* config.gcc: Reorganize --with-cpu logic. Set
[official-gcc.git] / gcc / config / sparc / sparc.h
blob7c19b2a0f0a7f00eee9926afcd1c04e6dee96815
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
28 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
29 Solaris only; otheriwse just define __sparc__. Sadly the headers
30 are such a mess there is no Solaris-specific header. */
31 #define TARGET_CPU_CPP_BUILTINS() \
32 do \
33 { \
34 builtin_define_std ("sparc"); \
35 if (TARGET_64BIT) \
36 { \
37 builtin_assert ("cpu=sparc"); \
38 builtin_assert ("machine=sparc"); \
39 } \
40 else \
41 { \
42 builtin_assert ("cpu=sparc64"); \
43 builtin_assert ("machine=sparc64"); \
44 } \
45 } \
46 while (0)
48 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
49 /* #define SPARC_BI_ARCH */
51 /* Macro used later in this file to determine default architecture. */
52 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
54 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
55 architectures to compile for. We allow targets to choose compile time or
56 runtime selection. */
57 #ifdef IN_LIBGCC2
58 #if defined(__sparcv9) || defined(__arch64__)
59 #define TARGET_ARCH32 0
60 #else
61 #define TARGET_ARCH32 1
62 #endif /* sparc64 */
63 #else
64 #ifdef SPARC_BI_ARCH
65 #define TARGET_ARCH32 (! TARGET_64BIT)
66 #else
67 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
68 #endif /* SPARC_BI_ARCH */
69 #endif /* IN_LIBGCC2 */
70 #define TARGET_ARCH64 (! TARGET_ARCH32)
72 /* Code model selection.
73 -mcmodel is used to select the v9 code model.
74 Different code models aren't supported for v7/8 code.
76 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
77 pointers are 32 bits. Note that this isn't intended
78 to imply a v7/8 abi.
80 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
81 avoid generating %uhi and %ulo terms,
82 pointers are 64 bits.
84 TARGET_CM_MEDMID: 64 bit address space.
85 The executable must be in the low 16 TB of memory.
86 This corresponds to the low 44 bits, and the %[hml]44
87 relocs are used. The text segment has a maximum size
88 of 31 bits.
90 TARGET_CM_MEDANY: 64 bit address space.
91 The text and data segments have a maximum size of 31
92 bits and may be located anywhere. The maximum offset
93 from any instruction to the label _GLOBAL_OFFSET_TABLE_
94 is 31 bits.
96 TARGET_CM_EMBMEDANY: 64 bit address space.
97 The text and data segments have a maximum size of 31 bits
98 and may be located anywhere. Register %g4 contains
99 the start address of the data segment.
102 enum cmodel {
103 CM_32,
104 CM_MEDLOW,
105 CM_MEDMID,
106 CM_MEDANY,
107 CM_EMBMEDANY
110 /* Value of -mcmodel specified by user. */
111 extern const char *sparc_cmodel_string;
112 /* One of CM_FOO. */
113 extern enum cmodel sparc_cmodel;
115 /* V9 code model selection. */
116 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
117 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
118 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
119 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
121 #define SPARC_DEFAULT_CMODEL CM_32
123 /* This is call-clobbered in the normal ABI, but is reserved in the
124 home grown (aka upward compatible) embedded ABI. */
125 #define EMBMEDANY_BASE_REG "%g4"
127 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
128 and specified by the user via --with-cpu=foo.
129 This specifies the cpu implementation, not the architecture size. */
130 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
131 capable cpu's. */
132 #define TARGET_CPU_sparc 0
133 #define TARGET_CPU_v7 0 /* alias for previous */
134 #define TARGET_CPU_sparclet 1
135 #define TARGET_CPU_sparclite 2
136 #define TARGET_CPU_v8 3 /* generic v8 implementation */
137 #define TARGET_CPU_supersparc 4
138 #define TARGET_CPU_hypersparc 5
139 #define TARGET_CPU_sparc86x 6
140 #define TARGET_CPU_sparclite86x 6
141 #define TARGET_CPU_v9 7 /* generic v9 implementation */
142 #define TARGET_CPU_sparcv9 7 /* alias */
143 #define TARGET_CPU_sparc64 7 /* alias */
144 #define TARGET_CPU_ultrasparc 8
145 #define TARGET_CPU_ultrasparc3 9
147 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
148 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
149 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
151 #define CPP_CPU32_DEFAULT_SPEC ""
152 #define ASM_CPU32_DEFAULT_SPEC ""
154 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
155 /* ??? What does Sun's CC pass? */
156 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
157 /* ??? It's not clear how other assemblers will handle this, so by default
158 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
159 is handled in sol2.h. */
160 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
161 #endif
162 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
163 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
164 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
165 #endif
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
167 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
168 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
169 #endif
171 #else
173 #define CPP_CPU64_DEFAULT_SPEC ""
174 #define ASM_CPU64_DEFAULT_SPEC ""
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
177 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
178 #define CPP_CPU32_DEFAULT_SPEC ""
179 #define ASM_CPU32_DEFAULT_SPEC ""
180 #endif
182 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
183 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
184 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
185 #endif
187 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
188 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
189 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
190 #endif
192 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
193 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
194 #define ASM_CPU32_DEFAULT_SPEC ""
195 #endif
197 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
198 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
199 #define ASM_CPU32_DEFAULT_SPEC ""
200 #endif
202 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
203 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
204 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
205 #endif
207 #endif
209 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
210 #error Unrecognized value in TARGET_CPU_DEFAULT.
211 #endif
213 #ifdef SPARC_BI_ARCH
215 #define CPP_CPU_DEFAULT_SPEC \
216 (DEFAULT_ARCH32_P ? "\
217 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
218 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
219 " : "\
220 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
221 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
223 #define ASM_CPU_DEFAULT_SPEC \
224 (DEFAULT_ARCH32_P ? "\
225 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
226 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
227 " : "\
228 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
229 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
232 #else /* !SPARC_BI_ARCH */
234 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
235 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
237 #endif /* !SPARC_BI_ARCH */
239 /* Define macros to distinguish architectures. */
241 /* Common CPP definitions used by CPP_SPEC amongst the various targets
242 for handling -mcpu=xxx switches. */
243 #define CPP_CPU_SPEC "\
244 %{msoft-float:-D_SOFT_FLOAT} \
245 %{mcypress:} \
246 %{msparclite:-D__sparclite__} \
247 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
248 %{mv8:-D__sparc_v8__} \
249 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
250 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
251 %{mcpu=sparclite:-D__sparclite__} \
252 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
253 %{mcpu=v8:-D__sparc_v8__} \
254 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
255 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
256 %{mcpu=sparclite86x:-D__sparclite86x__} \
257 %{mcpu=v9:-D__sparc_v9__} \
258 %{mcpu=ultrasparc:-D__sparc_v9__} \
259 %{mcpu=ultrasparc3:-D__sparc_v9__} \
260 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
262 #define CPP_ARCH32_SPEC ""
263 #define CPP_ARCH64_SPEC "-D__arch64__"
265 #define CPP_ARCH_DEFAULT_SPEC \
266 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
268 #define CPP_ARCH_SPEC "\
269 %{m32:%(cpp_arch32)} \
270 %{m64:%(cpp_arch64)} \
271 %{!m32:%{!m64:%(cpp_arch_default)}} \
274 /* Macros to distinguish endianness. */
275 #define CPP_ENDIAN_SPEC "\
276 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
277 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
279 /* Macros to distinguish the particular subtarget. */
280 #define CPP_SUBTARGET_SPEC ""
282 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
284 /* Prevent error on `-sun4' and `-target sun4' options. */
285 /* This used to translate -dalign to -malign, but that is no good
286 because it can't turn off the usual meaning of making debugging dumps. */
287 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
288 ??? Delete support for -m<cpu> for 2.9. */
290 #define CC1_SPEC "\
291 %{sun4:} %{target:} \
292 %{mcypress:-mcpu=cypress} \
293 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
294 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
297 /* Override in target specific files. */
298 #define ASM_CPU_SPEC "\
299 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
300 %{msparclite:-Asparclite} \
301 %{mf930:-Asparclite} %{mf934:-Asparclite} \
302 %{mcpu=sparclite:-Asparclite} \
303 %{mcpu=sparclite86x:-Asparclite} \
304 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
305 %{mv8plus:-Av8plus} \
306 %{mcpu=v9:-Av9} \
307 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
308 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
309 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
312 /* Word size selection, among other things.
313 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
315 #define ASM_ARCH32_SPEC "-32"
316 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
317 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
318 #else
319 #define ASM_ARCH64_SPEC "-64"
320 #endif
321 #define ASM_ARCH_DEFAULT_SPEC \
322 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
324 #define ASM_ARCH_SPEC "\
325 %{m32:%(asm_arch32)} \
326 %{m64:%(asm_arch64)} \
327 %{!m32:%{!m64:%(asm_arch_default)}} \
330 #ifdef HAVE_AS_RELAX_OPTION
331 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
332 #else
333 #define ASM_RELAX_SPEC ""
334 #endif
336 /* Special flags to the Sun-4 assembler when using pipe for input. */
338 #define ASM_SPEC "\
339 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
340 %(asm_cpu) %(asm_relax)"
342 #define AS_NEEDS_DASH_FOR_PIPED_INPUT
344 /* This macro defines names of additional specifications to put in the specs
345 that can be used in various specifications like CC1_SPEC. Its definition
346 is an initializer with a subgrouping for each command option.
348 Each subgrouping contains a string constant, that defines the
349 specification name, and a string constant that used by the GNU CC driver
350 program.
352 Do not define this macro if it does not need to do anything. */
354 #define EXTRA_SPECS \
355 { "cpp_cpu", CPP_CPU_SPEC }, \
356 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
357 { "cpp_arch32", CPP_ARCH32_SPEC }, \
358 { "cpp_arch64", CPP_ARCH64_SPEC }, \
359 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
360 { "cpp_arch", CPP_ARCH_SPEC }, \
361 { "cpp_endian", CPP_ENDIAN_SPEC }, \
362 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
363 { "asm_cpu", ASM_CPU_SPEC }, \
364 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
365 { "asm_arch32", ASM_ARCH32_SPEC }, \
366 { "asm_arch64", ASM_ARCH64_SPEC }, \
367 { "asm_relax", ASM_RELAX_SPEC }, \
368 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
369 { "asm_arch", ASM_ARCH_SPEC }, \
370 SUBTARGET_EXTRA_SPECS
372 #define SUBTARGET_EXTRA_SPECS
374 /* Because libgcc can generate references back to libc (via .umul etc.) we have
375 to list libc again after the second libgcc. */
376 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
379 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
380 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
382 /* ??? This should be 32 bits for v9 but what can we do? */
383 #define WCHAR_TYPE "short unsigned int"
384 #define WCHAR_TYPE_SIZE 16
386 /* Show we can debug even without a frame pointer. */
387 #define CAN_DEBUG_WITHOUT_FP
389 #define OVERRIDE_OPTIONS sparc_override_options ()
391 /* Generate DBX debugging information. */
393 #define DBX_DEBUGGING_INFO 1
395 /* Run-time compilation parameters selecting different hardware subsets. */
397 extern int target_flags;
399 /* Nonzero if we should generate code to use the fpu. */
400 #define MASK_FPU 1
401 #define TARGET_FPU (target_flags & MASK_FPU)
403 /* Nonzero if we should assume that double pointers might be unaligned.
404 This can happen when linking gcc compiled code with other compilers,
405 because the ABI only guarantees 4 byte alignment. */
406 #define MASK_UNALIGNED_DOUBLES 4
407 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
409 /* Nonzero means that we should generate code for a v8 sparc. */
410 #define MASK_V8 0x8
411 #define TARGET_V8 (target_flags & MASK_V8)
413 /* Nonzero means that we should generate code for a sparclite.
414 This enables the sparclite specific instructions, but does not affect
415 whether FPU instructions are emitted. */
416 #define MASK_SPARCLITE 0x10
417 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
419 /* Nonzero if we're compiling for the sparclet. */
420 #define MASK_SPARCLET 0x20
421 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
423 /* Nonzero if we're compiling for v9 sparc.
424 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
425 the word size is 64. */
426 #define MASK_V9 0x40
427 #define TARGET_V9 (target_flags & MASK_V9)
429 /* Nonzero to generate code that uses the instructions deprecated in
430 the v9 architecture. This option only applies to v9 systems. */
431 /* ??? This isn't user selectable yet. It's used to enable such insns
432 on 32 bit v9 systems and for the moment they're permanently disabled
433 on 64 bit v9 systems. */
434 #define MASK_DEPRECATED_V8_INSNS 0x80
435 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
437 /* Mask of all CPU selection flags. */
438 #define MASK_ISA \
439 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
441 /* Nonzero means don't pass `-assert pure-text' to the linker. */
442 #define MASK_IMPURE_TEXT 0x100
443 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
445 /* Nonzero means that we should generate code using a flat register window
446 model, i.e. no save/restore instructions are generated, which is
447 compatible with normal sparc code.
448 The frame pointer is %i7 instead of %fp. */
449 #define MASK_FLAT 0x200
450 #define TARGET_FLAT (target_flags & MASK_FLAT)
452 /* Nonzero means use the registers that the SPARC ABI reserves for
453 application software. This must be the default to coincide with the
454 setting in FIXED_REGISTERS. */
455 #define MASK_APP_REGS 0x400
456 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
458 /* Option to select how quad word floating point is implemented.
459 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
460 Otherwise, we use the SPARC ABI quad library functions. */
461 #define MASK_HARD_QUAD 0x800
462 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
464 /* Nonzero on little-endian machines. */
465 /* ??? Little endian support currently only exists for sparclet-aout and
466 sparc64-elf configurations. May eventually want to expand the support
467 to all targets, but for now it's kept local to only those two. */
468 #define MASK_LITTLE_ENDIAN 0x1000
469 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
471 /* 0x2000, 0x4000 are unused */
473 /* Nonzero if pointers are 64 bits. */
474 #define MASK_PTR64 0x8000
475 #define TARGET_PTR64 (target_flags & MASK_PTR64)
477 /* Nonzero if generating code to run in a 64 bit environment.
478 This is intended to only be used by TARGET_ARCH{32,64} as they are the
479 mechanism used to control compile time or run time selection. */
480 #define MASK_64BIT 0x10000
481 #define TARGET_64BIT (target_flags & MASK_64BIT)
483 /* 0x20000,0x40000 unused */
485 /* Nonzero means use a stack bias of 2047. Stack offsets are obtained by
486 adding 2047 to %sp. This option is for v9 only and is the default. */
487 #define MASK_STACK_BIAS 0x80000
488 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
490 /* 0x100000,0x200000 unused */
492 /* Nonzero means -m{,no-}fpu was passed on the command line. */
493 #define MASK_FPU_SET 0x400000
494 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
496 /* Use the UltraSPARC Visual Instruction Set extensions. */
497 #define MASK_VIS 0x1000000
498 #define TARGET_VIS (target_flags & MASK_VIS)
500 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
501 the current out and global registers and Linux 2.2+ as well. */
502 #define MASK_V8PLUS 0x2000000
503 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
505 /* Force a the fastest alignment on structures to take advantage of
506 faster copies. */
507 #define MASK_FASTER_STRUCTS 0x4000000
508 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
510 /* Use IEEE quad long double. */
511 #define MASK_LONG_DOUBLE_128 0x8000000
512 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
514 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
515 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
516 to get high 32 bits. False in V8+ or V9 because multiply stores
517 a 64 bit result in a register. */
519 #define TARGET_HARD_MUL32 \
520 ((TARGET_V8 || TARGET_SPARCLITE \
521 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
522 && ! TARGET_V8PLUS && TARGET_ARCH32)
524 #define TARGET_HARD_MUL \
525 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
526 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
529 /* Macro to define tables used to set the flags.
530 This is a list in braces of pairs in braces,
531 each pair being { "NAME", VALUE }
532 where VALUE is the bits to set or minus the bits to clear.
533 An empty string NAME is used to identify the default VALUE. */
535 #define TARGET_SWITCHES \
536 { {"fpu", MASK_FPU | MASK_FPU_SET, \
537 N_("Use hardware fp") }, \
538 {"no-fpu", -MASK_FPU, \
539 N_("Do not use hardware fp") }, \
540 {"no-fpu", MASK_FPU_SET, NULL, }, \
541 {"hard-float", MASK_FPU | MASK_FPU_SET, \
542 N_("Use hardware fp") }, \
543 {"soft-float", -MASK_FPU, \
544 N_("Do not use hardware fp") }, \
545 {"soft-float", MASK_FPU_SET, NULL }, \
546 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
547 N_("Assume possible double misalignment") }, \
548 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
549 N_("Assume all doubles are aligned") }, \
550 {"impure-text", MASK_IMPURE_TEXT, \
551 N_("Pass -assert pure-text to linker") }, \
552 {"no-impure-text", -MASK_IMPURE_TEXT, \
553 N_("Do not pass -assert pure-text to linker") }, \
554 {"flat", MASK_FLAT, \
555 N_("Use flat register window model") }, \
556 {"no-flat", -MASK_FLAT, \
557 N_("Do not use flat register window model") }, \
558 {"app-regs", MASK_APP_REGS, \
559 N_("Use ABI reserved registers") }, \
560 {"no-app-regs", -MASK_APP_REGS, \
561 N_("Do not use ABI reserved registers") }, \
562 {"hard-quad-float", MASK_HARD_QUAD, \
563 N_("Use hardware quad fp instructions") }, \
564 {"soft-quad-float", -MASK_HARD_QUAD, \
565 N_("Do not use hardware quad fp instructions") }, \
566 {"v8plus", MASK_V8PLUS, \
567 N_("Compile for v8plus ABI") }, \
568 {"no-v8plus", -MASK_V8PLUS, \
569 N_("Do not compile for v8plus ABI") }, \
570 {"vis", MASK_VIS, \
571 N_("Utilize Visual Instruction Set") }, \
572 {"no-vis", -MASK_VIS, \
573 N_("Do not utilize Visual Instruction Set") }, \
574 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
575 {"cypress", 0, \
576 N_("Optimize for Cypress processors") }, \
577 {"sparclite", 0, \
578 N_("Optimize for SPARCLite processors") }, \
579 {"f930", 0, \
580 N_("Optimize for F930 processors") }, \
581 {"f934", 0, \
582 N_("Optimize for F934 processors") }, \
583 {"v8", 0, \
584 N_("Use V8 SPARC ISA") }, \
585 {"supersparc", 0, \
586 N_("Optimize for SuperSPARC processors") }, \
587 /* End of deprecated options. */ \
588 {"ptr64", MASK_PTR64, \
589 N_("Pointers are 64-bit") }, \
590 {"ptr32", -MASK_PTR64, \
591 N_("Pointers are 32-bit") }, \
592 {"32", -MASK_64BIT, \
593 N_("Use 32-bit ABI") }, \
594 {"64", MASK_64BIT, \
595 N_("Use 64-bit ABI") }, \
596 {"stack-bias", MASK_STACK_BIAS, \
597 N_("Use stack bias") }, \
598 {"no-stack-bias", -MASK_STACK_BIAS, \
599 N_("Do not use stack bias") }, \
600 {"faster-structs", MASK_FASTER_STRUCTS, \
601 N_("Use structs on stronger alignment for double-word copies") }, \
602 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
603 N_("Do not use structs on stronger alignment for double-word copies") }, \
604 {"relax", 0, \
605 N_("Optimize tail call instructions in assembler and linker") }, \
606 {"no-relax", 0, \
607 N_("Do not optimize tail call instructions in assembler or linker") }, \
608 SUBTARGET_SWITCHES \
609 { "", TARGET_DEFAULT, ""}}
611 /* MASK_APP_REGS must always be the default because that's what
612 FIXED_REGISTERS is set to and -ffixed- is processed before
613 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
614 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
616 /* This is meant to be redefined in target specific files. */
617 #define SUBTARGET_SWITCHES
619 /* Processor type.
620 These must match the values for the cpu attribute in sparc.md. */
621 enum processor_type {
622 PROCESSOR_V7,
623 PROCESSOR_CYPRESS,
624 PROCESSOR_V8,
625 PROCESSOR_SUPERSPARC,
626 PROCESSOR_SPARCLITE,
627 PROCESSOR_F930,
628 PROCESSOR_F934,
629 PROCESSOR_HYPERSPARC,
630 PROCESSOR_SPARCLITE86X,
631 PROCESSOR_SPARCLET,
632 PROCESSOR_TSC701,
633 PROCESSOR_V9,
634 PROCESSOR_ULTRASPARC,
635 PROCESSOR_ULTRASPARC3
638 /* This is set from -m{cpu,tune}=xxx. */
639 extern enum processor_type sparc_cpu;
641 /* Recast the cpu class to be the cpu attribute.
642 Every file includes us, but not every file includes insn-attr.h. */
643 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
645 #define TARGET_OPTIONS \
647 { "cpu=", &sparc_select[1].string, \
648 N_("Use features of and schedule code for given CPU"), 0}, \
649 { "tune=", &sparc_select[2].string, \
650 N_("Schedule code for given CPU"), 0}, \
651 { "cmodel=", &sparc_cmodel_string, \
652 N_("Use given SPARC code model"), 0}, \
653 SUBTARGET_OPTIONS \
656 /* This is meant to be redefined in target specific files. */
657 #define SUBTARGET_OPTIONS
659 /* Support for a compile-time default CPU, et cetera. The rules are:
660 --with-cpu is ignored if -mcpu is specified.
661 --with-tune is ignored if -mtune is specified.
662 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
663 are specified. */
664 #define OPTION_DEFAULT_SPECS \
665 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
666 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
667 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
669 /* sparc_select[0] is reserved for the default cpu. */
670 struct sparc_cpu_select
672 const char *string;
673 const char *const name;
674 const int set_tune_p;
675 const int set_arch_p;
678 extern struct sparc_cpu_select sparc_select[];
680 /* target machine storage layout */
682 /* Define this if most significant bit is lowest numbered
683 in instructions that operate on numbered bit-fields. */
684 #define BITS_BIG_ENDIAN 1
686 /* Define this if most significant byte of a word is the lowest numbered. */
687 #define BYTES_BIG_ENDIAN 1
689 /* Define this if most significant word of a multiword number is the lowest
690 numbered. */
691 #define WORDS_BIG_ENDIAN 1
693 /* Define this to set the endianness to use in libgcc2.c, which can
694 not depend on target_flags. */
695 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
696 #define LIBGCC2_WORDS_BIG_ENDIAN 0
697 #else
698 #define LIBGCC2_WORDS_BIG_ENDIAN 1
699 #endif
701 #define MAX_BITS_PER_WORD 64
703 /* Width of a word, in units (bytes). */
704 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
705 #ifdef IN_LIBGCC2
706 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
707 #else
708 #define MIN_UNITS_PER_WORD 4
709 #endif
711 /* Now define the sizes of the C data types. */
713 #define SHORT_TYPE_SIZE 16
714 #define INT_TYPE_SIZE 32
715 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
716 #define LONG_LONG_TYPE_SIZE 64
717 #define FLOAT_TYPE_SIZE 32
718 #define DOUBLE_TYPE_SIZE 64
720 #ifdef SPARC_BI_ARCH
721 #define MAX_LONG_TYPE_SIZE 64
722 #endif
724 #if 0
725 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
726 Instead, it is enabled in sol2.h, because it does work under Solaris. */
727 /* Define for support of TFmode long double.
728 SPARC ABI says that long double is 4 words. */
729 #define LONG_DOUBLE_TYPE_SIZE 128
730 #endif
732 /* Width in bits of a pointer.
733 See also the macro `Pmode' defined below. */
734 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
736 /* If we have to extend pointers (only when TARGET_ARCH64 and not
737 TARGET_PTR64), we want to do it unsigned. This macro does nothing
738 if ptr_mode and Pmode are the same. */
739 #define POINTERS_EXTEND_UNSIGNED 1
741 /* A macro to update MODE and UNSIGNEDP when an object whose type
742 is TYPE and which has the specified mode and signedness is to be
743 stored in a register. This macro is only called when TYPE is a
744 scalar type. */
745 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
746 if (TARGET_ARCH64 \
747 && GET_MODE_CLASS (MODE) == MODE_INT \
748 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
749 (MODE) = DImode;
751 /* Define this macro if the promotion described by PROMOTE_MODE
752 should also be done for outgoing function arguments. */
753 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
754 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
755 for this value. */
756 #define PROMOTE_FUNCTION_ARGS
758 /* Define this macro if the promotion described by PROMOTE_MODE
759 should also be done for the return value of functions.
760 If this macro is defined, FUNCTION_VALUE must perform the same
761 promotions done by PROMOTE_MODE. */
762 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
763 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
764 for this value. */
765 #define PROMOTE_FUNCTION_RETURN
767 /* Define this macro if the promotion described by PROMOTE_MODE
768 should _only_ be performed for outgoing function arguments or
769 function return values, as specified by PROMOTE_FUNCTION_ARGS
770 and PROMOTE_FUNCTION_RETURN, respectively. */
771 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
772 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
773 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
774 for arithmetic operations which do zero/sign extension at the same time,
775 so without this we end up with a srl/sra after every assignment to an
776 user variable, which means very very bad code. */
777 #define PROMOTE_FOR_CALL_ONLY
779 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
780 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
782 /* Boundary (in *bits*) on which stack pointer should be aligned. */
783 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
785 /* ALIGN FRAMES on double word boundaries */
787 #define SPARC_STACK_ALIGN(LOC) \
788 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
790 /* Allocation boundary (in *bits*) for the code of a function. */
791 #define FUNCTION_BOUNDARY 32
793 /* Alignment of field after `int : 0' in a structure. */
794 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
796 /* Every structure's size must be a multiple of this. */
797 #define STRUCTURE_SIZE_BOUNDARY 8
799 /* A bit-field declared as `int' forces `int' alignment for the struct. */
800 #define PCC_BITFIELD_TYPE_MATTERS 1
802 /* No data type wants to be aligned rounder than this. */
803 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
805 /* The best alignment to use in cases where we have a choice. */
806 #define FASTEST_ALIGNMENT 64
808 /* Define this macro as an expression for the alignment of a structure
809 (given by STRUCT as a tree node) if the alignment computed in the
810 usual way is COMPUTED and the alignment explicitly specified was
811 SPECIFIED.
813 The default is to use SPECIFIED if it is larger; otherwise, use
814 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
815 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
816 (TARGET_FASTER_STRUCTS ? \
817 ((TREE_CODE (STRUCT) == RECORD_TYPE \
818 || TREE_CODE (STRUCT) == UNION_TYPE \
819 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
820 && TYPE_FIELDS (STRUCT) != 0 \
821 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
822 : MAX ((COMPUTED), (SPECIFIED))) \
823 : MAX ((COMPUTED), (SPECIFIED)))
825 /* Make strings word-aligned so strcpy from constants will be faster. */
826 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
827 ((TREE_CODE (EXP) == STRING_CST \
828 && (ALIGN) < FASTEST_ALIGNMENT) \
829 ? FASTEST_ALIGNMENT : (ALIGN))
831 /* Make arrays of chars word-aligned for the same reasons. */
832 #define DATA_ALIGNMENT(TYPE, ALIGN) \
833 (TREE_CODE (TYPE) == ARRAY_TYPE \
834 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
835 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
837 /* Set this nonzero if move instructions will actually fail to work
838 when given unaligned data. */
839 #define STRICT_ALIGNMENT 1
841 /* Things that must be doubleword aligned cannot go in the text section,
842 because the linker fails to align the text section enough!
843 Put them in the data section. This macro is only used in this file. */
844 #define MAX_TEXT_ALIGN 32
846 /* This forces all variables and constants to the data section when PIC.
847 This is because the SunOS 4 shared library scheme thinks everything in
848 text is a function, and patches the address to point to a loader stub. */
849 /* This is defined to zero for every system which doesn't use the a.out object
850 file format. */
851 #ifndef SUNOS4_SHARED_LIBRARIES
852 #define SUNOS4_SHARED_LIBRARIES 0
853 #endif
855 /* Standard register usage. */
857 /* Number of actual hardware registers.
858 The hardware registers are assigned numbers for the compiler
859 from 0 to just below FIRST_PSEUDO_REGISTER.
860 All registers that the compiler knows about must be given numbers,
861 even those that are not normally considered general registers.
863 SPARC has 32 integer registers and 32 floating point registers.
864 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
865 accessible. We still account for them to simplify register computations
866 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
867 32+32+32+4 == 100.
868 Register 100 is used as the integer condition code register.
869 Register 101 is used as the soft frame pointer register. */
871 #define FIRST_PSEUDO_REGISTER 102
873 #define SPARC_FIRST_FP_REG 32
874 /* Additional V9 fp regs. */
875 #define SPARC_FIRST_V9_FP_REG 64
876 #define SPARC_LAST_V9_FP_REG 95
877 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
878 #define SPARC_FIRST_V9_FCC_REG 96
879 #define SPARC_LAST_V9_FCC_REG 99
880 /* V8 fcc reg. */
881 #define SPARC_FCC_REG 96
882 /* Integer CC reg. We don't distinguish %icc from %xcc. */
883 #define SPARC_ICC_REG 100
885 /* Nonzero if REGNO is an fp reg. */
886 #define SPARC_FP_REG_P(REGNO) \
887 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
889 /* Argument passing regs. */
890 #define SPARC_OUTGOING_INT_ARG_FIRST 8
891 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
892 #define SPARC_FP_ARG_FIRST 32
894 /* 1 for registers that have pervasive standard uses
895 and are not available for the register allocator.
897 On non-v9 systems:
898 g1 is free to use as temporary.
899 g2-g4 are reserved for applications. Gcc normally uses them as
900 temporaries, but this can be disabled via the -mno-app-regs option.
901 g5 through g7 are reserved for the operating system.
903 On v9 systems:
904 g1,g5 are free to use as temporaries, and are free to use between calls
905 if the call is to an external function via the PLT.
906 g4 is free to use as a temporary in the non-embedded case.
907 g4 is reserved in the embedded case.
908 g2-g3 are reserved for applications. Gcc normally uses them as
909 temporaries, but this can be disabled via the -mno-app-regs option.
910 g6-g7 are reserved for the operating system (or application in
911 embedded case).
912 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
913 currently be a fixed register until this pattern is rewritten.
914 Register 1 is also used when restoring call-preserved registers in large
915 stack frames.
917 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
918 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
921 #define FIXED_REGISTERS \
922 {1, 0, 2, 2, 2, 2, 1, 1, \
923 0, 0, 0, 0, 0, 0, 1, 0, \
924 0, 0, 0, 0, 0, 0, 0, 0, \
925 0, 0, 0, 0, 0, 0, 1, 1, \
927 0, 0, 0, 0, 0, 0, 0, 0, \
928 0, 0, 0, 0, 0, 0, 0, 0, \
929 0, 0, 0, 0, 0, 0, 0, 0, \
930 0, 0, 0, 0, 0, 0, 0, 0, \
932 0, 0, 0, 0, 0, 0, 0, 0, \
933 0, 0, 0, 0, 0, 0, 0, 0, \
934 0, 0, 0, 0, 0, 0, 0, 0, \
935 0, 0, 0, 0, 0, 0, 0, 0, \
937 0, 0, 0, 0, 0, 1}
939 /* 1 for registers not available across function calls.
940 These must include the FIXED_REGISTERS and also any
941 registers that can be used without being saved.
942 The latter must include the registers where values are returned
943 and the register where structure-value addresses are passed.
944 Aside from that, you can include as many other registers as you like. */
946 #define CALL_USED_REGISTERS \
947 {1, 1, 1, 1, 1, 1, 1, 1, \
948 1, 1, 1, 1, 1, 1, 1, 1, \
949 0, 0, 0, 0, 0, 0, 0, 0, \
950 0, 0, 0, 0, 0, 0, 1, 1, \
952 1, 1, 1, 1, 1, 1, 1, 1, \
953 1, 1, 1, 1, 1, 1, 1, 1, \
954 1, 1, 1, 1, 1, 1, 1, 1, \
955 1, 1, 1, 1, 1, 1, 1, 1, \
957 1, 1, 1, 1, 1, 1, 1, 1, \
958 1, 1, 1, 1, 1, 1, 1, 1, \
959 1, 1, 1, 1, 1, 1, 1, 1, \
960 1, 1, 1, 1, 1, 1, 1, 1, \
962 1, 1, 1, 1, 1, 1}
964 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
965 they won't be allocated. */
967 #define CONDITIONAL_REGISTER_USAGE \
968 do \
970 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
972 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
973 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
975 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
976 /* then honor it. */ \
977 if (TARGET_ARCH32 && fixed_regs[5]) \
978 fixed_regs[5] = 1; \
979 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
980 fixed_regs[5] = 0; \
981 if (! TARGET_V9) \
983 int regno; \
984 for (regno = SPARC_FIRST_V9_FP_REG; \
985 regno <= SPARC_LAST_V9_FP_REG; \
986 regno++) \
987 fixed_regs[regno] = 1; \
988 /* %fcc0 is used by v8 and v9. */ \
989 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
990 regno <= SPARC_LAST_V9_FCC_REG; \
991 regno++) \
992 fixed_regs[regno] = 1; \
994 if (! TARGET_FPU) \
996 int regno; \
997 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
998 fixed_regs[regno] = 1; \
1000 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1001 /* then honor it. Likewise with g3 and g4. */ \
1002 if (fixed_regs[2] == 2) \
1003 fixed_regs[2] = ! TARGET_APP_REGS; \
1004 if (fixed_regs[3] == 2) \
1005 fixed_regs[3] = ! TARGET_APP_REGS; \
1006 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1007 fixed_regs[4] = ! TARGET_APP_REGS; \
1008 else if (TARGET_CM_EMBMEDANY) \
1009 fixed_regs[4] = 1; \
1010 else if (fixed_regs[4] == 2) \
1011 fixed_regs[4] = 0; \
1012 if (TARGET_FLAT) \
1014 int regno; \
1015 /* Let the compiler believe the frame pointer is still \
1016 %fp, but output it as %i7. */ \
1017 fixed_regs[31] = 1; \
1018 reg_names[HARD_FRAME_POINTER_REGNUM] = "%i7"; \
1019 /* Disable leaf functions */ \
1020 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1021 /* Make LEAF_REG_REMAP a noop. */ \
1022 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1023 leaf_reg_remap [regno] = regno; \
1026 while (0)
1028 /* Return number of consecutive hard regs needed starting at reg REGNO
1029 to hold something of mode MODE.
1030 This is ordinarily the length in words of a value of mode MODE
1031 but can be less for certain modes in special long registers.
1033 On SPARC, ordinary registers hold 32 bits worth;
1034 this means both integer and floating point registers.
1035 On v9, integer regs hold 64 bits worth; floating point regs hold
1036 32 bits worth (this includes the new fp regs as even the odd ones are
1037 included in the hard register count). */
1039 #define HARD_REGNO_NREGS(REGNO, MODE) \
1040 (TARGET_ARCH64 \
1041 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1042 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1043 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1044 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1046 /* Due to the ARCH64 descrepancy above we must override this next
1047 macro too. */
1048 #define REGMODE_NATURAL_SIZE(MODE) \
1049 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1051 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1052 See sparc.c for how we initialize this. */
1053 extern const int *hard_regno_mode_classes;
1054 extern int sparc_mode_class[];
1056 /* ??? Because of the funny way we pass parameters we should allow certain
1057 ??? types of float/complex values to be in integer registers during
1058 ??? RTL generation. This only matters on arch32. */
1059 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1060 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1062 /* Value is 1 if it is a good idea to tie two pseudo registers
1063 when one has mode MODE1 and one has mode MODE2.
1064 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1065 for any hard reg, then this must be 0 for correct output.
1067 For V9: SFmode can't be combined with other float modes, because they can't
1068 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1069 registers, but SFmode will. */
1070 #define MODES_TIEABLE_P(MODE1, MODE2) \
1071 ((MODE1) == (MODE2) \
1072 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1073 && (! TARGET_V9 \
1074 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1075 || (MODE1 != SFmode && MODE2 != SFmode)))))
1077 /* Specify the registers used for certain standard purposes.
1078 The values of these macros are register numbers. */
1080 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1081 /* #define PC_REGNUM */
1083 /* Register to use for pushing function arguments. */
1084 #define STACK_POINTER_REGNUM 14
1086 /* The stack bias (amount by which the hardware register is offset by). */
1087 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1089 /* Actual top-of-stack address is 92/176 greater than the contents of the
1090 stack pointer register for !v9/v9. That is:
1091 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1092 address, and 6*4 bytes for the 6 register parameters.
1093 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1094 parameter regs. */
1095 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1097 /* Base register for access to local variables of the function. */
1098 #define HARD_FRAME_POINTER_REGNUM 30
1100 /* The soft frame pointer does not have the stack bias applied. */
1101 #define FRAME_POINTER_REGNUM 101
1103 /* Given the stack bias, the stack pointer isn't actually aligned. */
1104 #define INIT_EXPANDERS \
1105 do { \
1106 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1108 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1109 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1111 } while (0)
1113 /* Value should be nonzero if functions must have frame pointers.
1114 Zero means the frame pointer need not be set up (and parms
1115 may be accessed via the stack pointer) in functions that seem suitable.
1116 This is computed in `reload', in reload1.c.
1117 Used in flow.c, global.c, and reload1.c.
1119 Being a non-leaf function does not mean a frame pointer is needed in the
1120 flat window model. However, the debugger won't be able to backtrace through
1121 us with out it. */
1122 #define FRAME_POINTER_REQUIRED \
1123 (TARGET_FLAT \
1124 ? (current_function_calls_alloca \
1125 || !leaf_function_p ()) \
1126 : ! (leaf_function_p () && only_leaf_regs_used ()))
1128 /* Base register for access to arguments of the function. */
1129 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1131 /* Register in which static-chain is passed to a function. This must
1132 not be a register used by the prologue. */
1133 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1135 /* Register which holds offset table for position-independent
1136 data references. */
1138 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1140 /* Pick a default value we can notice from override_options:
1141 !v9: Default is on.
1142 v9: Default is off. */
1144 #define DEFAULT_PCC_STRUCT_RETURN -1
1146 /* SPARC ABI says that quad-precision floats and all structures are returned
1147 in memory.
1148 For v9: unions <= 32 bytes in size are returned in int regs,
1149 structures up to 32 bytes are returned in int and fp regs. */
1151 #define RETURN_IN_MEMORY(TYPE) \
1152 (TARGET_ARCH32 \
1153 ? (TYPE_MODE (TYPE) == BLKmode \
1154 || TYPE_MODE (TYPE) == TFmode \
1155 || TYPE_MODE (TYPE) == TCmode) \
1156 : (TYPE_MODE (TYPE) == BLKmode \
1157 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1159 /* Functions which return large structures get the address
1160 to place the wanted value at offset 64 from the frame.
1161 Must reserve 64 bytes for the in and local registers.
1162 v9: Functions which return large structures get the address to place the
1163 wanted value from an invisible first argument. */
1164 /* Used only in other #defines in this file. */
1165 #define STRUCT_VALUE_OFFSET 64
1167 #define STRUCT_VALUE \
1168 (TARGET_ARCH64 \
1169 ? 0 \
1170 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1171 STRUCT_VALUE_OFFSET)))
1173 #define STRUCT_VALUE_INCOMING \
1174 (TARGET_ARCH64 \
1175 ? 0 \
1176 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1177 STRUCT_VALUE_OFFSET)))
1179 /* Define the classes of registers for register constraints in the
1180 machine description. Also define ranges of constants.
1182 One of the classes must always be named ALL_REGS and include all hard regs.
1183 If there is more than one class, another class must be named NO_REGS
1184 and contain no registers.
1186 The name GENERAL_REGS must be the name of a class (or an alias for
1187 another name such as ALL_REGS). This is the class of registers
1188 that is allowed by "g" or "r" in a register constraint.
1189 Also, registers outside this class are allocated only when
1190 instructions express preferences for them.
1192 The classes must be numbered in nondecreasing order; that is,
1193 a larger-numbered class must never be contained completely
1194 in a smaller-numbered class.
1196 For any two classes, it is very desirable that there be another
1197 class that represents their union. */
1199 /* The SPARC has various kinds of registers: general, floating point,
1200 and condition codes [well, it has others as well, but none that we
1201 care directly about].
1203 For v9 we must distinguish between the upper and lower floating point
1204 registers because the upper ones can't hold SFmode values.
1205 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1206 satisfying a group need for a class will also satisfy a single need for
1207 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1208 regs.
1210 It is important that one class contains all the general and all the standard
1211 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1212 because reg_class_record() will bias the selection in favor of fp regs,
1213 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1214 because FP_REGS > GENERAL_REGS.
1216 It is also important that one class contain all the general and all the
1217 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1218 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1219 allocate_reload_reg() to bypass it causing an abort because the compiler
1220 thinks it doesn't have a spill reg when in fact it does.
1222 v9 also has 4 floating point condition code registers. Since we don't
1223 have a class that is the union of FPCC_REGS with either of the others,
1224 it is important that it appear first. Otherwise the compiler will die
1225 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1226 constraints.
1228 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1229 may try to use it to hold an SImode value. See register_operand.
1230 ??? Should %fcc[0123] be handled similarly?
1233 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1234 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1235 ALL_REGS, LIM_REG_CLASSES };
1237 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1239 /* Give names of register classes as strings for dump file. */
1241 #define REG_CLASS_NAMES \
1242 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1243 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1244 "ALL_REGS" }
1246 /* Define which registers fit in which classes.
1247 This is an initializer for a vector of HARD_REG_SET
1248 of length N_REG_CLASSES. */
1250 #define REG_CLASS_CONTENTS \
1251 {{0, 0, 0, 0}, /* NO_REGS */ \
1252 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1253 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1254 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1255 {0, -1, 0, 0}, /* FP_REGS */ \
1256 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1257 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1258 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1259 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1261 /* The same information, inverted:
1262 Return the class number of the smallest class containing
1263 reg number REGNO. This could be a conditional expression
1264 or could index an array. */
1266 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1268 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1270 /* This is the order in which to allocate registers normally.
1272 We put %f0-%f7 last among the float registers, so as to make it more
1273 likely that a pseudo-register which dies in the float return register
1274 area will get allocated to the float return register, thus saving a move
1275 instruction at the end of the function.
1277 Similarly for integer return value registers.
1279 We know in this case that we will not end up with a leaf function.
1281 The register allocater is given the global and out registers first
1282 because these registers are call clobbered and thus less useful to
1283 global register allocation.
1285 Next we list the local and in registers. They are not call clobbered
1286 and thus very useful for global register allocation. We list the input
1287 registers before the locals so that it is more likely the incoming
1288 arguments received in those registers can just stay there and not be
1289 reloaded. */
1291 #define REG_ALLOC_ORDER \
1292 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1293 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1294 15, /* %o7 */ \
1295 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1296 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1297 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1298 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1299 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1300 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1301 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1302 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1303 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1304 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1305 96, 97, 98, 99, /* %fcc0-3 */ \
1306 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1308 /* This is the order in which to allocate registers for
1309 leaf functions. If all registers can fit in the global and
1310 output registers, then we have the possibility of having a leaf
1311 function.
1313 The macro actually mentioned the input registers first,
1314 because they get renumbered into the output registers once
1315 we know really do have a leaf function.
1317 To be more precise, this register allocation order is used
1318 when %o7 is found to not be clobbered right before register
1319 allocation. Normally, the reason %o7 would be clobbered is
1320 due to a call which could not be transformed into a sibling
1321 call.
1323 As a consequence, it is possible to use the leaf register
1324 allocation order and not end up with a leaf function. We will
1325 not get suboptimal register allocation in that case because by
1326 definition of being potentially leaf, there were no function
1327 calls. Therefore, allocation order within the local register
1328 window is not critical like it is when we do have function calls. */
1330 #define REG_LEAF_ALLOC_ORDER \
1331 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1332 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1333 15, /* %o7 */ \
1334 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1335 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1336 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1337 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1338 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1339 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1340 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1341 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1342 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1343 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1344 96, 97, 98, 99, /* %fcc0-3 */ \
1345 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1347 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1349 extern char sparc_leaf_regs[];
1350 #define LEAF_REGISTERS sparc_leaf_regs
1352 extern char leaf_reg_remap[];
1353 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1355 /* The class value for index registers, and the one for base regs. */
1356 #define INDEX_REG_CLASS GENERAL_REGS
1357 #define BASE_REG_CLASS GENERAL_REGS
1359 /* Local macro to handle the two v9 classes of FP regs. */
1360 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1362 /* Get reg_class from a letter such as appears in the machine description.
1363 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1364 .md file for v8 and v9.
1365 'd' and 'b' are used for single and double precision VIS operations,
1366 if TARGET_VIS.
1367 'h' is used for V8+ 64 bit global and out registers. */
1369 #define REG_CLASS_FROM_LETTER(C) \
1370 (TARGET_V9 \
1371 ? ((C) == 'f' ? FP_REGS \
1372 : (C) == 'e' ? EXTRA_FP_REGS \
1373 : (C) == 'c' ? FPCC_REGS \
1374 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1375 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1376 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1377 : NO_REGS) \
1378 : ((C) == 'f' ? FP_REGS \
1379 : (C) == 'e' ? FP_REGS \
1380 : (C) == 'c' ? FPCC_REGS \
1381 : NO_REGS))
1383 /* The letters I, J, K, L and M in a register constraint string
1384 can be used to stand for particular ranges of immediate operands.
1385 This macro defines what the ranges are.
1386 C is the letter, and VALUE is a constant value.
1387 Return 1 if VALUE is in the range specified by C.
1389 `I' is used for the range of constants an insn can actually contain.
1390 `J' is used for the range which is just zero (since that is R0).
1391 `K' is used for constants which can be loaded with a single sethi insn.
1392 `L' is used for the range of constants supported by the movcc insns.
1393 `M' is used for the range of constants supported by the movrcc insns.
1394 `N' is like K, but for constants wider than 32 bits.
1395 `O' is used for the range which is just 4096. */
1397 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1398 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1399 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1400 /* 10 and 11 bit immediates are only used for a few specific insns.
1401 SMALL_INT is used throughout the port so we continue to use it. */
1402 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1403 /* 13 bit immediate, considering only the low 32 bits */
1404 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1405 (INTVAL (X), SImode)))
1406 #define SPARC_SETHI_P(X) \
1407 (((unsigned HOST_WIDE_INT) (X) \
1408 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1409 #define SPARC_SETHI32_P(X) \
1410 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1412 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1413 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1414 : (C) == 'J' ? (VALUE) == 0 \
1415 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1416 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1417 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1418 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1419 : (C) == 'O' ? (VALUE) == 4096 \
1420 : 0)
1422 /* Similar, but for floating constants, and defining letters G and H.
1423 Here VALUE is the CONST_DOUBLE rtx itself. */
1425 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1426 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1427 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1428 : (C) == 'O' ? arith_double_4096_operand (VALUE, DImode) \
1429 : 0)
1431 /* Given an rtx X being reloaded into a reg required to be
1432 in class CLASS, return the class of reg to actually use.
1433 In general this is just CLASS; but on some machines
1434 in some cases it is preferable to use a more restrictive class. */
1435 /* - We can't load constants into FP registers.
1436 - We can't load FP constants into integer registers when soft-float,
1437 because there is no soft-float pattern with a r/F constraint.
1438 - We can't load FP constants into integer registers for TFmode unless
1439 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1440 - Try and reload integer constants (symbolic or otherwise) back into
1441 registers directly, rather than having them dumped to memory. */
1443 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1444 (CONSTANT_P (X) \
1445 ? ((FP_REG_CLASS_P (CLASS) \
1446 || (CLASS) == GENERAL_OR_FP_REGS \
1447 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1448 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1449 && ! TARGET_FPU) \
1450 || (GET_MODE (X) == TFmode \
1451 && ! fp_zero_operand (X, TFmode))) \
1452 ? NO_REGS \
1453 : (!FP_REG_CLASS_P (CLASS) \
1454 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1455 ? GENERAL_REGS \
1456 : (CLASS)) \
1457 : (CLASS))
1459 /* Return the register class of a scratch register needed to load IN into
1460 a register of class CLASS in MODE.
1462 We need a temporary when loading/storing a HImode/QImode value
1463 between memory and the FPU registers. This can happen when combine puts
1464 a paradoxical subreg in a float/fix conversion insn.
1466 We need a temporary when loading/storing a DFmode value between
1467 unaligned memory and the upper FPU registers. */
1469 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1470 ((FP_REG_CLASS_P (CLASS) \
1471 && ((MODE) == HImode || (MODE) == QImode) \
1472 && (GET_CODE (IN) == MEM \
1473 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1474 && true_regnum (IN) == -1))) \
1475 ? GENERAL_REGS \
1476 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1477 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1478 && ! mem_min_alignment ((IN), 8)) \
1479 ? FP_REGS \
1480 : (((TARGET_CM_MEDANY \
1481 && symbolic_operand ((IN), (MODE))) \
1482 || (TARGET_CM_EMBMEDANY \
1483 && text_segment_operand ((IN), (MODE)))) \
1484 && !flag_pic) \
1485 ? GENERAL_REGS \
1486 : NO_REGS)
1488 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1489 ((FP_REG_CLASS_P (CLASS) \
1490 && ((MODE) == HImode || (MODE) == QImode) \
1491 && (GET_CODE (IN) == MEM \
1492 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1493 && true_regnum (IN) == -1))) \
1494 ? GENERAL_REGS \
1495 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1496 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1497 && ! mem_min_alignment ((IN), 8)) \
1498 ? FP_REGS \
1499 : (((TARGET_CM_MEDANY \
1500 && symbolic_operand ((IN), (MODE))) \
1501 || (TARGET_CM_EMBMEDANY \
1502 && text_segment_operand ((IN), (MODE)))) \
1503 && !flag_pic) \
1504 ? GENERAL_REGS \
1505 : NO_REGS)
1507 /* On SPARC it is not possible to directly move data between
1508 GENERAL_REGS and FP_REGS. */
1509 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1510 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1512 /* Return the stack location to use for secondary memory needed reloads.
1513 We want to use the reserved location just below the frame pointer.
1514 However, we must ensure that there is a frame, so use assign_stack_local
1515 if the frame size is zero. */
1516 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1517 (get_frame_size () == 0 \
1518 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1519 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1520 STARTING_FRAME_OFFSET)))
1522 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1523 because the movsi and movsf patterns don't handle r/f moves.
1524 For v8 we copy the default definition. */
1525 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1526 (TARGET_ARCH64 \
1527 ? (GET_MODE_BITSIZE (MODE) < 32 \
1528 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1529 : MODE) \
1530 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1531 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1532 : MODE))
1534 /* Return the maximum number of consecutive registers
1535 needed to represent mode MODE in a register of class CLASS. */
1536 /* On SPARC, this is the size of MODE in words. */
1537 #define CLASS_MAX_NREGS(CLASS, MODE) \
1538 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1539 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1541 /* Stack layout; function entry, exit and calling. */
1543 /* Define the number of register that can hold parameters.
1544 This macro is only used in other macro definitions below and in sparc.c.
1545 MODE is the mode of the argument.
1546 !v9: All args are passed in %o0-%o5.
1547 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1548 See the description in sparc.c. */
1549 #define NPARM_REGS(MODE) \
1550 (TARGET_ARCH64 \
1551 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1552 : 6)
1554 /* Define this if pushing a word on the stack
1555 makes the stack pointer a smaller address. */
1556 #define STACK_GROWS_DOWNWARD
1558 /* Define this if the nominal address of the stack frame
1559 is at the high-address end of the local variables;
1560 that is, each additional local variable allocated
1561 goes at a more negative offset in the frame. */
1562 #define FRAME_GROWS_DOWNWARD
1564 /* Offset within stack frame to start allocating local variables at.
1565 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1566 first local allocated. Otherwise, it is the offset to the BEGINNING
1567 of the first local allocated. */
1568 /* This allows space for one TFmode floating point value. */
1569 #define STARTING_FRAME_OFFSET \
1570 (TARGET_ARCH64 ? -16 \
1571 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1573 /* If we generate an insn to push BYTES bytes,
1574 this says how many the stack pointer really advances by.
1575 On SPARC, don't define this because there are no push insns. */
1576 /* #define PUSH_ROUNDING(BYTES) */
1578 /* Offset of first parameter from the argument pointer register value.
1579 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1580 even if this function isn't going to use it.
1581 v9: This is 128 for the ins and locals. */
1582 #define FIRST_PARM_OFFSET(FNDECL) \
1583 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1585 /* Offset from the argument pointer register value to the CFA.
1586 This is different from FIRST_PARM_OFFSET because the register window
1587 comes between the CFA and the arguments. */
1588 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1590 /* When a parameter is passed in a register, stack space is still
1591 allocated for it.
1592 !v9: All 6 possible integer registers have backing store allocated.
1593 v9: Only space for the arguments passed is allocated. */
1594 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1595 meaning to the backend. Further, we need to be able to detect if a
1596 varargs/unprototyped function is called, as they may want to spill more
1597 registers than we've provided space. Ugly, ugly. So for now we retain
1598 all 6 slots even for v9. */
1599 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1601 /* Definitions for register elimination. */
1602 /* ??? In TARGET_FLAT mode we needn't have a hard frame pointer. */
1604 #define ELIMINABLE_REGS \
1605 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1606 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1608 /* The way this is structured, we can't eliminate SFP in favor of SP
1609 if the frame pointer is required: we want to use the SFP->HFP elimination
1610 in that case. But the test in update_eliminables doesn't know we are
1611 assuming below that we only do the former elimination. */
1612 #define CAN_ELIMINATE(FROM, TO) \
1613 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1615 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1616 do { \
1617 (OFFSET) = 0; \
1618 if ((TO) == STACK_POINTER_REGNUM) \
1620 /* Note, we always pretend that this is a leaf function \
1621 because if it's not, there's no point in trying to \
1622 eliminate the frame pointer. If it is a leaf \
1623 function, we guessed right! */ \
1624 if (TARGET_FLAT) \
1625 (OFFSET) = \
1626 sparc_flat_compute_frame_size (get_frame_size ()); \
1627 else \
1628 (OFFSET) = compute_frame_size (get_frame_size (), 1); \
1630 (OFFSET) += SPARC_STACK_BIAS; \
1631 } while (0)
1633 /* Keep the stack pointer constant throughout the function.
1634 This is both an optimization and a necessity: longjmp
1635 doesn't behave itself when the stack pointer moves within
1636 the function! */
1637 #define ACCUMULATE_OUTGOING_ARGS 1
1639 /* Value is the number of bytes of arguments automatically
1640 popped when returning from a subroutine call.
1641 FUNDECL is the declaration node of the function (as a tree),
1642 FUNTYPE is the data type of the function (as a tree),
1643 or for a library call it is an identifier node for the subroutine name.
1644 SIZE is the number of bytes of arguments passed on the stack. */
1646 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1648 /* Some subroutine macros specific to this machine.
1649 When !TARGET_FPU, put float return values in the general registers,
1650 since we don't have any fp registers. */
1651 #define BASE_RETURN_VALUE_REG(MODE) \
1652 (TARGET_ARCH64 \
1653 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1654 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1656 #define BASE_OUTGOING_VALUE_REG(MODE) \
1657 (TARGET_ARCH64 \
1658 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1659 : TARGET_FLAT ? 8 : 24) \
1660 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1661 : (TARGET_FLAT ? 8 : 24)))
1663 #define BASE_PASSING_ARG_REG(MODE) \
1664 (TARGET_ARCH64 \
1665 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1666 : 8)
1668 /* ??? FIXME -- seems wrong for v9 structure passing... */
1669 #define BASE_INCOMING_ARG_REG(MODE) \
1670 (TARGET_ARCH64 \
1671 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1672 : TARGET_FLAT ? 8 : 24) \
1673 : (TARGET_FLAT ? 8 : 24))
1675 /* Define this macro if the target machine has "register windows". This
1676 C expression returns the register number as seen by the called function
1677 corresponding to register number OUT as seen by the calling function.
1678 Return OUT if register number OUT is not an outbound register. */
1680 #define INCOMING_REGNO(OUT) \
1681 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1683 /* Define this macro if the target machine has "register windows". This
1684 C expression returns the register number as seen by the calling function
1685 corresponding to register number IN as seen by the called function.
1686 Return IN if register number IN is not an inbound register. */
1688 #define OUTGOING_REGNO(IN) \
1689 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1691 /* Define this macro if the target machine has register windows. This
1692 C expression returns true if the register is call-saved but is in the
1693 register window. */
1695 #define LOCAL_REGNO(REGNO) \
1696 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1698 /* Define how to find the value returned by a function.
1699 VALTYPE is the data type of the value (as a tree).
1700 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1701 otherwise, FUNC is 0. */
1703 /* On SPARC the value is found in the first "output" register. */
1705 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1706 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1708 /* But the called function leaves it in the first "input" register. */
1710 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1711 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1713 /* Define how to find the value returned by a library function
1714 assuming the value has mode MODE. */
1716 #define LIBCALL_VALUE(MODE) \
1717 function_value (NULL_TREE, (MODE), 1)
1719 /* 1 if N is a possible register number for a function value
1720 as seen by the caller.
1721 On SPARC, the first "output" reg is used for integer values,
1722 and the first floating point register is used for floating point values. */
1724 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1726 /* Define the size of space to allocate for the return value of an
1727 untyped_call. */
1729 #define APPLY_RESULT_SIZE 16
1731 /* 1 if N is a possible register number for function argument passing.
1732 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1734 #define FUNCTION_ARG_REGNO_P(N) \
1735 (TARGET_ARCH64 \
1736 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1737 : ((N) >= 8 && (N) <= 13))
1739 /* Define a data type for recording info about an argument list
1740 during the scan of that argument list. This data type should
1741 hold all necessary information about the function itself
1742 and about the args processed so far, enough to enable macros
1743 such as FUNCTION_ARG to determine where the next arg should go.
1745 On SPARC (!v9), this is a single integer, which is a number of words
1746 of arguments scanned so far (including the invisible argument,
1747 if any, which holds the structure-value-address).
1748 Thus 7 or more means all following args should go on the stack.
1750 For v9, we also need to know whether a prototype is present. */
1752 struct sparc_args {
1753 int words; /* number of words passed so far */
1754 int prototype_p; /* nonzero if a prototype is present */
1755 int libcall_p; /* nonzero if a library call */
1757 #define CUMULATIVE_ARGS struct sparc_args
1759 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1760 for a call to a function whose data type is FNTYPE.
1761 For a library call, FNTYPE is 0. */
1763 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1764 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1766 /* Update the data in CUM to advance over an argument
1767 of mode MODE and data type TYPE.
1768 TYPE is null for libcalls where that information may not be available. */
1770 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1771 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1773 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1775 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1776 ((TYPE) != 0 \
1777 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1778 || TREE_ADDRESSABLE (TYPE)))
1780 /* Determine where to put an argument to a function.
1781 Value is zero to push the argument on the stack,
1782 or a hard register in which to store the argument.
1784 MODE is the argument's machine mode.
1785 TYPE is the data type of the argument (as a tree).
1786 This is null for libcalls where that information may
1787 not be available.
1788 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1789 the preceding args and about the function being called.
1790 NAMED is nonzero if this argument is a named parameter
1791 (otherwise it is an extra parameter matching an ellipsis). */
1793 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1794 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1796 /* Define where a function finds its arguments.
1797 This is different from FUNCTION_ARG because of register windows. */
1799 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1800 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1802 /* For an arg passed partly in registers and partly in memory,
1803 this is the number of registers used.
1804 For args passed entirely in registers or entirely in memory, zero. */
1806 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1807 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1809 /* A C expression that indicates when an argument must be passed by reference.
1810 If nonzero for an argument, a copy of that argument is made in memory and a
1811 pointer to the argument is passed instead of the argument itself.
1812 The pointer is passed in whatever way is appropriate for passing a pointer
1813 to that type. */
1815 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1816 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1818 /* If defined, a C expression which determines whether, and in which direction,
1819 to pad out an argument with extra space. The value should be of type
1820 `enum direction': either `upward' to pad above the argument,
1821 `downward' to pad below, or `none' to inhibit padding. */
1823 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1824 function_arg_padding ((MODE), (TYPE))
1826 /* If defined, a C expression that gives the alignment boundary, in bits,
1827 of an argument with the specified mode and type. If it is not defined,
1828 PARM_BOUNDARY is used for all arguments.
1829 For sparc64, objects requiring 16 byte alignment are passed that way. */
1831 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1832 ((TARGET_ARCH64 \
1833 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1834 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1835 ? 128 : PARM_BOUNDARY)
1837 /* Define the information needed to generate branch and scc insns. This is
1838 stored from the compare operation. Note that we can't use "rtx" here
1839 since it hasn't been defined! */
1841 extern GTY(()) rtx sparc_compare_op0;
1842 extern GTY(()) rtx sparc_compare_op1;
1845 /* Generate the special assembly code needed to tell the assembler whatever
1846 it might need to know about the return value of a function.
1848 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1849 information to the assembler relating to peephole optimization (done in
1850 the assembler). */
1852 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1853 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1855 /* Output the special assembly code needed to tell the assembler some
1856 register is used as global register variable.
1858 SPARC 64bit psABI declares registers %g2 and %g3 as application
1859 registers and %g6 and %g7 as OS registers. Any object using them
1860 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1861 and how they are used (scratch or some global variable).
1862 Linker will then refuse to link together objects which use those
1863 registers incompatibly.
1865 Unless the registers are used for scratch, two different global
1866 registers cannot be declared to the same name, so in the unlikely
1867 case of a global register variable occupying more than one register
1868 we prefix the second and following registers with .gnu.part1. etc. */
1870 extern char sparc_hard_reg_printed[8];
1872 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1873 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1874 do { \
1875 if (TARGET_ARCH64) \
1877 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1878 int reg; \
1879 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1880 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1882 if (reg == (REGNO)) \
1883 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1884 else \
1885 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1886 reg, reg - (REGNO), (NAME)); \
1887 sparc_hard_reg_printed[reg] = 1; \
1890 } while (0)
1891 #endif
1894 /* Emit rtl for profiling. */
1895 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1897 /* All the work done in PROFILE_HOOK, but still required. */
1898 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1900 /* Set the name of the mcount function for the system. */
1901 #define MCOUNT_FUNCTION "*mcount"
1903 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1904 the stack pointer does not matter. The value is tested only in
1905 functions that have frame pointers.
1906 No definition is equivalent to always zero. */
1908 #define EXIT_IGNORE_STACK \
1909 (get_frame_size () != 0 \
1910 || current_function_calls_alloca || current_function_outgoing_args_size)
1912 #define DELAY_SLOTS_FOR_EPILOGUE \
1913 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1914 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1915 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1916 : eligible_for_epilogue_delay (trial, slots_filled))
1918 /* Define registers used by the epilogue and return instruction. */
1919 #define EPILOGUE_USES(REGNO) \
1920 (!TARGET_FLAT && REGNO == 31)
1922 /* Length in units of the trampoline for entering a nested function. */
1924 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1926 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1928 /* Emit RTL insns to initialize the variable parts of a trampoline.
1929 FNADDR is an RTX for the address of the function's pure code.
1930 CXT is an RTX for the static chain value for the function. */
1932 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1933 if (TARGET_ARCH64) \
1934 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1935 else \
1936 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1938 /* Generate necessary RTL for __builtin_saveregs(). */
1940 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1942 /* Implement `va_start' for varargs and stdarg. */
1943 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1944 sparc_va_start (valist, nextarg)
1946 /* Implement `va_arg'. */
1947 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1948 sparc_va_arg (valist, type)
1950 /* Define this macro if the location where a function argument is passed
1951 depends on whether or not it is a named argument.
1953 This macro controls how the NAMED argument to FUNCTION_ARG
1954 is set for varargs and stdarg functions. With this macro defined,
1955 the NAMED argument is always true for named arguments, and false for
1956 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
1957 is defined, then all arguments are treated as named. Otherwise, all named
1958 arguments except the last are treated as named.
1959 For the v9 we want NAMED to mean what it says it means. */
1961 #define STRICT_ARGUMENT_NAMING TARGET_V9
1963 /* Generate RTL to flush the register windows so as to make arbitrary frames
1964 available. */
1965 #define SETUP_FRAME_ADDRESSES() \
1966 emit_insn (gen_flush_register_windows ())
1968 /* Given an rtx for the address of a frame,
1969 return an rtx for the address of the word in the frame
1970 that holds the dynamic chain--the previous frame's address.
1971 ??? -mflat support? */
1972 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1973 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1975 /* The return address isn't on the stack, it is in a register, so we can't
1976 access it from the current frame pointer. We can access it from the
1977 previous frame pointer though by reading a value from the register window
1978 save area. */
1979 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1981 /* This is the offset of the return address to the true next instruction to be
1982 executed for the current function. */
1983 #define RETURN_ADDR_OFFSET \
1984 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1986 /* The current return address is in %i7. The return address of anything
1987 farther back is in the register window save area at [%fp+60]. */
1988 /* ??? This ignores the fact that the actual return address is +8 for normal
1989 returns, and +12 for structure returns. */
1990 #define RETURN_ADDR_RTX(count, frame) \
1991 ((count == -1) \
1992 ? gen_rtx_REG (Pmode, 31) \
1993 : gen_rtx_MEM (Pmode, \
1994 memory_address (Pmode, plus_constant (frame, \
1995 15 * UNITS_PER_WORD \
1996 + SPARC_STACK_BIAS))))
1998 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1999 +12, but always using +8 is close enough for frame unwind purposes.
2000 Actually, just using %o7 is close enough for unwinding, but %o7+8
2001 is something you can return to. */
2002 #define INCOMING_RETURN_ADDR_RTX \
2003 plus_constant (gen_rtx_REG (word_mode, 15), 8)
2004 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
2006 /* The offset from the incoming value of %sp to the top of the stack frame
2007 for the current function. On sparc64, we have to account for the stack
2008 bias if present. */
2009 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2011 /* Describe how we implement __builtin_eh_return. */
2012 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2013 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
2014 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
2016 /* Select a format to encode pointers in exception handling data. CODE
2017 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2018 true if the symbol may be affected by dynamic relocations.
2020 If assembler and linker properly support .uaword %r_disp32(foo),
2021 then use PC relative 32-bit relocations instead of absolute relocs
2022 for shared libraries. On sparc64, use pc relative 32-bit relocs even
2023 for binaries, to save memory.
2025 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
2026 symbol %r_disp32() is against was not local, but .hidden. In that
2027 case, we have to use DW_EH_PE_absptr for pic personality. */
2028 #ifdef HAVE_AS_SPARC_UA_PCREL
2029 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
2030 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2031 (flag_pic \
2032 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2033 : ((TARGET_ARCH64 && ! GLOBAL) \
2034 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2035 : DW_EH_PE_absptr))
2036 #else
2037 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2038 (flag_pic \
2039 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
2040 : ((TARGET_ARCH64 && ! GLOBAL) \
2041 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2042 : DW_EH_PE_absptr))
2043 #endif
2045 /* Emit a PC-relative relocation. */
2046 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2047 do { \
2048 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2049 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
2050 assemble_name (FILE, LABEL); \
2051 fputc (')', FILE); \
2052 } while (0)
2053 #endif
2055 /* Addressing modes, and classification of registers for them. */
2057 /* Macros to check register numbers against specific register classes. */
2059 /* These assume that REGNO is a hard or pseudo reg number.
2060 They give nonzero only if REGNO is a hard reg of the suitable class
2061 or a pseudo reg currently allocated to a suitable hard reg.
2062 Since they use reg_renumber, they are safe only once reg_renumber
2063 has been allocated, which happens in local-alloc.c. */
2065 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2066 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
2067 || (REGNO) == FRAME_POINTER_REGNUM \
2068 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
2070 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
2072 #define REGNO_OK_FOR_FP_P(REGNO) \
2073 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2074 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2075 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2076 (TARGET_V9 \
2077 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2078 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2080 /* Now macros that check whether X is a register and also,
2081 strictly, whether it is in a specified class.
2083 These macros are specific to the SPARC, and may be used only
2084 in code for printing assembler insns and in conditions for
2085 define_optimization. */
2087 /* 1 if X is an fp register. */
2089 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2091 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2092 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2094 /* Maximum number of registers that can appear in a valid memory address. */
2096 #define MAX_REGS_PER_ADDRESS 2
2098 /* Recognize any constant value that is a valid address.
2099 When PIC, we do not accept an address that would require a scratch reg
2100 to load into a register. */
2102 #define CONSTANT_ADDRESS_P(X) \
2103 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2104 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2105 || (GET_CODE (X) == CONST \
2106 && ! (flag_pic && pic_address_needs_scratch (X))))
2108 /* Define this, so that when PIC, reload won't try to reload invalid
2109 addresses which require two reload registers. */
2111 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2113 /* Nonzero if the constant value X is a legitimate general operand.
2114 Anything can be made to work except floating point constants.
2115 If TARGET_VIS, 0.0 can be made to work as well. */
2117 #define LEGITIMATE_CONSTANT_P(X) \
2118 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2119 (TARGET_VIS && \
2120 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2121 GET_MODE (X) == TFmode) && \
2122 fp_zero_operand (X, GET_MODE (X))))
2124 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2125 and check its validity for a certain class.
2126 We have two alternate definitions for each of them.
2127 The usual definition accepts all pseudo regs; the other rejects
2128 them unless they have been allocated suitable hard regs.
2129 The symbol REG_OK_STRICT causes the latter definition to be used.
2131 Most source files want to accept pseudo regs in the hope that
2132 they will get allocated to the class that the insn wants them to be in.
2133 Source files for reload pass need to be strict.
2134 After reload, it makes no difference, since pseudo regs have
2135 been eliminated by then. */
2137 /* Optional extra constraints for this machine.
2139 'Q' handles floating point constants which can be moved into
2140 an integer register with a single sethi instruction.
2142 'R' handles floating point constants which can be moved into
2143 an integer register with a single mov instruction.
2145 'S' handles floating point constants which can be moved into
2146 an integer register using a high/lo_sum sequence.
2148 'T' handles memory addresses where the alignment is known to
2149 be at least 8 bytes.
2151 `U' handles all pseudo registers or a hard even numbered
2152 integer register, needed for ldd/std instructions.
2154 'W' handles the memory operand when moving operands in/out
2155 of 'e' constraint floating point registers. */
2157 #ifndef REG_OK_STRICT
2159 /* Nonzero if X is a hard reg that can be used as an index
2160 or if it is a pseudo reg. */
2161 #define REG_OK_FOR_INDEX_P(X) \
2162 (REGNO (X) < 32 \
2163 || REGNO (X) == FRAME_POINTER_REGNUM \
2164 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2166 /* Nonzero if X is a hard reg that can be used as a base reg
2167 or if it is a pseudo reg. */
2168 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2170 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2171 'W' is like 'T' but is assumed true on arch64.
2173 Remember to accept pseudo-registers for memory constraints if reload is
2174 in progress. */
2176 #define EXTRA_CONSTRAINT(OP, C) \
2177 sparc_extra_constraint_check(OP, C, 0)
2179 #else
2181 /* Nonzero if X is a hard reg that can be used as an index. */
2182 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2183 /* Nonzero if X is a hard reg that can be used as a base reg. */
2184 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2186 #define EXTRA_CONSTRAINT(OP, C) \
2187 sparc_extra_constraint_check(OP, C, 1)
2189 #endif
2191 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2193 #ifdef HAVE_AS_OFFSETABLE_LO10
2194 #define USE_AS_OFFSETABLE_LO10 1
2195 #else
2196 #define USE_AS_OFFSETABLE_LO10 0
2197 #endif
2199 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2200 that is a valid memory address for an instruction.
2201 The MODE argument is the machine mode for the MEM expression
2202 that wants to use this address.
2204 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2205 ordinarily. This changes a bit when generating PIC.
2207 If you change this, execute "rm explow.o recog.o reload.o". */
2209 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
2211 #define RTX_OK_FOR_BASE_P(X) \
2212 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2213 || (GET_CODE (X) == SUBREG \
2214 && GET_CODE (SUBREG_REG (X)) == REG \
2215 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2217 #define RTX_OK_FOR_INDEX_P(X) \
2218 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2219 || (GET_CODE (X) == SUBREG \
2220 && GET_CODE (SUBREG_REG (X)) == REG \
2221 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2223 #define RTX_OK_FOR_OFFSET_P(X) \
2224 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2226 #define RTX_OK_FOR_OLO10_P(X) \
2227 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2229 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2230 { if (RTX_OK_FOR_BASE_P (X)) \
2231 goto ADDR; \
2232 else if (GET_CODE (X) == PLUS) \
2234 register rtx op0 = XEXP (X, 0); \
2235 register rtx op1 = XEXP (X, 1); \
2236 if (flag_pic && op0 == pic_offset_table_rtx) \
2238 if (RTX_OK_FOR_BASE_P (op1)) \
2239 goto ADDR; \
2240 else if (flag_pic == 1 \
2241 && GET_CODE (op1) != REG \
2242 && GET_CODE (op1) != LO_SUM \
2243 && GET_CODE (op1) != MEM \
2244 && (! SYMBOLIC_CONST (op1) \
2245 || MODE == Pmode) \
2246 && (GET_CODE (op1) != CONST_INT \
2247 || SMALL_INT (op1))) \
2248 goto ADDR; \
2250 else if (RTX_OK_FOR_BASE_P (op0)) \
2252 if ((RTX_OK_FOR_INDEX_P (op1) \
2253 /* We prohibit REG + REG for TFmode when \
2254 there are no instructions which accept \
2255 REG+REG instructions. We do this \
2256 because REG+REG is not an offsetable \
2257 address. If we get the situation \
2258 in reload where source and destination \
2259 of a movtf pattern are both MEMs with \
2260 REG+REG address, then only one of them \
2261 gets converted to an offsetable \
2262 address. */ \
2263 && (MODE != TFmode \
2264 || (TARGET_FPU && TARGET_ARCH64 \
2265 && TARGET_V9 \
2266 && TARGET_HARD_QUAD)) \
2267 /* We prohibit REG + REG on ARCH32 if \
2268 not optimizing for DFmode/DImode \
2269 because then mem_min_alignment is \
2270 likely to be zero after reload and the \
2271 forced split would lack a matching \
2272 splitter pattern. */ \
2273 && (TARGET_ARCH64 || optimize \
2274 || (MODE != DFmode \
2275 && MODE != DImode))) \
2276 || RTX_OK_FOR_OFFSET_P (op1)) \
2277 goto ADDR; \
2279 else if (RTX_OK_FOR_BASE_P (op1)) \
2281 if ((RTX_OK_FOR_INDEX_P (op0) \
2282 /* See the previous comment. */ \
2283 && (MODE != TFmode \
2284 || (TARGET_FPU && TARGET_ARCH64 \
2285 && TARGET_V9 \
2286 && TARGET_HARD_QUAD)) \
2287 && (TARGET_ARCH64 || optimize \
2288 || (MODE != DFmode \
2289 && MODE != DImode))) \
2290 || RTX_OK_FOR_OFFSET_P (op0)) \
2291 goto ADDR; \
2293 else if (USE_AS_OFFSETABLE_LO10 \
2294 && GET_CODE (op0) == LO_SUM \
2295 && TARGET_ARCH64 \
2296 && ! TARGET_CM_MEDMID \
2297 && RTX_OK_FOR_OLO10_P (op1)) \
2299 register rtx op00 = XEXP (op0, 0); \
2300 register rtx op01 = XEXP (op0, 1); \
2301 if (RTX_OK_FOR_BASE_P (op00) \
2302 && CONSTANT_P (op01)) \
2303 goto ADDR; \
2305 else if (USE_AS_OFFSETABLE_LO10 \
2306 && GET_CODE (op1) == LO_SUM \
2307 && TARGET_ARCH64 \
2308 && ! TARGET_CM_MEDMID \
2309 && RTX_OK_FOR_OLO10_P (op0)) \
2311 register rtx op10 = XEXP (op1, 0); \
2312 register rtx op11 = XEXP (op1, 1); \
2313 if (RTX_OK_FOR_BASE_P (op10) \
2314 && CONSTANT_P (op11)) \
2315 goto ADDR; \
2318 else if (GET_CODE (X) == LO_SUM) \
2320 register rtx op0 = XEXP (X, 0); \
2321 register rtx op1 = XEXP (X, 1); \
2322 if (RTX_OK_FOR_BASE_P (op0) \
2323 && CONSTANT_P (op1) \
2324 /* We can't allow TFmode, because an offset \
2325 greater than or equal to the alignment (8) \
2326 may cause the LO_SUM to overflow if !v9. */\
2327 && (MODE != TFmode || TARGET_V9)) \
2328 goto ADDR; \
2330 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2331 goto ADDR; \
2334 /* Go to LABEL if ADDR (a legitimate address expression)
2335 has an effect that depends on the machine mode it is used for.
2337 In PIC mode,
2339 (mem:HI [%l7+a])
2341 is not equivalent to
2343 (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
2345 because [%l7+a+1] is interpreted as the address of (a+1). */
2347 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2349 if (flag_pic == 1) \
2351 if (GET_CODE (ADDR) == PLUS) \
2353 rtx op0 = XEXP (ADDR, 0); \
2354 rtx op1 = XEXP (ADDR, 1); \
2355 if (op0 == pic_offset_table_rtx \
2356 && SYMBOLIC_CONST (op1)) \
2357 goto LABEL; \
2362 /* Try machine-dependent ways of modifying an illegitimate address
2363 to be legitimate. If we find one, return the new, valid address.
2364 This macro is used in only one place: `memory_address' in explow.c.
2366 OLDX is the address as it was before break_out_memory_refs was called.
2367 In some cases it is useful to look at this to decide what needs to be done.
2369 MODE and WIN are passed so that this macro can use
2370 GO_IF_LEGITIMATE_ADDRESS.
2372 It is always safe for this macro to do nothing. It exists to recognize
2373 opportunities to optimize the output. */
2375 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2376 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2377 { rtx sparc_x = (X); \
2378 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2379 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2380 force_operand (XEXP (X, 0), NULL_RTX)); \
2381 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2382 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2383 force_operand (XEXP (X, 1), NULL_RTX)); \
2384 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2385 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2386 XEXP (X, 1)); \
2387 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2388 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2389 force_operand (XEXP (X, 1), NULL_RTX)); \
2390 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2391 goto WIN; \
2392 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2393 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2394 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2395 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2396 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2397 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2398 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2399 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2400 || GET_CODE (X) == LABEL_REF) \
2401 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2402 if (memory_address_p (MODE, X)) \
2403 goto WIN; }
2405 /* Try a machine-dependent way of reloading an illegitimate address
2406 operand. If we find one, push the reload and jump to WIN. This
2407 macro is used in only one place: `find_reloads_address' in reload.c.
2409 For SPARC 32, we wish to handle addresses by splitting them into
2410 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2411 This cuts the number of extra insns by one.
2413 Do nothing when generating PIC code and the address is a
2414 symbolic operand or requires a scratch register. */
2416 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2417 do { \
2418 /* Decompose SImode constants into hi+lo_sum. We do have to \
2419 rerecognize what we produce, so be careful. */ \
2420 if (CONSTANT_P (X) \
2421 && (MODE != TFmode || TARGET_ARCH64) \
2422 && GET_MODE (X) == SImode \
2423 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2424 && ! (flag_pic \
2425 && (symbolic_operand (X, Pmode) \
2426 || pic_address_needs_scratch (X))) \
2427 && sparc_cmodel <= CM_MEDLOW) \
2429 X = gen_rtx_LO_SUM (GET_MODE (X), \
2430 gen_rtx_HIGH (GET_MODE (X), X), X); \
2431 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2432 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2433 OPNUM, TYPE); \
2434 goto WIN; \
2436 /* ??? 64-bit reloads. */ \
2437 } while (0)
2439 /* Specify the machine mode that this machine uses
2440 for the index in the tablejump instruction. */
2441 /* If we ever implement any of the full models (such as CM_FULLANY),
2442 this has to be DImode in that case */
2443 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2444 #define CASE_VECTOR_MODE \
2445 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2446 #else
2447 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2448 we have to sign extend which slows things down. */
2449 #define CASE_VECTOR_MODE \
2450 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2451 #endif
2453 /* Define as C expression which evaluates to nonzero if the tablejump
2454 instruction expects the table to contain offsets from the address of the
2455 table.
2456 Do not define this if the table should contain absolute addresses. */
2457 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2459 /* Define this as 1 if `char' should by default be signed; else as 0. */
2460 #define DEFAULT_SIGNED_CHAR 1
2462 /* Max number of bytes we can move from memory to memory
2463 in one reasonably fast instruction. */
2464 #define MOVE_MAX 8
2466 #if 0 /* Sun 4 has matherr, so this is no good. */
2467 /* This is the value of the error code EDOM for this machine,
2468 used by the sqrt instruction. */
2469 #define TARGET_EDOM 33
2471 /* This is how to refer to the variable errno. */
2472 #define GEN_ERRNO_RTX \
2473 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2474 #endif /* 0 */
2476 /* Define if operations between registers always perform the operation
2477 on the full register even if a narrower mode is specified. */
2478 #define WORD_REGISTER_OPERATIONS
2480 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2481 will either zero-extend or sign-extend. The value of this macro should
2482 be the code that says which one of the two operations is implicitly
2483 done, NIL if none. */
2484 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2486 /* Nonzero if access to memory by bytes is slow and undesirable.
2487 For RISC chips, it means that access to memory by bytes is no
2488 better than access by words when possible, so grab a whole word
2489 and maybe make use of that. */
2490 #define SLOW_BYTE_ACCESS 1
2492 /* We assume that the store-condition-codes instructions store 0 for false
2493 and some other value for true. This is the value stored for true. */
2495 #define STORE_FLAG_VALUE 1
2497 /* When a prototype says `char' or `short', really pass an `int'. */
2498 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2500 /* Define this to be nonzero if shift instructions ignore all but the low-order
2501 few bits. */
2502 #define SHIFT_COUNT_TRUNCATED 1
2504 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2505 is done just by pretending it is already truncated. */
2506 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2508 /* Specify the machine mode that pointers have.
2509 After generation of rtl, the compiler makes no further distinction
2510 between pointers and any other objects of this machine mode. */
2511 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2513 /* Generate calls to memcpy, memcmp and memset. */
2514 #define TARGET_MEM_FUNCTIONS
2516 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2517 return the mode to be used for the comparison. For floating-point,
2518 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2519 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2520 processing is needed. */
2521 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2523 /* Return nonzero if MODE implies a floating point inequality can be
2524 reversed. For SPARC this is always true because we have a full
2525 compliment of ordered and unordered comparisons, but until generic
2526 code knows how to reverse it correctly we keep the old definition. */
2527 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2529 /* A function address in a call instruction for indexing purposes. */
2530 #define FUNCTION_MODE Pmode
2532 /* Define this if addresses of constant functions
2533 shouldn't be put through pseudo regs where they can be cse'd.
2534 Desirable on machines where ordinary constants are expensive
2535 but a CALL with constant address is cheap. */
2536 #define NO_FUNCTION_CSE
2538 /* alloca should avoid clobbering the old register save area. */
2539 #define SETJMP_VIA_SAVE_AREA
2541 /* Define subroutines to call to handle multiply and divide.
2542 Use the subroutines that Sun's library provides.
2543 The `*' prevents an underscore from being prepended by the compiler. */
2545 #define DIVSI3_LIBCALL "*.div"
2546 #define UDIVSI3_LIBCALL "*.udiv"
2547 #define MODSI3_LIBCALL "*.rem"
2548 #define UMODSI3_LIBCALL "*.urem"
2549 /* .umul is a little faster than .mul. */
2550 #define MULSI3_LIBCALL "*.umul"
2552 /* Define library calls for quad FP operations. These are all part of the
2553 SPARC 32bit ABI. */
2554 #define ADDTF3_LIBCALL "_Q_add"
2555 #define SUBTF3_LIBCALL "_Q_sub"
2556 #define NEGTF2_LIBCALL "_Q_neg"
2557 #define MULTF3_LIBCALL "_Q_mul"
2558 #define DIVTF3_LIBCALL "_Q_div"
2559 #define FLOATSITF2_LIBCALL "_Q_itoq"
2560 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2561 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2562 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2563 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2564 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2565 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2566 #define EQTF2_LIBCALL "_Q_feq"
2567 #define NETF2_LIBCALL "_Q_fne"
2568 #define GTTF2_LIBCALL "_Q_fgt"
2569 #define GETF2_LIBCALL "_Q_fge"
2570 #define LTTF2_LIBCALL "_Q_flt"
2571 #define LETF2_LIBCALL "_Q_fle"
2573 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2574 that the inputs are fully consumed before the output memory is clobbered. */
2576 #define TARGET_BUGGY_QP_LIB 0
2578 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2579 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2580 and the compiler will notice and try to use the TFmode sqrt instruction
2581 for calls to the builtin function sqrt, but this fails. */
2582 #define INIT_TARGET_OPTABS \
2583 do { \
2584 if (TARGET_ARCH32) \
2586 add_optab->handlers[(int) TFmode].libfunc \
2587 = init_one_libfunc (ADDTF3_LIBCALL); \
2588 sub_optab->handlers[(int) TFmode].libfunc \
2589 = init_one_libfunc (SUBTF3_LIBCALL); \
2590 neg_optab->handlers[(int) TFmode].libfunc \
2591 = init_one_libfunc (NEGTF2_LIBCALL); \
2592 smul_optab->handlers[(int) TFmode].libfunc \
2593 = init_one_libfunc (MULTF3_LIBCALL); \
2594 sdiv_optab->handlers[(int) TFmode].libfunc \
2595 = init_one_libfunc (DIVTF3_LIBCALL); \
2596 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2597 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2598 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2599 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2600 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2601 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2602 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2603 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2604 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2605 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2606 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2607 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2608 fixunstfsi_libfunc \
2609 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2610 if (TARGET_FPU) \
2611 sqrt_optab->handlers[(int) TFmode].libfunc \
2612 = init_one_libfunc ("_Q_sqrt"); \
2614 if (TARGET_ARCH64) \
2616 /* In the SPARC 64bit ABI, these libfuncs do not exist in the \
2617 library. Make sure the compiler does not emit calls to them \
2618 by accident. */ \
2619 sdiv_optab->handlers[(int) SImode].libfunc = NULL; \
2620 udiv_optab->handlers[(int) SImode].libfunc = NULL; \
2621 smod_optab->handlers[(int) SImode].libfunc = NULL; \
2622 umod_optab->handlers[(int) SImode].libfunc = NULL; \
2623 smul_optab->handlers[(int) SImode].libfunc = NULL; \
2625 INIT_SUBTARGET_OPTABS; \
2626 } while (0)
2628 /* This is meant to be redefined in the host dependent files */
2629 #define INIT_SUBTARGET_OPTABS
2631 /* Nonzero if a floating point comparison library call for
2632 mode MODE that will return a boolean value. Zero if one
2633 of the libgcc2 functions is used. */
2634 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2636 /* Compute extra cost of moving data between one register class
2637 and another. */
2638 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2639 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2640 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2641 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2642 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2643 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2644 || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2646 /* Provide the cost of a branch. For pre-v9 processors we use
2647 a value of 3 to take into account the potential annulling of
2648 the delay slot (which ends up being a bubble in the pipeline slot)
2649 plus a cycle to take into consideration the instruction cache
2650 effects.
2652 On v9 and later, which have branch prediction facilities, we set
2653 it to the depth of the pipeline as that is the cost of a
2654 mispredicted branch. */
2656 #define BRANCH_COST \
2657 ((sparc_cpu == PROCESSOR_V9 \
2658 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2659 ? 7 \
2660 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2661 ? 9 : 3))
2663 #define PREFETCH_BLOCK \
2664 ((sparc_cpu == PROCESSOR_ULTRASPARC \
2665 || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2666 ? 64 : 32)
2668 #define SIMULTANEOUS_PREFETCHES \
2669 ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2670 ? 2 \
2671 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2672 ? 8 : 3))
2674 /* Control the assembler format that we output. */
2676 /* Output at beginning of assembler file. */
2678 #define ASM_FILE_START(file)
2680 /* A C string constant describing how to begin a comment in the target
2681 assembler language. The compiler assumes that the comment will end at
2682 the end of the line. */
2684 #define ASM_COMMENT_START "!"
2686 /* Output to assembler file text saying following lines
2687 may contain character constants, extra white space, comments, etc. */
2689 #define ASM_APP_ON ""
2691 /* Output to assembler file text saying following lines
2692 no longer contain unusual constructs. */
2694 #define ASM_APP_OFF ""
2696 /* ??? Try to make the style consistent here (_OP?). */
2698 #define ASM_FLOAT ".single"
2699 #define ASM_DOUBLE ".double"
2700 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2702 /* How to refer to registers in assembler output.
2703 This sequence is indexed by compiler's hard-register-number (see above). */
2705 #define REGISTER_NAMES \
2706 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2707 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2708 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2709 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2710 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2711 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2712 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2713 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2714 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2715 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2716 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2717 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2718 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2720 /* Define additional names for use in asm clobbers and asm declarations. */
2722 #define ADDITIONAL_REGISTER_NAMES \
2723 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2725 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2726 can run past this up to a continuation point. Once we used 1500, but
2727 a single entry in C++ can run more than 500 bytes, due to the length of
2728 mangled symbol names. dbxout.c should really be fixed to do
2729 continuations when they are actually needed instead of trying to
2730 guess... */
2731 #define DBX_CONTIN_LENGTH 1000
2733 /* This is how to output a command to make the user-level label named NAME
2734 defined for reference from other files. */
2736 /* Globalizing directive for a label. */
2737 #define GLOBAL_ASM_OP "\t.global "
2739 /* The prefix to add to user-visible assembler symbols. */
2741 #define USER_LABEL_PREFIX "_"
2743 /* This is how to store into the string LABEL
2744 the symbol_ref name of an internal numbered label where
2745 PREFIX is the class of label and NUM is the number within the class.
2746 This is suitable for output with `assemble_name'. */
2748 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2749 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2751 /* This is how we hook in and defer the case-vector until the end of
2752 the function. */
2753 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2754 sparc_defer_case_vector ((LAB),(VEC), 0)
2756 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2757 sparc_defer_case_vector ((LAB),(VEC), 1)
2759 /* This is how to output an element of a case-vector that is absolute. */
2761 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2762 do { \
2763 char label[30]; \
2764 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2765 if (CASE_VECTOR_MODE == SImode) \
2766 fprintf (FILE, "\t.word\t"); \
2767 else \
2768 fprintf (FILE, "\t.xword\t"); \
2769 assemble_name (FILE, label); \
2770 fputc ('\n', FILE); \
2771 } while (0)
2773 /* This is how to output an element of a case-vector that is relative.
2774 (SPARC uses such vectors only when generating PIC.) */
2776 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2777 do { \
2778 char label[30]; \
2779 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2780 if (CASE_VECTOR_MODE == SImode) \
2781 fprintf (FILE, "\t.word\t"); \
2782 else \
2783 fprintf (FILE, "\t.xword\t"); \
2784 assemble_name (FILE, label); \
2785 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2786 fputc ('-', FILE); \
2787 assemble_name (FILE, label); \
2788 fputc ('\n', FILE); \
2789 } while (0)
2791 /* This is what to output before and after case-vector (both
2792 relative and absolute). If .subsection -1 works, we put case-vectors
2793 at the beginning of the current section. */
2795 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2797 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2798 fprintf(FILE, "\t.subsection\t-1\n")
2800 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2801 fprintf(FILE, "\t.previous\n")
2803 #endif
2805 /* This is how to output an assembler line
2806 that says to advance the location counter
2807 to a multiple of 2**LOG bytes. */
2809 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2810 if ((LOG) != 0) \
2811 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2813 /* This is how to output an assembler line that says to advance
2814 the location counter to a multiple of 2**LOG bytes using the
2815 "nop" instruction as padding. */
2816 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
2817 if ((LOG) != 0) \
2818 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2820 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2821 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2823 /* This says how to output an assembler line
2824 to define a global common symbol. */
2826 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2827 ( fputs ("\t.common ", (FILE)), \
2828 assemble_name ((FILE), (NAME)), \
2829 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2831 /* This says how to output an assembler line to define a local common
2832 symbol. */
2834 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2835 ( fputs ("\t.reserve ", (FILE)), \
2836 assemble_name ((FILE), (NAME)), \
2837 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
2838 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2840 /* A C statement (sans semicolon) to output to the stdio stream
2841 FILE the assembler definition of uninitialized global DECL named
2842 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2843 Try to use asm_output_aligned_bss to implement this macro. */
2845 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2846 do { \
2847 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2848 } while (0)
2850 #define IDENT_ASM_OP "\t.ident\t"
2852 /* Output #ident as a .ident. */
2854 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2855 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2857 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2858 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
2860 /* Print operand X (an rtx) in assembler syntax to file FILE.
2861 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2862 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2864 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2866 /* Print a memory address as an operand to reference that memory location. */
2868 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2869 { register rtx base, index = 0; \
2870 int offset = 0; \
2871 register rtx addr = ADDR; \
2872 if (GET_CODE (addr) == REG) \
2873 fputs (reg_names[REGNO (addr)], FILE); \
2874 else if (GET_CODE (addr) == PLUS) \
2876 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2877 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2878 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2879 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2880 else \
2881 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2882 if (GET_CODE (base) == LO_SUM) \
2884 if (! USE_AS_OFFSETABLE_LO10 \
2885 || TARGET_ARCH32 \
2886 || TARGET_CM_MEDMID) \
2887 abort (); \
2888 output_operand (XEXP (base, 0), 0); \
2889 fputs ("+%lo(", FILE); \
2890 output_address (XEXP (base, 1)); \
2891 fprintf (FILE, ")+%d", offset); \
2893 else \
2895 fputs (reg_names[REGNO (base)], FILE); \
2896 if (index == 0) \
2897 fprintf (FILE, "%+d", offset); \
2898 else if (GET_CODE (index) == REG) \
2899 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2900 else if (GET_CODE (index) == SYMBOL_REF \
2901 || GET_CODE (index) == CONST) \
2902 fputc ('+', FILE), output_addr_const (FILE, index); \
2903 else abort (); \
2906 else if (GET_CODE (addr) == MINUS \
2907 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2909 output_addr_const (FILE, XEXP (addr, 0)); \
2910 fputs ("-(", FILE); \
2911 output_addr_const (FILE, XEXP (addr, 1)); \
2912 fputs ("-.)", FILE); \
2914 else if (GET_CODE (addr) == LO_SUM) \
2916 output_operand (XEXP (addr, 0), 0); \
2917 if (TARGET_CM_MEDMID) \
2918 fputs ("+%l44(", FILE); \
2919 else \
2920 fputs ("+%lo(", FILE); \
2921 output_address (XEXP (addr, 1)); \
2922 fputc (')', FILE); \
2924 else if (flag_pic && GET_CODE (addr) == CONST \
2925 && GET_CODE (XEXP (addr, 0)) == MINUS \
2926 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2927 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2928 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2930 addr = XEXP (addr, 0); \
2931 output_addr_const (FILE, XEXP (addr, 0)); \
2932 /* Group the args of the second CONST in parenthesis. */ \
2933 fputs ("-(", FILE); \
2934 /* Skip past the second CONST--it does nothing for us. */\
2935 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2936 /* Close the parenthesis. */ \
2937 fputc (')', FILE); \
2939 else \
2941 output_addr_const (FILE, addr); \
2945 /* Define the codes that are matched by predicates in sparc.c. */
2947 #define PREDICATE_CODES \
2948 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2949 {"const1_operand", {CONST_INT}}, \
2950 {"fp_zero_operand", {CONST_DOUBLE}}, \
2951 {"fp_register_operand", {SUBREG, REG}}, \
2952 {"intreg_operand", {SUBREG, REG}}, \
2953 {"fcc_reg_operand", {REG}}, \
2954 {"fcc0_reg_operand", {REG}}, \
2955 {"icc_or_fcc_reg_operand", {REG}}, \
2956 {"restore_operand", {REG}}, \
2957 {"call_operand", {MEM}}, \
2958 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
2959 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
2960 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2961 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2962 {"label_ref_operand", {LABEL_REF}}, \
2963 {"sp64_medium_pic_operand", {CONST}}, \
2964 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
2965 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
2966 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
2967 {"splittable_symbolic_memory_operand", {MEM}}, \
2968 {"splittable_immediate_memory_operand", {MEM}}, \
2969 {"eq_or_neq", {EQ, NE}}, \
2970 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
2971 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2972 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2973 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
2974 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
2975 {"cc_arithop", {AND, IOR, XOR}}, \
2976 {"cc_arithopn", {AND, IOR}}, \
2977 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2978 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
2979 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2980 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
2981 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2982 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2983 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2984 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2985 {"small_int", {CONST_INT}}, \
2986 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
2987 {"uns_small_int", {CONST_INT}}, \
2988 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
2989 {"clobbered_register", {REG}}, \
2990 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
2991 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
2992 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
2994 /* The number of Pmode words for the setjmp buffer. */
2995 #define JMP_BUF_SIZE 12
2997 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)