* config.gcc: Reorganize --with-cpu logic. Set
[official-gcc.git] / gcc / config / pa / pa.h
blob3936d8c31a0ea9d3f97257822d467c12c2d74bb2
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 enum cmp_type /* comparison type */
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
33 /* For long call handling. */
34 extern unsigned long total_code_bytes;
36 /* Which processor to schedule for. */
38 enum processor_type
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
48 /* For -mschedule= option. */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
54 /* Which architecture to generate code for. */
56 enum architecture_type
58 ARCHITECTURE_10,
59 ARCHITECTURE_11,
60 ARCHITECTURE_20
63 struct rtx_def;
65 /* For -march= option. */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
69 /* Print subsidiary information on the compiler version in use. */
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
73 /* Run-time compilation parameters selecting different hardware subsets. */
75 extern int target_flags;
77 /* compile code for HP-PA 1.1 ("Snake"). */
79 #define MASK_PA_11 1
81 /* Disable all FP registers (they all become fixed). This may be necessary
82 for compiling kernels which perform lazy context switching of FP regs.
83 Note if you use this option and try to perform floating point operations
84 the compiler will abort! */
86 #define MASK_DISABLE_FPREGS 2
87 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
89 /* Generate code which assumes that all space register are equivalent.
90 Triggers aggressive unscaled index addressing and faster
91 builtin_return_address. */
92 #define MASK_NO_SPACE_REGS 4
93 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
95 /* Allow unconditional jumps in the delay slots of call instructions. */
96 #define MASK_JUMP_IN_DELAY 8
97 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
99 /* Disable indexed addressing modes. */
100 #define MASK_DISABLE_INDEXING 32
101 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
103 /* Emit code which follows the new portable runtime calling conventions
104 HP wants everyone to use for ELF objects. If at all possible you want
105 to avoid this since it's a performance loss for non-prototyped code.
107 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
108 long-call stubs which is quite expensive. */
109 #define MASK_PORTABLE_RUNTIME 64
110 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
112 /* Emit directives only understood by GAS. This allows parameter
113 relocations to work for static functions. There is no way
114 to make them work the HP assembler at this time. */
115 #define MASK_GAS 128
116 #define TARGET_GAS (target_flags & MASK_GAS)
118 /* Emit code for processors which do not have an FPU. */
119 #define MASK_SOFT_FLOAT 256
120 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
122 /* Use 3-insn load/store sequences for access to large data segments
123 in shared libraries on hpux10. */
124 #define MASK_LONG_LOAD_STORE 512
125 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
127 /* Use a faster sequence for indirect calls. This assumes that calls
128 through function pointers will never cross a space boundary, and
129 that the executable is not dynamically linked. Such assumptions
130 are generally safe for building kernels and statically linked
131 executables. Code compiled with this option will fail miserably if
132 the executable is dynamically linked or uses nested functions! */
133 #define MASK_FAST_INDIRECT_CALLS 1024
134 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
136 /* Generate code with big switch statements to avoid out of range branches
137 occurring within the switch table. */
138 #define MASK_BIG_SWITCH 2048
139 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
141 /* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
142 true when this is true. */
143 #define MASK_PA_20 4096
145 /* Generate cpp defines for server I/O. */
146 #define MASK_SIO 8192
147 #define TARGET_SIO (target_flags & MASK_SIO)
149 /* Assume GNU linker by default. */
150 #define MASK_GNU_LD 16384
151 #ifndef TARGET_GNU_LD
152 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
153 #endif
155 /* Force generation of long calls. */
156 #define MASK_LONG_CALLS 32768
157 #ifndef TARGET_LONG_CALLS
158 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
159 #endif
161 #ifndef TARGET_PA_10
162 #define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
163 #endif
165 #ifndef TARGET_PA_11
166 #define TARGET_PA_11 (target_flags & MASK_PA_11)
167 #endif
169 #ifndef TARGET_PA_20
170 #define TARGET_PA_20 (target_flags & MASK_PA_20)
171 #endif
173 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
174 #ifndef TARGET_64BIT
175 #define TARGET_64BIT 0
176 #endif
178 /* Generate code for ELF32 ABI. */
179 #ifndef TARGET_ELF32
180 #define TARGET_ELF32 0
181 #endif
183 /* Generate code for SOM 32bit ABI. */
184 #ifndef TARGET_SOM
185 #define TARGET_SOM 0
186 #endif
188 /* The following three defines are potential target switches. The current
189 defines are optimal given the current capabilities of GAS and GNU ld. */
191 /* Define to a C expression evaluating to true to use long absolute calls.
192 Currently, only the HP assembler and SOM linker support long absolute
193 calls. They are used only in non-pic code. */
194 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
196 /* Define to a C expression evaluating to true to use long pic symbol
197 difference calls. This is a call variant similar to the long pic
198 pc-relative call. Long pic symbol difference calls are only used with
199 the HP SOM linker. Currently, only the HP assembler supports these
200 calls. GAS doesn't allow an arbritrary difference of two symbols. */
201 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
203 /* Define to a C expression evaluating to true to use long pic
204 pc-relative calls. Long pic pc-relative calls are only used with
205 GAS. Currently, they are usable for calls within a module but
206 not for external calls. */
207 #define TARGET_LONG_PIC_PCREL_CALL 0
209 /* Define to a C expression evaluating to true to use SOM secondary
210 definition symbols for weak support. Linker support for secondary
211 definition symbols is buggy prior to HP-UX 11.X. */
212 #define TARGET_SOM_SDEF 0
214 /* Define to a C expression evaluating to true to save the entry value
215 of SP in the current frame marker. This is normally unnecessary.
216 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
217 HP compilers don't use this flag but it is supported by the assembler.
218 We set this flag to indicate that register %r3 has been saved at the
219 start of the frame. Thus, when the HP unwind library is used, we
220 need to generate additional code to save SP into the frame marker. */
221 #define TARGET_HPUX_UNWIND_LIBRARY 0
223 /* Macro to define tables used to set the flags. This is a
224 list in braces of target switches with each switch being
225 { "NAME", VALUE, "HELP_STRING" }. VALUE is the bits to set,
226 or minus the bits to clear. An empty string NAME is used to
227 identify the default VALUE. Do not mark empty strings for
228 translation. */
230 #define TARGET_SWITCHES \
231 {{ "snake", MASK_PA_11, \
232 N_("Generate PA1.1 code") }, \
233 { "nosnake", -(MASK_PA_11 | MASK_PA_20), \
234 N_("Generate PA1.0 code") }, \
235 { "pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), \
236 N_("Generate PA1.0 code") }, \
237 { "pa-risc-1-1", MASK_PA_11, \
238 N_("Generate PA1.1 code") }, \
239 { "pa-risc-2-0", MASK_PA_20, \
240 N_("Generate PA2.0 code (requires binutils 2.10 or later)") }, \
241 { "disable-fpregs", MASK_DISABLE_FPREGS, \
242 N_("Disable FP regs") }, \
243 { "no-disable-fpregs", -MASK_DISABLE_FPREGS, \
244 N_("Do not disable FP regs") }, \
245 { "no-space-regs", MASK_NO_SPACE_REGS, \
246 N_("Disable space regs") }, \
247 { "space-regs", -MASK_NO_SPACE_REGS, \
248 N_("Do not disable space regs") }, \
249 { "jump-in-delay", MASK_JUMP_IN_DELAY, \
250 N_("Put jumps in call delay slots") }, \
251 { "no-jump-in-delay", -MASK_JUMP_IN_DELAY, \
252 N_("Do not put jumps in call delay slots") }, \
253 { "disable-indexing", MASK_DISABLE_INDEXING, \
254 N_("Disable indexed addressing") }, \
255 { "no-disable-indexing", -MASK_DISABLE_INDEXING, \
256 N_("Do not disable indexed addressing") }, \
257 { "portable-runtime", MASK_PORTABLE_RUNTIME, \
258 N_("Use portable calling conventions") }, \
259 { "no-portable-runtime", -MASK_PORTABLE_RUNTIME, \
260 N_("Do not use portable calling conventions") }, \
261 { "gas", MASK_GAS, \
262 N_("Assume code will be assembled by GAS") }, \
263 { "no-gas", -MASK_GAS, \
264 N_("Do not assume code will be assembled by GAS") }, \
265 { "soft-float", MASK_SOFT_FLOAT, \
266 N_("Use software floating point") }, \
267 { "no-soft-float", -MASK_SOFT_FLOAT, \
268 N_("Do not use software floating point") }, \
269 { "long-load-store", MASK_LONG_LOAD_STORE, \
270 N_("Emit long load/store sequences") }, \
271 { "no-long-load-store", -MASK_LONG_LOAD_STORE, \
272 N_("Do not emit long load/store sequences") }, \
273 { "fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, \
274 N_("Generate fast indirect calls") }, \
275 { "no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, \
276 N_("Do not generate fast indirect calls") }, \
277 { "big-switch", MASK_BIG_SWITCH, \
278 N_("Generate code for huge switch statements") }, \
279 { "no-big-switch", -MASK_BIG_SWITCH, \
280 N_("Do not generate code for huge switch statements") }, \
281 { "long-calls", MASK_LONG_CALLS, \
282 N_("Always generate long calls") }, \
283 { "no-long-calls", -MASK_LONG_CALLS, \
284 N_("Generate long calls only when needed") }, \
285 { "linker-opt", 0, \
286 N_("Enable linker optimizations") }, \
287 SUBTARGET_SWITCHES \
288 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
289 NULL }}
291 #ifndef TARGET_DEFAULT
292 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
293 #endif
295 #ifndef TARGET_CPU_DEFAULT
296 #define TARGET_CPU_DEFAULT 0
297 #endif
299 #ifndef SUBTARGET_SWITCHES
300 #define SUBTARGET_SWITCHES
301 #endif
303 #ifndef TARGET_SCHED_DEFAULT
304 #define TARGET_SCHED_DEFAULT "8000"
305 #endif
307 #define TARGET_OPTIONS \
309 { "schedule=", &pa_cpu_string, \
310 N_("Specify CPU for scheduling purposes"), 0}, \
311 { "arch=", &pa_arch_string, \
312 N_("Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later."), 0}\
315 /* Support for a compile-time default CPU, et cetera. The rules are:
316 --with-schedule is ignored if -mschedule is specified.
317 --with-arch is ignored if -march is specified. */
318 #define OPTION_DEFAULT_SPECS \
319 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
320 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
322 /* Specify the dialect of assembler to use. New mnemonics is dialect one
323 and the old mnemonics are dialect zero. */
324 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
326 #define OVERRIDE_OPTIONS override_options ()
328 /* stabs-in-som is nearly identical to stabs-in-elf. To avoid useless
329 code duplication we simply include this file and override as needed. */
330 #include "dbxelf.h"
332 /* We do not have to be compatible with dbx, so we enable gdb extensions
333 by default. */
334 #define DEFAULT_GDB_EXTENSIONS 1
336 /* This used to be zero (no max length), but big enums and such can
337 cause huge strings which killed gas.
339 We also have to avoid lossage in dbxout.c -- it does not compute the
340 string size accurately, so we are real conservative here. */
341 #undef DBX_CONTIN_LENGTH
342 #define DBX_CONTIN_LENGTH 3000
344 /* Only labels should ever begin in column zero. */
345 #define ASM_STABS_OP "\t.stabs\t"
346 #define ASM_STABN_OP "\t.stabn\t"
348 /* GDB always assumes the current function's frame begins at the value
349 of the stack pointer upon entry to the current function. Accessing
350 local variables and parameters passed on the stack is done using the
351 base of the frame + an offset provided by GCC.
353 For functions which have frame pointers this method works fine;
354 the (frame pointer) == (stack pointer at function entry) and GCC provides
355 an offset relative to the frame pointer.
357 This loses for functions without a frame pointer; GCC provides an offset
358 which is relative to the stack pointer after adjusting for the function's
359 frame size. GDB would prefer the offset to be relative to the value of
360 the stack pointer at the function's entry. Yuk! */
361 #define DEBUGGER_AUTO_OFFSET(X) \
362 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
363 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
365 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
366 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
367 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
369 #define TARGET_CPU_CPP_BUILTINS() \
370 do { \
371 builtin_assert("cpu=hppa"); \
372 builtin_assert("machine=hppa"); \
373 builtin_define("__hppa"); \
374 builtin_define("__hppa__"); \
375 if (TARGET_PA_20) \
376 builtin_define("_PA_RISC2_0"); \
377 else if (TARGET_PA_11) \
378 builtin_define("_PA_RISC1_1"); \
379 else \
380 builtin_define("_PA_RISC1_0"); \
381 } while (0)
383 /* An old set of OS defines for various BSD-like systems. */
384 #define TARGET_OS_CPP_BUILTINS() \
385 do \
387 builtin_define_std ("REVARGV"); \
388 builtin_define_std ("hp800"); \
389 builtin_define_std ("hp9000"); \
390 builtin_define_std ("hp9k8"); \
391 if (c_language != clk_cplusplus \
392 && !flag_iso) \
393 builtin_define ("hppa"); \
394 builtin_define_std ("spectrum"); \
395 builtin_define_std ("unix"); \
396 builtin_assert ("system=bsd"); \
397 builtin_assert ("system=unix"); \
399 while (0)
401 #define CC1_SPEC "%{pg:} %{p:}"
403 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
405 /* We don't want -lg. */
406 #ifndef LIB_SPEC
407 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
408 #endif
410 /* This macro defines command-line switches that modify the default
411 target name.
413 The definition is be an initializer for an array of structures. Each
414 array element has have three elements: the switch name, one of the
415 enumeration codes ADD or DELETE to indicate whether the string should be
416 inserted or deleted, and the string to be inserted or deleted. */
417 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
419 /* Make gcc agree with <machine/ansi.h> */
421 #define SIZE_TYPE "unsigned int"
422 #define PTRDIFF_TYPE "int"
423 #define WCHAR_TYPE "unsigned int"
424 #define WCHAR_TYPE_SIZE 32
426 /* Show we can debug even without a frame pointer. */
427 #define CAN_DEBUG_WITHOUT_FP
429 /* target machine storage layout */
431 /* Define this macro if it is advisable to hold scalars in registers
432 in a wider mode than that declared by the program. In such cases,
433 the value is constrained to be within the bounds of the declared
434 type, but kept valid in the wider mode. The signedness of the
435 extension may differ from that of the type. */
437 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
438 if (GET_MODE_CLASS (MODE) == MODE_INT \
439 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
440 (MODE) = word_mode;
442 /* Define this if most significant bit is lowest numbered
443 in instructions that operate on numbered bit-fields. */
444 #define BITS_BIG_ENDIAN 1
446 /* Define this if most significant byte of a word is the lowest numbered. */
447 /* That is true on the HP-PA. */
448 #define BYTES_BIG_ENDIAN 1
450 /* Define this if most significant word of a multiword number is lowest
451 numbered. */
452 #define WORDS_BIG_ENDIAN 1
454 #define MAX_BITS_PER_WORD 64
455 #define MAX_LONG_TYPE_SIZE 32
457 /* Width of a word, in units (bytes). */
458 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
459 #define MIN_UNITS_PER_WORD 4
461 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
462 #define PARM_BOUNDARY BITS_PER_WORD
464 /* Largest alignment required for any stack parameter, in bits.
465 Don't define this if it is equal to PARM_BOUNDARY */
466 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
468 /* Boundary (in *bits*) on which stack pointer is always aligned;
469 certain optimizations in combine depend on this.
471 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
472 the stack on the 32 and 64-bit ports, respectively. However, we
473 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
474 in main. Thus, we treat the former as the preferred alignment. */
475 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
476 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
478 /* Allocation boundary (in *bits*) for the code of a function. */
479 #define FUNCTION_BOUNDARY BITS_PER_WORD
481 /* Alignment of field after `int : 0' in a structure. */
482 #define EMPTY_FIELD_BOUNDARY 32
484 /* Every structure's size must be a multiple of this. */
485 #define STRUCTURE_SIZE_BOUNDARY 8
487 /* A bit-field declared as `int' forces `int' alignment for the struct. */
488 #define PCC_BITFIELD_TYPE_MATTERS 1
490 /* No data type wants to be aligned rounder than this. */
491 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
493 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
494 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
495 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
497 /* Make arrays of chars word-aligned for the same reasons. */
498 #define DATA_ALIGNMENT(TYPE, ALIGN) \
499 (TREE_CODE (TYPE) == ARRAY_TYPE \
500 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
501 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
503 /* Set this nonzero if move instructions will actually fail to work
504 when given unaligned data. */
505 #define STRICT_ALIGNMENT 1
507 /* Generate calls to memcpy, memcmp and memset. */
508 #define TARGET_MEM_FUNCTIONS
510 /* Value is 1 if it is a good idea to tie two pseudo registers
511 when one has mode MODE1 and one has mode MODE2.
512 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
513 for any hard reg, then this must be 0 for correct output. */
514 #define MODES_TIEABLE_P(MODE1, MODE2) \
515 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
517 /* Specify the registers used for certain standard purposes.
518 The values of these macros are register numbers. */
520 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
521 /* #define PC_REGNUM */
523 /* Register to use for pushing function arguments. */
524 #define STACK_POINTER_REGNUM 30
526 /* Base register for access to local variables of the function. */
527 #define FRAME_POINTER_REGNUM 3
529 /* Value should be nonzero if functions must have frame pointers. */
530 #define FRAME_POINTER_REQUIRED \
531 (current_function_calls_alloca)
533 /* C statement to store the difference between the frame pointer
534 and the stack pointer values immediately after the function prologue.
536 Note, we always pretend that this is a leaf function because if
537 it's not, there's no point in trying to eliminate the
538 frame pointer. If it is a leaf function, we guessed right! */
539 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
540 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
542 /* Base register for access to arguments of the function. */
543 #define ARG_POINTER_REGNUM 3
545 /* Register in which static-chain is passed to a function. */
546 #define STATIC_CHAIN_REGNUM 29
548 /* Register which holds offset table for position-independent
549 data references. */
551 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
552 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
554 /* Function to return the rtx used to save the pic offset table register
555 across function calls. */
556 extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
558 #define DEFAULT_PCC_STRUCT_RETURN 0
560 /* SOM ABI says that objects larger than 64 bits are returned in memory.
561 PA64 ABI says that objects larger than 128 bits are returned in memory.
562 Note, int_size_in_bytes can return -1 if the size of the object is
563 variable or larger than the maximum value that can be expressed as
564 a HOST_WIDE_INT. It can also return zero for an empty type. The
565 simplest way to handle variable and empty types is to pass them in
566 memory. This avoids problems in defining the boundaries of argument
567 slots, allocating registers, etc. */
568 #define RETURN_IN_MEMORY(TYPE) \
569 (int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8) \
570 || int_size_in_bytes (TYPE) <= 0)
572 /* Register in which address to store a structure value
573 is passed to a function. */
574 #define STRUCT_VALUE_REGNUM 28
576 /* Describe how we implement __builtin_eh_return. */
577 #define EH_RETURN_DATA_REGNO(N) \
578 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
579 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
580 #define EH_RETURN_HANDLER_RTX \
581 gen_rtx_MEM (word_mode, \
582 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
583 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
586 /* Offset from the argument pointer register value to the top of
587 stack. This is different from FIRST_PARM_OFFSET because of the
588 frame marker. */
589 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
591 /* The letters I, J, K, L and M in a register constraint string
592 can be used to stand for particular ranges of immediate operands.
593 This macro defines what the ranges are.
594 C is the letter, and VALUE is a constant value.
595 Return 1 if VALUE is in the range specified by C.
597 `I' is used for the 11 bit constants.
598 `J' is used for the 14 bit constants.
599 `K' is used for values that can be moved with a zdepi insn.
600 `L' is used for the 5 bit constants.
601 `M' is used for 0.
602 `N' is used for values with the least significant 11 bits equal to zero
603 and when sign extended from 32 to 64 bits the
604 value does not change.
605 `O' is used for numbers n such that n+1 is a power of 2.
608 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
609 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
610 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
611 : (C) == 'K' ? zdepi_cint_p (VALUE) \
612 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
613 : (C) == 'M' ? (VALUE) == 0 \
614 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
615 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
616 == (HOST_WIDE_INT) -1 << 31)) \
617 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
618 : (C) == 'P' ? and_mask_p (VALUE) \
619 : 0)
621 /* Similar, but for floating or large integer constants, and defining letters
622 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
624 For PA, `G' is the floating-point constant zero. `H' is undefined. */
626 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
627 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
628 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
629 : 0)
631 /* The class value for index registers, and the one for base regs. */
632 #define INDEX_REG_CLASS GENERAL_REGS
633 #define BASE_REG_CLASS GENERAL_REGS
635 #define FP_REG_CLASS_P(CLASS) \
636 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
638 /* True if register is floating-point. */
639 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
641 /* Given an rtx X being reloaded into a reg required to be
642 in class CLASS, return the class of reg to actually use.
643 In general this is just CLASS; but on some machines
644 in some cases it is preferable to use a more restrictive class. */
645 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
647 /* Return the register class of a scratch register needed to copy IN into
648 or out of a register in CLASS in MODE. If it can be done directly
649 NO_REGS is returned.
651 Avoid doing any work for the common case calls. */
653 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
654 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
655 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
656 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
658 /* On the PA it is not possible to directly move data between
659 GENERAL_REGS and FP_REGS. */
660 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
661 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
663 /* Return the stack location to use for secondary memory needed reloads. */
664 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
665 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
668 /* Stack layout; function entry, exit and calling. */
670 /* Define this if pushing a word on the stack
671 makes the stack pointer a smaller address. */
672 /* #define STACK_GROWS_DOWNWARD */
674 /* Believe it or not. */
675 #define ARGS_GROW_DOWNWARD
677 /* Define this if the nominal address of the stack frame
678 is at the high-address end of the local variables;
679 that is, each additional local variable allocated
680 goes at a more negative offset in the frame. */
681 /* #define FRAME_GROWS_DOWNWARD */
683 /* Offset within stack frame to start allocating local variables at.
684 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
685 first local allocated. Otherwise, it is the offset to the BEGINNING
686 of the first local allocated.
688 On the 32-bit ports, we reserve one slot for the previous frame
689 pointer and one fill slot. The fill slot is for compatibility
690 with HP compiled programs. On the 64-bit ports, we reserve one
691 slot for the previous frame pointer. */
692 #define STARTING_FRAME_OFFSET 8
694 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
695 of the stack. The default is to align it to STACK_BOUNDARY. */
696 #define STACK_ALIGNMENT_NEEDED 0
698 /* If we generate an insn to push BYTES bytes,
699 this says how many the stack pointer really advances by.
700 On the HP-PA, don't define this because there are no push insns. */
701 /* #define PUSH_ROUNDING(BYTES) */
703 /* Offset of first parameter from the argument pointer register value.
704 This value will be negated because the arguments grow down.
705 Also note that on STACK_GROWS_UPWARD machines (such as this one)
706 this is the distance from the frame pointer to the end of the first
707 argument, not it's beginning. To get the real offset of the first
708 argument, the size of the argument must be added. */
710 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
712 /* When a parameter is passed in a register, stack space is still
713 allocated for it. */
714 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
716 /* Define this if the above stack space is to be considered part of the
717 space allocated by the caller. */
718 #define OUTGOING_REG_PARM_STACK_SPACE
720 /* Keep the stack pointer constant throughout the function.
721 This is both an optimization and a necessity: longjmp
722 doesn't behave itself when the stack pointer moves within
723 the function! */
724 #define ACCUMULATE_OUTGOING_ARGS 1
726 /* The weird HPPA calling conventions require a minimum of 48 bytes on
727 the stack: 16 bytes for register saves, and 32 bytes for magic.
728 This is the difference between the logical top of stack and the
729 actual sp.
731 On the 64-bit port, the HP C compiler allocates a 48-byte frame
732 marker, although the runtime documentation only describes a 16
733 byte marker. For compatibility, we allocate 48 bytes. */
734 #define STACK_POINTER_OFFSET \
735 (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
737 #define STACK_DYNAMIC_OFFSET(FNDECL) \
738 (TARGET_64BIT \
739 ? (STACK_POINTER_OFFSET) \
740 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
742 /* Value is 1 if returning from a function call automatically
743 pops the arguments described by the number-of-args field in the call.
744 FUNDECL is the declaration node of the function (as a tree),
745 FUNTYPE is the data type of the function (as a tree),
746 or for a library call it is an identifier node for the subroutine name. */
748 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
750 /* Define how to find the value returned by a function.
751 VALTYPE is the data type of the value (as a tree).
752 If the precise function being called is known, FUNC is its FUNCTION_DECL;
753 otherwise, FUNC is 0. */
755 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
757 /* Define how to find the value returned by a library function
758 assuming the value has mode MODE. */
760 #define LIBCALL_VALUE(MODE) \
761 gen_rtx_REG (MODE, \
762 (! TARGET_SOFT_FLOAT \
763 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
765 /* 1 if N is a possible register number for a function value
766 as seen by the caller. */
768 #define FUNCTION_VALUE_REGNO_P(N) \
769 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
772 /* Define a data type for recording info about an argument list
773 during the scan of that argument list. This data type should
774 hold all necessary information about the function itself
775 and about the args processed so far, enough to enable macros
776 such as FUNCTION_ARG to determine where the next arg should go.
778 On the HP-PA, the WORDS field holds the number of words
779 of arguments scanned so far (including the invisible argument,
780 if any, which holds the structure-value-address). Thus, 4 or
781 more means all following args should go on the stack.
783 The INCOMING field tracks whether this is an "incoming" or
784 "outgoing" argument.
786 The INDIRECT field indicates whether this is is an indirect
787 call or not.
789 The NARGS_PROTOTYPE field indicates that an argument does not
790 have a prototype when it less than or equal to 0. */
792 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
794 #define CUMULATIVE_ARGS struct hppa_args
796 /* Initialize a variable CUM of type CUMULATIVE_ARGS
797 for a call to a function whose data type is FNTYPE.
798 For a library call, FNTYPE is 0. */
800 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,FNDECL) \
801 (CUM).words = 0, \
802 (CUM).incoming = 0, \
803 (CUM).indirect = (FNTYPE) && !(FNDECL), \
804 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
805 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
806 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
807 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
808 : 0)
812 /* Similar, but when scanning the definition of a procedure. We always
813 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
815 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
816 (CUM).words = 0, \
817 (CUM).incoming = 1, \
818 (CUM).indirect = 0, \
819 (CUM).nargs_prototype = 1000
821 /* Figure out the size in words of the function argument. The size
822 returned by this macro should always be greater than zero because
823 we pass variable and zero sized objects by reference. */
825 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
826 ((((MODE) != BLKmode \
827 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
828 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
830 /* Update the data in CUM to advance over an argument
831 of mode MODE and data type TYPE.
832 (TYPE is null for libcalls where that information may not be available.) */
834 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
835 { (CUM).nargs_prototype--; \
836 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
837 + (((CUM).words & 01) && (TYPE) != 0 \
838 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
841 /* Determine where to put an argument to a function.
842 Value is zero to push the argument on the stack,
843 or a hard register in which to store the argument.
845 MODE is the argument's machine mode.
846 TYPE is the data type of the argument (as a tree).
847 This is null for libcalls where that information may
848 not be available.
849 CUM is a variable of type CUMULATIVE_ARGS which gives info about
850 the preceding args and about the function being called.
851 NAMED is nonzero if this argument is a named parameter
852 (otherwise it is an extra parameter matching an ellipsis).
854 On the HP-PA the first four words of args are normally in registers
855 and the rest are pushed. But any arg that won't entirely fit in regs
856 is pushed.
858 Arguments passed in registers are either 1 or 2 words long.
860 The caller must make a distinction between calls to explicitly named
861 functions and calls through pointers to functions -- the conventions
862 are different! Calls through pointers to functions only use general
863 registers for the first four argument words.
865 Of course all this is different for the portable runtime model
866 HP wants everyone to use for ELF. Ugh. Here's a quick description
867 of how it's supposed to work.
869 1) callee side remains unchanged. It expects integer args to be
870 in the integer registers, float args in the float registers and
871 unnamed args in integer registers.
873 2) caller side now depends on if the function being called has
874 a prototype in scope (rather than if it's being called indirectly).
876 2a) If there is a prototype in scope, then arguments are passed
877 according to their type (ints in integer registers, floats in float
878 registers, unnamed args in integer registers.
880 2b) If there is no prototype in scope, then floating point arguments
881 are passed in both integer and float registers. egad.
883 FYI: The portable parameter passing conventions are almost exactly like
884 the standard parameter passing conventions on the RS6000. That's why
885 you'll see lots of similar code in rs6000.h. */
887 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
889 /* Do not expect to understand this without reading it several times. I'm
890 tempted to try and simply it, but I worry about breaking something. */
892 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
893 function_arg (&CUM, MODE, TYPE, NAMED)
895 /* Nonzero if we do not know how to pass TYPE solely in registers. */
896 #define MUST_PASS_IN_STACK(MODE,TYPE) \
897 ((TYPE) != 0 \
898 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
899 || TREE_ADDRESSABLE (TYPE)))
901 /* For an arg passed partly in registers and partly in memory,
902 this is the number of registers used.
903 For args passed entirely in registers or entirely in memory, zero. */
905 /* For PA32 there are never split arguments. PA64, on the other hand, can
906 pass arguments partially in registers and partially in memory. */
907 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
908 (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
910 /* If defined, a C expression that gives the alignment boundary, in
911 bits, of an argument with the specified mode and type. If it is
912 not defined, `PARM_BOUNDARY' is used for all arguments. */
914 /* Arguments larger than one word are double word aligned. */
916 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
917 (((TYPE) \
918 ? (integer_zerop (TYPE_SIZE (TYPE)) \
919 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
920 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
921 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
922 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
924 /* In the 32-bit runtime, arguments larger than eight bytes are passed
925 by invisible reference. As a GCC extension, we also pass anything
926 with a zero or variable size by reference.
928 The 64-bit runtime does not describe passing any types by invisible
929 reference. The internals of GCC can't currently handle passing
930 empty structures, and zero or variable length arrays when they are
931 not passed entirely on the stack or by reference. Thus, as a GCC
932 extension, we pass these types by reference. The HP compiler doesn't
933 support these types, so hopefully there shouldn't be any compatibility
934 issues. This may have to be revisited when HP releases a C99 compiler
935 or updates the ABI. */
936 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
937 (TARGET_64BIT \
938 ? ((TYPE) && int_size_in_bytes (TYPE) <= 0) \
939 : (((TYPE) && (int_size_in_bytes (TYPE) > 8 \
940 || int_size_in_bytes (TYPE) <= 0)) \
941 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
943 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
944 FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)
947 extern GTY(()) rtx hppa_compare_op0;
948 extern GTY(()) rtx hppa_compare_op1;
949 extern enum cmp_type hppa_branch_type;
951 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
952 as assembly via FUNCTION_PROFILER. Just output a local label.
953 We can't use the function label because the GAS SOM target can't
954 handle the difference of a global symbol and a local symbol. */
956 #ifndef FUNC_BEGIN_PROLOG_LABEL
957 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
958 #endif
960 #define FUNCTION_PROFILER(FILE, LABEL) \
961 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
963 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
964 void hppa_profile_hook PARAMS ((int label_no));
966 /* The profile counter if emitted must come before the prologue. */
967 #define PROFILE_BEFORE_PROLOGUE 1
969 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
970 the stack pointer does not matter. The value is tested only in
971 functions that have frame pointers.
972 No definition is equivalent to always zero. */
974 extern int may_call_alloca;
976 #define EXIT_IGNORE_STACK \
977 (get_frame_size () != 0 \
978 || current_function_calls_alloca || current_function_outgoing_args_size)
980 /* Output assembler code for a block containing the constant parts
981 of a trampoline, leaving space for the variable parts.\
983 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
984 and then branches to the specified routine.
986 This code template is copied from text segment to stack location
987 and then patched with INITIALIZE_TRAMPOLINE to contain
988 valid values, and then entered as a subroutine.
990 It is best to keep this as small as possible to avoid having to
991 flush multiple lines in the cache. */
993 #define TRAMPOLINE_TEMPLATE(FILE) \
995 if (! TARGET_64BIT) \
997 fputs ("\tldw 36(%r22),%r21\n", FILE); \
998 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
999 if (ASSEMBLER_DIALECT == 0) \
1000 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
1001 else \
1002 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
1003 fputs ("\tldw 4(%r21),%r19\n", FILE); \
1004 fputs ("\tldw 0(%r21),%r21\n", FILE); \
1005 fputs ("\tldsid (%r21),%r1\n", FILE); \
1006 fputs ("\tmtsp %r1,%sr0\n", FILE); \
1007 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
1008 fputs ("\tldw 40(%r22),%r29\n", FILE); \
1009 fputs ("\t.word 0\n", FILE); \
1010 fputs ("\t.word 0\n", FILE); \
1011 fputs ("\t.word 0\n", FILE); \
1012 fputs ("\t.word 0\n", FILE); \
1014 else \
1016 fputs ("\t.dword 0\n", FILE); \
1017 fputs ("\t.dword 0\n", FILE); \
1018 fputs ("\t.dword 0\n", FILE); \
1019 fputs ("\t.dword 0\n", FILE); \
1020 fputs ("\tmfia %r31\n", FILE); \
1021 fputs ("\tldd 24(%r31),%r1\n", FILE); \
1022 fputs ("\tldd 24(%r1),%r27\n", FILE); \
1023 fputs ("\tldd 16(%r1),%r1\n", FILE); \
1024 fputs ("\tbve (%r1)\n", FILE); \
1025 fputs ("\tldd 32(%r31),%r31\n", FILE); \
1026 fputs ("\t.dword 0 ; fptr\n", FILE); \
1027 fputs ("\t.dword 0 ; static link\n", FILE); \
1031 /* Length in units of the trampoline for entering a nested function.
1033 Flush the cache entries corresponding to the first and last addresses
1034 of the trampoline. This is necessary as the trampoline may cross two
1035 cache lines.
1037 If the code part of the trampoline ever grows to > 32 bytes, then it
1038 will become necessary to hack on the cacheflush pattern in pa.md. */
1040 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1042 /* Emit RTL insns to initialize the variable parts of a trampoline.
1043 FNADDR is an RTX for the address of the function's pure code.
1044 CXT is an RTX for the static chain value for the function.
1046 Move the function address to the trampoline template at offset 36.
1047 Move the static chain value to trampoline template at offset 40.
1048 Move the trampoline address to trampoline template at offset 44.
1049 Move r19 to trampoline template at offset 48. The latter two
1050 words create a plabel for the indirect call to the trampoline. */
1052 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1054 if (! TARGET_64BIT) \
1056 rtx start_addr, end_addr; \
1058 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
1059 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1060 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
1061 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1062 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
1063 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (TRAMP)); \
1064 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
1065 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), \
1066 gen_rtx_REG (Pmode, 19)); \
1067 /* fdc and fic only use registers for the address to flush, \
1068 they do not accept integer displacements. */ \
1069 start_addr = force_reg (Pmode, (TRAMP)); \
1070 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1071 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1072 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1073 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1074 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1076 else \
1078 rtx start_addr, end_addr; \
1080 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1081 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1082 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1083 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1084 /* Create a fat pointer for the trampoline. */ \
1085 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1086 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1087 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1088 end_addr = gen_rtx_REG (Pmode, 27); \
1089 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1090 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1091 /* fdc and fic only use registers for the address to flush, \
1092 they do not accept integer displacements. */ \
1093 start_addr = force_reg (Pmode, (TRAMP)); \
1094 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1095 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1096 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1097 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1098 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1102 /* Perform any machine-specific adjustment in the address of the trampoline.
1103 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1104 Adjust the trampoline address to point to the plabel at offset 44. */
1106 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1107 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1109 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
1110 reference the 4 integer arg registers and 4 fp arg registers.
1111 Ordinarily they are not call used registers, but they are for
1112 _builtin_saveregs, so we must make this explicit. */
1114 #define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1116 /* Implement `va_start' for varargs and stdarg. */
1118 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1119 hppa_va_start (valist, nextarg)
1121 /* Implement `va_arg'. */
1123 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1124 hppa_va_arg (valist, type)
1126 /* Addressing modes, and classification of registers for them.
1128 Using autoincrement addressing modes on PA8000 class machines is
1129 not profitable. */
1131 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1132 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1134 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1135 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1137 /* Macros to check register numbers against specific register classes. */
1139 /* These assume that REGNO is a hard or pseudo reg number.
1140 They give nonzero only if REGNO is a hard reg of the suitable class
1141 or a pseudo reg currently allocated to a suitable hard reg.
1142 Since they use reg_renumber, they are safe only once reg_renumber
1143 has been allocated, which happens in local-alloc.c. */
1145 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1146 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1147 #define REGNO_OK_FOR_BASE_P(REGNO) \
1148 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1149 #define REGNO_OK_FOR_FP_P(REGNO) \
1150 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1152 /* Now macros that check whether X is a register and also,
1153 strictly, whether it is in a specified class.
1155 These macros are specific to the HP-PA, and may be used only
1156 in code for printing assembler insns and in conditions for
1157 define_optimization. */
1159 /* 1 if X is an fp register. */
1161 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1163 /* Maximum number of registers that can appear in a valid memory address. */
1165 #define MAX_REGS_PER_ADDRESS 2
1167 /* Recognize any constant value that is a valid address except
1168 for symbolic addresses. We get better CSE by rejecting them
1169 here and allowing hppa_legitimize_address to break them up. We
1170 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1172 #define CONSTANT_ADDRESS_P(X) \
1173 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1174 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1175 || GET_CODE (X) == HIGH) \
1176 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1178 /* Include all constant integers and constant doubles, but not
1179 floating-point, except for floating-point zero.
1181 Reject LABEL_REFs if we're not using gas or the new HP assembler.
1183 ?!? For now also reject CONST_DOUBLES in 64bit mode. This will need
1184 further work. */
1185 #ifndef NEW_HP_ASSEMBLER
1186 #define NEW_HP_ASSEMBLER 0
1187 #endif
1188 #define LEGITIMATE_CONSTANT_P(X) \
1189 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1190 || (X) == CONST0_RTX (GET_MODE (X))) \
1191 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1192 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1193 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1194 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1195 || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31 \
1196 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31) \
1197 || cint_ok_for_move (INTVAL (X)))) \
1198 && !function_label_operand (X, VOIDmode))
1200 /* Subroutine for EXTRA_CONSTRAINT.
1202 Return 1 iff OP is a pseudo which did not get a hard register and
1203 we are running the reload pass. */
1205 #define IS_RELOADING_PSEUDO_P(OP) \
1206 ((reload_in_progress \
1207 && GET_CODE (OP) == REG \
1208 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1209 && reg_renumber [REGNO (OP)] < 0))
1211 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1213 For the HPPA, `Q' means that this is a memory operand but not a
1214 symbolic memory operand. Note that an unassigned pseudo register
1215 is such a memory operand. Needed because reload will generate
1216 these things in insns and then not re-recognize the insns, causing
1217 constrain_operands to fail.
1219 `R' is used for scaled indexed addresses.
1221 `S' is the constant 31.
1223 `T' is for fp loads and stores. */
1224 #define EXTRA_CONSTRAINT(OP, C) \
1225 ((C) == 'Q' ? \
1226 (IS_RELOADING_PSEUDO_P (OP) \
1227 || (GET_CODE (OP) == MEM \
1228 && (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1229 || reload_in_progress) \
1230 && ! symbolic_memory_operand (OP, VOIDmode) \
1231 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1232 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1233 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1234 : ((C) == 'R' ? \
1235 (GET_CODE (OP) == MEM \
1236 && GET_CODE (XEXP (OP, 0)) == PLUS \
1237 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \
1238 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \
1239 && (move_operand (OP, GET_MODE (OP)) \
1240 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1241 || reload_in_progress)) \
1242 : ((C) == 'T' ? \
1243 (GET_CODE (OP) == MEM \
1244 /* Using DFmode forces only short displacements \
1245 to be recognized as valid in reg+d addresses. \
1246 However, this is not necessary for PA2.0 since\
1247 it has long FP loads/stores. \
1249 FIXME: the ELF32 linker clobbers the LSB of \
1250 the FP register number in {fldw,fstw} insns. \
1251 Thus, we only allow long FP loads/stores on \
1252 TARGET_64BIT. */ \
1253 && memory_address_p ((TARGET_PA_20 \
1254 && !TARGET_ELF32 \
1255 ? GET_MODE (OP) \
1256 : DFmode), \
1257 XEXP (OP, 0)) \
1258 && !(GET_CODE (XEXP (OP, 0)) == LO_SUM \
1259 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1260 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))\
1261 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC\
1262 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1263 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1264 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1265 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
1266 : ((C) == 'U' ? \
1267 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) \
1268 : ((C) == 'A' ? \
1269 (GET_CODE (OP) == MEM \
1270 && GET_CODE (XEXP (OP, 0)) == LO_SUM \
1271 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1272 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
1273 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC \
1274 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1275 : ((C) == 'S' ? \
1276 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
1279 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1280 and check its validity for a certain class.
1281 We have two alternate definitions for each of them.
1282 The usual definition accepts all pseudo regs; the other rejects
1283 them unless they have been allocated suitable hard regs.
1284 The symbol REG_OK_STRICT causes the latter definition to be used.
1286 Most source files want to accept pseudo regs in the hope that
1287 they will get allocated to the class that the insn wants them to be in.
1288 Source files for reload pass need to be strict.
1289 After reload, it makes no difference, since pseudo regs have
1290 been eliminated by then. */
1292 #ifndef REG_OK_STRICT
1294 /* Nonzero if X is a hard reg that can be used as an index
1295 or if it is a pseudo reg. */
1296 #define REG_OK_FOR_INDEX_P(X) \
1297 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1298 /* Nonzero if X is a hard reg that can be used as a base reg
1299 or if it is a pseudo reg. */
1300 #define REG_OK_FOR_BASE_P(X) \
1301 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1303 #else
1305 /* Nonzero if X is a hard reg that can be used as an index. */
1306 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1307 /* Nonzero if X is a hard reg that can be used as a base reg. */
1308 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1310 #endif
1312 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1313 that is a valid memory address for an instruction.
1314 The MODE argument is the machine mode for the MEM expression
1315 that wants to use this address.
1317 On the HP-PA, the actual legitimate addresses must be
1318 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1319 But we can treat a SYMBOL_REF as legitimate if it is part of this
1320 function's constant-pool, because such addresses can actually
1321 be output as REG+SMALLINT.
1323 Note we only allow 5 bit immediates for access to a constant address;
1324 doing so avoids losing for loading/storing a FP register at an address
1325 which will not fit in 5 bits. */
1327 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1328 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1330 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1331 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1333 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1334 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1336 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1337 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1339 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1341 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1342 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1343 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1344 && REG_P (XEXP (X, 0)) \
1345 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1346 goto ADDR; \
1347 else if (GET_CODE (X) == PLUS) \
1349 rtx base = 0, index = 0; \
1350 if (REG_P (XEXP (X, 0)) \
1351 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1352 base = XEXP (X, 0), index = XEXP (X, 1); \
1353 else if (REG_P (XEXP (X, 1)) \
1354 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1355 base = XEXP (X, 1), index = XEXP (X, 0); \
1356 if (base != 0) \
1357 if (GET_CODE (index) == CONST_INT \
1358 && ((INT_14_BITS (index) \
1359 && (TARGET_SOFT_FLOAT \
1360 || (TARGET_PA_20 \
1361 && ((MODE == SFmode \
1362 && (INTVAL (index) % 4) == 0)\
1363 || (MODE == DFmode \
1364 && (INTVAL (index) % 8) == 0)))\
1365 || ((MODE) != SFmode && (MODE) != DFmode))) \
1366 || INT_5_BITS (index))) \
1367 goto ADDR; \
1368 if (! TARGET_SOFT_FLOAT \
1369 && ! TARGET_DISABLE_INDEXING \
1370 && base \
1371 && ((MODE) == SFmode || (MODE) == DFmode) \
1372 && GET_CODE (index) == MULT \
1373 && GET_CODE (XEXP (index, 0)) == REG \
1374 && REG_OK_FOR_BASE_P (XEXP (index, 0)) \
1375 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1376 && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
1377 goto ADDR; \
1379 else if (GET_CODE (X) == LO_SUM \
1380 && GET_CODE (XEXP (X, 0)) == REG \
1381 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1382 && CONSTANT_P (XEXP (X, 1)) \
1383 && (TARGET_SOFT_FLOAT \
1384 /* We can allow symbolic LO_SUM addresses\
1385 for PA2.0. */ \
1386 || (TARGET_PA_20 \
1387 && !TARGET_ELF32 \
1388 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1389 || ((MODE) != SFmode \
1390 && (MODE) != DFmode))) \
1391 goto ADDR; \
1392 else if (GET_CODE (X) == LO_SUM \
1393 && GET_CODE (XEXP (X, 0)) == SUBREG \
1394 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1395 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1396 && CONSTANT_P (XEXP (X, 1)) \
1397 && (TARGET_SOFT_FLOAT \
1398 /* We can allow symbolic LO_SUM addresses\
1399 for PA2.0. */ \
1400 || (TARGET_PA_20 \
1401 && !TARGET_ELF32 \
1402 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1403 || ((MODE) != SFmode \
1404 && (MODE) != DFmode))) \
1405 goto ADDR; \
1406 else if (GET_CODE (X) == LABEL_REF \
1407 || (GET_CODE (X) == CONST_INT \
1408 && INT_5_BITS (X))) \
1409 goto ADDR; \
1410 /* Needed for -fPIC */ \
1411 else if (GET_CODE (X) == LO_SUM \
1412 && GET_CODE (XEXP (X, 0)) == REG \
1413 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1414 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1415 && (TARGET_SOFT_FLOAT \
1416 || (TARGET_PA_20 && !TARGET_ELF32) \
1417 || ((MODE) != SFmode \
1418 && (MODE) != DFmode))) \
1419 goto ADDR; \
1422 /* Look for machine dependent ways to make the invalid address AD a
1423 valid address.
1425 For the PA, transform:
1427 memory(X + <large int>)
1429 into:
1431 if (<large int> & mask) >= 16
1432 Y = (<large int> & ~mask) + mask + 1 Round up.
1433 else
1434 Y = (<large int> & ~mask) Round down.
1435 Z = X + Y
1436 memory (Z + (<large int> - Y));
1438 This makes reload inheritance and reload_cse work better since Z
1439 can be reused.
1441 There may be more opportunities to improve code with this hook. */
1442 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1443 do { \
1444 int offset, newoffset, mask; \
1445 rtx new, temp = NULL_RTX; \
1447 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1448 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
1450 if (optimize \
1451 && GET_CODE (AD) == PLUS) \
1452 temp = simplify_binary_operation (PLUS, Pmode, \
1453 XEXP (AD, 0), XEXP (AD, 1)); \
1455 new = temp ? temp : AD; \
1457 if (optimize \
1458 && GET_CODE (new) == PLUS \
1459 && GET_CODE (XEXP (new, 0)) == REG \
1460 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1462 offset = INTVAL (XEXP ((new), 1)); \
1464 /* Choose rounding direction. Round up if we are >= halfway. */ \
1465 if ((offset & mask) >= ((mask + 1) / 2)) \
1466 newoffset = (offset & ~mask) + mask + 1; \
1467 else \
1468 newoffset = offset & ~mask; \
1470 if (newoffset != 0 \
1471 && VAL_14_BITS_P (newoffset)) \
1474 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1475 GEN_INT (newoffset)); \
1476 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1477 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1478 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1479 (OPNUM), (TYPE)); \
1480 goto WIN; \
1483 } while (0)
1488 /* Try machine-dependent ways of modifying an illegitimate address
1489 to be legitimate. If we find one, return the new, valid address.
1490 This macro is used in only one place: `memory_address' in explow.c.
1492 OLDX is the address as it was before break_out_memory_refs was called.
1493 In some cases it is useful to look at this to decide what needs to be done.
1495 MODE and WIN are passed so that this macro can use
1496 GO_IF_LEGITIMATE_ADDRESS.
1498 It is always safe for this macro to do nothing. It exists to recognize
1499 opportunities to optimize the output. */
1501 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1502 { rtx orig_x = (X); \
1503 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1504 if ((X) != orig_x && memory_address_p (MODE, X)) \
1505 goto WIN; }
1507 /* Go to LABEL if ADDR (a legitimate address expression)
1508 has an effect that depends on the machine mode it is used for. */
1510 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1511 if (GET_CODE (ADDR) == PRE_DEC \
1512 || GET_CODE (ADDR) == POST_DEC \
1513 || GET_CODE (ADDR) == PRE_INC \
1514 || GET_CODE (ADDR) == POST_INC) \
1515 goto LABEL
1517 #define TARGET_ASM_SELECT_SECTION pa_select_section
1519 /* Define this macro if references to a symbol must be treated
1520 differently depending on something about the variable or
1521 function named by the symbol (such as what section it is in).
1523 The macro definition, if any, is executed immediately after the
1524 rtl for DECL or other node is created.
1525 The value of the rtl will be a `mem' whose address is a
1526 `symbol_ref'.
1528 The usual thing for this macro to do is to a flag in the
1529 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1530 name string in the `symbol_ref' (if one bit is not enough
1531 information).
1533 On the HP-PA we use this to indicate if a symbol is in text or
1534 data space. Also, function labels need special treatment. */
1536 #define TEXT_SPACE_P(DECL)\
1537 (TREE_CODE (DECL) == FUNCTION_DECL \
1538 || (TREE_CODE (DECL) == VAR_DECL \
1539 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1540 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1541 && !flag_pic) \
1542 || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \
1543 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1545 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1547 /* Specify the machine mode that this machine uses
1548 for the index in the tablejump instruction. */
1549 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
1551 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
1552 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1554 /* Define this as 1 if `char' should by default be signed; else as 0. */
1555 #define DEFAULT_SIGNED_CHAR 1
1557 /* Max number of bytes we can move from memory to memory
1558 in one reasonably fast instruction. */
1559 #define MOVE_MAX 8
1561 /* Higher than the default as we prefer to use simple move insns
1562 (better scheduling and delay slot filling) and because our
1563 built-in block move is really a 2X unrolled loop.
1565 Believe it or not, this has to be big enough to allow for copying all
1566 arguments passed in registers to avoid infinite recursion during argument
1567 setup for a function call. Why? Consider how we copy the stack slots
1568 reserved for parameters when they may be trashed by a call. */
1569 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1571 /* Define if operations between registers always perform the operation
1572 on the full register even if a narrower mode is specified. */
1573 #define WORD_REGISTER_OPERATIONS
1575 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1576 will either zero-extend or sign-extend. The value of this macro should
1577 be the code that says which one of the two operations is implicitly
1578 done, NIL if none. */
1579 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1581 /* Nonzero if access to memory by bytes is slow and undesirable. */
1582 #define SLOW_BYTE_ACCESS 1
1584 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1585 is done just by pretending it is already truncated. */
1586 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1588 /* We assume that the store-condition-codes instructions store 0 for false
1589 and some other value for true. This is the value stored for true. */
1591 #define STORE_FLAG_VALUE 1
1593 /* When a prototype says `char' or `short', really pass an `int'. */
1594 #define PROMOTE_PROTOTYPES 1
1595 #define PROMOTE_FUNCTION_RETURN 1
1597 /* Specify the machine mode that pointers have.
1598 After generation of rtl, the compiler makes no further distinction
1599 between pointers and any other objects of this machine mode. */
1600 #define Pmode word_mode
1602 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1603 return the mode to be used for the comparison. For floating-point, CCFPmode
1604 should be used. CC_NOOVmode should be used when the first operand is a
1605 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1606 needed. */
1607 #define SELECT_CC_MODE(OP,X,Y) \
1608 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1610 /* A function address in a call instruction
1611 is a byte address (for indexing purposes)
1612 so give the MEM rtx a byte's mode. */
1613 #define FUNCTION_MODE SImode
1615 /* Define this if addresses of constant functions
1616 shouldn't be put through pseudo regs where they can be cse'd.
1617 Desirable on machines where ordinary constants are expensive
1618 but a CALL with constant address is cheap. */
1619 #define NO_FUNCTION_CSE
1621 /* Define this to be nonzero if shift instructions ignore all but the low-order
1622 few bits. */
1623 #define SHIFT_COUNT_TRUNCATED 1
1625 /* Compute extra cost of moving data between one register class
1626 and another.
1628 Make moves from SAR so expensive they should never happen. We used to
1629 have 0xffff here, but that generates overflow in rare cases.
1631 Copies involving a FP register and a non-FP register are relatively
1632 expensive because they must go through memory.
1634 Other copies are reasonably cheap. */
1635 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1636 (CLASS1 == SHIFT_REGS ? 0x100 \
1637 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1638 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1639 : 2)
1641 /* Adjust the cost of branches. */
1642 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1644 /* Handling the special cases is going to get too complicated for a macro,
1645 just call `pa_adjust_insn_length' to do the real work. */
1646 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1647 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1649 /* Millicode insns are actually function calls with some special
1650 constraints on arguments and register usage.
1652 Millicode calls always expect their arguments in the integer argument
1653 registers, and always return their result in %r29 (ret1). They
1654 are expected to clobber their arguments, %r1, %r29, and the return
1655 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1657 This macro tells reorg that the references to arguments and
1658 millicode calls do not appear to happen until after the millicode call.
1659 This allows reorg to put insns which set the argument registers into the
1660 delay slot of the millicode call -- thus they act more like traditional
1661 CALL_INSNs.
1663 Note we can not consider side effects of the insn to be delayed because
1664 the branch and link insn will clobber the return pointer. If we happened
1665 to use the return pointer in the delay slot of the call, then we lose.
1667 get_attr_type will try to recognize the given insn, so make sure to
1668 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1669 in particular. */
1670 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1673 /* Control the assembler format that we output. */
1675 /* Output to assembler file text saying following lines
1676 may contain character constants, extra white space, comments, etc. */
1678 #define ASM_APP_ON ""
1680 /* Output to assembler file text saying following lines
1681 no longer contain unusual constructs. */
1683 #define ASM_APP_OFF ""
1685 /* Output deferred plabels at the end of the file. */
1687 #define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1689 /* This is how to output the definition of a user-level label named NAME,
1690 such as the label on a static function or variable NAME. */
1692 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1693 do { assemble_name (FILE, NAME); \
1694 fputc ('\n', FILE); } while (0)
1696 /* This is how to output a reference to a user-level label named NAME.
1697 `assemble_name' uses this. */
1699 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1700 do { \
1701 const char *xname = (NAME); \
1702 if (FUNCTION_NAME_P (NAME)) \
1703 xname += 1; \
1704 if (xname[0] == '*') \
1705 xname += 1; \
1706 else \
1707 fputs (user_label_prefix, FILE); \
1708 fputs (xname, FILE); \
1709 } while (0)
1711 /* This is how to store into the string LABEL
1712 the symbol_ref name of an internal numbered label where
1713 PREFIX is the class of label and NUM is the number within the class.
1714 This is suitable for output with `assemble_name'. */
1716 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1717 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1719 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1721 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1722 output_ascii ((FILE), (P), (SIZE))
1724 /* This is how to output an element of a case-vector that is absolute.
1725 Note that this method makes filling these branch delay slots
1726 impossible. */
1728 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1729 if (TARGET_BIG_SWITCH) \
1730 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \
1731 else \
1732 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1734 /* Jump tables are executable code and live in the TEXT section on the PA. */
1735 #define JUMP_TABLES_IN_TEXT_SECTION 1
1737 /* This is how to output an element of a case-vector that is relative.
1738 This must be defined correctly as it is used when generating PIC code.
1740 I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1741 on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1742 rather than a table of absolute addresses. */
1744 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1745 if (TARGET_BIG_SWITCH) \
1746 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \
1747 else \
1748 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1750 /* This is how to output an assembler line
1751 that says to advance the location counter
1752 to a multiple of 2**LOG bytes. */
1754 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1755 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1757 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1758 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1760 /* This says how to output an assembler line to define a global common symbol
1761 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1763 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1764 { bss_section (); \
1765 assemble_name ((FILE), (NAME)); \
1766 fprintf ((FILE), "\t.comm "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1767 MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1769 /* This says how to output an assembler line to define a local common symbol
1770 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1772 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1773 { bss_section (); \
1774 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
1775 assemble_name ((FILE), (NAME)); \
1776 fprintf ((FILE), "\n\t.block "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1777 (SIZE));}
1779 #define ASM_PN_FORMAT "%s___%lu"
1781 /* All HP assemblers use "!" to separate logical lines. */
1782 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1784 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1785 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1787 /* Print operand X (an rtx) in assembler syntax to file FILE.
1788 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1789 For `%' followed by punctuation, CODE is the punctuation and X is null.
1791 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1792 and an immediate zero should be represented as `r0'.
1794 Several % codes are defined:
1795 O an operation
1796 C compare conditions
1797 N extract conditions
1798 M modifier to handle preincrement addressing for memory refs.
1799 F modifier to handle preincrement addressing for fp memory refs */
1801 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1804 /* Print a memory address as an operand to reference that memory location. */
1806 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1807 { register rtx addr = ADDR; \
1808 register rtx base; \
1809 int offset; \
1810 switch (GET_CODE (addr)) \
1812 case REG: \
1813 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1814 break; \
1815 case PLUS: \
1816 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1817 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1818 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1819 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1820 else \
1821 abort (); \
1822 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
1823 break; \
1824 case LO_SUM: \
1825 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1826 fputs ("R'", FILE); \
1827 else if (flag_pic == 0) \
1828 fputs ("RR'", FILE); \
1829 else \
1830 fputs ("RT'", FILE); \
1831 output_global_address (FILE, XEXP (addr, 1), 0); \
1832 fputs ("(", FILE); \
1833 output_operand (XEXP (addr, 0), 0); \
1834 fputs (")", FILE); \
1835 break; \
1836 case CONST_INT: \
1837 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1838 break; \
1839 default: \
1840 output_addr_const (FILE, addr); \
1844 /* Find the return address associated with the frame given by
1845 FRAMEADDR. */
1846 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1847 (return_addr_rtx (COUNT, FRAMEADDR))
1849 /* Used to mask out junk bits from the return address, such as
1850 processor state, interrupt status, condition codes and the like. */
1851 #define MASK_RETURN_ADDR \
1852 /* The privilege level is in the two low order bits, mask em out \
1853 of the return address. */ \
1854 (GEN_INT (-4))
1856 /* The number of Pmode words for the setjmp buffer. */
1857 #define JMP_BUF_SIZE 50
1859 #define PREDICATE_CODES \
1860 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1861 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
1862 CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
1863 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1864 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1865 {"reg_before_reload_operand", {REG, MEM}}, \
1866 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1867 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
1868 CONST_DOUBLE}}, \
1869 {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}}, \
1870 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
1871 {"pic_label_operand", {LABEL_REF, CONST}}, \
1872 {"fp_reg_operand", {REG}}, \
1873 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1874 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
1875 {"pre_cint_operand", {CONST_INT}}, \
1876 {"post_cint_operand", {CONST_INT}}, \
1877 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1878 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
1879 {"int5_operand", {CONST_INT}}, \
1880 {"uint5_operand", {CONST_INT}}, \
1881 {"int11_operand", {CONST_INT}}, \
1882 {"uint32_operand", {CONST_INT, \
1883 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
1884 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
1885 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1886 {"ior_operand", {CONST_INT}}, \
1887 {"lhs_lshift_cint_operand", {CONST_INT}}, \
1888 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
1889 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
1890 {"pc_or_label_operand", {PC, LABEL_REF}}, \
1891 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
1892 {"shadd_operand", {CONST_INT}}, \
1893 {"basereg_operand", {REG}}, \
1894 {"div_operand", {REG, CONST_INT}}, \
1895 {"ireg_operand", {REG}}, \
1896 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
1897 GT, GTU, GE}}, \
1898 {"movb_comparison_operator", {EQ, NE, LT, GE}},
1900 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1901 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1902 "__canonicalize_funcptr_for_compare"