0, 1))))
4604 temp = in0_p, in0_p = in1_p, in1_p = temp;
4605 tem = low0, low0 = low1, low1 = tem;
4606 tem = high0, high0 = high1, high1 = tem;
4609 /* Now flag two cases, whether the ranges are disjoint or whether the
4610 second range is totally subsumed in the first. Note that the tests
4611 below are simplified by the ones above. */
4612 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4613 high0, 1, low1, 0));
4614 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4615 high1, 1, high0, 1));
4617 /* We now have four cases, depending on whether we are including or
4618 excluding the two ranges. */
4619 if (in0_p && in1_p)
4621 /* If they don't overlap, the result is false. If the second range
4622 is a subset it is the result. Otherwise, the range is from the start
4623 of the second to the end of the first. */
4624 if (no_overlap)
4625 in_p = 0, low = high = 0;
4626 else if (subset)
4627 in_p = 1, low = low1, high = high1;
4628 else
4629 in_p = 1, low = low1, high = high0;
4632 else if (in0_p && ! in1_p)
4634 /* If they don't overlap, the result is the first range. If they are
4635 equal, the result is false. If the second range is a subset of the
4636 first, and the ranges begin at the same place, we go from just after
4637 the end of the second range to the end of the first. If the second
4638 range is not a subset of the first, or if it is a subset and both
4639 ranges end at the same place, the range starts at the start of the
4640 first range and ends just before the second range.
4641 Otherwise, we can't describe this as a single range. */
4642 if (no_overlap)
4643 in_p = 1, low = low0, high = high0;
4644 else if (lowequal && highequal)
4645 in_p = 0, low = high = 0;
4646 else if (subset && lowequal)
4648 low = range_successor (high1);
4649 high = high0;
4650 in_p = 1;
4651 if (low == 0)
4653 /* We are in the weird situation where high0 > high1 but
4654 high1 has no successor. Punt. */
4655 return 0;
4658 else if (! subset || highequal)
4660 low = low0;
4661 high = range_predecessor (low1);
4662 in_p = 1;
4663 if (high == 0)
4665 /* low0 < low1 but low1 has no predecessor. Punt. */
4666 return 0;
4669 else
4670 return 0;
4673 else if (! in0_p && in1_p)
4675 /* If they don't overlap, the result is the second range. If the second
4676 is a subset of the first, the result is false. Otherwise,
4677 the range starts just after the first range and ends at the
4678 end of the second. */
4679 if (no_overlap)
4680 in_p = 1, low = low1, high = high1;
4681 else if (subset || highequal)
4682 in_p = 0, low = high = 0;
4683 else
4685 low = range_successor (high0);
4686 high = high1;
4687 in_p = 1;
4688 if (low == 0)
4690 /* high1 > high0 but high0 has no successor. Punt. */
4691 return 0;
4696 else
4698 /* The case where we are excluding both ranges. Here the complex case
4699 is if they don't overlap. In that case, the only time we have a
4700 range is if they are adjacent. If the second is a subset of the
4701 first, the result is the first. Otherwise, the range to exclude
4702 starts at the beginning of the first range and ends at the end of the
4703 second. */
4704 if (no_overlap)
4706 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4707 range_successor (high0),
4708 1, low1, 0)))
4709 in_p = 0, low = low0, high = high1;
4710 else
4712 /* Canonicalize - [min, x] into - [-, x]. */
4713 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4714 switch (TREE_CODE (TREE_TYPE (low0)))
4716 case ENUMERAL_TYPE:
4717 if (TYPE_PRECISION (TREE_TYPE (low0))
4718 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4719 break;
4720 /* FALLTHROUGH */
4721 case INTEGER_TYPE:
4722 if (tree_int_cst_equal (low0,
4723 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4724 low0 = 0;
4725 break;
4726 case POINTER_TYPE:
4727 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4728 && integer_zerop (low0))
4729 low0 = 0;
4730 break;
4731 default:
4732 break;
4735 /* Canonicalize - [x, max] into - [x, -]. */
4736 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4737 switch (TREE_CODE (TREE_TYPE (high1)))
4739 case ENUMERAL_TYPE:
4740 if (TYPE_PRECISION (TREE_TYPE (high1))
4741 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4742 break;
4743 /* FALLTHROUGH */
4744 case INTEGER_TYPE:
4745 if (tree_int_cst_equal (high1,
4746 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4747 high1 = 0;
4748 break;
4749 case POINTER_TYPE:
4750 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4751 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4752 high1, 1,
4753 build_int_cst (TREE_TYPE (high1), 1),
4754 1)))
4755 high1 = 0;
4756 break;
4757 default:
4758 break;
4761 /* The ranges might be also adjacent between the maximum and
4762 minimum values of the given type. For
4763 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4764 return + [x + 1, y - 1]. */
4765 if (low0 == 0 && high1 == 0)
4767 low = range_successor (high0);
4768 high = range_predecessor (low1);
4769 if (low == 0 || high == 0)
4770 return 0;
4772 in_p = 1;
4774 else
4775 return 0;
4778 else if (subset)
4779 in_p = 0, low = low0, high = high0;
4780 else
4781 in_p = 0, low = low0, high = high1;
4784 *pin_p = in_p, *plow = low, *phigh = high;
4785 return 1;
4789 /* Subroutine of fold, looking inside expressions of the form
4790 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4791 of the COND_EXPR. This function is being used also to optimize
4792 A op B ? C : A, by reversing the comparison first.
4794 Return a folded expression whose code is not a COND_EXPR
4795 anymore, or NULL_TREE if no folding opportunity is found. */
4797 static tree
4798 fold_cond_expr_with_comparison (location_t loc, tree type,
4799 tree arg0, tree arg1, tree arg2)
4801 enum tree_code comp_code = TREE_CODE (arg0);
4802 tree arg00 = TREE_OPERAND (arg0, 0);
4803 tree arg01 = TREE_OPERAND (arg0, 1);
4804 tree arg1_type = TREE_TYPE (arg1);
4805 tree tem;
4807 STRIP_NOPS (arg1);
4808 STRIP_NOPS (arg2);
4810 /* If we have A op 0 ? A : -A, consider applying the following
4811 transformations:
4813 A == 0? A : -A same as -A
4814 A != 0? A : -A same as A
4815 A >= 0? A : -A same as abs (A)
4816 A > 0? A : -A same as abs (A)
4817 A <= 0? A : -A same as -abs (A)
4818 A < 0? A : -A same as -abs (A)
4820 None of these transformations work for modes with signed
4821 zeros. If A is +/-0, the first two transformations will
4822 change the sign of the result (from +0 to -0, or vice
4823 versa). The last four will fix the sign of the result,
4824 even though the original expressions could be positive or
4825 negative, depending on the sign of A.
4827 Note that all these transformations are correct if A is
4828 NaN, since the two alternatives (A and -A) are also NaNs. */
4829 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4830 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4831 ? real_zerop (arg01)
4832 : integer_zerop (arg01))
4833 && ((TREE_CODE (arg2) == NEGATE_EXPR
4834 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4835 /* In the case that A is of the form X-Y, '-A' (arg2) may
4836 have already been folded to Y-X, check for that. */
4837 || (TREE_CODE (arg1) == MINUS_EXPR
4838 && TREE_CODE (arg2) == MINUS_EXPR
4839 && operand_equal_p (TREE_OPERAND (arg1, 0),
4840 TREE_OPERAND (arg2, 1), 0)
4841 && operand_equal_p (TREE_OPERAND (arg1, 1),
4842 TREE_OPERAND (arg2, 0), 0))))
4843 switch (comp_code)
4845 case EQ_EXPR:
4846 case UNEQ_EXPR:
4847 tem = fold_convert_loc (loc, arg1_type, arg1);
4848 return pedantic_non_lvalue_loc (loc,
4849 fold_convert_loc (loc, type,
4850 negate_expr (tem)));
4851 case NE_EXPR:
4852 case LTGT_EXPR:
4853 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4854 case UNGE_EXPR:
4855 case UNGT_EXPR:
4856 if (flag_trapping_math)
4857 break;
4858 /* Fall through. */
4859 case GE_EXPR:
4860 case GT_EXPR:
4861 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4862 arg1 = fold_convert_loc (loc, signed_type_for
4863 (TREE_TYPE (arg1)), arg1);
4864 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4865 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4866 case UNLE_EXPR:
4867 case UNLT_EXPR:
4868 if (flag_trapping_math)
4869 break;
4870 case LE_EXPR:
4871 case LT_EXPR:
4872 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4873 arg1 = fold_convert_loc (loc, signed_type_for
4874 (TREE_TYPE (arg1)), arg1);
4875 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4876 return negate_expr (fold_convert_loc (loc, type, tem));
4877 default:
4878 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4879 break;
4882 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4883 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4884 both transformations are correct when A is NaN: A != 0
4885 is then true, and A == 0 is false. */
4887 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4888 && integer_zerop (arg01) && integer_zerop (arg2))
4890 if (comp_code == NE_EXPR)
4891 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4892 else if (comp_code == EQ_EXPR)
4893 return build_zero_cst (type);
4896 /* Try some transformations of A op B ? A : B.
4898 A == B? A : B same as B
4899 A != B? A : B same as A
4900 A >= B? A : B same as max (A, B)
4901 A > B? A : B same as max (B, A)
4902 A <= B? A : B same as min (A, B)
4903 A < B? A : B same as min (B, A)
4905 As above, these transformations don't work in the presence
4906 of signed zeros. For example, if A and B are zeros of
4907 opposite sign, the first two transformations will change
4908 the sign of the result. In the last four, the original
4909 expressions give different results for (A=+0, B=-0) and
4910 (A=-0, B=+0), but the transformed expressions do not.
4912 The first two transformations are correct if either A or B
4913 is a NaN. In the first transformation, the condition will
4914 be false, and B will indeed be chosen. In the case of the
4915 second transformation, the condition A != B will be true,
4916 and A will be chosen.
4918 The conversions to max() and min() are not correct if B is
4919 a number and A is not. The conditions in the original
4920 expressions will be false, so all four give B. The min()
4921 and max() versions would give a NaN instead. */
4922 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4923 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4924 /* Avoid these transformations if the COND_EXPR may be used
4925 as an lvalue in the C++ front-end. PR c++/19199. */
4926 && (in_gimple_form
4927 || VECTOR_TYPE_P (type)
4928 || (! lang_GNU_CXX ()
4929 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4930 || ! maybe_lvalue_p (arg1)
4931 || ! maybe_lvalue_p (arg2)))
4933 tree comp_op0 = arg00;
4934 tree comp_op1 = arg01;
4935 tree comp_type = TREE_TYPE (comp_op0);
4937 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4938 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4940 comp_type = type;
4941 comp_op0 = arg1;
4942 comp_op1 = arg2;
4945 switch (comp_code)
4947 case EQ_EXPR:
4948 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4949 case NE_EXPR:
4950 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4951 case LE_EXPR:
4952 case LT_EXPR:
4953 case UNLE_EXPR:
4954 case UNLT_EXPR:
4955 /* In C++ a ?: expression can be an lvalue, so put the
4956 operand which will be used if they are equal first
4957 so that we can convert this back to the
4958 corresponding COND_EXPR. */
4959 if (!HONOR_NANS (arg1))
4961 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4962 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4963 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4964 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4965 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4966 comp_op1, comp_op0);
4967 return pedantic_non_lvalue_loc (loc,
4968 fold_convert_loc (loc, type, tem));
4970 break;
4971 case GE_EXPR:
4972 case GT_EXPR:
4973 case UNGE_EXPR:
4974 case UNGT_EXPR:
4975 if (!HONOR_NANS (arg1))
4977 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4978 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4979 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4980 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4981 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4982 comp_op1, comp_op0);
4983 return pedantic_non_lvalue_loc (loc,
4984 fold_convert_loc (loc, type, tem));
4986 break;
4987 case UNEQ_EXPR:
4988 if (!HONOR_NANS (arg1))
4989 return pedantic_non_lvalue_loc (loc,
4990 fold_convert_loc (loc, type, arg2));
4991 break;
4992 case LTGT_EXPR:
4993 if (!HONOR_NANS (arg1))
4994 return pedantic_non_lvalue_loc (loc,
4995 fold_convert_loc (loc, type, arg1));
4996 break;
4997 default:
4998 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4999 break;
5003 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5004 we might still be able to simplify this. For example,
5005 if C1 is one less or one more than C2, this might have started
5006 out as a MIN or MAX and been transformed by this function.
5007 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5009 if (INTEGRAL_TYPE_P (type)
5010 && TREE_CODE (arg01) == INTEGER_CST
5011 && TREE_CODE (arg2) == INTEGER_CST)
5012 switch (comp_code)
5014 case EQ_EXPR:
5015 if (TREE_CODE (arg1) == INTEGER_CST)
5016 break;
5017 /* We can replace A with C1 in this case. */
5018 arg1 = fold_convert_loc (loc, type, arg01);
5019 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5021 case LT_EXPR:
5022 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5023 MIN_EXPR, to preserve the signedness of the comparison. */
5024 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5025 OEP_ONLY_CONST)
5026 && operand_equal_p (arg01,
5027 const_binop (PLUS_EXPR, arg2,
5028 build_int_cst (type, 1)),
5029 OEP_ONLY_CONST))
5031 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5032 fold_convert_loc (loc, TREE_TYPE (arg00),
5033 arg2));
5034 return pedantic_non_lvalue_loc (loc,
5035 fold_convert_loc (loc, type, tem));
5037 break;
5039 case LE_EXPR:
5040 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5041 as above. */
5042 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5043 OEP_ONLY_CONST)
5044 && operand_equal_p (arg01,
5045 const_binop (MINUS_EXPR, arg2,
5046 build_int_cst (type, 1)),
5047 OEP_ONLY_CONST))
5049 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5050 fold_convert_loc (loc, TREE_TYPE (arg00),
5051 arg2));
5052 return pedantic_non_lvalue_loc (loc,
5053 fold_convert_loc (loc, type, tem));
5055 break;
5057 case GT_EXPR:
5058 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5059 MAX_EXPR, to preserve the signedness of the comparison. */
5060 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5061 OEP_ONLY_CONST)
5062 && operand_equal_p (arg01,
5063 const_binop (MINUS_EXPR, arg2,
5064 build_int_cst (type, 1)),
5065 OEP_ONLY_CONST))
5067 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5068 fold_convert_loc (loc, TREE_TYPE (arg00),
5069 arg2));
5070 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5072 break;
5074 case GE_EXPR:
5075 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5076 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5077 OEP_ONLY_CONST)
5078 && operand_equal_p (arg01,
5079 const_binop (PLUS_EXPR, arg2,
5080 build_int_cst (type, 1)),
5081 OEP_ONLY_CONST))
5083 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5084 fold_convert_loc (loc, TREE_TYPE (arg00),
5085 arg2));
5086 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5088 break;
5089 case NE_EXPR:
5090 break;
5091 default:
5092 gcc_unreachable ();
5095 return NULL_TREE;
5100 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5101 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5102 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5103 false) >= 2)
5104 #endif
5106 /* EXP is some logical combination of boolean tests. See if we can
5107 merge it into some range test. Return the new tree if so. */
5109 static tree
5110 fold_range_test (location_t loc, enum tree_code code, tree type,
5111 tree op0, tree op1)
5113 int or_op = (code == TRUTH_ORIF_EXPR
5114 || code == TRUTH_OR_EXPR);
5115 int in0_p, in1_p, in_p;
5116 tree low0, low1, low, high0, high1, high;
5117 bool strict_overflow_p = false;
5118 tree tem, lhs, rhs;
5119 const char * const warnmsg = G_("assuming signed overflow does not occur "
5120 "when simplifying range test");
5122 if (!INTEGRAL_TYPE_P (type))
5123 return 0;
5125 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5126 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5128 /* If this is an OR operation, invert both sides; we will invert
5129 again at the end. */
5130 if (or_op)
5131 in0_p = ! in0_p, in1_p = ! in1_p;
5133 /* If both expressions are the same, if we can merge the ranges, and we
5134 can build the range test, return it or it inverted. If one of the
5135 ranges is always true or always false, consider it to be the same
5136 expression as the other. */
5137 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5138 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5139 in1_p, low1, high1)
5140 && 0 != (tem = (build_range_check (loc, type,
5141 lhs != 0 ? lhs
5142 : rhs != 0 ? rhs : integer_zero_node,
5143 in_p, low, high))))
5145 if (strict_overflow_p)
5146 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5147 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5150 /* On machines where the branch cost is expensive, if this is a
5151 short-circuited branch and the underlying object on both sides
5152 is the same, make a non-short-circuit operation. */
5153 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5154 && lhs != 0 && rhs != 0
5155 && (code == TRUTH_ANDIF_EXPR
5156 || code == TRUTH_ORIF_EXPR)
5157 && operand_equal_p (lhs, rhs, 0))
5159 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5160 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5161 which cases we can't do this. */
5162 if (simple_operand_p (lhs))
5163 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5164 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5165 type, op0, op1);
5167 else if (!lang_hooks.decls.global_bindings_p ()
5168 && !CONTAINS_PLACEHOLDER_P (lhs))
5170 tree common = save_expr (lhs);
5172 if (0 != (lhs = build_range_check (loc, type, common,
5173 or_op ? ! in0_p : in0_p,
5174 low0, high0))
5175 && (0 != (rhs = build_range_check (loc, type, common,
5176 or_op ? ! in1_p : in1_p,
5177 low1, high1))))
5179 if (strict_overflow_p)
5180 fold_overflow_warning (warnmsg,
5181 WARN_STRICT_OVERFLOW_COMPARISON);
5182 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5183 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5184 type, lhs, rhs);
5189 return 0;
5192 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5193 bit value. Arrange things so the extra bits will be set to zero if and
5194 only if C is signed-extended to its full width. If MASK is nonzero,
5195 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5197 static tree
5198 unextend (tree c, int p, int unsignedp, tree mask)
5200 tree type = TREE_TYPE (c);
5201 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5202 tree temp;
5204 if (p == modesize || unsignedp)
5205 return c;
5207 /* We work by getting just the sign bit into the low-order bit, then
5208 into the high-order bit, then sign-extend. We then XOR that value
5209 with C. */
5210 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5212 /* We must use a signed type in order to get an arithmetic right shift.
5213 However, we must also avoid introducing accidental overflows, so that
5214 a subsequent call to integer_zerop will work. Hence we must
5215 do the type conversion here. At this point, the constant is either
5216 zero or one, and the conversion to a signed type can never overflow.
5217 We could get an overflow if this conversion is done anywhere else. */
5218 if (TYPE_UNSIGNED (type))
5219 temp = fold_convert (signed_type_for (type), temp);
5221 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5222 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5223 if (mask != 0)
5224 temp = const_binop (BIT_AND_EXPR, temp,
5225 fold_convert (TREE_TYPE (c), mask));
5226 /* If necessary, convert the type back to match the type of C. */
5227 if (TYPE_UNSIGNED (type))
5228 temp = fold_convert (type, temp);
5230 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5233 /* For an expression that has the form
5234 (A && B) || ~B
5236 (A || B) && ~B,
5237 we can drop one of the inner expressions and simplify to
5238 A || ~B
5240 A && ~B
5241 LOC is the location of the resulting expression. OP is the inner
5242 logical operation; the left-hand side in the examples above, while CMPOP
5243 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5244 removing a condition that guards another, as in
5245 (A != NULL && A->...) || A == NULL
5246 which we must not transform. If RHS_ONLY is true, only eliminate the
5247 right-most operand of the inner logical operation. */
5249 static tree
5250 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5251 bool rhs_only)
5253 tree type = TREE_TYPE (cmpop);
5254 enum tree_code code = TREE_CODE (cmpop);
5255 enum tree_code truthop_code = TREE_CODE (op);
5256 tree lhs = TREE_OPERAND (op, 0);
5257 tree rhs = TREE_OPERAND (op, 1);
5258 tree orig_lhs = lhs, orig_rhs = rhs;
5259 enum tree_code rhs_code = TREE_CODE (rhs);
5260 enum tree_code lhs_code = TREE_CODE (lhs);
5261 enum tree_code inv_code;
5263 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5264 return NULL_TREE;
5266 if (TREE_CODE_CLASS (code) != tcc_comparison)
5267 return NULL_TREE;
5269 if (rhs_code == truthop_code)
5271 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5272 if (newrhs != NULL_TREE)
5274 rhs = newrhs;
5275 rhs_code = TREE_CODE (rhs);
5278 if (lhs_code == truthop_code && !rhs_only)
5280 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5281 if (newlhs != NULL_TREE)
5283 lhs = newlhs;
5284 lhs_code = TREE_CODE (lhs);
5288 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5289 if (inv_code == rhs_code
5290 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5291 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5292 return lhs;
5293 if (!rhs_only && inv_code == lhs_code
5294 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5295 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5296 return rhs;
5297 if (rhs != orig_rhs || lhs != orig_lhs)
5298 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5299 lhs, rhs);
5300 return NULL_TREE;
5303 /* Find ways of folding logical expressions of LHS and RHS:
5304 Try to merge two comparisons to the same innermost item.
5305 Look for range tests like "ch >= '0' && ch <= '9'".
5306 Look for combinations of simple terms on machines with expensive branches
5307 and evaluate the RHS unconditionally.
5309 For example, if we have p->a == 2 && p->b == 4 and we can make an
5310 object large enough to span both A and B, we can do this with a comparison
5311 against the object ANDed with the a mask.
5313 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5314 operations to do this with one comparison.
5316 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5317 function and the one above.
5319 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5320 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5322 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5323 two operands.
5325 We return the simplified tree or 0 if no optimization is possible. */
5327 static tree
5328 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5329 tree lhs, tree rhs)
5331 /* If this is the "or" of two comparisons, we can do something if
5332 the comparisons are NE_EXPR. If this is the "and", we can do something
5333 if the comparisons are EQ_EXPR. I.e.,
5334 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5336 WANTED_CODE is this operation code. For single bit fields, we can
5337 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5338 comparison for one-bit fields. */
5340 enum tree_code wanted_code;
5341 enum tree_code lcode, rcode;
5342 tree ll_arg, lr_arg, rl_arg, rr_arg;
5343 tree ll_inner, lr_inner, rl_inner, rr_inner;
5344 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5345 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5346 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5347 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5348 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5349 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5350 machine_mode lnmode, rnmode;
5351 tree ll_mask, lr_mask, rl_mask, rr_mask;
5352 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5353 tree l_const, r_const;
5354 tree lntype, rntype, result;
5355 HOST_WIDE_INT first_bit, end_bit;
5356 int volatilep;
5358 /* Start by getting the comparison codes. Fail if anything is volatile.
5359 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5360 it were surrounded with a NE_EXPR. */
5362 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5363 return 0;
5365 lcode = TREE_CODE (lhs);
5366 rcode = TREE_CODE (rhs);
5368 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5370 lhs = build2 (NE_EXPR, truth_type, lhs,
5371 build_int_cst (TREE_TYPE (lhs), 0));
5372 lcode = NE_EXPR;
5375 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5377 rhs = build2 (NE_EXPR, truth_type, rhs,
5378 build_int_cst (TREE_TYPE (rhs), 0));
5379 rcode = NE_EXPR;
5382 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5383 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5384 return 0;
5386 ll_arg = TREE_OPERAND (lhs, 0);
5387 lr_arg = TREE_OPERAND (lhs, 1);
5388 rl_arg = TREE_OPERAND (rhs, 0);
5389 rr_arg = TREE_OPERAND (rhs, 1);
5391 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5392 if (simple_operand_p (ll_arg)
5393 && simple_operand_p (lr_arg))
5395 if (operand_equal_p (ll_arg, rl_arg, 0)
5396 && operand_equal_p (lr_arg, rr_arg, 0))
5398 result = combine_comparisons (loc, code, lcode, rcode,
5399 truth_type, ll_arg, lr_arg);
5400 if (result)
5401 return result;
5403 else if (operand_equal_p (ll_arg, rr_arg, 0)
5404 && operand_equal_p (lr_arg, rl_arg, 0))
5406 result = combine_comparisons (loc, code, lcode,
5407 swap_tree_comparison (rcode),
5408 truth_type, ll_arg, lr_arg);
5409 if (result)
5410 return result;
5414 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5415 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5417 /* If the RHS can be evaluated unconditionally and its operands are
5418 simple, it wins to evaluate the RHS unconditionally on machines
5419 with expensive branches. In this case, this isn't a comparison
5420 that can be merged. */
5422 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5423 false) >= 2
5424 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5425 && simple_operand_p (rl_arg)
5426 && simple_operand_p (rr_arg))
5428 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5429 if (code == TRUTH_OR_EXPR
5430 && lcode == NE_EXPR && integer_zerop (lr_arg)
5431 && rcode == NE_EXPR && integer_zerop (rr_arg)
5432 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5433 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5434 return build2_loc (loc, NE_EXPR, truth_type,
5435 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5436 ll_arg, rl_arg),
5437 build_int_cst (TREE_TYPE (ll_arg), 0));
5439 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5440 if (code == TRUTH_AND_EXPR
5441 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5442 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5443 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5444 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5445 return build2_loc (loc, EQ_EXPR, truth_type,
5446 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5447 ll_arg, rl_arg),
5448 build_int_cst (TREE_TYPE (ll_arg), 0));
5451 /* See if the comparisons can be merged. Then get all the parameters for
5452 each side. */
5454 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5455 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5456 return 0;
5458 volatilep = 0;
5459 ll_inner = decode_field_reference (loc, ll_arg,
5460 &ll_bitsize, &ll_bitpos, &ll_mode,
5461 &ll_unsignedp, &volatilep, &ll_mask,
5462 &ll_and_mask);
5463 lr_inner = decode_field_reference (loc, lr_arg,
5464 &lr_bitsize, &lr_bitpos, &lr_mode,
5465 &lr_unsignedp, &volatilep, &lr_mask,
5466 &lr_and_mask);
5467 rl_inner = decode_field_reference (loc, rl_arg,
5468 &rl_bitsize, &rl_bitpos, &rl_mode,
5469 &rl_unsignedp, &volatilep, &rl_mask,
5470 &rl_and_mask);
5471 rr_inner = decode_field_reference (loc, rr_arg,
5472 &rr_bitsize, &rr_bitpos, &rr_mode,
5473 &rr_unsignedp, &volatilep, &rr_mask,
5474 &rr_and_mask);
5476 /* It must be true that the inner operation on the lhs of each
5477 comparison must be the same if we are to be able to do anything.
5478 Then see if we have constants. If not, the same must be true for
5479 the rhs's. */
5480 if (volatilep || ll_inner == 0 || rl_inner == 0
5481 || ! operand_equal_p (ll_inner, rl_inner, 0))
5482 return 0;
5484 if (TREE_CODE (lr_arg) == INTEGER_CST
5485 && TREE_CODE (rr_arg) == INTEGER_CST)
5486 l_const = lr_arg, r_const = rr_arg;
5487 else if (lr_inner == 0 || rr_inner == 0
5488 || ! operand_equal_p (lr_inner, rr_inner, 0))
5489 return 0;
5490 else
5491 l_const = r_const = 0;
5493 /* If either comparison code is not correct for our logical operation,
5494 fail. However, we can convert a one-bit comparison against zero into
5495 the opposite comparison against that bit being set in the field. */
5497 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5498 if (lcode != wanted_code)
5500 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5502 /* Make the left operand unsigned, since we are only interested
5503 in the value of one bit. Otherwise we are doing the wrong
5504 thing below. */
5505 ll_unsignedp = 1;
5506 l_const = ll_mask;
5508 else
5509 return 0;
5512 /* This is analogous to the code for l_const above. */
5513 if (rcode != wanted_code)
5515 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5517 rl_unsignedp = 1;
5518 r_const = rl_mask;
5520 else
5521 return 0;
5524 /* See if we can find a mode that contains both fields being compared on
5525 the left. If we can't, fail. Otherwise, update all constants and masks
5526 to be relative to a field of that size. */
5527 first_bit = MIN (ll_bitpos, rl_bitpos);
5528 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5529 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5530 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5531 volatilep);
5532 if (lnmode == VOIDmode)
5533 return 0;
5535 lnbitsize = GET_MODE_BITSIZE (lnmode);
5536 lnbitpos = first_bit & ~ (lnbitsize - 1);
5537 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5538 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5540 if (BYTES_BIG_ENDIAN)
5542 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5543 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5546 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5547 size_int (xll_bitpos));
5548 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5549 size_int (xrl_bitpos));
5551 if (l_const)
5553 l_const = fold_convert_loc (loc, lntype, l_const);
5554 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5555 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5556 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5557 fold_build1_loc (loc, BIT_NOT_EXPR,
5558 lntype, ll_mask))))
5560 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5562 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5565 if (r_const)
5567 r_const = fold_convert_loc (loc, lntype, r_const);
5568 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5569 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5570 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5571 fold_build1_loc (loc, BIT_NOT_EXPR,
5572 lntype, rl_mask))))
5574 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5576 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5580 /* If the right sides are not constant, do the same for it. Also,
5581 disallow this optimization if a size or signedness mismatch occurs
5582 between the left and right sides. */
5583 if (l_const == 0)
5585 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5586 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5587 /* Make sure the two fields on the right
5588 correspond to the left without being swapped. */
5589 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5590 return 0;
5592 first_bit = MIN (lr_bitpos, rr_bitpos);
5593 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5594 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5595 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5596 volatilep);
5597 if (rnmode == VOIDmode)
5598 return 0;
5600 rnbitsize = GET_MODE_BITSIZE (rnmode);
5601 rnbitpos = first_bit & ~ (rnbitsize - 1);
5602 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5603 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5605 if (BYTES_BIG_ENDIAN)
5607 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5608 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5611 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5612 rntype, lr_mask),
5613 size_int (xlr_bitpos));
5614 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5615 rntype, rr_mask),
5616 size_int (xrr_bitpos));
5618 /* Make a mask that corresponds to both fields being compared.
5619 Do this for both items being compared. If the operands are the
5620 same size and the bits being compared are in the same position
5621 then we can do this by masking both and comparing the masked
5622 results. */
5623 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5624 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5625 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5627 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5628 ll_unsignedp || rl_unsignedp);
5629 if (! all_ones_mask_p (ll_mask, lnbitsize))
5630 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5632 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5633 lr_unsignedp || rr_unsignedp);
5634 if (! all_ones_mask_p (lr_mask, rnbitsize))
5635 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5637 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5640 /* There is still another way we can do something: If both pairs of
5641 fields being compared are adjacent, we may be able to make a wider
5642 field containing them both.
5644 Note that we still must mask the lhs/rhs expressions. Furthermore,
5645 the mask must be shifted to account for the shift done by
5646 make_bit_field_ref. */
5647 if ((ll_bitsize + ll_bitpos == rl_bitpos
5648 && lr_bitsize + lr_bitpos == rr_bitpos)
5649 || (ll_bitpos == rl_bitpos + rl_bitsize
5650 && lr_bitpos == rr_bitpos + rr_bitsize))
5652 tree type;
5654 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5655 ll_bitsize + rl_bitsize,
5656 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5657 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5658 lr_bitsize + rr_bitsize,
5659 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5661 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5662 size_int (MIN (xll_bitpos, xrl_bitpos)));
5663 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5664 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5666 /* Convert to the smaller type before masking out unwanted bits. */
5667 type = lntype;
5668 if (lntype != rntype)
5670 if (lnbitsize > rnbitsize)
5672 lhs = fold_convert_loc (loc, rntype, lhs);
5673 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5674 type = rntype;
5676 else if (lnbitsize < rnbitsize)
5678 rhs = fold_convert_loc (loc, lntype, rhs);
5679 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5680 type = lntype;
5684 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5685 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5687 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5688 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5690 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5693 return 0;
5696 /* Handle the case of comparisons with constants. If there is something in
5697 common between the masks, those bits of the constants must be the same.
5698 If not, the condition is always false. Test for this to avoid generating
5699 incorrect code below. */
5700 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5701 if (! integer_zerop (result)
5702 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5703 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5705 if (wanted_code == NE_EXPR)
5707 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5708 return constant_boolean_node (true, truth_type);
5710 else
5712 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5713 return constant_boolean_node (false, truth_type);
5717 /* Construct the expression we will return. First get the component
5718 reference we will make. Unless the mask is all ones the width of
5719 that field, perform the mask operation. Then compare with the
5720 merged constant. */
5721 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5722 ll_unsignedp || rl_unsignedp);
5724 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5725 if (! all_ones_mask_p (ll_mask, lnbitsize))
5726 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5728 return build2_loc (loc, wanted_code, truth_type, result,
5729 const_binop (BIT_IOR_EXPR, l_const, r_const));
5732 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5733 constant. */
5735 static tree
5736 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5737 tree op0, tree op1)
5739 tree arg0 = op0;
5740 enum tree_code op_code;
5741 tree comp_const;
5742 tree minmax_const;
5743 int consts_equal, consts_lt;
5744 tree inner;
5746 STRIP_SIGN_NOPS (arg0);
5748 op_code = TREE_CODE (arg0);
5749 minmax_const = TREE_OPERAND (arg0, 1);
5750 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5751 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5752 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5753 inner = TREE_OPERAND (arg0, 0);
5755 /* If something does not permit us to optimize, return the original tree. */
5756 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5757 || TREE_CODE (comp_const) != INTEGER_CST
5758 || TREE_OVERFLOW (comp_const)
5759 || TREE_CODE (minmax_const) != INTEGER_CST
5760 || TREE_OVERFLOW (minmax_const))
5761 return NULL_TREE;
5763 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5764 and GT_EXPR, doing the rest with recursive calls using logical
5765 simplifications. */
5766 switch (code)
5768 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5770 tree tem
5771 = optimize_minmax_comparison (loc,
5772 invert_tree_comparison (code, false),
5773 type, op0, op1);
5774 if (tem)
5775 return invert_truthvalue_loc (loc, tem);
5776 return NULL_TREE;
5779 case GE_EXPR:
5780 return
5781 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5782 optimize_minmax_comparison
5783 (loc, EQ_EXPR, type, arg0, comp_const),
5784 optimize_minmax_comparison
5785 (loc, GT_EXPR, type, arg0, comp_const));
5787 case EQ_EXPR:
5788 if (op_code == MAX_EXPR && consts_equal)
5789 /* MAX (X, 0) == 0 -> X <= 0 */
5790 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5792 else if (op_code == MAX_EXPR && consts_lt)
5793 /* MAX (X, 0) == 5 -> X == 5 */
5794 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5796 else if (op_code == MAX_EXPR)
5797 /* MAX (X, 0) == -1 -> false */
5798 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5800 else if (consts_equal)
5801 /* MIN (X, 0) == 0 -> X >= 0 */
5802 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5804 else if (consts_lt)
5805 /* MIN (X, 0) == 5 -> false */
5806 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5808 else
5809 /* MIN (X, 0) == -1 -> X == -1 */
5810 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5812 case GT_EXPR:
5813 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5814 /* MAX (X, 0) > 0 -> X > 0
5815 MAX (X, 0) > 5 -> X > 5 */
5816 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5818 else if (op_code == MAX_EXPR)
5819 /* MAX (X, 0) > -1 -> true */
5820 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5822 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5823 /* MIN (X, 0) > 0 -> false
5824 MIN (X, 0) > 5 -> false */
5825 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5827 else
5828 /* MIN (X, 0) > -1 -> X > -1 */
5829 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5831 default:
5832 return NULL_TREE;
5836 /* T is an integer expression that is being multiplied, divided, or taken a
5837 modulus (CODE says which and what kind of divide or modulus) by a
5838 constant C. See if we can eliminate that operation by folding it with
5839 other operations already in T. WIDE_TYPE, if non-null, is a type that
5840 should be used for the computation if wider than our type.
5842 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5843 (X * 2) + (Y * 4). We must, however, be assured that either the original
5844 expression would not overflow or that overflow is undefined for the type
5845 in the language in question.
5847 If we return a non-null expression, it is an equivalent form of the
5848 original computation, but need not be in the original type.
5850 We set *STRICT_OVERFLOW_P to true if the return values depends on
5851 signed overflow being undefined. Otherwise we do not change
5852 *STRICT_OVERFLOW_P. */
5854 static tree
5855 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5856 bool *strict_overflow_p)
5858 /* To avoid exponential search depth, refuse to allow recursion past
5859 three levels. Beyond that (1) it's highly unlikely that we'll find
5860 something interesting and (2) we've probably processed it before
5861 when we built the inner expression. */
5863 static int depth;
5864 tree ret;
5866 if (depth > 3)
5867 return NULL;
5869 depth++;
5870 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5871 depth--;
5873 return ret;
5876 static tree
5877 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5878 bool *strict_overflow_p)
5880 tree type = TREE_TYPE (t);
5881 enum tree_code tcode = TREE_CODE (t);
5882 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5883 > GET_MODE_SIZE (TYPE_MODE (type)))
5884 ? wide_type : type);
5885 tree t1, t2;
5886 int same_p = tcode == code;
5887 tree op0 = NULL_TREE, op1 = NULL_TREE;
5888 bool sub_strict_overflow_p;
5890 /* Don't deal with constants of zero here; they confuse the code below. */
5891 if (integer_zerop (c))
5892 return NULL_TREE;
5894 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5895 op0 = TREE_OPERAND (t, 0);
5897 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5898 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5900 /* Note that we need not handle conditional operations here since fold
5901 already handles those cases. So just do arithmetic here. */
5902 switch (tcode)
5904 case INTEGER_CST:
5905 /* For a constant, we can always simplify if we are a multiply
5906 or (for divide and modulus) if it is a multiple of our constant. */
5907 if (code == MULT_EXPR
5908 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5909 return const_binop (code, fold_convert (ctype, t),
5910 fold_convert (ctype, c));
5911 break;
5913 CASE_CONVERT: case NON_LVALUE_EXPR:
5914 /* If op0 is an expression ... */
5915 if ((COMPARISON_CLASS_P (op0)
5916 || UNARY_CLASS_P (op0)
5917 || BINARY_CLASS_P (op0)
5918 || VL_EXP_CLASS_P (op0)
5919 || EXPRESSION_CLASS_P (op0))
5920 /* ... and has wrapping overflow, and its type is smaller
5921 than ctype, then we cannot pass through as widening. */
5922 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5923 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5924 && (TYPE_PRECISION (ctype)
5925 > TYPE_PRECISION (TREE_TYPE (op0))))
5926 /* ... or this is a truncation (t is narrower than op0),
5927 then we cannot pass through this narrowing. */
5928 || (TYPE_PRECISION (type)
5929 < TYPE_PRECISION (TREE_TYPE (op0)))
5930 /* ... or signedness changes for division or modulus,
5931 then we cannot pass through this conversion. */
5932 || (code != MULT_EXPR
5933 && (TYPE_UNSIGNED (ctype)
5934 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5935 /* ... or has undefined overflow while the converted to
5936 type has not, we cannot do the operation in the inner type
5937 as that would introduce undefined overflow. */
5938 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5939 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
5940 && !TYPE_OVERFLOW_UNDEFINED (type))))
5941 break;
5943 /* Pass the constant down and see if we can make a simplification. If
5944 we can, replace this expression with the inner simplification for
5945 possible later conversion to our or some other type. */
5946 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5947 && TREE_CODE (t2) == INTEGER_CST
5948 && !TREE_OVERFLOW (t2)
5949 && (0 != (t1 = extract_muldiv (op0, t2, code,
5950 code == MULT_EXPR
5951 ? ctype : NULL_TREE,
5952 strict_overflow_p))))
5953 return t1;
5954 break;
5956 case ABS_EXPR:
5957 /* If widening the type changes it from signed to unsigned, then we
5958 must avoid building ABS_EXPR itself as unsigned. */
5959 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5961 tree cstype = (*signed_type_for) (ctype);
5962 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5963 != 0)
5965 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5966 return fold_convert (ctype, t1);
5968 break;
5970 /* If the constant is negative, we cannot simplify this. */
5971 if (tree_int_cst_sgn (c) == -1)
5972 break;
5973 /* FALLTHROUGH */
5974 case NEGATE_EXPR:
5975 /* For division and modulus, type can't be unsigned, as e.g.
5976 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
5977 For signed types, even with wrapping overflow, this is fine. */
5978 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
5979 break;
5980 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5981 != 0)
5982 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5983 break;
5985 case MIN_EXPR: case MAX_EXPR:
5986 /* If widening the type changes the signedness, then we can't perform
5987 this optimization as that changes the result. */
5988 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5989 break;
5991 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5992 sub_strict_overflow_p = false;
5993 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5994 &sub_strict_overflow_p)) != 0
5995 && (t2 = extract_muldiv (op1, c, code, wide_type,
5996 &sub_strict_overflow_p)) != 0)
5998 if (tree_int_cst_sgn (c) < 0)
5999 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6000 if (sub_strict_overflow_p)
6001 *strict_overflow_p = true;
6002 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6003 fold_convert (ctype, t2));
6005 break;
6007 case LSHIFT_EXPR: case RSHIFT_EXPR:
6008 /* If the second operand is constant, this is a multiplication
6009 or floor division, by a power of two, so we can treat it that
6010 way unless the multiplier or divisor overflows. Signed
6011 left-shift overflow is implementation-defined rather than
6012 undefined in C90, so do not convert signed left shift into
6013 multiplication. */
6014 if (TREE_CODE (op1) == INTEGER_CST
6015 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6016 /* const_binop may not detect overflow correctly,
6017 so check for it explicitly here. */
6018 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6019 && 0 != (t1 = fold_convert (ctype,
6020 const_binop (LSHIFT_EXPR,
6021 size_one_node,
6022 op1)))
6023 && !TREE_OVERFLOW (t1))
6024 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6025 ? MULT_EXPR : FLOOR_DIV_EXPR,
6026 ctype,
6027 fold_convert (ctype, op0),
6028 t1),
6029 c, code, wide_type, strict_overflow_p);
6030 break;
6032 case PLUS_EXPR: case MINUS_EXPR:
6033 /* See if we can eliminate the operation on both sides. If we can, we
6034 can return a new PLUS or MINUS. If we can't, the only remaining
6035 cases where we can do anything are if the second operand is a
6036 constant. */
6037 sub_strict_overflow_p = false;
6038 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6039 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6040 if (t1 != 0 && t2 != 0
6041 && (code == MULT_EXPR
6042 /* If not multiplication, we can only do this if both operands
6043 are divisible by c. */
6044 || (multiple_of_p (ctype, op0, c)
6045 && multiple_of_p (ctype, op1, c))))
6047 if (sub_strict_overflow_p)
6048 *strict_overflow_p = true;
6049 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6050 fold_convert (ctype, t2));
6053 /* If this was a subtraction, negate OP1 and set it to be an addition.
6054 This simplifies the logic below. */
6055 if (tcode == MINUS_EXPR)
6057 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6058 /* If OP1 was not easily negatable, the constant may be OP0. */
6059 if (TREE_CODE (op0) == INTEGER_CST)
6061 std::swap (op0, op1);
6062 std::swap (t1, t2);
6066 if (TREE_CODE (op1) != INTEGER_CST)
6067 break;
6069 /* If either OP1 or C are negative, this optimization is not safe for
6070 some of the division and remainder types while for others we need
6071 to change the code. */
6072 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6074 if (code == CEIL_DIV_EXPR)
6075 code = FLOOR_DIV_EXPR;
6076 else if (code == FLOOR_DIV_EXPR)
6077 code = CEIL_DIV_EXPR;
6078 else if (code != MULT_EXPR
6079 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6080 break;
6083 /* If it's a multiply or a division/modulus operation of a multiple
6084 of our constant, do the operation and verify it doesn't overflow. */
6085 if (code == MULT_EXPR
6086 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6088 op1 = const_binop (code, fold_convert (ctype, op1),
6089 fold_convert (ctype, c));
6090 /* We allow the constant to overflow with wrapping semantics. */
6091 if (op1 == 0
6092 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6093 break;
6095 else
6096 break;
6098 /* If we have an unsigned type, we cannot widen the operation since it
6099 will change the result if the original computation overflowed. */
6100 if (TYPE_UNSIGNED (ctype) && ctype != type)
6101 break;
6103 /* If we were able to eliminate our operation from the first side,
6104 apply our operation to the second side and reform the PLUS. */
6105 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6106 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6108 /* The last case is if we are a multiply. In that case, we can
6109 apply the distributive law to commute the multiply and addition
6110 if the multiplication of the constants doesn't overflow
6111 and overflow is defined. With undefined overflow
6112 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6113 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6114 return fold_build2 (tcode, ctype,
6115 fold_build2 (code, ctype,
6116 fold_convert (ctype, op0),
6117 fold_convert (ctype, c)),
6118 op1);
6120 break;
6122 case MULT_EXPR:
6123 /* We have a special case here if we are doing something like
6124 (C * 8) % 4 since we know that's zero. */
6125 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6126 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6127 /* If the multiplication can overflow we cannot optimize this. */
6128 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6129 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6130 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6132 *strict_overflow_p = true;
6133 return omit_one_operand (type, integer_zero_node, op0);
6136 /* ... fall through ... */
6138 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6139 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6140 /* If we can extract our operation from the LHS, do so and return a
6141 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6142 do something only if the second operand is a constant. */
6143 if (same_p
6144 && (t1 = extract_muldiv (op0, c, code, wide_type,
6145 strict_overflow_p)) != 0)
6146 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6147 fold_convert (ctype, op1));
6148 else if (tcode == MULT_EXPR && code == MULT_EXPR
6149 && (t1 = extract_muldiv (op1, c, code, wide_type,
6150 strict_overflow_p)) != 0)
6151 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6152 fold_convert (ctype, t1));
6153 else if (TREE_CODE (op1) != INTEGER_CST)
6154 return 0;
6156 /* If these are the same operation types, we can associate them
6157 assuming no overflow. */
6158 if (tcode == code)
6160 bool overflow_p = false;
6161 bool overflow_mul_p;
6162 signop sign = TYPE_SIGN (ctype);
6163 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6164 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6165 if (overflow_mul_p
6166 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6167 overflow_p = true;
6168 if (!overflow_p)
6169 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6170 wide_int_to_tree (ctype, mul));
6173 /* If these operations "cancel" each other, we have the main
6174 optimizations of this pass, which occur when either constant is a
6175 multiple of the other, in which case we replace this with either an
6176 operation or CODE or TCODE.
6178 If we have an unsigned type, we cannot do this since it will change
6179 the result if the original computation overflowed. */
6180 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6181 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6182 || (tcode == MULT_EXPR
6183 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6184 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6185 && code != MULT_EXPR)))
6187 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6189 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6190 *strict_overflow_p = true;
6191 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6192 fold_convert (ctype,
6193 const_binop (TRUNC_DIV_EXPR,
6194 op1, c)));
6196 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6198 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6199 *strict_overflow_p = true;
6200 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6201 fold_convert (ctype,
6202 const_binop (TRUNC_DIV_EXPR,
6203 c, op1)));
6206 break;
6208 default:
6209 break;
6212 return 0;
6215 /* Return a node which has the indicated constant VALUE (either 0 or
6216 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6217 and is of the indicated TYPE. */
6219 tree
6220 constant_boolean_node (bool value, tree type)
6222 if (type == integer_type_node)
6223 return value ? integer_one_node : integer_zero_node;
6224 else if (type == boolean_type_node)
6225 return value ? boolean_true_node : boolean_false_node;
6226 else if (TREE_CODE (type) == VECTOR_TYPE)
6227 return build_vector_from_val (type,
6228 build_int_cst (TREE_TYPE (type),
6229 value ? -1 : 0));
6230 else
6231 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6235 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6236 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6237 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6238 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6239 COND is the first argument to CODE; otherwise (as in the example
6240 given here), it is the second argument. TYPE is the type of the
6241 original expression. Return NULL_TREE if no simplification is
6242 possible. */
6244 static tree
6245 fold_binary_op_with_conditional_arg (location_t loc,
6246 enum tree_code code,
6247 tree type, tree op0, tree op1,
6248 tree cond, tree arg, int cond_first_p)
6250 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6251 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6252 tree test, true_value, false_value;
6253 tree lhs = NULL_TREE;
6254 tree rhs = NULL_TREE;
6255 enum tree_code cond_code = COND_EXPR;
6257 if (TREE_CODE (cond) == COND_EXPR
6258 || TREE_CODE (cond) == VEC_COND_EXPR)
6260 test = TREE_OPERAND (cond, 0);
6261 true_value = TREE_OPERAND (cond, 1);
6262 false_value = TREE_OPERAND (cond, 2);
6263 /* If this operand throws an expression, then it does not make
6264 sense to try to perform a logical or arithmetic operation
6265 involving it. */
6266 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6267 lhs = true_value;
6268 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6269 rhs = false_value;
6271 else
6273 tree testtype = TREE_TYPE (cond);
6274 test = cond;
6275 true_value = constant_boolean_node (true, testtype);
6276 false_value = constant_boolean_node (false, testtype);
6279 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6280 cond_code = VEC_COND_EXPR;
6282 /* This transformation is only worthwhile if we don't have to wrap ARG
6283 in a SAVE_EXPR and the operation can be simplified without recursing
6284 on at least one of the branches once its pushed inside the COND_EXPR. */
6285 if (!TREE_CONSTANT (arg)
6286 && (TREE_SIDE_EFFECTS (arg)
6287 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6288 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6289 return NULL_TREE;
6291 arg = fold_convert_loc (loc, arg_type, arg);
6292 if (lhs == 0)
6294 true_value = fold_convert_loc (loc, cond_type, true_value);
6295 if (cond_first_p)
6296 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6297 else
6298 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6300 if (rhs == 0)
6302 false_value = fold_convert_loc (loc, cond_type, false_value);
6303 if (cond_first_p)
6304 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6305 else
6306 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6309 /* Check that we have simplified at least one of the branches. */
6310 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6311 return NULL_TREE;
6313 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6317 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6319 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6320 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6321 ADDEND is the same as X.
6323 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6324 and finite. The problematic cases are when X is zero, and its mode
6325 has signed zeros. In the case of rounding towards -infinity,
6326 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6327 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6329 bool
6330 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6332 if (!real_zerop (addend))
6333 return false;
6335 /* Don't allow the fold with -fsignaling-nans. */
6336 if (HONOR_SNANS (element_mode (type)))
6337 return false;
6339 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6340 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6341 return true;
6343 /* In a vector or complex, we would need to check the sign of all zeros. */
6344 if (TREE_CODE (addend) != REAL_CST)
6345 return false;
6347 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6348 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6349 negate = !negate;
6351 /* The mode has signed zeros, and we have to honor their sign.
6352 In this situation, there is only one case we can return true for.
6353 X - 0 is the same as X unless rounding towards -infinity is
6354 supported. */
6355 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6358 /* Subroutine of fold() that optimizes comparisons of a division by
6359 a nonzero integer constant against an integer constant, i.e.
6360 X/C1 op C2.
6362 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6363 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6364 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6366 The function returns the constant folded tree if a simplification
6367 can be made, and NULL_TREE otherwise. */
6369 static tree
6370 fold_div_compare (location_t loc,
6371 enum tree_code code, tree type, tree arg0, tree arg1)
6373 tree prod, tmp, hi, lo;
6374 tree arg00 = TREE_OPERAND (arg0, 0);
6375 tree arg01 = TREE_OPERAND (arg0, 1);
6376 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6377 bool neg_overflow = false;
6378 bool overflow;
6380 /* We have to do this the hard way to detect unsigned overflow.
6381 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6382 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6383 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6384 neg_overflow = false;
6386 if (sign == UNSIGNED)
6388 tmp = int_const_binop (MINUS_EXPR, arg01,
6389 build_int_cst (TREE_TYPE (arg01), 1));
6390 lo = prod;
6392 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6393 val = wi::add (prod, tmp, sign, &overflow);
6394 hi = force_fit_type (TREE_TYPE (arg00), val,
6395 -1, overflow | TREE_OVERFLOW (prod));
6397 else if (tree_int_cst_sgn (arg01) >= 0)
6399 tmp = int_const_binop (MINUS_EXPR, arg01,
6400 build_int_cst (TREE_TYPE (arg01), 1));
6401 switch (tree_int_cst_sgn (arg1))
6403 case -1:
6404 neg_overflow = true;
6405 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6406 hi = prod;
6407 break;
6409 case 0:
6410 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6411 hi = tmp;
6412 break;
6414 case 1:
6415 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6416 lo = prod;
6417 break;
6419 default:
6420 gcc_unreachable ();
6423 else
6425 /* A negative divisor reverses the relational operators. */
6426 code = swap_tree_comparison (code);
6428 tmp = int_const_binop (PLUS_EXPR, arg01,
6429 build_int_cst (TREE_TYPE (arg01), 1));
6430 switch (tree_int_cst_sgn (arg1))
6432 case -1:
6433 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6434 lo = prod;
6435 break;
6437 case 0:
6438 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6439 lo = tmp;
6440 break;
6442 case 1:
6443 neg_overflow = true;
6444 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6445 hi = prod;
6446 break;
6448 default:
6449 gcc_unreachable ();
6453 switch (code)
6455 case EQ_EXPR:
6456 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6457 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6458 if (TREE_OVERFLOW (hi))
6459 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6460 if (TREE_OVERFLOW (lo))
6461 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6462 return build_range_check (loc, type, arg00, 1, lo, hi);
6464 case NE_EXPR:
6465 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6466 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6467 if (TREE_OVERFLOW (hi))
6468 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6469 if (TREE_OVERFLOW (lo))
6470 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6471 return build_range_check (loc, type, arg00, 0, lo, hi);
6473 case LT_EXPR:
6474 if (TREE_OVERFLOW (lo))
6476 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6477 return omit_one_operand_loc (loc, type, tmp, arg00);
6479 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6481 case LE_EXPR:
6482 if (TREE_OVERFLOW (hi))
6484 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6485 return omit_one_operand_loc (loc, type, tmp, arg00);
6487 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6489 case GT_EXPR:
6490 if (TREE_OVERFLOW (hi))
6492 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6493 return omit_one_operand_loc (loc, type, tmp, arg00);
6495 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6497 case GE_EXPR:
6498 if (TREE_OVERFLOW (lo))
6500 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6501 return omit_one_operand_loc (loc, type, tmp, arg00);
6503 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6505 default:
6506 break;
6509 return NULL_TREE;
6513 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6514 equality/inequality test, then return a simplified form of the test
6515 using a sign testing. Otherwise return NULL. TYPE is the desired
6516 result type. */
6518 static tree
6519 fold_single_bit_test_into_sign_test (location_t loc,
6520 enum tree_code code, tree arg0, tree arg1,
6521 tree result_type)
6523 /* If this is testing a single bit, we can optimize the test. */
6524 if ((code == NE_EXPR || code == EQ_EXPR)
6525 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6526 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6528 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6529 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6530 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6532 if (arg00 != NULL_TREE
6533 /* This is only a win if casting to a signed type is cheap,
6534 i.e. when arg00's type is not a partial mode. */
6535 && TYPE_PRECISION (TREE_TYPE (arg00))
6536 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6538 tree stype = signed_type_for (TREE_TYPE (arg00));
6539 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6540 result_type,
6541 fold_convert_loc (loc, stype, arg00),
6542 build_int_cst (stype, 0));
6546 return NULL_TREE;
6549 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6550 equality/inequality test, then return a simplified form of
6551 the test using shifts and logical operations. Otherwise return
6552 NULL. TYPE is the desired result type. */
6554 tree
6555 fold_single_bit_test (location_t loc, enum tree_code code,
6556 tree arg0, tree arg1, tree result_type)
6558 /* If this is testing a single bit, we can optimize the test. */
6559 if ((code == NE_EXPR || code == EQ_EXPR)
6560 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6561 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6563 tree inner = TREE_OPERAND (arg0, 0);
6564 tree type = TREE_TYPE (arg0);
6565 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6566 machine_mode operand_mode = TYPE_MODE (type);
6567 int ops_unsigned;
6568 tree signed_type, unsigned_type, intermediate_type;
6569 tree tem, one;
6571 /* First, see if we can fold the single bit test into a sign-bit
6572 test. */
6573 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6574 result_type);
6575 if (tem)
6576 return tem;
6578 /* Otherwise we have (A & C) != 0 where C is a single bit,
6579 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6580 Similarly for (A & C) == 0. */
6582 /* If INNER is a right shift of a constant and it plus BITNUM does
6583 not overflow, adjust BITNUM and INNER. */
6584 if (TREE_CODE (inner) == RSHIFT_EXPR
6585 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6586 && bitnum < TYPE_PRECISION (type)
6587 && wi::ltu_p (TREE_OPERAND (inner, 1),
6588 TYPE_PRECISION (type) - bitnum))
6590 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6591 inner = TREE_OPERAND (inner, 0);
6594 /* If we are going to be able to omit the AND below, we must do our
6595 operations as unsigned. If we must use the AND, we have a choice.
6596 Normally unsigned is faster, but for some machines signed is. */
6597 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6598 && !flag_syntax_only) ? 0 : 1;
6600 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6601 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6602 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6603 inner = fold_convert_loc (loc, intermediate_type, inner);
6605 if (bitnum != 0)
6606 inner = build2 (RSHIFT_EXPR, intermediate_type,
6607 inner, size_int (bitnum));
6609 one = build_int_cst (intermediate_type, 1);
6611 if (code == EQ_EXPR)
6612 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6614 /* Put the AND last so it can combine with more things. */
6615 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6617 /* Make sure to return the proper type. */
6618 inner = fold_convert_loc (loc, result_type, inner);
6620 return inner;
6622 return NULL_TREE;
6625 /* Check whether we are allowed to reorder operands arg0 and arg1,
6626 such that the evaluation of arg1 occurs before arg0. */
6628 static bool
6629 reorder_operands_p (const_tree arg0, const_tree arg1)
6631 if (! flag_evaluation_order)
6632 return true;
6633 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6634 return true;
6635 return ! TREE_SIDE_EFFECTS (arg0)
6636 && ! TREE_SIDE_EFFECTS (arg1);
6639 /* Test whether it is preferable two swap two operands, ARG0 and
6640 ARG1, for example because ARG0 is an integer constant and ARG1
6641 isn't. If REORDER is true, only recommend swapping if we can
6642 evaluate the operands in reverse order. */
6644 bool
6645 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6647 if (CONSTANT_CLASS_P (arg1))
6648 return 0;
6649 if (CONSTANT_CLASS_P (arg0))
6650 return 1;
6652 STRIP_NOPS (arg0);
6653 STRIP_NOPS (arg1);
6655 if (TREE_CONSTANT (arg1))
6656 return 0;
6657 if (TREE_CONSTANT (arg0))
6658 return 1;
6660 if (reorder && flag_evaluation_order
6661 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6662 return 0;
6664 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6665 for commutative and comparison operators. Ensuring a canonical
6666 form allows the optimizers to find additional redundancies without
6667 having to explicitly check for both orderings. */
6668 if (TREE_CODE (arg0) == SSA_NAME
6669 && TREE_CODE (arg1) == SSA_NAME
6670 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6671 return 1;
6673 /* Put SSA_NAMEs last. */
6674 if (TREE_CODE (arg1) == SSA_NAME)
6675 return 0;
6676 if (TREE_CODE (arg0) == SSA_NAME)
6677 return 1;
6679 /* Put variables last. */
6680 if (DECL_P (arg1))
6681 return 0;
6682 if (DECL_P (arg0))
6683 return 1;
6685 return 0;
6689 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6690 means A >= Y && A != MAX, but in this case we know that
6691 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6693 static tree
6694 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6696 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6698 if (TREE_CODE (bound) == LT_EXPR)
6699 a = TREE_OPERAND (bound, 0);
6700 else if (TREE_CODE (bound) == GT_EXPR)
6701 a = TREE_OPERAND (bound, 1);
6702 else
6703 return NULL_TREE;
6705 typea = TREE_TYPE (a);
6706 if (!INTEGRAL_TYPE_P (typea)
6707 && !POINTER_TYPE_P (typea))
6708 return NULL_TREE;
6710 if (TREE_CODE (ineq) == LT_EXPR)
6712 a1 = TREE_OPERAND (ineq, 1);
6713 y = TREE_OPERAND (ineq, 0);
6715 else if (TREE_CODE (ineq) == GT_EXPR)
6717 a1 = TREE_OPERAND (ineq, 0);
6718 y = TREE_OPERAND (ineq, 1);
6720 else
6721 return NULL_TREE;
6723 if (TREE_TYPE (a1) != typea)
6724 return NULL_TREE;
6726 if (POINTER_TYPE_P (typea))
6728 /* Convert the pointer types into integer before taking the difference. */
6729 tree ta = fold_convert_loc (loc, ssizetype, a);
6730 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6731 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6733 else
6734 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6736 if (!diff || !integer_onep (diff))
6737 return NULL_TREE;
6739 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6742 /* Fold a sum or difference of at least one multiplication.
6743 Returns the folded tree or NULL if no simplification could be made. */
6745 static tree
6746 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6747 tree arg0, tree arg1)
6749 tree arg00, arg01, arg10, arg11;
6750 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6752 /* (A * C) +- (B * C) -> (A+-B) * C.
6753 (A * C) +- A -> A * (C+-1).
6754 We are most concerned about the case where C is a constant,
6755 but other combinations show up during loop reduction. Since
6756 it is not difficult, try all four possibilities. */
6758 if (TREE_CODE (arg0) == MULT_EXPR)
6760 arg00 = TREE_OPERAND (arg0, 0);
6761 arg01 = TREE_OPERAND (arg0, 1);
6763 else if (TREE_CODE (arg0) == INTEGER_CST)
6765 arg00 = build_one_cst (type);
6766 arg01 = arg0;
6768 else
6770 /* We cannot generate constant 1 for fract. */
6771 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6772 return NULL_TREE;
6773 arg00 = arg0;
6774 arg01 = build_one_cst (type);
6776 if (TREE_CODE (arg1) == MULT_EXPR)
6778 arg10 = TREE_OPERAND (arg1, 0);
6779 arg11 = TREE_OPERAND (arg1, 1);
6781 else if (TREE_CODE (arg1) == INTEGER_CST)
6783 arg10 = build_one_cst (type);
6784 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6785 the purpose of this canonicalization. */
6786 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6787 && negate_expr_p (arg1)
6788 && code == PLUS_EXPR)
6790 arg11 = negate_expr (arg1);
6791 code = MINUS_EXPR;
6793 else
6794 arg11 = arg1;
6796 else
6798 /* We cannot generate constant 1 for fract. */
6799 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6800 return NULL_TREE;
6801 arg10 = arg1;
6802 arg11 = build_one_cst (type);
6804 same = NULL_TREE;
6806 if (operand_equal_p (arg01, arg11, 0))
6807 same = arg01, alt0 = arg00, alt1 = arg10;
6808 else if (operand_equal_p (arg00, arg10, 0))
6809 same = arg00, alt0 = arg01, alt1 = arg11;
6810 else if (operand_equal_p (arg00, arg11, 0))
6811 same = arg00, alt0 = arg01, alt1 = arg10;
6812 else if (operand_equal_p (arg01, arg10, 0))
6813 same = arg01, alt0 = arg00, alt1 = arg11;
6815 /* No identical multiplicands; see if we can find a common
6816 power-of-two factor in non-power-of-two multiplies. This
6817 can help in multi-dimensional array access. */
6818 else if (tree_fits_shwi_p (arg01)
6819 && tree_fits_shwi_p (arg11))
6821 HOST_WIDE_INT int01, int11, tmp;
6822 bool swap = false;
6823 tree maybe_same;
6824 int01 = tree_to_shwi (arg01);
6825 int11 = tree_to_shwi (arg11);
6827 /* Move min of absolute values to int11. */
6828 if (absu_hwi (int01) < absu_hwi (int11))
6830 tmp = int01, int01 = int11, int11 = tmp;
6831 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6832 maybe_same = arg01;
6833 swap = true;
6835 else
6836 maybe_same = arg11;
6838 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6839 /* The remainder should not be a constant, otherwise we
6840 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6841 increased the number of multiplications necessary. */
6842 && TREE_CODE (arg10) != INTEGER_CST)
6844 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6845 build_int_cst (TREE_TYPE (arg00),
6846 int01 / int11));
6847 alt1 = arg10;
6848 same = maybe_same;
6849 if (swap)
6850 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6854 if (same)
6855 return fold_build2_loc (loc, MULT_EXPR, type,
6856 fold_build2_loc (loc, code, type,
6857 fold_convert_loc (loc, type, alt0),
6858 fold_convert_loc (loc, type, alt1)),
6859 fold_convert_loc (loc, type, same));
6861 return NULL_TREE;
6864 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6865 specified by EXPR into the buffer PTR of length LEN bytes.
6866 Return the number of bytes placed in the buffer, or zero
6867 upon failure. */
6869 static int
6870 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6872 tree type = TREE_TYPE (expr);
6873 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6874 int byte, offset, word, words;
6875 unsigned char value;
6877 if ((off == -1 && total_bytes > len)
6878 || off >= total_bytes)
6879 return 0;
6880 if (off == -1)
6881 off = 0;
6882 words = total_bytes / UNITS_PER_WORD;
6884 for (byte = 0; byte < total_bytes; byte++)
6886 int bitpos = byte * BITS_PER_UNIT;
6887 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6888 number of bytes. */
6889 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6891 if (total_bytes > UNITS_PER_WORD)
6893 word = byte / UNITS_PER_WORD;
6894 if (WORDS_BIG_ENDIAN)
6895 word = (words - 1) - word;
6896 offset = word * UNITS_PER_WORD;
6897 if (BYTES_BIG_ENDIAN)
6898 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6899 else
6900 offset += byte % UNITS_PER_WORD;
6902 else
6903 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6904 if (offset >= off
6905 && offset - off < len)
6906 ptr[offset - off] = value;
6908 return MIN (len, total_bytes - off);
6912 /* Subroutine of native_encode_expr. Encode the FIXED_CST
6913 specified by EXPR into the buffer PTR of length LEN bytes.
6914 Return the number of bytes placed in the buffer, or zero
6915 upon failure. */
6917 static int
6918 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
6920 tree type = TREE_TYPE (expr);
6921 machine_mode mode = TYPE_MODE (type);
6922 int total_bytes = GET_MODE_SIZE (mode);
6923 FIXED_VALUE_TYPE value;
6924 tree i_value, i_type;
6926 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
6927 return 0;
6929 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
6931 if (NULL_TREE == i_type
6932 || TYPE_PRECISION (i_type) != total_bytes)
6933 return 0;
6935 value = TREE_FIXED_CST (expr);
6936 i_value = double_int_to_tree (i_type, value.data);
6938 return native_encode_int (i_value, ptr, len, off);
6942 /* Subroutine of native_encode_expr. Encode the REAL_CST
6943 specified by EXPR into the buffer PTR of length LEN bytes.
6944 Return the number of bytes placed in the buffer, or zero
6945 upon failure. */
6947 static int
6948 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
6950 tree type = TREE_TYPE (expr);
6951 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6952 int byte, offset, word, words, bitpos;
6953 unsigned char value;
6955 /* There are always 32 bits in each long, no matter the size of
6956 the hosts long. We handle floating point representations with
6957 up to 192 bits. */
6958 long tmp[6];
6960 if ((off == -1 && total_bytes > len)
6961 || off >= total_bytes)
6962 return 0;
6963 if (off == -1)
6964 off = 0;
6965 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
6967 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6969 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
6970 bitpos += BITS_PER_UNIT)
6972 byte = (bitpos / BITS_PER_UNIT) & 3;
6973 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6975 if (UNITS_PER_WORD < 4)
6977 word = byte / UNITS_PER_WORD;
6978 if (WORDS_BIG_ENDIAN)
6979 word = (words - 1) - word;
6980 offset = word * UNITS_PER_WORD;
6981 if (BYTES_BIG_ENDIAN)
6982 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6983 else
6984 offset += byte % UNITS_PER_WORD;
6986 else
6987 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
6988 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
6989 if (offset >= off
6990 && offset - off < len)
6991 ptr[offset - off] = value;
6993 return MIN (len, total_bytes - off);
6996 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
6997 specified by EXPR into the buffer PTR of length LEN bytes.
6998 Return the number of bytes placed in the buffer, or zero
6999 upon failure. */
7001 static int
7002 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7004 int rsize, isize;
7005 tree part;
7007 part = TREE_REALPART (expr);
7008 rsize = native_encode_expr (part, ptr, len, off);
7009 if (off == -1
7010 && rsize == 0)
7011 return 0;
7012 part = TREE_IMAGPART (expr);
7013 if (off != -1)
7014 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7015 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7016 if (off == -1
7017 && isize != rsize)
7018 return 0;
7019 return rsize + isize;
7023 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7024 specified by EXPR into the buffer PTR of length LEN bytes.
7025 Return the number of bytes placed in the buffer, or zero
7026 upon failure. */
7028 static int
7029 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7031 unsigned i, count;
7032 int size, offset;
7033 tree itype, elem;
7035 offset = 0;
7036 count = VECTOR_CST_NELTS (expr);
7037 itype = TREE_TYPE (TREE_TYPE (expr));
7038 size = GET_MODE_SIZE (TYPE_MODE (itype));
7039 for (i = 0; i < count; i++)
7041 if (off >= size)
7043 off -= size;
7044 continue;
7046 elem = VECTOR_CST_ELT (expr, i);
7047 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7048 if ((off == -1 && res != size)
7049 || res == 0)
7050 return 0;
7051 offset += res;
7052 if (offset >= len)
7053 return offset;
7054 if (off != -1)
7055 off = 0;
7057 return offset;
7061 /* Subroutine of native_encode_expr. Encode the STRING_CST
7062 specified by EXPR into the buffer PTR of length LEN bytes.
7063 Return the number of bytes placed in the buffer, or zero
7064 upon failure. */
7066 static int
7067 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7069 tree type = TREE_TYPE (expr);
7070 HOST_WIDE_INT total_bytes;
7072 if (TREE_CODE (type) != ARRAY_TYPE
7073 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7074 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7075 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7076 return 0;
7077 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7078 if ((off == -1 && total_bytes > len)
7079 || off >= total_bytes)
7080 return 0;
7081 if (off == -1)
7082 off = 0;
7083 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7085 int written = 0;
7086 if (off < TREE_STRING_LENGTH (expr))
7088 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7089 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7091 memset (ptr + written, 0,
7092 MIN (total_bytes - written, len - written));
7094 else
7095 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7096 return MIN (total_bytes - off, len);
7100 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7101 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7102 buffer PTR of length LEN bytes. If OFF is not -1 then start
7103 the encoding at byte offset OFF and encode at most LEN bytes.
7104 Return the number of bytes placed in the buffer, or zero upon failure. */
7107 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7109 switch (TREE_CODE (expr))
7111 case INTEGER_CST:
7112 return native_encode_int (expr, ptr, len, off);
7114 case REAL_CST:
7115 return native_encode_real (expr, ptr, len, off);
7117 case FIXED_CST:
7118 return native_encode_fixed (expr, ptr, len, off);
7120 case COMPLEX_CST:
7121 return native_encode_complex (expr, ptr, len, off);
7123 case VECTOR_CST:
7124 return native_encode_vector (expr, ptr, len, off);
7126 case STRING_CST:
7127 return native_encode_string (expr, ptr, len, off);
7129 default:
7130 return 0;
7135 /* Subroutine of native_interpret_expr. Interpret the contents of
7136 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7137 If the buffer cannot be interpreted, return NULL_TREE. */
7139 static tree
7140 native_interpret_int (tree type, const unsigned char *ptr, int len)
7142 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7144 if (total_bytes > len
7145 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7146 return NULL_TREE;
7148 wide_int result = wi::from_buffer (ptr, total_bytes);
7150 return wide_int_to_tree (type, result);
7154 /* Subroutine of native_interpret_expr. Interpret the contents of
7155 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7156 If the buffer cannot be interpreted, return NULL_TREE. */
7158 static tree
7159 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7161 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7162 double_int result;
7163 FIXED_VALUE_TYPE fixed_value;
7165 if (total_bytes > len
7166 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7167 return NULL_TREE;
7169 result = double_int::from_buffer (ptr, total_bytes);
7170 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7172 return build_fixed (type, fixed_value);
7176 /* Subroutine of native_interpret_expr. Interpret the contents of
7177 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7178 If the buffer cannot be interpreted, return NULL_TREE. */
7180 static tree
7181 native_interpret_real (tree type, const unsigned char *ptr, int len)
7183 machine_mode mode = TYPE_MODE (type);
7184 int total_bytes = GET_MODE_SIZE (mode);
7185 int byte, offset, word, words, bitpos;
7186 unsigned char value;
7187 /* There are always 32 bits in each long, no matter the size of
7188 the hosts long. We handle floating point representations with
7189 up to 192 bits. */
7190 REAL_VALUE_TYPE r;
7191 long tmp[6];
7193 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7194 if (total_bytes > len || total_bytes > 24)
7195 return NULL_TREE;
7196 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7198 memset (tmp, 0, sizeof (tmp));
7199 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7200 bitpos += BITS_PER_UNIT)
7202 byte = (bitpos / BITS_PER_UNIT) & 3;
7203 if (UNITS_PER_WORD < 4)
7205 word = byte / UNITS_PER_WORD;
7206 if (WORDS_BIG_ENDIAN)
7207 word = (words - 1) - word;
7208 offset = word * UNITS_PER_WORD;
7209 if (BYTES_BIG_ENDIAN)
7210 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7211 else
7212 offset += byte % UNITS_PER_WORD;
7214 else
7215 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7216 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7218 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7221 real_from_target (&r, tmp, mode);
7222 return build_real (type, r);
7226 /* Subroutine of native_interpret_expr. Interpret the contents of
7227 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7228 If the buffer cannot be interpreted, return NULL_TREE. */
7230 static tree
7231 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7233 tree etype, rpart, ipart;
7234 int size;
7236 etype = TREE_TYPE (type);
7237 size = GET_MODE_SIZE (TYPE_MODE (etype));
7238 if (size * 2 > len)
7239 return NULL_TREE;
7240 rpart = native_interpret_expr (etype, ptr, size);
7241 if (!rpart)
7242 return NULL_TREE;
7243 ipart = native_interpret_expr (etype, ptr+size, size);
7244 if (!ipart)
7245 return NULL_TREE;
7246 return build_complex (type, rpart, ipart);
7250 /* Subroutine of native_interpret_expr. Interpret the contents of
7251 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7252 If the buffer cannot be interpreted, return NULL_TREE. */
7254 static tree
7255 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7257 tree etype, elem;
7258 int i, size, count;
7259 tree *elements;
7261 etype = TREE_TYPE (type);
7262 size = GET_MODE_SIZE (TYPE_MODE (etype));
7263 count = TYPE_VECTOR_SUBPARTS (type);
7264 if (size * count > len)
7265 return NULL_TREE;
7267 elements = XALLOCAVEC (tree, count);
7268 for (i = count - 1; i >= 0; i--)
7270 elem = native_interpret_expr (etype, ptr+(i*size), size);
7271 if (!elem)
7272 return NULL_TREE;
7273 elements[i] = elem;
7275 return build_vector (type, elements);
7279 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7280 the buffer PTR of length LEN as a constant of type TYPE. For
7281 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7282 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7283 return NULL_TREE. */
7285 tree
7286 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7288 switch (TREE_CODE (type))
7290 case INTEGER_TYPE:
7291 case ENUMERAL_TYPE:
7292 case BOOLEAN_TYPE:
7293 case POINTER_TYPE:
7294 case REFERENCE_TYPE:
7295 return native_interpret_int (type, ptr, len);
7297 case REAL_TYPE:
7298 return native_interpret_real (type, ptr, len);
7300 case FIXED_POINT_TYPE:
7301 return native_interpret_fixed (type, ptr, len);
7303 case COMPLEX_TYPE:
7304 return native_interpret_complex (type, ptr, len);
7306 case VECTOR_TYPE:
7307 return native_interpret_vector (type, ptr, len);
7309 default:
7310 return NULL_TREE;
7314 /* Returns true if we can interpret the contents of a native encoding
7315 as TYPE. */
7317 static bool
7318 can_native_interpret_type_p (tree type)
7320 switch (TREE_CODE (type))
7322 case INTEGER_TYPE:
7323 case ENUMERAL_TYPE:
7324 case BOOLEAN_TYPE:
7325 case POINTER_TYPE:
7326 case REFERENCE_TYPE:
7327 case FIXED_POINT_TYPE:
7328 case REAL_TYPE:
7329 case COMPLEX_TYPE:
7330 case VECTOR_TYPE:
7331 return true;
7332 default:
7333 return false;
7337 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7338 TYPE at compile-time. If we're unable to perform the conversion
7339 return NULL_TREE. */
7341 static tree
7342 fold_view_convert_expr (tree type, tree expr)
7344 /* We support up to 512-bit values (for V8DFmode). */
7345 unsigned char buffer[64];
7346 int len;
7348 /* Check that the host and target are sane. */
7349 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7350 return NULL_TREE;
7352 len = native_encode_expr (expr, buffer, sizeof (buffer));
7353 if (len == 0)
7354 return NULL_TREE;
7356 return native_interpret_expr (type, buffer, len);
7359 /* Build an expression for the address of T. Folds away INDIRECT_REF
7360 to avoid confusing the gimplify process. */
7362 tree
7363 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7365 /* The size of the object is not relevant when talking about its address. */
7366 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7367 t = TREE_OPERAND (t, 0);
7369 if (TREE_CODE (t) == INDIRECT_REF)
7371 t = TREE_OPERAND (t, 0);
7373 if (TREE_TYPE (t) != ptrtype)
7374 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7376 else if (TREE_CODE (t) == MEM_REF
7377 && integer_zerop (TREE_OPERAND (t, 1)))
7378 return TREE_OPERAND (t, 0);
7379 else if (TREE_CODE (t) == MEM_REF
7380 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7381 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7382 TREE_OPERAND (t, 0),
7383 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7384 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7386 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7388 if (TREE_TYPE (t) != ptrtype)
7389 t = fold_convert_loc (loc, ptrtype, t);
7391 else
7392 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7394 return t;
7397 /* Build an expression for the address of T. */
7399 tree
7400 build_fold_addr_expr_loc (location_t loc, tree t)
7402 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7404 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7407 /* Fold a unary expression of code CODE and type TYPE with operand
7408 OP0. Return the folded expression if folding is successful.
7409 Otherwise, return NULL_TREE. */
7411 tree
7412 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7414 tree tem;
7415 tree arg0;
7416 enum tree_code_class kind = TREE_CODE_CLASS (code);
7418 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7419 && TREE_CODE_LENGTH (code) == 1);
7421 arg0 = op0;
7422 if (arg0)
7424 if (CONVERT_EXPR_CODE_P (code)
7425 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7427 /* Don't use STRIP_NOPS, because signedness of argument type
7428 matters. */
7429 STRIP_SIGN_NOPS (arg0);
7431 else
7433 /* Strip any conversions that don't change the mode. This
7434 is safe for every expression, except for a comparison
7435 expression because its signedness is derived from its
7436 operands.
7438 Note that this is done as an internal manipulation within
7439 the constant folder, in order to find the simplest
7440 representation of the arguments so that their form can be
7441 studied. In any cases, the appropriate type conversions
7442 should be put back in the tree that will get out of the
7443 constant folder. */
7444 STRIP_NOPS (arg0);
7447 if (CONSTANT_CLASS_P (arg0))
7449 tree tem = const_unop (code, type, arg0);
7450 if (tem)
7452 if (TREE_TYPE (tem) != type)
7453 tem = fold_convert_loc (loc, type, tem);
7454 return tem;
7459 tem = generic_simplify (loc, code, type, op0);
7460 if (tem)
7461 return tem;
7463 if (TREE_CODE_CLASS (code) == tcc_unary)
7465 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7466 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7467 fold_build1_loc (loc, code, type,
7468 fold_convert_loc (loc, TREE_TYPE (op0),
7469 TREE_OPERAND (arg0, 1))));
7470 else if (TREE_CODE (arg0) == COND_EXPR)
7472 tree arg01 = TREE_OPERAND (arg0, 1);
7473 tree arg02 = TREE_OPERAND (arg0, 2);
7474 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7475 arg01 = fold_build1_loc (loc, code, type,
7476 fold_convert_loc (loc,
7477 TREE_TYPE (op0), arg01));
7478 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7479 arg02 = fold_build1_loc (loc, code, type,
7480 fold_convert_loc (loc,
7481 TREE_TYPE (op0), arg02));
7482 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7483 arg01, arg02);
7485 /* If this was a conversion, and all we did was to move into
7486 inside the COND_EXPR, bring it back out. But leave it if
7487 it is a conversion from integer to integer and the
7488 result precision is no wider than a word since such a
7489 conversion is cheap and may be optimized away by combine,
7490 while it couldn't if it were outside the COND_EXPR. Then return
7491 so we don't get into an infinite recursion loop taking the
7492 conversion out and then back in. */
7494 if ((CONVERT_EXPR_CODE_P (code)
7495 || code == NON_LVALUE_EXPR)
7496 && TREE_CODE (tem) == COND_EXPR
7497 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7498 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7499 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7500 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7501 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7502 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7503 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7504 && (INTEGRAL_TYPE_P
7505 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7506 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7507 || flag_syntax_only))
7508 tem = build1_loc (loc, code, type,
7509 build3 (COND_EXPR,
7510 TREE_TYPE (TREE_OPERAND
7511 (TREE_OPERAND (tem, 1), 0)),
7512 TREE_OPERAND (tem, 0),
7513 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7514 TREE_OPERAND (TREE_OPERAND (tem, 2),
7515 0)));
7516 return tem;
7520 switch (code)
7522 case NON_LVALUE_EXPR:
7523 if (!maybe_lvalue_p (op0))
7524 return fold_convert_loc (loc, type, op0);
7525 return NULL_TREE;
7527 CASE_CONVERT:
7528 case FLOAT_EXPR:
7529 case FIX_TRUNC_EXPR:
7530 if (COMPARISON_CLASS_P (op0))
7532 /* If we have (type) (a CMP b) and type is an integral type, return
7533 new expression involving the new type. Canonicalize
7534 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7535 non-integral type.
7536 Do not fold the result as that would not simplify further, also
7537 folding again results in recursions. */
7538 if (TREE_CODE (type) == BOOLEAN_TYPE)
7539 return build2_loc (loc, TREE_CODE (op0), type,
7540 TREE_OPERAND (op0, 0),
7541 TREE_OPERAND (op0, 1));
7542 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7543 && TREE_CODE (type) != VECTOR_TYPE)
7544 return build3_loc (loc, COND_EXPR, type, op0,
7545 constant_boolean_node (true, type),
7546 constant_boolean_node (false, type));
7549 /* Handle (T *)&A.B.C for A being of type T and B and C
7550 living at offset zero. This occurs frequently in
7551 C++ upcasting and then accessing the base. */
7552 if (TREE_CODE (op0) == ADDR_EXPR
7553 && POINTER_TYPE_P (type)
7554 && handled_component_p (TREE_OPERAND (op0, 0)))
7556 HOST_WIDE_INT bitsize, bitpos;
7557 tree offset;
7558 machine_mode mode;
7559 int unsignedp, volatilep;
7560 tree base = TREE_OPERAND (op0, 0);
7561 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7562 &mode, &unsignedp, &volatilep, false);
7563 /* If the reference was to a (constant) zero offset, we can use
7564 the address of the base if it has the same base type
7565 as the result type and the pointer type is unqualified. */
7566 if (! offset && bitpos == 0
7567 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7568 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7569 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7570 return fold_convert_loc (loc, type,
7571 build_fold_addr_expr_loc (loc, base));
7574 if (TREE_CODE (op0) == MODIFY_EXPR
7575 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7576 /* Detect assigning a bitfield. */
7577 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7578 && DECL_BIT_FIELD
7579 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7581 /* Don't leave an assignment inside a conversion
7582 unless assigning a bitfield. */
7583 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7584 /* First do the assignment, then return converted constant. */
7585 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7586 TREE_NO_WARNING (tem) = 1;
7587 TREE_USED (tem) = 1;
7588 return tem;
7591 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7592 constants (if x has signed type, the sign bit cannot be set
7593 in c). This folds extension into the BIT_AND_EXPR.
7594 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7595 very likely don't have maximal range for their precision and this
7596 transformation effectively doesn't preserve non-maximal ranges. */
7597 if (TREE_CODE (type) == INTEGER_TYPE
7598 && TREE_CODE (op0) == BIT_AND_EXPR
7599 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7601 tree and_expr = op0;
7602 tree and0 = TREE_OPERAND (and_expr, 0);
7603 tree and1 = TREE_OPERAND (and_expr, 1);
7604 int change = 0;
7606 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7607 || (TYPE_PRECISION (type)
7608 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7609 change = 1;
7610 else if (TYPE_PRECISION (TREE_TYPE (and1))
7611 <= HOST_BITS_PER_WIDE_INT
7612 && tree_fits_uhwi_p (and1))
7614 unsigned HOST_WIDE_INT cst;
7616 cst = tree_to_uhwi (and1);
7617 cst &= HOST_WIDE_INT_M1U
7618 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7619 change = (cst == 0);
7620 if (change
7621 && !flag_syntax_only
7622 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7623 == ZERO_EXTEND))
7625 tree uns = unsigned_type_for (TREE_TYPE (and0));
7626 and0 = fold_convert_loc (loc, uns, and0);
7627 and1 = fold_convert_loc (loc, uns, and1);
7630 if (change)
7632 tem = force_fit_type (type, wi::to_widest (and1), 0,
7633 TREE_OVERFLOW (and1));
7634 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7635 fold_convert_loc (loc, type, and0), tem);
7639 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7640 when one of the new casts will fold away. Conservatively we assume
7641 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7642 if (POINTER_TYPE_P (type)
7643 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7644 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
7645 && !upc_shared_type_p (TREE_TYPE (type))
7646 && !upc_shared_type_p (TREE_TYPE (
7647 TREE_TYPE (TREE_OPERAND (arg0, 0))))
7648 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7649 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7650 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7652 tree arg00 = TREE_OPERAND (arg0, 0);
7653 tree arg01 = TREE_OPERAND (arg0, 1);
7655 return fold_build_pointer_plus_loc
7656 (loc, fold_convert_loc (loc, type, arg00), arg01);
7659 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7660 of the same precision, and X is an integer type not narrower than
7661 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7662 if (INTEGRAL_TYPE_P (type)
7663 && TREE_CODE (op0) == BIT_NOT_EXPR
7664 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7665 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7666 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7668 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7669 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7670 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7671 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7672 fold_convert_loc (loc, type, tem));
7675 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7676 type of X and Y (integer types only). */
7677 if (INTEGRAL_TYPE_P (type)
7678 && TREE_CODE (op0) == MULT_EXPR
7679 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7680 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7682 /* Be careful not to introduce new overflows. */
7683 tree mult_type;
7684 if (TYPE_OVERFLOW_WRAPS (type))
7685 mult_type = type;
7686 else
7687 mult_type = unsigned_type_for (type);
7689 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7691 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7692 fold_convert_loc (loc, mult_type,
7693 TREE_OPERAND (op0, 0)),
7694 fold_convert_loc (loc, mult_type,
7695 TREE_OPERAND (op0, 1)));
7696 return fold_convert_loc (loc, type, tem);
7700 return NULL_TREE;
7702 case VIEW_CONVERT_EXPR:
7703 if (TREE_CODE (op0) == MEM_REF)
7704 return fold_build2_loc (loc, MEM_REF, type,
7705 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7707 return NULL_TREE;
7709 case NEGATE_EXPR:
7710 tem = fold_negate_expr (loc, arg0);
7711 if (tem)
7712 return fold_convert_loc (loc, type, tem);
7713 return NULL_TREE;
7715 case ABS_EXPR:
7716 /* Convert fabs((double)float) into (double)fabsf(float). */
7717 if (TREE_CODE (arg0) == NOP_EXPR
7718 && TREE_CODE (type) == REAL_TYPE)
7720 tree targ0 = strip_float_extensions (arg0);
7721 if (targ0 != arg0)
7722 return fold_convert_loc (loc, type,
7723 fold_build1_loc (loc, ABS_EXPR,
7724 TREE_TYPE (targ0),
7725 targ0));
7728 /* Strip sign ops from argument. */
7729 if (TREE_CODE (type) == REAL_TYPE)
7731 tem = fold_strip_sign_ops (arg0);
7732 if (tem)
7733 return fold_build1_loc (loc, ABS_EXPR, type,
7734 fold_convert_loc (loc, type, tem));
7736 return NULL_TREE;
7738 case CONJ_EXPR:
7739 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7740 return fold_convert_loc (loc, type, arg0);
7741 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7743 tree itype = TREE_TYPE (type);
7744 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
7745 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
7746 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
7747 negate_expr (ipart));
7749 if (TREE_CODE (arg0) == CONJ_EXPR)
7750 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
7751 return NULL_TREE;
7753 case BIT_NOT_EXPR:
7754 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7755 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7756 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7757 fold_convert_loc (loc, type,
7758 TREE_OPERAND (arg0, 0)))))
7759 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7760 fold_convert_loc (loc, type,
7761 TREE_OPERAND (arg0, 1)));
7762 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7763 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7764 fold_convert_loc (loc, type,
7765 TREE_OPERAND (arg0, 1)))))
7766 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7767 fold_convert_loc (loc, type,
7768 TREE_OPERAND (arg0, 0)), tem);
7770 return NULL_TREE;
7772 case TRUTH_NOT_EXPR:
7773 /* Note that the operand of this must be an int
7774 and its values must be 0 or 1.
7775 ("true" is a fixed value perhaps depending on the language,
7776 but we don't handle values other than 1 correctly yet.) */
7777 tem = fold_truth_not_expr (loc, arg0);
7778 if (!tem)
7779 return NULL_TREE;
7780 return fold_convert_loc (loc, type, tem);
7782 case REALPART_EXPR:
7783 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7784 return fold_convert_loc (loc, type, arg0);
7785 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7787 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7788 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7789 fold_build1_loc (loc, REALPART_EXPR, itype,
7790 TREE_OPERAND (arg0, 0)),
7791 fold_build1_loc (loc, REALPART_EXPR, itype,
7792 TREE_OPERAND (arg0, 1)));
7793 return fold_convert_loc (loc, type, tem);
7795 if (TREE_CODE (arg0) == CONJ_EXPR)
7797 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7798 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
7799 TREE_OPERAND (arg0, 0));
7800 return fold_convert_loc (loc, type, tem);
7802 if (TREE_CODE (arg0) == CALL_EXPR)
7804 tree fn = get_callee_fndecl (arg0);
7805 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7806 switch (DECL_FUNCTION_CODE (fn))
7808 CASE_FLT_FN (BUILT_IN_CEXPI):
7809 fn = mathfn_built_in (type, BUILT_IN_COS);
7810 if (fn)
7811 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7812 break;
7814 default:
7815 break;
7818 return NULL_TREE;
7820 case IMAGPART_EXPR:
7821 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7822 return build_zero_cst (type);
7823 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7825 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7826 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
7827 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7828 TREE_OPERAND (arg0, 0)),
7829 fold_build1_loc (loc, IMAGPART_EXPR, itype,
7830 TREE_OPERAND (arg0, 1)));
7831 return fold_convert_loc (loc, type, tem);
7833 if (TREE_CODE (arg0) == CONJ_EXPR)
7835 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7836 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7837 return fold_convert_loc (loc, type, negate_expr (tem));
7839 if (TREE_CODE (arg0) == CALL_EXPR)
7841 tree fn = get_callee_fndecl (arg0);
7842 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7843 switch (DECL_FUNCTION_CODE (fn))
7845 CASE_FLT_FN (BUILT_IN_CEXPI):
7846 fn = mathfn_built_in (type, BUILT_IN_SIN);
7847 if (fn)
7848 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
7849 break;
7851 default:
7852 break;
7855 return NULL_TREE;
7857 case INDIRECT_REF:
7858 /* Fold *&X to X if X is an lvalue. */
7859 if (TREE_CODE (op0) == ADDR_EXPR)
7861 tree op00 = TREE_OPERAND (op0, 0);
7862 if ((TREE_CODE (op00) == VAR_DECL
7863 || TREE_CODE (op00) == PARM_DECL
7864 || TREE_CODE (op00) == RESULT_DECL)
7865 && !TREE_READONLY (op00))
7866 return op00;
7868 return NULL_TREE;
7870 default:
7871 return NULL_TREE;
7872 } /* switch (code) */
7876 /* If the operation was a conversion do _not_ mark a resulting constant
7877 with TREE_OVERFLOW if the original constant was not. These conversions
7878 have implementation defined behavior and retaining the TREE_OVERFLOW
7879 flag here would confuse later passes such as VRP. */
7880 tree
7881 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7882 tree type, tree op0)
7884 tree res = fold_unary_loc (loc, code, type, op0);
7885 if (res
7886 && TREE_CODE (res) == INTEGER_CST
7887 && TREE_CODE (op0) == INTEGER_CST
7888 && CONVERT_EXPR_CODE_P (code))
7889 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7891 return res;
7894 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7895 operands OP0 and OP1. LOC is the location of the resulting expression.
7896 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7897 Return the folded expression if folding is successful. Otherwise,
7898 return NULL_TREE. */
7899 static tree
7900 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7901 tree arg0, tree arg1, tree op0, tree op1)
7903 tree tem;
7905 /* We only do these simplifications if we are optimizing. */
7906 if (!optimize)
7907 return NULL_TREE;
7909 /* Check for things like (A || B) && (A || C). We can convert this
7910 to A || (B && C). Note that either operator can be any of the four
7911 truth and/or operations and the transformation will still be
7912 valid. Also note that we only care about order for the
7913 ANDIF and ORIF operators. If B contains side effects, this
7914 might change the truth-value of A. */
7915 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7916 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7917 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7918 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7919 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7920 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7922 tree a00 = TREE_OPERAND (arg0, 0);
7923 tree a01 = TREE_OPERAND (arg0, 1);
7924 tree a10 = TREE_OPERAND (arg1, 0);
7925 tree a11 = TREE_OPERAND (arg1, 1);
7926 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7927 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7928 && (code == TRUTH_AND_EXPR
7929 || code == TRUTH_OR_EXPR));
7931 if (operand_equal_p (a00, a10, 0))
7932 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7933 fold_build2_loc (loc, code, type, a01, a11));
7934 else if (commutative && operand_equal_p (a00, a11, 0))
7935 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7936 fold_build2_loc (loc, code, type, a01, a10));
7937 else if (commutative && operand_equal_p (a01, a10, 0))
7938 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7939 fold_build2_loc (loc, code, type, a00, a11));
7941 /* This case if tricky because we must either have commutative
7942 operators or else A10 must not have side-effects. */
7944 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7945 && operand_equal_p (a01, a11, 0))
7946 return fold_build2_loc (loc, TREE_CODE (arg0), type,
7947 fold_build2_loc (loc, code, type, a00, a10),
7948 a01);
7951 /* See if we can build a range comparison. */
7952 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
7953 return tem;
7955 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
7956 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
7958 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
7959 if (tem)
7960 return fold_build2_loc (loc, code, type, tem, arg1);
7963 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
7964 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
7966 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
7967 if (tem)
7968 return fold_build2_loc (loc, code, type, arg0, tem);
7971 /* Check for the possibility of merging component references. If our
7972 lhs is another similar operation, try to merge its rhs with our
7973 rhs. Then try to merge our lhs and rhs. */
7974 if (TREE_CODE (arg0) == code
7975 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
7976 TREE_OPERAND (arg0, 1), arg1)))
7977 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
7979 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
7980 return tem;
7982 if (LOGICAL_OP_NON_SHORT_CIRCUIT
7983 && (code == TRUTH_AND_EXPR
7984 || code == TRUTH_ANDIF_EXPR
7985 || code == TRUTH_OR_EXPR
7986 || code == TRUTH_ORIF_EXPR))
7988 enum tree_code ncode, icode;
7990 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
7991 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
7992 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
7994 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
7995 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
7996 We don't want to pack more than two leafs to a non-IF AND/OR
7997 expression.
7998 If tree-code of left-hand operand isn't an AND/OR-IF code and not
7999 equal to IF-CODE, then we don't want to add right-hand operand.
8000 If the inner right-hand side of left-hand operand has
8001 side-effects, or isn't simple, then we can't add to it,
8002 as otherwise we might destroy if-sequence. */
8003 if (TREE_CODE (arg0) == icode
8004 && simple_operand_p_2 (arg1)
8005 /* Needed for sequence points to handle trappings, and
8006 side-effects. */
8007 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8009 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8010 arg1);
8011 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8012 tem);
8014 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8015 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8016 else if (TREE_CODE (arg1) == icode
8017 && simple_operand_p_2 (arg0)
8018 /* Needed for sequence points to handle trappings, and
8019 side-effects. */
8020 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8022 tem = fold_build2_loc (loc, ncode, type,
8023 arg0, TREE_OPERAND (arg1, 0));
8024 return fold_build2_loc (loc, icode, type, tem,
8025 TREE_OPERAND (arg1, 1));
8027 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8028 into (A OR B).
8029 For sequence point consistancy, we need to check for trapping,
8030 and side-effects. */
8031 else if (code == icode && simple_operand_p_2 (arg0)
8032 && simple_operand_p_2 (arg1))
8033 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8036 return NULL_TREE;
8039 /* Fold a binary expression of code CODE and type TYPE with operands
8040 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8041 Return the folded expression if folding is successful. Otherwise,
8042 return NULL_TREE. */
8044 static tree
8045 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8047 enum tree_code compl_code;
8049 if (code == MIN_EXPR)
8050 compl_code = MAX_EXPR;
8051 else if (code == MAX_EXPR)
8052 compl_code = MIN_EXPR;
8053 else
8054 gcc_unreachable ();
8056 /* MIN (MAX (a, b), b) == b. */
8057 if (TREE_CODE (op0) == compl_code
8058 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8059 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8061 /* MIN (MAX (b, a), b) == b. */
8062 if (TREE_CODE (op0) == compl_code
8063 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8064 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8065 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8067 /* MIN (a, MAX (a, b)) == a. */
8068 if (TREE_CODE (op1) == compl_code
8069 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8070 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8071 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8073 /* MIN (a, MAX (b, a)) == a. */
8074 if (TREE_CODE (op1) == compl_code
8075 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8076 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8077 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8079 return NULL_TREE;
8082 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8083 by changing CODE to reduce the magnitude of constants involved in
8084 ARG0 of the comparison.
8085 Returns a canonicalized comparison tree if a simplification was
8086 possible, otherwise returns NULL_TREE.
8087 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8088 valid if signed overflow is undefined. */
8090 static tree
8091 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8092 tree arg0, tree arg1,
8093 bool *strict_overflow_p)
8095 enum tree_code code0 = TREE_CODE (arg0);
8096 tree t, cst0 = NULL_TREE;
8097 int sgn0;
8099 /* Match A +- CST code arg1. We can change this only if overflow
8100 is undefined. */
8101 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8102 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8103 /* In principle pointers also have undefined overflow behavior,
8104 but that causes problems elsewhere. */
8105 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8106 && (code0 == MINUS_EXPR
8107 || code0 == PLUS_EXPR)
8108 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8109 return NULL_TREE;
8111 /* Identify the constant in arg0 and its sign. */
8112 cst0 = TREE_OPERAND (arg0, 1);
8113 sgn0 = tree_int_cst_sgn (cst0);
8115 /* Overflowed constants and zero will cause problems. */
8116 if (integer_zerop (cst0)
8117 || TREE_OVERFLOW (cst0))
8118 return NULL_TREE;
8120 /* See if we can reduce the magnitude of the constant in
8121 arg0 by changing the comparison code. */
8122 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8123 if (code == LT_EXPR
8124 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8125 code = LE_EXPR;
8126 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8127 else if (code == GT_EXPR
8128 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8129 code = GE_EXPR;
8130 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8131 else if (code == LE_EXPR
8132 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8133 code = LT_EXPR;
8134 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8135 else if (code == GE_EXPR
8136 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8137 code = GT_EXPR;
8138 else
8139 return NULL_TREE;
8140 *strict_overflow_p = true;
8142 /* Now build the constant reduced in magnitude. But not if that
8143 would produce one outside of its types range. */
8144 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8145 && ((sgn0 == 1
8146 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8147 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8148 || (sgn0 == -1
8149 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8150 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8151 return NULL_TREE;
8153 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8154 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8155 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8156 t = fold_convert (TREE_TYPE (arg1), t);
8158 return fold_build2_loc (loc, code, type, t, arg1);
8161 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8162 overflow further. Try to decrease the magnitude of constants involved
8163 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8164 and put sole constants at the second argument position.
8165 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8167 static tree
8168 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8169 tree arg0, tree arg1)
8171 tree t;
8172 bool strict_overflow_p;
8173 const char * const warnmsg = G_("assuming signed overflow does not occur "
8174 "when reducing constant in comparison");
8176 /* Try canonicalization by simplifying arg0. */
8177 strict_overflow_p = false;
8178 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8179 &strict_overflow_p);
8180 if (t)
8182 if (strict_overflow_p)
8183 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8184 return t;
8187 /* Try canonicalization by simplifying arg1 using the swapped
8188 comparison. */
8189 code = swap_tree_comparison (code);
8190 strict_overflow_p = false;
8191 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8192 &strict_overflow_p);
8193 if (t && strict_overflow_p)
8194 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8195 return t;
8198 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8199 space. This is used to avoid issuing overflow warnings for
8200 expressions like &p->x which can not wrap. */
8202 static bool
8203 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8205 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8206 return true;
8208 if (bitpos < 0)
8209 return true;
8211 wide_int wi_offset;
8212 int precision = TYPE_PRECISION (TREE_TYPE (base));
8213 if (offset == NULL_TREE)
8214 wi_offset = wi::zero (precision);
8215 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8216 return true;
8217 else
8218 wi_offset = offset;
8220 bool overflow;
8221 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8222 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8223 if (overflow)
8224 return true;
8226 if (!wi::fits_uhwi_p (total))
8227 return true;
8229 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8230 if (size <= 0)
8231 return true;
8233 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8234 array. */
8235 if (TREE_CODE (base) == ADDR_EXPR)
8237 HOST_WIDE_INT base_size;
8239 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8240 if (base_size > 0 && size < base_size)
8241 size = base_size;
8244 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8247 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8248 kind INTEGER_CST. This makes sure to properly sign-extend the
8249 constant. */
8251 static HOST_WIDE_INT
8252 size_low_cst (const_tree t)
8254 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8255 int prec = TYPE_PRECISION (TREE_TYPE (t));
8256 if (prec < HOST_BITS_PER_WIDE_INT)
8257 return sext_hwi (w, prec);
8258 return w;
8261 /* Subroutine of fold_binary. This routine performs all of the
8262 transformations that are common to the equality/inequality
8263 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8264 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8265 fold_binary should call fold_binary. Fold a comparison with
8266 tree code CODE and type TYPE with operands OP0 and OP1. Return
8267 the folded comparison or NULL_TREE. */
8269 static tree
8270 fold_comparison (location_t loc, enum tree_code code, tree type,
8271 tree op0, tree op1)
8273 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8274 tree arg0, arg1, tem;
8276 arg0 = op0;
8277 arg1 = op1;
8279 STRIP_SIGN_NOPS (arg0);
8280 STRIP_SIGN_NOPS (arg1);
8282 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8283 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8284 && (equality_code
8285 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8286 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8287 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8288 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8289 && TREE_CODE (arg1) == INTEGER_CST
8290 && !TREE_OVERFLOW (arg1))
8292 const enum tree_code
8293 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8294 tree const1 = TREE_OPERAND (arg0, 1);
8295 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8296 tree variable = TREE_OPERAND (arg0, 0);
8297 tree new_const = int_const_binop (reverse_op, const2, const1);
8299 /* If the constant operation overflowed this can be
8300 simplified as a comparison against INT_MAX/INT_MIN. */
8301 if (TREE_OVERFLOW (new_const)
8302 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8304 int const1_sgn = tree_int_cst_sgn (const1);
8305 enum tree_code code2 = code;
8307 /* Get the sign of the constant on the lhs if the
8308 operation were VARIABLE + CONST1. */
8309 if (TREE_CODE (arg0) == MINUS_EXPR)
8310 const1_sgn = -const1_sgn;
8312 /* The sign of the constant determines if we overflowed
8313 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8314 Canonicalize to the INT_MIN overflow by swapping the comparison
8315 if necessary. */
8316 if (const1_sgn == -1)
8317 code2 = swap_tree_comparison (code);
8319 /* We now can look at the canonicalized case
8320 VARIABLE + 1 CODE2 INT_MIN
8321 and decide on the result. */
8322 switch (code2)
8324 case EQ_EXPR:
8325 case LT_EXPR:
8326 case LE_EXPR:
8327 return
8328 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8330 case NE_EXPR:
8331 case GE_EXPR:
8332 case GT_EXPR:
8333 return
8334 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8336 default:
8337 gcc_unreachable ();
8340 else
8342 if (!equality_code)
8343 fold_overflow_warning ("assuming signed overflow does not occur "
8344 "when changing X +- C1 cmp C2 to "
8345 "X cmp C2 -+ C1",
8346 WARN_STRICT_OVERFLOW_COMPARISON);
8347 return fold_build2_loc (loc, code, type, variable, new_const);
8351 /* For comparisons of pointers we can decompose it to a compile time
8352 comparison of the base objects and the offsets into the object.
8353 This requires at least one operand being an ADDR_EXPR or a
8354 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8355 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8356 && (TREE_CODE (arg0) == ADDR_EXPR
8357 || TREE_CODE (arg1) == ADDR_EXPR
8358 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8359 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8361 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8362 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8363 machine_mode mode;
8364 int volatilep, unsignedp;
8365 bool indirect_base0 = false, indirect_base1 = false;
8367 /* Get base and offset for the access. Strip ADDR_EXPR for
8368 get_inner_reference, but put it back by stripping INDIRECT_REF
8369 off the base object if possible. indirect_baseN will be true
8370 if baseN is not an address but refers to the object itself. */
8371 base0 = arg0;
8372 if (TREE_CODE (arg0) == ADDR_EXPR)
8374 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8375 &bitsize, &bitpos0, &offset0, &mode,
8376 &unsignedp, &volatilep, false);
8377 if (TREE_CODE (base0) == INDIRECT_REF)
8378 base0 = TREE_OPERAND (base0, 0);
8379 else
8380 indirect_base0 = true;
8382 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8384 base0 = TREE_OPERAND (arg0, 0);
8385 STRIP_SIGN_NOPS (base0);
8386 if (TREE_CODE (base0) == ADDR_EXPR)
8388 base0 = TREE_OPERAND (base0, 0);
8389 indirect_base0 = true;
8391 offset0 = TREE_OPERAND (arg0, 1);
8392 if (tree_fits_shwi_p (offset0))
8394 HOST_WIDE_INT off = size_low_cst (offset0);
8395 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8396 * BITS_PER_UNIT)
8397 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8399 bitpos0 = off * BITS_PER_UNIT;
8400 offset0 = NULL_TREE;
8405 base1 = arg1;
8406 if (TREE_CODE (arg1) == ADDR_EXPR)
8408 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8409 &bitsize, &bitpos1, &offset1, &mode,
8410 &unsignedp, &volatilep, false);
8411 if (TREE_CODE (base1) == INDIRECT_REF)
8412 base1 = TREE_OPERAND (base1, 0);
8413 else
8414 indirect_base1 = true;
8416 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8418 base1 = TREE_OPERAND (arg1, 0);
8419 STRIP_SIGN_NOPS (base1);
8420 if (TREE_CODE (base1) == ADDR_EXPR)
8422 base1 = TREE_OPERAND (base1, 0);
8423 indirect_base1 = true;
8425 offset1 = TREE_OPERAND (arg1, 1);
8426 if (tree_fits_shwi_p (offset1))
8428 HOST_WIDE_INT off = size_low_cst (offset1);
8429 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8430 * BITS_PER_UNIT)
8431 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8433 bitpos1 = off * BITS_PER_UNIT;
8434 offset1 = NULL_TREE;
8439 /* If we have equivalent bases we might be able to simplify. */
8440 if (indirect_base0 == indirect_base1
8441 && operand_equal_p (base0, base1, 0))
8443 /* We can fold this expression to a constant if the non-constant
8444 offset parts are equal. */
8445 if ((offset0 == offset1
8446 || (offset0 && offset1
8447 && operand_equal_p (offset0, offset1, 0)))
8448 && (code == EQ_EXPR
8449 || code == NE_EXPR
8450 || (indirect_base0 && DECL_P (base0))
8451 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8454 if (!equality_code
8455 && bitpos0 != bitpos1
8456 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8457 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8458 fold_overflow_warning (("assuming pointer wraparound does not "
8459 "occur when comparing P +- C1 with "
8460 "P +- C2"),
8461 WARN_STRICT_OVERFLOW_CONDITIONAL);
8463 switch (code)
8465 case EQ_EXPR:
8466 return constant_boolean_node (bitpos0 == bitpos1, type);
8467 case NE_EXPR:
8468 return constant_boolean_node (bitpos0 != bitpos1, type);
8469 case LT_EXPR:
8470 return constant_boolean_node (bitpos0 < bitpos1, type);
8471 case LE_EXPR:
8472 return constant_boolean_node (bitpos0 <= bitpos1, type);
8473 case GE_EXPR:
8474 return constant_boolean_node (bitpos0 >= bitpos1, type);
8475 case GT_EXPR:
8476 return constant_boolean_node (bitpos0 > bitpos1, type);
8477 default:;
8480 /* We can simplify the comparison to a comparison of the variable
8481 offset parts if the constant offset parts are equal.
8482 Be careful to use signed sizetype here because otherwise we
8483 mess with array offsets in the wrong way. This is possible
8484 because pointer arithmetic is restricted to retain within an
8485 object and overflow on pointer differences is undefined as of
8486 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8487 else if (bitpos0 == bitpos1
8488 && (equality_code
8489 || (indirect_base0 && DECL_P (base0))
8490 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8492 /* By converting to signed sizetype we cover middle-end pointer
8493 arithmetic which operates on unsigned pointer types of size
8494 type size and ARRAY_REF offsets which are properly sign or
8495 zero extended from their type in case it is narrower than
8496 sizetype. */
8497 if (offset0 == NULL_TREE)
8498 offset0 = build_int_cst (ssizetype, 0);
8499 else
8500 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8501 if (offset1 == NULL_TREE)
8502 offset1 = build_int_cst (ssizetype, 0);
8503 else
8504 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8506 if (!equality_code
8507 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8508 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8509 fold_overflow_warning (("assuming pointer wraparound does not "
8510 "occur when comparing P +- C1 with "
8511 "P +- C2"),
8512 WARN_STRICT_OVERFLOW_COMPARISON);
8514 return fold_build2_loc (loc, code, type, offset0, offset1);
8517 /* For equal offsets we can simplify to a comparison of the
8518 base addresses. */
8519 else if (bitpos0 == bitpos1
8520 && (indirect_base0
8521 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8522 && (indirect_base1
8523 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8524 && ((offset0 == offset1)
8525 || (offset0 && offset1
8526 && operand_equal_p (offset0, offset1, 0))))
8528 if (indirect_base0)
8529 base0 = build_fold_addr_expr_loc (loc, base0);
8530 if (indirect_base1)
8531 base1 = build_fold_addr_expr_loc (loc, base1);
8532 return fold_build2_loc (loc, code, type, base0, base1);
8536 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8537 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8538 the resulting offset is smaller in absolute value than the
8539 original one and has the same sign. */
8540 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8541 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8542 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8543 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8544 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8545 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8546 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8547 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8549 tree const1 = TREE_OPERAND (arg0, 1);
8550 tree const2 = TREE_OPERAND (arg1, 1);
8551 tree variable1 = TREE_OPERAND (arg0, 0);
8552 tree variable2 = TREE_OPERAND (arg1, 0);
8553 tree cst;
8554 const char * const warnmsg = G_("assuming signed overflow does not "
8555 "occur when combining constants around "
8556 "a comparison");
8558 /* Put the constant on the side where it doesn't overflow and is
8559 of lower absolute value and of same sign than before. */
8560 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8561 ? MINUS_EXPR : PLUS_EXPR,
8562 const2, const1);
8563 if (!TREE_OVERFLOW (cst)
8564 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8565 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8567 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8568 return fold_build2_loc (loc, code, type,
8569 variable1,
8570 fold_build2_loc (loc, TREE_CODE (arg1),
8571 TREE_TYPE (arg1),
8572 variable2, cst));
8575 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8576 ? MINUS_EXPR : PLUS_EXPR,
8577 const1, const2);
8578 if (!TREE_OVERFLOW (cst)
8579 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8580 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8582 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8583 return fold_build2_loc (loc, code, type,
8584 fold_build2_loc (loc, TREE_CODE (arg0),
8585 TREE_TYPE (arg0),
8586 variable1, cst),
8587 variable2);
8591 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8592 if (tem)
8593 return tem;
8595 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8596 constant, we can simplify it. */
8597 if (TREE_CODE (arg1) == INTEGER_CST
8598 && (TREE_CODE (arg0) == MIN_EXPR
8599 || TREE_CODE (arg0) == MAX_EXPR)
8600 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8602 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8603 if (tem)
8604 return tem;
8607 /* If we are comparing an expression that just has comparisons
8608 of two integer values, arithmetic expressions of those comparisons,
8609 and constants, we can simplify it. There are only three cases
8610 to check: the two values can either be equal, the first can be
8611 greater, or the second can be greater. Fold the expression for
8612 those three values. Since each value must be 0 or 1, we have
8613 eight possibilities, each of which corresponds to the constant 0
8614 or 1 or one of the six possible comparisons.
8616 This handles common cases like (a > b) == 0 but also handles
8617 expressions like ((x > y) - (y > x)) > 0, which supposedly
8618 occur in macroized code. */
8620 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8622 tree cval1 = 0, cval2 = 0;
8623 int save_p = 0;
8625 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8626 /* Don't handle degenerate cases here; they should already
8627 have been handled anyway. */
8628 && cval1 != 0 && cval2 != 0
8629 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8630 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8631 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8632 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8633 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8634 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8635 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8637 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8638 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8640 /* We can't just pass T to eval_subst in case cval1 or cval2
8641 was the same as ARG1. */
8643 tree high_result
8644 = fold_build2_loc (loc, code, type,
8645 eval_subst (loc, arg0, cval1, maxval,
8646 cval2, minval),
8647 arg1);
8648 tree equal_result
8649 = fold_build2_loc (loc, code, type,
8650 eval_subst (loc, arg0, cval1, maxval,
8651 cval2, maxval),
8652 arg1);
8653 tree low_result
8654 = fold_build2_loc (loc, code, type,
8655 eval_subst (loc, arg0, cval1, minval,
8656 cval2, maxval),
8657 arg1);
8659 /* All three of these results should be 0 or 1. Confirm they are.
8660 Then use those values to select the proper code to use. */
8662 if (TREE_CODE (high_result) == INTEGER_CST
8663 && TREE_CODE (equal_result) == INTEGER_CST
8664 && TREE_CODE (low_result) == INTEGER_CST)
8666 /* Make a 3-bit mask with the high-order bit being the
8667 value for `>', the next for '=', and the low for '<'. */
8668 switch ((integer_onep (high_result) * 4)
8669 + (integer_onep (equal_result) * 2)
8670 + integer_onep (low_result))
8672 case 0:
8673 /* Always false. */
8674 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8675 case 1:
8676 code = LT_EXPR;
8677 break;
8678 case 2:
8679 code = EQ_EXPR;
8680 break;
8681 case 3:
8682 code = LE_EXPR;
8683 break;
8684 case 4:
8685 code = GT_EXPR;
8686 break;
8687 case 5:
8688 code = NE_EXPR;
8689 break;
8690 case 6:
8691 code = GE_EXPR;
8692 break;
8693 case 7:
8694 /* Always true. */
8695 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8698 if (save_p)
8700 tem = save_expr (build2 (code, type, cval1, cval2));
8701 SET_EXPR_LOCATION (tem, loc);
8702 return tem;
8704 return fold_build2_loc (loc, code, type, cval1, cval2);
8709 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8710 into a single range test. */
8711 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8712 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8713 && TREE_CODE (arg1) == INTEGER_CST
8714 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8715 && !integer_zerop (TREE_OPERAND (arg0, 1))
8716 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8717 && !TREE_OVERFLOW (arg1))
8719 tem = fold_div_compare (loc, code, type, arg0, arg1);
8720 if (tem != NULL_TREE)
8721 return tem;
8724 return NULL_TREE;
8728 /* Subroutine of fold_binary. Optimize complex multiplications of the
8729 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8730 argument EXPR represents the expression "z" of type TYPE. */
8732 static tree
8733 fold_mult_zconjz (location_t loc, tree type, tree expr)
8735 tree itype = TREE_TYPE (type);
8736 tree rpart, ipart, tem;
8738 if (TREE_CODE (expr) == COMPLEX_EXPR)
8740 rpart = TREE_OPERAND (expr, 0);
8741 ipart = TREE_OPERAND (expr, 1);
8743 else if (TREE_CODE (expr) == COMPLEX_CST)
8745 rpart = TREE_REALPART (expr);
8746 ipart = TREE_IMAGPART (expr);
8748 else
8750 expr = save_expr (expr);
8751 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8752 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8755 rpart = save_expr (rpart);
8756 ipart = save_expr (ipart);
8757 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8758 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8759 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8760 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8761 build_zero_cst (itype));
8765 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8766 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8768 static bool
8769 vec_cst_ctor_to_array (tree arg, tree *elts)
8771 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8773 if (TREE_CODE (arg) == VECTOR_CST)
8775 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8776 elts[i] = VECTOR_CST_ELT (arg, i);
8778 else if (TREE_CODE (arg) == CONSTRUCTOR)
8780 constructor_elt *elt;
8782 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8783 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8784 return false;
8785 else
8786 elts[i] = elt->value;
8788 else
8789 return false;
8790 for (; i < nelts; i++)
8791 elts[i]
8792 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8793 return true;
8796 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8797 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8798 NULL_TREE otherwise. */
8800 static tree
8801 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8803 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8804 tree *elts;
8805 bool need_ctor = false;
8807 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8808 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8809 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8810 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8811 return NULL_TREE;
8813 elts = XALLOCAVEC (tree, nelts * 3);
8814 if (!vec_cst_ctor_to_array (arg0, elts)
8815 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8816 return NULL_TREE;
8818 for (i = 0; i < nelts; i++)
8820 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8821 need_ctor = true;
8822 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8825 if (need_ctor)
8827 vec<constructor_elt, va_gc> *v;
8828 vec_alloc (v, nelts);
8829 for (i = 0; i < nelts; i++)
8830 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8831 return build_constructor (type, v);
8833 else
8834 return build_vector (type, &elts[2 * nelts]);
8837 /* Try to fold a pointer difference of type TYPE two address expressions of
8838 array references AREF0 and AREF1 using location LOC. Return a
8839 simplified expression for the difference or NULL_TREE. */
8841 static tree
8842 fold_addr_of_array_ref_difference (location_t loc, tree type,
8843 tree aref0, tree aref1)
8845 tree base0 = TREE_OPERAND (aref0, 0);
8846 tree base1 = TREE_OPERAND (aref1, 0);
8847 tree base_offset = build_int_cst (type, 0);
8849 /* If the bases are array references as well, recurse. If the bases
8850 are pointer indirections compute the difference of the pointers.
8851 If the bases are equal, we are set. */
8852 if ((TREE_CODE (base0) == ARRAY_REF
8853 && TREE_CODE (base1) == ARRAY_REF
8854 && (base_offset
8855 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8856 || (INDIRECT_REF_P (base0)
8857 && INDIRECT_REF_P (base1)
8858 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
8859 TREE_OPERAND (base0, 0),
8860 TREE_OPERAND (base1, 0))))
8861 || operand_equal_p (base0, base1, 0))
8863 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8864 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8865 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8866 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8867 return fold_build2_loc (loc, PLUS_EXPR, type,
8868 base_offset,
8869 fold_build2_loc (loc, MULT_EXPR, type,
8870 diff, esz));
8872 return NULL_TREE;
8875 /* If the real or vector real constant CST of type TYPE has an exact
8876 inverse, return it, else return NULL. */
8878 tree
8879 exact_inverse (tree type, tree cst)
8881 REAL_VALUE_TYPE r;
8882 tree unit_type, *elts;
8883 machine_mode mode;
8884 unsigned vec_nelts, i;
8886 switch (TREE_CODE (cst))
8888 case REAL_CST:
8889 r = TREE_REAL_CST (cst);
8891 if (exact_real_inverse (TYPE_MODE (type), &r))
8892 return build_real (type, r);
8894 return NULL_TREE;
8896 case VECTOR_CST:
8897 vec_nelts = VECTOR_CST_NELTS (cst);
8898 elts = XALLOCAVEC (tree, vec_nelts);
8899 unit_type = TREE_TYPE (type);
8900 mode = TYPE_MODE (unit_type);
8902 for (i = 0; i < vec_nelts; i++)
8904 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8905 if (!exact_real_inverse (mode, &r))
8906 return NULL_TREE;
8907 elts[i] = build_real (unit_type, r);
8910 return build_vector (type, elts);
8912 default:
8913 return NULL_TREE;
8917 /* Mask out the tz least significant bits of X of type TYPE where
8918 tz is the number of trailing zeroes in Y. */
8919 static wide_int
8920 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8922 int tz = wi::ctz (y);
8923 if (tz > 0)
8924 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8925 return x;
8928 /* Return true when T is an address and is known to be nonzero.
8929 For floating point we further ensure that T is not denormal.
8930 Similar logic is present in nonzero_address in rtlanal.h.
8932 If the return value is based on the assumption that signed overflow
8933 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8934 change *STRICT_OVERFLOW_P. */
8936 static bool
8937 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8939 tree type = TREE_TYPE (t);
8940 enum tree_code code;
8942 /* Doing something useful for floating point would need more work. */
8943 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8944 return false;
8946 code = TREE_CODE (t);
8947 switch (TREE_CODE_CLASS (code))
8949 case tcc_unary:
8950 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8951 strict_overflow_p);
8952 case tcc_binary:
8953 case tcc_comparison:
8954 return tree_binary_nonzero_warnv_p (code, type,
8955 TREE_OPERAND (t, 0),
8956 TREE_OPERAND (t, 1),
8957 strict_overflow_p);
8958 case tcc_constant:
8959 case tcc_declaration:
8960 case tcc_reference:
8961 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8963 default:
8964 break;
8967 switch (code)
8969 case TRUTH_NOT_EXPR:
8970 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8971 strict_overflow_p);
8973 case TRUTH_AND_EXPR:
8974 case TRUTH_OR_EXPR:
8975 case TRUTH_XOR_EXPR:
8976 return tree_binary_nonzero_warnv_p (code, type,
8977 TREE_OPERAND (t, 0),
8978 TREE_OPERAND (t, 1),
8979 strict_overflow_p);
8981 case COND_EXPR:
8982 case CONSTRUCTOR:
8983 case OBJ_TYPE_REF:
8984 case ASSERT_EXPR:
8985 case ADDR_EXPR:
8986 case WITH_SIZE_EXPR:
8987 case SSA_NAME:
8988 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8990 case COMPOUND_EXPR:
8991 case MODIFY_EXPR:
8992 case BIND_EXPR:
8993 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8994 strict_overflow_p);
8996 case SAVE_EXPR:
8997 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8998 strict_overflow_p);
9000 case CALL_EXPR:
9002 tree fndecl = get_callee_fndecl (t);
9003 if (!fndecl) return false;
9004 if (flag_delete_null_pointer_checks && !flag_check_new
9005 && DECL_IS_OPERATOR_NEW (fndecl)
9006 && !TREE_NOTHROW (fndecl))
9007 return true;
9008 if (flag_delete_null_pointer_checks
9009 && lookup_attribute ("returns_nonnull",
9010 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9011 return true;
9012 return alloca_call_p (t);
9015 default:
9016 break;
9018 return false;
9021 /* Return true when T is an address and is known to be nonzero.
9022 Handle warnings about undefined signed overflow. */
9024 static bool
9025 tree_expr_nonzero_p (tree t)
9027 bool ret, strict_overflow_p;
9029 strict_overflow_p = false;
9030 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9031 if (strict_overflow_p)
9032 fold_overflow_warning (("assuming signed overflow does not occur when "
9033 "determining that expression is always "
9034 "non-zero"),
9035 WARN_STRICT_OVERFLOW_MISC);
9036 return ret;
9039 /* Fold a binary expression of code CODE and type TYPE with operands
9040 OP0 and OP1. LOC is the location of the resulting expression.
9041 Return the folded expression if folding is successful. Otherwise,
9042 return NULL_TREE. */
9044 tree
9045 fold_binary_loc (location_t loc,
9046 enum tree_code code, tree type, tree op0, tree op1)
9048 enum tree_code_class kind = TREE_CODE_CLASS (code);
9049 tree arg0, arg1, tem;
9050 tree t1 = NULL_TREE;
9051 bool strict_overflow_p;
9052 unsigned int prec;
9054 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9055 && TREE_CODE_LENGTH (code) == 2
9056 && op0 != NULL_TREE
9057 && op1 != NULL_TREE);
9059 arg0 = op0;
9060 arg1 = op1;
9062 /* Strip any conversions that don't change the mode. This is
9063 safe for every expression, except for a comparison expression
9064 because its signedness is derived from its operands. So, in
9065 the latter case, only strip conversions that don't change the
9066 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9067 preserved.
9069 Note that this is done as an internal manipulation within the
9070 constant folder, in order to find the simplest representation
9071 of the arguments so that their form can be studied. In any
9072 cases, the appropriate type conversions should be put back in
9073 the tree that will get out of the constant folder. */
9075 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9077 STRIP_SIGN_NOPS (arg0);
9078 STRIP_SIGN_NOPS (arg1);
9080 else
9082 STRIP_NOPS (arg0);
9083 STRIP_NOPS (arg1);
9086 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9087 constant but we can't do arithmetic on them. */
9088 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9090 tem = const_binop (code, type, arg0, arg1);
9091 if (tem != NULL_TREE)
9093 if (TREE_TYPE (tem) != type)
9094 tem = fold_convert_loc (loc, type, tem);
9095 return tem;
9099 /* If this is a commutative operation, and ARG0 is a constant, move it
9100 to ARG1 to reduce the number of tests below. */
9101 if (commutative_tree_code (code)
9102 && tree_swap_operands_p (arg0, arg1, true))
9103 return fold_build2_loc (loc, code, type, op1, op0);
9105 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9106 to ARG1 to reduce the number of tests below. */
9107 if (kind == tcc_comparison
9108 && tree_swap_operands_p (arg0, arg1, true))
9109 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9111 tem = generic_simplify (loc, code, type, op0, op1);
9112 if (tem)
9113 return tem;
9115 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9117 First check for cases where an arithmetic operation is applied to a
9118 compound, conditional, or comparison operation. Push the arithmetic
9119 operation inside the compound or conditional to see if any folding
9120 can then be done. Convert comparison to conditional for this purpose.
9121 The also optimizes non-constant cases that used to be done in
9122 expand_expr.
9124 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9125 one of the operands is a comparison and the other is a comparison, a
9126 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9127 code below would make the expression more complex. Change it to a
9128 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9129 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9131 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9132 || code == EQ_EXPR || code == NE_EXPR)
9133 && TREE_CODE (type) != VECTOR_TYPE
9134 && ((truth_value_p (TREE_CODE (arg0))
9135 && (truth_value_p (TREE_CODE (arg1))
9136 || (TREE_CODE (arg1) == BIT_AND_EXPR
9137 && integer_onep (TREE_OPERAND (arg1, 1)))))
9138 || (truth_value_p (TREE_CODE (arg1))
9139 && (truth_value_p (TREE_CODE (arg0))
9140 || (TREE_CODE (arg0) == BIT_AND_EXPR
9141 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9143 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9144 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9145 : TRUTH_XOR_EXPR,
9146 boolean_type_node,
9147 fold_convert_loc (loc, boolean_type_node, arg0),
9148 fold_convert_loc (loc, boolean_type_node, arg1));
9150 if (code == EQ_EXPR)
9151 tem = invert_truthvalue_loc (loc, tem);
9153 return fold_convert_loc (loc, type, tem);
9156 if (TREE_CODE_CLASS (code) == tcc_binary
9157 || TREE_CODE_CLASS (code) == tcc_comparison)
9159 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9161 tem = fold_build2_loc (loc, code, type,
9162 fold_convert_loc (loc, TREE_TYPE (op0),
9163 TREE_OPERAND (arg0, 1)), op1);
9164 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9165 tem);
9167 if (TREE_CODE (arg1) == COMPOUND_EXPR
9168 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9170 tem = fold_build2_loc (loc, code, type, op0,
9171 fold_convert_loc (loc, TREE_TYPE (op1),
9172 TREE_OPERAND (arg1, 1)));
9173 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9174 tem);
9177 if (TREE_CODE (arg0) == COND_EXPR
9178 || TREE_CODE (arg0) == VEC_COND_EXPR
9179 || COMPARISON_CLASS_P (arg0))
9181 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9182 arg0, arg1,
9183 /*cond_first_p=*/1);
9184 if (tem != NULL_TREE)
9185 return tem;
9188 if (TREE_CODE (arg1) == COND_EXPR
9189 || TREE_CODE (arg1) == VEC_COND_EXPR
9190 || COMPARISON_CLASS_P (arg1))
9192 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9193 arg1, arg0,
9194 /*cond_first_p=*/0);
9195 if (tem != NULL_TREE)
9196 return tem;
9200 switch (code)
9202 case MEM_REF:
9203 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9204 if (TREE_CODE (arg0) == ADDR_EXPR
9205 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9207 tree iref = TREE_OPERAND (arg0, 0);
9208 return fold_build2 (MEM_REF, type,
9209 TREE_OPERAND (iref, 0),
9210 int_const_binop (PLUS_EXPR, arg1,
9211 TREE_OPERAND (iref, 1)));
9214 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9215 if (TREE_CODE (arg0) == ADDR_EXPR
9216 && handled_component_p (TREE_OPERAND (arg0, 0)))
9218 tree base;
9219 HOST_WIDE_INT coffset;
9220 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9221 &coffset);
9222 if (!base)
9223 return NULL_TREE;
9224 return fold_build2 (MEM_REF, type,
9225 build_fold_addr_expr (base),
9226 int_const_binop (PLUS_EXPR, arg1,
9227 size_int (coffset)));
9230 return NULL_TREE;
9232 case POINTER_PLUS_EXPR:
9233 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9234 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9235 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9236 return fold_convert_loc (loc, type,
9237 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9238 fold_convert_loc (loc, sizetype,
9239 arg1),
9240 fold_convert_loc (loc, sizetype,
9241 arg0)));
9243 return NULL_TREE;
9245 case PLUS_EXPR:
9246 /* Disable further optimizations involving UPC shared pointers,
9247 because integers are not interoperable with shared pointers. */
9248 if ((TREE_TYPE (arg0) && POINTER_TYPE_P (TREE_TYPE (arg0))
9249 && upc_shared_type_p (TREE_TYPE (TREE_TYPE (arg0))))
9250 || (TREE_TYPE (arg1) && POINTER_TYPE_P (TREE_TYPE (arg1))
9251 && upc_shared_type_p (TREE_TYPE (TREE_TYPE (arg1)))))
9252 return NULL_TREE;
9254 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9256 /* X + (X / CST) * -CST is X % CST. */
9257 if (TREE_CODE (arg1) == MULT_EXPR
9258 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9259 && operand_equal_p (arg0,
9260 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9262 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9263 tree cst1 = TREE_OPERAND (arg1, 1);
9264 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9265 cst1, cst0);
9266 if (sum && integer_zerop (sum))
9267 return fold_convert_loc (loc, type,
9268 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9269 TREE_TYPE (arg0), arg0,
9270 cst0));
9274 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9275 one. Make sure the type is not saturating and has the signedness of
9276 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9277 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9278 if ((TREE_CODE (arg0) == MULT_EXPR
9279 || TREE_CODE (arg1) == MULT_EXPR)
9280 && !TYPE_SATURATING (type)
9281 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9282 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9283 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9285 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9286 if (tem)
9287 return tem;
9290 if (! FLOAT_TYPE_P (type))
9292 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9293 (plus (plus (mult) (mult)) (foo)) so that we can
9294 take advantage of the factoring cases below. */
9295 if (ANY_INTEGRAL_TYPE_P (type)
9296 && TYPE_OVERFLOW_WRAPS (type)
9297 && (((TREE_CODE (arg0) == PLUS_EXPR
9298 || TREE_CODE (arg0) == MINUS_EXPR)
9299 && TREE_CODE (arg1) == MULT_EXPR)
9300 || ((TREE_CODE (arg1) == PLUS_EXPR
9301 || TREE_CODE (arg1) == MINUS_EXPR)
9302 && TREE_CODE (arg0) == MULT_EXPR)))
9304 tree parg0, parg1, parg, marg;
9305 enum tree_code pcode;
9307 if (TREE_CODE (arg1) == MULT_EXPR)
9308 parg = arg0, marg = arg1;
9309 else
9310 parg = arg1, marg = arg0;
9311 pcode = TREE_CODE (parg);
9312 parg0 = TREE_OPERAND (parg, 0);
9313 parg1 = TREE_OPERAND (parg, 1);
9314 STRIP_NOPS (parg0);
9315 STRIP_NOPS (parg1);
9317 if (TREE_CODE (parg0) == MULT_EXPR
9318 && TREE_CODE (parg1) != MULT_EXPR)
9319 return fold_build2_loc (loc, pcode, type,
9320 fold_build2_loc (loc, PLUS_EXPR, type,
9321 fold_convert_loc (loc, type,
9322 parg0),
9323 fold_convert_loc (loc, type,
9324 marg)),
9325 fold_convert_loc (loc, type, parg1));
9326 if (TREE_CODE (parg0) != MULT_EXPR
9327 && TREE_CODE (parg1) == MULT_EXPR)
9328 return
9329 fold_build2_loc (loc, PLUS_EXPR, type,
9330 fold_convert_loc (loc, type, parg0),
9331 fold_build2_loc (loc, pcode, type,
9332 fold_convert_loc (loc, type, marg),
9333 fold_convert_loc (loc, type,
9334 parg1)));
9337 else
9339 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9340 to __complex__ ( x, y ). This is not the same for SNaNs or
9341 if signed zeros are involved. */
9342 if (!HONOR_SNANS (element_mode (arg0))
9343 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9344 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9346 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9347 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9348 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9349 bool arg0rz = false, arg0iz = false;
9350 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9351 || (arg0i && (arg0iz = real_zerop (arg0i))))
9353 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9354 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9355 if (arg0rz && arg1i && real_zerop (arg1i))
9357 tree rp = arg1r ? arg1r
9358 : build1 (REALPART_EXPR, rtype, arg1);
9359 tree ip = arg0i ? arg0i
9360 : build1 (IMAGPART_EXPR, rtype, arg0);
9361 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9363 else if (arg0iz && arg1r && real_zerop (arg1r))
9365 tree rp = arg0r ? arg0r
9366 : build1 (REALPART_EXPR, rtype, arg0);
9367 tree ip = arg1i ? arg1i
9368 : build1 (IMAGPART_EXPR, rtype, arg1);
9369 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9374 if (flag_unsafe_math_optimizations
9375 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9376 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9377 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9378 return tem;
9380 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9381 We associate floats only if the user has specified
9382 -fassociative-math. */
9383 if (flag_associative_math
9384 && TREE_CODE (arg1) == PLUS_EXPR
9385 && TREE_CODE (arg0) != MULT_EXPR)
9387 tree tree10 = TREE_OPERAND (arg1, 0);
9388 tree tree11 = TREE_OPERAND (arg1, 1);
9389 if (TREE_CODE (tree11) == MULT_EXPR
9390 && TREE_CODE (tree10) == MULT_EXPR)
9392 tree tree0;
9393 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9394 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9397 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9398 We associate floats only if the user has specified
9399 -fassociative-math. */
9400 if (flag_associative_math
9401 && TREE_CODE (arg0) == PLUS_EXPR
9402 && TREE_CODE (arg1) != MULT_EXPR)
9404 tree tree00 = TREE_OPERAND (arg0, 0);
9405 tree tree01 = TREE_OPERAND (arg0, 1);
9406 if (TREE_CODE (tree01) == MULT_EXPR
9407 && TREE_CODE (tree00) == MULT_EXPR)
9409 tree tree0;
9410 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9411 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9416 bit_rotate:
9417 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9418 is a rotate of A by C1 bits. */
9419 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9420 is a rotate of A by B bits. */
9422 enum tree_code code0, code1;
9423 tree rtype;
9424 code0 = TREE_CODE (arg0);
9425 code1 = TREE_CODE (arg1);
9426 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9427 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9428 && operand_equal_p (TREE_OPERAND (arg0, 0),
9429 TREE_OPERAND (arg1, 0), 0)
9430 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9431 TYPE_UNSIGNED (rtype))
9432 /* Only create rotates in complete modes. Other cases are not
9433 expanded properly. */
9434 && (element_precision (rtype)
9435 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9437 tree tree01, tree11;
9438 enum tree_code code01, code11;
9440 tree01 = TREE_OPERAND (arg0, 1);
9441 tree11 = TREE_OPERAND (arg1, 1);
9442 STRIP_NOPS (tree01);
9443 STRIP_NOPS (tree11);
9444 code01 = TREE_CODE (tree01);
9445 code11 = TREE_CODE (tree11);
9446 if (code01 == INTEGER_CST
9447 && code11 == INTEGER_CST
9448 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9449 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9451 tem = build2_loc (loc, LROTATE_EXPR,
9452 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9453 TREE_OPERAND (arg0, 0),
9454 code0 == LSHIFT_EXPR
9455 ? TREE_OPERAND (arg0, 1)
9456 : TREE_OPERAND (arg1, 1));
9457 return fold_convert_loc (loc, type, tem);
9459 else if (code11 == MINUS_EXPR)
9461 tree tree110, tree111;
9462 tree110 = TREE_OPERAND (tree11, 0);
9463 tree111 = TREE_OPERAND (tree11, 1);
9464 STRIP_NOPS (tree110);
9465 STRIP_NOPS (tree111);
9466 if (TREE_CODE (tree110) == INTEGER_CST
9467 && 0 == compare_tree_int (tree110,
9468 element_precision
9469 (TREE_TYPE (TREE_OPERAND
9470 (arg0, 0))))
9471 && operand_equal_p (tree01, tree111, 0))
9472 return
9473 fold_convert_loc (loc, type,
9474 build2 ((code0 == LSHIFT_EXPR
9475 ? LROTATE_EXPR
9476 : RROTATE_EXPR),
9477 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9478 TREE_OPERAND (arg0, 0),
9479 TREE_OPERAND (arg0, 1)));
9481 else if (code01 == MINUS_EXPR)
9483 tree tree010, tree011;
9484 tree010 = TREE_OPERAND (tree01, 0);
9485 tree011 = TREE_OPERAND (tree01, 1);
9486 STRIP_NOPS (tree010);
9487 STRIP_NOPS (tree011);
9488 if (TREE_CODE (tree010) == INTEGER_CST
9489 && 0 == compare_tree_int (tree010,
9490 element_precision
9491 (TREE_TYPE (TREE_OPERAND
9492 (arg0, 0))))
9493 && operand_equal_p (tree11, tree011, 0))
9494 return fold_convert_loc
9495 (loc, type,
9496 build2 ((code0 != LSHIFT_EXPR
9497 ? LROTATE_EXPR
9498 : RROTATE_EXPR),
9499 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9500 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9505 associate:
9506 /* In most languages, can't associate operations on floats through
9507 parentheses. Rather than remember where the parentheses were, we
9508 don't associate floats at all, unless the user has specified
9509 -fassociative-math.
9510 And, we need to make sure type is not saturating. */
9512 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9513 && !TYPE_SATURATING (type))
9515 tree var0, con0, lit0, minus_lit0;
9516 tree var1, con1, lit1, minus_lit1;
9517 tree atype = type;
9518 bool ok = true;
9520 /* Split both trees into variables, constants, and literals. Then
9521 associate each group together, the constants with literals,
9522 then the result with variables. This increases the chances of
9523 literals being recombined later and of generating relocatable
9524 expressions for the sum of a constant and literal. */
9525 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9526 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9527 code == MINUS_EXPR);
9529 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9530 if (code == MINUS_EXPR)
9531 code = PLUS_EXPR;
9533 /* With undefined overflow prefer doing association in a type
9534 which wraps on overflow, if that is one of the operand types. */
9535 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9536 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9538 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9539 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9540 atype = TREE_TYPE (arg0);
9541 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9542 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9543 atype = TREE_TYPE (arg1);
9544 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9547 /* With undefined overflow we can only associate constants with one
9548 variable, and constants whose association doesn't overflow. */
9549 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9550 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9552 if (var0 && var1)
9554 tree tmp0 = var0;
9555 tree tmp1 = var1;
9557 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9558 tmp0 = TREE_OPERAND (tmp0, 0);
9559 if (CONVERT_EXPR_P (tmp0)
9560 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9561 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9562 <= TYPE_PRECISION (atype)))
9563 tmp0 = TREE_OPERAND (tmp0, 0);
9564 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9565 tmp1 = TREE_OPERAND (tmp1, 0);
9566 if (CONVERT_EXPR_P (tmp1)
9567 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9568 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9569 <= TYPE_PRECISION (atype)))
9570 tmp1 = TREE_OPERAND (tmp1, 0);
9571 /* The only case we can still associate with two variables
9572 is if they are the same, modulo negation and bit-pattern
9573 preserving conversions. */
9574 if (!operand_equal_p (tmp0, tmp1, 0))
9575 ok = false;
9579 /* Only do something if we found more than two objects. Otherwise,
9580 nothing has changed and we risk infinite recursion. */
9581 if (ok
9582 && (2 < ((var0 != 0) + (var1 != 0)
9583 + (con0 != 0) + (con1 != 0)
9584 + (lit0 != 0) + (lit1 != 0)
9585 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9587 bool any_overflows = false;
9588 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9589 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9590 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9591 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9592 var0 = associate_trees (loc, var0, var1, code, atype);
9593 con0 = associate_trees (loc, con0, con1, code, atype);
9594 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9595 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9596 code, atype);
9598 /* Preserve the MINUS_EXPR if the negative part of the literal is
9599 greater than the positive part. Otherwise, the multiplicative
9600 folding code (i.e extract_muldiv) may be fooled in case
9601 unsigned constants are subtracted, like in the following
9602 example: ((X*2 + 4) - 8U)/2. */
9603 if (minus_lit0 && lit0)
9605 if (TREE_CODE (lit0) == INTEGER_CST
9606 && TREE_CODE (minus_lit0) == INTEGER_CST
9607 && tree_int_cst_lt (lit0, minus_lit0))
9609 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9610 MINUS_EXPR, atype);
9611 lit0 = 0;
9613 else
9615 lit0 = associate_trees (loc, lit0, minus_lit0,
9616 MINUS_EXPR, atype);
9617 minus_lit0 = 0;
9621 /* Don't introduce overflows through reassociation. */
9622 if (!any_overflows
9623 && ((lit0 && TREE_OVERFLOW_P (lit0))
9624 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9625 return NULL_TREE;
9627 if (minus_lit0)
9629 if (con0 == 0)
9630 return
9631 fold_convert_loc (loc, type,
9632 associate_trees (loc, var0, minus_lit0,
9633 MINUS_EXPR, atype));
9634 else
9636 con0 = associate_trees (loc, con0, minus_lit0,
9637 MINUS_EXPR, atype);
9638 return
9639 fold_convert_loc (loc, type,
9640 associate_trees (loc, var0, con0,
9641 PLUS_EXPR, atype));
9645 con0 = associate_trees (loc, con0, lit0, code, atype);
9646 return
9647 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9648 code, atype));
9652 return NULL_TREE;
9654 case MINUS_EXPR:
9655 /* Pointer simplifications for subtraction, simple reassociations. */
9656 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
9658 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9659 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
9660 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9662 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9663 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9664 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9665 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9666 return fold_build2_loc (loc, PLUS_EXPR, type,
9667 fold_build2_loc (loc, MINUS_EXPR, type,
9668 arg00, arg10),
9669 fold_build2_loc (loc, MINUS_EXPR, type,
9670 arg01, arg11));
9672 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
9673 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9675 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9676 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9677 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
9678 fold_convert_loc (loc, type, arg1));
9679 if (tmp)
9680 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
9682 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
9683 simplifies. */
9684 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9686 tree arg10 = fold_convert_loc (loc, type,
9687 TREE_OPERAND (arg1, 0));
9688 tree arg11 = fold_convert_loc (loc, type,
9689 TREE_OPERAND (arg1, 1));
9690 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type,
9691 fold_convert_loc (loc, type, arg0),
9692 arg10);
9693 if (tmp)
9694 return fold_build2_loc (loc, MINUS_EXPR, type, tmp, arg11);
9698 /* Disable further optimizations involving UPC shared pointers,
9699 because integers are not interoperable with shared pointers.
9700 (The test below also detects pointer difference between
9701 shared pointers, which cannot be folded. */
9703 if (TREE_TYPE (arg0) && POINTER_TYPE_P (TREE_TYPE (arg0))
9704 && upc_shared_type_p (TREE_TYPE (TREE_TYPE (arg0))))
9705 return NULL_TREE;
9707 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9708 if (TREE_CODE (arg0) == NEGATE_EXPR
9709 && negate_expr_p (arg1)
9710 && reorder_operands_p (arg0, arg1))
9711 return fold_build2_loc (loc, MINUS_EXPR, type,
9712 fold_convert_loc (loc, type,
9713 negate_expr (arg1)),
9714 fold_convert_loc (loc, type,
9715 TREE_OPERAND (arg0, 0)));
9717 if (! FLOAT_TYPE_P (type))
9719 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
9720 any power of 2 minus 1. */
9721 if (TREE_CODE (arg0) == BIT_AND_EXPR
9722 && TREE_CODE (arg1) == BIT_AND_EXPR
9723 && operand_equal_p (TREE_OPERAND (arg0, 0),
9724 TREE_OPERAND (arg1, 0), 0))
9726 tree mask0 = TREE_OPERAND (arg0, 1);
9727 tree mask1 = TREE_OPERAND (arg1, 1);
9728 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
9730 if (operand_equal_p (tem, mask1, 0))
9732 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
9733 TREE_OPERAND (arg0, 0), mask1);
9734 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
9739 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9740 __complex__ ( x, -y ). This is not the same for SNaNs or if
9741 signed zeros are involved. */
9742 if (!HONOR_SNANS (element_mode (arg0))
9743 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9744 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9746 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9747 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9748 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9749 bool arg0rz = false, arg0iz = false;
9750 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9751 || (arg0i && (arg0iz = real_zerop (arg0i))))
9753 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9754 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9755 if (arg0rz && arg1i && real_zerop (arg1i))
9757 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9758 arg1r ? arg1r
9759 : build1 (REALPART_EXPR, rtype, arg1));
9760 tree ip = arg0i ? arg0i
9761 : build1 (IMAGPART_EXPR, rtype, arg0);
9762 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9764 else if (arg0iz && arg1r && real_zerop (arg1r))
9766 tree rp = arg0r ? arg0r
9767 : build1 (REALPART_EXPR, rtype, arg0);
9768 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9769 arg1i ? arg1i
9770 : build1 (IMAGPART_EXPR, rtype, arg1));
9771 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9776 /* A - B -> A + (-B) if B is easily negatable. */
9777 if (negate_expr_p (arg1)
9778 && !TYPE_OVERFLOW_SANITIZED (type)
9779 && ((FLOAT_TYPE_P (type)
9780 /* Avoid this transformation if B is a positive REAL_CST. */
9781 && (TREE_CODE (arg1) != REAL_CST
9782 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
9783 || INTEGRAL_TYPE_P (type)))
9784 return fold_build2_loc (loc, PLUS_EXPR, type,
9785 fold_convert_loc (loc, type, arg0),
9786 fold_convert_loc (loc, type,
9787 negate_expr (arg1)));
9789 /* Fold &a[i] - &a[j] to i-j. */
9790 if (TREE_CODE (arg0) == ADDR_EXPR
9791 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9792 && TREE_CODE (arg1) == ADDR_EXPR
9793 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9795 tree tem = fold_addr_of_array_ref_difference (loc, type,
9796 TREE_OPERAND (arg0, 0),
9797 TREE_OPERAND (arg1, 0));
9798 if (tem)
9799 return tem;
9802 if (FLOAT_TYPE_P (type)
9803 && flag_unsafe_math_optimizations
9804 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9805 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9806 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9807 return tem;
9809 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9810 one. Make sure the type is not saturating and has the signedness of
9811 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9812 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9813 if ((TREE_CODE (arg0) == MULT_EXPR
9814 || TREE_CODE (arg1) == MULT_EXPR)
9815 && !TYPE_SATURATING (type)
9816 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9817 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9818 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9820 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9821 if (tem)
9822 return tem;
9825 goto associate;
9827 case MULT_EXPR:
9828 /* (-A) * (-B) -> A * B */
9829 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9830 return fold_build2_loc (loc, MULT_EXPR, type,
9831 fold_convert_loc (loc, type,
9832 TREE_OPERAND (arg0, 0)),
9833 fold_convert_loc (loc, type,
9834 negate_expr (arg1)));
9835 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9836 return fold_build2_loc (loc, MULT_EXPR, type,
9837 fold_convert_loc (loc, type,
9838 negate_expr (arg0)),
9839 fold_convert_loc (loc, type,
9840 TREE_OPERAND (arg1, 0)));
9842 if (! FLOAT_TYPE_P (type))
9844 /* Transform x * -C into -x * C if x is easily negatable. */
9845 if (TREE_CODE (arg1) == INTEGER_CST
9846 && tree_int_cst_sgn (arg1) == -1
9847 && negate_expr_p (arg0)
9848 && (tem = negate_expr (arg1)) != arg1
9849 && !TREE_OVERFLOW (tem))
9850 return fold_build2_loc (loc, MULT_EXPR, type,
9851 fold_convert_loc (loc, type,
9852 negate_expr (arg0)),
9853 tem);
9855 /* (a * (1 << b)) is (a << b) */
9856 if (TREE_CODE (arg1) == LSHIFT_EXPR
9857 && integer_onep (TREE_OPERAND (arg1, 0)))
9858 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
9859 TREE_OPERAND (arg1, 1));
9860 if (TREE_CODE (arg0) == LSHIFT_EXPR
9861 && integer_onep (TREE_OPERAND (arg0, 0)))
9862 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
9863 TREE_OPERAND (arg0, 1));
9865 /* (A + A) * C -> A * 2 * C */
9866 if (TREE_CODE (arg0) == PLUS_EXPR
9867 && TREE_CODE (arg1) == INTEGER_CST
9868 && operand_equal_p (TREE_OPERAND (arg0, 0),
9869 TREE_OPERAND (arg0, 1), 0))
9870 return fold_build2_loc (loc, MULT_EXPR, type,
9871 omit_one_operand_loc (loc, type,
9872 TREE_OPERAND (arg0, 0),
9873 TREE_OPERAND (arg0, 1)),
9874 fold_build2_loc (loc, MULT_EXPR, type,
9875 build_int_cst (type, 2) , arg1));
9877 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
9878 sign-changing only. */
9879 if (TREE_CODE (arg1) == INTEGER_CST
9880 && TREE_CODE (arg0) == EXACT_DIV_EXPR
9881 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
9882 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9884 strict_overflow_p = false;
9885 if (TREE_CODE (arg1) == INTEGER_CST
9886 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9887 &strict_overflow_p)))
9889 if (strict_overflow_p)
9890 fold_overflow_warning (("assuming signed overflow does not "
9891 "occur when simplifying "
9892 "multiplication"),
9893 WARN_STRICT_OVERFLOW_MISC);
9894 return fold_convert_loc (loc, type, tem);
9897 /* Optimize z * conj(z) for integer complex numbers. */
9898 if (TREE_CODE (arg0) == CONJ_EXPR
9899 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9900 return fold_mult_zconjz (loc, type, arg1);
9901 if (TREE_CODE (arg1) == CONJ_EXPR
9902 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9903 return fold_mult_zconjz (loc, type, arg0);
9905 else
9907 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
9908 the result for floating point types due to rounding so it is applied
9909 only if -fassociative-math was specify. */
9910 if (flag_associative_math
9911 && TREE_CODE (arg0) == RDIV_EXPR
9912 && TREE_CODE (arg1) == REAL_CST
9913 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
9915 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
9916 arg1);
9917 if (tem)
9918 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
9919 TREE_OPERAND (arg0, 1));
9922 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
9923 if (operand_equal_p (arg0, arg1, 0))
9925 tree tem = fold_strip_sign_ops (arg0);
9926 if (tem != NULL_TREE)
9928 tem = fold_convert_loc (loc, type, tem);
9929 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
9933 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9934 This is not the same for NaNs or if signed zeros are
9935 involved. */
9936 if (!HONOR_NANS (arg0)
9937 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9938 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9939 && TREE_CODE (arg1) == COMPLEX_CST
9940 && real_zerop (TREE_REALPART (arg1)))
9942 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9943 if (real_onep (TREE_IMAGPART (arg1)))
9944 return
9945 fold_build2_loc (loc, COMPLEX_EXPR, type,
9946 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9947 rtype, arg0)),
9948 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9949 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9950 return
9951 fold_build2_loc (loc, COMPLEX_EXPR, type,
9952 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9953 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9954 rtype, arg0)));
9957 /* Optimize z * conj(z) for floating point complex numbers.
9958 Guarded by flag_unsafe_math_optimizations as non-finite
9959 imaginary components don't produce scalar results. */
9960 if (flag_unsafe_math_optimizations
9961 && TREE_CODE (arg0) == CONJ_EXPR
9962 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9963 return fold_mult_zconjz (loc, type, arg1);
9964 if (flag_unsafe_math_optimizations
9965 && TREE_CODE (arg1) == CONJ_EXPR
9966 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9967 return fold_mult_zconjz (loc, type, arg0);
9969 if (flag_unsafe_math_optimizations)
9972 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
9973 if (!in_gimple_form
9974 && optimize
9975 && operand_equal_p (arg0, arg1, 0))
9977 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
9979 if (powfn)
9981 tree arg = build_real (type, dconst2);
9982 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
9987 goto associate;
9989 case BIT_IOR_EXPR:
9990 /* Canonicalize (X & C1) | C2. */
9991 if (TREE_CODE (arg0) == BIT_AND_EXPR
9992 && TREE_CODE (arg1) == INTEGER_CST
9993 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9995 int width = TYPE_PRECISION (type), w;
9996 wide_int c1 = TREE_OPERAND (arg0, 1);
9997 wide_int c2 = arg1;
9999 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10000 if ((c1 & c2) == c1)
10001 return omit_one_operand_loc (loc, type, arg1,
10002 TREE_OPERAND (arg0, 0));
10004 wide_int msk = wi::mask (width, false,
10005 TYPE_PRECISION (TREE_TYPE (arg1)));
10007 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10008 if (msk.and_not (c1 | c2) == 0)
10009 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10010 TREE_OPERAND (arg0, 0), arg1);
10012 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10013 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10014 mode which allows further optimizations. */
10015 c1 &= msk;
10016 c2 &= msk;
10017 wide_int c3 = c1.and_not (c2);
10018 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10020 wide_int mask = wi::mask (w, false,
10021 TYPE_PRECISION (type));
10022 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
10024 c3 = mask;
10025 break;
10029 if (c3 != c1)
10030 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10031 fold_build2_loc (loc, BIT_AND_EXPR, type,
10032 TREE_OPERAND (arg0, 0),
10033 wide_int_to_tree (type,
10034 c3)),
10035 arg1);
10038 /* (X & ~Y) | (~X & Y) is X ^ Y */
10039 if (TREE_CODE (arg0) == BIT_AND_EXPR
10040 && TREE_CODE (arg1) == BIT_AND_EXPR)
10042 tree a0, a1, l0, l1, n0, n1;
10044 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10045 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10047 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10048 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10050 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10051 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10053 if ((operand_equal_p (n0, a0, 0)
10054 && operand_equal_p (n1, a1, 0))
10055 || (operand_equal_p (n0, a1, 0)
10056 && operand_equal_p (n1, a0, 0)))
10057 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10060 /* See if this can be simplified into a rotate first. If that
10061 is unsuccessful continue in the association code. */
10062 goto bit_rotate;
10064 case BIT_XOR_EXPR:
10065 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10066 if (TREE_CODE (arg0) == BIT_AND_EXPR
10067 && INTEGRAL_TYPE_P (type)
10068 && integer_onep (TREE_OPERAND (arg0, 1))
10069 && integer_onep (arg1))
10070 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10071 build_zero_cst (TREE_TYPE (arg0)));
10073 /* See if this can be simplified into a rotate first. If that
10074 is unsuccessful continue in the association code. */
10075 goto bit_rotate;
10077 case BIT_AND_EXPR:
10078 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
10079 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
10080 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
10081 || (TREE_CODE (arg0) == EQ_EXPR
10082 && integer_zerop (TREE_OPERAND (arg0, 1))))
10083 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10084 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10086 /* X & ~X , X & (X == 0), and X & !X are always zero. */
10087 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
10088 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
10089 || (TREE_CODE (arg1) == EQ_EXPR
10090 && integer_zerop (TREE_OPERAND (arg1, 1))))
10091 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10092 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10094 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10095 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10096 && INTEGRAL_TYPE_P (type)
10097 && integer_onep (TREE_OPERAND (arg0, 1))
10098 && integer_onep (arg1))
10100 tree tem2;
10101 tem = TREE_OPERAND (arg0, 0);
10102 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10103 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10104 tem, tem2);
10105 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10106 build_zero_cst (TREE_TYPE (tem)));
10108 /* Fold ~X & 1 as (X & 1) == 0. */
10109 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10110 && INTEGRAL_TYPE_P (type)
10111 && integer_onep (arg1))
10113 tree tem2;
10114 tem = TREE_OPERAND (arg0, 0);
10115 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10116 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10117 tem, tem2);
10118 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10119 build_zero_cst (TREE_TYPE (tem)));
10121 /* Fold !X & 1 as X == 0. */
10122 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10123 && integer_onep (arg1))
10125 tem = TREE_OPERAND (arg0, 0);
10126 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10127 build_zero_cst (TREE_TYPE (tem)));
10130 /* Fold (X ^ Y) & Y as ~X & Y. */
10131 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10132 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10134 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10135 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10136 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10137 fold_convert_loc (loc, type, arg1));
10139 /* Fold (X ^ Y) & X as ~Y & X. */
10140 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10141 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10142 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10144 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10145 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10146 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10147 fold_convert_loc (loc, type, arg1));
10149 /* Fold X & (X ^ Y) as X & ~Y. */
10150 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10151 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10153 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10154 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10155 fold_convert_loc (loc, type, arg0),
10156 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10158 /* Fold X & (Y ^ X) as ~Y & X. */
10159 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10160 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10161 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10163 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10164 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10165 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10166 fold_convert_loc (loc, type, arg0));
10169 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10170 multiple of 1 << CST. */
10171 if (TREE_CODE (arg1) == INTEGER_CST)
10173 wide_int cst1 = arg1;
10174 wide_int ncst1 = -cst1;
10175 if ((cst1 & ncst1) == ncst1
10176 && multiple_of_p (type, arg0,
10177 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10178 return fold_convert_loc (loc, type, arg0);
10181 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10182 bits from CST2. */
10183 if (TREE_CODE (arg1) == INTEGER_CST
10184 && TREE_CODE (arg0) == MULT_EXPR
10185 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10187 wide_int warg1 = arg1;
10188 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10190 if (masked == 0)
10191 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10192 arg0, arg1);
10193 else if (masked != warg1)
10195 /* Avoid the transform if arg1 is a mask of some
10196 mode which allows further optimizations. */
10197 int pop = wi::popcount (warg1);
10198 if (!(pop >= BITS_PER_UNIT
10199 && exact_log2 (pop) != -1
10200 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10201 return fold_build2_loc (loc, code, type, op0,
10202 wide_int_to_tree (type, masked));
10206 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10207 ((A & N) + B) & M -> (A + B) & M
10208 Similarly if (N & M) == 0,
10209 ((A | N) + B) & M -> (A + B) & M
10210 and for - instead of + (or unary - instead of +)
10211 and/or ^ instead of |.
10212 If B is constant and (B & M) == 0, fold into A & M. */
10213 if (TREE_CODE (arg1) == INTEGER_CST)
10215 wide_int cst1 = arg1;
10216 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10217 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10218 && (TREE_CODE (arg0) == PLUS_EXPR
10219 || TREE_CODE (arg0) == MINUS_EXPR
10220 || TREE_CODE (arg0) == NEGATE_EXPR)
10221 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10222 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10224 tree pmop[2];
10225 int which = 0;
10226 wide_int cst0;
10228 /* Now we know that arg0 is (C + D) or (C - D) or
10229 -C and arg1 (M) is == (1LL << cst) - 1.
10230 Store C into PMOP[0] and D into PMOP[1]. */
10231 pmop[0] = TREE_OPERAND (arg0, 0);
10232 pmop[1] = NULL;
10233 if (TREE_CODE (arg0) != NEGATE_EXPR)
10235 pmop[1] = TREE_OPERAND (arg0, 1);
10236 which = 1;
10239 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10240 which = -1;
10242 for (; which >= 0; which--)
10243 switch (TREE_CODE (pmop[which]))
10245 case BIT_AND_EXPR:
10246 case BIT_IOR_EXPR:
10247 case BIT_XOR_EXPR:
10248 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10249 != INTEGER_CST)
10250 break;
10251 cst0 = TREE_OPERAND (pmop[which], 1);
10252 cst0 &= cst1;
10253 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10255 if (cst0 != cst1)
10256 break;
10258 else if (cst0 != 0)
10259 break;
10260 /* If C or D is of the form (A & N) where
10261 (N & M) == M, or of the form (A | N) or
10262 (A ^ N) where (N & M) == 0, replace it with A. */
10263 pmop[which] = TREE_OPERAND (pmop[which], 0);
10264 break;
10265 case INTEGER_CST:
10266 /* If C or D is a N where (N & M) == 0, it can be
10267 omitted (assumed 0). */
10268 if ((TREE_CODE (arg0) == PLUS_EXPR
10269 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10270 && (cst1 & pmop[which]) == 0)
10271 pmop[which] = NULL;
10272 break;
10273 default:
10274 break;
10277 /* Only build anything new if we optimized one or both arguments
10278 above. */
10279 if (pmop[0] != TREE_OPERAND (arg0, 0)
10280 || (TREE_CODE (arg0) != NEGATE_EXPR
10281 && pmop[1] != TREE_OPERAND (arg0, 1)))
10283 tree utype = TREE_TYPE (arg0);
10284 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10286 /* Perform the operations in a type that has defined
10287 overflow behavior. */
10288 utype = unsigned_type_for (TREE_TYPE (arg0));
10289 if (pmop[0] != NULL)
10290 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10291 if (pmop[1] != NULL)
10292 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10295 if (TREE_CODE (arg0) == NEGATE_EXPR)
10296 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10297 else if (TREE_CODE (arg0) == PLUS_EXPR)
10299 if (pmop[0] != NULL && pmop[1] != NULL)
10300 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10301 pmop[0], pmop[1]);
10302 else if (pmop[0] != NULL)
10303 tem = pmop[0];
10304 else if (pmop[1] != NULL)
10305 tem = pmop[1];
10306 else
10307 return build_int_cst (type, 0);
10309 else if (pmop[0] == NULL)
10310 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10311 else
10312 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10313 pmop[0], pmop[1]);
10314 /* TEM is now the new binary +, - or unary - replacement. */
10315 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10316 fold_convert_loc (loc, utype, arg1));
10317 return fold_convert_loc (loc, type, tem);
10322 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10323 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10324 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10326 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10328 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10329 if (mask == -1)
10330 return
10331 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10334 goto associate;
10336 case RDIV_EXPR:
10337 /* Don't touch a floating-point divide by zero unless the mode
10338 of the constant can represent infinity. */
10339 if (TREE_CODE (arg1) == REAL_CST
10340 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10341 && real_zerop (arg1))
10342 return NULL_TREE;
10344 /* (-A) / (-B) -> A / B */
10345 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10346 return fold_build2_loc (loc, RDIV_EXPR, type,
10347 TREE_OPERAND (arg0, 0),
10348 negate_expr (arg1));
10349 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10350 return fold_build2_loc (loc, RDIV_EXPR, type,
10351 negate_expr (arg0),
10352 TREE_OPERAND (arg1, 0));
10354 /* Convert A/B/C to A/(B*C). */
10355 if (flag_reciprocal_math
10356 && TREE_CODE (arg0) == RDIV_EXPR)
10357 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
10358 fold_build2_loc (loc, MULT_EXPR, type,
10359 TREE_OPERAND (arg0, 1), arg1));
10361 /* Convert A/(B/C) to (A/B)*C. */
10362 if (flag_reciprocal_math
10363 && TREE_CODE (arg1) == RDIV_EXPR)
10364 return fold_build2_loc (loc, MULT_EXPR, type,
10365 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
10366 TREE_OPERAND (arg1, 0)),
10367 TREE_OPERAND (arg1, 1));
10369 /* Convert C1/(X*C2) into (C1/C2)/X. */
10370 if (flag_reciprocal_math
10371 && TREE_CODE (arg1) == MULT_EXPR
10372 && TREE_CODE (arg0) == REAL_CST
10373 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
10375 tree tem = const_binop (RDIV_EXPR, arg0,
10376 TREE_OPERAND (arg1, 1));
10377 if (tem)
10378 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10379 TREE_OPERAND (arg1, 0));
10382 return NULL_TREE;
10384 case TRUNC_DIV_EXPR:
10385 /* Optimize (X & (-A)) / A where A is a power of 2,
10386 to X >> log2(A) */
10387 if (TREE_CODE (arg0) == BIT_AND_EXPR
10388 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
10389 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
10391 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
10392 arg1, TREE_OPERAND (arg0, 1));
10393 if (sum && integer_zerop (sum)) {
10394 tree pow2 = build_int_cst (integer_type_node,
10395 wi::exact_log2 (arg1));
10396 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10397 TREE_OPERAND (arg0, 0), pow2);
10401 /* Fall through */
10403 case FLOOR_DIV_EXPR:
10404 /* Simplify A / (B << N) where A and B are positive and B is
10405 a power of 2, to A >> (N + log2(B)). */
10406 strict_overflow_p = false;
10407 if (TREE_CODE (arg1) == LSHIFT_EXPR
10408 && (TYPE_UNSIGNED (type)
10409 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10411 tree sval = TREE_OPERAND (arg1, 0);
10412 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10414 tree sh_cnt = TREE_OPERAND (arg1, 1);
10415 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10416 wi::exact_log2 (sval));
10418 if (strict_overflow_p)
10419 fold_overflow_warning (("assuming signed overflow does not "
10420 "occur when simplifying A / (B << N)"),
10421 WARN_STRICT_OVERFLOW_MISC);
10423 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10424 sh_cnt, pow2);
10425 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10426 fold_convert_loc (loc, type, arg0), sh_cnt);
10430 /* Fall through */
10432 case ROUND_DIV_EXPR:
10433 case CEIL_DIV_EXPR:
10434 case EXACT_DIV_EXPR:
10435 if (integer_zerop (arg1))
10436 return NULL_TREE;
10438 /* Convert -A / -B to A / B when the type is signed and overflow is
10439 undefined. */
10440 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10441 && TREE_CODE (arg0) == NEGATE_EXPR
10442 && negate_expr_p (arg1))
10444 if (INTEGRAL_TYPE_P (type))
10445 fold_overflow_warning (("assuming signed overflow does not occur "
10446 "when distributing negation across "
10447 "division"),
10448 WARN_STRICT_OVERFLOW_MISC);
10449 return fold_build2_loc (loc, code, type,
10450 fold_convert_loc (loc, type,
10451 TREE_OPERAND (arg0, 0)),
10452 fold_convert_loc (loc, type,
10453 negate_expr (arg1)));
10455 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10456 && TREE_CODE (arg1) == NEGATE_EXPR
10457 && negate_expr_p (arg0))
10459 if (INTEGRAL_TYPE_P (type))
10460 fold_overflow_warning (("assuming signed overflow does not occur "
10461 "when distributing negation across "
10462 "division"),
10463 WARN_STRICT_OVERFLOW_MISC);
10464 return fold_build2_loc (loc, code, type,
10465 fold_convert_loc (loc, type,
10466 negate_expr (arg0)),
10467 fold_convert_loc (loc, type,
10468 TREE_OPERAND (arg1, 0)));
10471 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10472 operation, EXACT_DIV_EXPR.
10474 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10475 At one time others generated faster code, it's not clear if they do
10476 after the last round to changes to the DIV code in expmed.c. */
10477 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10478 && multiple_of_p (type, arg0, arg1))
10479 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10480 fold_convert (type, arg0),
10481 fold_convert (type, arg1));
10483 strict_overflow_p = false;
10484 if (TREE_CODE (arg1) == INTEGER_CST
10485 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10486 &strict_overflow_p)))
10488 if (strict_overflow_p)
10489 fold_overflow_warning (("assuming signed overflow does not occur "
10490 "when simplifying division"),
10491 WARN_STRICT_OVERFLOW_MISC);
10492 return fold_convert_loc (loc, type, tem);
10495 return NULL_TREE;
10497 case CEIL_MOD_EXPR:
10498 case FLOOR_MOD_EXPR:
10499 case ROUND_MOD_EXPR:
10500 case TRUNC_MOD_EXPR:
10501 strict_overflow_p = false;
10502 if (TREE_CODE (arg1) == INTEGER_CST
10503 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10504 &strict_overflow_p)))
10506 if (strict_overflow_p)
10507 fold_overflow_warning (("assuming signed overflow does not occur "
10508 "when simplifying modulus"),
10509 WARN_STRICT_OVERFLOW_MISC);
10510 return fold_convert_loc (loc, type, tem);
10513 return NULL_TREE;
10515 case LROTATE_EXPR:
10516 case RROTATE_EXPR:
10517 case RSHIFT_EXPR:
10518 case LSHIFT_EXPR:
10519 /* Since negative shift count is not well-defined,
10520 don't try to compute it in the compiler. */
10521 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10522 return NULL_TREE;
10524 prec = element_precision (type);
10526 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
10527 into x & ((unsigned)-1 >> c) for unsigned types. */
10528 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
10529 || (TYPE_UNSIGNED (type)
10530 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
10531 && tree_fits_uhwi_p (arg1)
10532 && tree_to_uhwi (arg1) < prec
10533 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
10534 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
10536 HOST_WIDE_INT low0 = tree_to_uhwi (TREE_OPERAND (arg0, 1));
10537 HOST_WIDE_INT low1 = tree_to_uhwi (arg1);
10538 tree lshift;
10539 tree arg00;
10541 if (low0 == low1)
10543 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10545 lshift = build_minus_one_cst (type);
10546 lshift = const_binop (code, lshift, arg1);
10548 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
10552 /* If we have a rotate of a bit operation with the rotate count and
10553 the second operand of the bit operation both constant,
10554 permute the two operations. */
10555 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10556 && (TREE_CODE (arg0) == BIT_AND_EXPR
10557 || TREE_CODE (arg0) == BIT_IOR_EXPR
10558 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10559 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10560 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10561 fold_build2_loc (loc, code, type,
10562 TREE_OPERAND (arg0, 0), arg1),
10563 fold_build2_loc (loc, code, type,
10564 TREE_OPERAND (arg0, 1), arg1));
10566 /* Two consecutive rotates adding up to the some integer
10567 multiple of the precision of the type can be ignored. */
10568 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10569 && TREE_CODE (arg0) == RROTATE_EXPR
10570 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10571 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10572 prec) == 0)
10573 return TREE_OPERAND (arg0, 0);
10575 return NULL_TREE;
10577 case MIN_EXPR:
10578 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
10579 if (tem)
10580 return tem;
10581 goto associate;
10583 case MAX_EXPR:
10584 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
10585 if (tem)
10586 return tem;
10587 goto associate;
10589 case TRUTH_ANDIF_EXPR:
10590 /* Note that the operands of this must be ints
10591 and their values must be 0 or 1.
10592 ("true" is a fixed value perhaps depending on the language.) */
10593 /* If first arg is constant zero, return it. */
10594 if (integer_zerop (arg0))
10595 return fold_convert_loc (loc, type, arg0);
10596 case TRUTH_AND_EXPR:
10597 /* If either arg is constant true, drop it. */
10598 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10599 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10600 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10601 /* Preserve sequence points. */
10602 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10603 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10604 /* If second arg is constant zero, result is zero, but first arg
10605 must be evaluated. */
10606 if (integer_zerop (arg1))
10607 return omit_one_operand_loc (loc, type, arg1, arg0);
10608 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10609 case will be handled here. */
10610 if (integer_zerop (arg0))
10611 return omit_one_operand_loc (loc, type, arg0, arg1);
10613 /* !X && X is always false. */
10614 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10615 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10616 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10617 /* X && !X is always false. */
10618 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10619 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10620 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10622 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10623 means A >= Y && A != MAX, but in this case we know that
10624 A < X <= MAX. */
10626 if (!TREE_SIDE_EFFECTS (arg0)
10627 && !TREE_SIDE_EFFECTS (arg1))
10629 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10630 if (tem && !operand_equal_p (tem, arg0, 0))
10631 return fold_build2_loc (loc, code, type, tem, arg1);
10633 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10634 if (tem && !operand_equal_p (tem, arg1, 0))
10635 return fold_build2_loc (loc, code, type, arg0, tem);
10638 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10639 != NULL_TREE)
10640 return tem;
10642 return NULL_TREE;
10644 case TRUTH_ORIF_EXPR:
10645 /* Note that the operands of this must be ints
10646 and their values must be 0 or true.
10647 ("true" is a fixed value perhaps depending on the language.) */
10648 /* If first arg is constant true, return it. */
10649 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10650 return fold_convert_loc (loc, type, arg0);
10651 case TRUTH_OR_EXPR:
10652 /* If either arg is constant zero, drop it. */
10653 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10654 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10655 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10656 /* Preserve sequence points. */
10657 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10658 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10659 /* If second arg is constant true, result is true, but we must
10660 evaluate first arg. */
10661 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10662 return omit_one_operand_loc (loc, type, arg1, arg0);
10663 /* Likewise for first arg, but note this only occurs here for
10664 TRUTH_OR_EXPR. */
10665 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10666 return omit_one_operand_loc (loc, type, arg0, arg1);
10668 /* !X || X is always true. */
10669 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10670 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10671 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10672 /* X || !X is always true. */
10673 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10674 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10675 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10677 /* (X && !Y) || (!X && Y) is X ^ Y */
10678 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10679 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10681 tree a0, a1, l0, l1, n0, n1;
10683 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10684 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10686 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10687 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10689 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10690 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10692 if ((operand_equal_p (n0, a0, 0)
10693 && operand_equal_p (n1, a1, 0))
10694 || (operand_equal_p (n0, a1, 0)
10695 && operand_equal_p (n1, a0, 0)))
10696 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10699 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10700 != NULL_TREE)
10701 return tem;
10703 return NULL_TREE;
10705 case TRUTH_XOR_EXPR:
10706 /* If the second arg is constant zero, drop it. */
10707 if (integer_zerop (arg1))
10708 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10709 /* If the second arg is constant true, this is a logical inversion. */
10710 if (integer_onep (arg1))
10712 tem = invert_truthvalue_loc (loc, arg0);
10713 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10715 /* Identical arguments cancel to zero. */
10716 if (operand_equal_p (arg0, arg1, 0))
10717 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10719 /* !X ^ X is always true. */
10720 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10721 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10722 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10724 /* X ^ !X is always true. */
10725 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10726 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10727 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10729 return NULL_TREE;
10731 case EQ_EXPR:
10732 case NE_EXPR:
10733 STRIP_NOPS (arg0);
10734 STRIP_NOPS (arg1);
10736 tem = fold_comparison (loc, code, type, op0, op1);
10737 if (tem != NULL_TREE)
10738 return tem;
10740 /* bool_var != 1 becomes !bool_var. */
10741 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10742 && code == NE_EXPR)
10743 return fold_convert_loc (loc, type,
10744 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10745 TREE_TYPE (arg0), arg0));
10747 /* bool_var == 0 becomes !bool_var. */
10748 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10749 && code == EQ_EXPR)
10750 return fold_convert_loc (loc, type,
10751 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10752 TREE_TYPE (arg0), arg0));
10754 /* !exp != 0 becomes !exp */
10755 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10756 && code == NE_EXPR)
10757 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10759 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10760 if ((TREE_CODE (arg0) == PLUS_EXPR
10761 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10762 || TREE_CODE (arg0) == MINUS_EXPR)
10763 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10764 0)),
10765 arg1, 0)
10766 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10767 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10769 tree val = TREE_OPERAND (arg0, 1);
10770 return omit_two_operands_loc (loc, type,
10771 fold_build2_loc (loc, code, type,
10772 val,
10773 build_int_cst (TREE_TYPE (val),
10774 0)),
10775 TREE_OPERAND (arg0, 0), arg1);
10778 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10779 if (TREE_CODE (arg0) == MINUS_EXPR
10780 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10781 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10782 1)),
10783 arg1, 0)
10784 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10786 return omit_two_operands_loc (loc, type,
10787 code == NE_EXPR
10788 ? boolean_true_node : boolean_false_node,
10789 TREE_OPERAND (arg0, 1), arg1);
10792 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
10793 if (TREE_CODE (arg0) == ABS_EXPR
10794 && (integer_zerop (arg1) || real_zerop (arg1)))
10795 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
10797 /* If this is an EQ or NE comparison with zero and ARG0 is
10798 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10799 two operations, but the latter can be done in one less insn
10800 on machines that have only two-operand insns or on which a
10801 constant cannot be the first operand. */
10802 if (TREE_CODE (arg0) == BIT_AND_EXPR
10803 && integer_zerop (arg1))
10805 tree arg00 = TREE_OPERAND (arg0, 0);
10806 tree arg01 = TREE_OPERAND (arg0, 1);
10807 if (TREE_CODE (arg00) == LSHIFT_EXPR
10808 && integer_onep (TREE_OPERAND (arg00, 0)))
10810 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10811 arg01, TREE_OPERAND (arg00, 1));
10812 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10813 build_int_cst (TREE_TYPE (arg0), 1));
10814 return fold_build2_loc (loc, code, type,
10815 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10816 arg1);
10818 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10819 && integer_onep (TREE_OPERAND (arg01, 0)))
10821 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10822 arg00, TREE_OPERAND (arg01, 1));
10823 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10824 build_int_cst (TREE_TYPE (arg0), 1));
10825 return fold_build2_loc (loc, code, type,
10826 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10827 arg1);
10831 /* If this is an NE or EQ comparison of zero against the result of a
10832 signed MOD operation whose second operand is a power of 2, make
10833 the MOD operation unsigned since it is simpler and equivalent. */
10834 if (integer_zerop (arg1)
10835 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10836 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10837 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10838 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10839 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10840 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10842 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10843 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10844 fold_convert_loc (loc, newtype,
10845 TREE_OPERAND (arg0, 0)),
10846 fold_convert_loc (loc, newtype,
10847 TREE_OPERAND (arg0, 1)));
10849 return fold_build2_loc (loc, code, type, newmod,
10850 fold_convert_loc (loc, newtype, arg1));
10853 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10854 C1 is a valid shift constant, and C2 is a power of two, i.e.
10855 a single bit. */
10856 if (TREE_CODE (arg0) == BIT_AND_EXPR
10857 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10858 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10859 == INTEGER_CST
10860 && integer_pow2p (TREE_OPERAND (arg0, 1))
10861 && integer_zerop (arg1))
10863 tree itype = TREE_TYPE (arg0);
10864 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10865 prec = TYPE_PRECISION (itype);
10867 /* Check for a valid shift count. */
10868 if (wi::ltu_p (arg001, prec))
10870 tree arg01 = TREE_OPERAND (arg0, 1);
10871 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10872 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10873 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10874 can be rewritten as (X & (C2 << C1)) != 0. */
10875 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10877 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10878 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10879 return fold_build2_loc (loc, code, type, tem,
10880 fold_convert_loc (loc, itype, arg1));
10882 /* Otherwise, for signed (arithmetic) shifts,
10883 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10884 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10885 else if (!TYPE_UNSIGNED (itype))
10886 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10887 arg000, build_int_cst (itype, 0));
10888 /* Otherwise, of unsigned (logical) shifts,
10889 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10890 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10891 else
10892 return omit_one_operand_loc (loc, type,
10893 code == EQ_EXPR ? integer_one_node
10894 : integer_zero_node,
10895 arg000);
10899 /* If we have (A & C) == C where C is a power of 2, convert this into
10900 (A & C) != 0. Similarly for NE_EXPR. */
10901 if (TREE_CODE (arg0) == BIT_AND_EXPR
10902 && integer_pow2p (TREE_OPERAND (arg0, 1))
10903 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10904 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10905 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
10906 integer_zero_node));
10908 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
10909 bit, then fold the expression into A < 0 or A >= 0. */
10910 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
10911 if (tem)
10912 return tem;
10914 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10915 Similarly for NE_EXPR. */
10916 if (TREE_CODE (arg0) == BIT_AND_EXPR
10917 && TREE_CODE (arg1) == INTEGER_CST
10918 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10920 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10921 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10922 TREE_OPERAND (arg0, 1));
10923 tree dandnotc
10924 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10925 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10926 notc);
10927 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10928 if (integer_nonzerop (dandnotc))
10929 return omit_one_operand_loc (loc, type, rslt, arg0);
10932 /* If this is a comparison of a field, we may be able to simplify it. */
10933 if ((TREE_CODE (arg0) == COMPONENT_REF
10934 || TREE_CODE (arg0) == BIT_FIELD_REF)
10935 /* Handle the constant case even without -O
10936 to make sure the warnings are given. */
10937 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10939 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10940 if (t1)
10941 return t1;
10944 /* Optimize comparisons of strlen vs zero to a compare of the
10945 first character of the string vs zero. To wit,
10946 strlen(ptr) == 0 => *ptr == 0
10947 strlen(ptr) != 0 => *ptr != 0
10948 Other cases should reduce to one of these two (or a constant)
10949 due to the return value of strlen being unsigned. */
10950 if (TREE_CODE (arg0) == CALL_EXPR
10951 && integer_zerop (arg1))
10953 tree fndecl = get_callee_fndecl (arg0);
10955 if (fndecl
10956 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10957 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10958 && call_expr_nargs (arg0) == 1
10959 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10961 tree iref = build_fold_indirect_ref_loc (loc,
10962 CALL_EXPR_ARG (arg0, 0));
10963 return fold_build2_loc (loc, code, type, iref,
10964 build_int_cst (TREE_TYPE (iref), 0));
10968 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10969 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10970 if (TREE_CODE (arg0) == RSHIFT_EXPR
10971 && integer_zerop (arg1)
10972 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10974 tree arg00 = TREE_OPERAND (arg0, 0);
10975 tree arg01 = TREE_OPERAND (arg0, 1);
10976 tree itype = TREE_TYPE (arg00);
10977 if (wi::eq_p (arg01, element_precision (itype) - 1))
10979 if (TYPE_UNSIGNED (itype))
10981 itype = signed_type_for (itype);
10982 arg00 = fold_convert_loc (loc, itype, arg00);
10984 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10985 type, arg00, build_zero_cst (itype));
10989 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10990 (X & C) == 0 when C is a single bit. */
10991 if (TREE_CODE (arg0) == BIT_AND_EXPR
10992 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10993 && integer_zerop (arg1)
10994 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10996 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10997 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10998 TREE_OPERAND (arg0, 1));
10999 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
11000 type, tem,
11001 fold_convert_loc (loc, TREE_TYPE (arg0),
11002 arg1));
11005 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11006 constant C is a power of two, i.e. a single bit. */
11007 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11008 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11009 && integer_zerop (arg1)
11010 && integer_pow2p (TREE_OPERAND (arg0, 1))
11011 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11012 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11014 tree arg00 = TREE_OPERAND (arg0, 0);
11015 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11016 arg00, build_int_cst (TREE_TYPE (arg00), 0));
11019 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
11020 when is C is a power of two, i.e. a single bit. */
11021 if (TREE_CODE (arg0) == BIT_AND_EXPR
11022 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
11023 && integer_zerop (arg1)
11024 && integer_pow2p (TREE_OPERAND (arg0, 1))
11025 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11026 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11028 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11029 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
11030 arg000, TREE_OPERAND (arg0, 1));
11031 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11032 tem, build_int_cst (TREE_TYPE (tem), 0));
11035 if (integer_zerop (arg1)
11036 && tree_expr_nonzero_p (arg0))
11038 tree res = constant_boolean_node (code==NE_EXPR, type);
11039 return omit_one_operand_loc (loc, type, res, arg0);
11042 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
11043 if (TREE_CODE (arg0) == BIT_AND_EXPR
11044 && TREE_CODE (arg1) == BIT_AND_EXPR)
11046 tree arg00 = TREE_OPERAND (arg0, 0);
11047 tree arg01 = TREE_OPERAND (arg0, 1);
11048 tree arg10 = TREE_OPERAND (arg1, 0);
11049 tree arg11 = TREE_OPERAND (arg1, 1);
11050 tree itype = TREE_TYPE (arg0);
11052 if (operand_equal_p (arg01, arg11, 0))
11053 return fold_build2_loc (loc, code, type,
11054 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11055 fold_build2_loc (loc,
11056 BIT_XOR_EXPR, itype,
11057 arg00, arg10),
11058 arg01),
11059 build_zero_cst (itype));
11061 if (operand_equal_p (arg01, arg10, 0))
11062 return fold_build2_loc (loc, code, type,
11063 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11064 fold_build2_loc (loc,
11065 BIT_XOR_EXPR, itype,
11066 arg00, arg11),
11067 arg01),
11068 build_zero_cst (itype));
11070 if (operand_equal_p (arg00, arg11, 0))
11071 return fold_build2_loc (loc, code, type,
11072 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11073 fold_build2_loc (loc,
11074 BIT_XOR_EXPR, itype,
11075 arg01, arg10),
11076 arg00),
11077 build_zero_cst (itype));
11079 if (operand_equal_p (arg00, arg10, 0))
11080 return fold_build2_loc (loc, code, type,
11081 fold_build2_loc (loc, BIT_AND_EXPR, itype,
11082 fold_build2_loc (loc,
11083 BIT_XOR_EXPR, itype,
11084 arg01, arg11),
11085 arg00),
11086 build_zero_cst (itype));
11089 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11090 && TREE_CODE (arg1) == BIT_XOR_EXPR)
11092 tree arg00 = TREE_OPERAND (arg0, 0);
11093 tree arg01 = TREE_OPERAND (arg0, 1);
11094 tree arg10 = TREE_OPERAND (arg1, 0);
11095 tree arg11 = TREE_OPERAND (arg1, 1);
11096 tree itype = TREE_TYPE (arg0);
11098 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
11099 operand_equal_p guarantees no side-effects so we don't need
11100 to use omit_one_operand on Z. */
11101 if (operand_equal_p (arg01, arg11, 0))
11102 return fold_build2_loc (loc, code, type, arg00,
11103 fold_convert_loc (loc, TREE_TYPE (arg00),
11104 arg10));
11105 if (operand_equal_p (arg01, arg10, 0))
11106 return fold_build2_loc (loc, code, type, arg00,
11107 fold_convert_loc (loc, TREE_TYPE (arg00),
11108 arg11));
11109 if (operand_equal_p (arg00, arg11, 0))
11110 return fold_build2_loc (loc, code, type, arg01,
11111 fold_convert_loc (loc, TREE_TYPE (arg01),
11112 arg10));
11113 if (operand_equal_p (arg00, arg10, 0))
11114 return fold_build2_loc (loc, code, type, arg01,
11115 fold_convert_loc (loc, TREE_TYPE (arg01),
11116 arg11));
11118 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
11119 if (TREE_CODE (arg01) == INTEGER_CST
11120 && TREE_CODE (arg11) == INTEGER_CST)
11122 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
11123 fold_convert_loc (loc, itype, arg11));
11124 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11125 return fold_build2_loc (loc, code, type, tem,
11126 fold_convert_loc (loc, itype, arg10));
11130 /* Attempt to simplify equality/inequality comparisons of complex
11131 values. Only lower the comparison if the result is known or
11132 can be simplified to a single scalar comparison. */
11133 if ((TREE_CODE (arg0) == COMPLEX_EXPR
11134 || TREE_CODE (arg0) == COMPLEX_CST)
11135 && (TREE_CODE (arg1) == COMPLEX_EXPR
11136 || TREE_CODE (arg1) == COMPLEX_CST))
11138 tree real0, imag0, real1, imag1;
11139 tree rcond, icond;
11141 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11143 real0 = TREE_OPERAND (arg0, 0);
11144 imag0 = TREE_OPERAND (arg0, 1);
11146 else
11148 real0 = TREE_REALPART (arg0);
11149 imag0 = TREE_IMAGPART (arg0);
11152 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11154 real1 = TREE_OPERAND (arg1, 0);
11155 imag1 = TREE_OPERAND (arg1, 1);
11157 else
11159 real1 = TREE_REALPART (arg1);
11160 imag1 = TREE_IMAGPART (arg1);
11163 rcond = fold_binary_loc (loc, code, type, real0, real1);
11164 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11166 if (integer_zerop (rcond))
11168 if (code == EQ_EXPR)
11169 return omit_two_operands_loc (loc, type, boolean_false_node,
11170 imag0, imag1);
11171 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11173 else
11175 if (code == NE_EXPR)
11176 return omit_two_operands_loc (loc, type, boolean_true_node,
11177 imag0, imag1);
11178 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11182 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11183 if (icond && TREE_CODE (icond) == INTEGER_CST)
11185 if (integer_zerop (icond))
11187 if (code == EQ_EXPR)
11188 return omit_two_operands_loc (loc, type, boolean_false_node,
11189 real0, real1);
11190 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11192 else
11194 if (code == NE_EXPR)
11195 return omit_two_operands_loc (loc, type, boolean_true_node,
11196 real0, real1);
11197 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11202 return NULL_TREE;
11204 case LT_EXPR:
11205 case GT_EXPR:
11206 case LE_EXPR:
11207 case GE_EXPR:
11208 tem = fold_comparison (loc, code, type, op0, op1);
11209 if (tem != NULL_TREE)
11210 return tem;
11212 /* Transform comparisons of the form X +- C CMP X. */
11213 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11214 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11215 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11216 && !HONOR_SNANS (arg0))
11217 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11218 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
11220 tree arg01 = TREE_OPERAND (arg0, 1);
11221 enum tree_code code0 = TREE_CODE (arg0);
11222 int is_positive;
11224 if (TREE_CODE (arg01) == REAL_CST)
11225 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11226 else
11227 is_positive = tree_int_cst_sgn (arg01);
11229 /* (X - c) > X becomes false. */
11230 if (code == GT_EXPR
11231 && ((code0 == MINUS_EXPR && is_positive >= 0)
11232 || (code0 == PLUS_EXPR && is_positive <= 0)))
11234 if (TREE_CODE (arg01) == INTEGER_CST
11235 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11236 fold_overflow_warning (("assuming signed overflow does not "
11237 "occur when assuming that (X - c) > X "
11238 "is always false"),
11239 WARN_STRICT_OVERFLOW_ALL);
11240 return constant_boolean_node (0, type);
11243 /* Likewise (X + c) < X becomes false. */
11244 if (code == LT_EXPR
11245 && ((code0 == PLUS_EXPR && is_positive >= 0)
11246 || (code0 == MINUS_EXPR && is_positive <= 0)))
11248 if (TREE_CODE (arg01) == INTEGER_CST
11249 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11250 fold_overflow_warning (("assuming signed overflow does not "
11251 "occur when assuming that "
11252 "(X + c) < X is always false"),
11253 WARN_STRICT_OVERFLOW_ALL);
11254 return constant_boolean_node (0, type);
11257 /* Convert (X - c) <= X to true. */
11258 if (!HONOR_NANS (arg1)
11259 && code == LE_EXPR
11260 && ((code0 == MINUS_EXPR && is_positive >= 0)
11261 || (code0 == PLUS_EXPR && is_positive <= 0)))
11263 if (TREE_CODE (arg01) == INTEGER_CST
11264 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11265 fold_overflow_warning (("assuming signed overflow does not "
11266 "occur when assuming that "
11267 "(X - c) <= X is always true"),
11268 WARN_STRICT_OVERFLOW_ALL);
11269 return constant_boolean_node (1, type);
11272 /* Convert (X + c) >= X to true. */
11273 if (!HONOR_NANS (arg1)
11274 && code == GE_EXPR
11275 && ((code0 == PLUS_EXPR && is_positive >= 0)
11276 || (code0 == MINUS_EXPR && is_positive <= 0)))
11278 if (TREE_CODE (arg01) == INTEGER_CST
11279 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11280 fold_overflow_warning (("assuming signed overflow does not "
11281 "occur when assuming that "
11282 "(X + c) >= X is always true"),
11283 WARN_STRICT_OVERFLOW_ALL);
11284 return constant_boolean_node (1, type);
11287 if (TREE_CODE (arg01) == INTEGER_CST)
11289 /* Convert X + c > X and X - c < X to true for integers. */
11290 if (code == GT_EXPR
11291 && ((code0 == PLUS_EXPR && is_positive > 0)
11292 || (code0 == MINUS_EXPR && is_positive < 0)))
11294 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11295 fold_overflow_warning (("assuming signed overflow does "
11296 "not occur when assuming that "
11297 "(X + c) > X is always true"),
11298 WARN_STRICT_OVERFLOW_ALL);
11299 return constant_boolean_node (1, type);
11302 if (code == LT_EXPR
11303 && ((code0 == MINUS_EXPR && is_positive > 0)
11304 || (code0 == PLUS_EXPR && is_positive < 0)))
11306 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11307 fold_overflow_warning (("assuming signed overflow does "
11308 "not occur when assuming that "
11309 "(X - c) < X is always true"),
11310 WARN_STRICT_OVERFLOW_ALL);
11311 return constant_boolean_node (1, type);
11314 /* Convert X + c <= X and X - c >= X to false for integers. */
11315 if (code == LE_EXPR
11316 && ((code0 == PLUS_EXPR && is_positive > 0)
11317 || (code0 == MINUS_EXPR && is_positive < 0)))
11319 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11320 fold_overflow_warning (("assuming signed overflow does "
11321 "not occur when assuming that "
11322 "(X + c) <= X is always false"),
11323 WARN_STRICT_OVERFLOW_ALL);
11324 return constant_boolean_node (0, type);
11327 if (code == GE_EXPR
11328 && ((code0 == MINUS_EXPR && is_positive > 0)
11329 || (code0 == PLUS_EXPR && is_positive < 0)))
11331 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11332 fold_overflow_warning (("assuming signed overflow does "
11333 "not occur when assuming that "
11334 "(X - c) >= X is always false"),
11335 WARN_STRICT_OVERFLOW_ALL);
11336 return constant_boolean_node (0, type);
11341 /* If we are comparing an ABS_EXPR with a constant, we can
11342 convert all the cases into explicit comparisons, but they may
11343 well not be faster than doing the ABS and one comparison.
11344 But ABS (X) <= C is a range comparison, which becomes a subtraction
11345 and a comparison, and is probably faster. */
11346 if (code == LE_EXPR
11347 && TREE_CODE (arg1) == INTEGER_CST
11348 && TREE_CODE (arg0) == ABS_EXPR
11349 && ! TREE_SIDE_EFFECTS (arg0)
11350 && (0 != (tem = negate_expr (arg1)))
11351 && TREE_CODE (tem) == INTEGER_CST
11352 && !TREE_OVERFLOW (tem))
11353 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11354 build2 (GE_EXPR, type,
11355 TREE_OPERAND (arg0, 0), tem),
11356 build2 (LE_EXPR, type,
11357 TREE_OPERAND (arg0, 0), arg1));
11359 /* Convert ABS_EXPR<x> >= 0 to true. */
11360 strict_overflow_p = false;
11361 if (code == GE_EXPR
11362 && (integer_zerop (arg1)
11363 || (! HONOR_NANS (arg0)
11364 && real_zerop (arg1)))
11365 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11367 if (strict_overflow_p)
11368 fold_overflow_warning (("assuming signed overflow does not occur "
11369 "when simplifying comparison of "
11370 "absolute value and zero"),
11371 WARN_STRICT_OVERFLOW_CONDITIONAL);
11372 return omit_one_operand_loc (loc, type,
11373 constant_boolean_node (true, type),
11374 arg0);
11377 /* Convert ABS_EXPR<x> < 0 to false. */
11378 strict_overflow_p = false;
11379 if (code == LT_EXPR
11380 && (integer_zerop (arg1) || real_zerop (arg1))
11381 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11383 if (strict_overflow_p)
11384 fold_overflow_warning (("assuming signed overflow does not occur "
11385 "when simplifying comparison of "
11386 "absolute value and zero"),
11387 WARN_STRICT_OVERFLOW_CONDITIONAL);
11388 return omit_one_operand_loc (loc, type,
11389 constant_boolean_node (false, type),
11390 arg0);
11393 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11394 and similarly for >= into !=. */
11395 if ((code == LT_EXPR || code == GE_EXPR)
11396 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11397 && TREE_CODE (arg1) == LSHIFT_EXPR
11398 && integer_onep (TREE_OPERAND (arg1, 0)))
11399 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11400 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11401 TREE_OPERAND (arg1, 1)),
11402 build_zero_cst (TREE_TYPE (arg0)));
11404 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11405 otherwise Y might be >= # of bits in X's type and thus e.g.
11406 (unsigned char) (1 << Y) for Y 15 might be 0.
11407 If the cast is widening, then 1 << Y should have unsigned type,
11408 otherwise if Y is number of bits in the signed shift type minus 1,
11409 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11410 31 might be 0xffffffff80000000. */
11411 if ((code == LT_EXPR || code == GE_EXPR)
11412 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11413 && CONVERT_EXPR_P (arg1)
11414 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11415 && (element_precision (TREE_TYPE (arg1))
11416 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11417 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11418 || (element_precision (TREE_TYPE (arg1))
11419 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11420 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11422 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11423 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11424 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11425 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11426 build_zero_cst (TREE_TYPE (arg0)));
11429 return NULL_TREE;
11431 case UNORDERED_EXPR:
11432 case ORDERED_EXPR:
11433 case UNLT_EXPR:
11434 case UNLE_EXPR:
11435 case UNGT_EXPR:
11436 case UNGE_EXPR:
11437 case UNEQ_EXPR:
11438 case LTGT_EXPR:
11439 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11441 tree targ0 = strip_float_extensions (arg0);
11442 tree targ1 = strip_float_extensions (arg1);
11443 tree newtype = TREE_TYPE (targ0);
11445 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11446 newtype = TREE_TYPE (targ1);
11448 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11449 return fold_build2_loc (loc, code, type,
11450 fold_convert_loc (loc, newtype, targ0),
11451 fold_convert_loc (loc, newtype, targ1));
11454 return NULL_TREE;
11456 case COMPOUND_EXPR:
11457 /* When pedantic, a compound expression can be neither an lvalue
11458 nor an integer constant expression. */
11459 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11460 return NULL_TREE;
11461 /* Don't let (0, 0) be null pointer constant. */
11462 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11463 : fold_convert_loc (loc, type, arg1);
11464 return pedantic_non_lvalue_loc (loc, tem);
11466 case ASSERT_EXPR:
11467 /* An ASSERT_EXPR should never be passed to fold_binary. */
11468 gcc_unreachable ();
11470 default:
11471 return NULL_TREE;
11472 } /* switch (code) */
11475 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11476 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11477 of GOTO_EXPR. */
11479 static tree
11480 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11482 switch (TREE_CODE (*tp))
11484 case LABEL_EXPR:
11485 return *tp;
11487 case GOTO_EXPR:
11488 *walk_subtrees = 0;
11490 /* ... fall through ... */
11492 default:
11493 return NULL_TREE;
11497 /* Return whether the sub-tree ST contains a label which is accessible from
11498 outside the sub-tree. */
11500 static bool
11501 contains_label_p (tree st)
11503 return
11504 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11507 /* Fold a ternary expression of code CODE and type TYPE with operands
11508 OP0, OP1, and OP2. Return the folded expression if folding is
11509 successful. Otherwise, return NULL_TREE. */
11511 tree
11512 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11513 tree op0, tree op1, tree op2)
11515 tree tem;
11516 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11517 enum tree_code_class kind = TREE_CODE_CLASS (code);
11519 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11520 && TREE_CODE_LENGTH (code) == 3);
11522 /* If this is a commutative operation, and OP0 is a constant, move it
11523 to OP1 to reduce the number of tests below. */
11524 if (commutative_ternary_tree_code (code)
11525 && tree_swap_operands_p (op0, op1, true))
11526 return fold_build3_loc (loc, code, type, op1, op0, op2);
11528 tem = generic_simplify (loc, code, type, op0, op1, op2);
11529 if (tem)
11530 return tem;
11532 /* Strip any conversions that don't change the mode. This is safe
11533 for every expression, except for a comparison expression because
11534 its signedness is derived from its operands. So, in the latter
11535 case, only strip conversions that don't change the signedness.
11537 Note that this is done as an internal manipulation within the
11538 constant folder, in order to find the simplest representation of
11539 the arguments so that their form can be studied. In any cases,
11540 the appropriate type conversions should be put back in the tree
11541 that will get out of the constant folder. */
11542 if (op0)
11544 arg0 = op0;
11545 STRIP_NOPS (arg0);
11548 if (op1)
11550 arg1 = op1;
11551 STRIP_NOPS (arg1);
11554 if (op2)
11556 arg2 = op2;
11557 STRIP_NOPS (arg2);
11560 switch (code)
11562 case COMPONENT_REF:
11563 if (TREE_CODE (arg0) == CONSTRUCTOR
11564 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11566 unsigned HOST_WIDE_INT idx;
11567 tree field, value;
11568 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11569 if (field == arg1)
11570 return value;
11572 return NULL_TREE;
11574 case COND_EXPR:
11575 case VEC_COND_EXPR:
11576 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11577 so all simple results must be passed through pedantic_non_lvalue. */
11578 if (TREE_CODE (arg0) == INTEGER_CST)
11580 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11581 tem = integer_zerop (arg0) ? op2 : op1;
11582 /* Only optimize constant conditions when the selected branch
11583 has the same type as the COND_EXPR. This avoids optimizing
11584 away "c ? x : throw", where the throw has a void type.
11585 Avoid throwing away that operand which contains label. */
11586 if ((!TREE_SIDE_EFFECTS (unused_op)
11587 || !contains_label_p (unused_op))
11588 && (! VOID_TYPE_P (TREE_TYPE (tem))
11589 || VOID_TYPE_P (type)))
11590 return pedantic_non_lvalue_loc (loc, tem);
11591 return NULL_TREE;
11593 else if (TREE_CODE (arg0) == VECTOR_CST)
11595 if ((TREE_CODE (arg1) == VECTOR_CST
11596 || TREE_CODE (arg1) == CONSTRUCTOR)
11597 && (TREE_CODE (arg2) == VECTOR_CST
11598 || TREE_CODE (arg2) == CONSTRUCTOR))
11600 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11601 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11602 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11603 for (i = 0; i < nelts; i++)
11605 tree val = VECTOR_CST_ELT (arg0, i);
11606 if (integer_all_onesp (val))
11607 sel[i] = i;
11608 else if (integer_zerop (val))
11609 sel[i] = nelts + i;
11610 else /* Currently unreachable. */
11611 return NULL_TREE;
11613 tree t = fold_vec_perm (type, arg1, arg2, sel);
11614 if (t != NULL_TREE)
11615 return t;
11619 /* If we have A op B ? A : C, we may be able to convert this to a
11620 simpler expression, depending on the operation and the values
11621 of B and C. Signed zeros prevent all of these transformations,
11622 for reasons given above each one.
11624 Also try swapping the arguments and inverting the conditional. */
11625 if (COMPARISON_CLASS_P (arg0)
11626 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11627 arg1, TREE_OPERAND (arg0, 1))
11628 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11630 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11631 if (tem)
11632 return tem;
11635 if (COMPARISON_CLASS_P (arg0)
11636 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11637 op2,
11638 TREE_OPERAND (arg0, 1))
11639 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11641 location_t loc0 = expr_location_or (arg0, loc);
11642 tem = fold_invert_truthvalue (loc0, arg0);
11643 if (tem && COMPARISON_CLASS_P (tem))
11645 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11646 if (tem)
11647 return tem;
11651 /* If the second operand is simpler than the third, swap them
11652 since that produces better jump optimization results. */
11653 if (truth_value_p (TREE_CODE (arg0))
11654 && tree_swap_operands_p (op1, op2, false))
11656 location_t loc0 = expr_location_or (arg0, loc);
11657 /* See if this can be inverted. If it can't, possibly because
11658 it was a floating-point inequality comparison, don't do
11659 anything. */
11660 tem = fold_invert_truthvalue (loc0, arg0);
11661 if (tem)
11662 return fold_build3_loc (loc, code, type, tem, op2, op1);
11665 /* Convert A ? 1 : 0 to simply A. */
11666 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11667 : (integer_onep (op1)
11668 && !VECTOR_TYPE_P (type)))
11669 && integer_zerop (op2)
11670 /* If we try to convert OP0 to our type, the
11671 call to fold will try to move the conversion inside
11672 a COND, which will recurse. In that case, the COND_EXPR
11673 is probably the best choice, so leave it alone. */
11674 && type == TREE_TYPE (arg0))
11675 return pedantic_non_lvalue_loc (loc, arg0);
11677 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11678 over COND_EXPR in cases such as floating point comparisons. */
11679 if (integer_zerop (op1)
11680 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
11681 : (integer_onep (op2)
11682 && !VECTOR_TYPE_P (type)))
11683 && truth_value_p (TREE_CODE (arg0)))
11684 return pedantic_non_lvalue_loc (loc,
11685 fold_convert_loc (loc, type,
11686 invert_truthvalue_loc (loc,
11687 arg0)));
11689 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11690 if (TREE_CODE (arg0) == LT_EXPR
11691 && integer_zerop (TREE_OPERAND (arg0, 1))
11692 && integer_zerop (op2)
11693 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11695 /* sign_bit_p looks through both zero and sign extensions,
11696 but for this optimization only sign extensions are
11697 usable. */
11698 tree tem2 = TREE_OPERAND (arg0, 0);
11699 while (tem != tem2)
11701 if (TREE_CODE (tem2) != NOP_EXPR
11702 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11704 tem = NULL_TREE;
11705 break;
11707 tem2 = TREE_OPERAND (tem2, 0);
11709 /* sign_bit_p only checks ARG1 bits within A's precision.
11710 If <sign bit of A> has wider type than A, bits outside
11711 of A's precision in <sign bit of A> need to be checked.
11712 If they are all 0, this optimization needs to be done
11713 in unsigned A's type, if they are all 1 in signed A's type,
11714 otherwise this can't be done. */
11715 if (tem
11716 && TYPE_PRECISION (TREE_TYPE (tem))
11717 < TYPE_PRECISION (TREE_TYPE (arg1))
11718 && TYPE_PRECISION (TREE_TYPE (tem))
11719 < TYPE_PRECISION (type))
11721 int inner_width, outer_width;
11722 tree tem_type;
11724 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11725 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11726 if (outer_width > TYPE_PRECISION (type))
11727 outer_width = TYPE_PRECISION (type);
11729 wide_int mask = wi::shifted_mask
11730 (inner_width, outer_width - inner_width, false,
11731 TYPE_PRECISION (TREE_TYPE (arg1)));
11733 wide_int common = mask & arg1;
11734 if (common == mask)
11736 tem_type = signed_type_for (TREE_TYPE (tem));
11737 tem = fold_convert_loc (loc, tem_type, tem);
11739 else if (common == 0)
11741 tem_type = unsigned_type_for (TREE_TYPE (tem));
11742 tem = fold_convert_loc (loc, tem_type, tem);
11744 else
11745 tem = NULL;
11748 if (tem)
11749 return
11750 fold_convert_loc (loc, type,
11751 fold_build2_loc (loc, BIT_AND_EXPR,
11752 TREE_TYPE (tem), tem,
11753 fold_convert_loc (loc,
11754 TREE_TYPE (tem),
11755 arg1)));
11758 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11759 already handled above. */
11760 if (TREE_CODE (arg0) == BIT_AND_EXPR
11761 && integer_onep (TREE_OPERAND (arg0, 1))
11762 && integer_zerop (op2)
11763 && integer_pow2p (arg1))
11765 tree tem = TREE_OPERAND (arg0, 0);
11766 STRIP_NOPS (tem);
11767 if (TREE_CODE (tem) == RSHIFT_EXPR
11768 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11769 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11770 tree_to_uhwi (TREE_OPERAND (tem, 1)))
11771 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11772 TREE_OPERAND (tem, 0), arg1);
11775 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11776 is probably obsolete because the first operand should be a
11777 truth value (that's why we have the two cases above), but let's
11778 leave it in until we can confirm this for all front-ends. */
11779 if (integer_zerop (op2)
11780 && TREE_CODE (arg0) == NE_EXPR
11781 && integer_zerop (TREE_OPERAND (arg0, 1))
11782 && integer_pow2p (arg1)
11783 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11784 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11785 arg1, OEP_ONLY_CONST))
11786 return pedantic_non_lvalue_loc (loc,
11787 fold_convert_loc (loc, type,
11788 TREE_OPERAND (arg0, 0)));
11790 /* Disable the transformations below for vectors, since
11791 fold_binary_op_with_conditional_arg may undo them immediately,
11792 yielding an infinite loop. */
11793 if (code == VEC_COND_EXPR)
11794 return NULL_TREE;
11796 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11797 if (integer_zerop (op2)
11798 && truth_value_p (TREE_CODE (arg0))
11799 && truth_value_p (TREE_CODE (arg1))
11800 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11801 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11802 : TRUTH_ANDIF_EXPR,
11803 type, fold_convert_loc (loc, type, arg0), arg1);
11805 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11806 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11807 && truth_value_p (TREE_CODE (arg0))
11808 && truth_value_p (TREE_CODE (arg1))
11809 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11811 location_t loc0 = expr_location_or (arg0, loc);
11812 /* Only perform transformation if ARG0 is easily inverted. */
11813 tem = fold_invert_truthvalue (loc0, arg0);
11814 if (tem)
11815 return fold_build2_loc (loc, code == VEC_COND_EXPR
11816 ? BIT_IOR_EXPR
11817 : TRUTH_ORIF_EXPR,
11818 type, fold_convert_loc (loc, type, tem),
11819 arg1);
11822 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11823 if (integer_zerop (arg1)
11824 && truth_value_p (TREE_CODE (arg0))
11825 && truth_value_p (TREE_CODE (op2))
11826 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11828 location_t loc0 = expr_location_or (arg0, loc);
11829 /* Only perform transformation if ARG0 is easily inverted. */
11830 tem = fold_invert_truthvalue (loc0, arg0);
11831 if (tem)
11832 return fold_build2_loc (loc, code == VEC_COND_EXPR
11833 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11834 type, fold_convert_loc (loc, type, tem),
11835 op2);
11838 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11839 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11840 && truth_value_p (TREE_CODE (arg0))
11841 && truth_value_p (TREE_CODE (op2))
11842 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11843 return fold_build2_loc (loc, code == VEC_COND_EXPR
11844 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11845 type, fold_convert_loc (loc, type, arg0), op2);
11847 return NULL_TREE;
11849 case CALL_EXPR:
11850 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11851 of fold_ternary on them. */
11852 gcc_unreachable ();
11854 case BIT_FIELD_REF:
11855 if ((TREE_CODE (arg0) == VECTOR_CST
11856 || (TREE_CODE (arg0) == CONSTRUCTOR
11857 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
11858 && (type == TREE_TYPE (TREE_TYPE (arg0))
11859 || (TREE_CODE (type) == VECTOR_TYPE
11860 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11862 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11863 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11864 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11865 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11867 if (n != 0
11868 && (idx % width) == 0
11869 && (n % width) == 0
11870 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11872 idx = idx / width;
11873 n = n / width;
11875 if (TREE_CODE (arg0) == VECTOR_CST)
11877 if (n == 1)
11878 return VECTOR_CST_ELT (arg0, idx);
11880 tree *vals = XALLOCAVEC (tree, n);
11881 for (unsigned i = 0; i < n; ++i)
11882 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11883 return build_vector (type, vals);
11886 /* Constructor elements can be subvectors. */
11887 unsigned HOST_WIDE_INT k = 1;
11888 if (CONSTRUCTOR_NELTS (arg0) != 0)
11890 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
11891 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
11892 k = TYPE_VECTOR_SUBPARTS (cons_elem);
11895 /* We keep an exact subset of the constructor elements. */
11896 if ((idx % k) == 0 && (n % k) == 0)
11898 if (CONSTRUCTOR_NELTS (arg0) == 0)
11899 return build_constructor (type, NULL);
11900 idx /= k;
11901 n /= k;
11902 if (n == 1)
11904 if (idx < CONSTRUCTOR_NELTS (arg0))
11905 return CONSTRUCTOR_ELT (arg0, idx)->value;
11906 return build_zero_cst (type);
11909 vec<constructor_elt, va_gc> *vals;
11910 vec_alloc (vals, n);
11911 for (unsigned i = 0;
11912 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
11913 ++i)
11914 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
11915 CONSTRUCTOR_ELT
11916 (arg0, idx + i)->value);
11917 return build_constructor (type, vals);
11919 /* The bitfield references a single constructor element. */
11920 else if (idx + n <= (idx / k + 1) * k)
11922 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
11923 return build_zero_cst (type);
11924 else if (n == k)
11925 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
11926 else
11927 return fold_build3_loc (loc, code, type,
11928 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
11929 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
11934 /* A bit-field-ref that referenced the full argument can be stripped. */
11935 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11936 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
11937 && integer_zerop (op2))
11938 return fold_convert_loc (loc, type, arg0);
11940 /* On constants we can use native encode/interpret to constant
11941 fold (nearly) all BIT_FIELD_REFs. */
11942 if (CONSTANT_CLASS_P (arg0)
11943 && can_native_interpret_type_p (type)
11944 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
11945 /* This limitation should not be necessary, we just need to
11946 round this up to mode size. */
11947 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
11948 /* Need bit-shifting of the buffer to relax the following. */
11949 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
11951 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11952 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11953 unsigned HOST_WIDE_INT clen;
11954 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
11955 /* ??? We cannot tell native_encode_expr to start at
11956 some random byte only. So limit us to a reasonable amount
11957 of work. */
11958 if (clen <= 4096)
11960 unsigned char *b = XALLOCAVEC (unsigned char, clen);
11961 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
11962 if (len > 0
11963 && len * BITS_PER_UNIT >= bitpos + bitsize)
11965 tree v = native_interpret_expr (type,
11966 b + bitpos / BITS_PER_UNIT,
11967 bitsize / BITS_PER_UNIT);
11968 if (v)
11969 return v;
11974 return NULL_TREE;
11976 case FMA_EXPR:
11977 /* For integers we can decompose the FMA if possible. */
11978 if (TREE_CODE (arg0) == INTEGER_CST
11979 && TREE_CODE (arg1) == INTEGER_CST)
11980 return fold_build2_loc (loc, PLUS_EXPR, type,
11981 const_binop (MULT_EXPR, arg0, arg1), arg2);
11982 if (integer_zerop (arg2))
11983 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11985 return fold_fma (loc, type, arg0, arg1, arg2);
11987 case VEC_PERM_EXPR:
11988 if (TREE_CODE (arg2) == VECTOR_CST)
11990 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11991 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11992 unsigned char *sel2 = sel + nelts;
11993 bool need_mask_canon = false;
11994 bool need_mask_canon2 = false;
11995 bool all_in_vec0 = true;
11996 bool all_in_vec1 = true;
11997 bool maybe_identity = true;
11998 bool single_arg = (op0 == op1);
11999 bool changed = false;
12001 mask2 = 2 * nelts - 1;
12002 mask = single_arg ? (nelts - 1) : mask2;
12003 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
12004 for (i = 0; i < nelts; i++)
12006 tree val = VECTOR_CST_ELT (arg2, i);
12007 if (TREE_CODE (val) != INTEGER_CST)
12008 return NULL_TREE;
12010 /* Make sure that the perm value is in an acceptable
12011 range. */
12012 wide_int t = val;
12013 need_mask_canon |= wi::gtu_p (t, mask);
12014 need_mask_canon2 |= wi::gtu_p (t, mask2);
12015 sel[i] = t.to_uhwi () & mask;
12016 sel2[i] = t.to_uhwi () & mask2;
12018 if (sel[i] < nelts)
12019 all_in_vec1 = false;
12020 else
12021 all_in_vec0 = false;
12023 if ((sel[i] & (nelts-1)) != i)
12024 maybe_identity = false;
12027 if (maybe_identity)
12029 if (all_in_vec0)
12030 return op0;
12031 if (all_in_vec1)
12032 return op1;
12035 if (all_in_vec0)
12036 op1 = op0;
12037 else if (all_in_vec1)
12039 op0 = op1;
12040 for (i = 0; i < nelts; i++)
12041 sel[i] -= nelts;
12042 need_mask_canon = true;
12045 if ((TREE_CODE (op0) == VECTOR_CST
12046 || TREE_CODE (op0) == CONSTRUCTOR)
12047 && (TREE_CODE (op1) == VECTOR_CST
12048 || TREE_CODE (op1) == CONSTRUCTOR))
12050 tree t = fold_vec_perm (type, op0, op1, sel);
12051 if (t != NULL_TREE)
12052 return t;
12055 if (op0 == op1 && !single_arg)
12056 changed = true;
12058 /* Some targets are deficient and fail to expand a single
12059 argument permutation while still allowing an equivalent
12060 2-argument version. */
12061 if (need_mask_canon && arg2 == op2
12062 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
12063 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
12065 need_mask_canon = need_mask_canon2;
12066 sel = sel2;
12069 if (need_mask_canon && arg2 == op2)
12071 tree *tsel = XALLOCAVEC (tree, nelts);
12072 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
12073 for (i = 0; i < nelts; i++)
12074 tsel[i] = build_int_cst (eltype, sel[i]);
12075 op2 = build_vector (TREE_TYPE (arg2), tsel);
12076 changed = true;
12079 if (changed)
12080 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
12082 return NULL_TREE;
12084 default:
12085 return NULL_TREE;
12086 } /* switch (code) */
12089 /* Perform constant folding and related simplification of EXPR.
12090 The related simplifications include x*1 => x, x*0 => 0, etc.,
12091 and application of the associative law.
12092 NOP_EXPR conversions may be removed freely (as long as we
12093 are careful not to change the type of the overall expression).
12094 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12095 but we can constant-fold them if they have constant operands. */
12097 #ifdef ENABLE_FOLD_CHECKING
12098 # define fold(x) fold_1 (x)
12099 static tree fold_1 (tree);
12100 static
12101 #endif
12102 tree
12103 fold (tree expr)
12105 const tree t = expr;
12106 enum tree_code code = TREE_CODE (t);
12107 enum tree_code_class kind = TREE_CODE_CLASS (code);
12108 tree tem;
12109 location_t loc = EXPR_LOCATION (expr);
12111 /* Return right away if a constant. */
12112 if (kind == tcc_constant)
12113 return t;
12115 /* CALL_EXPR-like objects with variable numbers of operands are
12116 treated specially. */
12117 if (kind == tcc_vl_exp)
12119 if (code == CALL_EXPR)
12121 tem = fold_call_expr (loc, expr, false);
12122 return tem ? tem : expr;
12124 return expr;
12127 if (IS_EXPR_CODE_CLASS (kind))
12129 tree type = TREE_TYPE (t);
12130 tree op0, op1, op2;
12132 switch (TREE_CODE_LENGTH (code))
12134 case 1:
12135 op0 = TREE_OPERAND (t, 0);
12136 tem = fold_unary_loc (loc, code, type, op0);
12137 return tem ? tem : expr;
12138 case 2:
12139 op0 = TREE_OPERAND (t, 0);
12140 op1 = TREE_OPERAND (t, 1);
12141 tem = fold_binary_loc (loc, code, type, op0, op1);
12142 return tem ? tem : expr;
12143 case 3:
12144 op0 = TREE_OPERAND (t, 0);
12145 op1 = TREE_OPERAND (t, 1);
12146 op2 = TREE_OPERAND (t, 2);
12147 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12148 return tem ? tem : expr;
12149 default:
12150 break;
12154 switch (code)
12156 case ARRAY_REF:
12158 tree op0 = TREE_OPERAND (t, 0);
12159 tree op1 = TREE_OPERAND (t, 1);
12161 if (TREE_CODE (op1) == INTEGER_CST
12162 && TREE_CODE (op0) == CONSTRUCTOR
12163 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12165 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
12166 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
12167 unsigned HOST_WIDE_INT begin = 0;
12169 /* Find a matching index by means of a binary search. */
12170 while (begin != end)
12172 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
12173 tree index = (*elts)[middle].index;
12175 if (TREE_CODE (index) == INTEGER_CST
12176 && tree_int_cst_lt (index, op1))
12177 begin = middle + 1;
12178 else if (TREE_CODE (index) == INTEGER_CST
12179 && tree_int_cst_lt (op1, index))
12180 end = middle;
12181 else if (TREE_CODE (index) == RANGE_EXPR
12182 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
12183 begin = middle + 1;
12184 else if (TREE_CODE (index) == RANGE_EXPR
12185 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
12186 end = middle;
12187 else
12188 return (*elts)[middle].value;
12192 return t;
12195 /* Return a VECTOR_CST if possible. */
12196 case CONSTRUCTOR:
12198 tree type = TREE_TYPE (t);
12199 if (TREE_CODE (type) != VECTOR_TYPE)
12200 return t;
12202 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
12203 unsigned HOST_WIDE_INT idx, pos = 0;
12204 tree value;
12206 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
12208 if (!CONSTANT_CLASS_P (value))
12209 return t;
12210 if (TREE_CODE (value) == VECTOR_CST)
12212 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
12213 vec[pos++] = VECTOR_CST_ELT (value, i);
12215 else
12216 vec[pos++] = value;
12218 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
12219 vec[pos] = build_zero_cst (TREE_TYPE (type));
12221 return build_vector (type, vec);
12224 case CONST_DECL:
12225 return fold (DECL_INITIAL (t));
12227 default:
12228 return t;
12229 } /* switch (code) */
12232 #ifdef ENABLE_FOLD_CHECKING
12233 #undef fold
12235 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12236 hash_table<nofree_ptr_hash<const tree_node> > *);
12237 static void fold_check_failed (const_tree, const_tree);
12238 void print_fold_checksum (const_tree);
12240 /* When --enable-checking=fold, compute a digest of expr before
12241 and after actual fold call to see if fold did not accidentally
12242 change original expr. */
12244 tree
12245 fold (tree expr)
12247 tree ret;
12248 struct md5_ctx ctx;
12249 unsigned char checksum_before[16], checksum_after[16];
12250 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12252 md5_init_ctx (&ctx);
12253 fold_checksum_tree (expr, &ctx, &ht);
12254 md5_finish_ctx (&ctx, checksum_before);
12255 ht.empty ();
12257 ret = fold_1 (expr);
12259 md5_init_ctx (&ctx);
12260 fold_checksum_tree (expr, &ctx, &ht);
12261 md5_finish_ctx (&ctx, checksum_after);
12263 if (memcmp (checksum_before, checksum_after, 16))
12264 fold_check_failed (expr, ret);
12266 return ret;
12269 void
12270 print_fold_checksum (const_tree expr)
12272 struct md5_ctx ctx;
12273 unsigned char checksum[16], cnt;
12274 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12276 md5_init_ctx (&ctx);
12277 fold_checksum_tree (expr, &ctx, &ht);
12278 md5_finish_ctx (&ctx, checksum);
12279 for (cnt = 0; cnt < 16; ++cnt)
12280 fprintf (stderr, "%02x", checksum[cnt]);
12281 putc ('\n', stderr);
12284 static void
12285 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12287 internal_error ("fold check: original tree changed by fold");
12290 static void
12291 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12292 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12294 const tree_node **slot;
12295 enum tree_code code;
12296 union tree_node buf;
12297 int i, len;
12299 recursive_label:
12300 if (expr == NULL)
12301 return;
12302 slot = ht->find_slot (expr, INSERT);
12303 if (*slot != NULL)
12304 return;
12305 *slot = expr;
12306 code = TREE_CODE (expr);
12307 if (TREE_CODE_CLASS (code) == tcc_declaration
12308 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12310 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12311 memcpy ((char *) &buf, expr, tree_size (expr));
12312 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12313 buf.decl_with_vis.symtab_node = NULL;
12314 expr = (tree) &buf;
12316 else if (TREE_CODE_CLASS (code) == tcc_type
12317 && (TYPE_POINTER_TO (expr)
12318 || TYPE_REFERENCE_TO (expr)
12319 || TYPE_CACHED_VALUES_P (expr)
12320 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12321 || TYPE_NEXT_VARIANT (expr)))
12323 /* Allow these fields to be modified. */
12324 tree tmp;
12325 memcpy ((char *) &buf, expr, tree_size (expr));
12326 expr = tmp = (tree) &buf;
12327 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12328 TYPE_POINTER_TO (tmp) = NULL;
12329 TYPE_REFERENCE_TO (tmp) = NULL;
12330 TYPE_NEXT_VARIANT (tmp) = NULL;
12331 if (TYPE_CACHED_VALUES_P (tmp))
12333 TYPE_CACHED_VALUES_P (tmp) = 0;
12334 TYPE_CACHED_VALUES (tmp) = NULL;
12337 md5_process_bytes (expr, tree_size (expr), ctx);
12338 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12339 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12340 if (TREE_CODE_CLASS (code) != tcc_type
12341 && TREE_CODE_CLASS (code) != tcc_declaration
12342 && code != TREE_LIST
12343 && code != SSA_NAME
12344 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12345 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12346 switch (TREE_CODE_CLASS (code))
12348 case tcc_constant:
12349 switch (code)
12351 case STRING_CST:
12352 md5_process_bytes (TREE_STRING_POINTER (expr),
12353 TREE_STRING_LENGTH (expr), ctx);
12354 break;
12355 case COMPLEX_CST:
12356 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12357 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12358 break;
12359 case VECTOR_CST:
12360 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12361 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12362 break;
12363 default:
12364 break;
12366 break;
12367 case tcc_exceptional:
12368 switch (code)
12370 case TREE_LIST:
12371 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12372 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12373 expr = TREE_CHAIN (expr);
12374 goto recursive_label;
12375 break;
12376 case TREE_VEC:
12377 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12378 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12379 break;
12380 default:
12381 break;
12383 break;
12384 case tcc_expression:
12385 case tcc_reference:
12386 case tcc_comparison:
12387 case tcc_unary:
12388 case tcc_binary:
12389 case tcc_statement:
12390 case tcc_vl_exp:
12391 len = TREE_OPERAND_LENGTH (expr);
12392 for (i = 0; i < len; ++i)
12393 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12394 break;
12395 case tcc_declaration:
12396 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12397 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12398 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12400 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12401 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12402 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12403 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12404 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12407 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12409 if (TREE_CODE (expr) == FUNCTION_DECL)
12411 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12412 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12414 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12416 break;
12417 case tcc_type:
12418 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12419 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12420 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12421 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12422 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12423 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12424 if (INTEGRAL_TYPE_P (expr)
12425 || SCALAR_FLOAT_TYPE_P (expr))
12427 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12428 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12430 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12431 if (TREE_CODE (expr) == RECORD_TYPE
12432 || TREE_CODE (expr) == UNION_TYPE
12433 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12434 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12435 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12436 break;
12437 default:
12438 break;
12442 /* Helper function for outputting the checksum of a tree T. When
12443 debugging with gdb, you can "define mynext" to be "next" followed
12444 by "call debug_fold_checksum (op0)", then just trace down till the
12445 outputs differ. */
12447 DEBUG_FUNCTION void
12448 debug_fold_checksum (const_tree t)
12450 int i;
12451 unsigned char checksum[16];
12452 struct md5_ctx ctx;
12453 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12455 md5_init_ctx (&ctx);
12456 fold_checksum_tree (t, &ctx, &ht);
12457 md5_finish_ctx (&ctx, checksum);
12458 ht.empty ();
12460 for (i = 0; i < 16; i++)
12461 fprintf (stderr, "%d ", checksum[i]);
12463 fprintf (stderr, "\n");
12466 #endif
12468 /* Fold a unary tree expression with code CODE of type TYPE with an
12469 operand OP0. LOC is the location of the resulting expression.
12470 Return a folded expression if successful. Otherwise, return a tree
12471 expression with code CODE of type TYPE with an operand OP0. */
12473 tree
12474 fold_build1_stat_loc (location_t loc,
12475 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12477 tree tem;
12478 #ifdef ENABLE_FOLD_CHECKING
12479 unsigned char checksum_before[16], checksum_after[16];
12480 struct md5_ctx ctx;
12481 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12483 md5_init_ctx (&ctx);
12484 fold_checksum_tree (op0, &ctx, &ht);
12485 md5_finish_ctx (&ctx, checksum_before);
12486 ht.empty ();
12487 #endif
12489 tem = fold_unary_loc (loc, code, type, op0);
12490 if (!tem)
12491 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12493 #ifdef ENABLE_FOLD_CHECKING
12494 md5_init_ctx (&ctx);
12495 fold_checksum_tree (op0, &ctx, &ht);
12496 md5_finish_ctx (&ctx, checksum_after);
12498 if (memcmp (checksum_before, checksum_after, 16))
12499 fold_check_failed (op0, tem);
12500 #endif
12501 return tem;
12504 /* Fold a binary tree expression with code CODE of type TYPE with
12505 operands OP0 and OP1. LOC is the location of the resulting
12506 expression. Return a folded expression if successful. Otherwise,
12507 return a tree expression with code CODE of type TYPE with operands
12508 OP0 and OP1. */
12510 tree
12511 fold_build2_stat_loc (location_t loc,
12512 enum tree_code code, tree type, tree op0, tree op1
12513 MEM_STAT_DECL)
12515 tree tem;
12516 #ifdef ENABLE_FOLD_CHECKING
12517 unsigned char checksum_before_op0[16],
12518 checksum_before_op1[16],
12519 checksum_after_op0[16],
12520 checksum_after_op1[16];
12521 struct md5_ctx ctx;
12522 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12524 md5_init_ctx (&ctx);
12525 fold_checksum_tree (op0, &ctx, &ht);
12526 md5_finish_ctx (&ctx, checksum_before_op0);
12527 ht.empty ();
12529 md5_init_ctx (&ctx);
12530 fold_checksum_tree (op1, &ctx, &ht);
12531 md5_finish_ctx (&ctx, checksum_before_op1);
12532 ht.empty ();
12533 #endif
12535 tem = fold_binary_loc (loc, code, type, op0, op1);
12536 if (!tem)
12537 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12539 #ifdef ENABLE_FOLD_CHECKING
12540 md5_init_ctx (&ctx);
12541 fold_checksum_tree (op0, &ctx, &ht);
12542 md5_finish_ctx (&ctx, checksum_after_op0);
12543 ht.empty ();
12545 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12546 fold_check_failed (op0, tem);
12548 md5_init_ctx (&ctx);
12549 fold_checksum_tree (op1, &ctx, &ht);
12550 md5_finish_ctx (&ctx, checksum_after_op1);
12552 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12553 fold_check_failed (op1, tem);
12554 #endif
12555 return tem;
12558 /* Fold a ternary tree expression with code CODE of type TYPE with
12559 operands OP0, OP1, and OP2. Return a folded expression if
12560 successful. Otherwise, return a tree expression with code CODE of
12561 type TYPE with operands OP0, OP1, and OP2. */
12563 tree
12564 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12565 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12567 tree tem;
12568 #ifdef ENABLE_FOLD_CHECKING
12569 unsigned char checksum_before_op0[16],
12570 checksum_before_op1[16],
12571 checksum_before_op2[16],
12572 checksum_after_op0[16],
12573 checksum_after_op1[16],
12574 checksum_after_op2[16];
12575 struct md5_ctx ctx;
12576 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12578 md5_init_ctx (&ctx);
12579 fold_checksum_tree (op0, &ctx, &ht);
12580 md5_finish_ctx (&ctx, checksum_before_op0);
12581 ht.empty ();
12583 md5_init_ctx (&ctx);
12584 fold_checksum_tree (op1, &ctx, &ht);
12585 md5_finish_ctx (&ctx, checksum_before_op1);
12586 ht.empty ();
12588 md5_init_ctx (&ctx);
12589 fold_checksum_tree (op2, &ctx, &ht);
12590 md5_finish_ctx (&ctx, checksum_before_op2);
12591 ht.empty ();
12592 #endif
12594 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12595 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12596 if (!tem)
12597 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12599 #ifdef ENABLE_FOLD_CHECKING
12600 md5_init_ctx (&ctx);
12601 fold_checksum_tree (op0, &ctx, &ht);
12602 md5_finish_ctx (&ctx, checksum_after_op0);
12603 ht.empty ();
12605 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12606 fold_check_failed (op0, tem);
12608 md5_init_ctx (&ctx);
12609 fold_checksum_tree (op1, &ctx, &ht);
12610 md5_finish_ctx (&ctx, checksum_after_op1);
12611 ht.empty ();
12613 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12614 fold_check_failed (op1, tem);
12616 md5_init_ctx (&ctx);
12617 fold_checksum_tree (op2, &ctx, &ht);
12618 md5_finish_ctx (&ctx, checksum_after_op2);
12620 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12621 fold_check_failed (op2, tem);
12622 #endif
12623 return tem;
12626 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12627 arguments in ARGARRAY, and a null static chain.
12628 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12629 of type TYPE from the given operands as constructed by build_call_array. */
12631 tree
12632 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12633 int nargs, tree *argarray)
12635 tree tem;
12636 #ifdef ENABLE_FOLD_CHECKING
12637 unsigned char checksum_before_fn[16],
12638 checksum_before_arglist[16],
12639 checksum_after_fn[16],
12640 checksum_after_arglist[16];
12641 struct md5_ctx ctx;
12642 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12643 int i;
12645 md5_init_ctx (&ctx);
12646 fold_checksum_tree (fn, &ctx, &ht);
12647 md5_finish_ctx (&ctx, checksum_before_fn);
12648 ht.empty ();
12650 md5_init_ctx (&ctx);
12651 for (i = 0; i < nargs; i++)
12652 fold_checksum_tree (argarray[i], &ctx, &ht);
12653 md5_finish_ctx (&ctx, checksum_before_arglist);
12654 ht.empty ();
12655 #endif
12657 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12658 if (!tem)
12659 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12661 #ifdef ENABLE_FOLD_CHECKING
12662 md5_init_ctx (&ctx);
12663 fold_checksum_tree (fn, &ctx, &ht);
12664 md5_finish_ctx (&ctx, checksum_after_fn);
12665 ht.empty ();
12667 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12668 fold_check_failed (fn, tem);
12670 md5_init_ctx (&ctx);
12671 for (i = 0; i < nargs; i++)
12672 fold_checksum_tree (argarray[i], &ctx, &ht);
12673 md5_finish_ctx (&ctx, checksum_after_arglist);
12675 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12676 fold_check_failed (NULL_TREE, tem);
12677 #endif
12678 return tem;
12681 /* Perform constant folding and related simplification of initializer
12682 expression EXPR. These behave identically to "fold_buildN" but ignore
12683 potential run-time traps and exceptions that fold must preserve. */
12685 #define START_FOLD_INIT \
12686 int saved_signaling_nans = flag_signaling_nans;\
12687 int saved_trapping_math = flag_trapping_math;\
12688 int saved_rounding_math = flag_rounding_math;\
12689 int saved_trapv = flag_trapv;\
12690 int saved_folding_initializer = folding_initializer;\
12691 flag_signaling_nans = 0;\
12692 flag_trapping_math = 0;\
12693 flag_rounding_math = 0;\
12694 flag_trapv = 0;\
12695 folding_initializer = 1;
12697 #define END_FOLD_INIT \
12698 flag_signaling_nans = saved_signaling_nans;\
12699 flag_trapping_math = saved_trapping_math;\
12700 flag_rounding_math = saved_rounding_math;\
12701 flag_trapv = saved_trapv;\
12702 folding_initializer = saved_folding_initializer;
12704 tree
12705 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12706 tree type, tree op)
12708 tree result;
12709 START_FOLD_INIT;
12711 result = fold_build1_loc (loc, code, type, op);
12713 END_FOLD_INIT;
12714 return result;
12717 tree
12718 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12719 tree type, tree op0, tree op1)
12721 tree result;
12722 START_FOLD_INIT;
12724 result = fold_build2_loc (loc, code, type, op0, op1);
12726 END_FOLD_INIT;
12727 return result;
12730 tree
12731 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12732 int nargs, tree *argarray)
12734 tree result;
12735 START_FOLD_INIT;
12737 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12739 END_FOLD_INIT;
12740 return result;
12743 #undef START_FOLD_INIT
12744 #undef END_FOLD_INIT
12746 /* Determine if first argument is a multiple of second argument. Return 0 if
12747 it is not, or we cannot easily determined it to be.
12749 An example of the sort of thing we care about (at this point; this routine
12750 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12751 fold cases do now) is discovering that
12753 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12755 is a multiple of
12757 SAVE_EXPR (J * 8)
12759 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12761 This code also handles discovering that
12763 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12765 is a multiple of 8 so we don't have to worry about dealing with a
12766 possible remainder.
12768 Note that we *look* inside a SAVE_EXPR only to determine how it was
12769 calculated; it is not safe for fold to do much of anything else with the
12770 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12771 at run time. For example, the latter example above *cannot* be implemented
12772 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12773 evaluation time of the original SAVE_EXPR is not necessarily the same at
12774 the time the new expression is evaluated. The only optimization of this
12775 sort that would be valid is changing
12777 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12779 divided by 8 to
12781 SAVE_EXPR (I) * SAVE_EXPR (J)
12783 (where the same SAVE_EXPR (J) is used in the original and the
12784 transformed version). */
12787 multiple_of_p (tree type, const_tree top, const_tree bottom)
12789 if (operand_equal_p (top, bottom, 0))
12790 return 1;
12792 if (TREE_CODE (type) != INTEGER_TYPE)
12793 return 0;
12795 switch (TREE_CODE (top))
12797 case BIT_AND_EXPR:
12798 /* Bitwise and provides a power of two multiple. If the mask is
12799 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12800 if (!integer_pow2p (bottom))
12801 return 0;
12802 /* FALLTHRU */
12804 case MULT_EXPR:
12805 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12806 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12808 case PLUS_EXPR:
12809 case MINUS_EXPR:
12810 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12811 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12813 case LSHIFT_EXPR:
12814 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12816 tree op1, t1;
12818 op1 = TREE_OPERAND (top, 1);
12819 /* const_binop may not detect overflow correctly,
12820 so check for it explicitly here. */
12821 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12822 && 0 != (t1 = fold_convert (type,
12823 const_binop (LSHIFT_EXPR,
12824 size_one_node,
12825 op1)))
12826 && !TREE_OVERFLOW (t1))
12827 return multiple_of_p (type, t1, bottom);
12829 return 0;
12831 case NOP_EXPR:
12832 /* Can't handle conversions from non-integral or wider integral type. */
12833 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12834 || (TYPE_PRECISION (type)
12835 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12836 return 0;
12838 /* .. fall through ... */
12840 case SAVE_EXPR:
12841 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12843 case COND_EXPR:
12844 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12845 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12847 case INTEGER_CST:
12848 if (TREE_CODE (bottom) != INTEGER_CST
12849 || integer_zerop (bottom)
12850 || (TYPE_UNSIGNED (type)
12851 && (tree_int_cst_sgn (top) < 0
12852 || tree_int_cst_sgn (bottom) < 0)))
12853 return 0;
12854 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12855 SIGNED);
12857 default:
12858 return 0;
12862 /* Return true if CODE or TYPE is known to be non-negative. */
12864 static bool
12865 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12867 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12868 && truth_value_p (code))
12869 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12870 have a signed:1 type (where the value is -1 and 0). */
12871 return true;
12872 return false;
12875 /* Return true if (CODE OP0) is known to be non-negative. If the return
12876 value is based on the assumption that signed overflow is undefined,
12877 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12878 *STRICT_OVERFLOW_P. */
12880 bool
12881 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12882 bool *strict_overflow_p)
12884 if (TYPE_UNSIGNED (type))
12885 return true;
12887 switch (code)
12889 case ABS_EXPR:
12890 /* We can't return 1 if flag_wrapv is set because
12891 ABS_EXPR<INT_MIN> = INT_MIN. */
12892 if (!ANY_INTEGRAL_TYPE_P (type))
12893 return true;
12894 if (TYPE_OVERFLOW_UNDEFINED (type))
12896 *strict_overflow_p = true;
12897 return true;
12899 break;
12901 case NON_LVALUE_EXPR:
12902 case FLOAT_EXPR:
12903 case FIX_TRUNC_EXPR:
12904 return tree_expr_nonnegative_warnv_p (op0,
12905 strict_overflow_p);
12907 CASE_CONVERT:
12909 tree inner_type = TREE_TYPE (op0);
12910 tree outer_type = type;
12912 if (TREE_CODE (outer_type) == REAL_TYPE)
12914 if (TREE_CODE (inner_type) == REAL_TYPE)
12915 return tree_expr_nonnegative_warnv_p (op0,
12916 strict_overflow_p);
12917 if (INTEGRAL_TYPE_P (inner_type))
12919 if (TYPE_UNSIGNED (inner_type))
12920 return true;
12921 return tree_expr_nonnegative_warnv_p (op0,
12922 strict_overflow_p);
12925 else if (INTEGRAL_TYPE_P (outer_type))
12927 if (TREE_CODE (inner_type) == REAL_TYPE)
12928 return tree_expr_nonnegative_warnv_p (op0,
12929 strict_overflow_p);
12930 if (INTEGRAL_TYPE_P (inner_type))
12931 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12932 && TYPE_UNSIGNED (inner_type);
12935 break;
12937 default:
12938 return tree_simple_nonnegative_warnv_p (code, type);
12941 /* We don't know sign of `t', so be conservative and return false. */
12942 return false;
12945 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12946 value is based on the assumption that signed overflow is undefined,
12947 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12948 *STRICT_OVERFLOW_P. */
12950 bool
12951 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12952 tree op1, bool *strict_overflow_p)
12954 if (TYPE_UNSIGNED (type))
12955 return true;
12957 switch (code)
12959 case POINTER_PLUS_EXPR:
12960 case PLUS_EXPR:
12961 if (FLOAT_TYPE_P (type))
12962 return (tree_expr_nonnegative_warnv_p (op0,
12963 strict_overflow_p)
12964 && tree_expr_nonnegative_warnv_p (op1,
12965 strict_overflow_p));
12967 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12968 both unsigned and at least 2 bits shorter than the result. */
12969 if (TREE_CODE (type) == INTEGER_TYPE
12970 && TREE_CODE (op0) == NOP_EXPR
12971 && TREE_CODE (op1) == NOP_EXPR)
12973 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12974 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12975 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12976 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12978 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12979 TYPE_PRECISION (inner2)) + 1;
12980 return prec < TYPE_PRECISION (type);
12983 break;
12985 case MULT_EXPR:
12986 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12988 /* x * x is always non-negative for floating point x
12989 or without overflow. */
12990 if (operand_equal_p (op0, op1, 0)
12991 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
12992 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
12994 if (ANY_INTEGRAL_TYPE_P (type)
12995 && TYPE_OVERFLOW_UNDEFINED (type))
12996 *strict_overflow_p = true;
12997 return true;
13001 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13002 both unsigned and their total bits is shorter than the result. */
13003 if (TREE_CODE (type) == INTEGER_TYPE
13004 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
13005 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
13007 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
13008 ? TREE_TYPE (TREE_OPERAND (op0, 0))
13009 : TREE_TYPE (op0);
13010 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
13011 ? TREE_TYPE (TREE_OPERAND (op1, 0))
13012 : TREE_TYPE (op1);
13014 bool unsigned0 = TYPE_UNSIGNED (inner0);
13015 bool unsigned1 = TYPE_UNSIGNED (inner1);
13017 if (TREE_CODE (op0) == INTEGER_CST)
13018 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
13020 if (TREE_CODE (op1) == INTEGER_CST)
13021 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
13023 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
13024 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
13026 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
13027 ? tree_int_cst_min_precision (op0, UNSIGNED)
13028 : TYPE_PRECISION (inner0);
13030 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
13031 ? tree_int_cst_min_precision (op1, UNSIGNED)
13032 : TYPE_PRECISION (inner1);
13034 return precision0 + precision1 < TYPE_PRECISION (type);
13037 return false;
13039 case BIT_AND_EXPR:
13040 case MAX_EXPR:
13041 return (tree_expr_nonnegative_warnv_p (op0,
13042 strict_overflow_p)
13043 || tree_expr_nonnegative_warnv_p (op1,
13044 strict_overflow_p));
13046 case BIT_IOR_EXPR:
13047 case BIT_XOR_EXPR:
13048 case MIN_EXPR:
13049 case RDIV_EXPR:
13050 case TRUNC_DIV_EXPR:
13051 case CEIL_DIV_EXPR:
13052 case FLOOR_DIV_EXPR:
13053 case ROUND_DIV_EXPR:
13054 return (tree_expr_nonnegative_warnv_p (op0,
13055 strict_overflow_p)
13056 && tree_expr_nonnegative_warnv_p (op1,
13057 strict_overflow_p));
13059 case TRUNC_MOD_EXPR:
13060 case CEIL_MOD_EXPR:
13061 case FLOOR_MOD_EXPR:
13062 case ROUND_MOD_EXPR:
13063 return tree_expr_nonnegative_warnv_p (op0,
13064 strict_overflow_p);
13065 default:
13066 return tree_simple_nonnegative_warnv_p (code, type);
13069 /* We don't know sign of `t', so be conservative and return false. */
13070 return false;
13073 /* Return true if T is known to be non-negative. If the return
13074 value is based on the assumption that signed overflow is undefined,
13075 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13076 *STRICT_OVERFLOW_P. */
13078 bool
13079 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13081 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13082 return true;
13084 switch (TREE_CODE (t))
13086 case INTEGER_CST:
13087 return tree_int_cst_sgn (t) >= 0;
13089 case REAL_CST:
13090 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13092 case FIXED_CST:
13093 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13095 case COND_EXPR:
13096 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13097 strict_overflow_p)
13098 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
13099 strict_overflow_p));
13100 default:
13101 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13102 TREE_TYPE (t));
13104 /* We don't know sign of `t', so be conservative and return false. */
13105 return false;
13108 /* Return true if T is known to be non-negative. If the return
13109 value is based on the assumption that signed overflow is undefined,
13110 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13111 *STRICT_OVERFLOW_P. */
13113 bool
13114 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
13115 tree arg0, tree arg1, bool *strict_overflow_p)
13117 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
13118 switch (DECL_FUNCTION_CODE (fndecl))
13120 CASE_FLT_FN (BUILT_IN_ACOS):
13121 CASE_FLT_FN (BUILT_IN_ACOSH):
13122 CASE_FLT_FN (BUILT_IN_CABS):
13123 CASE_FLT_FN (BUILT_IN_COSH):
13124 CASE_FLT_FN (BUILT_IN_ERFC):
13125 CASE_FLT_FN (BUILT_IN_EXP):
13126 CASE_FLT_FN (BUILT_IN_EXP10):
13127 CASE_FLT_FN (BUILT_IN_EXP2):
13128 CASE_FLT_FN (BUILT_IN_FABS):
13129 CASE_FLT_FN (BUILT_IN_FDIM):
13130 CASE_FLT_FN (BUILT_IN_HYPOT):
13131 CASE_FLT_FN (BUILT_IN_POW10):
13132 CASE_INT_FN (BUILT_IN_FFS):
13133 CASE_INT_FN (BUILT_IN_PARITY):
13134 CASE_INT_FN (BUILT_IN_POPCOUNT):
13135 CASE_INT_FN (BUILT_IN_CLZ):
13136 CASE_INT_FN (BUILT_IN_CLRSB):
13137 case BUILT_IN_BSWAP32:
13138 case BUILT_IN_BSWAP64:
13139 /* Always true. */
13140 return true;
13142 CASE_FLT_FN (BUILT_IN_SQRT):
13143 /* sqrt(-0.0) is -0.0. */
13144 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13145 return true;
13146 return tree_expr_nonnegative_warnv_p (arg0,
13147 strict_overflow_p);
13149 CASE_FLT_FN (BUILT_IN_ASINH):
13150 CASE_FLT_FN (BUILT_IN_ATAN):
13151 CASE_FLT_FN (BUILT_IN_ATANH):
13152 CASE_FLT_FN (BUILT_IN_CBRT):
13153 CASE_FLT_FN (BUILT_IN_CEIL):
13154 CASE_FLT_FN (BUILT_IN_ERF):
13155 CASE_FLT_FN (BUILT_IN_EXPM1):
13156 CASE_FLT_FN (BUILT_IN_FLOOR):
13157 CASE_FLT_FN (BUILT_IN_FMOD):
13158 CASE_FLT_FN (BUILT_IN_FREXP):
13159 CASE_FLT_FN (BUILT_IN_ICEIL):
13160 CASE_FLT_FN (BUILT_IN_IFLOOR):
13161 CASE_FLT_FN (BUILT_IN_IRINT):
13162 CASE_FLT_FN (BUILT_IN_IROUND):
13163 CASE_FLT_FN (BUILT_IN_LCEIL):
13164 CASE_FLT_FN (BUILT_IN_LDEXP):
13165 CASE_FLT_FN (BUILT_IN_LFLOOR):
13166 CASE_FLT_FN (BUILT_IN_LLCEIL):
13167 CASE_FLT_FN (BUILT_IN_LLFLOOR):
13168 CASE_FLT_FN (BUILT_IN_LLRINT):
13169 CASE_FLT_FN (BUILT_IN_LLROUND):
13170 CASE_FLT_FN (BUILT_IN_LRINT):
13171 CASE_FLT_FN (BUILT_IN_LROUND):
13172 CASE_FLT_FN (BUILT_IN_MODF):
13173 CASE_FLT_FN (BUILT_IN_NEARBYINT):
13174 CASE_FLT_FN (BUILT_IN_RINT):
13175 CASE_FLT_FN (BUILT_IN_ROUND):
13176 CASE_FLT_FN (BUILT_IN_SCALB):
13177 CASE_FLT_FN (BUILT_IN_SCALBLN):
13178 CASE_FLT_FN (BUILT_IN_SCALBN):
13179 CASE_FLT_FN (BUILT_IN_SIGNBIT):
13180 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
13181 CASE_FLT_FN (BUILT_IN_SINH):
13182 CASE_FLT_FN (BUILT_IN_TANH):
13183 CASE_FLT_FN (BUILT_IN_TRUNC):
13184 /* True if the 1st argument is nonnegative. */
13185 return tree_expr_nonnegative_warnv_p (arg0,
13186 strict_overflow_p);
13188 CASE_FLT_FN (BUILT_IN_FMAX):
13189 /* True if the 1st OR 2nd arguments are nonnegative. */
13190 return (tree_expr_nonnegative_warnv_p (arg0,
13191 strict_overflow_p)
13192 || (tree_expr_nonnegative_warnv_p (arg1,
13193 strict_overflow_p)));
13195 CASE_FLT_FN (BUILT_IN_FMIN):
13196 /* True if the 1st AND 2nd arguments are nonnegative. */
13197 return (tree_expr_nonnegative_warnv_p (arg0,
13198 strict_overflow_p)
13199 && (tree_expr_nonnegative_warnv_p (arg1,
13200 strict_overflow_p)));
13202 CASE_FLT_FN (BUILT_IN_COPYSIGN):
13203 /* True if the 2nd argument is nonnegative. */
13204 return tree_expr_nonnegative_warnv_p (arg1,
13205 strict_overflow_p);
13207 CASE_FLT_FN (BUILT_IN_POWI):
13208 /* True if the 1st argument is nonnegative or the second
13209 argument is an even integer. */
13210 if (TREE_CODE (arg1) == INTEGER_CST
13211 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13212 return true;
13213 return tree_expr_nonnegative_warnv_p (arg0,
13214 strict_overflow_p);
13216 CASE_FLT_FN (BUILT_IN_POW):
13217 /* True if the 1st argument is nonnegative or the second
13218 argument is an even integer valued real. */
13219 if (TREE_CODE (arg1) == REAL_CST)
13221 REAL_VALUE_TYPE c;
13222 HOST_WIDE_INT n;
13224 c = TREE_REAL_CST (arg1);
13225 n = real_to_integer (&c);
13226 if ((n & 1) == 0)
13228 REAL_VALUE_TYPE cint;
13229 real_from_integer (&cint, VOIDmode, n, SIGNED);
13230 if (real_identical (&c, &cint))
13231 return true;
13234 return tree_expr_nonnegative_warnv_p (arg0,
13235 strict_overflow_p);
13237 default:
13238 break;
13240 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
13241 type);
13244 /* Return true if T is known to be non-negative. If the return
13245 value is based on the assumption that signed overflow is undefined,
13246 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13247 *STRICT_OVERFLOW_P. */
13249 static bool
13250 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13252 enum tree_code code = TREE_CODE (t);
13253 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13254 return true;
13256 switch (code)
13258 case TARGET_EXPR:
13260 tree temp = TARGET_EXPR_SLOT (t);
13261 t = TARGET_EXPR_INITIAL (t);
13263 /* If the initializer is non-void, then it's a normal expression
13264 that will be assigned to the slot. */
13265 if (!VOID_TYPE_P (t))
13266 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
13268 /* Otherwise, the initializer sets the slot in some way. One common
13269 way is an assignment statement at the end of the initializer. */
13270 while (1)
13272 if (TREE_CODE (t) == BIND_EXPR)
13273 t = expr_last (BIND_EXPR_BODY (t));
13274 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13275 || TREE_CODE (t) == TRY_CATCH_EXPR)
13276 t = expr_last (TREE_OPERAND (t, 0));
13277 else if (TREE_CODE (t) == STATEMENT_LIST)
13278 t = expr_last (t);
13279 else
13280 break;
13282 if (TREE_CODE (t) == MODIFY_EXPR
13283 && TREE_OPERAND (t, 0) == temp)
13284 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13285 strict_overflow_p);
13287 return false;
13290 case CALL_EXPR:
13292 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13293 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13295 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13296 get_callee_fndecl (t),
13297 arg0,
13298 arg1,
13299 strict_overflow_p);
13301 case COMPOUND_EXPR:
13302 case MODIFY_EXPR:
13303 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13304 strict_overflow_p);
13305 case BIND_EXPR:
13306 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
13307 strict_overflow_p);
13308 case SAVE_EXPR:
13309 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13310 strict_overflow_p);
13312 default:
13313 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13314 TREE_TYPE (t));
13317 /* We don't know sign of `t', so be conservative and return false. */
13318 return false;
13321 /* Return true if T is known to be non-negative. If the return
13322 value is based on the assumption that signed overflow is undefined,
13323 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13324 *STRICT_OVERFLOW_P. */
13326 bool
13327 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13329 enum tree_code code;
13330 if (t == error_mark_node)
13331 return false;
13333 code = TREE_CODE (t);
13334 switch (TREE_CODE_CLASS (code))
13336 case tcc_binary:
13337 case tcc_comparison:
13338 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13339 TREE_TYPE (t),
13340 TREE_OPERAND (t, 0),
13341 TREE_OPERAND (t, 1),
13342 strict_overflow_p);
13344 case tcc_unary:
13345 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13346 TREE_TYPE (t),
13347 TREE_OPERAND (t, 0),
13348 strict_overflow_p);
13350 case tcc_constant:
13351 case tcc_declaration:
13352 case tcc_reference:
13353 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13355 default:
13356 break;
13359 switch (code)
13361 case TRUTH_AND_EXPR:
13362 case TRUTH_OR_EXPR:
13363 case TRUTH_XOR_EXPR:
13364 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13365 TREE_TYPE (t),
13366 TREE_OPERAND (t, 0),
13367 TREE_OPERAND (t, 1),
13368 strict_overflow_p);
13369 case TRUTH_NOT_EXPR:
13370 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13371 TREE_TYPE (t),
13372 TREE_OPERAND (t, 0),
13373 strict_overflow_p);
13375 case COND_EXPR:
13376 case CONSTRUCTOR:
13377 case OBJ_TYPE_REF:
13378 case ASSERT_EXPR:
13379 case ADDR_EXPR:
13380 case WITH_SIZE_EXPR:
13381 case SSA_NAME:
13382 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13384 default:
13385 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
13389 /* Return true if `t' is known to be non-negative. Handle warnings
13390 about undefined signed overflow. */
13392 bool
13393 tree_expr_nonnegative_p (tree t)
13395 bool ret, strict_overflow_p;
13397 strict_overflow_p = false;
13398 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13399 if (strict_overflow_p)
13400 fold_overflow_warning (("assuming signed overflow does not occur when "
13401 "determining that expression is always "
13402 "non-negative"),
13403 WARN_STRICT_OVERFLOW_MISC);
13404 return ret;
13408 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13409 For floating point we further ensure that T is not denormal.
13410 Similar logic is present in nonzero_address in rtlanal.h.
13412 If the return value is based on the assumption that signed overflow
13413 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13414 change *STRICT_OVERFLOW_P. */
13416 bool
13417 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13418 bool *strict_overflow_p)
13420 switch (code)
13422 case ABS_EXPR:
13423 return tree_expr_nonzero_warnv_p (op0,
13424 strict_overflow_p);
13426 case NOP_EXPR:
13428 tree inner_type = TREE_TYPE (op0);
13429 tree outer_type = type;
13431 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13432 && tree_expr_nonzero_warnv_p (op0,
13433 strict_overflow_p));
13435 break;
13437 case NON_LVALUE_EXPR:
13438 return tree_expr_nonzero_warnv_p (op0,
13439 strict_overflow_p);
13441 default:
13442 break;
13445 return false;
13448 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13449 For floating point we further ensure that T is not denormal.
13450 Similar logic is present in nonzero_address in rtlanal.h.
13452 If the return value is based on the assumption that signed overflow
13453 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13454 change *STRICT_OVERFLOW_P. */
13456 bool
13457 tree_binary_nonzero_warnv_p (enum tree_code code,
13458 tree type,
13459 tree op0,
13460 tree op1, bool *strict_overflow_p)
13462 bool sub_strict_overflow_p;
13463 switch (code)
13465 case POINTER_PLUS_EXPR:
13466 case PLUS_EXPR:
13467 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13469 /* With the presence of negative values it is hard
13470 to say something. */
13471 sub_strict_overflow_p = false;
13472 if (!tree_expr_nonnegative_warnv_p (op0,
13473 &sub_strict_overflow_p)
13474 || !tree_expr_nonnegative_warnv_p (op1,
13475 &sub_strict_overflow_p))
13476 return false;
13477 /* One of operands must be positive and the other non-negative. */
13478 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13479 overflows, on a twos-complement machine the sum of two
13480 nonnegative numbers can never be zero. */
13481 return (tree_expr_nonzero_warnv_p (op0,
13482 strict_overflow_p)
13483 || tree_expr_nonzero_warnv_p (op1,
13484 strict_overflow_p));
13486 break;
13488 case MULT_EXPR:
13489 if (TYPE_OVERFLOW_UNDEFINED (type))
13491 if (tree_expr_nonzero_warnv_p (op0,
13492 strict_overflow_p)
13493 && tree_expr_nonzero_warnv_p (op1,
13494 strict_overflow_p))
13496 *strict_overflow_p = true;
13497 return true;
13500 break;
13502 case MIN_EXPR:
13503 sub_strict_overflow_p = false;
13504 if (tree_expr_nonzero_warnv_p (op0,
13505 &sub_strict_overflow_p)
13506 && tree_expr_nonzero_warnv_p (op1,
13507 &sub_strict_overflow_p))
13509 if (sub_strict_overflow_p)
13510 *strict_overflow_p = true;
13512 break;
13514 case MAX_EXPR:
13515 sub_strict_overflow_p = false;
13516 if (tree_expr_nonzero_warnv_p (op0,
13517 &sub_strict_overflow_p))
13519 if (sub_strict_overflow_p)
13520 *strict_overflow_p = true;
13522 /* When both operands are nonzero, then MAX must be too. */
13523 if (tree_expr_nonzero_warnv_p (op1,
13524 strict_overflow_p))
13525 return true;
13527 /* MAX where operand 0 is positive is positive. */
13528 return tree_expr_nonnegative_warnv_p (op0,
13529 strict_overflow_p);
13531 /* MAX where operand 1 is positive is positive. */
13532 else if (tree_expr_nonzero_warnv_p (op1,
13533 &sub_strict_overflow_p)
13534 && tree_expr_nonnegative_warnv_p (op1,
13535 &sub_strict_overflow_p))
13537 if (sub_strict_overflow_p)
13538 *strict_overflow_p = true;
13539 return true;
13541 break;
13543 case BIT_IOR_EXPR:
13544 return (tree_expr_nonzero_warnv_p (op1,
13545 strict_overflow_p)
13546 || tree_expr_nonzero_warnv_p (op0,
13547 strict_overflow_p));
13549 default:
13550 break;
13553 return false;
13556 /* Return true when T is an address and is known to be nonzero.
13557 For floating point we further ensure that T is not denormal.
13558 Similar logic is present in nonzero_address in rtlanal.h.
13560 If the return value is based on the assumption that signed overflow
13561 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13562 change *STRICT_OVERFLOW_P. */
13564 bool
13565 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13567 bool sub_strict_overflow_p;
13568 switch (TREE_CODE (t))
13570 case INTEGER_CST:
13571 return !integer_zerop (t);
13573 case ADDR_EXPR:
13575 tree base = TREE_OPERAND (t, 0);
13577 if (!DECL_P (base))
13578 base = get_base_address (base);
13580 if (!base)
13581 return false;
13583 /* For objects in symbol table check if we know they are non-zero.
13584 Don't do anything for variables and functions before symtab is built;
13585 it is quite possible that they will be declared weak later. */
13586 if (DECL_P (base) && decl_in_symtab_p (base))
13588 struct symtab_node *symbol;
13590 symbol = symtab_node::get_create (base);
13591 if (symbol)
13592 return symbol->nonzero_address ();
13593 else
13594 return false;
13597 /* Function local objects are never NULL. */
13598 if (DECL_P (base)
13599 && (DECL_CONTEXT (base)
13600 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
13601 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
13602 return true;
13604 /* Constants are never weak. */
13605 if (CONSTANT_CLASS_P (base))
13606 return true;
13608 return false;
13611 case COND_EXPR:
13612 sub_strict_overflow_p = false;
13613 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13614 &sub_strict_overflow_p)
13615 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13616 &sub_strict_overflow_p))
13618 if (sub_strict_overflow_p)
13619 *strict_overflow_p = true;
13620 return true;
13622 break;
13624 default:
13625 break;
13627 return false;
13630 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13631 attempt to fold the expression to a constant without modifying TYPE,
13632 OP0 or OP1.
13634 If the expression could be simplified to a constant, then return
13635 the constant. If the expression would not be simplified to a
13636 constant, then return NULL_TREE. */
13638 tree
13639 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13641 tree tem = fold_binary (code, type, op0, op1);
13642 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13645 /* Given the components of a unary expression CODE, TYPE and OP0,
13646 attempt to fold the expression to a constant without modifying
13647 TYPE or OP0.
13649 If the expression could be simplified to a constant, then return
13650 the constant. If the expression would not be simplified to a
13651 constant, then return NULL_TREE. */
13653 tree
13654 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13656 tree tem = fold_unary (code, type, op0);
13657 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13660 /* If EXP represents referencing an element in a constant string
13661 (either via pointer arithmetic or array indexing), return the
13662 tree representing the value accessed, otherwise return NULL. */
13664 tree
13665 fold_read_from_constant_string (tree exp)
13667 if ((TREE_CODE (exp) == INDIRECT_REF
13668 || TREE_CODE (exp) == ARRAY_REF)
13669 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13671 tree exp1 = TREE_OPERAND (exp, 0);
13672 tree index;
13673 tree string;
13674 location_t loc = EXPR_LOCATION (exp);
13676 if (TREE_CODE (exp) == INDIRECT_REF)
13677 string = string_constant (exp1, &index);
13678 else
13680 tree low_bound = array_ref_low_bound (exp);
13681 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13683 /* Optimize the special-case of a zero lower bound.
13685 We convert the low_bound to sizetype to avoid some problems
13686 with constant folding. (E.g. suppose the lower bound is 1,
13687 and its mode is QI. Without the conversion,l (ARRAY
13688 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13689 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13690 if (! integer_zerop (low_bound))
13691 index = size_diffop_loc (loc, index,
13692 fold_convert_loc (loc, sizetype, low_bound));
13694 string = exp1;
13697 if (string
13698 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13699 && TREE_CODE (string) == STRING_CST
13700 && TREE_CODE (index) == INTEGER_CST
13701 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13702 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13703 == MODE_INT)
13704 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13705 return build_int_cst_type (TREE_TYPE (exp),
13706 (TREE_STRING_POINTER (string)
13707 [TREE_INT_CST_LOW (index)]));
13709 return NULL;
13712 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13713 an integer constant, real, or fixed-point constant.
13715 TYPE is the type of the result. */
13717 static tree
13718 fold_negate_const (tree arg0, tree type)
13720 tree t = NULL_TREE;
13722 switch (TREE_CODE (arg0))
13724 case INTEGER_CST:
13726 bool overflow;
13727 wide_int val = wi::neg (arg0, &overflow);
13728 t = force_fit_type (type, val, 1,
13729 (overflow | TREE_OVERFLOW (arg0))
13730 && !TYPE_UNSIGNED (type));
13731 break;
13734 case REAL_CST:
13735 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13736 break;
13738 case FIXED_CST:
13740 FIXED_VALUE_TYPE f;
13741 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13742 &(TREE_FIXED_CST (arg0)), NULL,
13743 TYPE_SATURATING (type));
13744 t = build_fixed (type, f);
13745 /* Propagate overflow flags. */
13746 if (overflow_p | TREE_OVERFLOW (arg0))
13747 TREE_OVERFLOW (t) = 1;
13748 break;
13751 default:
13752 gcc_unreachable ();
13755 return t;
13758 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13759 an integer constant or real constant.
13761 TYPE is the type of the result. */
13763 tree
13764 fold_abs_const (tree arg0, tree type)
13766 tree t = NULL_TREE;
13768 switch (TREE_CODE (arg0))
13770 case INTEGER_CST:
13772 /* If the value is unsigned or non-negative, then the absolute value
13773 is the same as the ordinary value. */
13774 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13775 t = arg0;
13777 /* If the value is negative, then the absolute value is
13778 its negation. */
13779 else
13781 bool overflow;
13782 wide_int val = wi::neg (arg0, &overflow);
13783 t = force_fit_type (type, val, -1,
13784 overflow | TREE_OVERFLOW (arg0));
13787 break;
13789 case REAL_CST:
13790 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13791 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13792 else
13793 t = arg0;
13794 break;
13796 default:
13797 gcc_unreachable ();
13800 return t;
13803 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13804 constant. TYPE is the type of the result. */
13806 static tree
13807 fold_not_const (const_tree arg0, tree type)
13809 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13811 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13814 /* Given CODE, a relational operator, the target type, TYPE and two
13815 constant operands OP0 and OP1, return the result of the
13816 relational operation. If the result is not a compile time
13817 constant, then return NULL_TREE. */
13819 static tree
13820 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13822 int result, invert;
13824 /* From here on, the only cases we handle are when the result is
13825 known to be a constant. */
13827 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13829 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13830 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13832 /* Handle the cases where either operand is a NaN. */
13833 if (real_isnan (c0) || real_isnan (c1))
13835 switch (code)
13837 case EQ_EXPR:
13838 case ORDERED_EXPR:
13839 result = 0;
13840 break;
13842 case NE_EXPR:
13843 case UNORDERED_EXPR:
13844 case UNLT_EXPR:
13845 case UNLE_EXPR:
13846 case UNGT_EXPR:
13847 case UNGE_EXPR:
13848 case UNEQ_EXPR:
13849 result = 1;
13850 break;
13852 case LT_EXPR:
13853 case LE_EXPR:
13854 case GT_EXPR:
13855 case GE_EXPR:
13856 case LTGT_EXPR:
13857 if (flag_trapping_math)
13858 return NULL_TREE;
13859 result = 0;
13860 break;
13862 default:
13863 gcc_unreachable ();
13866 return constant_boolean_node (result, type);
13869 return constant_boolean_node (real_compare (code, c0, c1), type);
13872 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13874 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13875 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13876 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13879 /* Handle equality/inequality of complex constants. */
13880 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13882 tree rcond = fold_relational_const (code, type,
13883 TREE_REALPART (op0),
13884 TREE_REALPART (op1));
13885 tree icond = fold_relational_const (code, type,
13886 TREE_IMAGPART (op0),
13887 TREE_IMAGPART (op1));
13888 if (code == EQ_EXPR)
13889 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13890 else if (code == NE_EXPR)
13891 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13892 else
13893 return NULL_TREE;
13896 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13898 unsigned count = VECTOR_CST_NELTS (op0);
13899 tree *elts = XALLOCAVEC (tree, count);
13900 gcc_assert (VECTOR_CST_NELTS (op1) == count
13901 && TYPE_VECTOR_SUBPARTS (type) == count);
13903 for (unsigned i = 0; i < count; i++)
13905 tree elem_type = TREE_TYPE (type);
13906 tree elem0 = VECTOR_CST_ELT (op0, i);
13907 tree elem1 = VECTOR_CST_ELT (op1, i);
13909 tree tem = fold_relational_const (code, elem_type,
13910 elem0, elem1);
13912 if (tem == NULL_TREE)
13913 return NULL_TREE;
13915 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13918 return build_vector (type, elts);
13921 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13923 To compute GT, swap the arguments and do LT.
13924 To compute GE, do LT and invert the result.
13925 To compute LE, swap the arguments, do LT and invert the result.
13926 To compute NE, do EQ and invert the result.
13928 Therefore, the code below must handle only EQ and LT. */
13930 if (code == LE_EXPR || code == GT_EXPR)
13932 std::swap (op0, op1);
13933 code = swap_tree_comparison (code);
13936 /* Note that it is safe to invert for real values here because we
13937 have already handled the one case that it matters. */
13939 invert = 0;
13940 if (code == NE_EXPR || code == GE_EXPR)
13942 invert = 1;
13943 code = invert_tree_comparison (code, false);
13946 /* Compute a result for LT or EQ if args permit;
13947 Otherwise return T. */
13948 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13950 if (code == EQ_EXPR)
13951 result = tree_int_cst_equal (op0, op1);
13952 else
13953 result = tree_int_cst_lt (op0, op1);
13955 else
13956 return NULL_TREE;
13958 if (invert)
13959 result ^= 1;
13960 return constant_boolean_node (result, type);
13963 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13964 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13965 itself. */
13967 tree
13968 fold_build_cleanup_point_expr (tree type, tree expr)
13970 /* If the expression does not have side effects then we don't have to wrap
13971 it with a cleanup point expression. */
13972 if (!TREE_SIDE_EFFECTS (expr))
13973 return expr;
13975 /* If the expression is a return, check to see if the expression inside the
13976 return has no side effects or the right hand side of the modify expression
13977 inside the return. If either don't have side effects set we don't need to
13978 wrap the expression in a cleanup point expression. Note we don't check the
13979 left hand side of the modify because it should always be a return decl. */
13980 if (TREE_CODE (expr) == RETURN_EXPR)
13982 tree op = TREE_OPERAND (expr, 0);
13983 if (!op || !TREE_SIDE_EFFECTS (op))
13984 return expr;
13985 op = TREE_OPERAND (op, 1);
13986 if (!TREE_SIDE_EFFECTS (op))
13987 return expr;
13990 return build1 (CLEANUP_POINT_EXPR, type, expr);
13993 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13994 of an indirection through OP0, or NULL_TREE if no simplification is
13995 possible. */
13997 tree
13998 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14000 tree sub = op0;
14001 tree subtype;
14003 STRIP_NOPS (sub);
14004 subtype = TREE_TYPE (sub);
14005 if (!POINTER_TYPE_P (subtype))
14006 return NULL_TREE;
14008 if (TREE_CODE (sub) == ADDR_EXPR)
14010 tree op = TREE_OPERAND (sub, 0);
14011 tree optype = TREE_TYPE (op);
14012 /* *&CONST_DECL -> to the value of the const decl. */
14013 if (TREE_CODE (op) == CONST_DECL)
14014 return DECL_INITIAL (op);
14015 /* *&p => p; make sure to handle *&"str"[cst] here. */
14016 if (type == optype)
14018 tree fop = fold_read_from_constant_string (op);
14019 if (fop)
14020 return fop;
14021 else
14022 return op;
14024 /* *(foo *)&fooarray => fooarray[0] */
14025 else if (TREE_CODE (optype) == ARRAY_TYPE
14026 && type == TREE_TYPE (optype)
14027 && (!in_gimple_form
14028 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14030 tree type_domain = TYPE_DOMAIN (optype);
14031 tree min_val = size_zero_node;
14032 if (type_domain && TYPE_MIN_VALUE (type_domain))
14033 min_val = TYPE_MIN_VALUE (type_domain);
14034 if (in_gimple_form
14035 && TREE_CODE (min_val) != INTEGER_CST)
14036 return NULL_TREE;
14037 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14038 NULL_TREE, NULL_TREE);
14040 /* *(foo *)&complexfoo => __real__ complexfoo */
14041 else if (TREE_CODE (optype) == COMPLEX_TYPE
14042 && type == TREE_TYPE (optype))
14043 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14044 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14045 else if (TREE_CODE (optype) == VECTOR_TYPE
14046 && type == TREE_TYPE (optype))
14048 tree part_width = TYPE_SIZE (type);
14049 tree index = bitsize_int (0);
14050 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14054 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14055 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14057 tree op00 = TREE_OPERAND (sub, 0);
14058 tree op01 = TREE_OPERAND (sub, 1);
14060 STRIP_NOPS (op00);
14061 if (TREE_CODE (op00) == ADDR_EXPR)
14063 tree op00type;
14064 op00 = TREE_OPERAND (op00, 0);
14065 op00type = TREE_TYPE (op00);
14067 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14068 if (TREE_CODE (op00type) == VECTOR_TYPE
14069 && type == TREE_TYPE (op00type))
14071 HOST_WIDE_INT offset = tree_to_shwi (op01);
14072 tree part_width = TYPE_SIZE (type);
14073 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
14074 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14075 tree index = bitsize_int (indexi);
14077 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
14078 return fold_build3_loc (loc,
14079 BIT_FIELD_REF, type, op00,
14080 part_width, index);
14083 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14084 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14085 && type == TREE_TYPE (op00type))
14087 tree size = TYPE_SIZE_UNIT (type);
14088 if (tree_int_cst_equal (size, op01))
14089 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14091 /* ((foo *)&fooarray)[1] => fooarray[1] */
14092 else if (TREE_CODE (op00type) == ARRAY_TYPE
14093 && type == TREE_TYPE (op00type))
14095 tree type_domain = TYPE_DOMAIN (op00type);
14096 tree min_val = size_zero_node;
14097 if (type_domain && TYPE_MIN_VALUE (type_domain))
14098 min_val = TYPE_MIN_VALUE (type_domain);
14099 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14100 TYPE_SIZE_UNIT (type));
14101 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14102 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14103 NULL_TREE, NULL_TREE);
14108 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14109 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14110 && type == TREE_TYPE (TREE_TYPE (subtype))
14111 && (!in_gimple_form
14112 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14114 tree type_domain;
14115 tree min_val = size_zero_node;
14116 sub = build_fold_indirect_ref_loc (loc, sub);
14117 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14118 if (type_domain && TYPE_MIN_VALUE (type_domain))
14119 min_val = TYPE_MIN_VALUE (type_domain);
14120 if (in_gimple_form
14121 && TREE_CODE (min_val) != INTEGER_CST)
14122 return NULL_TREE;
14123 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14124 NULL_TREE);
14127 return NULL_TREE;
14130 /* Builds an expression for an indirection through T, simplifying some
14131 cases. */
14133 tree
14134 build_fold_indirect_ref_loc (location_t loc, tree t)
14136 tree type = TREE_TYPE (TREE_TYPE (t));
14137 tree sub = fold_indirect_ref_1 (loc, type, t);
14139 if (sub)
14140 return sub;
14142 return build1_loc (loc, INDIRECT_REF, type, t);
14145 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14147 tree
14148 fold_indirect_ref_loc (location_t loc, tree t)
14150 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14152 if (sub)
14153 return sub;
14154 else
14155 return t;
14158 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14159 whose result is ignored. The type of the returned tree need not be
14160 the same as the original expression. */
14162 tree
14163 fold_ignored_result (tree t)
14165 if (!TREE_SIDE_EFFECTS (t))
14166 return integer_zero_node;
14168 for (;;)
14169 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14171 case tcc_unary:
14172 t = TREE_OPERAND (t, 0);
14173 break;
14175 case tcc_binary:
14176 case tcc_comparison:
14177 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14178 t = TREE_OPERAND (t, 0);
14179 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14180 t = TREE_OPERAND (t, 1);
14181 else
14182 return t;
14183 break;
14185 case tcc_expression:
14186 switch (TREE_CODE (t))
14188 case COMPOUND_EXPR:
14189 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14190 return t;
14191 t = TREE_OPERAND (t, 0);
14192 break;
14194 case COND_EXPR:
14195 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14196 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14197 return t;
14198 t = TREE_OPERAND (t, 0);
14199 break;
14201 default:
14202 return t;
14204 break;
14206 default:
14207 return t;
14211 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14213 tree
14214 round_up_loc (location_t loc, tree value, unsigned int divisor)
14216 tree div = NULL_TREE;
14218 if (divisor == 1)
14219 return value;
14221 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14222 have to do anything. Only do this when we are not given a const,
14223 because in that case, this check is more expensive than just
14224 doing it. */
14225 if (TREE_CODE (value) != INTEGER_CST)
14227 div = build_int_cst (TREE_TYPE (value), divisor);
14229 if (multiple_of_p (TREE_TYPE (value), value, div))
14230 return value;
14233 /* If divisor is a power of two, simplify this to bit manipulation. */
14234 if (divisor == (divisor & -divisor))
14236 if (TREE_CODE (value) == INTEGER_CST)
14238 wide_int val = value;
14239 bool overflow_p;
14241 if ((val & (divisor - 1)) == 0)
14242 return value;
14244 overflow_p = TREE_OVERFLOW (value);
14245 val += divisor - 1;
14246 val &= - (int) divisor;
14247 if (val == 0)
14248 overflow_p = true;
14250 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14252 else
14254 tree t;
14256 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14257 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14258 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14259 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14262 else
14264 if (!div)
14265 div = build_int_cst (TREE_TYPE (value), divisor);
14266 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14267 value = size_binop_loc (loc, MULT_EXPR, value, div);
14270 return value;
14273 /* Likewise, but round down. */
14275 tree
14276 round_down_loc (location_t loc, tree value, int divisor)
14278 tree div = NULL_TREE;
14280 gcc_assert (divisor > 0);
14281 if (divisor == 1)
14282 return value;
14284 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14285 have to do anything. Only do this when we are not given a const,
14286 because in that case, this check is more expensive than just
14287 doing it. */
14288 if (TREE_CODE (value) != INTEGER_CST)
14290 div = build_int_cst (TREE_TYPE (value), divisor);
14292 if (multiple_of_p (TREE_TYPE (value), value, div))
14293 return value;
14296 /* If divisor is a power of two, simplify this to bit manipulation. */
14297 if (divisor == (divisor & -divisor))
14299 tree t;
14301 t = build_int_cst (TREE_TYPE (value), -divisor);
14302 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14304 else
14306 if (!div)
14307 div = build_int_cst (TREE_TYPE (value), divisor);
14308 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14309 value = size_binop_loc (loc, MULT_EXPR, value, div);
14312 return value;
14315 /* Returns the pointer to the base of the object addressed by EXP and
14316 extracts the information about the offset of the access, storing it
14317 to PBITPOS and POFFSET. */
14319 static tree
14320 split_address_to_core_and_offset (tree exp,
14321 HOST_WIDE_INT *pbitpos, tree *poffset)
14323 tree core;
14324 machine_mode mode;
14325 int unsignedp, volatilep;
14326 HOST_WIDE_INT bitsize;
14327 location_t loc = EXPR_LOCATION (exp);
14329 if (TREE_CODE (exp) == ADDR_EXPR)
14331 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14332 poffset, &mode, &unsignedp, &volatilep,
14333 false);
14334 core = build_fold_addr_expr_loc (loc, core);
14336 else
14338 core = exp;
14339 *pbitpos = 0;
14340 *poffset = NULL_TREE;
14343 return core;
14346 /* Returns true if addresses of E1 and E2 differ by a constant, false
14347 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14349 bool
14350 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14352 tree core1, core2;
14353 HOST_WIDE_INT bitpos1, bitpos2;
14354 tree toffset1, toffset2, tdiff, type;
14356 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14357 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14359 if (bitpos1 % BITS_PER_UNIT != 0
14360 || bitpos2 % BITS_PER_UNIT != 0
14361 || !operand_equal_p (core1, core2, 0))
14362 return false;
14364 if (toffset1 && toffset2)
14366 type = TREE_TYPE (toffset1);
14367 if (type != TREE_TYPE (toffset2))
14368 toffset2 = fold_convert (type, toffset2);
14370 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14371 if (!cst_and_fits_in_hwi (tdiff))
14372 return false;
14374 *diff = int_cst_value (tdiff);
14376 else if (toffset1 || toffset2)
14378 /* If only one of the offsets is non-constant, the difference cannot
14379 be a constant. */
14380 return false;
14382 else
14383 *diff = 0;
14385 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14386 return true;
14389 /* Simplify the floating point expression EXP when the sign of the
14390 result is not significant. Return NULL_TREE if no simplification
14391 is possible. */
14393 tree
14394 fold_strip_sign_ops (tree exp)
14396 tree arg0, arg1;
14397 location_t loc = EXPR_LOCATION (exp);
14399 switch (TREE_CODE (exp))
14401 case ABS_EXPR:
14402 case NEGATE_EXPR:
14403 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14404 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
14406 case MULT_EXPR:
14407 case RDIV_EXPR:
14408 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp)))
14409 return NULL_TREE;
14410 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14411 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14412 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
14413 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
14414 arg0 ? arg0 : TREE_OPERAND (exp, 0),
14415 arg1 ? arg1 : TREE_OPERAND (exp, 1));
14416 break;
14418 case COMPOUND_EXPR:
14419 arg0 = TREE_OPERAND (exp, 0);
14420 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14421 if (arg1)
14422 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
14423 break;
14425 case COND_EXPR:
14426 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14427 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
14428 if (arg0 || arg1)
14429 return fold_build3_loc (loc,
14430 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
14431 arg0 ? arg0 : TREE_OPERAND (exp, 1),
14432 arg1 ? arg1 : TREE_OPERAND (exp, 2));
14433 break;
14435 case CALL_EXPR:
14437 const enum built_in_function fcode = builtin_mathfn_code (exp);
14438 switch (fcode)
14440 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14441 /* Strip copysign function call, return the 1st argument. */
14442 arg0 = CALL_EXPR_ARG (exp, 0);
14443 arg1 = CALL_EXPR_ARG (exp, 1);
14444 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
14446 default:
14447 /* Strip sign ops from the argument of "odd" math functions. */
14448 if (negate_mathfn_p (fcode))
14450 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
14451 if (arg0)
14452 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
14454 break;
14457 break;
14459 default:
14460 break;
14462 return NULL_TREE;
14465 /* Return OFF converted to a pointer offset type suitable as offset for
14466 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14467 tree
14468 convert_to_ptrofftype_loc (location_t loc, tree off)
14470 return fold_convert_loc (loc, sizetype, off);
14473 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14474 tree
14475 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14477 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14478 ptr, convert_to_ptrofftype_loc (loc, off));
14481 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14482 tree
14483 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14485 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14486 ptr, size_int (off));