2017-12-04 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / combine.c
blob863abd7a282b02183a18f4ab14eefa7b64a61b61
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* And similarly, for notes. */
307 static rtx_insn *added_notes_insn;
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int max_uid_known;
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
321 static int *uid_insn_cost;
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
332 static struct insn_link **uid_log_links;
334 static inline int
335 insn_uid_check (const_rtx insn)
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348 /* Links for LOG_LINKS are allocated from this obstack. */
350 static struct obstack insn_link_obstack;
352 /* Allocate a link. */
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
366 /* Incremented for each basic block. */
368 static int label_tick;
370 /* Reset to label_tick for each extended basic block in scanning order. */
372 static int label_tick_ebb_start;
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377 static scalar_int_mode nonzero_bits_mode;
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
385 static int nonzero_sign_valid;
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393 struct undo
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
407 struct undobuf
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
414 static struct undobuf undobuf;
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
419 static int n_occurrences;
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static int use_crosses_set_p (const_rtx, int);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN can not be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
541 rtx_insn *ret;
542 unsigned int nregs;
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
567 switch (code)
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
589 return find_single_use_1 (dest, &SET_SRC (x));
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
595 default:
596 break;
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 if (fmt[i] == 'e')
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
620 else if (fmt[i] == 'E')
622 int j;
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
642 return result;
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
668 if (dest == cc0_rtx)
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
681 if (!REG_P (dest))
682 return 0;
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
694 if (link)
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
703 return 0;
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
712 static void
713 do_SUBST (rtx *into, rtx newval)
715 struct undo *buf;
716 rtx oldval = *into;
718 if (oldval == newval)
719 return;
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
756 buf->next = undobuf.undos, undobuf.undos = buf;
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
765 static void
766 do_SUBST_INT (int *into, int newval)
768 struct undo *buf;
769 int oldval = *into;
771 if (oldval == newval)
772 return;
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
784 buf->next = undobuf.undos, undobuf.undos = buf;
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
800 if (oldval == newval)
801 return;
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
813 buf->next = undobuf.undos, undobuf.undos = buf;
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 struct undo *buf;
824 struct insn_link * oldval = *into;
826 if (oldval == newval)
827 return;
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
839 buf->next = undobuf.undos, undobuf.undos = buf;
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
864 if (i1)
866 i1_cost = INSN_COST (i1);
867 if (i0)
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 else
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
880 else
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
912 else
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
918 if (undobuf.other_insn)
920 int old_other_cost, new_other_cost;
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
936 else
937 old_cost = 0;
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
944 if (dump_file)
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
968 if (reject)
969 return false;
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
981 return true;
985 /* Delete any insns that copy a register to itself. */
987 static void
988 delete_noop_moves (void)
990 rtx_insn *insn, *next;
991 basic_block bb;
993 FOR_EACH_BB_FN (bb, cfun)
995 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
997 next = NEXT_INSN (insn);
998 if (INSN_P (insn) && noop_move_p (insn))
1000 if (dump_file)
1001 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1003 delete_insn_and_edges (insn);
1010 /* Return false if we do not want to (or cannot) combine DEF. */
1011 static bool
1012 can_combine_def_p (df_ref def)
1014 /* Do not consider if it is pre/post modification in MEM. */
1015 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1016 return false;
1018 unsigned int regno = DF_REF_REGNO (def);
1020 /* Do not combine frame pointer adjustments. */
1021 if ((regno == FRAME_POINTER_REGNUM
1022 && (!reload_completed || frame_pointer_needed))
1023 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1024 && regno == HARD_FRAME_POINTER_REGNUM
1025 && (!reload_completed || frame_pointer_needed))
1026 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1027 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1028 return false;
1030 return true;
1033 /* Return false if we do not want to (or cannot) combine USE. */
1034 static bool
1035 can_combine_use_p (df_ref use)
1037 /* Do not consider the usage of the stack pointer by function call. */
1038 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1039 return false;
1041 return true;
1044 /* Fill in log links field for all insns. */
1046 static void
1047 create_log_links (void)
1049 basic_block bb;
1050 rtx_insn **next_use;
1051 rtx_insn *insn;
1052 df_ref def, use;
1054 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1056 /* Pass through each block from the end, recording the uses of each
1057 register and establishing log links when def is encountered.
1058 Note that we do not clear next_use array in order to save time,
1059 so we have to test whether the use is in the same basic block as def.
1061 There are a few cases below when we do not consider the definition or
1062 usage -- these are taken from original flow.c did. Don't ask me why it is
1063 done this way; I don't know and if it works, I don't want to know. */
1065 FOR_EACH_BB_FN (bb, cfun)
1067 FOR_BB_INSNS_REVERSE (bb, insn)
1069 if (!NONDEBUG_INSN_P (insn))
1070 continue;
1072 /* Log links are created only once. */
1073 gcc_assert (!LOG_LINKS (insn));
1075 FOR_EACH_INSN_DEF (def, insn)
1077 unsigned int regno = DF_REF_REGNO (def);
1078 rtx_insn *use_insn;
1080 if (!next_use[regno])
1081 continue;
1083 if (!can_combine_def_p (def))
1084 continue;
1086 use_insn = next_use[regno];
1087 next_use[regno] = NULL;
1089 if (BLOCK_FOR_INSN (use_insn) != bb)
1090 continue;
1092 /* flow.c claimed:
1094 We don't build a LOG_LINK for hard registers contained
1095 in ASM_OPERANDs. If these registers get replaced,
1096 we might wind up changing the semantics of the insn,
1097 even if reload can make what appear to be valid
1098 assignments later. */
1099 if (regno < FIRST_PSEUDO_REGISTER
1100 && asm_noperands (PATTERN (use_insn)) >= 0)
1101 continue;
1103 /* Don't add duplicate links between instructions. */
1104 struct insn_link *links;
1105 FOR_EACH_LOG_LINK (links, use_insn)
1106 if (insn == links->insn && regno == links->regno)
1107 break;
1109 if (!links)
1110 LOG_LINKS (use_insn)
1111 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1114 FOR_EACH_INSN_USE (use, insn)
1115 if (can_combine_use_p (use))
1116 next_use[DF_REF_REGNO (use)] = insn;
1120 free (next_use);
1123 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1124 true if we found a LOG_LINK that proves that A feeds B. This only works
1125 if there are no instructions between A and B which could have a link
1126 depending on A, since in that case we would not record a link for B.
1127 We also check the implicit dependency created by a cc0 setter/user
1128 pair. */
1130 static bool
1131 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1133 struct insn_link *links;
1134 FOR_EACH_LOG_LINK (links, b)
1135 if (links->insn == a)
1136 return true;
1137 if (HAVE_cc0 && sets_cc0_p (a))
1138 return true;
1139 return false;
1142 /* Main entry point for combiner. F is the first insn of the function.
1143 NREGS is the first unused pseudo-reg number.
1145 Return nonzero if the combiner has turned an indirect jump
1146 instruction into a direct jump. */
1147 static int
1148 combine_instructions (rtx_insn *f, unsigned int nregs)
1150 rtx_insn *insn, *next;
1151 rtx_insn *prev;
1152 struct insn_link *links, *nextlinks;
1153 rtx_insn *first;
1154 basic_block last_bb;
1156 int new_direct_jump_p = 0;
1158 for (first = f; first && !NONDEBUG_INSN_P (first); )
1159 first = NEXT_INSN (first);
1160 if (!first)
1161 return 0;
1163 combine_attempts = 0;
1164 combine_merges = 0;
1165 combine_extras = 0;
1166 combine_successes = 0;
1168 rtl_hooks = combine_rtl_hooks;
1170 reg_stat.safe_grow_cleared (nregs);
1172 init_recog_no_volatile ();
1174 /* Allocate array for insn info. */
1175 max_uid_known = get_max_uid ();
1176 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1177 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1178 gcc_obstack_init (&insn_link_obstack);
1180 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1182 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1183 problems when, for example, we have j <<= 1 in a loop. */
1185 nonzero_sign_valid = 0;
1186 label_tick = label_tick_ebb_start = 1;
1188 /* Scan all SETs and see if we can deduce anything about what
1189 bits are known to be zero for some registers and how many copies
1190 of the sign bit are known to exist for those registers.
1192 Also set any known values so that we can use it while searching
1193 for what bits are known to be set. */
1195 setup_incoming_promotions (first);
1196 /* Allow the entry block and the first block to fall into the same EBB.
1197 Conceptually the incoming promotions are assigned to the entry block. */
1198 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1200 create_log_links ();
1201 FOR_EACH_BB_FN (this_basic_block, cfun)
1203 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1204 last_call_luid = 0;
1205 mem_last_set = -1;
1207 label_tick++;
1208 if (!single_pred_p (this_basic_block)
1209 || single_pred (this_basic_block) != last_bb)
1210 label_tick_ebb_start = label_tick;
1211 last_bb = this_basic_block;
1213 FOR_BB_INSNS (this_basic_block, insn)
1214 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1216 rtx links;
1218 subst_low_luid = DF_INSN_LUID (insn);
1219 subst_insn = insn;
1221 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1222 insn);
1223 record_dead_and_set_regs (insn);
1225 if (AUTO_INC_DEC)
1226 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1227 if (REG_NOTE_KIND (links) == REG_INC)
1228 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1229 insn);
1231 /* Record the current insn_cost of this instruction. */
1232 if (NONJUMP_INSN_P (insn))
1233 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1234 if (dump_file)
1236 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1237 dump_insn_slim (dump_file, insn);
1242 nonzero_sign_valid = 1;
1244 /* Now scan all the insns in forward order. */
1245 label_tick = label_tick_ebb_start = 1;
1246 init_reg_last ();
1247 setup_incoming_promotions (first);
1248 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1249 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1251 FOR_EACH_BB_FN (this_basic_block, cfun)
1253 rtx_insn *last_combined_insn = NULL;
1255 /* Ignore instruction combination in basic blocks that are going to
1256 be removed as unreachable anyway. See PR82386. */
1257 if (EDGE_COUNT (this_basic_block->preds) == 0)
1258 continue;
1260 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1261 last_call_luid = 0;
1262 mem_last_set = -1;
1264 label_tick++;
1265 if (!single_pred_p (this_basic_block)
1266 || single_pred (this_basic_block) != last_bb)
1267 label_tick_ebb_start = label_tick;
1268 last_bb = this_basic_block;
1270 rtl_profile_for_bb (this_basic_block);
1271 for (insn = BB_HEAD (this_basic_block);
1272 insn != NEXT_INSN (BB_END (this_basic_block));
1273 insn = next ? next : NEXT_INSN (insn))
1275 next = 0;
1276 if (!NONDEBUG_INSN_P (insn))
1277 continue;
1279 while (last_combined_insn
1280 && (!NONDEBUG_INSN_P (last_combined_insn)
1281 || last_combined_insn->deleted ()))
1282 last_combined_insn = PREV_INSN (last_combined_insn);
1283 if (last_combined_insn == NULL_RTX
1284 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1285 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1286 last_combined_insn = insn;
1288 /* See if we know about function return values before this
1289 insn based upon SUBREG flags. */
1290 check_promoted_subreg (insn, PATTERN (insn));
1292 /* See if we can find hardregs and subreg of pseudos in
1293 narrower modes. This could help turning TRUNCATEs
1294 into SUBREGs. */
1295 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1297 /* Try this insn with each insn it links back to. */
1299 FOR_EACH_LOG_LINK (links, insn)
1300 if ((next = try_combine (insn, links->insn, NULL,
1301 NULL, &new_direct_jump_p,
1302 last_combined_insn)) != 0)
1304 statistics_counter_event (cfun, "two-insn combine", 1);
1305 goto retry;
1308 /* Try each sequence of three linked insns ending with this one. */
1310 if (max_combine >= 3)
1311 FOR_EACH_LOG_LINK (links, insn)
1313 rtx_insn *link = links->insn;
1315 /* If the linked insn has been replaced by a note, then there
1316 is no point in pursuing this chain any further. */
1317 if (NOTE_P (link))
1318 continue;
1320 FOR_EACH_LOG_LINK (nextlinks, link)
1321 if ((next = try_combine (insn, link, nextlinks->insn,
1322 NULL, &new_direct_jump_p,
1323 last_combined_insn)) != 0)
1325 statistics_counter_event (cfun, "three-insn combine", 1);
1326 goto retry;
1330 /* Try to combine a jump insn that uses CC0
1331 with a preceding insn that sets CC0, and maybe with its
1332 logical predecessor as well.
1333 This is how we make decrement-and-branch insns.
1334 We need this special code because data flow connections
1335 via CC0 do not get entered in LOG_LINKS. */
1337 if (HAVE_cc0
1338 && JUMP_P (insn)
1339 && (prev = prev_nonnote_insn (insn)) != 0
1340 && NONJUMP_INSN_P (prev)
1341 && sets_cc0_p (PATTERN (prev)))
1343 if ((next = try_combine (insn, prev, NULL, NULL,
1344 &new_direct_jump_p,
1345 last_combined_insn)) != 0)
1346 goto retry;
1348 FOR_EACH_LOG_LINK (nextlinks, prev)
1349 if ((next = try_combine (insn, prev, nextlinks->insn,
1350 NULL, &new_direct_jump_p,
1351 last_combined_insn)) != 0)
1352 goto retry;
1355 /* Do the same for an insn that explicitly references CC0. */
1356 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1357 && (prev = prev_nonnote_insn (insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && GET_CODE (PATTERN (insn)) == SET
1361 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1363 if ((next = try_combine (insn, prev, NULL, NULL,
1364 &new_direct_jump_p,
1365 last_combined_insn)) != 0)
1366 goto retry;
1368 FOR_EACH_LOG_LINK (nextlinks, prev)
1369 if ((next = try_combine (insn, prev, nextlinks->insn,
1370 NULL, &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1375 /* Finally, see if any of the insns that this insn links to
1376 explicitly references CC0. If so, try this insn, that insn,
1377 and its predecessor if it sets CC0. */
1378 if (HAVE_cc0)
1380 FOR_EACH_LOG_LINK (links, insn)
1381 if (NONJUMP_INSN_P (links->insn)
1382 && GET_CODE (PATTERN (links->insn)) == SET
1383 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1384 && (prev = prev_nonnote_insn (links->insn)) != 0
1385 && NONJUMP_INSN_P (prev)
1386 && sets_cc0_p (PATTERN (prev))
1387 && (next = try_combine (insn, links->insn,
1388 prev, NULL, &new_direct_jump_p,
1389 last_combined_insn)) != 0)
1390 goto retry;
1393 /* Try combining an insn with two different insns whose results it
1394 uses. */
1395 if (max_combine >= 3)
1396 FOR_EACH_LOG_LINK (links, insn)
1397 for (nextlinks = links->next; nextlinks;
1398 nextlinks = nextlinks->next)
1399 if ((next = try_combine (insn, links->insn,
1400 nextlinks->insn, NULL,
1401 &new_direct_jump_p,
1402 last_combined_insn)) != 0)
1405 statistics_counter_event (cfun, "three-insn combine", 1);
1406 goto retry;
1409 /* Try four-instruction combinations. */
1410 if (max_combine >= 4)
1411 FOR_EACH_LOG_LINK (links, insn)
1413 struct insn_link *next1;
1414 rtx_insn *link = links->insn;
1416 /* If the linked insn has been replaced by a note, then there
1417 is no point in pursuing this chain any further. */
1418 if (NOTE_P (link))
1419 continue;
1421 FOR_EACH_LOG_LINK (next1, link)
1423 rtx_insn *link1 = next1->insn;
1424 if (NOTE_P (link1))
1425 continue;
1426 /* I0 -> I1 -> I2 -> I3. */
1427 FOR_EACH_LOG_LINK (nextlinks, link1)
1428 if ((next = try_combine (insn, link, link1,
1429 nextlinks->insn,
1430 &new_direct_jump_p,
1431 last_combined_insn)) != 0)
1433 statistics_counter_event (cfun, "four-insn combine", 1);
1434 goto retry;
1436 /* I0, I1 -> I2, I2 -> I3. */
1437 for (nextlinks = next1->next; nextlinks;
1438 nextlinks = nextlinks->next)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1449 for (next1 = links->next; next1; next1 = next1->next)
1451 rtx_insn *link1 = next1->insn;
1452 if (NOTE_P (link1))
1453 continue;
1454 /* I0 -> I2; I1, I2 -> I3. */
1455 FOR_EACH_LOG_LINK (nextlinks, link)
1456 if ((next = try_combine (insn, link, link1,
1457 nextlinks->insn,
1458 &new_direct_jump_p,
1459 last_combined_insn)) != 0)
1461 statistics_counter_event (cfun, "four-insn combine", 1);
1462 goto retry;
1464 /* I0 -> I1; I1, I2 -> I3. */
1465 FOR_EACH_LOG_LINK (nextlinks, link1)
1466 if ((next = try_combine (insn, link, link1,
1467 nextlinks->insn,
1468 &new_direct_jump_p,
1469 last_combined_insn)) != 0)
1471 statistics_counter_event (cfun, "four-insn combine", 1);
1472 goto retry;
1477 /* Try this insn with each REG_EQUAL note it links back to. */
1478 FOR_EACH_LOG_LINK (links, insn)
1480 rtx set, note;
1481 rtx_insn *temp = links->insn;
1482 if ((set = single_set (temp)) != 0
1483 && (note = find_reg_equal_equiv_note (temp)) != 0
1484 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1485 /* Avoid using a register that may already been marked
1486 dead by an earlier instruction. */
1487 && ! unmentioned_reg_p (note, SET_SRC (set))
1488 && (GET_MODE (note) == VOIDmode
1489 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1490 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1491 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1492 || (GET_MODE (XEXP (SET_DEST (set), 0))
1493 == GET_MODE (note))))))
1495 /* Temporarily replace the set's source with the
1496 contents of the REG_EQUAL note. The insn will
1497 be deleted or recognized by try_combine. */
1498 rtx orig_src = SET_SRC (set);
1499 rtx orig_dest = SET_DEST (set);
1500 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1501 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1502 SET_SRC (set) = note;
1503 i2mod = temp;
1504 i2mod_old_rhs = copy_rtx (orig_src);
1505 i2mod_new_rhs = copy_rtx (note);
1506 next = try_combine (insn, i2mod, NULL, NULL,
1507 &new_direct_jump_p,
1508 last_combined_insn);
1509 i2mod = NULL;
1510 if (next)
1512 statistics_counter_event (cfun, "insn-with-note combine", 1);
1513 goto retry;
1515 SET_SRC (set) = orig_src;
1516 SET_DEST (set) = orig_dest;
1520 if (!NOTE_P (insn))
1521 record_dead_and_set_regs (insn);
1523 retry:
1528 default_rtl_profile ();
1529 clear_bb_flags ();
1530 new_direct_jump_p |= purge_all_dead_edges ();
1531 delete_noop_moves ();
1533 /* Clean up. */
1534 obstack_free (&insn_link_obstack, NULL);
1535 free (uid_log_links);
1536 free (uid_insn_cost);
1537 reg_stat.release ();
1540 struct undo *undo, *next;
1541 for (undo = undobuf.frees; undo; undo = next)
1543 next = undo->next;
1544 free (undo);
1546 undobuf.frees = 0;
1549 total_attempts += combine_attempts;
1550 total_merges += combine_merges;
1551 total_extras += combine_extras;
1552 total_successes += combine_successes;
1554 nonzero_sign_valid = 0;
1555 rtl_hooks = general_rtl_hooks;
1557 /* Make recognizer allow volatile MEMs again. */
1558 init_recog ();
1560 return new_direct_jump_p;
1563 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1565 static void
1566 init_reg_last (void)
1568 unsigned int i;
1569 reg_stat_type *p;
1571 FOR_EACH_VEC_ELT (reg_stat, i, p)
1572 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1575 /* Set up any promoted values for incoming argument registers. */
1577 static void
1578 setup_incoming_promotions (rtx_insn *first)
1580 tree arg;
1581 bool strictly_local = false;
1583 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1584 arg = DECL_CHAIN (arg))
1586 rtx x, reg = DECL_INCOMING_RTL (arg);
1587 int uns1, uns3;
1588 machine_mode mode1, mode2, mode3, mode4;
1590 /* Only continue if the incoming argument is in a register. */
1591 if (!REG_P (reg))
1592 continue;
1594 /* Determine, if possible, whether all call sites of the current
1595 function lie within the current compilation unit. (This does
1596 take into account the exporting of a function via taking its
1597 address, and so forth.) */
1598 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1600 /* The mode and signedness of the argument before any promotions happen
1601 (equal to the mode of the pseudo holding it at that stage). */
1602 mode1 = TYPE_MODE (TREE_TYPE (arg));
1603 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1605 /* The mode and signedness of the argument after any source language and
1606 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1607 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1608 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1610 /* The mode and signedness of the argument as it is actually passed,
1611 see assign_parm_setup_reg in function.c. */
1612 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1613 TREE_TYPE (cfun->decl), 0);
1615 /* The mode of the register in which the argument is being passed. */
1616 mode4 = GET_MODE (reg);
1618 /* Eliminate sign extensions in the callee when:
1619 (a) A mode promotion has occurred; */
1620 if (mode1 == mode3)
1621 continue;
1622 /* (b) The mode of the register is the same as the mode of
1623 the argument as it is passed; */
1624 if (mode3 != mode4)
1625 continue;
1626 /* (c) There's no language level extension; */
1627 if (mode1 == mode2)
1629 /* (c.1) All callers are from the current compilation unit. If that's
1630 the case we don't have to rely on an ABI, we only have to know
1631 what we're generating right now, and we know that we will do the
1632 mode1 to mode2 promotion with the given sign. */
1633 else if (!strictly_local)
1634 continue;
1635 /* (c.2) The combination of the two promotions is useful. This is
1636 true when the signs match, or if the first promotion is unsigned.
1637 In the later case, (sign_extend (zero_extend x)) is the same as
1638 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1639 else if (uns1)
1640 uns3 = true;
1641 else if (uns3)
1642 continue;
1644 /* Record that the value was promoted from mode1 to mode3,
1645 so that any sign extension at the head of the current
1646 function may be eliminated. */
1647 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1648 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1649 record_value_for_reg (reg, first, x);
1653 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1654 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1655 because some machines (maybe most) will actually do the sign-extension and
1656 this is the conservative approach.
1658 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1659 kludge. */
1661 static rtx
1662 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1664 scalar_int_mode int_mode;
1665 if (CONST_INT_P (src)
1666 && is_a <scalar_int_mode> (mode, &int_mode)
1667 && GET_MODE_PRECISION (int_mode) < prec
1668 && INTVAL (src) > 0
1669 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1670 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1672 return src;
1675 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1676 and SET. */
1678 static void
1679 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1680 rtx x)
1682 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1683 unsigned HOST_WIDE_INT bits = 0;
1684 rtx reg_equal = NULL, src = SET_SRC (set);
1685 unsigned int num = 0;
1687 if (reg_equal_note)
1688 reg_equal = XEXP (reg_equal_note, 0);
1690 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1692 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1693 if (reg_equal)
1694 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1697 /* Don't call nonzero_bits if it cannot change anything. */
1698 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1700 bits = nonzero_bits (src, nonzero_bits_mode);
1701 if (reg_equal && bits)
1702 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1703 rsp->nonzero_bits |= bits;
1706 /* Don't call num_sign_bit_copies if it cannot change anything. */
1707 if (rsp->sign_bit_copies != 1)
1709 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1710 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1712 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1713 if (num == 0 || numeq > num)
1714 num = numeq;
1716 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1717 rsp->sign_bit_copies = num;
1721 /* Called via note_stores. If X is a pseudo that is narrower than
1722 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1724 If we are setting only a portion of X and we can't figure out what
1725 portion, assume all bits will be used since we don't know what will
1726 be happening.
1728 Similarly, set how many bits of X are known to be copies of the sign bit
1729 at all locations in the function. This is the smallest number implied
1730 by any set of X. */
1732 static void
1733 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1735 rtx_insn *insn = (rtx_insn *) data;
1736 scalar_int_mode mode;
1738 if (REG_P (x)
1739 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1740 /* If this register is undefined at the start of the file, we can't
1741 say what its contents were. */
1742 && ! REGNO_REG_SET_P
1743 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1744 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1745 && HWI_COMPUTABLE_MODE_P (mode))
1747 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1749 if (set == 0 || GET_CODE (set) == CLOBBER)
1751 rsp->nonzero_bits = GET_MODE_MASK (mode);
1752 rsp->sign_bit_copies = 1;
1753 return;
1756 /* If this register is being initialized using itself, and the
1757 register is uninitialized in this basic block, and there are
1758 no LOG_LINKS which set the register, then part of the
1759 register is uninitialized. In that case we can't assume
1760 anything about the number of nonzero bits.
1762 ??? We could do better if we checked this in
1763 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1764 could avoid making assumptions about the insn which initially
1765 sets the register, while still using the information in other
1766 insns. We would have to be careful to check every insn
1767 involved in the combination. */
1769 if (insn
1770 && reg_referenced_p (x, PATTERN (insn))
1771 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1772 REGNO (x)))
1774 struct insn_link *link;
1776 FOR_EACH_LOG_LINK (link, insn)
1777 if (dead_or_set_p (link->insn, x))
1778 break;
1779 if (!link)
1781 rsp->nonzero_bits = GET_MODE_MASK (mode);
1782 rsp->sign_bit_copies = 1;
1783 return;
1787 /* If this is a complex assignment, see if we can convert it into a
1788 simple assignment. */
1789 set = expand_field_assignment (set);
1791 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1792 set what we know about X. */
1794 if (SET_DEST (set) == x
1795 || (paradoxical_subreg_p (SET_DEST (set))
1796 && SUBREG_REG (SET_DEST (set)) == x))
1797 update_rsp_from_reg_equal (rsp, insn, set, x);
1798 else
1800 rsp->nonzero_bits = GET_MODE_MASK (mode);
1801 rsp->sign_bit_copies = 1;
1806 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1807 optionally insns that were previously combined into I3 or that will be
1808 combined into the merger of INSN and I3. The order is PRED, PRED2,
1809 INSN, SUCC, SUCC2, I3.
1811 Return 0 if the combination is not allowed for any reason.
1813 If the combination is allowed, *PDEST will be set to the single
1814 destination of INSN and *PSRC to the single source, and this function
1815 will return 1. */
1817 static int
1818 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1819 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1820 rtx *pdest, rtx *psrc)
1822 int i;
1823 const_rtx set = 0;
1824 rtx src, dest;
1825 rtx_insn *p;
1826 rtx link;
1827 bool all_adjacent = true;
1828 int (*is_volatile_p) (const_rtx);
1830 if (succ)
1832 if (succ2)
1834 if (next_active_insn (succ2) != i3)
1835 all_adjacent = false;
1836 if (next_active_insn (succ) != succ2)
1837 all_adjacent = false;
1839 else if (next_active_insn (succ) != i3)
1840 all_adjacent = false;
1841 if (next_active_insn (insn) != succ)
1842 all_adjacent = false;
1844 else if (next_active_insn (insn) != i3)
1845 all_adjacent = false;
1847 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1848 or a PARALLEL consisting of such a SET and CLOBBERs.
1850 If INSN has CLOBBER parallel parts, ignore them for our processing.
1851 By definition, these happen during the execution of the insn. When it
1852 is merged with another insn, all bets are off. If they are, in fact,
1853 needed and aren't also supplied in I3, they may be added by
1854 recog_for_combine. Otherwise, it won't match.
1856 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1857 note.
1859 Get the source and destination of INSN. If more than one, can't
1860 combine. */
1862 if (GET_CODE (PATTERN (insn)) == SET)
1863 set = PATTERN (insn);
1864 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1865 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1867 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1869 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1871 switch (GET_CODE (elt))
1873 /* This is important to combine floating point insns
1874 for the SH4 port. */
1875 case USE:
1876 /* Combining an isolated USE doesn't make sense.
1877 We depend here on combinable_i3pat to reject them. */
1878 /* The code below this loop only verifies that the inputs of
1879 the SET in INSN do not change. We call reg_set_between_p
1880 to verify that the REG in the USE does not change between
1881 I3 and INSN.
1882 If the USE in INSN was for a pseudo register, the matching
1883 insn pattern will likely match any register; combining this
1884 with any other USE would only be safe if we knew that the
1885 used registers have identical values, or if there was
1886 something to tell them apart, e.g. different modes. For
1887 now, we forgo such complicated tests and simply disallow
1888 combining of USES of pseudo registers with any other USE. */
1889 if (REG_P (XEXP (elt, 0))
1890 && GET_CODE (PATTERN (i3)) == PARALLEL)
1892 rtx i3pat = PATTERN (i3);
1893 int i = XVECLEN (i3pat, 0) - 1;
1894 unsigned int regno = REGNO (XEXP (elt, 0));
1898 rtx i3elt = XVECEXP (i3pat, 0, i);
1900 if (GET_CODE (i3elt) == USE
1901 && REG_P (XEXP (i3elt, 0))
1902 && (REGNO (XEXP (i3elt, 0)) == regno
1903 ? reg_set_between_p (XEXP (elt, 0),
1904 PREV_INSN (insn), i3)
1905 : regno >= FIRST_PSEUDO_REGISTER))
1906 return 0;
1908 while (--i >= 0);
1910 break;
1912 /* We can ignore CLOBBERs. */
1913 case CLOBBER:
1914 break;
1916 case SET:
1917 /* Ignore SETs whose result isn't used but not those that
1918 have side-effects. */
1919 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1920 && insn_nothrow_p (insn)
1921 && !side_effects_p (elt))
1922 break;
1924 /* If we have already found a SET, this is a second one and
1925 so we cannot combine with this insn. */
1926 if (set)
1927 return 0;
1929 set = elt;
1930 break;
1932 default:
1933 /* Anything else means we can't combine. */
1934 return 0;
1938 if (set == 0
1939 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1940 so don't do anything with it. */
1941 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1942 return 0;
1944 else
1945 return 0;
1947 if (set == 0)
1948 return 0;
1950 /* The simplification in expand_field_assignment may call back to
1951 get_last_value, so set safe guard here. */
1952 subst_low_luid = DF_INSN_LUID (insn);
1954 set = expand_field_assignment (set);
1955 src = SET_SRC (set), dest = SET_DEST (set);
1957 /* Do not eliminate user-specified register if it is in an
1958 asm input because we may break the register asm usage defined
1959 in GCC manual if allow to do so.
1960 Be aware that this may cover more cases than we expect but this
1961 should be harmless. */
1962 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1963 && extract_asm_operands (PATTERN (i3)))
1964 return 0;
1966 /* Don't eliminate a store in the stack pointer. */
1967 if (dest == stack_pointer_rtx
1968 /* Don't combine with an insn that sets a register to itself if it has
1969 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1970 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1971 /* Can't merge an ASM_OPERANDS. */
1972 || GET_CODE (src) == ASM_OPERANDS
1973 /* Can't merge a function call. */
1974 || GET_CODE (src) == CALL
1975 /* Don't eliminate a function call argument. */
1976 || (CALL_P (i3)
1977 && (find_reg_fusage (i3, USE, dest)
1978 || (REG_P (dest)
1979 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1980 && global_regs[REGNO (dest)])))
1981 /* Don't substitute into an incremented register. */
1982 || FIND_REG_INC_NOTE (i3, dest)
1983 || (succ && FIND_REG_INC_NOTE (succ, dest))
1984 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1985 /* Don't substitute into a non-local goto, this confuses CFG. */
1986 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1987 /* Make sure that DEST is not used after INSN but before SUCC, or
1988 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1989 || (!all_adjacent
1990 && ((succ2
1991 && (reg_used_between_p (dest, succ2, i3)
1992 || reg_used_between_p (dest, succ, succ2)))
1993 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1994 || (succ
1995 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1996 that case SUCC is not in the insn stream, so use SUCC2
1997 instead for this test. */
1998 && reg_used_between_p (dest, insn,
1999 succ2
2000 && INSN_UID (succ) == INSN_UID (succ2)
2001 ? succ2 : succ))))
2002 /* Make sure that the value that is to be substituted for the register
2003 does not use any registers whose values alter in between. However,
2004 If the insns are adjacent, a use can't cross a set even though we
2005 think it might (this can happen for a sequence of insns each setting
2006 the same destination; last_set of that register might point to
2007 a NOTE). If INSN has a REG_EQUIV note, the register is always
2008 equivalent to the memory so the substitution is valid even if there
2009 are intervening stores. Also, don't move a volatile asm or
2010 UNSPEC_VOLATILE across any other insns. */
2011 || (! all_adjacent
2012 && (((!MEM_P (src)
2013 || ! find_reg_note (insn, REG_EQUIV, src))
2014 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
2015 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2016 || GET_CODE (src) == UNSPEC_VOLATILE))
2017 /* Don't combine across a CALL_INSN, because that would possibly
2018 change whether the life span of some REGs crosses calls or not,
2019 and it is a pain to update that information.
2020 Exception: if source is a constant, moving it later can't hurt.
2021 Accept that as a special case. */
2022 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2023 return 0;
2025 /* DEST must either be a REG or CC0. */
2026 if (REG_P (dest))
2028 /* If register alignment is being enforced for multi-word items in all
2029 cases except for parameters, it is possible to have a register copy
2030 insn referencing a hard register that is not allowed to contain the
2031 mode being copied and which would not be valid as an operand of most
2032 insns. Eliminate this problem by not combining with such an insn.
2034 Also, on some machines we don't want to extend the life of a hard
2035 register. */
2037 if (REG_P (src)
2038 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2039 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2040 /* Don't extend the life of a hard register unless it is
2041 user variable (if we have few registers) or it can't
2042 fit into the desired register (meaning something special
2043 is going on).
2044 Also avoid substituting a return register into I3, because
2045 reload can't handle a conflict with constraints of other
2046 inputs. */
2047 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2048 && !targetm.hard_regno_mode_ok (REGNO (src),
2049 GET_MODE (src)))))
2050 return 0;
2052 else if (GET_CODE (dest) != CC0)
2053 return 0;
2056 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2057 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2058 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2060 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2062 /* If the clobber represents an earlyclobber operand, we must not
2063 substitute an expression containing the clobbered register.
2064 As we do not analyze the constraint strings here, we have to
2065 make the conservative assumption. However, if the register is
2066 a fixed hard reg, the clobber cannot represent any operand;
2067 we leave it up to the machine description to either accept or
2068 reject use-and-clobber patterns. */
2069 if (!REG_P (reg)
2070 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2071 || !fixed_regs[REGNO (reg)])
2072 if (reg_overlap_mentioned_p (reg, src))
2073 return 0;
2076 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2077 or not), reject, unless nothing volatile comes between it and I3 */
2079 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2081 /* Make sure neither succ nor succ2 contains a volatile reference. */
2082 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2083 return 0;
2084 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2085 return 0;
2086 /* We'll check insns between INSN and I3 below. */
2089 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2090 to be an explicit register variable, and was chosen for a reason. */
2092 if (GET_CODE (src) == ASM_OPERANDS
2093 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2094 return 0;
2096 /* If INSN contains volatile references (specifically volatile MEMs),
2097 we cannot combine across any other volatile references.
2098 Even if INSN doesn't contain volatile references, any intervening
2099 volatile insn might affect machine state. */
2101 is_volatile_p = volatile_refs_p (PATTERN (insn))
2102 ? volatile_refs_p
2103 : volatile_insn_p;
2105 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2106 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2107 return 0;
2109 /* If INSN contains an autoincrement or autodecrement, make sure that
2110 register is not used between there and I3, and not already used in
2111 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2112 Also insist that I3 not be a jump; if it were one
2113 and the incremented register were spilled, we would lose. */
2115 if (AUTO_INC_DEC)
2116 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2117 if (REG_NOTE_KIND (link) == REG_INC
2118 && (JUMP_P (i3)
2119 || reg_used_between_p (XEXP (link, 0), insn, i3)
2120 || (pred != NULL_RTX
2121 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2122 || (pred2 != NULL_RTX
2123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2124 || (succ != NULL_RTX
2125 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2126 || (succ2 != NULL_RTX
2127 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2128 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2129 return 0;
2131 /* Don't combine an insn that follows a CC0-setting insn.
2132 An insn that uses CC0 must not be separated from the one that sets it.
2133 We do, however, allow I2 to follow a CC0-setting insn if that insn
2134 is passed as I1; in that case it will be deleted also.
2135 We also allow combining in this case if all the insns are adjacent
2136 because that would leave the two CC0 insns adjacent as well.
2137 It would be more logical to test whether CC0 occurs inside I1 or I2,
2138 but that would be much slower, and this ought to be equivalent. */
2140 if (HAVE_cc0)
2142 p = prev_nonnote_insn (insn);
2143 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2144 && ! all_adjacent)
2145 return 0;
2148 /* If we get here, we have passed all the tests and the combination is
2149 to be allowed. */
2151 *pdest = dest;
2152 *psrc = src;
2154 return 1;
2157 /* LOC is the location within I3 that contains its pattern or the component
2158 of a PARALLEL of the pattern. We validate that it is valid for combining.
2160 One problem is if I3 modifies its output, as opposed to replacing it
2161 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2162 doing so would produce an insn that is not equivalent to the original insns.
2164 Consider:
2166 (set (reg:DI 101) (reg:DI 100))
2167 (set (subreg:SI (reg:DI 101) 0) <foo>)
2169 This is NOT equivalent to:
2171 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2172 (set (reg:DI 101) (reg:DI 100))])
2174 Not only does this modify 100 (in which case it might still be valid
2175 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2177 We can also run into a problem if I2 sets a register that I1
2178 uses and I1 gets directly substituted into I3 (not via I2). In that
2179 case, we would be getting the wrong value of I2DEST into I3, so we
2180 must reject the combination. This case occurs when I2 and I1 both
2181 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2182 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2183 of a SET must prevent combination from occurring. The same situation
2184 can occur for I0, in which case I0_NOT_IN_SRC is set.
2186 Before doing the above check, we first try to expand a field assignment
2187 into a set of logical operations.
2189 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2190 we place a register that is both set and used within I3. If more than one
2191 such register is detected, we fail.
2193 Return 1 if the combination is valid, zero otherwise. */
2195 static int
2196 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2197 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2199 rtx x = *loc;
2201 if (GET_CODE (x) == SET)
2203 rtx set = x ;
2204 rtx dest = SET_DEST (set);
2205 rtx src = SET_SRC (set);
2206 rtx inner_dest = dest;
2207 rtx subdest;
2209 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2210 || GET_CODE (inner_dest) == SUBREG
2211 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2212 inner_dest = XEXP (inner_dest, 0);
2214 /* Check for the case where I3 modifies its output, as discussed
2215 above. We don't want to prevent pseudos from being combined
2216 into the address of a MEM, so only prevent the combination if
2217 i1 or i2 set the same MEM. */
2218 if ((inner_dest != dest &&
2219 (!MEM_P (inner_dest)
2220 || rtx_equal_p (i2dest, inner_dest)
2221 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2222 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2223 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2224 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2225 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2227 /* This is the same test done in can_combine_p except we can't test
2228 all_adjacent; we don't have to, since this instruction will stay
2229 in place, thus we are not considering increasing the lifetime of
2230 INNER_DEST.
2232 Also, if this insn sets a function argument, combining it with
2233 something that might need a spill could clobber a previous
2234 function argument; the all_adjacent test in can_combine_p also
2235 checks this; here, we do a more specific test for this case. */
2237 || (REG_P (inner_dest)
2238 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2239 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2240 GET_MODE (inner_dest)))
2241 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2242 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2243 return 0;
2245 /* If DEST is used in I3, it is being killed in this insn, so
2246 record that for later. We have to consider paradoxical
2247 subregs here, since they kill the whole register, but we
2248 ignore partial subregs, STRICT_LOW_PART, etc.
2249 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2250 STACK_POINTER_REGNUM, since these are always considered to be
2251 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2252 subdest = dest;
2253 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2254 subdest = SUBREG_REG (subdest);
2255 if (pi3dest_killed
2256 && REG_P (subdest)
2257 && reg_referenced_p (subdest, PATTERN (i3))
2258 && REGNO (subdest) != FRAME_POINTER_REGNUM
2259 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2260 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2261 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2262 || (REGNO (subdest) != ARG_POINTER_REGNUM
2263 || ! fixed_regs [REGNO (subdest)]))
2264 && REGNO (subdest) != STACK_POINTER_REGNUM)
2266 if (*pi3dest_killed)
2267 return 0;
2269 *pi3dest_killed = subdest;
2273 else if (GET_CODE (x) == PARALLEL)
2275 int i;
2277 for (i = 0; i < XVECLEN (x, 0); i++)
2278 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2279 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2280 return 0;
2283 return 1;
2286 /* Return 1 if X is an arithmetic expression that contains a multiplication
2287 and division. We don't count multiplications by powers of two here. */
2289 static int
2290 contains_muldiv (rtx x)
2292 switch (GET_CODE (x))
2294 case MOD: case DIV: case UMOD: case UDIV:
2295 return 1;
2297 case MULT:
2298 return ! (CONST_INT_P (XEXP (x, 1))
2299 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2300 default:
2301 if (BINARY_P (x))
2302 return contains_muldiv (XEXP (x, 0))
2303 || contains_muldiv (XEXP (x, 1));
2305 if (UNARY_P (x))
2306 return contains_muldiv (XEXP (x, 0));
2308 return 0;
2312 /* Determine whether INSN can be used in a combination. Return nonzero if
2313 not. This is used in try_combine to detect early some cases where we
2314 can't perform combinations. */
2316 static int
2317 cant_combine_insn_p (rtx_insn *insn)
2319 rtx set;
2320 rtx src, dest;
2322 /* If this isn't really an insn, we can't do anything.
2323 This can occur when flow deletes an insn that it has merged into an
2324 auto-increment address. */
2325 if (!NONDEBUG_INSN_P (insn))
2326 return 1;
2328 /* Never combine loads and stores involving hard regs that are likely
2329 to be spilled. The register allocator can usually handle such
2330 reg-reg moves by tying. If we allow the combiner to make
2331 substitutions of likely-spilled regs, reload might die.
2332 As an exception, we allow combinations involving fixed regs; these are
2333 not available to the register allocator so there's no risk involved. */
2335 set = single_set (insn);
2336 if (! set)
2337 return 0;
2338 src = SET_SRC (set);
2339 dest = SET_DEST (set);
2340 if (GET_CODE (src) == SUBREG)
2341 src = SUBREG_REG (src);
2342 if (GET_CODE (dest) == SUBREG)
2343 dest = SUBREG_REG (dest);
2344 if (REG_P (src) && REG_P (dest)
2345 && ((HARD_REGISTER_P (src)
2346 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2347 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2348 || (HARD_REGISTER_P (dest)
2349 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2350 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2351 return 1;
2353 return 0;
2356 struct likely_spilled_retval_info
2358 unsigned regno, nregs;
2359 unsigned mask;
2362 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2363 hard registers that are known to be written to / clobbered in full. */
2364 static void
2365 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2367 struct likely_spilled_retval_info *const info =
2368 (struct likely_spilled_retval_info *) data;
2369 unsigned regno, nregs;
2370 unsigned new_mask;
2372 if (!REG_P (XEXP (set, 0)))
2373 return;
2374 regno = REGNO (x);
2375 if (regno >= info->regno + info->nregs)
2376 return;
2377 nregs = REG_NREGS (x);
2378 if (regno + nregs <= info->regno)
2379 return;
2380 new_mask = (2U << (nregs - 1)) - 1;
2381 if (regno < info->regno)
2382 new_mask >>= info->regno - regno;
2383 else
2384 new_mask <<= regno - info->regno;
2385 info->mask &= ~new_mask;
2388 /* Return nonzero iff part of the return value is live during INSN, and
2389 it is likely spilled. This can happen when more than one insn is needed
2390 to copy the return value, e.g. when we consider to combine into the
2391 second copy insn for a complex value. */
2393 static int
2394 likely_spilled_retval_p (rtx_insn *insn)
2396 rtx_insn *use = BB_END (this_basic_block);
2397 rtx reg;
2398 rtx_insn *p;
2399 unsigned regno, nregs;
2400 /* We assume here that no machine mode needs more than
2401 32 hard registers when the value overlaps with a register
2402 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2403 unsigned mask;
2404 struct likely_spilled_retval_info info;
2406 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2407 return 0;
2408 reg = XEXP (PATTERN (use), 0);
2409 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2410 return 0;
2411 regno = REGNO (reg);
2412 nregs = REG_NREGS (reg);
2413 if (nregs == 1)
2414 return 0;
2415 mask = (2U << (nregs - 1)) - 1;
2417 /* Disregard parts of the return value that are set later. */
2418 info.regno = regno;
2419 info.nregs = nregs;
2420 info.mask = mask;
2421 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2422 if (INSN_P (p))
2423 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2424 mask = info.mask;
2426 /* Check if any of the (probably) live return value registers is
2427 likely spilled. */
2428 nregs --;
2431 if ((mask & 1 << nregs)
2432 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2433 return 1;
2434 } while (nregs--);
2435 return 0;
2438 /* Adjust INSN after we made a change to its destination.
2440 Changing the destination can invalidate notes that say something about
2441 the results of the insn and a LOG_LINK pointing to the insn. */
2443 static void
2444 adjust_for_new_dest (rtx_insn *insn)
2446 /* For notes, be conservative and simply remove them. */
2447 remove_reg_equal_equiv_notes (insn);
2449 /* The new insn will have a destination that was previously the destination
2450 of an insn just above it. Call distribute_links to make a LOG_LINK from
2451 the next use of that destination. */
2453 rtx set = single_set (insn);
2454 gcc_assert (set);
2456 rtx reg = SET_DEST (set);
2458 while (GET_CODE (reg) == ZERO_EXTRACT
2459 || GET_CODE (reg) == STRICT_LOW_PART
2460 || GET_CODE (reg) == SUBREG)
2461 reg = XEXP (reg, 0);
2462 gcc_assert (REG_P (reg));
2464 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2466 df_insn_rescan (insn);
2469 /* Return TRUE if combine can reuse reg X in mode MODE.
2470 ADDED_SETS is nonzero if the original set is still required. */
2471 static bool
2472 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2474 unsigned int regno;
2476 if (!REG_P (x))
2477 return false;
2479 /* Don't change between modes with different underlying register sizes,
2480 since this could lead to invalid subregs. */
2481 if (REGMODE_NATURAL_SIZE (mode)
2482 != REGMODE_NATURAL_SIZE (GET_MODE (x)))
2483 return false;
2485 regno = REGNO (x);
2486 /* Allow hard registers if the new mode is legal, and occupies no more
2487 registers than the old mode. */
2488 if (regno < FIRST_PSEUDO_REGISTER)
2489 return (targetm.hard_regno_mode_ok (regno, mode)
2490 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2492 /* Or a pseudo that is only used once. */
2493 return (regno < reg_n_sets_max
2494 && REG_N_SETS (regno) == 1
2495 && !added_sets
2496 && !REG_USERVAR_P (x));
2500 /* Check whether X, the destination of a set, refers to part of
2501 the register specified by REG. */
2503 static bool
2504 reg_subword_p (rtx x, rtx reg)
2506 /* Check that reg is an integer mode register. */
2507 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2508 return false;
2510 if (GET_CODE (x) == STRICT_LOW_PART
2511 || GET_CODE (x) == ZERO_EXTRACT)
2512 x = XEXP (x, 0);
2514 return GET_CODE (x) == SUBREG
2515 && SUBREG_REG (x) == reg
2516 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2519 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2520 Note that the INSN should be deleted *after* removing dead edges, so
2521 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2522 but not for a (set (pc) (label_ref FOO)). */
2524 static void
2525 update_cfg_for_uncondjump (rtx_insn *insn)
2527 basic_block bb = BLOCK_FOR_INSN (insn);
2528 gcc_assert (BB_END (bb) == insn);
2530 purge_dead_edges (bb);
2532 delete_insn (insn);
2533 if (EDGE_COUNT (bb->succs) == 1)
2535 rtx_insn *insn;
2537 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2539 /* Remove barriers from the footer if there are any. */
2540 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2541 if (BARRIER_P (insn))
2543 if (PREV_INSN (insn))
2544 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2545 else
2546 BB_FOOTER (bb) = NEXT_INSN (insn);
2547 if (NEXT_INSN (insn))
2548 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2550 else if (LABEL_P (insn))
2551 break;
2555 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2556 by an arbitrary number of CLOBBERs. */
2557 static bool
2558 is_parallel_of_n_reg_sets (rtx pat, int n)
2560 if (GET_CODE (pat) != PARALLEL)
2561 return false;
2563 int len = XVECLEN (pat, 0);
2564 if (len < n)
2565 return false;
2567 int i;
2568 for (i = 0; i < n; i++)
2569 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2570 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2571 return false;
2572 for ( ; i < len; i++)
2573 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2574 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2575 return false;
2577 return true;
2580 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2581 CLOBBERs), can be split into individual SETs in that order, without
2582 changing semantics. */
2583 static bool
2584 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2586 if (!insn_nothrow_p (insn))
2587 return false;
2589 rtx pat = PATTERN (insn);
2591 int i, j;
2592 for (i = 0; i < n; i++)
2594 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2595 return false;
2597 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2599 for (j = i + 1; j < n; j++)
2600 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2601 return false;
2604 return true;
2607 /* Try to combine the insns I0, I1 and I2 into I3.
2608 Here I0, I1 and I2 appear earlier than I3.
2609 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2612 If we are combining more than two insns and the resulting insn is not
2613 recognized, try splitting it into two insns. If that happens, I2 and I3
2614 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2615 Otherwise, I0, I1 and I2 are pseudo-deleted.
2617 Return 0 if the combination does not work. Then nothing is changed.
2618 If we did the combination, return the insn at which combine should
2619 resume scanning.
2621 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2622 new direct jump instruction.
2624 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2625 been I3 passed to an earlier try_combine within the same basic
2626 block. */
2628 static rtx_insn *
2629 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2630 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2632 /* New patterns for I3 and I2, respectively. */
2633 rtx newpat, newi2pat = 0;
2634 rtvec newpat_vec_with_clobbers = 0;
2635 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2636 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2637 dead. */
2638 int added_sets_0, added_sets_1, added_sets_2;
2639 /* Total number of SETs to put into I3. */
2640 int total_sets;
2641 /* Nonzero if I2's or I1's body now appears in I3. */
2642 int i2_is_used = 0, i1_is_used = 0;
2643 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2644 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2645 /* Contains I3 if the destination of I3 is used in its source, which means
2646 that the old life of I3 is being killed. If that usage is placed into
2647 I2 and not in I3, a REG_DEAD note must be made. */
2648 rtx i3dest_killed = 0;
2649 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2650 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2651 /* Copy of SET_SRC of I1 and I0, if needed. */
2652 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2653 /* Set if I2DEST was reused as a scratch register. */
2654 bool i2scratch = false;
2655 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2656 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2657 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2658 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2659 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2660 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2661 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2662 /* Notes that must be added to REG_NOTES in I3 and I2. */
2663 rtx new_i3_notes, new_i2_notes;
2664 /* Notes that we substituted I3 into I2 instead of the normal case. */
2665 int i3_subst_into_i2 = 0;
2666 /* Notes that I1, I2 or I3 is a MULT operation. */
2667 int have_mult = 0;
2668 int swap_i2i3 = 0;
2669 int changed_i3_dest = 0;
2671 int maxreg;
2672 rtx_insn *temp_insn;
2673 rtx temp_expr;
2674 struct insn_link *link;
2675 rtx other_pat = 0;
2676 rtx new_other_notes;
2677 int i;
2678 scalar_int_mode dest_mode, temp_mode;
2680 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2681 never be). */
2682 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2683 return 0;
2685 /* Only try four-insn combinations when there's high likelihood of
2686 success. Look for simple insns, such as loads of constants or
2687 binary operations involving a constant. */
2688 if (i0)
2690 int i;
2691 int ngood = 0;
2692 int nshift = 0;
2693 rtx set0, set3;
2695 if (!flag_expensive_optimizations)
2696 return 0;
2698 for (i = 0; i < 4; i++)
2700 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2701 rtx set = single_set (insn);
2702 rtx src;
2703 if (!set)
2704 continue;
2705 src = SET_SRC (set);
2706 if (CONSTANT_P (src))
2708 ngood += 2;
2709 break;
2711 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2712 ngood++;
2713 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2714 || GET_CODE (src) == LSHIFTRT)
2715 nshift++;
2718 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2719 are likely manipulating its value. Ideally we'll be able to combine
2720 all four insns into a bitfield insertion of some kind.
2722 Note the source in I0 might be inside a sign/zero extension and the
2723 memory modes in I0 and I3 might be different. So extract the address
2724 from the destination of I3 and search for it in the source of I0.
2726 In the event that there's a match but the source/dest do not actually
2727 refer to the same memory, the worst that happens is we try some
2728 combinations that we wouldn't have otherwise. */
2729 if ((set0 = single_set (i0))
2730 /* Ensure the source of SET0 is a MEM, possibly buried inside
2731 an extension. */
2732 && (GET_CODE (SET_SRC (set0)) == MEM
2733 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2734 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2735 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2736 && (set3 = single_set (i3))
2737 /* Ensure the destination of SET3 is a MEM. */
2738 && GET_CODE (SET_DEST (set3)) == MEM
2739 /* Would it be better to extract the base address for the MEM
2740 in SET3 and look for that? I don't have cases where it matters
2741 but I could envision such cases. */
2742 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2743 ngood += 2;
2745 if (ngood < 2 && nshift < 2)
2746 return 0;
2749 /* Exit early if one of the insns involved can't be used for
2750 combinations. */
2751 if (CALL_P (i2)
2752 || (i1 && CALL_P (i1))
2753 || (i0 && CALL_P (i0))
2754 || cant_combine_insn_p (i3)
2755 || cant_combine_insn_p (i2)
2756 || (i1 && cant_combine_insn_p (i1))
2757 || (i0 && cant_combine_insn_p (i0))
2758 || likely_spilled_retval_p (i3))
2759 return 0;
2761 combine_attempts++;
2762 undobuf.other_insn = 0;
2764 /* Reset the hard register usage information. */
2765 CLEAR_HARD_REG_SET (newpat_used_regs);
2767 if (dump_file && (dump_flags & TDF_DETAILS))
2769 if (i0)
2770 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2771 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2772 else if (i1)
2773 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2774 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2775 else
2776 fprintf (dump_file, "\nTrying %d -> %d:\n",
2777 INSN_UID (i2), INSN_UID (i3));
2779 if (i0)
2780 dump_insn_slim (dump_file, i0);
2781 if (i1)
2782 dump_insn_slim (dump_file, i1);
2783 dump_insn_slim (dump_file, i2);
2784 dump_insn_slim (dump_file, i3);
2787 /* If multiple insns feed into one of I2 or I3, they can be in any
2788 order. To simplify the code below, reorder them in sequence. */
2789 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2790 std::swap (i0, i2);
2791 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2792 std::swap (i0, i1);
2793 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2794 std::swap (i1, i2);
2796 added_links_insn = 0;
2797 added_notes_insn = 0;
2799 /* First check for one important special case that the code below will
2800 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2801 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2802 we may be able to replace that destination with the destination of I3.
2803 This occurs in the common code where we compute both a quotient and
2804 remainder into a structure, in which case we want to do the computation
2805 directly into the structure to avoid register-register copies.
2807 Note that this case handles both multiple sets in I2 and also cases
2808 where I2 has a number of CLOBBERs inside the PARALLEL.
2810 We make very conservative checks below and only try to handle the
2811 most common cases of this. For example, we only handle the case
2812 where I2 and I3 are adjacent to avoid making difficult register
2813 usage tests. */
2815 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2816 && REG_P (SET_SRC (PATTERN (i3)))
2817 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2818 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2819 && GET_CODE (PATTERN (i2)) == PARALLEL
2820 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2821 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2822 below would need to check what is inside (and reg_overlap_mentioned_p
2823 doesn't support those codes anyway). Don't allow those destinations;
2824 the resulting insn isn't likely to be recognized anyway. */
2825 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2826 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2827 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2828 SET_DEST (PATTERN (i3)))
2829 && next_active_insn (i2) == i3)
2831 rtx p2 = PATTERN (i2);
2833 /* Make sure that the destination of I3,
2834 which we are going to substitute into one output of I2,
2835 is not used within another output of I2. We must avoid making this:
2836 (parallel [(set (mem (reg 69)) ...)
2837 (set (reg 69) ...)])
2838 which is not well-defined as to order of actions.
2839 (Besides, reload can't handle output reloads for this.)
2841 The problem can also happen if the dest of I3 is a memory ref,
2842 if another dest in I2 is an indirect memory ref.
2844 Neither can this PARALLEL be an asm. We do not allow combining
2845 that usually (see can_combine_p), so do not here either. */
2846 bool ok = true;
2847 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2849 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2850 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2851 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2852 SET_DEST (XVECEXP (p2, 0, i))))
2853 ok = false;
2854 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2855 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2856 ok = false;
2859 if (ok)
2860 for (i = 0; i < XVECLEN (p2, 0); i++)
2861 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2862 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2864 combine_merges++;
2866 subst_insn = i3;
2867 subst_low_luid = DF_INSN_LUID (i2);
2869 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2870 i2src = SET_SRC (XVECEXP (p2, 0, i));
2871 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2872 i2dest_killed = dead_or_set_p (i2, i2dest);
2874 /* Replace the dest in I2 with our dest and make the resulting
2875 insn the new pattern for I3. Then skip to where we validate
2876 the pattern. Everything was set up above. */
2877 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2878 newpat = p2;
2879 i3_subst_into_i2 = 1;
2880 goto validate_replacement;
2884 /* If I2 is setting a pseudo to a constant and I3 is setting some
2885 sub-part of it to another constant, merge them by making a new
2886 constant. */
2887 if (i1 == 0
2888 && (temp_expr = single_set (i2)) != 0
2889 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2890 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2891 && GET_CODE (PATTERN (i3)) == SET
2892 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2893 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2895 rtx dest = SET_DEST (PATTERN (i3));
2896 rtx temp_dest = SET_DEST (temp_expr);
2897 int offset = -1;
2898 int width = 0;
2900 if (GET_CODE (dest) == ZERO_EXTRACT)
2902 if (CONST_INT_P (XEXP (dest, 1))
2903 && CONST_INT_P (XEXP (dest, 2))
2904 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2905 &dest_mode))
2907 width = INTVAL (XEXP (dest, 1));
2908 offset = INTVAL (XEXP (dest, 2));
2909 dest = XEXP (dest, 0);
2910 if (BITS_BIG_ENDIAN)
2911 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2914 else
2916 if (GET_CODE (dest) == STRICT_LOW_PART)
2917 dest = XEXP (dest, 0);
2918 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2920 width = GET_MODE_PRECISION (dest_mode);
2921 offset = 0;
2925 if (offset >= 0)
2927 /* If this is the low part, we're done. */
2928 if (subreg_lowpart_p (dest))
2930 /* Handle the case where inner is twice the size of outer. */
2931 else if (GET_MODE_PRECISION (temp_mode)
2932 == 2 * GET_MODE_PRECISION (dest_mode))
2933 offset += GET_MODE_PRECISION (dest_mode);
2934 /* Otherwise give up for now. */
2935 else
2936 offset = -1;
2939 if (offset >= 0)
2941 rtx inner = SET_SRC (PATTERN (i3));
2942 rtx outer = SET_SRC (temp_expr);
2944 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2945 rtx_mode_t (inner, dest_mode),
2946 offset, width);
2948 combine_merges++;
2949 subst_insn = i3;
2950 subst_low_luid = DF_INSN_LUID (i2);
2951 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2952 i2dest = temp_dest;
2953 i2dest_killed = dead_or_set_p (i2, i2dest);
2955 /* Replace the source in I2 with the new constant and make the
2956 resulting insn the new pattern for I3. Then skip to where we
2957 validate the pattern. Everything was set up above. */
2958 SUBST (SET_SRC (temp_expr),
2959 immed_wide_int_const (o, temp_mode));
2961 newpat = PATTERN (i2);
2963 /* The dest of I3 has been replaced with the dest of I2. */
2964 changed_i3_dest = 1;
2965 goto validate_replacement;
2969 /* If we have no I1 and I2 looks like:
2970 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2971 (set Y OP)])
2972 make up a dummy I1 that is
2973 (set Y OP)
2974 and change I2 to be
2975 (set (reg:CC X) (compare:CC Y (const_int 0)))
2977 (We can ignore any trailing CLOBBERs.)
2979 This undoes a previous combination and allows us to match a branch-and-
2980 decrement insn. */
2982 if (!HAVE_cc0 && i1 == 0
2983 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2984 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2985 == MODE_CC)
2986 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2987 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2988 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2989 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2990 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2991 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2993 /* We make I1 with the same INSN_UID as I2. This gives it
2994 the same DF_INSN_LUID for value tracking. Our fake I1 will
2995 never appear in the insn stream so giving it the same INSN_UID
2996 as I2 will not cause a problem. */
2998 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2999 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3000 -1, NULL_RTX);
3001 INSN_UID (i1) = INSN_UID (i2);
3003 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3004 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3005 SET_DEST (PATTERN (i1)));
3006 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3007 SUBST_LINK (LOG_LINKS (i2),
3008 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3011 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3012 make those two SETs separate I1 and I2 insns, and make an I0 that is
3013 the original I1. */
3014 if (!HAVE_cc0 && i0 == 0
3015 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3016 && can_split_parallel_of_n_reg_sets (i2, 2)
3017 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3018 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3019 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3020 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3022 /* If there is no I1, there is no I0 either. */
3023 i0 = i1;
3025 /* We make I1 with the same INSN_UID as I2. This gives it
3026 the same DF_INSN_LUID for value tracking. Our fake I1 will
3027 never appear in the insn stream so giving it the same INSN_UID
3028 as I2 will not cause a problem. */
3030 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3031 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3032 -1, NULL_RTX);
3033 INSN_UID (i1) = INSN_UID (i2);
3035 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3038 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3039 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3041 if (dump_file)
3042 fprintf (dump_file, "Can't combine i2 into i3\n");
3043 undo_all ();
3044 return 0;
3046 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3048 if (dump_file)
3049 fprintf (dump_file, "Can't combine i1 into i3\n");
3050 undo_all ();
3051 return 0;
3053 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3055 if (dump_file)
3056 fprintf (dump_file, "Can't combine i0 into i3\n");
3057 undo_all ();
3058 return 0;
3061 /* Record whether I2DEST is used in I2SRC and similarly for the other
3062 cases. Knowing this will help in register status updating below. */
3063 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3064 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3065 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3066 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3067 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3068 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3069 i2dest_killed = dead_or_set_p (i2, i2dest);
3070 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3071 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3073 /* For the earlier insns, determine which of the subsequent ones they
3074 feed. */
3075 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3076 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3077 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3078 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3079 && reg_overlap_mentioned_p (i0dest, i2src))));
3081 /* Ensure that I3's pattern can be the destination of combines. */
3082 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3083 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3084 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3085 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3086 &i3dest_killed))
3088 undo_all ();
3089 return 0;
3092 /* See if any of the insns is a MULT operation. Unless one is, we will
3093 reject a combination that is, since it must be slower. Be conservative
3094 here. */
3095 if (GET_CODE (i2src) == MULT
3096 || (i1 != 0 && GET_CODE (i1src) == MULT)
3097 || (i0 != 0 && GET_CODE (i0src) == MULT)
3098 || (GET_CODE (PATTERN (i3)) == SET
3099 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3100 have_mult = 1;
3102 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3103 We used to do this EXCEPT in one case: I3 has a post-inc in an
3104 output operand. However, that exception can give rise to insns like
3105 mov r3,(r3)+
3106 which is a famous insn on the PDP-11 where the value of r3 used as the
3107 source was model-dependent. Avoid this sort of thing. */
3109 #if 0
3110 if (!(GET_CODE (PATTERN (i3)) == SET
3111 && REG_P (SET_SRC (PATTERN (i3)))
3112 && MEM_P (SET_DEST (PATTERN (i3)))
3113 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3114 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3115 /* It's not the exception. */
3116 #endif
3117 if (AUTO_INC_DEC)
3119 rtx link;
3120 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3121 if (REG_NOTE_KIND (link) == REG_INC
3122 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3123 || (i1 != 0
3124 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3126 undo_all ();
3127 return 0;
3131 /* See if the SETs in I1 or I2 need to be kept around in the merged
3132 instruction: whenever the value set there is still needed past I3.
3133 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3135 For the SET in I1, we have two cases: if I1 and I2 independently feed
3136 into I3, the set in I1 needs to be kept around unless I1DEST dies
3137 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3138 in I1 needs to be kept around unless I1DEST dies or is set in either
3139 I2 or I3. The same considerations apply to I0. */
3141 added_sets_2 = !dead_or_set_p (i3, i2dest);
3143 if (i1)
3144 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3145 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3146 else
3147 added_sets_1 = 0;
3149 if (i0)
3150 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3151 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3152 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3153 && dead_or_set_p (i2, i0dest)));
3154 else
3155 added_sets_0 = 0;
3157 /* We are about to copy insns for the case where they need to be kept
3158 around. Check that they can be copied in the merged instruction. */
3160 if (targetm.cannot_copy_insn_p
3161 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3162 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3163 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3165 undo_all ();
3166 return 0;
3169 /* If the set in I2 needs to be kept around, we must make a copy of
3170 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3171 PATTERN (I2), we are only substituting for the original I1DEST, not into
3172 an already-substituted copy. This also prevents making self-referential
3173 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3174 I2DEST. */
3176 if (added_sets_2)
3178 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3179 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3180 else
3181 i2pat = copy_rtx (PATTERN (i2));
3184 if (added_sets_1)
3186 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3187 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3188 else
3189 i1pat = copy_rtx (PATTERN (i1));
3192 if (added_sets_0)
3194 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3195 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3196 else
3197 i0pat = copy_rtx (PATTERN (i0));
3200 combine_merges++;
3202 /* Substitute in the latest insn for the regs set by the earlier ones. */
3204 maxreg = max_reg_num ();
3206 subst_insn = i3;
3208 /* Many machines that don't use CC0 have insns that can both perform an
3209 arithmetic operation and set the condition code. These operations will
3210 be represented as a PARALLEL with the first element of the vector
3211 being a COMPARE of an arithmetic operation with the constant zero.
3212 The second element of the vector will set some pseudo to the result
3213 of the same arithmetic operation. If we simplify the COMPARE, we won't
3214 match such a pattern and so will generate an extra insn. Here we test
3215 for this case, where both the comparison and the operation result are
3216 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3217 I2SRC. Later we will make the PARALLEL that contains I2. */
3219 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3220 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3221 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3222 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3224 rtx newpat_dest;
3225 rtx *cc_use_loc = NULL;
3226 rtx_insn *cc_use_insn = NULL;
3227 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3228 machine_mode compare_mode, orig_compare_mode;
3229 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3230 scalar_int_mode mode;
3232 newpat = PATTERN (i3);
3233 newpat_dest = SET_DEST (newpat);
3234 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3236 if (undobuf.other_insn == 0
3237 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3238 &cc_use_insn)))
3240 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3241 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3242 compare_code = simplify_compare_const (compare_code, mode,
3243 op0, &op1);
3244 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3247 /* Do the rest only if op1 is const0_rtx, which may be the
3248 result of simplification. */
3249 if (op1 == const0_rtx)
3251 /* If a single use of the CC is found, prepare to modify it
3252 when SELECT_CC_MODE returns a new CC-class mode, or when
3253 the above simplify_compare_const() returned a new comparison
3254 operator. undobuf.other_insn is assigned the CC use insn
3255 when modifying it. */
3256 if (cc_use_loc)
3258 #ifdef SELECT_CC_MODE
3259 machine_mode new_mode
3260 = SELECT_CC_MODE (compare_code, op0, op1);
3261 if (new_mode != orig_compare_mode
3262 && can_change_dest_mode (SET_DEST (newpat),
3263 added_sets_2, new_mode))
3265 unsigned int regno = REGNO (newpat_dest);
3266 compare_mode = new_mode;
3267 if (regno < FIRST_PSEUDO_REGISTER)
3268 newpat_dest = gen_rtx_REG (compare_mode, regno);
3269 else
3271 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3272 newpat_dest = regno_reg_rtx[regno];
3275 #endif
3276 /* Cases for modifying the CC-using comparison. */
3277 if (compare_code != orig_compare_code
3278 /* ??? Do we need to verify the zero rtx? */
3279 && XEXP (*cc_use_loc, 1) == const0_rtx)
3281 /* Replace cc_use_loc with entire new RTX. */
3282 SUBST (*cc_use_loc,
3283 gen_rtx_fmt_ee (compare_code, compare_mode,
3284 newpat_dest, const0_rtx));
3285 undobuf.other_insn = cc_use_insn;
3287 else if (compare_mode != orig_compare_mode)
3289 /* Just replace the CC reg with a new mode. */
3290 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3291 undobuf.other_insn = cc_use_insn;
3295 /* Now we modify the current newpat:
3296 First, SET_DEST(newpat) is updated if the CC mode has been
3297 altered. For targets without SELECT_CC_MODE, this should be
3298 optimized away. */
3299 if (compare_mode != orig_compare_mode)
3300 SUBST (SET_DEST (newpat), newpat_dest);
3301 /* This is always done to propagate i2src into newpat. */
3302 SUBST (SET_SRC (newpat),
3303 gen_rtx_COMPARE (compare_mode, op0, op1));
3304 /* Create new version of i2pat if needed; the below PARALLEL
3305 creation needs this to work correctly. */
3306 if (! rtx_equal_p (i2src, op0))
3307 i2pat = gen_rtx_SET (i2dest, op0);
3308 i2_is_used = 1;
3312 if (i2_is_used == 0)
3314 /* It is possible that the source of I2 or I1 may be performing
3315 an unneeded operation, such as a ZERO_EXTEND of something
3316 that is known to have the high part zero. Handle that case
3317 by letting subst look at the inner insns.
3319 Another way to do this would be to have a function that tries
3320 to simplify a single insn instead of merging two or more
3321 insns. We don't do this because of the potential of infinite
3322 loops and because of the potential extra memory required.
3323 However, doing it the way we are is a bit of a kludge and
3324 doesn't catch all cases.
3326 But only do this if -fexpensive-optimizations since it slows
3327 things down and doesn't usually win.
3329 This is not done in the COMPARE case above because the
3330 unmodified I2PAT is used in the PARALLEL and so a pattern
3331 with a modified I2SRC would not match. */
3333 if (flag_expensive_optimizations)
3335 /* Pass pc_rtx so no substitutions are done, just
3336 simplifications. */
3337 if (i1)
3339 subst_low_luid = DF_INSN_LUID (i1);
3340 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3343 subst_low_luid = DF_INSN_LUID (i2);
3344 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3347 n_occurrences = 0; /* `subst' counts here */
3348 subst_low_luid = DF_INSN_LUID (i2);
3350 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3351 copy of I2SRC each time we substitute it, in order to avoid creating
3352 self-referential RTL when we will be substituting I1SRC for I1DEST
3353 later. Likewise if I0 feeds into I2, either directly or indirectly
3354 through I1, and I0DEST is in I0SRC. */
3355 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3356 (i1_feeds_i2_n && i1dest_in_i1src)
3357 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3358 && i0dest_in_i0src));
3359 substed_i2 = 1;
3361 /* Record whether I2's body now appears within I3's body. */
3362 i2_is_used = n_occurrences;
3365 /* If we already got a failure, don't try to do more. Otherwise, try to
3366 substitute I1 if we have it. */
3368 if (i1 && GET_CODE (newpat) != CLOBBER)
3370 /* Check that an autoincrement side-effect on I1 has not been lost.
3371 This happens if I1DEST is mentioned in I2 and dies there, and
3372 has disappeared from the new pattern. */
3373 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3374 && i1_feeds_i2_n
3375 && dead_or_set_p (i2, i1dest)
3376 && !reg_overlap_mentioned_p (i1dest, newpat))
3377 /* Before we can do this substitution, we must redo the test done
3378 above (see detailed comments there) that ensures I1DEST isn't
3379 mentioned in any SETs in NEWPAT that are field assignments. */
3380 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3381 0, 0, 0))
3383 undo_all ();
3384 return 0;
3387 n_occurrences = 0;
3388 subst_low_luid = DF_INSN_LUID (i1);
3390 /* If the following substitution will modify I1SRC, make a copy of it
3391 for the case where it is substituted for I1DEST in I2PAT later. */
3392 if (added_sets_2 && i1_feeds_i2_n)
3393 i1src_copy = copy_rtx (i1src);
3395 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3396 copy of I1SRC each time we substitute it, in order to avoid creating
3397 self-referential RTL when we will be substituting I0SRC for I0DEST
3398 later. */
3399 newpat = subst (newpat, i1dest, i1src, 0, 0,
3400 i0_feeds_i1_n && i0dest_in_i0src);
3401 substed_i1 = 1;
3403 /* Record whether I1's body now appears within I3's body. */
3404 i1_is_used = n_occurrences;
3407 /* Likewise for I0 if we have it. */
3409 if (i0 && GET_CODE (newpat) != CLOBBER)
3411 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3412 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3413 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3414 && !reg_overlap_mentioned_p (i0dest, newpat))
3415 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3416 0, 0, 0))
3418 undo_all ();
3419 return 0;
3422 /* If the following substitution will modify I0SRC, make a copy of it
3423 for the case where it is substituted for I0DEST in I1PAT later. */
3424 if (added_sets_1 && i0_feeds_i1_n)
3425 i0src_copy = copy_rtx (i0src);
3426 /* And a copy for I0DEST in I2PAT substitution. */
3427 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3428 || (i0_feeds_i2_n)))
3429 i0src_copy2 = copy_rtx (i0src);
3431 n_occurrences = 0;
3432 subst_low_luid = DF_INSN_LUID (i0);
3433 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3434 substed_i0 = 1;
3437 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3438 to count all the ways that I2SRC and I1SRC can be used. */
3439 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3440 && i2_is_used + added_sets_2 > 1)
3441 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3442 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3443 > 1))
3444 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3445 && (n_occurrences + added_sets_0
3446 + (added_sets_1 && i0_feeds_i1_n)
3447 + (added_sets_2 && i0_feeds_i2_n)
3448 > 1))
3449 /* Fail if we tried to make a new register. */
3450 || max_reg_num () != maxreg
3451 /* Fail if we couldn't do something and have a CLOBBER. */
3452 || GET_CODE (newpat) == CLOBBER
3453 /* Fail if this new pattern is a MULT and we didn't have one before
3454 at the outer level. */
3455 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3456 && ! have_mult))
3458 undo_all ();
3459 return 0;
3462 /* If the actions of the earlier insns must be kept
3463 in addition to substituting them into the latest one,
3464 we must make a new PARALLEL for the latest insn
3465 to hold additional the SETs. */
3467 if (added_sets_0 || added_sets_1 || added_sets_2)
3469 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3470 combine_extras++;
3472 if (GET_CODE (newpat) == PARALLEL)
3474 rtvec old = XVEC (newpat, 0);
3475 total_sets = XVECLEN (newpat, 0) + extra_sets;
3476 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3477 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3478 sizeof (old->elem[0]) * old->num_elem);
3480 else
3482 rtx old = newpat;
3483 total_sets = 1 + extra_sets;
3484 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3485 XVECEXP (newpat, 0, 0) = old;
3488 if (added_sets_0)
3489 XVECEXP (newpat, 0, --total_sets) = i0pat;
3491 if (added_sets_1)
3493 rtx t = i1pat;
3494 if (i0_feeds_i1_n)
3495 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3497 XVECEXP (newpat, 0, --total_sets) = t;
3499 if (added_sets_2)
3501 rtx t = i2pat;
3502 if (i1_feeds_i2_n)
3503 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3504 i0_feeds_i1_n && i0dest_in_i0src);
3505 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3506 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3508 XVECEXP (newpat, 0, --total_sets) = t;
3512 validate_replacement:
3514 /* Note which hard regs this insn has as inputs. */
3515 mark_used_regs_combine (newpat);
3517 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3518 consider splitting this pattern, we might need these clobbers. */
3519 if (i1 && GET_CODE (newpat) == PARALLEL
3520 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3522 int len = XVECLEN (newpat, 0);
3524 newpat_vec_with_clobbers = rtvec_alloc (len);
3525 for (i = 0; i < len; i++)
3526 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3529 /* We have recognized nothing yet. */
3530 insn_code_number = -1;
3532 /* See if this is a PARALLEL of two SETs where one SET's destination is
3533 a register that is unused and this isn't marked as an instruction that
3534 might trap in an EH region. In that case, we just need the other SET.
3535 We prefer this over the PARALLEL.
3537 This can occur when simplifying a divmod insn. We *must* test for this
3538 case here because the code below that splits two independent SETs doesn't
3539 handle this case correctly when it updates the register status.
3541 It's pointless doing this if we originally had two sets, one from
3542 i3, and one from i2. Combining then splitting the parallel results
3543 in the original i2 again plus an invalid insn (which we delete).
3544 The net effect is only to move instructions around, which makes
3545 debug info less accurate.
3547 If the remaining SET came from I2 its destination should not be used
3548 between I2 and I3. See PR82024. */
3550 if (!(added_sets_2 && i1 == 0)
3551 && is_parallel_of_n_reg_sets (newpat, 2)
3552 && asm_noperands (newpat) < 0)
3554 rtx set0 = XVECEXP (newpat, 0, 0);
3555 rtx set1 = XVECEXP (newpat, 0, 1);
3556 rtx oldpat = newpat;
3558 if (((REG_P (SET_DEST (set1))
3559 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3560 || (GET_CODE (SET_DEST (set1)) == SUBREG
3561 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3562 && insn_nothrow_p (i3)
3563 && !side_effects_p (SET_SRC (set1)))
3565 newpat = set0;
3566 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3569 else if (((REG_P (SET_DEST (set0))
3570 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3571 || (GET_CODE (SET_DEST (set0)) == SUBREG
3572 && find_reg_note (i3, REG_UNUSED,
3573 SUBREG_REG (SET_DEST (set0)))))
3574 && insn_nothrow_p (i3)
3575 && !side_effects_p (SET_SRC (set0)))
3577 rtx dest = SET_DEST (set1);
3578 if (GET_CODE (dest) == SUBREG)
3579 dest = SUBREG_REG (dest);
3580 if (!reg_used_between_p (dest, i2, i3))
3582 newpat = set1;
3583 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3585 if (insn_code_number >= 0)
3586 changed_i3_dest = 1;
3590 if (insn_code_number < 0)
3591 newpat = oldpat;
3594 /* Is the result of combination a valid instruction? */
3595 if (insn_code_number < 0)
3596 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3598 /* If we were combining three insns and the result is a simple SET
3599 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3600 insns. There are two ways to do this. It can be split using a
3601 machine-specific method (like when you have an addition of a large
3602 constant) or by combine in the function find_split_point. */
3604 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3605 && asm_noperands (newpat) < 0)
3607 rtx parallel, *split;
3608 rtx_insn *m_split_insn;
3610 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3611 use I2DEST as a scratch register will help. In the latter case,
3612 convert I2DEST to the mode of the source of NEWPAT if we can. */
3614 m_split_insn = combine_split_insns (newpat, i3);
3616 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3617 inputs of NEWPAT. */
3619 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3620 possible to try that as a scratch reg. This would require adding
3621 more code to make it work though. */
3623 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3625 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3627 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3628 (temporarily, until we are committed to this instruction
3629 combination) does not work: for example, any call to nonzero_bits
3630 on the register (from a splitter in the MD file, for example)
3631 will get the old information, which is invalid.
3633 Since nowadays we can create registers during combine just fine,
3634 we should just create a new one here, not reuse i2dest. */
3636 /* First try to split using the original register as a
3637 scratch register. */
3638 parallel = gen_rtx_PARALLEL (VOIDmode,
3639 gen_rtvec (2, newpat,
3640 gen_rtx_CLOBBER (VOIDmode,
3641 i2dest)));
3642 m_split_insn = combine_split_insns (parallel, i3);
3644 /* If that didn't work, try changing the mode of I2DEST if
3645 we can. */
3646 if (m_split_insn == 0
3647 && new_mode != GET_MODE (i2dest)
3648 && new_mode != VOIDmode
3649 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3651 machine_mode old_mode = GET_MODE (i2dest);
3652 rtx ni2dest;
3654 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3655 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3656 else
3658 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3659 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3662 parallel = (gen_rtx_PARALLEL
3663 (VOIDmode,
3664 gen_rtvec (2, newpat,
3665 gen_rtx_CLOBBER (VOIDmode,
3666 ni2dest))));
3667 m_split_insn = combine_split_insns (parallel, i3);
3669 if (m_split_insn == 0
3670 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3672 struct undo *buf;
3674 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3675 buf = undobuf.undos;
3676 undobuf.undos = buf->next;
3677 buf->next = undobuf.frees;
3678 undobuf.frees = buf;
3682 i2scratch = m_split_insn != 0;
3685 /* If recog_for_combine has discarded clobbers, try to use them
3686 again for the split. */
3687 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3689 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3690 m_split_insn = combine_split_insns (parallel, i3);
3693 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3695 rtx m_split_pat = PATTERN (m_split_insn);
3696 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3697 if (insn_code_number >= 0)
3698 newpat = m_split_pat;
3700 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3701 && (next_nonnote_nondebug_insn (i2) == i3
3702 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3704 rtx i2set, i3set;
3705 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3706 newi2pat = PATTERN (m_split_insn);
3708 i3set = single_set (NEXT_INSN (m_split_insn));
3709 i2set = single_set (m_split_insn);
3711 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3713 /* If I2 or I3 has multiple SETs, we won't know how to track
3714 register status, so don't use these insns. If I2's destination
3715 is used between I2 and I3, we also can't use these insns. */
3717 if (i2_code_number >= 0 && i2set && i3set
3718 && (next_nonnote_nondebug_insn (i2) == i3
3719 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3720 insn_code_number = recog_for_combine (&newi3pat, i3,
3721 &new_i3_notes);
3722 if (insn_code_number >= 0)
3723 newpat = newi3pat;
3725 /* It is possible that both insns now set the destination of I3.
3726 If so, we must show an extra use of it. */
3728 if (insn_code_number >= 0)
3730 rtx new_i3_dest = SET_DEST (i3set);
3731 rtx new_i2_dest = SET_DEST (i2set);
3733 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3734 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3735 || GET_CODE (new_i3_dest) == SUBREG)
3736 new_i3_dest = XEXP (new_i3_dest, 0);
3738 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3739 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3740 || GET_CODE (new_i2_dest) == SUBREG)
3741 new_i2_dest = XEXP (new_i2_dest, 0);
3743 if (REG_P (new_i3_dest)
3744 && REG_P (new_i2_dest)
3745 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3746 && REGNO (new_i2_dest) < reg_n_sets_max)
3747 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3751 /* If we can split it and use I2DEST, go ahead and see if that
3752 helps things be recognized. Verify that none of the registers
3753 are set between I2 and I3. */
3754 if (insn_code_number < 0
3755 && (split = find_split_point (&newpat, i3, false)) != 0
3756 && (!HAVE_cc0 || REG_P (i2dest))
3757 /* We need I2DEST in the proper mode. If it is a hard register
3758 or the only use of a pseudo, we can change its mode.
3759 Make sure we don't change a hard register to have a mode that
3760 isn't valid for it, or change the number of registers. */
3761 && (GET_MODE (*split) == GET_MODE (i2dest)
3762 || GET_MODE (*split) == VOIDmode
3763 || can_change_dest_mode (i2dest, added_sets_2,
3764 GET_MODE (*split)))
3765 && (next_nonnote_nondebug_insn (i2) == i3
3766 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3767 /* We can't overwrite I2DEST if its value is still used by
3768 NEWPAT. */
3769 && ! reg_referenced_p (i2dest, newpat))
3771 rtx newdest = i2dest;
3772 enum rtx_code split_code = GET_CODE (*split);
3773 machine_mode split_mode = GET_MODE (*split);
3774 bool subst_done = false;
3775 newi2pat = NULL_RTX;
3777 i2scratch = true;
3779 /* *SPLIT may be part of I2SRC, so make sure we have the
3780 original expression around for later debug processing.
3781 We should not need I2SRC any more in other cases. */
3782 if (MAY_HAVE_DEBUG_INSNS)
3783 i2src = copy_rtx (i2src);
3784 else
3785 i2src = NULL;
3787 /* Get NEWDEST as a register in the proper mode. We have already
3788 validated that we can do this. */
3789 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3791 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3792 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3793 else
3795 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3796 newdest = regno_reg_rtx[REGNO (i2dest)];
3800 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3801 an ASHIFT. This can occur if it was inside a PLUS and hence
3802 appeared to be a memory address. This is a kludge. */
3803 if (split_code == MULT
3804 && CONST_INT_P (XEXP (*split, 1))
3805 && INTVAL (XEXP (*split, 1)) > 0
3806 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3808 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3809 XEXP (*split, 0), GEN_INT (i)));
3810 /* Update split_code because we may not have a multiply
3811 anymore. */
3812 split_code = GET_CODE (*split);
3815 /* Similarly for (plus (mult FOO (const_int pow2))). */
3816 if (split_code == PLUS
3817 && GET_CODE (XEXP (*split, 0)) == MULT
3818 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3819 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3820 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3822 rtx nsplit = XEXP (*split, 0);
3823 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3824 XEXP (nsplit, 0), GEN_INT (i)));
3825 /* Update split_code because we may not have a multiply
3826 anymore. */
3827 split_code = GET_CODE (*split);
3830 #ifdef INSN_SCHEDULING
3831 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3832 be written as a ZERO_EXTEND. */
3833 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3835 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3836 what it really is. */
3837 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3838 == SIGN_EXTEND)
3839 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3840 SUBREG_REG (*split)));
3841 else
3842 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3843 SUBREG_REG (*split)));
3845 #endif
3847 /* Attempt to split binary operators using arithmetic identities. */
3848 if (BINARY_P (SET_SRC (newpat))
3849 && split_mode == GET_MODE (SET_SRC (newpat))
3850 && ! side_effects_p (SET_SRC (newpat)))
3852 rtx setsrc = SET_SRC (newpat);
3853 machine_mode mode = GET_MODE (setsrc);
3854 enum rtx_code code = GET_CODE (setsrc);
3855 rtx src_op0 = XEXP (setsrc, 0);
3856 rtx src_op1 = XEXP (setsrc, 1);
3858 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3859 if (rtx_equal_p (src_op0, src_op1))
3861 newi2pat = gen_rtx_SET (newdest, src_op0);
3862 SUBST (XEXP (setsrc, 0), newdest);
3863 SUBST (XEXP (setsrc, 1), newdest);
3864 subst_done = true;
3866 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3867 else if ((code == PLUS || code == MULT)
3868 && GET_CODE (src_op0) == code
3869 && GET_CODE (XEXP (src_op0, 0)) == code
3870 && (INTEGRAL_MODE_P (mode)
3871 || (FLOAT_MODE_P (mode)
3872 && flag_unsafe_math_optimizations)))
3874 rtx p = XEXP (XEXP (src_op0, 0), 0);
3875 rtx q = XEXP (XEXP (src_op0, 0), 1);
3876 rtx r = XEXP (src_op0, 1);
3877 rtx s = src_op1;
3879 /* Split both "((X op Y) op X) op Y" and
3880 "((X op Y) op Y) op X" as "T op T" where T is
3881 "X op Y". */
3882 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3883 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3885 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3886 SUBST (XEXP (setsrc, 0), newdest);
3887 SUBST (XEXP (setsrc, 1), newdest);
3888 subst_done = true;
3890 /* Split "((X op X) op Y) op Y)" as "T op T" where
3891 T is "X op Y". */
3892 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3894 rtx tmp = simplify_gen_binary (code, mode, p, r);
3895 newi2pat = gen_rtx_SET (newdest, tmp);
3896 SUBST (XEXP (setsrc, 0), newdest);
3897 SUBST (XEXP (setsrc, 1), newdest);
3898 subst_done = true;
3903 if (!subst_done)
3905 newi2pat = gen_rtx_SET (newdest, *split);
3906 SUBST (*split, newdest);
3909 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3911 /* recog_for_combine might have added CLOBBERs to newi2pat.
3912 Make sure NEWPAT does not depend on the clobbered regs. */
3913 if (GET_CODE (newi2pat) == PARALLEL)
3914 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3915 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3917 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3918 if (reg_overlap_mentioned_p (reg, newpat))
3920 undo_all ();
3921 return 0;
3925 /* If the split point was a MULT and we didn't have one before,
3926 don't use one now. */
3927 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3928 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3932 /* Check for a case where we loaded from memory in a narrow mode and
3933 then sign extended it, but we need both registers. In that case,
3934 we have a PARALLEL with both loads from the same memory location.
3935 We can split this into a load from memory followed by a register-register
3936 copy. This saves at least one insn, more if register allocation can
3937 eliminate the copy.
3939 We cannot do this if the destination of the first assignment is a
3940 condition code register or cc0. We eliminate this case by making sure
3941 the SET_DEST and SET_SRC have the same mode.
3943 We cannot do this if the destination of the second assignment is
3944 a register that we have already assumed is zero-extended. Similarly
3945 for a SUBREG of such a register. */
3947 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3948 && GET_CODE (newpat) == PARALLEL
3949 && XVECLEN (newpat, 0) == 2
3950 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3951 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3952 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3953 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3954 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3955 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3956 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3957 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3958 DF_INSN_LUID (i2))
3959 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3960 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3961 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3962 (REG_P (temp_expr)
3963 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3964 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3965 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3966 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3967 != GET_MODE_MASK (word_mode))))
3968 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3969 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3970 (REG_P (temp_expr)
3971 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3972 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3973 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3974 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3975 != GET_MODE_MASK (word_mode)))))
3976 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3977 SET_SRC (XVECEXP (newpat, 0, 1)))
3978 && ! find_reg_note (i3, REG_UNUSED,
3979 SET_DEST (XVECEXP (newpat, 0, 0))))
3981 rtx ni2dest;
3983 newi2pat = XVECEXP (newpat, 0, 0);
3984 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3985 newpat = XVECEXP (newpat, 0, 1);
3986 SUBST (SET_SRC (newpat),
3987 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3988 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3990 if (i2_code_number >= 0)
3991 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3993 if (insn_code_number >= 0)
3994 swap_i2i3 = 1;
3997 /* Similarly, check for a case where we have a PARALLEL of two independent
3998 SETs but we started with three insns. In this case, we can do the sets
3999 as two separate insns. This case occurs when some SET allows two
4000 other insns to combine, but the destination of that SET is still live.
4002 Also do this if we started with two insns and (at least) one of the
4003 resulting sets is a noop; this noop will be deleted later. */
4005 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4006 && GET_CODE (newpat) == PARALLEL
4007 && XVECLEN (newpat, 0) == 2
4008 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4009 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4010 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4011 || set_noop_p (XVECEXP (newpat, 0, 1)))
4012 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4013 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4014 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4015 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4016 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4017 XVECEXP (newpat, 0, 0))
4018 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4019 XVECEXP (newpat, 0, 1))
4020 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4021 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4023 rtx set0 = XVECEXP (newpat, 0, 0);
4024 rtx set1 = XVECEXP (newpat, 0, 1);
4026 /* Normally, it doesn't matter which of the two is done first,
4027 but the one that references cc0 can't be the second, and
4028 one which uses any regs/memory set in between i2 and i3 can't
4029 be first. The PARALLEL might also have been pre-existing in i3,
4030 so we need to make sure that we won't wrongly hoist a SET to i2
4031 that would conflict with a death note present in there. */
4032 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
4033 && !(REG_P (SET_DEST (set1))
4034 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4035 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4036 && find_reg_note (i2, REG_DEAD,
4037 SUBREG_REG (SET_DEST (set1))))
4038 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4039 /* If I3 is a jump, ensure that set0 is a jump so that
4040 we do not create invalid RTL. */
4041 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4044 newi2pat = set1;
4045 newpat = set0;
4047 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
4048 && !(REG_P (SET_DEST (set0))
4049 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4050 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4051 && find_reg_note (i2, REG_DEAD,
4052 SUBREG_REG (SET_DEST (set0))))
4053 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4054 /* If I3 is a jump, ensure that set1 is a jump so that
4055 we do not create invalid RTL. */
4056 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4059 newi2pat = set0;
4060 newpat = set1;
4062 else
4064 undo_all ();
4065 return 0;
4068 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4070 if (i2_code_number >= 0)
4072 /* recog_for_combine might have added CLOBBERs to newi2pat.
4073 Make sure NEWPAT does not depend on the clobbered regs. */
4074 if (GET_CODE (newi2pat) == PARALLEL)
4076 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4077 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4079 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4080 if (reg_overlap_mentioned_p (reg, newpat))
4082 undo_all ();
4083 return 0;
4088 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4092 /* If it still isn't recognized, fail and change things back the way they
4093 were. */
4094 if ((insn_code_number < 0
4095 /* Is the result a reasonable ASM_OPERANDS? */
4096 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4098 undo_all ();
4099 return 0;
4102 /* If we had to change another insn, make sure it is valid also. */
4103 if (undobuf.other_insn)
4105 CLEAR_HARD_REG_SET (newpat_used_regs);
4107 other_pat = PATTERN (undobuf.other_insn);
4108 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4109 &new_other_notes);
4111 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4113 undo_all ();
4114 return 0;
4118 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4119 they are adjacent to each other or not. */
4120 if (HAVE_cc0)
4122 rtx_insn *p = prev_nonnote_insn (i3);
4123 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4124 && sets_cc0_p (newi2pat))
4126 undo_all ();
4127 return 0;
4131 /* Only allow this combination if insn_cost reports that the
4132 replacement instructions are cheaper than the originals. */
4133 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4135 undo_all ();
4136 return 0;
4139 if (MAY_HAVE_DEBUG_INSNS)
4141 struct undo *undo;
4143 for (undo = undobuf.undos; undo; undo = undo->next)
4144 if (undo->kind == UNDO_MODE)
4146 rtx reg = *undo->where.r;
4147 machine_mode new_mode = GET_MODE (reg);
4148 machine_mode old_mode = undo->old_contents.m;
4150 /* Temporarily revert mode back. */
4151 adjust_reg_mode (reg, old_mode);
4153 if (reg == i2dest && i2scratch)
4155 /* If we used i2dest as a scratch register with a
4156 different mode, substitute it for the original
4157 i2src while its original mode is temporarily
4158 restored, and then clear i2scratch so that we don't
4159 do it again later. */
4160 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4161 this_basic_block);
4162 i2scratch = false;
4163 /* Put back the new mode. */
4164 adjust_reg_mode (reg, new_mode);
4166 else
4168 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4169 rtx_insn *first, *last;
4171 if (reg == i2dest)
4173 first = i2;
4174 last = last_combined_insn;
4176 else
4178 first = i3;
4179 last = undobuf.other_insn;
4180 gcc_assert (last);
4181 if (DF_INSN_LUID (last)
4182 < DF_INSN_LUID (last_combined_insn))
4183 last = last_combined_insn;
4186 /* We're dealing with a reg that changed mode but not
4187 meaning, so we want to turn it into a subreg for
4188 the new mode. However, because of REG sharing and
4189 because its mode had already changed, we have to do
4190 it in two steps. First, replace any debug uses of
4191 reg, with its original mode temporarily restored,
4192 with this copy we have created; then, replace the
4193 copy with the SUBREG of the original shared reg,
4194 once again changed to the new mode. */
4195 propagate_for_debug (first, last, reg, tempreg,
4196 this_basic_block);
4197 adjust_reg_mode (reg, new_mode);
4198 propagate_for_debug (first, last, tempreg,
4199 lowpart_subreg (old_mode, reg, new_mode),
4200 this_basic_block);
4205 /* If we will be able to accept this, we have made a
4206 change to the destination of I3. This requires us to
4207 do a few adjustments. */
4209 if (changed_i3_dest)
4211 PATTERN (i3) = newpat;
4212 adjust_for_new_dest (i3);
4215 /* We now know that we can do this combination. Merge the insns and
4216 update the status of registers and LOG_LINKS. */
4218 if (undobuf.other_insn)
4220 rtx note, next;
4222 PATTERN (undobuf.other_insn) = other_pat;
4224 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4225 ensure that they are still valid. Then add any non-duplicate
4226 notes added by recog_for_combine. */
4227 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4229 next = XEXP (note, 1);
4231 if ((REG_NOTE_KIND (note) == REG_DEAD
4232 && !reg_referenced_p (XEXP (note, 0),
4233 PATTERN (undobuf.other_insn)))
4234 ||(REG_NOTE_KIND (note) == REG_UNUSED
4235 && !reg_set_p (XEXP (note, 0),
4236 PATTERN (undobuf.other_insn)))
4237 /* Simply drop equal note since it may be no longer valid
4238 for other_insn. It may be possible to record that CC
4239 register is changed and only discard those notes, but
4240 in practice it's unnecessary complication and doesn't
4241 give any meaningful improvement.
4243 See PR78559. */
4244 || REG_NOTE_KIND (note) == REG_EQUAL
4245 || REG_NOTE_KIND (note) == REG_EQUIV)
4246 remove_note (undobuf.other_insn, note);
4249 distribute_notes (new_other_notes, undobuf.other_insn,
4250 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4251 NULL_RTX);
4254 if (swap_i2i3)
4256 rtx_insn *insn;
4257 struct insn_link *link;
4258 rtx ni2dest;
4260 /* I3 now uses what used to be its destination and which is now
4261 I2's destination. This requires us to do a few adjustments. */
4262 PATTERN (i3) = newpat;
4263 adjust_for_new_dest (i3);
4265 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4266 so we still will.
4268 However, some later insn might be using I2's dest and have
4269 a LOG_LINK pointing at I3. We must remove this link.
4270 The simplest way to remove the link is to point it at I1,
4271 which we know will be a NOTE. */
4273 /* newi2pat is usually a SET here; however, recog_for_combine might
4274 have added some clobbers. */
4275 if (GET_CODE (newi2pat) == PARALLEL)
4276 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4277 else
4278 ni2dest = SET_DEST (newi2pat);
4280 for (insn = NEXT_INSN (i3);
4281 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4282 || insn != BB_HEAD (this_basic_block->next_bb));
4283 insn = NEXT_INSN (insn))
4285 if (NONDEBUG_INSN_P (insn)
4286 && reg_referenced_p (ni2dest, PATTERN (insn)))
4288 FOR_EACH_LOG_LINK (link, insn)
4289 if (link->insn == i3)
4290 link->insn = i1;
4292 break;
4298 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4299 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4300 rtx midnotes = 0;
4301 int from_luid;
4302 /* Compute which registers we expect to eliminate. newi2pat may be setting
4303 either i3dest or i2dest, so we must check it. */
4304 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4305 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4306 || !i2dest_killed
4307 ? 0 : i2dest);
4308 /* For i1, we need to compute both local elimination and global
4309 elimination information with respect to newi2pat because i1dest
4310 may be the same as i3dest, in which case newi2pat may be setting
4311 i1dest. Global information is used when distributing REG_DEAD
4312 note for i2 and i3, in which case it does matter if newi2pat sets
4313 i1dest or not.
4315 Local information is used when distributing REG_DEAD note for i1,
4316 in which case it doesn't matter if newi2pat sets i1dest or not.
4317 See PR62151, if we have four insns combination:
4318 i0: r0 <- i0src
4319 i1: r1 <- i1src (using r0)
4320 REG_DEAD (r0)
4321 i2: r0 <- i2src (using r1)
4322 i3: r3 <- i3src (using r0)
4323 ix: using r0
4324 From i1's point of view, r0 is eliminated, no matter if it is set
4325 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4326 should be discarded.
4328 Note local information only affects cases in forms like "I1->I2->I3",
4329 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4330 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4331 i0dest anyway. */
4332 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4333 || !i1dest_killed
4334 ? 0 : i1dest);
4335 rtx elim_i1 = (local_elim_i1 == 0
4336 || (newi2pat && reg_set_p (i1dest, newi2pat))
4337 ? 0 : i1dest);
4338 /* Same case as i1. */
4339 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4340 ? 0 : i0dest);
4341 rtx elim_i0 = (local_elim_i0 == 0
4342 || (newi2pat && reg_set_p (i0dest, newi2pat))
4343 ? 0 : i0dest);
4345 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4346 clear them. */
4347 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4348 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4349 if (i1)
4350 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4351 if (i0)
4352 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4354 /* Ensure that we do not have something that should not be shared but
4355 occurs multiple times in the new insns. Check this by first
4356 resetting all the `used' flags and then copying anything is shared. */
4358 reset_used_flags (i3notes);
4359 reset_used_flags (i2notes);
4360 reset_used_flags (i1notes);
4361 reset_used_flags (i0notes);
4362 reset_used_flags (newpat);
4363 reset_used_flags (newi2pat);
4364 if (undobuf.other_insn)
4365 reset_used_flags (PATTERN (undobuf.other_insn));
4367 i3notes = copy_rtx_if_shared (i3notes);
4368 i2notes = copy_rtx_if_shared (i2notes);
4369 i1notes = copy_rtx_if_shared (i1notes);
4370 i0notes = copy_rtx_if_shared (i0notes);
4371 newpat = copy_rtx_if_shared (newpat);
4372 newi2pat = copy_rtx_if_shared (newi2pat);
4373 if (undobuf.other_insn)
4374 reset_used_flags (PATTERN (undobuf.other_insn));
4376 INSN_CODE (i3) = insn_code_number;
4377 PATTERN (i3) = newpat;
4379 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4381 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4382 link = XEXP (link, 1))
4384 if (substed_i2)
4386 /* I2SRC must still be meaningful at this point. Some
4387 splitting operations can invalidate I2SRC, but those
4388 operations do not apply to calls. */
4389 gcc_assert (i2src);
4390 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4391 i2dest, i2src);
4393 if (substed_i1)
4394 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4395 i1dest, i1src);
4396 if (substed_i0)
4397 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4398 i0dest, i0src);
4402 if (undobuf.other_insn)
4403 INSN_CODE (undobuf.other_insn) = other_code_number;
4405 /* We had one special case above where I2 had more than one set and
4406 we replaced a destination of one of those sets with the destination
4407 of I3. In that case, we have to update LOG_LINKS of insns later
4408 in this basic block. Note that this (expensive) case is rare.
4410 Also, in this case, we must pretend that all REG_NOTEs for I2
4411 actually came from I3, so that REG_UNUSED notes from I2 will be
4412 properly handled. */
4414 if (i3_subst_into_i2)
4416 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4417 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4418 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4419 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4420 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4421 && ! find_reg_note (i2, REG_UNUSED,
4422 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4423 for (temp_insn = NEXT_INSN (i2);
4424 temp_insn
4425 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4426 || BB_HEAD (this_basic_block) != temp_insn);
4427 temp_insn = NEXT_INSN (temp_insn))
4428 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4429 FOR_EACH_LOG_LINK (link, temp_insn)
4430 if (link->insn == i2)
4431 link->insn = i3;
4433 if (i3notes)
4435 rtx link = i3notes;
4436 while (XEXP (link, 1))
4437 link = XEXP (link, 1);
4438 XEXP (link, 1) = i2notes;
4440 else
4441 i3notes = i2notes;
4442 i2notes = 0;
4445 LOG_LINKS (i3) = NULL;
4446 REG_NOTES (i3) = 0;
4447 LOG_LINKS (i2) = NULL;
4448 REG_NOTES (i2) = 0;
4450 if (newi2pat)
4452 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4453 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4454 this_basic_block);
4455 INSN_CODE (i2) = i2_code_number;
4456 PATTERN (i2) = newi2pat;
4458 else
4460 if (MAY_HAVE_DEBUG_INSNS && i2src)
4461 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4462 this_basic_block);
4463 SET_INSN_DELETED (i2);
4466 if (i1)
4468 LOG_LINKS (i1) = NULL;
4469 REG_NOTES (i1) = 0;
4470 if (MAY_HAVE_DEBUG_INSNS)
4471 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4472 this_basic_block);
4473 SET_INSN_DELETED (i1);
4476 if (i0)
4478 LOG_LINKS (i0) = NULL;
4479 REG_NOTES (i0) = 0;
4480 if (MAY_HAVE_DEBUG_INSNS)
4481 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4482 this_basic_block);
4483 SET_INSN_DELETED (i0);
4486 /* Get death notes for everything that is now used in either I3 or
4487 I2 and used to die in a previous insn. If we built two new
4488 patterns, move from I1 to I2 then I2 to I3 so that we get the
4489 proper movement on registers that I2 modifies. */
4491 if (i0)
4492 from_luid = DF_INSN_LUID (i0);
4493 else if (i1)
4494 from_luid = DF_INSN_LUID (i1);
4495 else
4496 from_luid = DF_INSN_LUID (i2);
4497 if (newi2pat)
4498 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4499 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4501 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4502 if (i3notes)
4503 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4504 elim_i2, elim_i1, elim_i0);
4505 if (i2notes)
4506 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4507 elim_i2, elim_i1, elim_i0);
4508 if (i1notes)
4509 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4510 elim_i2, local_elim_i1, local_elim_i0);
4511 if (i0notes)
4512 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4513 elim_i2, elim_i1, local_elim_i0);
4514 if (midnotes)
4515 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4516 elim_i2, elim_i1, elim_i0);
4518 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4519 know these are REG_UNUSED and want them to go to the desired insn,
4520 so we always pass it as i3. */
4522 if (newi2pat && new_i2_notes)
4523 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4524 NULL_RTX);
4526 if (new_i3_notes)
4527 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4528 NULL_RTX);
4530 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4531 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4532 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4533 in that case, it might delete I2. Similarly for I2 and I1.
4534 Show an additional death due to the REG_DEAD note we make here. If
4535 we discard it in distribute_notes, we will decrement it again. */
4537 if (i3dest_killed)
4539 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4540 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4541 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4542 elim_i1, elim_i0);
4543 else
4544 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4545 elim_i2, elim_i1, elim_i0);
4548 if (i2dest_in_i2src)
4550 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4551 if (newi2pat && reg_set_p (i2dest, newi2pat))
4552 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4553 NULL_RTX, NULL_RTX);
4554 else
4555 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4556 NULL_RTX, NULL_RTX, NULL_RTX);
4559 if (i1dest_in_i1src)
4561 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4562 if (newi2pat && reg_set_p (i1dest, newi2pat))
4563 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4564 NULL_RTX, NULL_RTX);
4565 else
4566 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4567 NULL_RTX, NULL_RTX, NULL_RTX);
4570 if (i0dest_in_i0src)
4572 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4573 if (newi2pat && reg_set_p (i0dest, newi2pat))
4574 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4575 NULL_RTX, NULL_RTX);
4576 else
4577 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4578 NULL_RTX, NULL_RTX, NULL_RTX);
4581 distribute_links (i3links);
4582 distribute_links (i2links);
4583 distribute_links (i1links);
4584 distribute_links (i0links);
4586 if (REG_P (i2dest))
4588 struct insn_link *link;
4589 rtx_insn *i2_insn = 0;
4590 rtx i2_val = 0, set;
4592 /* The insn that used to set this register doesn't exist, and
4593 this life of the register may not exist either. See if one of
4594 I3's links points to an insn that sets I2DEST. If it does,
4595 that is now the last known value for I2DEST. If we don't update
4596 this and I2 set the register to a value that depended on its old
4597 contents, we will get confused. If this insn is used, thing
4598 will be set correctly in combine_instructions. */
4599 FOR_EACH_LOG_LINK (link, i3)
4600 if ((set = single_set (link->insn)) != 0
4601 && rtx_equal_p (i2dest, SET_DEST (set)))
4602 i2_insn = link->insn, i2_val = SET_SRC (set);
4604 record_value_for_reg (i2dest, i2_insn, i2_val);
4606 /* If the reg formerly set in I2 died only once and that was in I3,
4607 zero its use count so it won't make `reload' do any work. */
4608 if (! added_sets_2
4609 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4610 && ! i2dest_in_i2src
4611 && REGNO (i2dest) < reg_n_sets_max)
4612 INC_REG_N_SETS (REGNO (i2dest), -1);
4615 if (i1 && REG_P (i1dest))
4617 struct insn_link *link;
4618 rtx_insn *i1_insn = 0;
4619 rtx i1_val = 0, set;
4621 FOR_EACH_LOG_LINK (link, i3)
4622 if ((set = single_set (link->insn)) != 0
4623 && rtx_equal_p (i1dest, SET_DEST (set)))
4624 i1_insn = link->insn, i1_val = SET_SRC (set);
4626 record_value_for_reg (i1dest, i1_insn, i1_val);
4628 if (! added_sets_1
4629 && ! i1dest_in_i1src
4630 && REGNO (i1dest) < reg_n_sets_max)
4631 INC_REG_N_SETS (REGNO (i1dest), -1);
4634 if (i0 && REG_P (i0dest))
4636 struct insn_link *link;
4637 rtx_insn *i0_insn = 0;
4638 rtx i0_val = 0, set;
4640 FOR_EACH_LOG_LINK (link, i3)
4641 if ((set = single_set (link->insn)) != 0
4642 && rtx_equal_p (i0dest, SET_DEST (set)))
4643 i0_insn = link->insn, i0_val = SET_SRC (set);
4645 record_value_for_reg (i0dest, i0_insn, i0_val);
4647 if (! added_sets_0
4648 && ! i0dest_in_i0src
4649 && REGNO (i0dest) < reg_n_sets_max)
4650 INC_REG_N_SETS (REGNO (i0dest), -1);
4653 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4654 been made to this insn. The order is important, because newi2pat
4655 can affect nonzero_bits of newpat. */
4656 if (newi2pat)
4657 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4658 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4661 if (undobuf.other_insn != NULL_RTX)
4663 if (dump_file)
4665 fprintf (dump_file, "modifying other_insn ");
4666 dump_insn_slim (dump_file, undobuf.other_insn);
4668 df_insn_rescan (undobuf.other_insn);
4671 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4673 if (dump_file)
4675 fprintf (dump_file, "modifying insn i0 ");
4676 dump_insn_slim (dump_file, i0);
4678 df_insn_rescan (i0);
4681 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4683 if (dump_file)
4685 fprintf (dump_file, "modifying insn i1 ");
4686 dump_insn_slim (dump_file, i1);
4688 df_insn_rescan (i1);
4691 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4693 if (dump_file)
4695 fprintf (dump_file, "modifying insn i2 ");
4696 dump_insn_slim (dump_file, i2);
4698 df_insn_rescan (i2);
4701 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4703 if (dump_file)
4705 fprintf (dump_file, "modifying insn i3 ");
4706 dump_insn_slim (dump_file, i3);
4708 df_insn_rescan (i3);
4711 /* Set new_direct_jump_p if a new return or simple jump instruction
4712 has been created. Adjust the CFG accordingly. */
4713 if (returnjump_p (i3) || any_uncondjump_p (i3))
4715 *new_direct_jump_p = 1;
4716 mark_jump_label (PATTERN (i3), i3, 0);
4717 update_cfg_for_uncondjump (i3);
4720 if (undobuf.other_insn != NULL_RTX
4721 && (returnjump_p (undobuf.other_insn)
4722 || any_uncondjump_p (undobuf.other_insn)))
4724 *new_direct_jump_p = 1;
4725 update_cfg_for_uncondjump (undobuf.other_insn);
4728 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4729 && XEXP (PATTERN (i3), 0) == const1_rtx)
4731 basic_block bb = BLOCK_FOR_INSN (i3);
4732 gcc_assert (bb);
4733 remove_edge (split_block (bb, i3));
4734 emit_barrier_after_bb (bb);
4735 *new_direct_jump_p = 1;
4738 if (undobuf.other_insn
4739 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4740 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4742 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4743 gcc_assert (bb);
4744 remove_edge (split_block (bb, undobuf.other_insn));
4745 emit_barrier_after_bb (bb);
4746 *new_direct_jump_p = 1;
4749 /* A noop might also need cleaning up of CFG, if it comes from the
4750 simplification of a jump. */
4751 if (JUMP_P (i3)
4752 && GET_CODE (newpat) == SET
4753 && SET_SRC (newpat) == pc_rtx
4754 && SET_DEST (newpat) == pc_rtx)
4756 *new_direct_jump_p = 1;
4757 update_cfg_for_uncondjump (i3);
4760 if (undobuf.other_insn != NULL_RTX
4761 && JUMP_P (undobuf.other_insn)
4762 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4763 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4764 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4766 *new_direct_jump_p = 1;
4767 update_cfg_for_uncondjump (undobuf.other_insn);
4770 combine_successes++;
4771 undo_commit ();
4773 rtx_insn *ret = newi2pat ? i2 : i3;
4774 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4775 ret = added_links_insn;
4776 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4777 ret = added_notes_insn;
4779 return ret;
4782 /* Get a marker for undoing to the current state. */
4784 static void *
4785 get_undo_marker (void)
4787 return undobuf.undos;
4790 /* Undo the modifications up to the marker. */
4792 static void
4793 undo_to_marker (void *marker)
4795 struct undo *undo, *next;
4797 for (undo = undobuf.undos; undo != marker; undo = next)
4799 gcc_assert (undo);
4801 next = undo->next;
4802 switch (undo->kind)
4804 case UNDO_RTX:
4805 *undo->where.r = undo->old_contents.r;
4806 break;
4807 case UNDO_INT:
4808 *undo->where.i = undo->old_contents.i;
4809 break;
4810 case UNDO_MODE:
4811 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4812 break;
4813 case UNDO_LINKS:
4814 *undo->where.l = undo->old_contents.l;
4815 break;
4816 default:
4817 gcc_unreachable ();
4820 undo->next = undobuf.frees;
4821 undobuf.frees = undo;
4824 undobuf.undos = (struct undo *) marker;
4827 /* Undo all the modifications recorded in undobuf. */
4829 static void
4830 undo_all (void)
4832 undo_to_marker (0);
4835 /* We've committed to accepting the changes we made. Move all
4836 of the undos to the free list. */
4838 static void
4839 undo_commit (void)
4841 struct undo *undo, *next;
4843 for (undo = undobuf.undos; undo; undo = next)
4845 next = undo->next;
4846 undo->next = undobuf.frees;
4847 undobuf.frees = undo;
4849 undobuf.undos = 0;
4852 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4853 where we have an arithmetic expression and return that point. LOC will
4854 be inside INSN.
4856 try_combine will call this function to see if an insn can be split into
4857 two insns. */
4859 static rtx *
4860 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4862 rtx x = *loc;
4863 enum rtx_code code = GET_CODE (x);
4864 rtx *split;
4865 unsigned HOST_WIDE_INT len = 0;
4866 HOST_WIDE_INT pos = 0;
4867 int unsignedp = 0;
4868 rtx inner = NULL_RTX;
4869 scalar_int_mode mode, inner_mode;
4871 /* First special-case some codes. */
4872 switch (code)
4874 case SUBREG:
4875 #ifdef INSN_SCHEDULING
4876 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4877 point. */
4878 if (MEM_P (SUBREG_REG (x)))
4879 return loc;
4880 #endif
4881 return find_split_point (&SUBREG_REG (x), insn, false);
4883 case MEM:
4884 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4885 using LO_SUM and HIGH. */
4886 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4887 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4889 machine_mode address_mode = get_address_mode (x);
4891 SUBST (XEXP (x, 0),
4892 gen_rtx_LO_SUM (address_mode,
4893 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4894 XEXP (x, 0)));
4895 return &XEXP (XEXP (x, 0), 0);
4898 /* If we have a PLUS whose second operand is a constant and the
4899 address is not valid, perhaps will can split it up using
4900 the machine-specific way to split large constants. We use
4901 the first pseudo-reg (one of the virtual regs) as a placeholder;
4902 it will not remain in the result. */
4903 if (GET_CODE (XEXP (x, 0)) == PLUS
4904 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4905 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4906 MEM_ADDR_SPACE (x)))
4908 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4909 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4910 subst_insn);
4912 /* This should have produced two insns, each of which sets our
4913 placeholder. If the source of the second is a valid address,
4914 we can make put both sources together and make a split point
4915 in the middle. */
4917 if (seq
4918 && NEXT_INSN (seq) != NULL_RTX
4919 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4920 && NONJUMP_INSN_P (seq)
4921 && GET_CODE (PATTERN (seq)) == SET
4922 && SET_DEST (PATTERN (seq)) == reg
4923 && ! reg_mentioned_p (reg,
4924 SET_SRC (PATTERN (seq)))
4925 && NONJUMP_INSN_P (NEXT_INSN (seq))
4926 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4927 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4928 && memory_address_addr_space_p
4929 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4930 MEM_ADDR_SPACE (x)))
4932 rtx src1 = SET_SRC (PATTERN (seq));
4933 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4935 /* Replace the placeholder in SRC2 with SRC1. If we can
4936 find where in SRC2 it was placed, that can become our
4937 split point and we can replace this address with SRC2.
4938 Just try two obvious places. */
4940 src2 = replace_rtx (src2, reg, src1);
4941 split = 0;
4942 if (XEXP (src2, 0) == src1)
4943 split = &XEXP (src2, 0);
4944 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4945 && XEXP (XEXP (src2, 0), 0) == src1)
4946 split = &XEXP (XEXP (src2, 0), 0);
4948 if (split)
4950 SUBST (XEXP (x, 0), src2);
4951 return split;
4955 /* If that didn't work, perhaps the first operand is complex and
4956 needs to be computed separately, so make a split point there.
4957 This will occur on machines that just support REG + CONST
4958 and have a constant moved through some previous computation. */
4960 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4961 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4962 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4963 return &XEXP (XEXP (x, 0), 0);
4966 /* If we have a PLUS whose first operand is complex, try computing it
4967 separately by making a split there. */
4968 if (GET_CODE (XEXP (x, 0)) == PLUS
4969 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4970 MEM_ADDR_SPACE (x))
4971 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4972 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4973 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4974 return &XEXP (XEXP (x, 0), 0);
4975 break;
4977 case SET:
4978 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4979 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4980 we need to put the operand into a register. So split at that
4981 point. */
4983 if (SET_DEST (x) == cc0_rtx
4984 && GET_CODE (SET_SRC (x)) != COMPARE
4985 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4986 && !OBJECT_P (SET_SRC (x))
4987 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4988 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4989 return &SET_SRC (x);
4991 /* See if we can split SET_SRC as it stands. */
4992 split = find_split_point (&SET_SRC (x), insn, true);
4993 if (split && split != &SET_SRC (x))
4994 return split;
4996 /* See if we can split SET_DEST as it stands. */
4997 split = find_split_point (&SET_DEST (x), insn, false);
4998 if (split && split != &SET_DEST (x))
4999 return split;
5001 /* See if this is a bitfield assignment with everything constant. If
5002 so, this is an IOR of an AND, so split it into that. */
5003 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5004 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5005 &inner_mode)
5006 && HWI_COMPUTABLE_MODE_P (inner_mode)
5007 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5008 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5009 && CONST_INT_P (SET_SRC (x))
5010 && ((INTVAL (XEXP (SET_DEST (x), 1))
5011 + INTVAL (XEXP (SET_DEST (x), 2)))
5012 <= GET_MODE_PRECISION (inner_mode))
5013 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5015 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5016 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5017 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5018 rtx dest = XEXP (SET_DEST (x), 0);
5019 unsigned HOST_WIDE_INT mask
5020 = (HOST_WIDE_INT_1U << len) - 1;
5021 rtx or_mask;
5023 if (BITS_BIG_ENDIAN)
5024 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5026 or_mask = gen_int_mode (src << pos, inner_mode);
5027 if (src == mask)
5028 SUBST (SET_SRC (x),
5029 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5030 else
5032 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5033 SUBST (SET_SRC (x),
5034 simplify_gen_binary (IOR, inner_mode,
5035 simplify_gen_binary (AND, inner_mode,
5036 dest, negmask),
5037 or_mask));
5040 SUBST (SET_DEST (x), dest);
5042 split = find_split_point (&SET_SRC (x), insn, true);
5043 if (split && split != &SET_SRC (x))
5044 return split;
5047 /* Otherwise, see if this is an operation that we can split into two.
5048 If so, try to split that. */
5049 code = GET_CODE (SET_SRC (x));
5051 switch (code)
5053 case AND:
5054 /* If we are AND'ing with a large constant that is only a single
5055 bit and the result is only being used in a context where we
5056 need to know if it is zero or nonzero, replace it with a bit
5057 extraction. This will avoid the large constant, which might
5058 have taken more than one insn to make. If the constant were
5059 not a valid argument to the AND but took only one insn to make,
5060 this is no worse, but if it took more than one insn, it will
5061 be better. */
5063 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5064 && REG_P (XEXP (SET_SRC (x), 0))
5065 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5066 && REG_P (SET_DEST (x))
5067 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5068 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5069 && XEXP (*split, 0) == SET_DEST (x)
5070 && XEXP (*split, 1) == const0_rtx)
5072 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5073 XEXP (SET_SRC (x), 0),
5074 pos, NULL_RTX, 1, 1, 0, 0);
5075 if (extraction != 0)
5077 SUBST (SET_SRC (x), extraction);
5078 return find_split_point (loc, insn, false);
5081 break;
5083 case NE:
5084 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5085 is known to be on, this can be converted into a NEG of a shift. */
5086 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5087 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5088 && 1 <= (pos = exact_log2
5089 (nonzero_bits (XEXP (SET_SRC (x), 0),
5090 GET_MODE (XEXP (SET_SRC (x), 0))))))
5092 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5094 SUBST (SET_SRC (x),
5095 gen_rtx_NEG (mode,
5096 gen_rtx_LSHIFTRT (mode,
5097 XEXP (SET_SRC (x), 0),
5098 GEN_INT (pos))));
5100 split = find_split_point (&SET_SRC (x), insn, true);
5101 if (split && split != &SET_SRC (x))
5102 return split;
5104 break;
5106 case SIGN_EXTEND:
5107 inner = XEXP (SET_SRC (x), 0);
5109 /* We can't optimize if either mode is a partial integer
5110 mode as we don't know how many bits are significant
5111 in those modes. */
5112 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5113 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5114 break;
5116 pos = 0;
5117 len = GET_MODE_PRECISION (inner_mode);
5118 unsignedp = 0;
5119 break;
5121 case SIGN_EXTRACT:
5122 case ZERO_EXTRACT:
5123 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5124 &inner_mode)
5125 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5126 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5128 inner = XEXP (SET_SRC (x), 0);
5129 len = INTVAL (XEXP (SET_SRC (x), 1));
5130 pos = INTVAL (XEXP (SET_SRC (x), 2));
5132 if (BITS_BIG_ENDIAN)
5133 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5134 unsignedp = (code == ZERO_EXTRACT);
5136 break;
5138 default:
5139 break;
5142 if (len && pos >= 0
5143 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner))
5144 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5146 /* For unsigned, we have a choice of a shift followed by an
5147 AND or two shifts. Use two shifts for field sizes where the
5148 constant might be too large. We assume here that we can
5149 always at least get 8-bit constants in an AND insn, which is
5150 true for every current RISC. */
5152 if (unsignedp && len <= 8)
5154 unsigned HOST_WIDE_INT mask
5155 = (HOST_WIDE_INT_1U << len) - 1;
5156 SUBST (SET_SRC (x),
5157 gen_rtx_AND (mode,
5158 gen_rtx_LSHIFTRT
5159 (mode, gen_lowpart (mode, inner),
5160 GEN_INT (pos)),
5161 gen_int_mode (mask, mode)));
5163 split = find_split_point (&SET_SRC (x), insn, true);
5164 if (split && split != &SET_SRC (x))
5165 return split;
5167 else
5169 SUBST (SET_SRC (x),
5170 gen_rtx_fmt_ee
5171 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5172 gen_rtx_ASHIFT (mode,
5173 gen_lowpart (mode, inner),
5174 GEN_INT (GET_MODE_PRECISION (mode)
5175 - len - pos)),
5176 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5178 split = find_split_point (&SET_SRC (x), insn, true);
5179 if (split && split != &SET_SRC (x))
5180 return split;
5184 /* See if this is a simple operation with a constant as the second
5185 operand. It might be that this constant is out of range and hence
5186 could be used as a split point. */
5187 if (BINARY_P (SET_SRC (x))
5188 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5189 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5190 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5191 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5192 return &XEXP (SET_SRC (x), 1);
5194 /* Finally, see if this is a simple operation with its first operand
5195 not in a register. The operation might require this operand in a
5196 register, so return it as a split point. We can always do this
5197 because if the first operand were another operation, we would have
5198 already found it as a split point. */
5199 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5200 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5201 return &XEXP (SET_SRC (x), 0);
5203 return 0;
5205 case AND:
5206 case IOR:
5207 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5208 it is better to write this as (not (ior A B)) so we can split it.
5209 Similarly for IOR. */
5210 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5212 SUBST (*loc,
5213 gen_rtx_NOT (GET_MODE (x),
5214 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5215 GET_MODE (x),
5216 XEXP (XEXP (x, 0), 0),
5217 XEXP (XEXP (x, 1), 0))));
5218 return find_split_point (loc, insn, set_src);
5221 /* Many RISC machines have a large set of logical insns. If the
5222 second operand is a NOT, put it first so we will try to split the
5223 other operand first. */
5224 if (GET_CODE (XEXP (x, 1)) == NOT)
5226 rtx tem = XEXP (x, 0);
5227 SUBST (XEXP (x, 0), XEXP (x, 1));
5228 SUBST (XEXP (x, 1), tem);
5230 break;
5232 case PLUS:
5233 case MINUS:
5234 /* Canonicalization can produce (minus A (mult B C)), where C is a
5235 constant. It may be better to try splitting (plus (mult B -C) A)
5236 instead if this isn't a multiply by a power of two. */
5237 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5238 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5239 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5241 machine_mode mode = GET_MODE (x);
5242 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5243 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5244 SUBST (*loc, gen_rtx_PLUS (mode,
5245 gen_rtx_MULT (mode,
5246 XEXP (XEXP (x, 1), 0),
5247 gen_int_mode (other_int,
5248 mode)),
5249 XEXP (x, 0)));
5250 return find_split_point (loc, insn, set_src);
5253 /* Split at a multiply-accumulate instruction. However if this is
5254 the SET_SRC, we likely do not have such an instruction and it's
5255 worthless to try this split. */
5256 if (!set_src
5257 && (GET_CODE (XEXP (x, 0)) == MULT
5258 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5259 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5260 return loc;
5262 default:
5263 break;
5266 /* Otherwise, select our actions depending on our rtx class. */
5267 switch (GET_RTX_CLASS (code))
5269 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5270 case RTX_TERNARY:
5271 split = find_split_point (&XEXP (x, 2), insn, false);
5272 if (split)
5273 return split;
5274 /* fall through */
5275 case RTX_BIN_ARITH:
5276 case RTX_COMM_ARITH:
5277 case RTX_COMPARE:
5278 case RTX_COMM_COMPARE:
5279 split = find_split_point (&XEXP (x, 1), insn, false);
5280 if (split)
5281 return split;
5282 /* fall through */
5283 case RTX_UNARY:
5284 /* Some machines have (and (shift ...) ...) insns. If X is not
5285 an AND, but XEXP (X, 0) is, use it as our split point. */
5286 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5287 return &XEXP (x, 0);
5289 split = find_split_point (&XEXP (x, 0), insn, false);
5290 if (split)
5291 return split;
5292 return loc;
5294 default:
5295 /* Otherwise, we don't have a split point. */
5296 return 0;
5300 /* Throughout X, replace FROM with TO, and return the result.
5301 The result is TO if X is FROM;
5302 otherwise the result is X, but its contents may have been modified.
5303 If they were modified, a record was made in undobuf so that
5304 undo_all will (among other things) return X to its original state.
5306 If the number of changes necessary is too much to record to undo,
5307 the excess changes are not made, so the result is invalid.
5308 The changes already made can still be undone.
5309 undobuf.num_undo is incremented for such changes, so by testing that
5310 the caller can tell whether the result is valid.
5312 `n_occurrences' is incremented each time FROM is replaced.
5314 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5316 IN_COND is nonzero if we are at the top level of a condition.
5318 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5319 by copying if `n_occurrences' is nonzero. */
5321 static rtx
5322 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5324 enum rtx_code code = GET_CODE (x);
5325 machine_mode op0_mode = VOIDmode;
5326 const char *fmt;
5327 int len, i;
5328 rtx new_rtx;
5330 /* Two expressions are equal if they are identical copies of a shared
5331 RTX or if they are both registers with the same register number
5332 and mode. */
5334 #define COMBINE_RTX_EQUAL_P(X,Y) \
5335 ((X) == (Y) \
5336 || (REG_P (X) && REG_P (Y) \
5337 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5339 /* Do not substitute into clobbers of regs -- this will never result in
5340 valid RTL. */
5341 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5342 return x;
5344 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5346 n_occurrences++;
5347 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5350 /* If X and FROM are the same register but different modes, they
5351 will not have been seen as equal above. However, the log links code
5352 will make a LOG_LINKS entry for that case. If we do nothing, we
5353 will try to rerecognize our original insn and, when it succeeds,
5354 we will delete the feeding insn, which is incorrect.
5356 So force this insn not to match in this (rare) case. */
5357 if (! in_dest && code == REG && REG_P (from)
5358 && reg_overlap_mentioned_p (x, from))
5359 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5361 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5362 of which may contain things that can be combined. */
5363 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5364 return x;
5366 /* It is possible to have a subexpression appear twice in the insn.
5367 Suppose that FROM is a register that appears within TO.
5368 Then, after that subexpression has been scanned once by `subst',
5369 the second time it is scanned, TO may be found. If we were
5370 to scan TO here, we would find FROM within it and create a
5371 self-referent rtl structure which is completely wrong. */
5372 if (COMBINE_RTX_EQUAL_P (x, to))
5373 return to;
5375 /* Parallel asm_operands need special attention because all of the
5376 inputs are shared across the arms. Furthermore, unsharing the
5377 rtl results in recognition failures. Failure to handle this case
5378 specially can result in circular rtl.
5380 Solve this by doing a normal pass across the first entry of the
5381 parallel, and only processing the SET_DESTs of the subsequent
5382 entries. Ug. */
5384 if (code == PARALLEL
5385 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5386 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5388 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5390 /* If this substitution failed, this whole thing fails. */
5391 if (GET_CODE (new_rtx) == CLOBBER
5392 && XEXP (new_rtx, 0) == const0_rtx)
5393 return new_rtx;
5395 SUBST (XVECEXP (x, 0, 0), new_rtx);
5397 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5399 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5401 if (!REG_P (dest)
5402 && GET_CODE (dest) != CC0
5403 && GET_CODE (dest) != PC)
5405 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5407 /* If this substitution failed, this whole thing fails. */
5408 if (GET_CODE (new_rtx) == CLOBBER
5409 && XEXP (new_rtx, 0) == const0_rtx)
5410 return new_rtx;
5412 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5416 else
5418 len = GET_RTX_LENGTH (code);
5419 fmt = GET_RTX_FORMAT (code);
5421 /* We don't need to process a SET_DEST that is a register, CC0,
5422 or PC, so set up to skip this common case. All other cases
5423 where we want to suppress replacing something inside a
5424 SET_SRC are handled via the IN_DEST operand. */
5425 if (code == SET
5426 && (REG_P (SET_DEST (x))
5427 || GET_CODE (SET_DEST (x)) == CC0
5428 || GET_CODE (SET_DEST (x)) == PC))
5429 fmt = "ie";
5431 /* Trying to simplify the operands of a widening MULT is not likely
5432 to create RTL matching a machine insn. */
5433 if (code == MULT
5434 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5435 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5436 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5437 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5438 && REG_P (XEXP (XEXP (x, 0), 0))
5439 && REG_P (XEXP (XEXP (x, 1), 0))
5440 && from == to)
5441 return x;
5444 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5445 constant. */
5446 if (fmt[0] == 'e')
5447 op0_mode = GET_MODE (XEXP (x, 0));
5449 for (i = 0; i < len; i++)
5451 if (fmt[i] == 'E')
5453 int j;
5454 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5456 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5458 new_rtx = (unique_copy && n_occurrences
5459 ? copy_rtx (to) : to);
5460 n_occurrences++;
5462 else
5464 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5465 unique_copy);
5467 /* If this substitution failed, this whole thing
5468 fails. */
5469 if (GET_CODE (new_rtx) == CLOBBER
5470 && XEXP (new_rtx, 0) == const0_rtx)
5471 return new_rtx;
5474 SUBST (XVECEXP (x, i, j), new_rtx);
5477 else if (fmt[i] == 'e')
5479 /* If this is a register being set, ignore it. */
5480 new_rtx = XEXP (x, i);
5481 if (in_dest
5482 && i == 0
5483 && (((code == SUBREG || code == ZERO_EXTRACT)
5484 && REG_P (new_rtx))
5485 || code == STRICT_LOW_PART))
5488 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5490 /* In general, don't install a subreg involving two
5491 modes not tieable. It can worsen register
5492 allocation, and can even make invalid reload
5493 insns, since the reg inside may need to be copied
5494 from in the outside mode, and that may be invalid
5495 if it is an fp reg copied in integer mode.
5497 We allow two exceptions to this: It is valid if
5498 it is inside another SUBREG and the mode of that
5499 SUBREG and the mode of the inside of TO is
5500 tieable and it is valid if X is a SET that copies
5501 FROM to CC0. */
5503 if (GET_CODE (to) == SUBREG
5504 && !targetm.modes_tieable_p (GET_MODE (to),
5505 GET_MODE (SUBREG_REG (to)))
5506 && ! (code == SUBREG
5507 && (targetm.modes_tieable_p
5508 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5509 && (!HAVE_cc0
5510 || (! (code == SET
5511 && i == 1
5512 && XEXP (x, 0) == cc0_rtx))))
5513 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5515 if (code == SUBREG
5516 && REG_P (to)
5517 && REGNO (to) < FIRST_PSEUDO_REGISTER
5518 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5519 SUBREG_BYTE (x),
5520 GET_MODE (x)) < 0)
5521 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5523 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5524 n_occurrences++;
5526 else
5527 /* If we are in a SET_DEST, suppress most cases unless we
5528 have gone inside a MEM, in which case we want to
5529 simplify the address. We assume here that things that
5530 are actually part of the destination have their inner
5531 parts in the first expression. This is true for SUBREG,
5532 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5533 things aside from REG and MEM that should appear in a
5534 SET_DEST. */
5535 new_rtx = subst (XEXP (x, i), from, to,
5536 (((in_dest
5537 && (code == SUBREG || code == STRICT_LOW_PART
5538 || code == ZERO_EXTRACT))
5539 || code == SET)
5540 && i == 0),
5541 code == IF_THEN_ELSE && i == 0,
5542 unique_copy);
5544 /* If we found that we will have to reject this combination,
5545 indicate that by returning the CLOBBER ourselves, rather than
5546 an expression containing it. This will speed things up as
5547 well as prevent accidents where two CLOBBERs are considered
5548 to be equal, thus producing an incorrect simplification. */
5550 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5551 return new_rtx;
5553 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5555 machine_mode mode = GET_MODE (x);
5557 x = simplify_subreg (GET_MODE (x), new_rtx,
5558 GET_MODE (SUBREG_REG (x)),
5559 SUBREG_BYTE (x));
5560 if (! x)
5561 x = gen_rtx_CLOBBER (mode, const0_rtx);
5563 else if (CONST_SCALAR_INT_P (new_rtx)
5564 && GET_CODE (x) == ZERO_EXTEND)
5566 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5567 new_rtx, GET_MODE (XEXP (x, 0)));
5568 gcc_assert (x);
5570 else
5571 SUBST (XEXP (x, i), new_rtx);
5576 /* Check if we are loading something from the constant pool via float
5577 extension; in this case we would undo compress_float_constant
5578 optimization and degenerate constant load to an immediate value. */
5579 if (GET_CODE (x) == FLOAT_EXTEND
5580 && MEM_P (XEXP (x, 0))
5581 && MEM_READONLY_P (XEXP (x, 0)))
5583 rtx tmp = avoid_constant_pool_reference (x);
5584 if (x != tmp)
5585 return x;
5588 /* Try to simplify X. If the simplification changed the code, it is likely
5589 that further simplification will help, so loop, but limit the number
5590 of repetitions that will be performed. */
5592 for (i = 0; i < 4; i++)
5594 /* If X is sufficiently simple, don't bother trying to do anything
5595 with it. */
5596 if (code != CONST_INT && code != REG && code != CLOBBER)
5597 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5599 if (GET_CODE (x) == code)
5600 break;
5602 code = GET_CODE (x);
5604 /* We no longer know the original mode of operand 0 since we
5605 have changed the form of X) */
5606 op0_mode = VOIDmode;
5609 return x;
5612 /* If X is a commutative operation whose operands are not in the canonical
5613 order, use substitutions to swap them. */
5615 static void
5616 maybe_swap_commutative_operands (rtx x)
5618 if (COMMUTATIVE_ARITH_P (x)
5619 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5621 rtx temp = XEXP (x, 0);
5622 SUBST (XEXP (x, 0), XEXP (x, 1));
5623 SUBST (XEXP (x, 1), temp);
5627 /* Simplify X, a piece of RTL. We just operate on the expression at the
5628 outer level; call `subst' to simplify recursively. Return the new
5629 expression.
5631 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5632 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5633 of a condition. */
5635 static rtx
5636 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5637 int in_cond)
5639 enum rtx_code code = GET_CODE (x);
5640 machine_mode mode = GET_MODE (x);
5641 scalar_int_mode int_mode;
5642 rtx temp;
5643 int i;
5645 /* If this is a commutative operation, put a constant last and a complex
5646 expression first. We don't need to do this for comparisons here. */
5647 maybe_swap_commutative_operands (x);
5649 /* Try to fold this expression in case we have constants that weren't
5650 present before. */
5651 temp = 0;
5652 switch (GET_RTX_CLASS (code))
5654 case RTX_UNARY:
5655 if (op0_mode == VOIDmode)
5656 op0_mode = GET_MODE (XEXP (x, 0));
5657 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5658 break;
5659 case RTX_COMPARE:
5660 case RTX_COMM_COMPARE:
5662 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5663 if (cmp_mode == VOIDmode)
5665 cmp_mode = GET_MODE (XEXP (x, 1));
5666 if (cmp_mode == VOIDmode)
5667 cmp_mode = op0_mode;
5669 temp = simplify_relational_operation (code, mode, cmp_mode,
5670 XEXP (x, 0), XEXP (x, 1));
5672 break;
5673 case RTX_COMM_ARITH:
5674 case RTX_BIN_ARITH:
5675 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5676 break;
5677 case RTX_BITFIELD_OPS:
5678 case RTX_TERNARY:
5679 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5680 XEXP (x, 1), XEXP (x, 2));
5681 break;
5682 default:
5683 break;
5686 if (temp)
5688 x = temp;
5689 code = GET_CODE (temp);
5690 op0_mode = VOIDmode;
5691 mode = GET_MODE (temp);
5694 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5695 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5696 things. Check for cases where both arms are testing the same
5697 condition.
5699 Don't do anything if all operands are very simple. */
5701 if ((BINARY_P (x)
5702 && ((!OBJECT_P (XEXP (x, 0))
5703 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5704 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5705 || (!OBJECT_P (XEXP (x, 1))
5706 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5707 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5708 || (UNARY_P (x)
5709 && (!OBJECT_P (XEXP (x, 0))
5710 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5711 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5713 rtx cond, true_rtx, false_rtx;
5715 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5716 if (cond != 0
5717 /* If everything is a comparison, what we have is highly unlikely
5718 to be simpler, so don't use it. */
5719 && ! (COMPARISON_P (x)
5720 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5722 rtx cop1 = const0_rtx;
5723 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5725 if (cond_code == NE && COMPARISON_P (cond))
5726 return x;
5728 /* Simplify the alternative arms; this may collapse the true and
5729 false arms to store-flag values. Be careful to use copy_rtx
5730 here since true_rtx or false_rtx might share RTL with x as a
5731 result of the if_then_else_cond call above. */
5732 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5733 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5735 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5736 is unlikely to be simpler. */
5737 if (general_operand (true_rtx, VOIDmode)
5738 && general_operand (false_rtx, VOIDmode))
5740 enum rtx_code reversed;
5742 /* Restarting if we generate a store-flag expression will cause
5743 us to loop. Just drop through in this case. */
5745 /* If the result values are STORE_FLAG_VALUE and zero, we can
5746 just make the comparison operation. */
5747 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5748 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5749 cond, cop1);
5750 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5751 && ((reversed = reversed_comparison_code_parts
5752 (cond_code, cond, cop1, NULL))
5753 != UNKNOWN))
5754 x = simplify_gen_relational (reversed, mode, VOIDmode,
5755 cond, cop1);
5757 /* Likewise, we can make the negate of a comparison operation
5758 if the result values are - STORE_FLAG_VALUE and zero. */
5759 else if (CONST_INT_P (true_rtx)
5760 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5761 && false_rtx == const0_rtx)
5762 x = simplify_gen_unary (NEG, mode,
5763 simplify_gen_relational (cond_code,
5764 mode, VOIDmode,
5765 cond, cop1),
5766 mode);
5767 else if (CONST_INT_P (false_rtx)
5768 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5769 && true_rtx == const0_rtx
5770 && ((reversed = reversed_comparison_code_parts
5771 (cond_code, cond, cop1, NULL))
5772 != UNKNOWN))
5773 x = simplify_gen_unary (NEG, mode,
5774 simplify_gen_relational (reversed,
5775 mode, VOIDmode,
5776 cond, cop1),
5777 mode);
5778 else
5779 return gen_rtx_IF_THEN_ELSE (mode,
5780 simplify_gen_relational (cond_code,
5781 mode,
5782 VOIDmode,
5783 cond,
5784 cop1),
5785 true_rtx, false_rtx);
5787 code = GET_CODE (x);
5788 op0_mode = VOIDmode;
5793 /* First see if we can apply the inverse distributive law. */
5794 if (code == PLUS || code == MINUS
5795 || code == AND || code == IOR || code == XOR)
5797 x = apply_distributive_law (x);
5798 code = GET_CODE (x);
5799 op0_mode = VOIDmode;
5802 /* If CODE is an associative operation not otherwise handled, see if we
5803 can associate some operands. This can win if they are constants or
5804 if they are logically related (i.e. (a & b) & a). */
5805 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5806 || code == AND || code == IOR || code == XOR
5807 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5808 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5809 || (flag_associative_math && FLOAT_MODE_P (mode))))
5811 if (GET_CODE (XEXP (x, 0)) == code)
5813 rtx other = XEXP (XEXP (x, 0), 0);
5814 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5815 rtx inner_op1 = XEXP (x, 1);
5816 rtx inner;
5818 /* Make sure we pass the constant operand if any as the second
5819 one if this is a commutative operation. */
5820 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5821 std::swap (inner_op0, inner_op1);
5822 inner = simplify_binary_operation (code == MINUS ? PLUS
5823 : code == DIV ? MULT
5824 : code,
5825 mode, inner_op0, inner_op1);
5827 /* For commutative operations, try the other pair if that one
5828 didn't simplify. */
5829 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5831 other = XEXP (XEXP (x, 0), 1);
5832 inner = simplify_binary_operation (code, mode,
5833 XEXP (XEXP (x, 0), 0),
5834 XEXP (x, 1));
5837 if (inner)
5838 return simplify_gen_binary (code, mode, other, inner);
5842 /* A little bit of algebraic simplification here. */
5843 switch (code)
5845 case MEM:
5846 /* Ensure that our address has any ASHIFTs converted to MULT in case
5847 address-recognizing predicates are called later. */
5848 temp = make_compound_operation (XEXP (x, 0), MEM);
5849 SUBST (XEXP (x, 0), temp);
5850 break;
5852 case SUBREG:
5853 if (op0_mode == VOIDmode)
5854 op0_mode = GET_MODE (SUBREG_REG (x));
5856 /* See if this can be moved to simplify_subreg. */
5857 if (CONSTANT_P (SUBREG_REG (x))
5858 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5859 /* Don't call gen_lowpart if the inner mode
5860 is VOIDmode and we cannot simplify it, as SUBREG without
5861 inner mode is invalid. */
5862 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5863 || gen_lowpart_common (mode, SUBREG_REG (x))))
5864 return gen_lowpart (mode, SUBREG_REG (x));
5866 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5867 break;
5869 rtx temp;
5870 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5871 SUBREG_BYTE (x));
5872 if (temp)
5873 return temp;
5875 /* If op is known to have all lower bits zero, the result is zero. */
5876 scalar_int_mode int_mode, int_op0_mode;
5877 if (!in_dest
5878 && is_a <scalar_int_mode> (mode, &int_mode)
5879 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5880 && (GET_MODE_PRECISION (int_mode)
5881 < GET_MODE_PRECISION (int_op0_mode))
5882 && (subreg_lowpart_offset (int_mode, int_op0_mode)
5883 == SUBREG_BYTE (x))
5884 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5885 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5886 & GET_MODE_MASK (int_mode)) == 0)
5887 return CONST0_RTX (int_mode);
5890 /* Don't change the mode of the MEM if that would change the meaning
5891 of the address. */
5892 if (MEM_P (SUBREG_REG (x))
5893 && (MEM_VOLATILE_P (SUBREG_REG (x))
5894 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5895 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5896 return gen_rtx_CLOBBER (mode, const0_rtx);
5898 /* Note that we cannot do any narrowing for non-constants since
5899 we might have been counting on using the fact that some bits were
5900 zero. We now do this in the SET. */
5902 break;
5904 case NEG:
5905 temp = expand_compound_operation (XEXP (x, 0));
5907 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5908 replaced by (lshiftrt X C). This will convert
5909 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5911 if (GET_CODE (temp) == ASHIFTRT
5912 && CONST_INT_P (XEXP (temp, 1))
5913 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5914 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5915 INTVAL (XEXP (temp, 1)));
5917 /* If X has only a single bit that might be nonzero, say, bit I, convert
5918 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5919 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5920 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5921 or a SUBREG of one since we'd be making the expression more
5922 complex if it was just a register. */
5924 if (!REG_P (temp)
5925 && ! (GET_CODE (temp) == SUBREG
5926 && REG_P (SUBREG_REG (temp)))
5927 && is_a <scalar_int_mode> (mode, &int_mode)
5928 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5930 rtx temp1 = simplify_shift_const
5931 (NULL_RTX, ASHIFTRT, int_mode,
5932 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5933 GET_MODE_PRECISION (int_mode) - 1 - i),
5934 GET_MODE_PRECISION (int_mode) - 1 - i);
5936 /* If all we did was surround TEMP with the two shifts, we
5937 haven't improved anything, so don't use it. Otherwise,
5938 we are better off with TEMP1. */
5939 if (GET_CODE (temp1) != ASHIFTRT
5940 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5941 || XEXP (XEXP (temp1, 0), 0) != temp)
5942 return temp1;
5944 break;
5946 case TRUNCATE:
5947 /* We can't handle truncation to a partial integer mode here
5948 because we don't know the real bitsize of the partial
5949 integer mode. */
5950 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5951 break;
5953 if (HWI_COMPUTABLE_MODE_P (mode))
5954 SUBST (XEXP (x, 0),
5955 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5956 GET_MODE_MASK (mode), 0));
5958 /* We can truncate a constant value and return it. */
5959 if (CONST_INT_P (XEXP (x, 0)))
5960 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5962 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5963 whose value is a comparison can be replaced with a subreg if
5964 STORE_FLAG_VALUE permits. */
5965 if (HWI_COMPUTABLE_MODE_P (mode)
5966 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5967 && (temp = get_last_value (XEXP (x, 0)))
5968 && COMPARISON_P (temp))
5969 return gen_lowpart (mode, XEXP (x, 0));
5970 break;
5972 case CONST:
5973 /* (const (const X)) can become (const X). Do it this way rather than
5974 returning the inner CONST since CONST can be shared with a
5975 REG_EQUAL note. */
5976 if (GET_CODE (XEXP (x, 0)) == CONST)
5977 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5978 break;
5980 case LO_SUM:
5981 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5982 can add in an offset. find_split_point will split this address up
5983 again if it doesn't match. */
5984 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5985 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5986 return XEXP (x, 1);
5987 break;
5989 case PLUS:
5990 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5991 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5992 bit-field and can be replaced by either a sign_extend or a
5993 sign_extract. The `and' may be a zero_extend and the two
5994 <c>, -<c> constants may be reversed. */
5995 if (GET_CODE (XEXP (x, 0)) == XOR
5996 && is_a <scalar_int_mode> (mode, &int_mode)
5997 && CONST_INT_P (XEXP (x, 1))
5998 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5999 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6000 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6001 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6002 && HWI_COMPUTABLE_MODE_P (int_mode)
6003 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6004 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6005 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6006 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6007 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6008 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
6009 == (unsigned int) i + 1))))
6010 return simplify_shift_const
6011 (NULL_RTX, ASHIFTRT, int_mode,
6012 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6013 XEXP (XEXP (XEXP (x, 0), 0), 0),
6014 GET_MODE_PRECISION (int_mode) - (i + 1)),
6015 GET_MODE_PRECISION (int_mode) - (i + 1));
6017 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6018 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6019 the bitsize of the mode - 1. This allows simplification of
6020 "a = (b & 8) == 0;" */
6021 if (XEXP (x, 1) == constm1_rtx
6022 && !REG_P (XEXP (x, 0))
6023 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6024 && REG_P (SUBREG_REG (XEXP (x, 0))))
6025 && is_a <scalar_int_mode> (mode, &int_mode)
6026 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6027 return simplify_shift_const
6028 (NULL_RTX, ASHIFTRT, int_mode,
6029 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6030 gen_rtx_XOR (int_mode, XEXP (x, 0),
6031 const1_rtx),
6032 GET_MODE_PRECISION (int_mode) - 1),
6033 GET_MODE_PRECISION (int_mode) - 1);
6035 /* If we are adding two things that have no bits in common, convert
6036 the addition into an IOR. This will often be further simplified,
6037 for example in cases like ((a & 1) + (a & 2)), which can
6038 become a & 3. */
6040 if (HWI_COMPUTABLE_MODE_P (mode)
6041 && (nonzero_bits (XEXP (x, 0), mode)
6042 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6044 /* Try to simplify the expression further. */
6045 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6046 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6048 /* If we could, great. If not, do not go ahead with the IOR
6049 replacement, since PLUS appears in many special purpose
6050 address arithmetic instructions. */
6051 if (GET_CODE (temp) != CLOBBER
6052 && (GET_CODE (temp) != IOR
6053 || ((XEXP (temp, 0) != XEXP (x, 0)
6054 || XEXP (temp, 1) != XEXP (x, 1))
6055 && (XEXP (temp, 0) != XEXP (x, 1)
6056 || XEXP (temp, 1) != XEXP (x, 0)))))
6057 return temp;
6060 /* Canonicalize x + x into x << 1. */
6061 if (GET_MODE_CLASS (mode) == MODE_INT
6062 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6063 && !side_effects_p (XEXP (x, 0)))
6064 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6066 break;
6068 case MINUS:
6069 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6070 (and <foo> (const_int pow2-1)) */
6071 if (is_a <scalar_int_mode> (mode, &int_mode)
6072 && GET_CODE (XEXP (x, 1)) == AND
6073 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6074 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6075 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6076 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6077 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6078 break;
6080 case MULT:
6081 /* If we have (mult (plus A B) C), apply the distributive law and then
6082 the inverse distributive law to see if things simplify. This
6083 occurs mostly in addresses, often when unrolling loops. */
6085 if (GET_CODE (XEXP (x, 0)) == PLUS)
6087 rtx result = distribute_and_simplify_rtx (x, 0);
6088 if (result)
6089 return result;
6092 /* Try simplify a*(b/c) as (a*b)/c. */
6093 if (FLOAT_MODE_P (mode) && flag_associative_math
6094 && GET_CODE (XEXP (x, 0)) == DIV)
6096 rtx tem = simplify_binary_operation (MULT, mode,
6097 XEXP (XEXP (x, 0), 0),
6098 XEXP (x, 1));
6099 if (tem)
6100 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6102 break;
6104 case UDIV:
6105 /* If this is a divide by a power of two, treat it as a shift if
6106 its first operand is a shift. */
6107 if (is_a <scalar_int_mode> (mode, &int_mode)
6108 && CONST_INT_P (XEXP (x, 1))
6109 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6110 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6111 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6112 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6113 || GET_CODE (XEXP (x, 0)) == ROTATE
6114 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6115 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6116 XEXP (x, 0), i);
6117 break;
6119 case EQ: case NE:
6120 case GT: case GTU: case GE: case GEU:
6121 case LT: case LTU: case LE: case LEU:
6122 case UNEQ: case LTGT:
6123 case UNGT: case UNGE:
6124 case UNLT: case UNLE:
6125 case UNORDERED: case ORDERED:
6126 /* If the first operand is a condition code, we can't do anything
6127 with it. */
6128 if (GET_CODE (XEXP (x, 0)) == COMPARE
6129 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6130 && ! CC0_P (XEXP (x, 0))))
6132 rtx op0 = XEXP (x, 0);
6133 rtx op1 = XEXP (x, 1);
6134 enum rtx_code new_code;
6136 if (GET_CODE (op0) == COMPARE)
6137 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6139 /* Simplify our comparison, if possible. */
6140 new_code = simplify_comparison (code, &op0, &op1);
6142 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6143 if only the low-order bit is possibly nonzero in X (such as when
6144 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6145 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6146 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6147 (plus X 1).
6149 Remove any ZERO_EXTRACT we made when thinking this was a
6150 comparison. It may now be simpler to use, e.g., an AND. If a
6151 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6152 the call to make_compound_operation in the SET case.
6154 Don't apply these optimizations if the caller would
6155 prefer a comparison rather than a value.
6156 E.g., for the condition in an IF_THEN_ELSE most targets need
6157 an explicit comparison. */
6159 if (in_cond)
6162 else if (STORE_FLAG_VALUE == 1
6163 && new_code == NE
6164 && is_int_mode (mode, &int_mode)
6165 && op1 == const0_rtx
6166 && int_mode == GET_MODE (op0)
6167 && nonzero_bits (op0, int_mode) == 1)
6168 return gen_lowpart (int_mode,
6169 expand_compound_operation (op0));
6171 else if (STORE_FLAG_VALUE == 1
6172 && new_code == NE
6173 && is_int_mode (mode, &int_mode)
6174 && op1 == const0_rtx
6175 && int_mode == GET_MODE (op0)
6176 && (num_sign_bit_copies (op0, int_mode)
6177 == GET_MODE_PRECISION (int_mode)))
6179 op0 = expand_compound_operation (op0);
6180 return simplify_gen_unary (NEG, int_mode,
6181 gen_lowpart (int_mode, op0),
6182 int_mode);
6185 else if (STORE_FLAG_VALUE == 1
6186 && new_code == EQ
6187 && is_int_mode (mode, &int_mode)
6188 && op1 == const0_rtx
6189 && int_mode == GET_MODE (op0)
6190 && nonzero_bits (op0, int_mode) == 1)
6192 op0 = expand_compound_operation (op0);
6193 return simplify_gen_binary (XOR, int_mode,
6194 gen_lowpart (int_mode, op0),
6195 const1_rtx);
6198 else if (STORE_FLAG_VALUE == 1
6199 && new_code == EQ
6200 && is_int_mode (mode, &int_mode)
6201 && op1 == const0_rtx
6202 && int_mode == GET_MODE (op0)
6203 && (num_sign_bit_copies (op0, int_mode)
6204 == GET_MODE_PRECISION (int_mode)))
6206 op0 = expand_compound_operation (op0);
6207 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6210 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6211 those above. */
6212 if (in_cond)
6215 else if (STORE_FLAG_VALUE == -1
6216 && new_code == NE
6217 && is_int_mode (mode, &int_mode)
6218 && op1 == const0_rtx
6219 && int_mode == GET_MODE (op0)
6220 && (num_sign_bit_copies (op0, int_mode)
6221 == GET_MODE_PRECISION (int_mode)))
6222 return gen_lowpart (int_mode, expand_compound_operation (op0));
6224 else if (STORE_FLAG_VALUE == -1
6225 && new_code == NE
6226 && is_int_mode (mode, &int_mode)
6227 && op1 == const0_rtx
6228 && int_mode == GET_MODE (op0)
6229 && nonzero_bits (op0, int_mode) == 1)
6231 op0 = expand_compound_operation (op0);
6232 return simplify_gen_unary (NEG, int_mode,
6233 gen_lowpart (int_mode, op0),
6234 int_mode);
6237 else if (STORE_FLAG_VALUE == -1
6238 && new_code == EQ
6239 && is_int_mode (mode, &int_mode)
6240 && op1 == const0_rtx
6241 && int_mode == GET_MODE (op0)
6242 && (num_sign_bit_copies (op0, int_mode)
6243 == GET_MODE_PRECISION (int_mode)))
6245 op0 = expand_compound_operation (op0);
6246 return simplify_gen_unary (NOT, int_mode,
6247 gen_lowpart (int_mode, op0),
6248 int_mode);
6251 /* If X is 0/1, (eq X 0) is X-1. */
6252 else if (STORE_FLAG_VALUE == -1
6253 && new_code == EQ
6254 && is_int_mode (mode, &int_mode)
6255 && op1 == const0_rtx
6256 && int_mode == GET_MODE (op0)
6257 && nonzero_bits (op0, int_mode) == 1)
6259 op0 = expand_compound_operation (op0);
6260 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6263 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6264 one bit that might be nonzero, we can convert (ne x 0) to
6265 (ashift x c) where C puts the bit in the sign bit. Remove any
6266 AND with STORE_FLAG_VALUE when we are done, since we are only
6267 going to test the sign bit. */
6268 if (new_code == NE
6269 && is_int_mode (mode, &int_mode)
6270 && HWI_COMPUTABLE_MODE_P (int_mode)
6271 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6272 && op1 == const0_rtx
6273 && int_mode == GET_MODE (op0)
6274 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6276 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6277 expand_compound_operation (op0),
6278 GET_MODE_PRECISION (int_mode) - 1 - i);
6279 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6280 return XEXP (x, 0);
6281 else
6282 return x;
6285 /* If the code changed, return a whole new comparison.
6286 We also need to avoid using SUBST in cases where
6287 simplify_comparison has widened a comparison with a CONST_INT,
6288 since in that case the wider CONST_INT may fail the sanity
6289 checks in do_SUBST. */
6290 if (new_code != code
6291 || (CONST_INT_P (op1)
6292 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6293 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6294 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6296 /* Otherwise, keep this operation, but maybe change its operands.
6297 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6298 SUBST (XEXP (x, 0), op0);
6299 SUBST (XEXP (x, 1), op1);
6301 break;
6303 case IF_THEN_ELSE:
6304 return simplify_if_then_else (x);
6306 case ZERO_EXTRACT:
6307 case SIGN_EXTRACT:
6308 case ZERO_EXTEND:
6309 case SIGN_EXTEND:
6310 /* If we are processing SET_DEST, we are done. */
6311 if (in_dest)
6312 return x;
6314 return expand_compound_operation (x);
6316 case SET:
6317 return simplify_set (x);
6319 case AND:
6320 case IOR:
6321 return simplify_logical (x);
6323 case ASHIFT:
6324 case LSHIFTRT:
6325 case ASHIFTRT:
6326 case ROTATE:
6327 case ROTATERT:
6328 /* If this is a shift by a constant amount, simplify it. */
6329 if (CONST_INT_P (XEXP (x, 1)))
6330 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6331 INTVAL (XEXP (x, 1)));
6333 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6334 SUBST (XEXP (x, 1),
6335 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6336 (HOST_WIDE_INT_1U
6337 << exact_log2 (GET_MODE_UNIT_BITSIZE
6338 (GET_MODE (x))))
6339 - 1,
6340 0));
6341 break;
6343 default:
6344 break;
6347 return x;
6350 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6352 static rtx
6353 simplify_if_then_else (rtx x)
6355 machine_mode mode = GET_MODE (x);
6356 rtx cond = XEXP (x, 0);
6357 rtx true_rtx = XEXP (x, 1);
6358 rtx false_rtx = XEXP (x, 2);
6359 enum rtx_code true_code = GET_CODE (cond);
6360 int comparison_p = COMPARISON_P (cond);
6361 rtx temp;
6362 int i;
6363 enum rtx_code false_code;
6364 rtx reversed;
6365 scalar_int_mode int_mode, inner_mode;
6367 /* Simplify storing of the truth value. */
6368 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6369 return simplify_gen_relational (true_code, mode, VOIDmode,
6370 XEXP (cond, 0), XEXP (cond, 1));
6372 /* Also when the truth value has to be reversed. */
6373 if (comparison_p
6374 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6375 && (reversed = reversed_comparison (cond, mode)))
6376 return reversed;
6378 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6379 in it is being compared against certain values. Get the true and false
6380 comparisons and see if that says anything about the value of each arm. */
6382 if (comparison_p
6383 && ((false_code = reversed_comparison_code (cond, NULL))
6384 != UNKNOWN)
6385 && REG_P (XEXP (cond, 0)))
6387 HOST_WIDE_INT nzb;
6388 rtx from = XEXP (cond, 0);
6389 rtx true_val = XEXP (cond, 1);
6390 rtx false_val = true_val;
6391 int swapped = 0;
6393 /* If FALSE_CODE is EQ, swap the codes and arms. */
6395 if (false_code == EQ)
6397 swapped = 1, true_code = EQ, false_code = NE;
6398 std::swap (true_rtx, false_rtx);
6401 scalar_int_mode from_mode;
6402 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6404 /* If we are comparing against zero and the expression being
6405 tested has only a single bit that might be nonzero, that is
6406 its value when it is not equal to zero. Similarly if it is
6407 known to be -1 or 0. */
6408 if (true_code == EQ
6409 && true_val == const0_rtx
6410 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6412 false_code = EQ;
6413 false_val = gen_int_mode (nzb, from_mode);
6415 else if (true_code == EQ
6416 && true_val == const0_rtx
6417 && (num_sign_bit_copies (from, from_mode)
6418 == GET_MODE_PRECISION (from_mode)))
6420 false_code = EQ;
6421 false_val = constm1_rtx;
6425 /* Now simplify an arm if we know the value of the register in the
6426 branch and it is used in the arm. Be careful due to the potential
6427 of locally-shared RTL. */
6429 if (reg_mentioned_p (from, true_rtx))
6430 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6431 from, true_val),
6432 pc_rtx, pc_rtx, 0, 0, 0);
6433 if (reg_mentioned_p (from, false_rtx))
6434 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6435 from, false_val),
6436 pc_rtx, pc_rtx, 0, 0, 0);
6438 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6439 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6441 true_rtx = XEXP (x, 1);
6442 false_rtx = XEXP (x, 2);
6443 true_code = GET_CODE (cond);
6446 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6447 reversed, do so to avoid needing two sets of patterns for
6448 subtract-and-branch insns. Similarly if we have a constant in the true
6449 arm, the false arm is the same as the first operand of the comparison, or
6450 the false arm is more complicated than the true arm. */
6452 if (comparison_p
6453 && reversed_comparison_code (cond, NULL) != UNKNOWN
6454 && (true_rtx == pc_rtx
6455 || (CONSTANT_P (true_rtx)
6456 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6457 || true_rtx == const0_rtx
6458 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6459 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6460 && !OBJECT_P (false_rtx))
6461 || reg_mentioned_p (true_rtx, false_rtx)
6462 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6464 true_code = reversed_comparison_code (cond, NULL);
6465 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6466 SUBST (XEXP (x, 1), false_rtx);
6467 SUBST (XEXP (x, 2), true_rtx);
6469 std::swap (true_rtx, false_rtx);
6470 cond = XEXP (x, 0);
6472 /* It is possible that the conditional has been simplified out. */
6473 true_code = GET_CODE (cond);
6474 comparison_p = COMPARISON_P (cond);
6477 /* If the two arms are identical, we don't need the comparison. */
6479 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6480 return true_rtx;
6482 /* Convert a == b ? b : a to "a". */
6483 if (true_code == EQ && ! side_effects_p (cond)
6484 && !HONOR_NANS (mode)
6485 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6486 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6487 return false_rtx;
6488 else if (true_code == NE && ! side_effects_p (cond)
6489 && !HONOR_NANS (mode)
6490 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6491 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6492 return true_rtx;
6494 /* Look for cases where we have (abs x) or (neg (abs X)). */
6496 if (GET_MODE_CLASS (mode) == MODE_INT
6497 && comparison_p
6498 && XEXP (cond, 1) == const0_rtx
6499 && GET_CODE (false_rtx) == NEG
6500 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6501 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6502 && ! side_effects_p (true_rtx))
6503 switch (true_code)
6505 case GT:
6506 case GE:
6507 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6508 case LT:
6509 case LE:
6510 return
6511 simplify_gen_unary (NEG, mode,
6512 simplify_gen_unary (ABS, mode, true_rtx, mode),
6513 mode);
6514 default:
6515 break;
6518 /* Look for MIN or MAX. */
6520 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6521 && comparison_p
6522 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6523 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6524 && ! side_effects_p (cond))
6525 switch (true_code)
6527 case GE:
6528 case GT:
6529 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6530 case LE:
6531 case LT:
6532 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6533 case GEU:
6534 case GTU:
6535 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6536 case LEU:
6537 case LTU:
6538 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6539 default:
6540 break;
6543 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6544 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6545 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6546 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6547 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6548 neither 1 or -1, but it isn't worth checking for. */
6550 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6551 && comparison_p
6552 && is_int_mode (mode, &int_mode)
6553 && ! side_effects_p (x))
6555 rtx t = make_compound_operation (true_rtx, SET);
6556 rtx f = make_compound_operation (false_rtx, SET);
6557 rtx cond_op0 = XEXP (cond, 0);
6558 rtx cond_op1 = XEXP (cond, 1);
6559 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6560 scalar_int_mode m = int_mode;
6561 rtx z = 0, c1 = NULL_RTX;
6563 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6564 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6565 || GET_CODE (t) == ASHIFT
6566 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6567 && rtx_equal_p (XEXP (t, 0), f))
6568 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6570 /* If an identity-zero op is commutative, check whether there
6571 would be a match if we swapped the operands. */
6572 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6573 || GET_CODE (t) == XOR)
6574 && rtx_equal_p (XEXP (t, 1), f))
6575 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6576 else if (GET_CODE (t) == SIGN_EXTEND
6577 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6578 && (GET_CODE (XEXP (t, 0)) == PLUS
6579 || GET_CODE (XEXP (t, 0)) == MINUS
6580 || GET_CODE (XEXP (t, 0)) == IOR
6581 || GET_CODE (XEXP (t, 0)) == XOR
6582 || GET_CODE (XEXP (t, 0)) == ASHIFT
6583 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6584 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6585 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6586 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6587 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6588 && (num_sign_bit_copies (f, GET_MODE (f))
6589 > (unsigned int)
6590 (GET_MODE_PRECISION (int_mode)
6591 - GET_MODE_PRECISION (inner_mode))))
6593 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6594 extend_op = SIGN_EXTEND;
6595 m = inner_mode;
6597 else if (GET_CODE (t) == SIGN_EXTEND
6598 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6599 && (GET_CODE (XEXP (t, 0)) == PLUS
6600 || GET_CODE (XEXP (t, 0)) == IOR
6601 || GET_CODE (XEXP (t, 0)) == XOR)
6602 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6603 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6604 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6605 && (num_sign_bit_copies (f, GET_MODE (f))
6606 > (unsigned int)
6607 (GET_MODE_PRECISION (int_mode)
6608 - GET_MODE_PRECISION (inner_mode))))
6610 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6611 extend_op = SIGN_EXTEND;
6612 m = inner_mode;
6614 else if (GET_CODE (t) == ZERO_EXTEND
6615 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6616 && (GET_CODE (XEXP (t, 0)) == PLUS
6617 || GET_CODE (XEXP (t, 0)) == MINUS
6618 || GET_CODE (XEXP (t, 0)) == IOR
6619 || GET_CODE (XEXP (t, 0)) == XOR
6620 || GET_CODE (XEXP (t, 0)) == ASHIFT
6621 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6622 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6623 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6624 && HWI_COMPUTABLE_MODE_P (int_mode)
6625 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6626 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6627 && ((nonzero_bits (f, GET_MODE (f))
6628 & ~GET_MODE_MASK (inner_mode))
6629 == 0))
6631 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6632 extend_op = ZERO_EXTEND;
6633 m = inner_mode;
6635 else if (GET_CODE (t) == ZERO_EXTEND
6636 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6637 && (GET_CODE (XEXP (t, 0)) == PLUS
6638 || GET_CODE (XEXP (t, 0)) == IOR
6639 || GET_CODE (XEXP (t, 0)) == XOR)
6640 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6641 && HWI_COMPUTABLE_MODE_P (int_mode)
6642 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6643 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6644 && ((nonzero_bits (f, GET_MODE (f))
6645 & ~GET_MODE_MASK (inner_mode))
6646 == 0))
6648 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6649 extend_op = ZERO_EXTEND;
6650 m = inner_mode;
6653 if (z)
6655 machine_mode cm = m;
6656 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6657 && GET_MODE (c1) != VOIDmode)
6658 cm = GET_MODE (c1);
6659 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6660 cond_op0, cond_op1),
6661 pc_rtx, pc_rtx, 0, 0, 0);
6662 temp = simplify_gen_binary (MULT, cm, temp,
6663 simplify_gen_binary (MULT, cm, c1,
6664 const_true_rtx));
6665 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6666 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6668 if (extend_op != UNKNOWN)
6669 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6671 return temp;
6675 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6676 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6677 negation of a single bit, we can convert this operation to a shift. We
6678 can actually do this more generally, but it doesn't seem worth it. */
6680 if (true_code == NE
6681 && is_a <scalar_int_mode> (mode, &int_mode)
6682 && XEXP (cond, 1) == const0_rtx
6683 && false_rtx == const0_rtx
6684 && CONST_INT_P (true_rtx)
6685 && ((1 == nonzero_bits (XEXP (cond, 0), int_mode)
6686 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6687 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6688 == GET_MODE_PRECISION (int_mode))
6689 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6690 return
6691 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6692 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6694 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6695 non-zero bit in A is C1. */
6696 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6697 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6698 && is_a <scalar_int_mode> (mode, &int_mode)
6699 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6700 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6701 == nonzero_bits (XEXP (cond, 0), inner_mode)
6702 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6704 rtx val = XEXP (cond, 0);
6705 if (inner_mode == int_mode)
6706 return val;
6707 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6708 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6711 return x;
6714 /* Simplify X, a SET expression. Return the new expression. */
6716 static rtx
6717 simplify_set (rtx x)
6719 rtx src = SET_SRC (x);
6720 rtx dest = SET_DEST (x);
6721 machine_mode mode
6722 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6723 rtx_insn *other_insn;
6724 rtx *cc_use;
6725 scalar_int_mode int_mode;
6727 /* (set (pc) (return)) gets written as (return). */
6728 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6729 return src;
6731 /* Now that we know for sure which bits of SRC we are using, see if we can
6732 simplify the expression for the object knowing that we only need the
6733 low-order bits. */
6735 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6737 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6738 SUBST (SET_SRC (x), src);
6741 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6742 the comparison result and try to simplify it unless we already have used
6743 undobuf.other_insn. */
6744 if ((GET_MODE_CLASS (mode) == MODE_CC
6745 || GET_CODE (src) == COMPARE
6746 || CC0_P (dest))
6747 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6748 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6749 && COMPARISON_P (*cc_use)
6750 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6752 enum rtx_code old_code = GET_CODE (*cc_use);
6753 enum rtx_code new_code;
6754 rtx op0, op1, tmp;
6755 int other_changed = 0;
6756 rtx inner_compare = NULL_RTX;
6757 machine_mode compare_mode = GET_MODE (dest);
6759 if (GET_CODE (src) == COMPARE)
6761 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6762 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6764 inner_compare = op0;
6765 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6768 else
6769 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6771 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6772 op0, op1);
6773 if (!tmp)
6774 new_code = old_code;
6775 else if (!CONSTANT_P (tmp))
6777 new_code = GET_CODE (tmp);
6778 op0 = XEXP (tmp, 0);
6779 op1 = XEXP (tmp, 1);
6781 else
6783 rtx pat = PATTERN (other_insn);
6784 undobuf.other_insn = other_insn;
6785 SUBST (*cc_use, tmp);
6787 /* Attempt to simplify CC user. */
6788 if (GET_CODE (pat) == SET)
6790 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6791 if (new_rtx != NULL_RTX)
6792 SUBST (SET_SRC (pat), new_rtx);
6795 /* Convert X into a no-op move. */
6796 SUBST (SET_DEST (x), pc_rtx);
6797 SUBST (SET_SRC (x), pc_rtx);
6798 return x;
6801 /* Simplify our comparison, if possible. */
6802 new_code = simplify_comparison (new_code, &op0, &op1);
6804 #ifdef SELECT_CC_MODE
6805 /* If this machine has CC modes other than CCmode, check to see if we
6806 need to use a different CC mode here. */
6807 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6808 compare_mode = GET_MODE (op0);
6809 else if (inner_compare
6810 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6811 && new_code == old_code
6812 && op0 == XEXP (inner_compare, 0)
6813 && op1 == XEXP (inner_compare, 1))
6814 compare_mode = GET_MODE (inner_compare);
6815 else
6816 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6818 /* If the mode changed, we have to change SET_DEST, the mode in the
6819 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6820 a hard register, just build new versions with the proper mode. If it
6821 is a pseudo, we lose unless it is only time we set the pseudo, in
6822 which case we can safely change its mode. */
6823 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6825 if (can_change_dest_mode (dest, 0, compare_mode))
6827 unsigned int regno = REGNO (dest);
6828 rtx new_dest;
6830 if (regno < FIRST_PSEUDO_REGISTER)
6831 new_dest = gen_rtx_REG (compare_mode, regno);
6832 else
6834 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6835 new_dest = regno_reg_rtx[regno];
6838 SUBST (SET_DEST (x), new_dest);
6839 SUBST (XEXP (*cc_use, 0), new_dest);
6840 other_changed = 1;
6842 dest = new_dest;
6845 #endif /* SELECT_CC_MODE */
6847 /* If the code changed, we have to build a new comparison in
6848 undobuf.other_insn. */
6849 if (new_code != old_code)
6851 int other_changed_previously = other_changed;
6852 unsigned HOST_WIDE_INT mask;
6853 rtx old_cc_use = *cc_use;
6855 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6856 dest, const0_rtx));
6857 other_changed = 1;
6859 /* If the only change we made was to change an EQ into an NE or
6860 vice versa, OP0 has only one bit that might be nonzero, and OP1
6861 is zero, check if changing the user of the condition code will
6862 produce a valid insn. If it won't, we can keep the original code
6863 in that insn by surrounding our operation with an XOR. */
6865 if (((old_code == NE && new_code == EQ)
6866 || (old_code == EQ && new_code == NE))
6867 && ! other_changed_previously && op1 == const0_rtx
6868 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6869 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6871 rtx pat = PATTERN (other_insn), note = 0;
6873 if ((recog_for_combine (&pat, other_insn, &note) < 0
6874 && ! check_asm_operands (pat)))
6876 *cc_use = old_cc_use;
6877 other_changed = 0;
6879 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6880 gen_int_mode (mask,
6881 GET_MODE (op0)));
6886 if (other_changed)
6887 undobuf.other_insn = other_insn;
6889 /* Don't generate a compare of a CC with 0, just use that CC. */
6890 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6892 SUBST (SET_SRC (x), op0);
6893 src = SET_SRC (x);
6895 /* Otherwise, if we didn't previously have the same COMPARE we
6896 want, create it from scratch. */
6897 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6898 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6900 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6901 src = SET_SRC (x);
6904 else
6906 /* Get SET_SRC in a form where we have placed back any
6907 compound expressions. Then do the checks below. */
6908 src = make_compound_operation (src, SET);
6909 SUBST (SET_SRC (x), src);
6912 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6913 and X being a REG or (subreg (reg)), we may be able to convert this to
6914 (set (subreg:m2 x) (op)).
6916 We can always do this if M1 is narrower than M2 because that means that
6917 we only care about the low bits of the result.
6919 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6920 perform a narrower operation than requested since the high-order bits will
6921 be undefined. On machine where it is defined, this transformation is safe
6922 as long as M1 and M2 have the same number of words. */
6924 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6925 && !OBJECT_P (SUBREG_REG (src))
6926 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6927 / UNITS_PER_WORD)
6928 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6929 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6930 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6931 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6932 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6933 GET_MODE (SUBREG_REG (src)),
6934 GET_MODE (src)))
6935 && (REG_P (dest)
6936 || (GET_CODE (dest) == SUBREG
6937 && REG_P (SUBREG_REG (dest)))))
6939 SUBST (SET_DEST (x),
6940 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6941 dest));
6942 SUBST (SET_SRC (x), SUBREG_REG (src));
6944 src = SET_SRC (x), dest = SET_DEST (x);
6947 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6948 in SRC. */
6949 if (dest == cc0_rtx
6950 && partial_subreg_p (src)
6951 && subreg_lowpart_p (src))
6953 rtx inner = SUBREG_REG (src);
6954 machine_mode inner_mode = GET_MODE (inner);
6956 /* Here we make sure that we don't have a sign bit on. */
6957 if (val_signbit_known_clear_p (GET_MODE (src),
6958 nonzero_bits (inner, inner_mode)))
6960 SUBST (SET_SRC (x), inner);
6961 src = SET_SRC (x);
6965 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6966 would require a paradoxical subreg. Replace the subreg with a
6967 zero_extend to avoid the reload that would otherwise be required. */
6969 enum rtx_code extend_op;
6970 if (paradoxical_subreg_p (src)
6971 && MEM_P (SUBREG_REG (src))
6972 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6974 SUBST (SET_SRC (x),
6975 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6977 src = SET_SRC (x);
6980 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6981 are comparing an item known to be 0 or -1 against 0, use a logical
6982 operation instead. Check for one of the arms being an IOR of the other
6983 arm with some value. We compute three terms to be IOR'ed together. In
6984 practice, at most two will be nonzero. Then we do the IOR's. */
6986 if (GET_CODE (dest) != PC
6987 && GET_CODE (src) == IF_THEN_ELSE
6988 && is_int_mode (GET_MODE (src), &int_mode)
6989 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6990 && XEXP (XEXP (src, 0), 1) == const0_rtx
6991 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6992 && (!HAVE_conditional_move
6993 || ! can_conditionally_move_p (int_mode))
6994 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
6995 == GET_MODE_PRECISION (int_mode))
6996 && ! side_effects_p (src))
6998 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6999 ? XEXP (src, 1) : XEXP (src, 2));
7000 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7001 ? XEXP (src, 2) : XEXP (src, 1));
7002 rtx term1 = const0_rtx, term2, term3;
7004 if (GET_CODE (true_rtx) == IOR
7005 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7006 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7007 else if (GET_CODE (true_rtx) == IOR
7008 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7009 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7010 else if (GET_CODE (false_rtx) == IOR
7011 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7012 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7013 else if (GET_CODE (false_rtx) == IOR
7014 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7015 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7017 term2 = simplify_gen_binary (AND, int_mode,
7018 XEXP (XEXP (src, 0), 0), true_rtx);
7019 term3 = simplify_gen_binary (AND, int_mode,
7020 simplify_gen_unary (NOT, int_mode,
7021 XEXP (XEXP (src, 0), 0),
7022 int_mode),
7023 false_rtx);
7025 SUBST (SET_SRC (x),
7026 simplify_gen_binary (IOR, int_mode,
7027 simplify_gen_binary (IOR, int_mode,
7028 term1, term2),
7029 term3));
7031 src = SET_SRC (x);
7034 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7035 whole thing fail. */
7036 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7037 return src;
7038 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7039 return dest;
7040 else
7041 /* Convert this into a field assignment operation, if possible. */
7042 return make_field_assignment (x);
7045 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7046 result. */
7048 static rtx
7049 simplify_logical (rtx x)
7051 rtx op0 = XEXP (x, 0);
7052 rtx op1 = XEXP (x, 1);
7053 scalar_int_mode mode;
7055 switch (GET_CODE (x))
7057 case AND:
7058 /* We can call simplify_and_const_int only if we don't lose
7059 any (sign) bits when converting INTVAL (op1) to
7060 "unsigned HOST_WIDE_INT". */
7061 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7062 && CONST_INT_P (op1)
7063 && (HWI_COMPUTABLE_MODE_P (mode)
7064 || INTVAL (op1) > 0))
7066 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7067 if (GET_CODE (x) != AND)
7068 return x;
7070 op0 = XEXP (x, 0);
7071 op1 = XEXP (x, 1);
7074 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7075 apply the distributive law and then the inverse distributive
7076 law to see if things simplify. */
7077 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7079 rtx result = distribute_and_simplify_rtx (x, 0);
7080 if (result)
7081 return result;
7083 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7085 rtx result = distribute_and_simplify_rtx (x, 1);
7086 if (result)
7087 return result;
7089 break;
7091 case IOR:
7092 /* If we have (ior (and A B) C), apply the distributive law and then
7093 the inverse distributive law to see if things simplify. */
7095 if (GET_CODE (op0) == AND)
7097 rtx result = distribute_and_simplify_rtx (x, 0);
7098 if (result)
7099 return result;
7102 if (GET_CODE (op1) == AND)
7104 rtx result = distribute_and_simplify_rtx (x, 1);
7105 if (result)
7106 return result;
7108 break;
7110 default:
7111 gcc_unreachable ();
7114 return x;
7117 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7118 operations" because they can be replaced with two more basic operations.
7119 ZERO_EXTEND is also considered "compound" because it can be replaced with
7120 an AND operation, which is simpler, though only one operation.
7122 The function expand_compound_operation is called with an rtx expression
7123 and will convert it to the appropriate shifts and AND operations,
7124 simplifying at each stage.
7126 The function make_compound_operation is called to convert an expression
7127 consisting of shifts and ANDs into the equivalent compound expression.
7128 It is the inverse of this function, loosely speaking. */
7130 static rtx
7131 expand_compound_operation (rtx x)
7133 unsigned HOST_WIDE_INT pos = 0, len;
7134 int unsignedp = 0;
7135 unsigned int modewidth;
7136 rtx tem;
7137 scalar_int_mode inner_mode;
7139 switch (GET_CODE (x))
7141 case ZERO_EXTEND:
7142 unsignedp = 1;
7143 /* FALLTHRU */
7144 case SIGN_EXTEND:
7145 /* We can't necessarily use a const_int for a multiword mode;
7146 it depends on implicitly extending the value.
7147 Since we don't know the right way to extend it,
7148 we can't tell whether the implicit way is right.
7150 Even for a mode that is no wider than a const_int,
7151 we can't win, because we need to sign extend one of its bits through
7152 the rest of it, and we don't know which bit. */
7153 if (CONST_INT_P (XEXP (x, 0)))
7154 return x;
7156 /* Reject modes that aren't scalar integers because turning vector
7157 or complex modes into shifts causes problems. */
7158 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7159 return x;
7161 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7162 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7163 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7164 reloaded. If not for that, MEM's would very rarely be safe.
7166 Reject modes bigger than a word, because we might not be able
7167 to reference a two-register group starting with an arbitrary register
7168 (and currently gen_lowpart might crash for a SUBREG). */
7170 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7171 return x;
7173 len = GET_MODE_PRECISION (inner_mode);
7174 /* If the inner object has VOIDmode (the only way this can happen
7175 is if it is an ASM_OPERANDS), we can't do anything since we don't
7176 know how much masking to do. */
7177 if (len == 0)
7178 return x;
7180 break;
7182 case ZERO_EXTRACT:
7183 unsignedp = 1;
7185 /* fall through */
7187 case SIGN_EXTRACT:
7188 /* If the operand is a CLOBBER, just return it. */
7189 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7190 return XEXP (x, 0);
7192 if (!CONST_INT_P (XEXP (x, 1))
7193 || !CONST_INT_P (XEXP (x, 2)))
7194 return x;
7196 /* Reject modes that aren't scalar integers because turning vector
7197 or complex modes into shifts causes problems. */
7198 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7199 return x;
7201 len = INTVAL (XEXP (x, 1));
7202 pos = INTVAL (XEXP (x, 2));
7204 /* This should stay within the object being extracted, fail otherwise. */
7205 if (len + pos > GET_MODE_PRECISION (inner_mode))
7206 return x;
7208 if (BITS_BIG_ENDIAN)
7209 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7211 break;
7213 default:
7214 return x;
7217 /* We've rejected non-scalar operations by now. */
7218 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7220 /* Convert sign extension to zero extension, if we know that the high
7221 bit is not set, as this is easier to optimize. It will be converted
7222 back to cheaper alternative in make_extraction. */
7223 if (GET_CODE (x) == SIGN_EXTEND
7224 && HWI_COMPUTABLE_MODE_P (mode)
7225 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7226 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7227 == 0))
7229 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7230 rtx temp2 = expand_compound_operation (temp);
7232 /* Make sure this is a profitable operation. */
7233 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7234 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7235 return temp2;
7236 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7237 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7238 return temp;
7239 else
7240 return x;
7243 /* We can optimize some special cases of ZERO_EXTEND. */
7244 if (GET_CODE (x) == ZERO_EXTEND)
7246 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7247 know that the last value didn't have any inappropriate bits
7248 set. */
7249 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7250 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7251 && HWI_COMPUTABLE_MODE_P (mode)
7252 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7253 & ~GET_MODE_MASK (inner_mode)) == 0)
7254 return XEXP (XEXP (x, 0), 0);
7256 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7257 if (GET_CODE (XEXP (x, 0)) == SUBREG
7258 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7259 && subreg_lowpart_p (XEXP (x, 0))
7260 && HWI_COMPUTABLE_MODE_P (mode)
7261 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7262 & ~GET_MODE_MASK (inner_mode)) == 0)
7263 return SUBREG_REG (XEXP (x, 0));
7265 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7266 is a comparison and STORE_FLAG_VALUE permits. This is like
7267 the first case, but it works even when MODE is larger
7268 than HOST_WIDE_INT. */
7269 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7270 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7271 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7272 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7273 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7274 return XEXP (XEXP (x, 0), 0);
7276 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7277 if (GET_CODE (XEXP (x, 0)) == SUBREG
7278 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7279 && subreg_lowpart_p (XEXP (x, 0))
7280 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7281 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7282 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7283 return SUBREG_REG (XEXP (x, 0));
7287 /* If we reach here, we want to return a pair of shifts. The inner
7288 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7289 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7290 logical depending on the value of UNSIGNEDP.
7292 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7293 converted into an AND of a shift.
7295 We must check for the case where the left shift would have a negative
7296 count. This can happen in a case like (x >> 31) & 255 on machines
7297 that can't shift by a constant. On those machines, we would first
7298 combine the shift with the AND to produce a variable-position
7299 extraction. Then the constant of 31 would be substituted in
7300 to produce such a position. */
7302 modewidth = GET_MODE_PRECISION (mode);
7303 if (modewidth >= pos + len)
7305 tem = gen_lowpart (mode, XEXP (x, 0));
7306 if (!tem || GET_CODE (tem) == CLOBBER)
7307 return x;
7308 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7309 tem, modewidth - pos - len);
7310 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7311 mode, tem, modewidth - len);
7313 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7314 tem = simplify_and_const_int (NULL_RTX, mode,
7315 simplify_shift_const (NULL_RTX, LSHIFTRT,
7316 mode, XEXP (x, 0),
7317 pos),
7318 (HOST_WIDE_INT_1U << len) - 1);
7319 else
7320 /* Any other cases we can't handle. */
7321 return x;
7323 /* If we couldn't do this for some reason, return the original
7324 expression. */
7325 if (GET_CODE (tem) == CLOBBER)
7326 return x;
7328 return tem;
7331 /* X is a SET which contains an assignment of one object into
7332 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7333 or certain SUBREGS). If possible, convert it into a series of
7334 logical operations.
7336 We half-heartedly support variable positions, but do not at all
7337 support variable lengths. */
7339 static const_rtx
7340 expand_field_assignment (const_rtx x)
7342 rtx inner;
7343 rtx pos; /* Always counts from low bit. */
7344 int len;
7345 rtx mask, cleared, masked;
7346 scalar_int_mode compute_mode;
7348 /* Loop until we find something we can't simplify. */
7349 while (1)
7351 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7352 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7354 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7355 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7356 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7358 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7359 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7361 inner = XEXP (SET_DEST (x), 0);
7362 len = INTVAL (XEXP (SET_DEST (x), 1));
7363 pos = XEXP (SET_DEST (x), 2);
7365 /* A constant position should stay within the width of INNER. */
7366 if (CONST_INT_P (pos)
7367 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7368 break;
7370 if (BITS_BIG_ENDIAN)
7372 if (CONST_INT_P (pos))
7373 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7374 - INTVAL (pos));
7375 else if (GET_CODE (pos) == MINUS
7376 && CONST_INT_P (XEXP (pos, 1))
7377 && (INTVAL (XEXP (pos, 1))
7378 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7379 /* If position is ADJUST - X, new position is X. */
7380 pos = XEXP (pos, 0);
7381 else
7383 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7384 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7385 gen_int_mode (prec - len,
7386 GET_MODE (pos)),
7387 pos);
7392 /* If the destination is a subreg that overwrites the whole of the inner
7393 register, we can move the subreg to the source. */
7394 else if (GET_CODE (SET_DEST (x)) == SUBREG
7395 /* We need SUBREGs to compute nonzero_bits properly. */
7396 && nonzero_sign_valid
7397 && !read_modify_subreg_p (SET_DEST (x)))
7399 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7400 gen_lowpart
7401 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7402 SET_SRC (x)));
7403 continue;
7405 else
7406 break;
7408 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7409 inner = SUBREG_REG (inner);
7411 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7412 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7414 /* Don't do anything for vector or complex integral types. */
7415 if (! FLOAT_MODE_P (GET_MODE (inner)))
7416 break;
7418 /* Try to find an integral mode to pun with. */
7419 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7420 .exists (&compute_mode))
7421 break;
7423 inner = gen_lowpart (compute_mode, inner);
7426 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7427 if (len >= HOST_BITS_PER_WIDE_INT)
7428 break;
7430 /* Don't try to compute in too wide unsupported modes. */
7431 if (!targetm.scalar_mode_supported_p (compute_mode))
7432 break;
7434 /* Now compute the equivalent expression. Make a copy of INNER
7435 for the SET_DEST in case it is a MEM into which we will substitute;
7436 we don't want shared RTL in that case. */
7437 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7438 compute_mode);
7439 cleared = simplify_gen_binary (AND, compute_mode,
7440 simplify_gen_unary (NOT, compute_mode,
7441 simplify_gen_binary (ASHIFT,
7442 compute_mode,
7443 mask, pos),
7444 compute_mode),
7445 inner);
7446 masked = simplify_gen_binary (ASHIFT, compute_mode,
7447 simplify_gen_binary (
7448 AND, compute_mode,
7449 gen_lowpart (compute_mode, SET_SRC (x)),
7450 mask),
7451 pos);
7453 x = gen_rtx_SET (copy_rtx (inner),
7454 simplify_gen_binary (IOR, compute_mode,
7455 cleared, masked));
7458 return x;
7461 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7462 it is an RTX that represents the (variable) starting position; otherwise,
7463 POS is the (constant) starting bit position. Both are counted from the LSB.
7465 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7467 IN_DEST is nonzero if this is a reference in the destination of a SET.
7468 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7469 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7470 be used.
7472 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7473 ZERO_EXTRACT should be built even for bits starting at bit 0.
7475 MODE is the desired mode of the result (if IN_DEST == 0).
7477 The result is an RTX for the extraction or NULL_RTX if the target
7478 can't handle it. */
7480 static rtx
7481 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7482 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7483 int in_dest, int in_compare)
7485 /* This mode describes the size of the storage area
7486 to fetch the overall value from. Within that, we
7487 ignore the POS lowest bits, etc. */
7488 machine_mode is_mode = GET_MODE (inner);
7489 machine_mode inner_mode;
7490 scalar_int_mode wanted_inner_mode;
7491 scalar_int_mode wanted_inner_reg_mode = word_mode;
7492 scalar_int_mode pos_mode = word_mode;
7493 machine_mode extraction_mode = word_mode;
7494 rtx new_rtx = 0;
7495 rtx orig_pos_rtx = pos_rtx;
7496 HOST_WIDE_INT orig_pos;
7498 if (pos_rtx && CONST_INT_P (pos_rtx))
7499 pos = INTVAL (pos_rtx), pos_rtx = 0;
7501 if (GET_CODE (inner) == SUBREG
7502 && subreg_lowpart_p (inner)
7503 && (paradoxical_subreg_p (inner)
7504 /* If trying or potentionally trying to extract
7505 bits outside of is_mode, don't look through
7506 non-paradoxical SUBREGs. See PR82192. */
7507 || (pos_rtx == NULL_RTX
7508 && pos + len <= GET_MODE_PRECISION (is_mode))))
7510 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7511 consider just the QI as the memory to extract from.
7512 The subreg adds or removes high bits; its mode is
7513 irrelevant to the meaning of this extraction,
7514 since POS and LEN count from the lsb. */
7515 if (MEM_P (SUBREG_REG (inner)))
7516 is_mode = GET_MODE (SUBREG_REG (inner));
7517 inner = SUBREG_REG (inner);
7519 else if (GET_CODE (inner) == ASHIFT
7520 && CONST_INT_P (XEXP (inner, 1))
7521 && pos_rtx == 0 && pos == 0
7522 && len > UINTVAL (XEXP (inner, 1)))
7524 /* We're extracting the least significant bits of an rtx
7525 (ashift X (const_int C)), where LEN > C. Extract the
7526 least significant (LEN - C) bits of X, giving an rtx
7527 whose mode is MODE, then shift it left C times. */
7528 new_rtx = make_extraction (mode, XEXP (inner, 0),
7529 0, 0, len - INTVAL (XEXP (inner, 1)),
7530 unsignedp, in_dest, in_compare);
7531 if (new_rtx != 0)
7532 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7534 else if (GET_CODE (inner) == TRUNCATE
7535 /* If trying or potentionally trying to extract
7536 bits outside of is_mode, don't look through
7537 TRUNCATE. See PR82192. */
7538 && pos_rtx == NULL_RTX
7539 && pos + len <= GET_MODE_PRECISION (is_mode))
7540 inner = XEXP (inner, 0);
7542 inner_mode = GET_MODE (inner);
7544 /* See if this can be done without an extraction. We never can if the
7545 width of the field is not the same as that of some integer mode. For
7546 registers, we can only avoid the extraction if the position is at the
7547 low-order bit and this is either not in the destination or we have the
7548 appropriate STRICT_LOW_PART operation available.
7550 For MEM, we can avoid an extract if the field starts on an appropriate
7551 boundary and we can change the mode of the memory reference. */
7553 scalar_int_mode tmode;
7554 if (int_mode_for_size (len, 1).exists (&tmode)
7555 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7556 && !MEM_P (inner)
7557 && (pos == 0 || REG_P (inner))
7558 && (inner_mode == tmode
7559 || !REG_P (inner)
7560 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7561 || reg_truncated_to_mode (tmode, inner))
7562 && (! in_dest
7563 || (REG_P (inner)
7564 && have_insn_for (STRICT_LOW_PART, tmode))))
7565 || (MEM_P (inner) && pos_rtx == 0
7566 && (pos
7567 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7568 : BITS_PER_UNIT)) == 0
7569 /* We can't do this if we are widening INNER_MODE (it
7570 may not be aligned, for one thing). */
7571 && !paradoxical_subreg_p (tmode, inner_mode)
7572 && (inner_mode == tmode
7573 || (! mode_dependent_address_p (XEXP (inner, 0),
7574 MEM_ADDR_SPACE (inner))
7575 && ! MEM_VOLATILE_P (inner))))))
7577 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7578 field. If the original and current mode are the same, we need not
7579 adjust the offset. Otherwise, we do if bytes big endian.
7581 If INNER is not a MEM, get a piece consisting of just the field
7582 of interest (in this case POS % BITS_PER_WORD must be 0). */
7584 if (MEM_P (inner))
7586 HOST_WIDE_INT offset;
7588 /* POS counts from lsb, but make OFFSET count in memory order. */
7589 if (BYTES_BIG_ENDIAN)
7590 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7591 else
7592 offset = pos / BITS_PER_UNIT;
7594 new_rtx = adjust_address_nv (inner, tmode, offset);
7596 else if (REG_P (inner))
7598 if (tmode != inner_mode)
7600 /* We can't call gen_lowpart in a DEST since we
7601 always want a SUBREG (see below) and it would sometimes
7602 return a new hard register. */
7603 if (pos || in_dest)
7605 unsigned int offset
7606 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7608 /* Avoid creating invalid subregs, for example when
7609 simplifying (x>>32)&255. */
7610 if (!validate_subreg (tmode, inner_mode, inner, offset))
7611 return NULL_RTX;
7613 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7615 else
7616 new_rtx = gen_lowpart (tmode, inner);
7618 else
7619 new_rtx = inner;
7621 else
7622 new_rtx = force_to_mode (inner, tmode,
7623 len >= HOST_BITS_PER_WIDE_INT
7624 ? HOST_WIDE_INT_M1U
7625 : (HOST_WIDE_INT_1U << len) - 1, 0);
7627 /* If this extraction is going into the destination of a SET,
7628 make a STRICT_LOW_PART unless we made a MEM. */
7630 if (in_dest)
7631 return (MEM_P (new_rtx) ? new_rtx
7632 : (GET_CODE (new_rtx) != SUBREG
7633 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7634 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7636 if (mode == tmode)
7637 return new_rtx;
7639 if (CONST_SCALAR_INT_P (new_rtx))
7640 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7641 mode, new_rtx, tmode);
7643 /* If we know that no extraneous bits are set, and that the high
7644 bit is not set, convert the extraction to the cheaper of
7645 sign and zero extension, that are equivalent in these cases. */
7646 if (flag_expensive_optimizations
7647 && (HWI_COMPUTABLE_MODE_P (tmode)
7648 && ((nonzero_bits (new_rtx, tmode)
7649 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7650 == 0)))
7652 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7653 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7655 /* Prefer ZERO_EXTENSION, since it gives more information to
7656 backends. */
7657 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7658 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7659 return temp;
7660 return temp1;
7663 /* Otherwise, sign- or zero-extend unless we already are in the
7664 proper mode. */
7666 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7667 mode, new_rtx));
7670 /* Unless this is a COMPARE or we have a funny memory reference,
7671 don't do anything with zero-extending field extracts starting at
7672 the low-order bit since they are simple AND operations. */
7673 if (pos_rtx == 0 && pos == 0 && ! in_dest
7674 && ! in_compare && unsignedp)
7675 return 0;
7677 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7678 if the position is not a constant and the length is not 1. In all
7679 other cases, we would only be going outside our object in cases when
7680 an original shift would have been undefined. */
7681 if (MEM_P (inner)
7682 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7683 || (pos_rtx != 0 && len != 1)))
7684 return 0;
7686 enum extraction_pattern pattern = (in_dest ? EP_insv
7687 : unsignedp ? EP_extzv : EP_extv);
7689 /* If INNER is not from memory, we want it to have the mode of a register
7690 extraction pattern's structure operand, or word_mode if there is no
7691 such pattern. The same applies to extraction_mode and pos_mode
7692 and their respective operands.
7694 For memory, assume that the desired extraction_mode and pos_mode
7695 are the same as for a register operation, since at present we don't
7696 have named patterns for aligned memory structures. */
7697 struct extraction_insn insn;
7698 if (get_best_reg_extraction_insn (&insn, pattern,
7699 GET_MODE_BITSIZE (inner_mode), mode))
7701 wanted_inner_reg_mode = insn.struct_mode.require ();
7702 pos_mode = insn.pos_mode;
7703 extraction_mode = insn.field_mode;
7706 /* Never narrow an object, since that might not be safe. */
7708 if (mode != VOIDmode
7709 && partial_subreg_p (extraction_mode, mode))
7710 extraction_mode = mode;
7712 if (!MEM_P (inner))
7713 wanted_inner_mode = wanted_inner_reg_mode;
7714 else
7716 /* Be careful not to go beyond the extracted object and maintain the
7717 natural alignment of the memory. */
7718 wanted_inner_mode = smallest_int_mode_for_size (len);
7719 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7720 > GET_MODE_BITSIZE (wanted_inner_mode))
7721 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7724 orig_pos = pos;
7726 if (BITS_BIG_ENDIAN)
7728 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7729 BITS_BIG_ENDIAN style. If position is constant, compute new
7730 position. Otherwise, build subtraction.
7731 Note that POS is relative to the mode of the original argument.
7732 If it's a MEM we need to recompute POS relative to that.
7733 However, if we're extracting from (or inserting into) a register,
7734 we want to recompute POS relative to wanted_inner_mode. */
7735 int width = (MEM_P (inner)
7736 ? GET_MODE_BITSIZE (is_mode)
7737 : GET_MODE_BITSIZE (wanted_inner_mode));
7739 if (pos_rtx == 0)
7740 pos = width - len - pos;
7741 else
7742 pos_rtx
7743 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7744 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7745 pos_rtx);
7746 /* POS may be less than 0 now, but we check for that below.
7747 Note that it can only be less than 0 if !MEM_P (inner). */
7750 /* If INNER has a wider mode, and this is a constant extraction, try to
7751 make it smaller and adjust the byte to point to the byte containing
7752 the value. */
7753 if (wanted_inner_mode != VOIDmode
7754 && inner_mode != wanted_inner_mode
7755 && ! pos_rtx
7756 && partial_subreg_p (wanted_inner_mode, is_mode)
7757 && MEM_P (inner)
7758 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7759 && ! MEM_VOLATILE_P (inner))
7761 int offset = 0;
7763 /* The computations below will be correct if the machine is big
7764 endian in both bits and bytes or little endian in bits and bytes.
7765 If it is mixed, we must adjust. */
7767 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7768 adjust OFFSET to compensate. */
7769 if (BYTES_BIG_ENDIAN
7770 && paradoxical_subreg_p (is_mode, inner_mode))
7771 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7773 /* We can now move to the desired byte. */
7774 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7775 * GET_MODE_SIZE (wanted_inner_mode);
7776 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7778 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7779 && is_mode != wanted_inner_mode)
7780 offset = (GET_MODE_SIZE (is_mode)
7781 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7783 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7786 /* If INNER is not memory, get it into the proper mode. If we are changing
7787 its mode, POS must be a constant and smaller than the size of the new
7788 mode. */
7789 else if (!MEM_P (inner))
7791 /* On the LHS, don't create paradoxical subregs implicitely truncating
7792 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7793 if (in_dest
7794 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7795 wanted_inner_mode))
7796 return NULL_RTX;
7798 if (GET_MODE (inner) != wanted_inner_mode
7799 && (pos_rtx != 0
7800 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7801 return NULL_RTX;
7803 if (orig_pos < 0)
7804 return NULL_RTX;
7806 inner = force_to_mode (inner, wanted_inner_mode,
7807 pos_rtx
7808 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7809 ? HOST_WIDE_INT_M1U
7810 : (((HOST_WIDE_INT_1U << len) - 1)
7811 << orig_pos),
7815 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7816 have to zero extend. Otherwise, we can just use a SUBREG.
7818 We dealt with constant rtxes earlier, so pos_rtx cannot
7819 have VOIDmode at this point. */
7820 if (pos_rtx != 0
7821 && (GET_MODE_SIZE (pos_mode)
7822 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7824 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7825 GET_MODE (pos_rtx));
7827 /* If we know that no extraneous bits are set, and that the high
7828 bit is not set, convert extraction to cheaper one - either
7829 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7830 cases. */
7831 if (flag_expensive_optimizations
7832 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7833 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7834 & ~(((unsigned HOST_WIDE_INT)
7835 GET_MODE_MASK (GET_MODE (pos_rtx)))
7836 >> 1))
7837 == 0)))
7839 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7840 GET_MODE (pos_rtx));
7842 /* Prefer ZERO_EXTENSION, since it gives more information to
7843 backends. */
7844 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7845 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7846 temp = temp1;
7848 pos_rtx = temp;
7851 /* Make POS_RTX unless we already have it and it is correct. If we don't
7852 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7853 be a CONST_INT. */
7854 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7855 pos_rtx = orig_pos_rtx;
7857 else if (pos_rtx == 0)
7858 pos_rtx = GEN_INT (pos);
7860 /* Make the required operation. See if we can use existing rtx. */
7861 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7862 extraction_mode, inner, GEN_INT (len), pos_rtx);
7863 if (! in_dest)
7864 new_rtx = gen_lowpart (mode, new_rtx);
7866 return new_rtx;
7869 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7870 can be commuted with any other operations in X. Return X without
7871 that shift if so. */
7873 static rtx
7874 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7876 enum rtx_code code = GET_CODE (x);
7877 rtx tem;
7879 switch (code)
7881 case ASHIFT:
7882 /* This is the shift itself. If it is wide enough, we will return
7883 either the value being shifted if the shift count is equal to
7884 COUNT or a shift for the difference. */
7885 if (CONST_INT_P (XEXP (x, 1))
7886 && INTVAL (XEXP (x, 1)) >= count)
7887 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7888 INTVAL (XEXP (x, 1)) - count);
7889 break;
7891 case NEG: case NOT:
7892 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7893 return simplify_gen_unary (code, mode, tem, mode);
7895 break;
7897 case PLUS: case IOR: case XOR: case AND:
7898 /* If we can safely shift this constant and we find the inner shift,
7899 make a new operation. */
7900 if (CONST_INT_P (XEXP (x, 1))
7901 && (UINTVAL (XEXP (x, 1))
7902 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7903 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7905 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7906 return simplify_gen_binary (code, mode, tem,
7907 gen_int_mode (val, mode));
7909 break;
7911 default:
7912 break;
7915 return 0;
7918 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7919 level of the expression and MODE is its mode. IN_CODE is as for
7920 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7921 that should be used when recursing on operands of *X_PTR.
7923 There are two possible actions:
7925 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7926 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7928 - Return a new rtx, which the caller returns directly. */
7930 static rtx
7931 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7932 enum rtx_code in_code,
7933 enum rtx_code *next_code_ptr)
7935 rtx x = *x_ptr;
7936 enum rtx_code next_code = *next_code_ptr;
7937 enum rtx_code code = GET_CODE (x);
7938 int mode_width = GET_MODE_PRECISION (mode);
7939 rtx rhs, lhs;
7940 rtx new_rtx = 0;
7941 int i;
7942 rtx tem;
7943 scalar_int_mode inner_mode;
7944 bool equality_comparison = false;
7946 if (in_code == EQ)
7948 equality_comparison = true;
7949 in_code = COMPARE;
7952 /* Process depending on the code of this operation. If NEW is set
7953 nonzero, it will be returned. */
7955 switch (code)
7957 case ASHIFT:
7958 /* Convert shifts by constants into multiplications if inside
7959 an address. */
7960 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7961 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7962 && INTVAL (XEXP (x, 1)) >= 0)
7964 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7965 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7967 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7968 if (GET_CODE (new_rtx) == NEG)
7970 new_rtx = XEXP (new_rtx, 0);
7971 multval = -multval;
7973 multval = trunc_int_for_mode (multval, mode);
7974 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7976 break;
7978 case PLUS:
7979 lhs = XEXP (x, 0);
7980 rhs = XEXP (x, 1);
7981 lhs = make_compound_operation (lhs, next_code);
7982 rhs = make_compound_operation (rhs, next_code);
7983 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7985 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7986 XEXP (lhs, 1));
7987 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7989 else if (GET_CODE (lhs) == MULT
7990 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7992 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7993 simplify_gen_unary (NEG, mode,
7994 XEXP (lhs, 1),
7995 mode));
7996 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7998 else
8000 SUBST (XEXP (x, 0), lhs);
8001 SUBST (XEXP (x, 1), rhs);
8003 maybe_swap_commutative_operands (x);
8004 return x;
8006 case MINUS:
8007 lhs = XEXP (x, 0);
8008 rhs = XEXP (x, 1);
8009 lhs = make_compound_operation (lhs, next_code);
8010 rhs = make_compound_operation (rhs, next_code);
8011 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8013 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8014 XEXP (rhs, 1));
8015 return simplify_gen_binary (PLUS, mode, tem, lhs);
8017 else if (GET_CODE (rhs) == MULT
8018 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8020 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8021 simplify_gen_unary (NEG, mode,
8022 XEXP (rhs, 1),
8023 mode));
8024 return simplify_gen_binary (PLUS, mode, tem, lhs);
8026 else
8028 SUBST (XEXP (x, 0), lhs);
8029 SUBST (XEXP (x, 1), rhs);
8030 return x;
8033 case AND:
8034 /* If the second operand is not a constant, we can't do anything
8035 with it. */
8036 if (!CONST_INT_P (XEXP (x, 1)))
8037 break;
8039 /* If the constant is a power of two minus one and the first operand
8040 is a logical right shift, make an extraction. */
8041 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8042 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8044 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8045 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8046 i, 1, 0, in_code == COMPARE);
8049 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8050 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8051 && subreg_lowpart_p (XEXP (x, 0))
8052 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8053 &inner_mode)
8054 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8055 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8057 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8058 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8059 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8060 XEXP (inner_x0, 1),
8061 i, 1, 0, in_code == COMPARE);
8063 /* If we narrowed the mode when dropping the subreg, then we lose. */
8064 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8065 new_rtx = NULL;
8067 /* If that didn't give anything, see if the AND simplifies on
8068 its own. */
8069 if (!new_rtx && i >= 0)
8071 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8072 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8073 0, in_code == COMPARE);
8076 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8077 else if ((GET_CODE (XEXP (x, 0)) == XOR
8078 || GET_CODE (XEXP (x, 0)) == IOR)
8079 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8080 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8081 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8083 /* Apply the distributive law, and then try to make extractions. */
8084 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8085 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8086 XEXP (x, 1)),
8087 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8088 XEXP (x, 1)));
8089 new_rtx = make_compound_operation (new_rtx, in_code);
8092 /* If we are have (and (rotate X C) M) and C is larger than the number
8093 of bits in M, this is an extraction. */
8095 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8096 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8097 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8098 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8100 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8101 new_rtx = make_extraction (mode, new_rtx,
8102 (GET_MODE_PRECISION (mode)
8103 - INTVAL (XEXP (XEXP (x, 0), 1))),
8104 NULL_RTX, i, 1, 0, in_code == COMPARE);
8107 /* On machines without logical shifts, if the operand of the AND is
8108 a logical shift and our mask turns off all the propagated sign
8109 bits, we can replace the logical shift with an arithmetic shift. */
8110 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8111 && !have_insn_for (LSHIFTRT, mode)
8112 && have_insn_for (ASHIFTRT, mode)
8113 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8114 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8115 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8116 && mode_width <= HOST_BITS_PER_WIDE_INT)
8118 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8120 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8121 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8122 SUBST (XEXP (x, 0),
8123 gen_rtx_ASHIFTRT (mode,
8124 make_compound_operation (XEXP (XEXP (x,
8127 next_code),
8128 XEXP (XEXP (x, 0), 1)));
8131 /* If the constant is one less than a power of two, this might be
8132 representable by an extraction even if no shift is present.
8133 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8134 we are in a COMPARE. */
8135 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8136 new_rtx = make_extraction (mode,
8137 make_compound_operation (XEXP (x, 0),
8138 next_code),
8139 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8141 /* If we are in a comparison and this is an AND with a power of two,
8142 convert this into the appropriate bit extract. */
8143 else if (in_code == COMPARE
8144 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8145 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8146 new_rtx = make_extraction (mode,
8147 make_compound_operation (XEXP (x, 0),
8148 next_code),
8149 i, NULL_RTX, 1, 1, 0, 1);
8151 /* If the one operand is a paradoxical subreg of a register or memory and
8152 the constant (limited to the smaller mode) has only zero bits where
8153 the sub expression has known zero bits, this can be expressed as
8154 a zero_extend. */
8155 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8157 rtx sub;
8159 sub = XEXP (XEXP (x, 0), 0);
8160 machine_mode sub_mode = GET_MODE (sub);
8161 if ((REG_P (sub) || MEM_P (sub))
8162 && GET_MODE_PRECISION (sub_mode) < mode_width)
8164 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8165 unsigned HOST_WIDE_INT mask;
8167 /* original AND constant with all the known zero bits set */
8168 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8169 if ((mask & mode_mask) == mode_mask)
8171 new_rtx = make_compound_operation (sub, next_code);
8172 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8173 GET_MODE_PRECISION (sub_mode),
8174 1, 0, in_code == COMPARE);
8179 break;
8181 case LSHIFTRT:
8182 /* If the sign bit is known to be zero, replace this with an
8183 arithmetic shift. */
8184 if (have_insn_for (ASHIFTRT, mode)
8185 && ! have_insn_for (LSHIFTRT, mode)
8186 && mode_width <= HOST_BITS_PER_WIDE_INT
8187 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8189 new_rtx = gen_rtx_ASHIFTRT (mode,
8190 make_compound_operation (XEXP (x, 0),
8191 next_code),
8192 XEXP (x, 1));
8193 break;
8196 /* fall through */
8198 case ASHIFTRT:
8199 lhs = XEXP (x, 0);
8200 rhs = XEXP (x, 1);
8202 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8203 this is a SIGN_EXTRACT. */
8204 if (CONST_INT_P (rhs)
8205 && GET_CODE (lhs) == ASHIFT
8206 && CONST_INT_P (XEXP (lhs, 1))
8207 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8208 && INTVAL (XEXP (lhs, 1)) >= 0
8209 && INTVAL (rhs) < mode_width)
8211 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8212 new_rtx = make_extraction (mode, new_rtx,
8213 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8214 NULL_RTX, mode_width - INTVAL (rhs),
8215 code == LSHIFTRT, 0, in_code == COMPARE);
8216 break;
8219 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8220 If so, try to merge the shifts into a SIGN_EXTEND. We could
8221 also do this for some cases of SIGN_EXTRACT, but it doesn't
8222 seem worth the effort; the case checked for occurs on Alpha. */
8224 if (!OBJECT_P (lhs)
8225 && ! (GET_CODE (lhs) == SUBREG
8226 && (OBJECT_P (SUBREG_REG (lhs))))
8227 && CONST_INT_P (rhs)
8228 && INTVAL (rhs) >= 0
8229 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8230 && INTVAL (rhs) < mode_width
8231 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8232 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8233 next_code),
8234 0, NULL_RTX, mode_width - INTVAL (rhs),
8235 code == LSHIFTRT, 0, in_code == COMPARE);
8237 break;
8239 case SUBREG:
8240 /* Call ourselves recursively on the inner expression. If we are
8241 narrowing the object and it has a different RTL code from
8242 what it originally did, do this SUBREG as a force_to_mode. */
8244 rtx inner = SUBREG_REG (x), simplified;
8245 enum rtx_code subreg_code = in_code;
8247 /* If the SUBREG is masking of a logical right shift,
8248 make an extraction. */
8249 if (GET_CODE (inner) == LSHIFTRT
8250 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8251 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8252 && CONST_INT_P (XEXP (inner, 1))
8253 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8254 && subreg_lowpart_p (x))
8256 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8257 int width = GET_MODE_PRECISION (inner_mode)
8258 - INTVAL (XEXP (inner, 1));
8259 if (width > mode_width)
8260 width = mode_width;
8261 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8262 width, 1, 0, in_code == COMPARE);
8263 break;
8266 /* If in_code is COMPARE, it isn't always safe to pass it through
8267 to the recursive make_compound_operation call. */
8268 if (subreg_code == COMPARE
8269 && (!subreg_lowpart_p (x)
8270 || GET_CODE (inner) == SUBREG
8271 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8272 is (const_int 0), rather than
8273 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8274 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8275 for non-equality comparisons against 0 is not equivalent
8276 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8277 || (GET_CODE (inner) == AND
8278 && CONST_INT_P (XEXP (inner, 1))
8279 && partial_subreg_p (x)
8280 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8281 >= GET_MODE_BITSIZE (mode) - 1)))
8282 subreg_code = SET;
8284 tem = make_compound_operation (inner, subreg_code);
8286 simplified
8287 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8288 if (simplified)
8289 tem = simplified;
8291 if (GET_CODE (tem) != GET_CODE (inner)
8292 && partial_subreg_p (x)
8293 && subreg_lowpart_p (x))
8295 rtx newer
8296 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8298 /* If we have something other than a SUBREG, we might have
8299 done an expansion, so rerun ourselves. */
8300 if (GET_CODE (newer) != SUBREG)
8301 newer = make_compound_operation (newer, in_code);
8303 /* force_to_mode can expand compounds. If it just re-expanded
8304 the compound, use gen_lowpart to convert to the desired
8305 mode. */
8306 if (rtx_equal_p (newer, x)
8307 /* Likewise if it re-expanded the compound only partially.
8308 This happens for SUBREG of ZERO_EXTRACT if they extract
8309 the same number of bits. */
8310 || (GET_CODE (newer) == SUBREG
8311 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8312 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8313 && GET_CODE (inner) == AND
8314 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8315 return gen_lowpart (GET_MODE (x), tem);
8317 return newer;
8320 if (simplified)
8321 return tem;
8323 break;
8325 default:
8326 break;
8329 if (new_rtx)
8330 *x_ptr = gen_lowpart (mode, new_rtx);
8331 *next_code_ptr = next_code;
8332 return NULL_RTX;
8335 /* Look at the expression rooted at X. Look for expressions
8336 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8337 Form these expressions.
8339 Return the new rtx, usually just X.
8341 Also, for machines like the VAX that don't have logical shift insns,
8342 try to convert logical to arithmetic shift operations in cases where
8343 they are equivalent. This undoes the canonicalizations to logical
8344 shifts done elsewhere.
8346 We try, as much as possible, to re-use rtl expressions to save memory.
8348 IN_CODE says what kind of expression we are processing. Normally, it is
8349 SET. In a memory address it is MEM. When processing the arguments of
8350 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8351 precisely it is an equality comparison against zero. */
8354 make_compound_operation (rtx x, enum rtx_code in_code)
8356 enum rtx_code code = GET_CODE (x);
8357 const char *fmt;
8358 int i, j;
8359 enum rtx_code next_code;
8360 rtx new_rtx, tem;
8362 /* Select the code to be used in recursive calls. Once we are inside an
8363 address, we stay there. If we have a comparison, set to COMPARE,
8364 but once inside, go back to our default of SET. */
8366 next_code = (code == MEM ? MEM
8367 : ((code == COMPARE || COMPARISON_P (x))
8368 && XEXP (x, 1) == const0_rtx) ? COMPARE
8369 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8371 scalar_int_mode mode;
8372 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8374 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8375 &next_code);
8376 if (new_rtx)
8377 return new_rtx;
8378 code = GET_CODE (x);
8381 /* Now recursively process each operand of this operation. We need to
8382 handle ZERO_EXTEND specially so that we don't lose track of the
8383 inner mode. */
8384 if (code == ZERO_EXTEND)
8386 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8387 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8388 new_rtx, GET_MODE (XEXP (x, 0)));
8389 if (tem)
8390 return tem;
8391 SUBST (XEXP (x, 0), new_rtx);
8392 return x;
8395 fmt = GET_RTX_FORMAT (code);
8396 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8397 if (fmt[i] == 'e')
8399 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8400 SUBST (XEXP (x, i), new_rtx);
8402 else if (fmt[i] == 'E')
8403 for (j = 0; j < XVECLEN (x, i); j++)
8405 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8406 SUBST (XVECEXP (x, i, j), new_rtx);
8409 maybe_swap_commutative_operands (x);
8410 return x;
8413 /* Given M see if it is a value that would select a field of bits
8414 within an item, but not the entire word. Return -1 if not.
8415 Otherwise, return the starting position of the field, where 0 is the
8416 low-order bit.
8418 *PLEN is set to the length of the field. */
8420 static int
8421 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8423 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8424 int pos = m ? ctz_hwi (m) : -1;
8425 int len = 0;
8427 if (pos >= 0)
8428 /* Now shift off the low-order zero bits and see if we have a
8429 power of two minus 1. */
8430 len = exact_log2 ((m >> pos) + 1);
8432 if (len <= 0)
8433 pos = -1;
8435 *plen = len;
8436 return pos;
8439 /* If X refers to a register that equals REG in value, replace these
8440 references with REG. */
8441 static rtx
8442 canon_reg_for_combine (rtx x, rtx reg)
8444 rtx op0, op1, op2;
8445 const char *fmt;
8446 int i;
8447 bool copied;
8449 enum rtx_code code = GET_CODE (x);
8450 switch (GET_RTX_CLASS (code))
8452 case RTX_UNARY:
8453 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8454 if (op0 != XEXP (x, 0))
8455 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8456 GET_MODE (reg));
8457 break;
8459 case RTX_BIN_ARITH:
8460 case RTX_COMM_ARITH:
8461 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8462 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8463 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8464 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8465 break;
8467 case RTX_COMPARE:
8468 case RTX_COMM_COMPARE:
8469 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8470 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8471 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8472 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8473 GET_MODE (op0), op0, op1);
8474 break;
8476 case RTX_TERNARY:
8477 case RTX_BITFIELD_OPS:
8478 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8479 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8480 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8481 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8482 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8483 GET_MODE (op0), op0, op1, op2);
8484 /* FALLTHRU */
8486 case RTX_OBJ:
8487 if (REG_P (x))
8489 if (rtx_equal_p (get_last_value (reg), x)
8490 || rtx_equal_p (reg, get_last_value (x)))
8491 return reg;
8492 else
8493 break;
8496 /* fall through */
8498 default:
8499 fmt = GET_RTX_FORMAT (code);
8500 copied = false;
8501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8502 if (fmt[i] == 'e')
8504 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8505 if (op != XEXP (x, i))
8507 if (!copied)
8509 copied = true;
8510 x = copy_rtx (x);
8512 XEXP (x, i) = op;
8515 else if (fmt[i] == 'E')
8517 int j;
8518 for (j = 0; j < XVECLEN (x, i); j++)
8520 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8521 if (op != XVECEXP (x, i, j))
8523 if (!copied)
8525 copied = true;
8526 x = copy_rtx (x);
8528 XVECEXP (x, i, j) = op;
8533 break;
8536 return x;
8539 /* Return X converted to MODE. If the value is already truncated to
8540 MODE we can just return a subreg even though in the general case we
8541 would need an explicit truncation. */
8543 static rtx
8544 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8546 if (!CONST_INT_P (x)
8547 && partial_subreg_p (mode, GET_MODE (x))
8548 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8549 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8551 /* Bit-cast X into an integer mode. */
8552 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8553 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8554 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8555 x, GET_MODE (x));
8558 return gen_lowpart (mode, x);
8561 /* See if X can be simplified knowing that we will only refer to it in
8562 MODE and will only refer to those bits that are nonzero in MASK.
8563 If other bits are being computed or if masking operations are done
8564 that select a superset of the bits in MASK, they can sometimes be
8565 ignored.
8567 Return a possibly simplified expression, but always convert X to
8568 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8570 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8571 are all off in X. This is used when X will be complemented, by either
8572 NOT, NEG, or XOR. */
8574 static rtx
8575 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8576 int just_select)
8578 enum rtx_code code = GET_CODE (x);
8579 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8580 machine_mode op_mode;
8581 unsigned HOST_WIDE_INT nonzero;
8583 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8584 code below will do the wrong thing since the mode of such an
8585 expression is VOIDmode.
8587 Also do nothing if X is a CLOBBER; this can happen if X was
8588 the return value from a call to gen_lowpart. */
8589 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8590 return x;
8592 /* We want to perform the operation in its present mode unless we know
8593 that the operation is valid in MODE, in which case we do the operation
8594 in MODE. */
8595 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8596 && have_insn_for (code, mode))
8597 ? mode : GET_MODE (x));
8599 /* It is not valid to do a right-shift in a narrower mode
8600 than the one it came in with. */
8601 if ((code == LSHIFTRT || code == ASHIFTRT)
8602 && partial_subreg_p (mode, GET_MODE (x)))
8603 op_mode = GET_MODE (x);
8605 /* Truncate MASK to fit OP_MODE. */
8606 if (op_mode)
8607 mask &= GET_MODE_MASK (op_mode);
8609 /* Determine what bits of X are guaranteed to be (non)zero. */
8610 nonzero = nonzero_bits (x, mode);
8612 /* If none of the bits in X are needed, return a zero. */
8613 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8614 x = const0_rtx;
8616 /* If X is a CONST_INT, return a new one. Do this here since the
8617 test below will fail. */
8618 if (CONST_INT_P (x))
8620 if (SCALAR_INT_MODE_P (mode))
8621 return gen_int_mode (INTVAL (x) & mask, mode);
8622 else
8624 x = GEN_INT (INTVAL (x) & mask);
8625 return gen_lowpart_common (mode, x);
8629 /* If X is narrower than MODE and we want all the bits in X's mode, just
8630 get X in the proper mode. */
8631 if (paradoxical_subreg_p (mode, GET_MODE (x))
8632 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8633 return gen_lowpart (mode, x);
8635 /* We can ignore the effect of a SUBREG if it narrows the mode or
8636 if the constant masks to zero all the bits the mode doesn't have. */
8637 if (GET_CODE (x) == SUBREG
8638 && subreg_lowpart_p (x)
8639 && (partial_subreg_p (x)
8640 || (0 == (mask
8641 & GET_MODE_MASK (GET_MODE (x))
8642 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8643 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8645 scalar_int_mode int_mode, xmode;
8646 if (is_a <scalar_int_mode> (mode, &int_mode)
8647 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8648 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8649 integer too. */
8650 return force_int_to_mode (x, int_mode, xmode,
8651 as_a <scalar_int_mode> (op_mode),
8652 mask, just_select);
8654 return gen_lowpart_or_truncate (mode, x);
8657 /* Subroutine of force_to_mode that handles cases in which both X and
8658 the result are scalar integers. MODE is the mode of the result,
8659 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8660 is preferred for simplified versions of X. The other arguments
8661 are as for force_to_mode. */
8663 static rtx
8664 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8665 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8666 int just_select)
8668 enum rtx_code code = GET_CODE (x);
8669 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8670 unsigned HOST_WIDE_INT fuller_mask;
8671 rtx op0, op1, temp;
8673 /* When we have an arithmetic operation, or a shift whose count we
8674 do not know, we need to assume that all bits up to the highest-order
8675 bit in MASK will be needed. This is how we form such a mask. */
8676 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8677 fuller_mask = HOST_WIDE_INT_M1U;
8678 else
8679 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8680 - 1);
8682 switch (code)
8684 case CLOBBER:
8685 /* If X is a (clobber (const_int)), return it since we know we are
8686 generating something that won't match. */
8687 return x;
8689 case SIGN_EXTEND:
8690 case ZERO_EXTEND:
8691 case ZERO_EXTRACT:
8692 case SIGN_EXTRACT:
8693 x = expand_compound_operation (x);
8694 if (GET_CODE (x) != code)
8695 return force_to_mode (x, mode, mask, next_select);
8696 break;
8698 case TRUNCATE:
8699 /* Similarly for a truncate. */
8700 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8702 case AND:
8703 /* If this is an AND with a constant, convert it into an AND
8704 whose constant is the AND of that constant with MASK. If it
8705 remains an AND of MASK, delete it since it is redundant. */
8707 if (CONST_INT_P (XEXP (x, 1)))
8709 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8710 mask & INTVAL (XEXP (x, 1)));
8711 xmode = op_mode;
8713 /* If X is still an AND, see if it is an AND with a mask that
8714 is just some low-order bits. If so, and it is MASK, we don't
8715 need it. */
8717 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8718 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8719 x = XEXP (x, 0);
8721 /* If it remains an AND, try making another AND with the bits
8722 in the mode mask that aren't in MASK turned on. If the
8723 constant in the AND is wide enough, this might make a
8724 cheaper constant. */
8726 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8727 && GET_MODE_MASK (xmode) != mask
8728 && HWI_COMPUTABLE_MODE_P (xmode))
8730 unsigned HOST_WIDE_INT cval
8731 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8732 rtx y;
8734 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8735 gen_int_mode (cval, xmode));
8736 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8737 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8738 x = y;
8741 break;
8744 goto binop;
8746 case PLUS:
8747 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8748 low-order bits (as in an alignment operation) and FOO is already
8749 aligned to that boundary, mask C1 to that boundary as well.
8750 This may eliminate that PLUS and, later, the AND. */
8753 unsigned int width = GET_MODE_PRECISION (mode);
8754 unsigned HOST_WIDE_INT smask = mask;
8756 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8757 number, sign extend it. */
8759 if (width < HOST_BITS_PER_WIDE_INT
8760 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8761 smask |= HOST_WIDE_INT_M1U << width;
8763 if (CONST_INT_P (XEXP (x, 1))
8764 && pow2p_hwi (- smask)
8765 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8766 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8767 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8768 (INTVAL (XEXP (x, 1)) & smask)),
8769 mode, smask, next_select);
8772 /* fall through */
8774 case MULT:
8775 /* Substituting into the operands of a widening MULT is not likely to
8776 create RTL matching a machine insn. */
8777 if (code == MULT
8778 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8779 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8780 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8781 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8782 && REG_P (XEXP (XEXP (x, 0), 0))
8783 && REG_P (XEXP (XEXP (x, 1), 0)))
8784 return gen_lowpart_or_truncate (mode, x);
8786 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8787 most significant bit in MASK since carries from those bits will
8788 affect the bits we are interested in. */
8789 mask = fuller_mask;
8790 goto binop;
8792 case MINUS:
8793 /* If X is (minus C Y) where C's least set bit is larger than any bit
8794 in the mask, then we may replace with (neg Y). */
8795 if (CONST_INT_P (XEXP (x, 0))
8796 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8798 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8799 return force_to_mode (x, mode, mask, next_select);
8802 /* Similarly, if C contains every bit in the fuller_mask, then we may
8803 replace with (not Y). */
8804 if (CONST_INT_P (XEXP (x, 0))
8805 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8807 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8808 return force_to_mode (x, mode, mask, next_select);
8811 mask = fuller_mask;
8812 goto binop;
8814 case IOR:
8815 case XOR:
8816 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8817 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8818 operation which may be a bitfield extraction. Ensure that the
8819 constant we form is not wider than the mode of X. */
8821 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8822 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8823 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8824 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8825 && CONST_INT_P (XEXP (x, 1))
8826 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8827 + floor_log2 (INTVAL (XEXP (x, 1))))
8828 < GET_MODE_PRECISION (xmode))
8829 && (UINTVAL (XEXP (x, 1))
8830 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8832 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8833 << INTVAL (XEXP (XEXP (x, 0), 1)),
8834 xmode);
8835 temp = simplify_gen_binary (GET_CODE (x), xmode,
8836 XEXP (XEXP (x, 0), 0), temp);
8837 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8838 XEXP (XEXP (x, 0), 1));
8839 return force_to_mode (x, mode, mask, next_select);
8842 binop:
8843 /* For most binary operations, just propagate into the operation and
8844 change the mode if we have an operation of that mode. */
8846 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8847 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8849 /* If we ended up truncating both operands, truncate the result of the
8850 operation instead. */
8851 if (GET_CODE (op0) == TRUNCATE
8852 && GET_CODE (op1) == TRUNCATE)
8854 op0 = XEXP (op0, 0);
8855 op1 = XEXP (op1, 0);
8858 op0 = gen_lowpart_or_truncate (op_mode, op0);
8859 op1 = gen_lowpart_or_truncate (op_mode, op1);
8861 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8863 x = simplify_gen_binary (code, op_mode, op0, op1);
8864 xmode = op_mode;
8866 break;
8868 case ASHIFT:
8869 /* For left shifts, do the same, but just for the first operand.
8870 However, we cannot do anything with shifts where we cannot
8871 guarantee that the counts are smaller than the size of the mode
8872 because such a count will have a different meaning in a
8873 wider mode. */
8875 if (! (CONST_INT_P (XEXP (x, 1))
8876 && INTVAL (XEXP (x, 1)) >= 0
8877 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8878 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8879 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8880 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8881 break;
8883 /* If the shift count is a constant and we can do arithmetic in
8884 the mode of the shift, refine which bits we need. Otherwise, use the
8885 conservative form of the mask. */
8886 if (CONST_INT_P (XEXP (x, 1))
8887 && INTVAL (XEXP (x, 1)) >= 0
8888 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8889 && HWI_COMPUTABLE_MODE_P (op_mode))
8890 mask >>= INTVAL (XEXP (x, 1));
8891 else
8892 mask = fuller_mask;
8894 op0 = gen_lowpart_or_truncate (op_mode,
8895 force_to_mode (XEXP (x, 0), op_mode,
8896 mask, next_select));
8898 if (op_mode != xmode || op0 != XEXP (x, 0))
8900 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8901 xmode = op_mode;
8903 break;
8905 case LSHIFTRT:
8906 /* Here we can only do something if the shift count is a constant,
8907 this shift constant is valid for the host, and we can do arithmetic
8908 in OP_MODE. */
8910 if (CONST_INT_P (XEXP (x, 1))
8911 && INTVAL (XEXP (x, 1)) >= 0
8912 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8913 && HWI_COMPUTABLE_MODE_P (op_mode))
8915 rtx inner = XEXP (x, 0);
8916 unsigned HOST_WIDE_INT inner_mask;
8918 /* Select the mask of the bits we need for the shift operand. */
8919 inner_mask = mask << INTVAL (XEXP (x, 1));
8921 /* We can only change the mode of the shift if we can do arithmetic
8922 in the mode of the shift and INNER_MASK is no wider than the
8923 width of X's mode. */
8924 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8925 op_mode = xmode;
8927 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8929 if (xmode != op_mode || inner != XEXP (x, 0))
8931 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8932 xmode = op_mode;
8936 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8937 shift and AND produces only copies of the sign bit (C2 is one less
8938 than a power of two), we can do this with just a shift. */
8940 if (GET_CODE (x) == LSHIFTRT
8941 && CONST_INT_P (XEXP (x, 1))
8942 /* The shift puts one of the sign bit copies in the least significant
8943 bit. */
8944 && ((INTVAL (XEXP (x, 1))
8945 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8946 >= GET_MODE_PRECISION (xmode))
8947 && pow2p_hwi (mask + 1)
8948 /* Number of bits left after the shift must be more than the mask
8949 needs. */
8950 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8951 <= GET_MODE_PRECISION (xmode))
8952 /* Must be more sign bit copies than the mask needs. */
8953 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8954 >= exact_log2 (mask + 1)))
8955 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8956 GEN_INT (GET_MODE_PRECISION (xmode)
8957 - exact_log2 (mask + 1)));
8959 goto shiftrt;
8961 case ASHIFTRT:
8962 /* If we are just looking for the sign bit, we don't need this shift at
8963 all, even if it has a variable count. */
8964 if (val_signbit_p (xmode, mask))
8965 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8967 /* If this is a shift by a constant, get a mask that contains those bits
8968 that are not copies of the sign bit. We then have two cases: If
8969 MASK only includes those bits, this can be a logical shift, which may
8970 allow simplifications. If MASK is a single-bit field not within
8971 those bits, we are requesting a copy of the sign bit and hence can
8972 shift the sign bit to the appropriate location. */
8974 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8975 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8977 unsigned HOST_WIDE_INT nonzero;
8978 int i;
8980 /* If the considered data is wider than HOST_WIDE_INT, we can't
8981 represent a mask for all its bits in a single scalar.
8982 But we only care about the lower bits, so calculate these. */
8984 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
8986 nonzero = HOST_WIDE_INT_M1U;
8988 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8989 is the number of bits a full-width mask would have set.
8990 We need only shift if these are fewer than nonzero can
8991 hold. If not, we must keep all bits set in nonzero. */
8993 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
8994 < HOST_BITS_PER_WIDE_INT)
8995 nonzero >>= INTVAL (XEXP (x, 1))
8996 + HOST_BITS_PER_WIDE_INT
8997 - GET_MODE_PRECISION (xmode);
8999 else
9001 nonzero = GET_MODE_MASK (xmode);
9002 nonzero >>= INTVAL (XEXP (x, 1));
9005 if ((mask & ~nonzero) == 0)
9007 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9008 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9009 if (GET_CODE (x) != ASHIFTRT)
9010 return force_to_mode (x, mode, mask, next_select);
9013 else if ((i = exact_log2 (mask)) >= 0)
9015 x = simplify_shift_const
9016 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9017 GET_MODE_PRECISION (xmode) - 1 - i);
9019 if (GET_CODE (x) != ASHIFTRT)
9020 return force_to_mode (x, mode, mask, next_select);
9024 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9025 even if the shift count isn't a constant. */
9026 if (mask == 1)
9027 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9029 shiftrt:
9031 /* If this is a zero- or sign-extension operation that just affects bits
9032 we don't care about, remove it. Be sure the call above returned
9033 something that is still a shift. */
9035 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9036 && CONST_INT_P (XEXP (x, 1))
9037 && INTVAL (XEXP (x, 1)) >= 0
9038 && (INTVAL (XEXP (x, 1))
9039 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9040 && GET_CODE (XEXP (x, 0)) == ASHIFT
9041 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9042 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9043 next_select);
9045 break;
9047 case ROTATE:
9048 case ROTATERT:
9049 /* If the shift count is constant and we can do computations
9050 in the mode of X, compute where the bits we care about are.
9051 Otherwise, we can't do anything. Don't change the mode of
9052 the shift or propagate MODE into the shift, though. */
9053 if (CONST_INT_P (XEXP (x, 1))
9054 && INTVAL (XEXP (x, 1)) >= 0)
9056 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9057 xmode, gen_int_mode (mask, xmode),
9058 XEXP (x, 1));
9059 if (temp && CONST_INT_P (temp))
9060 x = simplify_gen_binary (code, xmode,
9061 force_to_mode (XEXP (x, 0), xmode,
9062 INTVAL (temp), next_select),
9063 XEXP (x, 1));
9065 break;
9067 case NEG:
9068 /* If we just want the low-order bit, the NEG isn't needed since it
9069 won't change the low-order bit. */
9070 if (mask == 1)
9071 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9073 /* We need any bits less significant than the most significant bit in
9074 MASK since carries from those bits will affect the bits we are
9075 interested in. */
9076 mask = fuller_mask;
9077 goto unop;
9079 case NOT:
9080 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9081 same as the XOR case above. Ensure that the constant we form is not
9082 wider than the mode of X. */
9084 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9085 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9086 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9087 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9088 < GET_MODE_PRECISION (xmode))
9089 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9091 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9092 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9093 x = simplify_gen_binary (LSHIFTRT, xmode,
9094 temp, XEXP (XEXP (x, 0), 1));
9096 return force_to_mode (x, mode, mask, next_select);
9099 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9100 use the full mask inside the NOT. */
9101 mask = fuller_mask;
9103 unop:
9104 op0 = gen_lowpart_or_truncate (op_mode,
9105 force_to_mode (XEXP (x, 0), mode, mask,
9106 next_select));
9107 if (op_mode != xmode || op0 != XEXP (x, 0))
9109 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9110 xmode = op_mode;
9112 break;
9114 case NE:
9115 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9116 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9117 which is equal to STORE_FLAG_VALUE. */
9118 if ((mask & ~STORE_FLAG_VALUE) == 0
9119 && XEXP (x, 1) == const0_rtx
9120 && GET_MODE (XEXP (x, 0)) == mode
9121 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9122 && (nonzero_bits (XEXP (x, 0), mode)
9123 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9124 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9126 break;
9128 case IF_THEN_ELSE:
9129 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9130 written in a narrower mode. We play it safe and do not do so. */
9132 op0 = gen_lowpart_or_truncate (xmode,
9133 force_to_mode (XEXP (x, 1), mode,
9134 mask, next_select));
9135 op1 = gen_lowpart_or_truncate (xmode,
9136 force_to_mode (XEXP (x, 2), mode,
9137 mask, next_select));
9138 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9139 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9140 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9141 op0, op1);
9142 break;
9144 default:
9145 break;
9148 /* Ensure we return a value of the proper mode. */
9149 return gen_lowpart_or_truncate (mode, x);
9152 /* Return nonzero if X is an expression that has one of two values depending on
9153 whether some other value is zero or nonzero. In that case, we return the
9154 value that is being tested, *PTRUE is set to the value if the rtx being
9155 returned has a nonzero value, and *PFALSE is set to the other alternative.
9157 If we return zero, we set *PTRUE and *PFALSE to X. */
9159 static rtx
9160 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9162 machine_mode mode = GET_MODE (x);
9163 enum rtx_code code = GET_CODE (x);
9164 rtx cond0, cond1, true0, true1, false0, false1;
9165 unsigned HOST_WIDE_INT nz;
9166 scalar_int_mode int_mode;
9168 /* If we are comparing a value against zero, we are done. */
9169 if ((code == NE || code == EQ)
9170 && XEXP (x, 1) == const0_rtx)
9172 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9173 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9174 return XEXP (x, 0);
9177 /* If this is a unary operation whose operand has one of two values, apply
9178 our opcode to compute those values. */
9179 else if (UNARY_P (x)
9180 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9182 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9183 *pfalse = simplify_gen_unary (code, mode, false0,
9184 GET_MODE (XEXP (x, 0)));
9185 return cond0;
9188 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9189 make can't possibly match and would suppress other optimizations. */
9190 else if (code == COMPARE)
9193 /* If this is a binary operation, see if either side has only one of two
9194 values. If either one does or if both do and they are conditional on
9195 the same value, compute the new true and false values. */
9196 else if (BINARY_P (x))
9198 rtx op0 = XEXP (x, 0);
9199 rtx op1 = XEXP (x, 1);
9200 cond0 = if_then_else_cond (op0, &true0, &false0);
9201 cond1 = if_then_else_cond (op1, &true1, &false1);
9203 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9204 && (REG_P (op0) || REG_P (op1)))
9206 /* Try to enable a simplification by undoing work done by
9207 if_then_else_cond if it converted a REG into something more
9208 complex. */
9209 if (REG_P (op0))
9211 cond0 = 0;
9212 true0 = false0 = op0;
9214 else
9216 cond1 = 0;
9217 true1 = false1 = op1;
9221 if ((cond0 != 0 || cond1 != 0)
9222 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9224 /* If if_then_else_cond returned zero, then true/false are the
9225 same rtl. We must copy one of them to prevent invalid rtl
9226 sharing. */
9227 if (cond0 == 0)
9228 true0 = copy_rtx (true0);
9229 else if (cond1 == 0)
9230 true1 = copy_rtx (true1);
9232 if (COMPARISON_P (x))
9234 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9235 true0, true1);
9236 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9237 false0, false1);
9239 else
9241 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9242 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9245 return cond0 ? cond0 : cond1;
9248 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9249 operands is zero when the other is nonzero, and vice-versa,
9250 and STORE_FLAG_VALUE is 1 or -1. */
9252 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9253 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9254 || code == UMAX)
9255 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9257 rtx op0 = XEXP (XEXP (x, 0), 1);
9258 rtx op1 = XEXP (XEXP (x, 1), 1);
9260 cond0 = XEXP (XEXP (x, 0), 0);
9261 cond1 = XEXP (XEXP (x, 1), 0);
9263 if (COMPARISON_P (cond0)
9264 && COMPARISON_P (cond1)
9265 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9266 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9267 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9268 || ((swap_condition (GET_CODE (cond0))
9269 == reversed_comparison_code (cond1, NULL))
9270 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9271 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9272 && ! side_effects_p (x))
9274 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9275 *pfalse = simplify_gen_binary (MULT, mode,
9276 (code == MINUS
9277 ? simplify_gen_unary (NEG, mode,
9278 op1, mode)
9279 : op1),
9280 const_true_rtx);
9281 return cond0;
9285 /* Similarly for MULT, AND and UMIN, except that for these the result
9286 is always zero. */
9287 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9288 && (code == MULT || code == AND || code == UMIN)
9289 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9291 cond0 = XEXP (XEXP (x, 0), 0);
9292 cond1 = XEXP (XEXP (x, 1), 0);
9294 if (COMPARISON_P (cond0)
9295 && COMPARISON_P (cond1)
9296 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9297 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9298 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9299 || ((swap_condition (GET_CODE (cond0))
9300 == reversed_comparison_code (cond1, NULL))
9301 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9302 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9303 && ! side_effects_p (x))
9305 *ptrue = *pfalse = const0_rtx;
9306 return cond0;
9311 else if (code == IF_THEN_ELSE)
9313 /* If we have IF_THEN_ELSE already, extract the condition and
9314 canonicalize it if it is NE or EQ. */
9315 cond0 = XEXP (x, 0);
9316 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9317 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9318 return XEXP (cond0, 0);
9319 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9321 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9322 return XEXP (cond0, 0);
9324 else
9325 return cond0;
9328 /* If X is a SUBREG, we can narrow both the true and false values
9329 if the inner expression, if there is a condition. */
9330 else if (code == SUBREG
9331 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9332 &true0, &false0)))
9334 true0 = simplify_gen_subreg (mode, true0,
9335 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9336 false0 = simplify_gen_subreg (mode, false0,
9337 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9338 if (true0 && false0)
9340 *ptrue = true0;
9341 *pfalse = false0;
9342 return cond0;
9346 /* If X is a constant, this isn't special and will cause confusions
9347 if we treat it as such. Likewise if it is equivalent to a constant. */
9348 else if (CONSTANT_P (x)
9349 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9352 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9353 will be least confusing to the rest of the compiler. */
9354 else if (mode == BImode)
9356 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9357 return x;
9360 /* If X is known to be either 0 or -1, those are the true and
9361 false values when testing X. */
9362 else if (x == constm1_rtx || x == const0_rtx
9363 || (is_a <scalar_int_mode> (mode, &int_mode)
9364 && (num_sign_bit_copies (x, int_mode)
9365 == GET_MODE_PRECISION (int_mode))))
9367 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9368 return x;
9371 /* Likewise for 0 or a single bit. */
9372 else if (HWI_COMPUTABLE_MODE_P (mode)
9373 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9375 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9376 return x;
9379 /* Otherwise fail; show no condition with true and false values the same. */
9380 *ptrue = *pfalse = x;
9381 return 0;
9384 /* Return the value of expression X given the fact that condition COND
9385 is known to be true when applied to REG as its first operand and VAL
9386 as its second. X is known to not be shared and so can be modified in
9387 place.
9389 We only handle the simplest cases, and specifically those cases that
9390 arise with IF_THEN_ELSE expressions. */
9392 static rtx
9393 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9395 enum rtx_code code = GET_CODE (x);
9396 const char *fmt;
9397 int i, j;
9399 if (side_effects_p (x))
9400 return x;
9402 /* If either operand of the condition is a floating point value,
9403 then we have to avoid collapsing an EQ comparison. */
9404 if (cond == EQ
9405 && rtx_equal_p (x, reg)
9406 && ! FLOAT_MODE_P (GET_MODE (x))
9407 && ! FLOAT_MODE_P (GET_MODE (val)))
9408 return val;
9410 if (cond == UNEQ && rtx_equal_p (x, reg))
9411 return val;
9413 /* If X is (abs REG) and we know something about REG's relationship
9414 with zero, we may be able to simplify this. */
9416 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9417 switch (cond)
9419 case GE: case GT: case EQ:
9420 return XEXP (x, 0);
9421 case LT: case LE:
9422 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9423 XEXP (x, 0),
9424 GET_MODE (XEXP (x, 0)));
9425 default:
9426 break;
9429 /* The only other cases we handle are MIN, MAX, and comparisons if the
9430 operands are the same as REG and VAL. */
9432 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9434 if (rtx_equal_p (XEXP (x, 0), val))
9436 std::swap (val, reg);
9437 cond = swap_condition (cond);
9440 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9442 if (COMPARISON_P (x))
9444 if (comparison_dominates_p (cond, code))
9445 return const_true_rtx;
9447 code = reversed_comparison_code (x, NULL);
9448 if (code != UNKNOWN
9449 && comparison_dominates_p (cond, code))
9450 return const0_rtx;
9451 else
9452 return x;
9454 else if (code == SMAX || code == SMIN
9455 || code == UMIN || code == UMAX)
9457 int unsignedp = (code == UMIN || code == UMAX);
9459 /* Do not reverse the condition when it is NE or EQ.
9460 This is because we cannot conclude anything about
9461 the value of 'SMAX (x, y)' when x is not equal to y,
9462 but we can when x equals y. */
9463 if ((code == SMAX || code == UMAX)
9464 && ! (cond == EQ || cond == NE))
9465 cond = reverse_condition (cond);
9467 switch (cond)
9469 case GE: case GT:
9470 return unsignedp ? x : XEXP (x, 1);
9471 case LE: case LT:
9472 return unsignedp ? x : XEXP (x, 0);
9473 case GEU: case GTU:
9474 return unsignedp ? XEXP (x, 1) : x;
9475 case LEU: case LTU:
9476 return unsignedp ? XEXP (x, 0) : x;
9477 default:
9478 break;
9483 else if (code == SUBREG)
9485 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9486 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9488 if (SUBREG_REG (x) != r)
9490 /* We must simplify subreg here, before we lose track of the
9491 original inner_mode. */
9492 new_rtx = simplify_subreg (GET_MODE (x), r,
9493 inner_mode, SUBREG_BYTE (x));
9494 if (new_rtx)
9495 return new_rtx;
9496 else
9497 SUBST (SUBREG_REG (x), r);
9500 return x;
9502 /* We don't have to handle SIGN_EXTEND here, because even in the
9503 case of replacing something with a modeless CONST_INT, a
9504 CONST_INT is already (supposed to be) a valid sign extension for
9505 its narrower mode, which implies it's already properly
9506 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9507 story is different. */
9508 else if (code == ZERO_EXTEND)
9510 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9511 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9513 if (XEXP (x, 0) != r)
9515 /* We must simplify the zero_extend here, before we lose
9516 track of the original inner_mode. */
9517 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9518 r, inner_mode);
9519 if (new_rtx)
9520 return new_rtx;
9521 else
9522 SUBST (XEXP (x, 0), r);
9525 return x;
9528 fmt = GET_RTX_FORMAT (code);
9529 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9531 if (fmt[i] == 'e')
9532 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9533 else if (fmt[i] == 'E')
9534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9535 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9536 cond, reg, val));
9539 return x;
9542 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9543 assignment as a field assignment. */
9545 static int
9546 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9548 if (widen_x && GET_MODE (x) != GET_MODE (y))
9550 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9551 return 0;
9552 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9553 return 0;
9554 x = adjust_address_nv (x, GET_MODE (y),
9555 byte_lowpart_offset (GET_MODE (y),
9556 GET_MODE (x)));
9559 if (x == y || rtx_equal_p (x, y))
9560 return 1;
9562 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9563 return 0;
9565 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9566 Note that all SUBREGs of MEM are paradoxical; otherwise they
9567 would have been rewritten. */
9568 if (MEM_P (x) && GET_CODE (y) == SUBREG
9569 && MEM_P (SUBREG_REG (y))
9570 && rtx_equal_p (SUBREG_REG (y),
9571 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9572 return 1;
9574 if (MEM_P (y) && GET_CODE (x) == SUBREG
9575 && MEM_P (SUBREG_REG (x))
9576 && rtx_equal_p (SUBREG_REG (x),
9577 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9578 return 1;
9580 /* We used to see if get_last_value of X and Y were the same but that's
9581 not correct. In one direction, we'll cause the assignment to have
9582 the wrong destination and in the case, we'll import a register into this
9583 insn that might have already have been dead. So fail if none of the
9584 above cases are true. */
9585 return 0;
9588 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9589 Return that assignment if so.
9591 We only handle the most common cases. */
9593 static rtx
9594 make_field_assignment (rtx x)
9596 rtx dest = SET_DEST (x);
9597 rtx src = SET_SRC (x);
9598 rtx assign;
9599 rtx rhs, lhs;
9600 HOST_WIDE_INT c1;
9601 HOST_WIDE_INT pos;
9602 unsigned HOST_WIDE_INT len;
9603 rtx other;
9605 /* All the rules in this function are specific to scalar integers. */
9606 scalar_int_mode mode;
9607 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9608 return x;
9610 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9611 a clear of a one-bit field. We will have changed it to
9612 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9613 for a SUBREG. */
9615 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9616 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9617 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9618 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9620 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9621 1, 1, 1, 0);
9622 if (assign != 0)
9623 return gen_rtx_SET (assign, const0_rtx);
9624 return x;
9627 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9628 && subreg_lowpart_p (XEXP (src, 0))
9629 && partial_subreg_p (XEXP (src, 0))
9630 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9631 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9632 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9633 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9635 assign = make_extraction (VOIDmode, dest, 0,
9636 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9637 1, 1, 1, 0);
9638 if (assign != 0)
9639 return gen_rtx_SET (assign, const0_rtx);
9640 return x;
9643 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9644 one-bit field. */
9645 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9646 && XEXP (XEXP (src, 0), 0) == const1_rtx
9647 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9649 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9650 1, 1, 1, 0);
9651 if (assign != 0)
9652 return gen_rtx_SET (assign, const1_rtx);
9653 return x;
9656 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9657 SRC is an AND with all bits of that field set, then we can discard
9658 the AND. */
9659 if (GET_CODE (dest) == ZERO_EXTRACT
9660 && CONST_INT_P (XEXP (dest, 1))
9661 && GET_CODE (src) == AND
9662 && CONST_INT_P (XEXP (src, 1)))
9664 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9665 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9666 unsigned HOST_WIDE_INT ze_mask;
9668 if (width >= HOST_BITS_PER_WIDE_INT)
9669 ze_mask = -1;
9670 else
9671 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9673 /* Complete overlap. We can remove the source AND. */
9674 if ((and_mask & ze_mask) == ze_mask)
9675 return gen_rtx_SET (dest, XEXP (src, 0));
9677 /* Partial overlap. We can reduce the source AND. */
9678 if ((and_mask & ze_mask) != and_mask)
9680 src = gen_rtx_AND (mode, XEXP (src, 0),
9681 gen_int_mode (and_mask & ze_mask, mode));
9682 return gen_rtx_SET (dest, src);
9686 /* The other case we handle is assignments into a constant-position
9687 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9688 a mask that has all one bits except for a group of zero bits and
9689 OTHER is known to have zeros where C1 has ones, this is such an
9690 assignment. Compute the position and length from C1. Shift OTHER
9691 to the appropriate position, force it to the required mode, and
9692 make the extraction. Check for the AND in both operands. */
9694 /* One or more SUBREGs might obscure the constant-position field
9695 assignment. The first one we are likely to encounter is an outer
9696 narrowing SUBREG, which we can just strip for the purposes of
9697 identifying the constant-field assignment. */
9698 scalar_int_mode src_mode = mode;
9699 if (GET_CODE (src) == SUBREG
9700 && subreg_lowpart_p (src)
9701 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9702 src = SUBREG_REG (src);
9704 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9705 return x;
9707 rhs = expand_compound_operation (XEXP (src, 0));
9708 lhs = expand_compound_operation (XEXP (src, 1));
9710 if (GET_CODE (rhs) == AND
9711 && CONST_INT_P (XEXP (rhs, 1))
9712 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9713 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9714 /* The second SUBREG that might get in the way is a paradoxical
9715 SUBREG around the first operand of the AND. We want to
9716 pretend the operand is as wide as the destination here. We
9717 do this by adjusting the MEM to wider mode for the sole
9718 purpose of the call to rtx_equal_for_field_assignment_p. Also
9719 note this trick only works for MEMs. */
9720 else if (GET_CODE (rhs) == AND
9721 && paradoxical_subreg_p (XEXP (rhs, 0))
9722 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9723 && CONST_INT_P (XEXP (rhs, 1))
9724 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9725 dest, true))
9726 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9727 else if (GET_CODE (lhs) == AND
9728 && CONST_INT_P (XEXP (lhs, 1))
9729 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9730 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9731 /* The second SUBREG that might get in the way is a paradoxical
9732 SUBREG around the first operand of the AND. We want to
9733 pretend the operand is as wide as the destination here. We
9734 do this by adjusting the MEM to wider mode for the sole
9735 purpose of the call to rtx_equal_for_field_assignment_p. Also
9736 note this trick only works for MEMs. */
9737 else if (GET_CODE (lhs) == AND
9738 && paradoxical_subreg_p (XEXP (lhs, 0))
9739 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9740 && CONST_INT_P (XEXP (lhs, 1))
9741 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9742 dest, true))
9743 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9744 else
9745 return x;
9747 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9748 if (pos < 0
9749 || pos + len > GET_MODE_PRECISION (mode)
9750 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9751 || (c1 & nonzero_bits (other, mode)) != 0)
9752 return x;
9754 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9755 if (assign == 0)
9756 return x;
9758 /* The mode to use for the source is the mode of the assignment, or of
9759 what is inside a possible STRICT_LOW_PART. */
9760 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9761 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9763 /* Shift OTHER right POS places and make it the source, restricting it
9764 to the proper length and mode. */
9766 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9767 src_mode, other, pos),
9768 dest);
9769 src = force_to_mode (src, new_mode,
9770 len >= HOST_BITS_PER_WIDE_INT
9771 ? HOST_WIDE_INT_M1U
9772 : (HOST_WIDE_INT_1U << len) - 1,
9775 /* If SRC is masked by an AND that does not make a difference in
9776 the value being stored, strip it. */
9777 if (GET_CODE (assign) == ZERO_EXTRACT
9778 && CONST_INT_P (XEXP (assign, 1))
9779 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9780 && GET_CODE (src) == AND
9781 && CONST_INT_P (XEXP (src, 1))
9782 && UINTVAL (XEXP (src, 1))
9783 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9784 src = XEXP (src, 0);
9786 return gen_rtx_SET (assign, src);
9789 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9790 if so. */
9792 static rtx
9793 apply_distributive_law (rtx x)
9795 enum rtx_code code = GET_CODE (x);
9796 enum rtx_code inner_code;
9797 rtx lhs, rhs, other;
9798 rtx tem;
9800 /* Distributivity is not true for floating point as it can change the
9801 value. So we don't do it unless -funsafe-math-optimizations. */
9802 if (FLOAT_MODE_P (GET_MODE (x))
9803 && ! flag_unsafe_math_optimizations)
9804 return x;
9806 /* The outer operation can only be one of the following: */
9807 if (code != IOR && code != AND && code != XOR
9808 && code != PLUS && code != MINUS)
9809 return x;
9811 lhs = XEXP (x, 0);
9812 rhs = XEXP (x, 1);
9814 /* If either operand is a primitive we can't do anything, so get out
9815 fast. */
9816 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9817 return x;
9819 lhs = expand_compound_operation (lhs);
9820 rhs = expand_compound_operation (rhs);
9821 inner_code = GET_CODE (lhs);
9822 if (inner_code != GET_CODE (rhs))
9823 return x;
9825 /* See if the inner and outer operations distribute. */
9826 switch (inner_code)
9828 case LSHIFTRT:
9829 case ASHIFTRT:
9830 case AND:
9831 case IOR:
9832 /* These all distribute except over PLUS. */
9833 if (code == PLUS || code == MINUS)
9834 return x;
9835 break;
9837 case MULT:
9838 if (code != PLUS && code != MINUS)
9839 return x;
9840 break;
9842 case ASHIFT:
9843 /* This is also a multiply, so it distributes over everything. */
9844 break;
9846 /* This used to handle SUBREG, but this turned out to be counter-
9847 productive, since (subreg (op ...)) usually is not handled by
9848 insn patterns, and this "optimization" therefore transformed
9849 recognizable patterns into unrecognizable ones. Therefore the
9850 SUBREG case was removed from here.
9852 It is possible that distributing SUBREG over arithmetic operations
9853 leads to an intermediate result than can then be optimized further,
9854 e.g. by moving the outer SUBREG to the other side of a SET as done
9855 in simplify_set. This seems to have been the original intent of
9856 handling SUBREGs here.
9858 However, with current GCC this does not appear to actually happen,
9859 at least on major platforms. If some case is found where removing
9860 the SUBREG case here prevents follow-on optimizations, distributing
9861 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9863 default:
9864 return x;
9867 /* Set LHS and RHS to the inner operands (A and B in the example
9868 above) and set OTHER to the common operand (C in the example).
9869 There is only one way to do this unless the inner operation is
9870 commutative. */
9871 if (COMMUTATIVE_ARITH_P (lhs)
9872 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9873 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9874 else if (COMMUTATIVE_ARITH_P (lhs)
9875 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9876 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9877 else if (COMMUTATIVE_ARITH_P (lhs)
9878 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9879 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9880 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9881 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9882 else
9883 return x;
9885 /* Form the new inner operation, seeing if it simplifies first. */
9886 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9888 /* There is one exception to the general way of distributing:
9889 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9890 if (code == XOR && inner_code == IOR)
9892 inner_code = AND;
9893 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9896 /* We may be able to continuing distributing the result, so call
9897 ourselves recursively on the inner operation before forming the
9898 outer operation, which we return. */
9899 return simplify_gen_binary (inner_code, GET_MODE (x),
9900 apply_distributive_law (tem), other);
9903 /* See if X is of the form (* (+ A B) C), and if so convert to
9904 (+ (* A C) (* B C)) and try to simplify.
9906 Most of the time, this results in no change. However, if some of
9907 the operands are the same or inverses of each other, simplifications
9908 will result.
9910 For example, (and (ior A B) (not B)) can occur as the result of
9911 expanding a bit field assignment. When we apply the distributive
9912 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9913 which then simplifies to (and (A (not B))).
9915 Note that no checks happen on the validity of applying the inverse
9916 distributive law. This is pointless since we can do it in the
9917 few places where this routine is called.
9919 N is the index of the term that is decomposed (the arithmetic operation,
9920 i.e. (+ A B) in the first example above). !N is the index of the term that
9921 is distributed, i.e. of C in the first example above. */
9922 static rtx
9923 distribute_and_simplify_rtx (rtx x, int n)
9925 machine_mode mode;
9926 enum rtx_code outer_code, inner_code;
9927 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9929 /* Distributivity is not true for floating point as it can change the
9930 value. So we don't do it unless -funsafe-math-optimizations. */
9931 if (FLOAT_MODE_P (GET_MODE (x))
9932 && ! flag_unsafe_math_optimizations)
9933 return NULL_RTX;
9935 decomposed = XEXP (x, n);
9936 if (!ARITHMETIC_P (decomposed))
9937 return NULL_RTX;
9939 mode = GET_MODE (x);
9940 outer_code = GET_CODE (x);
9941 distributed = XEXP (x, !n);
9943 inner_code = GET_CODE (decomposed);
9944 inner_op0 = XEXP (decomposed, 0);
9945 inner_op1 = XEXP (decomposed, 1);
9947 /* Special case (and (xor B C) (not A)), which is equivalent to
9948 (xor (ior A B) (ior A C)) */
9949 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9951 distributed = XEXP (distributed, 0);
9952 outer_code = IOR;
9955 if (n == 0)
9957 /* Distribute the second term. */
9958 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9959 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9961 else
9963 /* Distribute the first term. */
9964 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9965 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9968 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9969 new_op0, new_op1));
9970 if (GET_CODE (tmp) != outer_code
9971 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9972 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9973 return tmp;
9975 return NULL_RTX;
9978 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9979 in MODE. Return an equivalent form, if different from (and VAROP
9980 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9982 static rtx
9983 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
9984 unsigned HOST_WIDE_INT constop)
9986 unsigned HOST_WIDE_INT nonzero;
9987 unsigned HOST_WIDE_INT orig_constop;
9988 rtx orig_varop;
9989 int i;
9991 orig_varop = varop;
9992 orig_constop = constop;
9993 if (GET_CODE (varop) == CLOBBER)
9994 return NULL_RTX;
9996 /* Simplify VAROP knowing that we will be only looking at some of the
9997 bits in it.
9999 Note by passing in CONSTOP, we guarantee that the bits not set in
10000 CONSTOP are not significant and will never be examined. We must
10001 ensure that is the case by explicitly masking out those bits
10002 before returning. */
10003 varop = force_to_mode (varop, mode, constop, 0);
10005 /* If VAROP is a CLOBBER, we will fail so return it. */
10006 if (GET_CODE (varop) == CLOBBER)
10007 return varop;
10009 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10010 to VAROP and return the new constant. */
10011 if (CONST_INT_P (varop))
10012 return gen_int_mode (INTVAL (varop) & constop, mode);
10014 /* See what bits may be nonzero in VAROP. Unlike the general case of
10015 a call to nonzero_bits, here we don't care about bits outside
10016 MODE. */
10018 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10020 /* Turn off all bits in the constant that are known to already be zero.
10021 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10022 which is tested below. */
10024 constop &= nonzero;
10026 /* If we don't have any bits left, return zero. */
10027 if (constop == 0)
10028 return const0_rtx;
10030 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10031 a power of two, we can replace this with an ASHIFT. */
10032 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10033 && (i = exact_log2 (constop)) >= 0)
10034 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10036 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10037 or XOR, then try to apply the distributive law. This may eliminate
10038 operations if either branch can be simplified because of the AND.
10039 It may also make some cases more complex, but those cases probably
10040 won't match a pattern either with or without this. */
10042 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10044 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10045 return
10046 gen_lowpart
10047 (mode,
10048 apply_distributive_law
10049 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10050 simplify_and_const_int (NULL_RTX, varop_mode,
10051 XEXP (varop, 0),
10052 constop),
10053 simplify_and_const_int (NULL_RTX, varop_mode,
10054 XEXP (varop, 1),
10055 constop))));
10058 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10059 the AND and see if one of the operands simplifies to zero. If so, we
10060 may eliminate it. */
10062 if (GET_CODE (varop) == PLUS
10063 && pow2p_hwi (constop + 1))
10065 rtx o0, o1;
10067 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10068 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10069 if (o0 == const0_rtx)
10070 return o1;
10071 if (o1 == const0_rtx)
10072 return o0;
10075 /* Make a SUBREG if necessary. If we can't make it, fail. */
10076 varop = gen_lowpart (mode, varop);
10077 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10078 return NULL_RTX;
10080 /* If we are only masking insignificant bits, return VAROP. */
10081 if (constop == nonzero)
10082 return varop;
10084 if (varop == orig_varop && constop == orig_constop)
10085 return NULL_RTX;
10087 /* Otherwise, return an AND. */
10088 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10092 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10093 in MODE.
10095 Return an equivalent form, if different from X. Otherwise, return X. If
10096 X is zero, we are to always construct the equivalent form. */
10098 static rtx
10099 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10100 unsigned HOST_WIDE_INT constop)
10102 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10103 if (tem)
10104 return tem;
10106 if (!x)
10107 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10108 gen_int_mode (constop, mode));
10109 if (GET_MODE (x) != mode)
10110 x = gen_lowpart (mode, x);
10111 return x;
10114 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10115 We don't care about bits outside of those defined in MODE.
10117 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10118 a shift, AND, or zero_extract, we can do better. */
10120 static rtx
10121 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10122 scalar_int_mode mode,
10123 unsigned HOST_WIDE_INT *nonzero)
10125 rtx tem;
10126 reg_stat_type *rsp;
10128 /* If X is a register whose nonzero bits value is current, use it.
10129 Otherwise, if X is a register whose value we can find, use that
10130 value. Otherwise, use the previously-computed global nonzero bits
10131 for this register. */
10133 rsp = &reg_stat[REGNO (x)];
10134 if (rsp->last_set_value != 0
10135 && (rsp->last_set_mode == mode
10136 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10137 && GET_MODE_CLASS (mode) == MODE_INT))
10138 && ((rsp->last_set_label >= label_tick_ebb_start
10139 && rsp->last_set_label < label_tick)
10140 || (rsp->last_set_label == label_tick
10141 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10142 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10143 && REGNO (x) < reg_n_sets_max
10144 && REG_N_SETS (REGNO (x)) == 1
10145 && !REGNO_REG_SET_P
10146 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10147 REGNO (x)))))
10149 /* Note that, even if the precision of last_set_mode is lower than that
10150 of mode, record_value_for_reg invoked nonzero_bits on the register
10151 with nonzero_bits_mode (because last_set_mode is necessarily integral
10152 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10153 are all valid, hence in mode too since nonzero_bits_mode is defined
10154 to the largest HWI_COMPUTABLE_MODE_P mode. */
10155 *nonzero &= rsp->last_set_nonzero_bits;
10156 return NULL;
10159 tem = get_last_value (x);
10160 if (tem)
10162 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10163 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10165 return tem;
10168 if (nonzero_sign_valid && rsp->nonzero_bits)
10170 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10172 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10173 /* We don't know anything about the upper bits. */
10174 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10176 *nonzero &= mask;
10179 return NULL;
10182 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10183 end of X that are known to be equal to the sign bit. X will be used
10184 in mode MODE; the returned value will always be between 1 and the
10185 number of bits in MODE. */
10187 static rtx
10188 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10189 scalar_int_mode mode,
10190 unsigned int *result)
10192 rtx tem;
10193 reg_stat_type *rsp;
10195 rsp = &reg_stat[REGNO (x)];
10196 if (rsp->last_set_value != 0
10197 && rsp->last_set_mode == mode
10198 && ((rsp->last_set_label >= label_tick_ebb_start
10199 && rsp->last_set_label < label_tick)
10200 || (rsp->last_set_label == label_tick
10201 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10202 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10203 && REGNO (x) < reg_n_sets_max
10204 && REG_N_SETS (REGNO (x)) == 1
10205 && !REGNO_REG_SET_P
10206 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10207 REGNO (x)))))
10209 *result = rsp->last_set_sign_bit_copies;
10210 return NULL;
10213 tem = get_last_value (x);
10214 if (tem != 0)
10215 return tem;
10217 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10218 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10219 *result = rsp->sign_bit_copies;
10221 return NULL;
10224 /* Return the number of "extended" bits there are in X, when interpreted
10225 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10226 unsigned quantities, this is the number of high-order zero bits.
10227 For signed quantities, this is the number of copies of the sign bit
10228 minus 1. In both case, this function returns the number of "spare"
10229 bits. For example, if two quantities for which this function returns
10230 at least 1 are added, the addition is known not to overflow.
10232 This function will always return 0 unless called during combine, which
10233 implies that it must be called from a define_split. */
10235 unsigned int
10236 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10238 if (nonzero_sign_valid == 0)
10239 return 0;
10241 scalar_int_mode int_mode;
10242 return (unsignedp
10243 ? (is_a <scalar_int_mode> (mode, &int_mode)
10244 && HWI_COMPUTABLE_MODE_P (int_mode)
10245 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10246 - floor_log2 (nonzero_bits (x, int_mode)))
10247 : 0)
10248 : num_sign_bit_copies (x, mode) - 1);
10251 /* This function is called from `simplify_shift_const' to merge two
10252 outer operations. Specifically, we have already found that we need
10253 to perform operation *POP0 with constant *PCONST0 at the outermost
10254 position. We would now like to also perform OP1 with constant CONST1
10255 (with *POP0 being done last).
10257 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10258 the resulting operation. *PCOMP_P is set to 1 if we would need to
10259 complement the innermost operand, otherwise it is unchanged.
10261 MODE is the mode in which the operation will be done. No bits outside
10262 the width of this mode matter. It is assumed that the width of this mode
10263 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10265 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10266 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10267 result is simply *PCONST0.
10269 If the resulting operation cannot be expressed as one operation, we
10270 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10272 static int
10273 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10275 enum rtx_code op0 = *pop0;
10276 HOST_WIDE_INT const0 = *pconst0;
10278 const0 &= GET_MODE_MASK (mode);
10279 const1 &= GET_MODE_MASK (mode);
10281 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10282 if (op0 == AND)
10283 const1 &= const0;
10285 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10286 if OP0 is SET. */
10288 if (op1 == UNKNOWN || op0 == SET)
10289 return 1;
10291 else if (op0 == UNKNOWN)
10292 op0 = op1, const0 = const1;
10294 else if (op0 == op1)
10296 switch (op0)
10298 case AND:
10299 const0 &= const1;
10300 break;
10301 case IOR:
10302 const0 |= const1;
10303 break;
10304 case XOR:
10305 const0 ^= const1;
10306 break;
10307 case PLUS:
10308 const0 += const1;
10309 break;
10310 case NEG:
10311 op0 = UNKNOWN;
10312 break;
10313 default:
10314 break;
10318 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10319 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10320 return 0;
10322 /* If the two constants aren't the same, we can't do anything. The
10323 remaining six cases can all be done. */
10324 else if (const0 != const1)
10325 return 0;
10327 else
10328 switch (op0)
10330 case IOR:
10331 if (op1 == AND)
10332 /* (a & b) | b == b */
10333 op0 = SET;
10334 else /* op1 == XOR */
10335 /* (a ^ b) | b == a | b */
10337 break;
10339 case XOR:
10340 if (op1 == AND)
10341 /* (a & b) ^ b == (~a) & b */
10342 op0 = AND, *pcomp_p = 1;
10343 else /* op1 == IOR */
10344 /* (a | b) ^ b == a & ~b */
10345 op0 = AND, const0 = ~const0;
10346 break;
10348 case AND:
10349 if (op1 == IOR)
10350 /* (a | b) & b == b */
10351 op0 = SET;
10352 else /* op1 == XOR */
10353 /* (a ^ b) & b) == (~a) & b */
10354 *pcomp_p = 1;
10355 break;
10356 default:
10357 break;
10360 /* Check for NO-OP cases. */
10361 const0 &= GET_MODE_MASK (mode);
10362 if (const0 == 0
10363 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10364 op0 = UNKNOWN;
10365 else if (const0 == 0 && op0 == AND)
10366 op0 = SET;
10367 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10368 && op0 == AND)
10369 op0 = UNKNOWN;
10371 *pop0 = op0;
10373 /* ??? Slightly redundant with the above mask, but not entirely.
10374 Moving this above means we'd have to sign-extend the mode mask
10375 for the final test. */
10376 if (op0 != UNKNOWN && op0 != NEG)
10377 *pconst0 = trunc_int_for_mode (const0, mode);
10379 return 1;
10382 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10383 the shift in. The original shift operation CODE is performed on OP in
10384 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10385 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10386 result of the shift is subject to operation OUTER_CODE with operand
10387 OUTER_CONST. */
10389 static scalar_int_mode
10390 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10391 scalar_int_mode orig_mode, scalar_int_mode mode,
10392 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10394 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10396 /* In general we can't perform in wider mode for right shift and rotate. */
10397 switch (code)
10399 case ASHIFTRT:
10400 /* We can still widen if the bits brought in from the left are identical
10401 to the sign bit of ORIG_MODE. */
10402 if (num_sign_bit_copies (op, mode)
10403 > (unsigned) (GET_MODE_PRECISION (mode)
10404 - GET_MODE_PRECISION (orig_mode)))
10405 return mode;
10406 return orig_mode;
10408 case LSHIFTRT:
10409 /* Similarly here but with zero bits. */
10410 if (HWI_COMPUTABLE_MODE_P (mode)
10411 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10412 return mode;
10414 /* We can also widen if the bits brought in will be masked off. This
10415 operation is performed in ORIG_MODE. */
10416 if (outer_code == AND)
10418 int care_bits = low_bitmask_len (orig_mode, outer_const);
10420 if (care_bits >= 0
10421 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10422 return mode;
10424 /* fall through */
10426 case ROTATE:
10427 return orig_mode;
10429 case ROTATERT:
10430 gcc_unreachable ();
10432 default:
10433 return mode;
10437 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10438 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10439 if we cannot simplify it. Otherwise, return a simplified value.
10441 The shift is normally computed in the widest mode we find in VAROP, as
10442 long as it isn't a different number of words than RESULT_MODE. Exceptions
10443 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10445 static rtx
10446 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10447 rtx varop, int orig_count)
10449 enum rtx_code orig_code = code;
10450 rtx orig_varop = varop;
10451 int count;
10452 machine_mode mode = result_mode;
10453 machine_mode shift_mode;
10454 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10455 unsigned int mode_words
10456 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10457 /* We form (outer_op (code varop count) (outer_const)). */
10458 enum rtx_code outer_op = UNKNOWN;
10459 HOST_WIDE_INT outer_const = 0;
10460 int complement_p = 0;
10461 rtx new_rtx, x;
10463 /* Make sure and truncate the "natural" shift on the way in. We don't
10464 want to do this inside the loop as it makes it more difficult to
10465 combine shifts. */
10466 if (SHIFT_COUNT_TRUNCATED)
10467 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10469 /* If we were given an invalid count, don't do anything except exactly
10470 what was requested. */
10472 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10473 return NULL_RTX;
10475 count = orig_count;
10477 /* Unless one of the branches of the `if' in this loop does a `continue',
10478 we will `break' the loop after the `if'. */
10480 while (count != 0)
10482 /* If we have an operand of (clobber (const_int 0)), fail. */
10483 if (GET_CODE (varop) == CLOBBER)
10484 return NULL_RTX;
10486 /* Convert ROTATERT to ROTATE. */
10487 if (code == ROTATERT)
10489 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10490 code = ROTATE;
10491 count = bitsize - count;
10494 shift_mode = result_mode;
10495 if (shift_mode != mode)
10497 /* We only change the modes of scalar shifts. */
10498 int_mode = as_a <scalar_int_mode> (mode);
10499 int_result_mode = as_a <scalar_int_mode> (result_mode);
10500 shift_mode = try_widen_shift_mode (code, varop, count,
10501 int_result_mode, int_mode,
10502 outer_op, outer_const);
10505 scalar_int_mode shift_unit_mode
10506 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10508 /* Handle cases where the count is greater than the size of the mode
10509 minus 1. For ASHIFT, use the size minus one as the count (this can
10510 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10511 take the count modulo the size. For other shifts, the result is
10512 zero.
10514 Since these shifts are being produced by the compiler by combining
10515 multiple operations, each of which are defined, we know what the
10516 result is supposed to be. */
10518 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10520 if (code == ASHIFTRT)
10521 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10522 else if (code == ROTATE || code == ROTATERT)
10523 count %= GET_MODE_PRECISION (shift_unit_mode);
10524 else
10526 /* We can't simply return zero because there may be an
10527 outer op. */
10528 varop = const0_rtx;
10529 count = 0;
10530 break;
10534 /* If we discovered we had to complement VAROP, leave. Making a NOT
10535 here would cause an infinite loop. */
10536 if (complement_p)
10537 break;
10539 if (shift_mode == shift_unit_mode)
10541 /* An arithmetic right shift of a quantity known to be -1 or 0
10542 is a no-op. */
10543 if (code == ASHIFTRT
10544 && (num_sign_bit_copies (varop, shift_unit_mode)
10545 == GET_MODE_PRECISION (shift_unit_mode)))
10547 count = 0;
10548 break;
10551 /* If we are doing an arithmetic right shift and discarding all but
10552 the sign bit copies, this is equivalent to doing a shift by the
10553 bitsize minus one. Convert it into that shift because it will
10554 often allow other simplifications. */
10556 if (code == ASHIFTRT
10557 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10558 >= GET_MODE_PRECISION (shift_unit_mode)))
10559 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10561 /* We simplify the tests below and elsewhere by converting
10562 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10563 `make_compound_operation' will convert it to an ASHIFTRT for
10564 those machines (such as VAX) that don't have an LSHIFTRT. */
10565 if (code == ASHIFTRT
10566 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10567 && val_signbit_known_clear_p (shift_unit_mode,
10568 nonzero_bits (varop,
10569 shift_unit_mode)))
10570 code = LSHIFTRT;
10572 if (((code == LSHIFTRT
10573 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10574 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10575 || (code == ASHIFT
10576 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10577 && !((nonzero_bits (varop, shift_unit_mode) << count)
10578 & GET_MODE_MASK (shift_unit_mode))))
10579 && !side_effects_p (varop))
10580 varop = const0_rtx;
10583 switch (GET_CODE (varop))
10585 case SIGN_EXTEND:
10586 case ZERO_EXTEND:
10587 case SIGN_EXTRACT:
10588 case ZERO_EXTRACT:
10589 new_rtx = expand_compound_operation (varop);
10590 if (new_rtx != varop)
10592 varop = new_rtx;
10593 continue;
10595 break;
10597 case MEM:
10598 /* The following rules apply only to scalars. */
10599 if (shift_mode != shift_unit_mode)
10600 break;
10601 int_mode = as_a <scalar_int_mode> (mode);
10603 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10604 minus the width of a smaller mode, we can do this with a
10605 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10606 if ((code == ASHIFTRT || code == LSHIFTRT)
10607 && ! mode_dependent_address_p (XEXP (varop, 0),
10608 MEM_ADDR_SPACE (varop))
10609 && ! MEM_VOLATILE_P (varop)
10610 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10611 .exists (&tmode)))
10613 new_rtx = adjust_address_nv (varop, tmode,
10614 BYTES_BIG_ENDIAN ? 0
10615 : count / BITS_PER_UNIT);
10617 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10618 : ZERO_EXTEND, int_mode, new_rtx);
10619 count = 0;
10620 continue;
10622 break;
10624 case SUBREG:
10625 /* The following rules apply only to scalars. */
10626 if (shift_mode != shift_unit_mode)
10627 break;
10628 int_mode = as_a <scalar_int_mode> (mode);
10629 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10631 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10632 the same number of words as what we've seen so far. Then store
10633 the widest mode in MODE. */
10634 if (subreg_lowpart_p (varop)
10635 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10636 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10637 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10638 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10639 == mode_words
10640 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10642 varop = SUBREG_REG (varop);
10643 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10644 mode = inner_mode;
10645 continue;
10647 break;
10649 case MULT:
10650 /* Some machines use MULT instead of ASHIFT because MULT
10651 is cheaper. But it is still better on those machines to
10652 merge two shifts into one. */
10653 if (CONST_INT_P (XEXP (varop, 1))
10654 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10656 varop
10657 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10658 XEXP (varop, 0),
10659 GEN_INT (exact_log2 (
10660 UINTVAL (XEXP (varop, 1)))));
10661 continue;
10663 break;
10665 case UDIV:
10666 /* Similar, for when divides are cheaper. */
10667 if (CONST_INT_P (XEXP (varop, 1))
10668 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10670 varop
10671 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10672 XEXP (varop, 0),
10673 GEN_INT (exact_log2 (
10674 UINTVAL (XEXP (varop, 1)))));
10675 continue;
10677 break;
10679 case ASHIFTRT:
10680 /* If we are extracting just the sign bit of an arithmetic
10681 right shift, that shift is not needed. However, the sign
10682 bit of a wider mode may be different from what would be
10683 interpreted as the sign bit in a narrower mode, so, if
10684 the result is narrower, don't discard the shift. */
10685 if (code == LSHIFTRT
10686 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10687 && (GET_MODE_UNIT_BITSIZE (result_mode)
10688 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10690 varop = XEXP (varop, 0);
10691 continue;
10694 /* fall through */
10696 case LSHIFTRT:
10697 case ASHIFT:
10698 case ROTATE:
10699 /* The following rules apply only to scalars. */
10700 if (shift_mode != shift_unit_mode)
10701 break;
10702 int_mode = as_a <scalar_int_mode> (mode);
10703 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10704 int_result_mode = as_a <scalar_int_mode> (result_mode);
10706 /* Here we have two nested shifts. The result is usually the
10707 AND of a new shift with a mask. We compute the result below. */
10708 if (CONST_INT_P (XEXP (varop, 1))
10709 && INTVAL (XEXP (varop, 1)) >= 0
10710 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10711 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10712 && HWI_COMPUTABLE_MODE_P (int_mode))
10714 enum rtx_code first_code = GET_CODE (varop);
10715 unsigned int first_count = INTVAL (XEXP (varop, 1));
10716 unsigned HOST_WIDE_INT mask;
10717 rtx mask_rtx;
10719 /* We have one common special case. We can't do any merging if
10720 the inner code is an ASHIFTRT of a smaller mode. However, if
10721 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10722 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10723 we can convert it to
10724 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10725 This simplifies certain SIGN_EXTEND operations. */
10726 if (code == ASHIFT && first_code == ASHIFTRT
10727 && count == (GET_MODE_PRECISION (int_result_mode)
10728 - GET_MODE_PRECISION (int_varop_mode)))
10730 /* C3 has the low-order C1 bits zero. */
10732 mask = GET_MODE_MASK (int_mode)
10733 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10735 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10736 XEXP (varop, 0), mask);
10737 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10738 int_result_mode, varop, count);
10739 count = first_count;
10740 code = ASHIFTRT;
10741 continue;
10744 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10745 than C1 high-order bits equal to the sign bit, we can convert
10746 this to either an ASHIFT or an ASHIFTRT depending on the
10747 two counts.
10749 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10751 if (code == ASHIFTRT && first_code == ASHIFT
10752 && int_varop_mode == shift_unit_mode
10753 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10754 > first_count))
10756 varop = XEXP (varop, 0);
10757 count -= first_count;
10758 if (count < 0)
10760 count = -count;
10761 code = ASHIFT;
10764 continue;
10767 /* There are some cases we can't do. If CODE is ASHIFTRT,
10768 we can only do this if FIRST_CODE is also ASHIFTRT.
10770 We can't do the case when CODE is ROTATE and FIRST_CODE is
10771 ASHIFTRT.
10773 If the mode of this shift is not the mode of the outer shift,
10774 we can't do this if either shift is a right shift or ROTATE.
10776 Finally, we can't do any of these if the mode is too wide
10777 unless the codes are the same.
10779 Handle the case where the shift codes are the same
10780 first. */
10782 if (code == first_code)
10784 if (int_varop_mode != int_result_mode
10785 && (code == ASHIFTRT || code == LSHIFTRT
10786 || code == ROTATE))
10787 break;
10789 count += first_count;
10790 varop = XEXP (varop, 0);
10791 continue;
10794 if (code == ASHIFTRT
10795 || (code == ROTATE && first_code == ASHIFTRT)
10796 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10797 || (int_varop_mode != int_result_mode
10798 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10799 || first_code == ROTATE
10800 || code == ROTATE)))
10801 break;
10803 /* To compute the mask to apply after the shift, shift the
10804 nonzero bits of the inner shift the same way the
10805 outer shift will. */
10807 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10808 int_result_mode);
10810 mask_rtx
10811 = simplify_const_binary_operation (code, int_result_mode,
10812 mask_rtx, GEN_INT (count));
10814 /* Give up if we can't compute an outer operation to use. */
10815 if (mask_rtx == 0
10816 || !CONST_INT_P (mask_rtx)
10817 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10818 INTVAL (mask_rtx),
10819 int_result_mode, &complement_p))
10820 break;
10822 /* If the shifts are in the same direction, we add the
10823 counts. Otherwise, we subtract them. */
10824 if ((code == ASHIFTRT || code == LSHIFTRT)
10825 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10826 count += first_count;
10827 else
10828 count -= first_count;
10830 /* If COUNT is positive, the new shift is usually CODE,
10831 except for the two exceptions below, in which case it is
10832 FIRST_CODE. If the count is negative, FIRST_CODE should
10833 always be used */
10834 if (count > 0
10835 && ((first_code == ROTATE && code == ASHIFT)
10836 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10837 code = first_code;
10838 else if (count < 0)
10839 code = first_code, count = -count;
10841 varop = XEXP (varop, 0);
10842 continue;
10845 /* If we have (A << B << C) for any shift, we can convert this to
10846 (A << C << B). This wins if A is a constant. Only try this if
10847 B is not a constant. */
10849 else if (GET_CODE (varop) == code
10850 && CONST_INT_P (XEXP (varop, 0))
10851 && !CONST_INT_P (XEXP (varop, 1)))
10853 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10854 sure the result will be masked. See PR70222. */
10855 if (code == LSHIFTRT
10856 && int_mode != int_result_mode
10857 && !merge_outer_ops (&outer_op, &outer_const, AND,
10858 GET_MODE_MASK (int_result_mode)
10859 >> orig_count, int_result_mode,
10860 &complement_p))
10861 break;
10862 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10863 up outer sign extension (often left and right shift) is
10864 hardly more efficient than the original. See PR70429. */
10865 if (code == ASHIFTRT && int_mode != int_result_mode)
10866 break;
10868 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10869 XEXP (varop, 0),
10870 GEN_INT (count));
10871 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10872 count = 0;
10873 continue;
10875 break;
10877 case NOT:
10878 /* The following rules apply only to scalars. */
10879 if (shift_mode != shift_unit_mode)
10880 break;
10882 /* Make this fit the case below. */
10883 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10884 continue;
10886 case IOR:
10887 case AND:
10888 case XOR:
10889 /* The following rules apply only to scalars. */
10890 if (shift_mode != shift_unit_mode)
10891 break;
10892 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10893 int_result_mode = as_a <scalar_int_mode> (result_mode);
10895 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10896 with C the size of VAROP - 1 and the shift is logical if
10897 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10898 we have an (le X 0) operation. If we have an arithmetic shift
10899 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10900 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10902 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10903 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10904 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10905 && (code == LSHIFTRT || code == ASHIFTRT)
10906 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10907 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10909 count = 0;
10910 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10911 const0_rtx);
10913 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10914 varop = gen_rtx_NEG (int_varop_mode, varop);
10916 continue;
10919 /* If we have (shift (logical)), move the logical to the outside
10920 to allow it to possibly combine with another logical and the
10921 shift to combine with another shift. This also canonicalizes to
10922 what a ZERO_EXTRACT looks like. Also, some machines have
10923 (and (shift)) insns. */
10925 if (CONST_INT_P (XEXP (varop, 1))
10926 /* We can't do this if we have (ashiftrt (xor)) and the
10927 constant has its sign bit set in shift_unit_mode with
10928 shift_unit_mode wider than result_mode. */
10929 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10930 && int_result_mode != shift_unit_mode
10931 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10932 shift_unit_mode))
10933 && (new_rtx = simplify_const_binary_operation
10934 (code, int_result_mode,
10935 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10936 GEN_INT (count))) != 0
10937 && CONST_INT_P (new_rtx)
10938 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10939 INTVAL (new_rtx), int_result_mode,
10940 &complement_p))
10942 varop = XEXP (varop, 0);
10943 continue;
10946 /* If we can't do that, try to simplify the shift in each arm of the
10947 logical expression, make a new logical expression, and apply
10948 the inverse distributive law. This also can't be done for
10949 (ashiftrt (xor)) where we've widened the shift and the constant
10950 changes the sign bit. */
10951 if (CONST_INT_P (XEXP (varop, 1))
10952 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10953 && int_result_mode != shift_unit_mode
10954 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10955 shift_unit_mode)))
10957 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10958 XEXP (varop, 0), count);
10959 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10960 XEXP (varop, 1), count);
10962 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10963 lhs, rhs);
10964 varop = apply_distributive_law (varop);
10966 count = 0;
10967 continue;
10969 break;
10971 case EQ:
10972 /* The following rules apply only to scalars. */
10973 if (shift_mode != shift_unit_mode)
10974 break;
10975 int_result_mode = as_a <scalar_int_mode> (result_mode);
10977 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10978 says that the sign bit can be tested, FOO has mode MODE, C is
10979 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10980 that may be nonzero. */
10981 if (code == LSHIFTRT
10982 && XEXP (varop, 1) == const0_rtx
10983 && GET_MODE (XEXP (varop, 0)) == int_result_mode
10984 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10985 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10986 && STORE_FLAG_VALUE == -1
10987 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10988 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10989 int_result_mode, &complement_p))
10991 varop = XEXP (varop, 0);
10992 count = 0;
10993 continue;
10995 break;
10997 case NEG:
10998 /* The following rules apply only to scalars. */
10999 if (shift_mode != shift_unit_mode)
11000 break;
11001 int_result_mode = as_a <scalar_int_mode> (result_mode);
11003 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11004 than the number of bits in the mode is equivalent to A. */
11005 if (code == LSHIFTRT
11006 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11007 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11009 varop = XEXP (varop, 0);
11010 count = 0;
11011 continue;
11014 /* NEG commutes with ASHIFT since it is multiplication. Move the
11015 NEG outside to allow shifts to combine. */
11016 if (code == ASHIFT
11017 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11018 int_result_mode, &complement_p))
11020 varop = XEXP (varop, 0);
11021 continue;
11023 break;
11025 case PLUS:
11026 /* The following rules apply only to scalars. */
11027 if (shift_mode != shift_unit_mode)
11028 break;
11029 int_result_mode = as_a <scalar_int_mode> (result_mode);
11031 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11032 is one less than the number of bits in the mode is
11033 equivalent to (xor A 1). */
11034 if (code == LSHIFTRT
11035 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11036 && XEXP (varop, 1) == constm1_rtx
11037 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11038 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11039 int_result_mode, &complement_p))
11041 count = 0;
11042 varop = XEXP (varop, 0);
11043 continue;
11046 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11047 that might be nonzero in BAR are those being shifted out and those
11048 bits are known zero in FOO, we can replace the PLUS with FOO.
11049 Similarly in the other operand order. This code occurs when
11050 we are computing the size of a variable-size array. */
11052 if ((code == ASHIFTRT || code == LSHIFTRT)
11053 && count < HOST_BITS_PER_WIDE_INT
11054 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11055 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11056 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11058 varop = XEXP (varop, 0);
11059 continue;
11061 else if ((code == ASHIFTRT || code == LSHIFTRT)
11062 && count < HOST_BITS_PER_WIDE_INT
11063 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11064 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
11065 >> count)
11066 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
11067 & nonzero_bits (XEXP (varop, 1), int_result_mode)))
11069 varop = XEXP (varop, 1);
11070 continue;
11073 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11074 if (code == ASHIFT
11075 && CONST_INT_P (XEXP (varop, 1))
11076 && (new_rtx = simplify_const_binary_operation
11077 (ASHIFT, int_result_mode,
11078 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11079 GEN_INT (count))) != 0
11080 && CONST_INT_P (new_rtx)
11081 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11082 INTVAL (new_rtx), int_result_mode,
11083 &complement_p))
11085 varop = XEXP (varop, 0);
11086 continue;
11089 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11090 signbit', and attempt to change the PLUS to an XOR and move it to
11091 the outer operation as is done above in the AND/IOR/XOR case
11092 leg for shift(logical). See details in logical handling above
11093 for reasoning in doing so. */
11094 if (code == LSHIFTRT
11095 && CONST_INT_P (XEXP (varop, 1))
11096 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11097 && (new_rtx = simplify_const_binary_operation
11098 (code, int_result_mode,
11099 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11100 GEN_INT (count))) != 0
11101 && CONST_INT_P (new_rtx)
11102 && merge_outer_ops (&outer_op, &outer_const, XOR,
11103 INTVAL (new_rtx), int_result_mode,
11104 &complement_p))
11106 varop = XEXP (varop, 0);
11107 continue;
11110 break;
11112 case MINUS:
11113 /* The following rules apply only to scalars. */
11114 if (shift_mode != shift_unit_mode)
11115 break;
11116 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11118 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11119 with C the size of VAROP - 1 and the shift is logical if
11120 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11121 we have a (gt X 0) operation. If the shift is arithmetic with
11122 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11123 we have a (neg (gt X 0)) operation. */
11125 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11126 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11127 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11128 && (code == LSHIFTRT || code == ASHIFTRT)
11129 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11130 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11131 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11133 count = 0;
11134 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11135 const0_rtx);
11137 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11138 varop = gen_rtx_NEG (int_varop_mode, varop);
11140 continue;
11142 break;
11144 case TRUNCATE:
11145 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11146 if the truncate does not affect the value. */
11147 if (code == LSHIFTRT
11148 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11149 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11150 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11151 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11152 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11154 rtx varop_inner = XEXP (varop, 0);
11156 varop_inner
11157 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11158 XEXP (varop_inner, 0),
11159 GEN_INT
11160 (count + INTVAL (XEXP (varop_inner, 1))));
11161 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11162 count = 0;
11163 continue;
11165 break;
11167 default:
11168 break;
11171 break;
11174 shift_mode = result_mode;
11175 if (shift_mode != mode)
11177 /* We only change the modes of scalar shifts. */
11178 int_mode = as_a <scalar_int_mode> (mode);
11179 int_result_mode = as_a <scalar_int_mode> (result_mode);
11180 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11181 int_mode, outer_op, outer_const);
11184 /* We have now finished analyzing the shift. The result should be
11185 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11186 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11187 to the result of the shift. OUTER_CONST is the relevant constant,
11188 but we must turn off all bits turned off in the shift. */
11190 if (outer_op == UNKNOWN
11191 && orig_code == code && orig_count == count
11192 && varop == orig_varop
11193 && shift_mode == GET_MODE (varop))
11194 return NULL_RTX;
11196 /* Make a SUBREG if necessary. If we can't make it, fail. */
11197 varop = gen_lowpart (shift_mode, varop);
11198 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11199 return NULL_RTX;
11201 /* If we have an outer operation and we just made a shift, it is
11202 possible that we could have simplified the shift were it not
11203 for the outer operation. So try to do the simplification
11204 recursively. */
11206 if (outer_op != UNKNOWN)
11207 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11208 else
11209 x = NULL_RTX;
11211 if (x == NULL_RTX)
11212 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11214 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11215 turn off all the bits that the shift would have turned off. */
11216 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11217 /* We only change the modes of scalar shifts. */
11218 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11219 x, GET_MODE_MASK (result_mode) >> orig_count);
11221 /* Do the remainder of the processing in RESULT_MODE. */
11222 x = gen_lowpart_or_truncate (result_mode, x);
11224 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11225 operation. */
11226 if (complement_p)
11227 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11229 if (outer_op != UNKNOWN)
11231 int_result_mode = as_a <scalar_int_mode> (result_mode);
11233 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11234 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11235 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11237 if (outer_op == AND)
11238 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11239 else if (outer_op == SET)
11241 /* This means that we have determined that the result is
11242 equivalent to a constant. This should be rare. */
11243 if (!side_effects_p (x))
11244 x = GEN_INT (outer_const);
11246 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11247 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11248 else
11249 x = simplify_gen_binary (outer_op, int_result_mode, x,
11250 GEN_INT (outer_const));
11253 return x;
11256 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11257 The result of the shift is RESULT_MODE. If we cannot simplify it,
11258 return X or, if it is NULL, synthesize the expression with
11259 simplify_gen_binary. Otherwise, return a simplified value.
11261 The shift is normally computed in the widest mode we find in VAROP, as
11262 long as it isn't a different number of words than RESULT_MODE. Exceptions
11263 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11265 static rtx
11266 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11267 rtx varop, int count)
11269 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11270 if (tem)
11271 return tem;
11273 if (!x)
11274 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11275 if (GET_MODE (x) != result_mode)
11276 x = gen_lowpart (result_mode, x);
11277 return x;
11281 /* A subroutine of recog_for_combine. See there for arguments and
11282 return value. */
11284 static int
11285 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11287 rtx pat = *pnewpat;
11288 rtx pat_without_clobbers;
11289 int insn_code_number;
11290 int num_clobbers_to_add = 0;
11291 int i;
11292 rtx notes = NULL_RTX;
11293 rtx old_notes, old_pat;
11294 int old_icode;
11296 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11297 we use to indicate that something didn't match. If we find such a
11298 thing, force rejection. */
11299 if (GET_CODE (pat) == PARALLEL)
11300 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11301 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11302 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11303 return -1;
11305 old_pat = PATTERN (insn);
11306 old_notes = REG_NOTES (insn);
11307 PATTERN (insn) = pat;
11308 REG_NOTES (insn) = NULL_RTX;
11310 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11311 if (dump_file && (dump_flags & TDF_DETAILS))
11313 if (insn_code_number < 0)
11314 fputs ("Failed to match this instruction:\n", dump_file);
11315 else
11316 fputs ("Successfully matched this instruction:\n", dump_file);
11317 print_rtl_single (dump_file, pat);
11320 /* If it isn't, there is the possibility that we previously had an insn
11321 that clobbered some register as a side effect, but the combined
11322 insn doesn't need to do that. So try once more without the clobbers
11323 unless this represents an ASM insn. */
11325 if (insn_code_number < 0 && ! check_asm_operands (pat)
11326 && GET_CODE (pat) == PARALLEL)
11328 int pos;
11330 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11331 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11333 if (i != pos)
11334 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11335 pos++;
11338 SUBST_INT (XVECLEN (pat, 0), pos);
11340 if (pos == 1)
11341 pat = XVECEXP (pat, 0, 0);
11343 PATTERN (insn) = pat;
11344 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11345 if (dump_file && (dump_flags & TDF_DETAILS))
11347 if (insn_code_number < 0)
11348 fputs ("Failed to match this instruction:\n", dump_file);
11349 else
11350 fputs ("Successfully matched this instruction:\n", dump_file);
11351 print_rtl_single (dump_file, pat);
11355 pat_without_clobbers = pat;
11357 PATTERN (insn) = old_pat;
11358 REG_NOTES (insn) = old_notes;
11360 /* Recognize all noop sets, these will be killed by followup pass. */
11361 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11362 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11364 /* If we had any clobbers to add, make a new pattern than contains
11365 them. Then check to make sure that all of them are dead. */
11366 if (num_clobbers_to_add)
11368 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11369 rtvec_alloc (GET_CODE (pat) == PARALLEL
11370 ? (XVECLEN (pat, 0)
11371 + num_clobbers_to_add)
11372 : num_clobbers_to_add + 1));
11374 if (GET_CODE (pat) == PARALLEL)
11375 for (i = 0; i < XVECLEN (pat, 0); i++)
11376 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11377 else
11378 XVECEXP (newpat, 0, 0) = pat;
11380 add_clobbers (newpat, insn_code_number);
11382 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11383 i < XVECLEN (newpat, 0); i++)
11385 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11386 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11387 return -1;
11388 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11390 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11391 notes = alloc_reg_note (REG_UNUSED,
11392 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11395 pat = newpat;
11398 if (insn_code_number >= 0
11399 && insn_code_number != NOOP_MOVE_INSN_CODE)
11401 old_pat = PATTERN (insn);
11402 old_notes = REG_NOTES (insn);
11403 old_icode = INSN_CODE (insn);
11404 PATTERN (insn) = pat;
11405 REG_NOTES (insn) = notes;
11406 INSN_CODE (insn) = insn_code_number;
11408 /* Allow targets to reject combined insn. */
11409 if (!targetm.legitimate_combined_insn (insn))
11411 if (dump_file && (dump_flags & TDF_DETAILS))
11412 fputs ("Instruction not appropriate for target.",
11413 dump_file);
11415 /* Callers expect recog_for_combine to strip
11416 clobbers from the pattern on failure. */
11417 pat = pat_without_clobbers;
11418 notes = NULL_RTX;
11420 insn_code_number = -1;
11423 PATTERN (insn) = old_pat;
11424 REG_NOTES (insn) = old_notes;
11425 INSN_CODE (insn) = old_icode;
11428 *pnewpat = pat;
11429 *pnotes = notes;
11431 return insn_code_number;
11434 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11435 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11436 Return whether anything was so changed. */
11438 static bool
11439 change_zero_ext (rtx pat)
11441 bool changed = false;
11442 rtx *src = &SET_SRC (pat);
11444 subrtx_ptr_iterator::array_type array;
11445 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11447 rtx x = **iter;
11448 scalar_int_mode mode, inner_mode;
11449 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11450 continue;
11451 int size;
11453 if (GET_CODE (x) == ZERO_EXTRACT
11454 && CONST_INT_P (XEXP (x, 1))
11455 && CONST_INT_P (XEXP (x, 2))
11456 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11457 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11459 size = INTVAL (XEXP (x, 1));
11461 int start = INTVAL (XEXP (x, 2));
11462 if (BITS_BIG_ENDIAN)
11463 start = GET_MODE_PRECISION (inner_mode) - size - start;
11465 if (start)
11466 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11467 else
11468 x = XEXP (x, 0);
11469 if (mode != inner_mode)
11470 x = gen_lowpart_SUBREG (mode, x);
11472 else if (GET_CODE (x) == ZERO_EXTEND
11473 && GET_CODE (XEXP (x, 0)) == SUBREG
11474 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11475 && !paradoxical_subreg_p (XEXP (x, 0))
11476 && subreg_lowpart_p (XEXP (x, 0)))
11478 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11479 size = GET_MODE_PRECISION (inner_mode);
11480 x = SUBREG_REG (XEXP (x, 0));
11481 if (GET_MODE (x) != mode)
11482 x = gen_lowpart_SUBREG (mode, x);
11484 else if (GET_CODE (x) == ZERO_EXTEND
11485 && REG_P (XEXP (x, 0))
11486 && HARD_REGISTER_P (XEXP (x, 0))
11487 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11489 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11490 size = GET_MODE_PRECISION (inner_mode);
11491 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11493 else
11494 continue;
11496 if (!(GET_CODE (x) == LSHIFTRT
11497 && CONST_INT_P (XEXP (x, 1))
11498 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11500 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11501 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11504 SUBST (**iter, x);
11505 changed = true;
11508 if (changed)
11509 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11510 maybe_swap_commutative_operands (**iter);
11512 rtx *dst = &SET_DEST (pat);
11513 scalar_int_mode mode;
11514 if (GET_CODE (*dst) == ZERO_EXTRACT
11515 && REG_P (XEXP (*dst, 0))
11516 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11517 && CONST_INT_P (XEXP (*dst, 1))
11518 && CONST_INT_P (XEXP (*dst, 2)))
11520 rtx reg = XEXP (*dst, 0);
11521 int width = INTVAL (XEXP (*dst, 1));
11522 int offset = INTVAL (XEXP (*dst, 2));
11523 int reg_width = GET_MODE_PRECISION (mode);
11524 if (BITS_BIG_ENDIAN)
11525 offset = reg_width - width - offset;
11527 rtx x, y, z, w;
11528 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11529 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11530 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11531 if (offset)
11532 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11533 else
11534 y = SET_SRC (pat);
11535 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11536 w = gen_rtx_IOR (mode, x, z);
11537 SUBST (SET_DEST (pat), reg);
11538 SUBST (SET_SRC (pat), w);
11540 changed = true;
11543 return changed;
11546 /* Like recog, but we receive the address of a pointer to a new pattern.
11547 We try to match the rtx that the pointer points to.
11548 If that fails, we may try to modify or replace the pattern,
11549 storing the replacement into the same pointer object.
11551 Modifications include deletion or addition of CLOBBERs. If the
11552 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11553 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11554 (and undo if that fails).
11556 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11557 the CLOBBERs are placed.
11559 The value is the final insn code from the pattern ultimately matched,
11560 or -1. */
11562 static int
11563 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11565 rtx pat = *pnewpat;
11566 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11567 if (insn_code_number >= 0 || check_asm_operands (pat))
11568 return insn_code_number;
11570 void *marker = get_undo_marker ();
11571 bool changed = false;
11573 if (GET_CODE (pat) == SET)
11574 changed = change_zero_ext (pat);
11575 else if (GET_CODE (pat) == PARALLEL)
11577 int i;
11578 for (i = 0; i < XVECLEN (pat, 0); i++)
11580 rtx set = XVECEXP (pat, 0, i);
11581 if (GET_CODE (set) == SET)
11582 changed |= change_zero_ext (set);
11586 if (changed)
11588 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11590 if (insn_code_number < 0)
11591 undo_to_marker (marker);
11594 return insn_code_number;
11597 /* Like gen_lowpart_general but for use by combine. In combine it
11598 is not possible to create any new pseudoregs. However, it is
11599 safe to create invalid memory addresses, because combine will
11600 try to recognize them and all they will do is make the combine
11601 attempt fail.
11603 If for some reason this cannot do its job, an rtx
11604 (clobber (const_int 0)) is returned.
11605 An insn containing that will not be recognized. */
11607 static rtx
11608 gen_lowpart_for_combine (machine_mode omode, rtx x)
11610 machine_mode imode = GET_MODE (x);
11611 unsigned int osize = GET_MODE_SIZE (omode);
11612 unsigned int isize = GET_MODE_SIZE (imode);
11613 rtx result;
11615 if (omode == imode)
11616 return x;
11618 /* We can only support MODE being wider than a word if X is a
11619 constant integer or has a mode the same size. */
11620 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11621 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11622 goto fail;
11624 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11625 won't know what to do. So we will strip off the SUBREG here and
11626 process normally. */
11627 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11629 x = SUBREG_REG (x);
11631 /* For use in case we fall down into the address adjustments
11632 further below, we need to adjust the known mode and size of
11633 x; imode and isize, since we just adjusted x. */
11634 imode = GET_MODE (x);
11636 if (imode == omode)
11637 return x;
11639 isize = GET_MODE_SIZE (imode);
11642 result = gen_lowpart_common (omode, x);
11644 if (result)
11645 return result;
11647 if (MEM_P (x))
11649 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11650 address. */
11651 if (MEM_VOLATILE_P (x)
11652 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11653 goto fail;
11655 /* If we want to refer to something bigger than the original memref,
11656 generate a paradoxical subreg instead. That will force a reload
11657 of the original memref X. */
11658 if (paradoxical_subreg_p (omode, imode))
11659 return gen_rtx_SUBREG (omode, x, 0);
11661 HOST_WIDE_INT offset = byte_lowpart_offset (omode, imode);
11662 return adjust_address_nv (x, omode, offset);
11665 /* If X is a comparison operator, rewrite it in a new mode. This
11666 probably won't match, but may allow further simplifications. */
11667 else if (COMPARISON_P (x))
11668 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11670 /* If we couldn't simplify X any other way, just enclose it in a
11671 SUBREG. Normally, this SUBREG won't match, but some patterns may
11672 include an explicit SUBREG or we may simplify it further in combine. */
11673 else
11675 rtx res;
11677 if (imode == VOIDmode)
11679 imode = int_mode_for_mode (omode).require ();
11680 x = gen_lowpart_common (imode, x);
11681 if (x == NULL)
11682 goto fail;
11684 res = lowpart_subreg (omode, x, imode);
11685 if (res)
11686 return res;
11689 fail:
11690 return gen_rtx_CLOBBER (omode, const0_rtx);
11693 /* Try to simplify a comparison between OP0 and a constant OP1,
11694 where CODE is the comparison code that will be tested, into a
11695 (CODE OP0 const0_rtx) form.
11697 The result is a possibly different comparison code to use.
11698 *POP1 may be updated. */
11700 static enum rtx_code
11701 simplify_compare_const (enum rtx_code code, machine_mode mode,
11702 rtx op0, rtx *pop1)
11704 scalar_int_mode int_mode;
11705 HOST_WIDE_INT const_op = INTVAL (*pop1);
11707 /* Get the constant we are comparing against and turn off all bits
11708 not on in our mode. */
11709 if (mode != VOIDmode)
11710 const_op = trunc_int_for_mode (const_op, mode);
11712 /* If we are comparing against a constant power of two and the value
11713 being compared can only have that single bit nonzero (e.g., it was
11714 `and'ed with that bit), we can replace this with a comparison
11715 with zero. */
11716 if (const_op
11717 && (code == EQ || code == NE || code == GE || code == GEU
11718 || code == LT || code == LTU)
11719 && is_a <scalar_int_mode> (mode, &int_mode)
11720 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11721 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11722 && (nonzero_bits (op0, int_mode)
11723 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11725 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11726 const_op = 0;
11729 /* Similarly, if we are comparing a value known to be either -1 or
11730 0 with -1, change it to the opposite comparison against zero. */
11731 if (const_op == -1
11732 && (code == EQ || code == NE || code == GT || code == LE
11733 || code == GEU || code == LTU)
11734 && is_a <scalar_int_mode> (mode, &int_mode)
11735 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11737 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11738 const_op = 0;
11741 /* Do some canonicalizations based on the comparison code. We prefer
11742 comparisons against zero and then prefer equality comparisons.
11743 If we can reduce the size of a constant, we will do that too. */
11744 switch (code)
11746 case LT:
11747 /* < C is equivalent to <= (C - 1) */
11748 if (const_op > 0)
11750 const_op -= 1;
11751 code = LE;
11752 /* ... fall through to LE case below. */
11753 gcc_fallthrough ();
11755 else
11756 break;
11758 case LE:
11759 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11760 if (const_op < 0)
11762 const_op += 1;
11763 code = LT;
11766 /* If we are doing a <= 0 comparison on a value known to have
11767 a zero sign bit, we can replace this with == 0. */
11768 else if (const_op == 0
11769 && is_a <scalar_int_mode> (mode, &int_mode)
11770 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11771 && (nonzero_bits (op0, int_mode)
11772 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11773 == 0)
11774 code = EQ;
11775 break;
11777 case GE:
11778 /* >= C is equivalent to > (C - 1). */
11779 if (const_op > 0)
11781 const_op -= 1;
11782 code = GT;
11783 /* ... fall through to GT below. */
11784 gcc_fallthrough ();
11786 else
11787 break;
11789 case GT:
11790 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11791 if (const_op < 0)
11793 const_op += 1;
11794 code = GE;
11797 /* If we are doing a > 0 comparison on a value known to have
11798 a zero sign bit, we can replace this with != 0. */
11799 else if (const_op == 0
11800 && is_a <scalar_int_mode> (mode, &int_mode)
11801 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11802 && (nonzero_bits (op0, int_mode)
11803 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11804 == 0)
11805 code = NE;
11806 break;
11808 case LTU:
11809 /* < C is equivalent to <= (C - 1). */
11810 if (const_op > 0)
11812 const_op -= 1;
11813 code = LEU;
11814 /* ... fall through ... */
11815 gcc_fallthrough ();
11817 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11818 else if (is_a <scalar_int_mode> (mode, &int_mode)
11819 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11820 && ((unsigned HOST_WIDE_INT) const_op
11821 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11823 const_op = 0;
11824 code = GE;
11825 break;
11827 else
11828 break;
11830 case LEU:
11831 /* unsigned <= 0 is equivalent to == 0 */
11832 if (const_op == 0)
11833 code = EQ;
11834 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11835 else if (is_a <scalar_int_mode> (mode, &int_mode)
11836 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11837 && ((unsigned HOST_WIDE_INT) const_op
11838 == ((HOST_WIDE_INT_1U
11839 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11841 const_op = 0;
11842 code = GE;
11844 break;
11846 case GEU:
11847 /* >= C is equivalent to > (C - 1). */
11848 if (const_op > 1)
11850 const_op -= 1;
11851 code = GTU;
11852 /* ... fall through ... */
11853 gcc_fallthrough ();
11856 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11857 else if (is_a <scalar_int_mode> (mode, &int_mode)
11858 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11859 && ((unsigned HOST_WIDE_INT) const_op
11860 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11862 const_op = 0;
11863 code = LT;
11864 break;
11866 else
11867 break;
11869 case GTU:
11870 /* unsigned > 0 is equivalent to != 0 */
11871 if (const_op == 0)
11872 code = NE;
11873 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11874 else if (is_a <scalar_int_mode> (mode, &int_mode)
11875 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11876 && ((unsigned HOST_WIDE_INT) const_op
11877 == (HOST_WIDE_INT_1U
11878 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11880 const_op = 0;
11881 code = LT;
11883 break;
11885 default:
11886 break;
11889 *pop1 = GEN_INT (const_op);
11890 return code;
11893 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11894 comparison code that will be tested.
11896 The result is a possibly different comparison code to use. *POP0 and
11897 *POP1 may be updated.
11899 It is possible that we might detect that a comparison is either always
11900 true or always false. However, we do not perform general constant
11901 folding in combine, so this knowledge isn't useful. Such tautologies
11902 should have been detected earlier. Hence we ignore all such cases. */
11904 static enum rtx_code
11905 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11907 rtx op0 = *pop0;
11908 rtx op1 = *pop1;
11909 rtx tem, tem1;
11910 int i;
11911 scalar_int_mode mode, inner_mode, tmode;
11912 opt_scalar_int_mode tmode_iter;
11914 /* Try a few ways of applying the same transformation to both operands. */
11915 while (1)
11917 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11918 so check specially. */
11919 if (!WORD_REGISTER_OPERATIONS
11920 && code != GTU && code != GEU && code != LTU && code != LEU
11921 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11922 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11923 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11924 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11925 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11926 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11927 && (is_a <scalar_int_mode>
11928 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11929 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11930 && CONST_INT_P (XEXP (op0, 1))
11931 && XEXP (op0, 1) == XEXP (op1, 1)
11932 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11933 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11934 && (INTVAL (XEXP (op0, 1))
11935 == (GET_MODE_PRECISION (mode)
11936 - GET_MODE_PRECISION (inner_mode))))
11938 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11939 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11942 /* If both operands are the same constant shift, see if we can ignore the
11943 shift. We can if the shift is a rotate or if the bits shifted out of
11944 this shift are known to be zero for both inputs and if the type of
11945 comparison is compatible with the shift. */
11946 if (GET_CODE (op0) == GET_CODE (op1)
11947 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11948 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11949 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11950 && (code != GT && code != LT && code != GE && code != LE))
11951 || (GET_CODE (op0) == ASHIFTRT
11952 && (code != GTU && code != LTU
11953 && code != GEU && code != LEU)))
11954 && CONST_INT_P (XEXP (op0, 1))
11955 && INTVAL (XEXP (op0, 1)) >= 0
11956 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11957 && XEXP (op0, 1) == XEXP (op1, 1))
11959 machine_mode mode = GET_MODE (op0);
11960 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11961 int shift_count = INTVAL (XEXP (op0, 1));
11963 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11964 mask &= (mask >> shift_count) << shift_count;
11965 else if (GET_CODE (op0) == ASHIFT)
11966 mask = (mask & (mask << shift_count)) >> shift_count;
11968 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11969 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11970 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11971 else
11972 break;
11975 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11976 SUBREGs are of the same mode, and, in both cases, the AND would
11977 be redundant if the comparison was done in the narrower mode,
11978 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11979 and the operand's possibly nonzero bits are 0xffffff01; in that case
11980 if we only care about QImode, we don't need the AND). This case
11981 occurs if the output mode of an scc insn is not SImode and
11982 STORE_FLAG_VALUE == 1 (e.g., the 386).
11984 Similarly, check for a case where the AND's are ZERO_EXTEND
11985 operations from some narrower mode even though a SUBREG is not
11986 present. */
11988 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11989 && CONST_INT_P (XEXP (op0, 1))
11990 && CONST_INT_P (XEXP (op1, 1)))
11992 rtx inner_op0 = XEXP (op0, 0);
11993 rtx inner_op1 = XEXP (op1, 0);
11994 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11995 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11996 int changed = 0;
11998 if (paradoxical_subreg_p (inner_op0)
11999 && GET_CODE (inner_op1) == SUBREG
12000 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12001 && (GET_MODE (SUBREG_REG (inner_op0))
12002 == GET_MODE (SUBREG_REG (inner_op1)))
12003 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12004 GET_MODE (SUBREG_REG (inner_op0)))))
12005 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12006 GET_MODE (SUBREG_REG (inner_op1))))))
12008 op0 = SUBREG_REG (inner_op0);
12009 op1 = SUBREG_REG (inner_op1);
12011 /* The resulting comparison is always unsigned since we masked
12012 off the original sign bit. */
12013 code = unsigned_condition (code);
12015 changed = 1;
12018 else if (c0 == c1)
12019 FOR_EACH_MODE_UNTIL (tmode,
12020 as_a <scalar_int_mode> (GET_MODE (op0)))
12021 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12023 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12024 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12025 code = unsigned_condition (code);
12026 changed = 1;
12027 break;
12030 if (! changed)
12031 break;
12034 /* If both operands are NOT, we can strip off the outer operation
12035 and adjust the comparison code for swapped operands; similarly for
12036 NEG, except that this must be an equality comparison. */
12037 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12038 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12039 && (code == EQ || code == NE)))
12040 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12042 else
12043 break;
12046 /* If the first operand is a constant, swap the operands and adjust the
12047 comparison code appropriately, but don't do this if the second operand
12048 is already a constant integer. */
12049 if (swap_commutative_operands_p (op0, op1))
12051 std::swap (op0, op1);
12052 code = swap_condition (code);
12055 /* We now enter a loop during which we will try to simplify the comparison.
12056 For the most part, we only are concerned with comparisons with zero,
12057 but some things may really be comparisons with zero but not start
12058 out looking that way. */
12060 while (CONST_INT_P (op1))
12062 machine_mode raw_mode = GET_MODE (op0);
12063 scalar_int_mode int_mode;
12064 int equality_comparison_p;
12065 int sign_bit_comparison_p;
12066 int unsigned_comparison_p;
12067 HOST_WIDE_INT const_op;
12069 /* We only want to handle integral modes. This catches VOIDmode,
12070 CCmode, and the floating-point modes. An exception is that we
12071 can handle VOIDmode if OP0 is a COMPARE or a comparison
12072 operation. */
12074 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12075 && ! (raw_mode == VOIDmode
12076 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12077 break;
12079 /* Try to simplify the compare to constant, possibly changing the
12080 comparison op, and/or changing op1 to zero. */
12081 code = simplify_compare_const (code, raw_mode, op0, &op1);
12082 const_op = INTVAL (op1);
12084 /* Compute some predicates to simplify code below. */
12086 equality_comparison_p = (code == EQ || code == NE);
12087 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12088 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12089 || code == GEU);
12091 /* If this is a sign bit comparison and we can do arithmetic in
12092 MODE, say that we will only be needing the sign bit of OP0. */
12093 if (sign_bit_comparison_p
12094 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12095 && HWI_COMPUTABLE_MODE_P (int_mode))
12096 op0 = force_to_mode (op0, int_mode,
12097 HOST_WIDE_INT_1U
12098 << (GET_MODE_PRECISION (int_mode) - 1),
12101 if (COMPARISON_P (op0))
12103 /* We can't do anything if OP0 is a condition code value, rather
12104 than an actual data value. */
12105 if (const_op != 0
12106 || CC0_P (XEXP (op0, 0))
12107 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12108 break;
12110 /* Get the two operands being compared. */
12111 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12112 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12113 else
12114 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12116 /* Check for the cases where we simply want the result of the
12117 earlier test or the opposite of that result. */
12118 if (code == NE || code == EQ
12119 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12120 && (code == LT || code == GE)))
12122 enum rtx_code new_code;
12123 if (code == LT || code == NE)
12124 new_code = GET_CODE (op0);
12125 else
12126 new_code = reversed_comparison_code (op0, NULL);
12128 if (new_code != UNKNOWN)
12130 code = new_code;
12131 op0 = tem;
12132 op1 = tem1;
12133 continue;
12136 break;
12139 if (raw_mode == VOIDmode)
12140 break;
12141 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12143 /* Now try cases based on the opcode of OP0. If none of the cases
12144 does a "continue", we exit this loop immediately after the
12145 switch. */
12147 unsigned int mode_width = GET_MODE_PRECISION (mode);
12148 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12149 switch (GET_CODE (op0))
12151 case ZERO_EXTRACT:
12152 /* If we are extracting a single bit from a variable position in
12153 a constant that has only a single bit set and are comparing it
12154 with zero, we can convert this into an equality comparison
12155 between the position and the location of the single bit. */
12156 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12157 have already reduced the shift count modulo the word size. */
12158 if (!SHIFT_COUNT_TRUNCATED
12159 && CONST_INT_P (XEXP (op0, 0))
12160 && XEXP (op0, 1) == const1_rtx
12161 && equality_comparison_p && const_op == 0
12162 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12164 if (BITS_BIG_ENDIAN)
12165 i = BITS_PER_WORD - 1 - i;
12167 op0 = XEXP (op0, 2);
12168 op1 = GEN_INT (i);
12169 const_op = i;
12171 /* Result is nonzero iff shift count is equal to I. */
12172 code = reverse_condition (code);
12173 continue;
12176 /* fall through */
12178 case SIGN_EXTRACT:
12179 tem = expand_compound_operation (op0);
12180 if (tem != op0)
12182 op0 = tem;
12183 continue;
12185 break;
12187 case NOT:
12188 /* If testing for equality, we can take the NOT of the constant. */
12189 if (equality_comparison_p
12190 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12192 op0 = XEXP (op0, 0);
12193 op1 = tem;
12194 continue;
12197 /* If just looking at the sign bit, reverse the sense of the
12198 comparison. */
12199 if (sign_bit_comparison_p)
12201 op0 = XEXP (op0, 0);
12202 code = (code == GE ? LT : GE);
12203 continue;
12205 break;
12207 case NEG:
12208 /* If testing for equality, we can take the NEG of the constant. */
12209 if (equality_comparison_p
12210 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12212 op0 = XEXP (op0, 0);
12213 op1 = tem;
12214 continue;
12217 /* The remaining cases only apply to comparisons with zero. */
12218 if (const_op != 0)
12219 break;
12221 /* When X is ABS or is known positive,
12222 (neg X) is < 0 if and only if X != 0. */
12224 if (sign_bit_comparison_p
12225 && (GET_CODE (XEXP (op0, 0)) == ABS
12226 || (mode_width <= HOST_BITS_PER_WIDE_INT
12227 && (nonzero_bits (XEXP (op0, 0), mode)
12228 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12229 == 0)))
12231 op0 = XEXP (op0, 0);
12232 code = (code == LT ? NE : EQ);
12233 continue;
12236 /* If we have NEG of something whose two high-order bits are the
12237 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12238 if (num_sign_bit_copies (op0, mode) >= 2)
12240 op0 = XEXP (op0, 0);
12241 code = swap_condition (code);
12242 continue;
12244 break;
12246 case ROTATE:
12247 /* If we are testing equality and our count is a constant, we
12248 can perform the inverse operation on our RHS. */
12249 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12250 && (tem = simplify_binary_operation (ROTATERT, mode,
12251 op1, XEXP (op0, 1))) != 0)
12253 op0 = XEXP (op0, 0);
12254 op1 = tem;
12255 continue;
12258 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12259 a particular bit. Convert it to an AND of a constant of that
12260 bit. This will be converted into a ZERO_EXTRACT. */
12261 if (const_op == 0 && sign_bit_comparison_p
12262 && CONST_INT_P (XEXP (op0, 1))
12263 && mode_width <= HOST_BITS_PER_WIDE_INT)
12265 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12266 (HOST_WIDE_INT_1U
12267 << (mode_width - 1
12268 - INTVAL (XEXP (op0, 1)))));
12269 code = (code == LT ? NE : EQ);
12270 continue;
12273 /* Fall through. */
12275 case ABS:
12276 /* ABS is ignorable inside an equality comparison with zero. */
12277 if (const_op == 0 && equality_comparison_p)
12279 op0 = XEXP (op0, 0);
12280 continue;
12282 break;
12284 case SIGN_EXTEND:
12285 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12286 (compare FOO CONST) if CONST fits in FOO's mode and we
12287 are either testing inequality or have an unsigned
12288 comparison with ZERO_EXTEND or a signed comparison with
12289 SIGN_EXTEND. But don't do it if we don't have a compare
12290 insn of the given mode, since we'd have to revert it
12291 later on, and then we wouldn't know whether to sign- or
12292 zero-extend. */
12293 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12294 && ! unsigned_comparison_p
12295 && HWI_COMPUTABLE_MODE_P (mode)
12296 && trunc_int_for_mode (const_op, mode) == const_op
12297 && have_insn_for (COMPARE, mode))
12299 op0 = XEXP (op0, 0);
12300 continue;
12302 break;
12304 case SUBREG:
12305 /* Check for the case where we are comparing A - C1 with C2, that is
12307 (subreg:MODE (plus (A) (-C1))) op (C2)
12309 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12310 comparison in the wider mode. One of the following two conditions
12311 must be true in order for this to be valid:
12313 1. The mode extension results in the same bit pattern being added
12314 on both sides and the comparison is equality or unsigned. As
12315 C2 has been truncated to fit in MODE, the pattern can only be
12316 all 0s or all 1s.
12318 2. The mode extension results in the sign bit being copied on
12319 each side.
12321 The difficulty here is that we have predicates for A but not for
12322 (A - C1) so we need to check that C1 is within proper bounds so
12323 as to perturbate A as little as possible. */
12325 if (mode_width <= HOST_BITS_PER_WIDE_INT
12326 && subreg_lowpart_p (op0)
12327 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12328 &inner_mode)
12329 && GET_MODE_PRECISION (inner_mode) > mode_width
12330 && GET_CODE (SUBREG_REG (op0)) == PLUS
12331 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12333 rtx a = XEXP (SUBREG_REG (op0), 0);
12334 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12336 if ((c1 > 0
12337 && (unsigned HOST_WIDE_INT) c1
12338 < HOST_WIDE_INT_1U << (mode_width - 1)
12339 && (equality_comparison_p || unsigned_comparison_p)
12340 /* (A - C1) zero-extends if it is positive and sign-extends
12341 if it is negative, C2 both zero- and sign-extends. */
12342 && ((0 == (nonzero_bits (a, inner_mode)
12343 & ~GET_MODE_MASK (mode))
12344 && const_op >= 0)
12345 /* (A - C1) sign-extends if it is positive and 1-extends
12346 if it is negative, C2 both sign- and 1-extends. */
12347 || (num_sign_bit_copies (a, inner_mode)
12348 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12349 - mode_width)
12350 && const_op < 0)))
12351 || ((unsigned HOST_WIDE_INT) c1
12352 < HOST_WIDE_INT_1U << (mode_width - 2)
12353 /* (A - C1) always sign-extends, like C2. */
12354 && num_sign_bit_copies (a, inner_mode)
12355 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12356 - (mode_width - 1))))
12358 op0 = SUBREG_REG (op0);
12359 continue;
12363 /* If the inner mode is narrower and we are extracting the low part,
12364 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12365 if (paradoxical_subreg_p (op0))
12367 else if (subreg_lowpart_p (op0)
12368 && GET_MODE_CLASS (mode) == MODE_INT
12369 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12370 && (code == NE || code == EQ)
12371 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12372 && !paradoxical_subreg_p (op0)
12373 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12374 & ~GET_MODE_MASK (mode)) == 0)
12376 /* Remove outer subregs that don't do anything. */
12377 tem = gen_lowpart (inner_mode, op1);
12379 if ((nonzero_bits (tem, inner_mode)
12380 & ~GET_MODE_MASK (mode)) == 0)
12382 op0 = SUBREG_REG (op0);
12383 op1 = tem;
12384 continue;
12386 break;
12388 else
12389 break;
12391 /* FALLTHROUGH */
12393 case ZERO_EXTEND:
12394 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12395 && (unsigned_comparison_p || equality_comparison_p)
12396 && HWI_COMPUTABLE_MODE_P (mode)
12397 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12398 && const_op >= 0
12399 && have_insn_for (COMPARE, mode))
12401 op0 = XEXP (op0, 0);
12402 continue;
12404 break;
12406 case PLUS:
12407 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12408 this for equality comparisons due to pathological cases involving
12409 overflows. */
12410 if (equality_comparison_p
12411 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12412 op1, XEXP (op0, 1))))
12414 op0 = XEXP (op0, 0);
12415 op1 = tem;
12416 continue;
12419 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12420 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12421 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12423 op0 = XEXP (XEXP (op0, 0), 0);
12424 code = (code == LT ? EQ : NE);
12425 continue;
12427 break;
12429 case MINUS:
12430 /* We used to optimize signed comparisons against zero, but that
12431 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12432 arrive here as equality comparisons, or (GEU, LTU) are
12433 optimized away. No need to special-case them. */
12435 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12436 (eq B (minus A C)), whichever simplifies. We can only do
12437 this for equality comparisons due to pathological cases involving
12438 overflows. */
12439 if (equality_comparison_p
12440 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12441 XEXP (op0, 1), op1)))
12443 op0 = XEXP (op0, 0);
12444 op1 = tem;
12445 continue;
12448 if (equality_comparison_p
12449 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12450 XEXP (op0, 0), op1)))
12452 op0 = XEXP (op0, 1);
12453 op1 = tem;
12454 continue;
12457 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12458 of bits in X minus 1, is one iff X > 0. */
12459 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12460 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12461 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12462 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12464 op0 = XEXP (op0, 1);
12465 code = (code == GE ? LE : GT);
12466 continue;
12468 break;
12470 case XOR:
12471 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12472 if C is zero or B is a constant. */
12473 if (equality_comparison_p
12474 && 0 != (tem = simplify_binary_operation (XOR, mode,
12475 XEXP (op0, 1), op1)))
12477 op0 = XEXP (op0, 0);
12478 op1 = tem;
12479 continue;
12481 break;
12484 case IOR:
12485 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12486 iff X <= 0. */
12487 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12488 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12489 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12491 op0 = XEXP (op0, 1);
12492 code = (code == GE ? GT : LE);
12493 continue;
12495 break;
12497 case AND:
12498 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12499 will be converted to a ZERO_EXTRACT later. */
12500 if (const_op == 0 && equality_comparison_p
12501 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12502 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12504 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12505 XEXP (XEXP (op0, 0), 1));
12506 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12507 continue;
12510 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12511 zero and X is a comparison and C1 and C2 describe only bits set
12512 in STORE_FLAG_VALUE, we can compare with X. */
12513 if (const_op == 0 && equality_comparison_p
12514 && mode_width <= HOST_BITS_PER_WIDE_INT
12515 && CONST_INT_P (XEXP (op0, 1))
12516 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12517 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12518 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12519 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12521 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12522 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12523 if ((~STORE_FLAG_VALUE & mask) == 0
12524 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12525 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12526 && COMPARISON_P (tem))))
12528 op0 = XEXP (XEXP (op0, 0), 0);
12529 continue;
12533 /* If we are doing an equality comparison of an AND of a bit equal
12534 to the sign bit, replace this with a LT or GE comparison of
12535 the underlying value. */
12536 if (equality_comparison_p
12537 && const_op == 0
12538 && CONST_INT_P (XEXP (op0, 1))
12539 && mode_width <= HOST_BITS_PER_WIDE_INT
12540 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12541 == HOST_WIDE_INT_1U << (mode_width - 1)))
12543 op0 = XEXP (op0, 0);
12544 code = (code == EQ ? GE : LT);
12545 continue;
12548 /* If this AND operation is really a ZERO_EXTEND from a narrower
12549 mode, the constant fits within that mode, and this is either an
12550 equality or unsigned comparison, try to do this comparison in
12551 the narrower mode.
12553 Note that in:
12555 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12556 -> (ne:DI (reg:SI 4) (const_int 0))
12558 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12559 known to hold a value of the required mode the
12560 transformation is invalid. */
12561 if ((equality_comparison_p || unsigned_comparison_p)
12562 && CONST_INT_P (XEXP (op0, 1))
12563 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12564 & GET_MODE_MASK (mode))
12565 + 1)) >= 0
12566 && const_op >> i == 0
12567 && int_mode_for_size (i, 1).exists (&tmode))
12569 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12570 continue;
12573 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12574 fits in both M1 and M2 and the SUBREG is either paradoxical
12575 or represents the low part, permute the SUBREG and the AND
12576 and try again. */
12577 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12578 && CONST_INT_P (XEXP (op0, 1)))
12580 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12581 /* Require an integral mode, to avoid creating something like
12582 (AND:SF ...). */
12583 if ((is_a <scalar_int_mode>
12584 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12585 /* It is unsafe to commute the AND into the SUBREG if the
12586 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12587 not defined. As originally written the upper bits
12588 have a defined value due to the AND operation.
12589 However, if we commute the AND inside the SUBREG then
12590 they no longer have defined values and the meaning of
12591 the code has been changed.
12592 Also C1 should not change value in the smaller mode,
12593 see PR67028 (a positive C1 can become negative in the
12594 smaller mode, so that the AND does no longer mask the
12595 upper bits). */
12596 && ((WORD_REGISTER_OPERATIONS
12597 && mode_width > GET_MODE_PRECISION (tmode)
12598 && mode_width <= BITS_PER_WORD
12599 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12600 || (mode_width <= GET_MODE_PRECISION (tmode)
12601 && subreg_lowpart_p (XEXP (op0, 0))))
12602 && mode_width <= HOST_BITS_PER_WIDE_INT
12603 && HWI_COMPUTABLE_MODE_P (tmode)
12604 && (c1 & ~mask) == 0
12605 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12606 && c1 != mask
12607 && c1 != GET_MODE_MASK (tmode))
12609 op0 = simplify_gen_binary (AND, tmode,
12610 SUBREG_REG (XEXP (op0, 0)),
12611 gen_int_mode (c1, tmode));
12612 op0 = gen_lowpart (mode, op0);
12613 continue;
12617 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12618 if (const_op == 0 && equality_comparison_p
12619 && XEXP (op0, 1) == const1_rtx
12620 && GET_CODE (XEXP (op0, 0)) == NOT)
12622 op0 = simplify_and_const_int (NULL_RTX, mode,
12623 XEXP (XEXP (op0, 0), 0), 1);
12624 code = (code == NE ? EQ : NE);
12625 continue;
12628 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12629 (eq (and (lshiftrt X) 1) 0).
12630 Also handle the case where (not X) is expressed using xor. */
12631 if (const_op == 0 && equality_comparison_p
12632 && XEXP (op0, 1) == const1_rtx
12633 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12635 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12636 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12638 if (GET_CODE (shift_op) == NOT
12639 || (GET_CODE (shift_op) == XOR
12640 && CONST_INT_P (XEXP (shift_op, 1))
12641 && CONST_INT_P (shift_count)
12642 && HWI_COMPUTABLE_MODE_P (mode)
12643 && (UINTVAL (XEXP (shift_op, 1))
12644 == HOST_WIDE_INT_1U
12645 << INTVAL (shift_count))))
12648 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12649 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12650 code = (code == NE ? EQ : NE);
12651 continue;
12654 break;
12656 case ASHIFT:
12657 /* If we have (compare (ashift FOO N) (const_int C)) and
12658 the high order N bits of FOO (N+1 if an inequality comparison)
12659 are known to be zero, we can do this by comparing FOO with C
12660 shifted right N bits so long as the low-order N bits of C are
12661 zero. */
12662 if (CONST_INT_P (XEXP (op0, 1))
12663 && INTVAL (XEXP (op0, 1)) >= 0
12664 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12665 < HOST_BITS_PER_WIDE_INT)
12666 && (((unsigned HOST_WIDE_INT) const_op
12667 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12668 - 1)) == 0)
12669 && mode_width <= HOST_BITS_PER_WIDE_INT
12670 && (nonzero_bits (XEXP (op0, 0), mode)
12671 & ~(mask >> (INTVAL (XEXP (op0, 1))
12672 + ! equality_comparison_p))) == 0)
12674 /* We must perform a logical shift, not an arithmetic one,
12675 as we want the top N bits of C to be zero. */
12676 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12678 temp >>= INTVAL (XEXP (op0, 1));
12679 op1 = gen_int_mode (temp, mode);
12680 op0 = XEXP (op0, 0);
12681 continue;
12684 /* If we are doing a sign bit comparison, it means we are testing
12685 a particular bit. Convert it to the appropriate AND. */
12686 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12687 && mode_width <= HOST_BITS_PER_WIDE_INT)
12689 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12690 (HOST_WIDE_INT_1U
12691 << (mode_width - 1
12692 - INTVAL (XEXP (op0, 1)))));
12693 code = (code == LT ? NE : EQ);
12694 continue;
12697 /* If this an equality comparison with zero and we are shifting
12698 the low bit to the sign bit, we can convert this to an AND of the
12699 low-order bit. */
12700 if (const_op == 0 && equality_comparison_p
12701 && CONST_INT_P (XEXP (op0, 1))
12702 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12704 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12705 continue;
12707 break;
12709 case ASHIFTRT:
12710 /* If this is an equality comparison with zero, we can do this
12711 as a logical shift, which might be much simpler. */
12712 if (equality_comparison_p && const_op == 0
12713 && CONST_INT_P (XEXP (op0, 1)))
12715 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12716 XEXP (op0, 0),
12717 INTVAL (XEXP (op0, 1)));
12718 continue;
12721 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12722 do the comparison in a narrower mode. */
12723 if (! unsigned_comparison_p
12724 && CONST_INT_P (XEXP (op0, 1))
12725 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12726 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12727 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12728 .exists (&tmode))
12729 && (((unsigned HOST_WIDE_INT) const_op
12730 + (GET_MODE_MASK (tmode) >> 1) + 1)
12731 <= GET_MODE_MASK (tmode)))
12733 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12734 continue;
12737 /* Likewise if OP0 is a PLUS of a sign extension with a
12738 constant, which is usually represented with the PLUS
12739 between the shifts. */
12740 if (! unsigned_comparison_p
12741 && CONST_INT_P (XEXP (op0, 1))
12742 && GET_CODE (XEXP (op0, 0)) == PLUS
12743 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12744 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12745 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12746 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12747 .exists (&tmode))
12748 && (((unsigned HOST_WIDE_INT) const_op
12749 + (GET_MODE_MASK (tmode) >> 1) + 1)
12750 <= GET_MODE_MASK (tmode)))
12752 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12753 rtx add_const = XEXP (XEXP (op0, 0), 1);
12754 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12755 add_const, XEXP (op0, 1));
12757 op0 = simplify_gen_binary (PLUS, tmode,
12758 gen_lowpart (tmode, inner),
12759 new_const);
12760 continue;
12763 /* FALLTHROUGH */
12764 case LSHIFTRT:
12765 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12766 the low order N bits of FOO are known to be zero, we can do this
12767 by comparing FOO with C shifted left N bits so long as no
12768 overflow occurs. Even if the low order N bits of FOO aren't known
12769 to be zero, if the comparison is >= or < we can use the same
12770 optimization and for > or <= by setting all the low
12771 order N bits in the comparison constant. */
12772 if (CONST_INT_P (XEXP (op0, 1))
12773 && INTVAL (XEXP (op0, 1)) > 0
12774 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12775 && mode_width <= HOST_BITS_PER_WIDE_INT
12776 && (((unsigned HOST_WIDE_INT) const_op
12777 + (GET_CODE (op0) != LSHIFTRT
12778 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12779 + 1)
12780 : 0))
12781 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12783 unsigned HOST_WIDE_INT low_bits
12784 = (nonzero_bits (XEXP (op0, 0), mode)
12785 & ((HOST_WIDE_INT_1U
12786 << INTVAL (XEXP (op0, 1))) - 1));
12787 if (low_bits == 0 || !equality_comparison_p)
12789 /* If the shift was logical, then we must make the condition
12790 unsigned. */
12791 if (GET_CODE (op0) == LSHIFTRT)
12792 code = unsigned_condition (code);
12794 const_op = (unsigned HOST_WIDE_INT) const_op
12795 << INTVAL (XEXP (op0, 1));
12796 if (low_bits != 0
12797 && (code == GT || code == GTU
12798 || code == LE || code == LEU))
12799 const_op
12800 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12801 op1 = GEN_INT (const_op);
12802 op0 = XEXP (op0, 0);
12803 continue;
12807 /* If we are using this shift to extract just the sign bit, we
12808 can replace this with an LT or GE comparison. */
12809 if (const_op == 0
12810 && (equality_comparison_p || sign_bit_comparison_p)
12811 && CONST_INT_P (XEXP (op0, 1))
12812 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12814 op0 = XEXP (op0, 0);
12815 code = (code == NE || code == GT ? LT : GE);
12816 continue;
12818 break;
12820 default:
12821 break;
12824 break;
12827 /* Now make any compound operations involved in this comparison. Then,
12828 check for an outmost SUBREG on OP0 that is not doing anything or is
12829 paradoxical. The latter transformation must only be performed when
12830 it is known that the "extra" bits will be the same in op0 and op1 or
12831 that they don't matter. There are three cases to consider:
12833 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12834 care bits and we can assume they have any convenient value. So
12835 making the transformation is safe.
12837 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12838 In this case the upper bits of op0 are undefined. We should not make
12839 the simplification in that case as we do not know the contents of
12840 those bits.
12842 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12843 In that case we know those bits are zeros or ones. We must also be
12844 sure that they are the same as the upper bits of op1.
12846 We can never remove a SUBREG for a non-equality comparison because
12847 the sign bit is in a different place in the underlying object. */
12849 rtx_code op0_mco_code = SET;
12850 if (op1 == const0_rtx)
12851 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12853 op0 = make_compound_operation (op0, op0_mco_code);
12854 op1 = make_compound_operation (op1, SET);
12856 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12857 && is_int_mode (GET_MODE (op0), &mode)
12858 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12859 && (code == NE || code == EQ))
12861 if (paradoxical_subreg_p (op0))
12863 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12864 implemented. */
12865 if (REG_P (SUBREG_REG (op0)))
12867 op0 = SUBREG_REG (op0);
12868 op1 = gen_lowpart (inner_mode, op1);
12871 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12872 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12873 & ~GET_MODE_MASK (mode)) == 0)
12875 tem = gen_lowpart (inner_mode, op1);
12877 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12878 op0 = SUBREG_REG (op0), op1 = tem;
12882 /* We now do the opposite procedure: Some machines don't have compare
12883 insns in all modes. If OP0's mode is an integer mode smaller than a
12884 word and we can't do a compare in that mode, see if there is a larger
12885 mode for which we can do the compare. There are a number of cases in
12886 which we can use the wider mode. */
12888 if (is_int_mode (GET_MODE (op0), &mode)
12889 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12890 && ! have_insn_for (COMPARE, mode))
12891 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12893 tmode = tmode_iter.require ();
12894 if (!HWI_COMPUTABLE_MODE_P (tmode))
12895 break;
12896 if (have_insn_for (COMPARE, tmode))
12898 int zero_extended;
12900 /* If this is a test for negative, we can make an explicit
12901 test of the sign bit. Test this first so we can use
12902 a paradoxical subreg to extend OP0. */
12904 if (op1 == const0_rtx && (code == LT || code == GE)
12905 && HWI_COMPUTABLE_MODE_P (mode))
12907 unsigned HOST_WIDE_INT sign
12908 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12909 op0 = simplify_gen_binary (AND, tmode,
12910 gen_lowpart (tmode, op0),
12911 gen_int_mode (sign, tmode));
12912 code = (code == LT) ? NE : EQ;
12913 break;
12916 /* If the only nonzero bits in OP0 and OP1 are those in the
12917 narrower mode and this is an equality or unsigned comparison,
12918 we can use the wider mode. Similarly for sign-extended
12919 values, in which case it is true for all comparisons. */
12920 zero_extended = ((code == EQ || code == NE
12921 || code == GEU || code == GTU
12922 || code == LEU || code == LTU)
12923 && (nonzero_bits (op0, tmode)
12924 & ~GET_MODE_MASK (mode)) == 0
12925 && ((CONST_INT_P (op1)
12926 || (nonzero_bits (op1, tmode)
12927 & ~GET_MODE_MASK (mode)) == 0)));
12929 if (zero_extended
12930 || ((num_sign_bit_copies (op0, tmode)
12931 > (unsigned int) (GET_MODE_PRECISION (tmode)
12932 - GET_MODE_PRECISION (mode)))
12933 && (num_sign_bit_copies (op1, tmode)
12934 > (unsigned int) (GET_MODE_PRECISION (tmode)
12935 - GET_MODE_PRECISION (mode)))))
12937 /* If OP0 is an AND and we don't have an AND in MODE either,
12938 make a new AND in the proper mode. */
12939 if (GET_CODE (op0) == AND
12940 && !have_insn_for (AND, mode))
12941 op0 = simplify_gen_binary (AND, tmode,
12942 gen_lowpart (tmode,
12943 XEXP (op0, 0)),
12944 gen_lowpart (tmode,
12945 XEXP (op0, 1)));
12946 else
12948 if (zero_extended)
12950 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12951 op0, mode);
12952 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12953 op1, mode);
12955 else
12957 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12958 op0, mode);
12959 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12960 op1, mode);
12962 break;
12968 /* We may have changed the comparison operands. Re-canonicalize. */
12969 if (swap_commutative_operands_p (op0, op1))
12971 std::swap (op0, op1);
12972 code = swap_condition (code);
12975 /* If this machine only supports a subset of valid comparisons, see if we
12976 can convert an unsupported one into a supported one. */
12977 target_canonicalize_comparison (&code, &op0, &op1, 0);
12979 *pop0 = op0;
12980 *pop1 = op1;
12982 return code;
12985 /* Utility function for record_value_for_reg. Count number of
12986 rtxs in X. */
12987 static int
12988 count_rtxs (rtx x)
12990 enum rtx_code code = GET_CODE (x);
12991 const char *fmt;
12992 int i, j, ret = 1;
12994 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12995 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12997 rtx x0 = XEXP (x, 0);
12998 rtx x1 = XEXP (x, 1);
13000 if (x0 == x1)
13001 return 1 + 2 * count_rtxs (x0);
13003 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13004 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13005 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13006 return 2 + 2 * count_rtxs (x0)
13007 + count_rtxs (x == XEXP (x1, 0)
13008 ? XEXP (x1, 1) : XEXP (x1, 0));
13010 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13011 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13012 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13013 return 2 + 2 * count_rtxs (x1)
13014 + count_rtxs (x == XEXP (x0, 0)
13015 ? XEXP (x0, 1) : XEXP (x0, 0));
13018 fmt = GET_RTX_FORMAT (code);
13019 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13020 if (fmt[i] == 'e')
13021 ret += count_rtxs (XEXP (x, i));
13022 else if (fmt[i] == 'E')
13023 for (j = 0; j < XVECLEN (x, i); j++)
13024 ret += count_rtxs (XVECEXP (x, i, j));
13026 return ret;
13029 /* Utility function for following routine. Called when X is part of a value
13030 being stored into last_set_value. Sets last_set_table_tick
13031 for each register mentioned. Similar to mention_regs in cse.c */
13033 static void
13034 update_table_tick (rtx x)
13036 enum rtx_code code = GET_CODE (x);
13037 const char *fmt = GET_RTX_FORMAT (code);
13038 int i, j;
13040 if (code == REG)
13042 unsigned int regno = REGNO (x);
13043 unsigned int endregno = END_REGNO (x);
13044 unsigned int r;
13046 for (r = regno; r < endregno; r++)
13048 reg_stat_type *rsp = &reg_stat[r];
13049 rsp->last_set_table_tick = label_tick;
13052 return;
13055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13056 if (fmt[i] == 'e')
13058 /* Check for identical subexpressions. If x contains
13059 identical subexpression we only have to traverse one of
13060 them. */
13061 if (i == 0 && ARITHMETIC_P (x))
13063 /* Note that at this point x1 has already been
13064 processed. */
13065 rtx x0 = XEXP (x, 0);
13066 rtx x1 = XEXP (x, 1);
13068 /* If x0 and x1 are identical then there is no need to
13069 process x0. */
13070 if (x0 == x1)
13071 break;
13073 /* If x0 is identical to a subexpression of x1 then while
13074 processing x1, x0 has already been processed. Thus we
13075 are done with x. */
13076 if (ARITHMETIC_P (x1)
13077 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13078 break;
13080 /* If x1 is identical to a subexpression of x0 then we
13081 still have to process the rest of x0. */
13082 if (ARITHMETIC_P (x0)
13083 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13085 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13086 break;
13090 update_table_tick (XEXP (x, i));
13092 else if (fmt[i] == 'E')
13093 for (j = 0; j < XVECLEN (x, i); j++)
13094 update_table_tick (XVECEXP (x, i, j));
13097 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13098 are saying that the register is clobbered and we no longer know its
13099 value. If INSN is zero, don't update reg_stat[].last_set; this is
13100 only permitted with VALUE also zero and is used to invalidate the
13101 register. */
13103 static void
13104 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13106 unsigned int regno = REGNO (reg);
13107 unsigned int endregno = END_REGNO (reg);
13108 unsigned int i;
13109 reg_stat_type *rsp;
13111 /* If VALUE contains REG and we have a previous value for REG, substitute
13112 the previous value. */
13113 if (value && insn && reg_overlap_mentioned_p (reg, value))
13115 rtx tem;
13117 /* Set things up so get_last_value is allowed to see anything set up to
13118 our insn. */
13119 subst_low_luid = DF_INSN_LUID (insn);
13120 tem = get_last_value (reg);
13122 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13123 it isn't going to be useful and will take a lot of time to process,
13124 so just use the CLOBBER. */
13126 if (tem)
13128 if (ARITHMETIC_P (tem)
13129 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13130 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13131 tem = XEXP (tem, 0);
13132 else if (count_occurrences (value, reg, 1) >= 2)
13134 /* If there are two or more occurrences of REG in VALUE,
13135 prevent the value from growing too much. */
13136 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13137 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13140 value = replace_rtx (copy_rtx (value), reg, tem);
13144 /* For each register modified, show we don't know its value, that
13145 we don't know about its bitwise content, that its value has been
13146 updated, and that we don't know the location of the death of the
13147 register. */
13148 for (i = regno; i < endregno; i++)
13150 rsp = &reg_stat[i];
13152 if (insn)
13153 rsp->last_set = insn;
13155 rsp->last_set_value = 0;
13156 rsp->last_set_mode = VOIDmode;
13157 rsp->last_set_nonzero_bits = 0;
13158 rsp->last_set_sign_bit_copies = 0;
13159 rsp->last_death = 0;
13160 rsp->truncated_to_mode = VOIDmode;
13163 /* Mark registers that are being referenced in this value. */
13164 if (value)
13165 update_table_tick (value);
13167 /* Now update the status of each register being set.
13168 If someone is using this register in this block, set this register
13169 to invalid since we will get confused between the two lives in this
13170 basic block. This makes using this register always invalid. In cse, we
13171 scan the table to invalidate all entries using this register, but this
13172 is too much work for us. */
13174 for (i = regno; i < endregno; i++)
13176 rsp = &reg_stat[i];
13177 rsp->last_set_label = label_tick;
13178 if (!insn
13179 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13180 rsp->last_set_invalid = 1;
13181 else
13182 rsp->last_set_invalid = 0;
13185 /* The value being assigned might refer to X (like in "x++;"). In that
13186 case, we must replace it with (clobber (const_int 0)) to prevent
13187 infinite loops. */
13188 rsp = &reg_stat[regno];
13189 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13191 value = copy_rtx (value);
13192 if (!get_last_value_validate (&value, insn, label_tick, 1))
13193 value = 0;
13196 /* For the main register being modified, update the value, the mode, the
13197 nonzero bits, and the number of sign bit copies. */
13199 rsp->last_set_value = value;
13201 if (value)
13203 machine_mode mode = GET_MODE (reg);
13204 subst_low_luid = DF_INSN_LUID (insn);
13205 rsp->last_set_mode = mode;
13206 if (GET_MODE_CLASS (mode) == MODE_INT
13207 && HWI_COMPUTABLE_MODE_P (mode))
13208 mode = nonzero_bits_mode;
13209 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13210 rsp->last_set_sign_bit_copies
13211 = num_sign_bit_copies (value, GET_MODE (reg));
13215 /* Called via note_stores from record_dead_and_set_regs to handle one
13216 SET or CLOBBER in an insn. DATA is the instruction in which the
13217 set is occurring. */
13219 static void
13220 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13222 rtx_insn *record_dead_insn = (rtx_insn *) data;
13224 if (GET_CODE (dest) == SUBREG)
13225 dest = SUBREG_REG (dest);
13227 if (!record_dead_insn)
13229 if (REG_P (dest))
13230 record_value_for_reg (dest, NULL, NULL_RTX);
13231 return;
13234 if (REG_P (dest))
13236 /* If we are setting the whole register, we know its value. Otherwise
13237 show that we don't know the value. We can handle SUBREG in
13238 some cases. */
13239 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13240 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13241 else if (GET_CODE (setter) == SET
13242 && GET_CODE (SET_DEST (setter)) == SUBREG
13243 && SUBREG_REG (SET_DEST (setter)) == dest
13244 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13245 && subreg_lowpart_p (SET_DEST (setter)))
13246 record_value_for_reg (dest, record_dead_insn,
13247 gen_lowpart (GET_MODE (dest),
13248 SET_SRC (setter)));
13249 else
13250 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13252 else if (MEM_P (dest)
13253 /* Ignore pushes, they clobber nothing. */
13254 && ! push_operand (dest, GET_MODE (dest)))
13255 mem_last_set = DF_INSN_LUID (record_dead_insn);
13258 /* Update the records of when each REG was most recently set or killed
13259 for the things done by INSN. This is the last thing done in processing
13260 INSN in the combiner loop.
13262 We update reg_stat[], in particular fields last_set, last_set_value,
13263 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13264 last_death, and also the similar information mem_last_set (which insn
13265 most recently modified memory) and last_call_luid (which insn was the
13266 most recent subroutine call). */
13268 static void
13269 record_dead_and_set_regs (rtx_insn *insn)
13271 rtx link;
13272 unsigned int i;
13274 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13276 if (REG_NOTE_KIND (link) == REG_DEAD
13277 && REG_P (XEXP (link, 0)))
13279 unsigned int regno = REGNO (XEXP (link, 0));
13280 unsigned int endregno = END_REGNO (XEXP (link, 0));
13282 for (i = regno; i < endregno; i++)
13284 reg_stat_type *rsp;
13286 rsp = &reg_stat[i];
13287 rsp->last_death = insn;
13290 else if (REG_NOTE_KIND (link) == REG_INC)
13291 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13294 if (CALL_P (insn))
13296 hard_reg_set_iterator hrsi;
13297 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13299 reg_stat_type *rsp;
13301 rsp = &reg_stat[i];
13302 rsp->last_set_invalid = 1;
13303 rsp->last_set = insn;
13304 rsp->last_set_value = 0;
13305 rsp->last_set_mode = VOIDmode;
13306 rsp->last_set_nonzero_bits = 0;
13307 rsp->last_set_sign_bit_copies = 0;
13308 rsp->last_death = 0;
13309 rsp->truncated_to_mode = VOIDmode;
13312 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13314 /* We can't combine into a call pattern. Remember, though, that
13315 the return value register is set at this LUID. We could
13316 still replace a register with the return value from the
13317 wrong subroutine call! */
13318 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13320 else
13321 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13324 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13325 register present in the SUBREG, so for each such SUBREG go back and
13326 adjust nonzero and sign bit information of the registers that are
13327 known to have some zero/sign bits set.
13329 This is needed because when combine blows the SUBREGs away, the
13330 information on zero/sign bits is lost and further combines can be
13331 missed because of that. */
13333 static void
13334 record_promoted_value (rtx_insn *insn, rtx subreg)
13336 struct insn_link *links;
13337 rtx set;
13338 unsigned int regno = REGNO (SUBREG_REG (subreg));
13339 machine_mode mode = GET_MODE (subreg);
13341 if (!HWI_COMPUTABLE_MODE_P (mode))
13342 return;
13344 for (links = LOG_LINKS (insn); links;)
13346 reg_stat_type *rsp;
13348 insn = links->insn;
13349 set = single_set (insn);
13351 if (! set || !REG_P (SET_DEST (set))
13352 || REGNO (SET_DEST (set)) != regno
13353 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13355 links = links->next;
13356 continue;
13359 rsp = &reg_stat[regno];
13360 if (rsp->last_set == insn)
13362 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13363 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13366 if (REG_P (SET_SRC (set)))
13368 regno = REGNO (SET_SRC (set));
13369 links = LOG_LINKS (insn);
13371 else
13372 break;
13376 /* Check if X, a register, is known to contain a value already
13377 truncated to MODE. In this case we can use a subreg to refer to
13378 the truncated value even though in the generic case we would need
13379 an explicit truncation. */
13381 static bool
13382 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13384 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13385 machine_mode truncated = rsp->truncated_to_mode;
13387 if (truncated == 0
13388 || rsp->truncation_label < label_tick_ebb_start)
13389 return false;
13390 if (!partial_subreg_p (mode, truncated))
13391 return true;
13392 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13393 return true;
13394 return false;
13397 /* If X is a hard reg or a subreg record the mode that the register is
13398 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13399 able to turn a truncate into a subreg using this information. Return true
13400 if traversing X is complete. */
13402 static bool
13403 record_truncated_value (rtx x)
13405 machine_mode truncated_mode;
13406 reg_stat_type *rsp;
13408 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13410 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13411 truncated_mode = GET_MODE (x);
13413 if (!partial_subreg_p (truncated_mode, original_mode))
13414 return true;
13416 truncated_mode = GET_MODE (x);
13417 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13418 return true;
13420 x = SUBREG_REG (x);
13422 /* ??? For hard-regs we now record everything. We might be able to
13423 optimize this using last_set_mode. */
13424 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13425 truncated_mode = GET_MODE (x);
13426 else
13427 return false;
13429 rsp = &reg_stat[REGNO (x)];
13430 if (rsp->truncated_to_mode == 0
13431 || rsp->truncation_label < label_tick_ebb_start
13432 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13434 rsp->truncated_to_mode = truncated_mode;
13435 rsp->truncation_label = label_tick;
13438 return true;
13441 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13442 the modes they are used in. This can help truning TRUNCATEs into
13443 SUBREGs. */
13445 static void
13446 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13448 subrtx_var_iterator::array_type array;
13449 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13450 if (record_truncated_value (*iter))
13451 iter.skip_subrtxes ();
13454 /* Scan X for promoted SUBREGs. For each one found,
13455 note what it implies to the registers used in it. */
13457 static void
13458 check_promoted_subreg (rtx_insn *insn, rtx x)
13460 if (GET_CODE (x) == SUBREG
13461 && SUBREG_PROMOTED_VAR_P (x)
13462 && REG_P (SUBREG_REG (x)))
13463 record_promoted_value (insn, x);
13464 else
13466 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13467 int i, j;
13469 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13470 switch (format[i])
13472 case 'e':
13473 check_promoted_subreg (insn, XEXP (x, i));
13474 break;
13475 case 'V':
13476 case 'E':
13477 if (XVEC (x, i) != 0)
13478 for (j = 0; j < XVECLEN (x, i); j++)
13479 check_promoted_subreg (insn, XVECEXP (x, i, j));
13480 break;
13485 /* Verify that all the registers and memory references mentioned in *LOC are
13486 still valid. *LOC was part of a value set in INSN when label_tick was
13487 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13488 the invalid references with (clobber (const_int 0)) and return 1. This
13489 replacement is useful because we often can get useful information about
13490 the form of a value (e.g., if it was produced by a shift that always
13491 produces -1 or 0) even though we don't know exactly what registers it
13492 was produced from. */
13494 static int
13495 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13497 rtx x = *loc;
13498 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13499 int len = GET_RTX_LENGTH (GET_CODE (x));
13500 int i, j;
13502 if (REG_P (x))
13504 unsigned int regno = REGNO (x);
13505 unsigned int endregno = END_REGNO (x);
13506 unsigned int j;
13508 for (j = regno; j < endregno; j++)
13510 reg_stat_type *rsp = &reg_stat[j];
13511 if (rsp->last_set_invalid
13512 /* If this is a pseudo-register that was only set once and not
13513 live at the beginning of the function, it is always valid. */
13514 || (! (regno >= FIRST_PSEUDO_REGISTER
13515 && regno < reg_n_sets_max
13516 && REG_N_SETS (regno) == 1
13517 && (!REGNO_REG_SET_P
13518 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13519 regno)))
13520 && rsp->last_set_label > tick))
13522 if (replace)
13523 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13524 return replace;
13528 return 1;
13530 /* If this is a memory reference, make sure that there were no stores after
13531 it that might have clobbered the value. We don't have alias info, so we
13532 assume any store invalidates it. Moreover, we only have local UIDs, so
13533 we also assume that there were stores in the intervening basic blocks. */
13534 else if (MEM_P (x) && !MEM_READONLY_P (x)
13535 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13537 if (replace)
13538 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13539 return replace;
13542 for (i = 0; i < len; i++)
13544 if (fmt[i] == 'e')
13546 /* Check for identical subexpressions. If x contains
13547 identical subexpression we only have to traverse one of
13548 them. */
13549 if (i == 1 && ARITHMETIC_P (x))
13551 /* Note that at this point x0 has already been checked
13552 and found valid. */
13553 rtx x0 = XEXP (x, 0);
13554 rtx x1 = XEXP (x, 1);
13556 /* If x0 and x1 are identical then x is also valid. */
13557 if (x0 == x1)
13558 return 1;
13560 /* If x1 is identical to a subexpression of x0 then
13561 while checking x0, x1 has already been checked. Thus
13562 it is valid and so as x. */
13563 if (ARITHMETIC_P (x0)
13564 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13565 return 1;
13567 /* If x0 is identical to a subexpression of x1 then x is
13568 valid iff the rest of x1 is valid. */
13569 if (ARITHMETIC_P (x1)
13570 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13571 return
13572 get_last_value_validate (&XEXP (x1,
13573 x0 == XEXP (x1, 0) ? 1 : 0),
13574 insn, tick, replace);
13577 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13578 replace) == 0)
13579 return 0;
13581 else if (fmt[i] == 'E')
13582 for (j = 0; j < XVECLEN (x, i); j++)
13583 if (get_last_value_validate (&XVECEXP (x, i, j),
13584 insn, tick, replace) == 0)
13585 return 0;
13588 /* If we haven't found a reason for it to be invalid, it is valid. */
13589 return 1;
13592 /* Get the last value assigned to X, if known. Some registers
13593 in the value may be replaced with (clobber (const_int 0)) if their value
13594 is known longer known reliably. */
13596 static rtx
13597 get_last_value (const_rtx x)
13599 unsigned int regno;
13600 rtx value;
13601 reg_stat_type *rsp;
13603 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13604 then convert it to the desired mode. If this is a paradoxical SUBREG,
13605 we cannot predict what values the "extra" bits might have. */
13606 if (GET_CODE (x) == SUBREG
13607 && subreg_lowpart_p (x)
13608 && !paradoxical_subreg_p (x)
13609 && (value = get_last_value (SUBREG_REG (x))) != 0)
13610 return gen_lowpart (GET_MODE (x), value);
13612 if (!REG_P (x))
13613 return 0;
13615 regno = REGNO (x);
13616 rsp = &reg_stat[regno];
13617 value = rsp->last_set_value;
13619 /* If we don't have a value, or if it isn't for this basic block and
13620 it's either a hard register, set more than once, or it's a live
13621 at the beginning of the function, return 0.
13623 Because if it's not live at the beginning of the function then the reg
13624 is always set before being used (is never used without being set).
13625 And, if it's set only once, and it's always set before use, then all
13626 uses must have the same last value, even if it's not from this basic
13627 block. */
13629 if (value == 0
13630 || (rsp->last_set_label < label_tick_ebb_start
13631 && (regno < FIRST_PSEUDO_REGISTER
13632 || regno >= reg_n_sets_max
13633 || REG_N_SETS (regno) != 1
13634 || REGNO_REG_SET_P
13635 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13636 return 0;
13638 /* If the value was set in a later insn than the ones we are processing,
13639 we can't use it even if the register was only set once. */
13640 if (rsp->last_set_label == label_tick
13641 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13642 return 0;
13644 /* If fewer bits were set than what we are asked for now, we cannot use
13645 the value. */
13646 if (GET_MODE_PRECISION (rsp->last_set_mode)
13647 < GET_MODE_PRECISION (GET_MODE (x)))
13648 return 0;
13650 /* If the value has all its registers valid, return it. */
13651 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13652 return value;
13654 /* Otherwise, make a copy and replace any invalid register with
13655 (clobber (const_int 0)). If that fails for some reason, return 0. */
13657 value = copy_rtx (value);
13658 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13659 return value;
13661 return 0;
13664 /* Return nonzero if expression X refers to a REG or to memory
13665 that is set in an instruction more recent than FROM_LUID. */
13667 static int
13668 use_crosses_set_p (const_rtx x, int from_luid)
13670 const char *fmt;
13671 int i;
13672 enum rtx_code code = GET_CODE (x);
13674 if (code == REG)
13676 unsigned int regno = REGNO (x);
13677 unsigned endreg = END_REGNO (x);
13679 #ifdef PUSH_ROUNDING
13680 /* Don't allow uses of the stack pointer to be moved,
13681 because we don't know whether the move crosses a push insn. */
13682 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13683 return 1;
13684 #endif
13685 for (; regno < endreg; regno++)
13687 reg_stat_type *rsp = &reg_stat[regno];
13688 if (rsp->last_set
13689 && rsp->last_set_label == label_tick
13690 && DF_INSN_LUID (rsp->last_set) > from_luid)
13691 return 1;
13693 return 0;
13696 if (code == MEM && mem_last_set > from_luid)
13697 return 1;
13699 fmt = GET_RTX_FORMAT (code);
13701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13703 if (fmt[i] == 'E')
13705 int j;
13706 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13707 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13708 return 1;
13710 else if (fmt[i] == 'e'
13711 && use_crosses_set_p (XEXP (x, i), from_luid))
13712 return 1;
13714 return 0;
13717 /* Define three variables used for communication between the following
13718 routines. */
13720 static unsigned int reg_dead_regno, reg_dead_endregno;
13721 static int reg_dead_flag;
13723 /* Function called via note_stores from reg_dead_at_p.
13725 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13726 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13728 static void
13729 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13731 unsigned int regno, endregno;
13733 if (!REG_P (dest))
13734 return;
13736 regno = REGNO (dest);
13737 endregno = END_REGNO (dest);
13738 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13739 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13742 /* Return nonzero if REG is known to be dead at INSN.
13744 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13745 referencing REG, it is dead. If we hit a SET referencing REG, it is
13746 live. Otherwise, see if it is live or dead at the start of the basic
13747 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13748 must be assumed to be always live. */
13750 static int
13751 reg_dead_at_p (rtx reg, rtx_insn *insn)
13753 basic_block block;
13754 unsigned int i;
13756 /* Set variables for reg_dead_at_p_1. */
13757 reg_dead_regno = REGNO (reg);
13758 reg_dead_endregno = END_REGNO (reg);
13760 reg_dead_flag = 0;
13762 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13763 we allow the machine description to decide whether use-and-clobber
13764 patterns are OK. */
13765 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13767 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13768 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13769 return 0;
13772 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13773 beginning of basic block. */
13774 block = BLOCK_FOR_INSN (insn);
13775 for (;;)
13777 if (INSN_P (insn))
13779 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13780 return 1;
13782 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13783 if (reg_dead_flag)
13784 return reg_dead_flag == 1 ? 1 : 0;
13786 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13787 return 1;
13790 if (insn == BB_HEAD (block))
13791 break;
13793 insn = PREV_INSN (insn);
13796 /* Look at live-in sets for the basic block that we were in. */
13797 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13798 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13799 return 0;
13801 return 1;
13804 /* Note hard registers in X that are used. */
13806 static void
13807 mark_used_regs_combine (rtx x)
13809 RTX_CODE code = GET_CODE (x);
13810 unsigned int regno;
13811 int i;
13813 switch (code)
13815 case LABEL_REF:
13816 case SYMBOL_REF:
13817 case CONST:
13818 CASE_CONST_ANY:
13819 case PC:
13820 case ADDR_VEC:
13821 case ADDR_DIFF_VEC:
13822 case ASM_INPUT:
13823 /* CC0 must die in the insn after it is set, so we don't need to take
13824 special note of it here. */
13825 case CC0:
13826 return;
13828 case CLOBBER:
13829 /* If we are clobbering a MEM, mark any hard registers inside the
13830 address as used. */
13831 if (MEM_P (XEXP (x, 0)))
13832 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13833 return;
13835 case REG:
13836 regno = REGNO (x);
13837 /* A hard reg in a wide mode may really be multiple registers.
13838 If so, mark all of them just like the first. */
13839 if (regno < FIRST_PSEUDO_REGISTER)
13841 /* None of this applies to the stack, frame or arg pointers. */
13842 if (regno == STACK_POINTER_REGNUM
13843 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13844 && regno == HARD_FRAME_POINTER_REGNUM)
13845 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13846 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13847 || regno == FRAME_POINTER_REGNUM)
13848 return;
13850 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13852 return;
13854 case SET:
13856 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13857 the address. */
13858 rtx testreg = SET_DEST (x);
13860 while (GET_CODE (testreg) == SUBREG
13861 || GET_CODE (testreg) == ZERO_EXTRACT
13862 || GET_CODE (testreg) == STRICT_LOW_PART)
13863 testreg = XEXP (testreg, 0);
13865 if (MEM_P (testreg))
13866 mark_used_regs_combine (XEXP (testreg, 0));
13868 mark_used_regs_combine (SET_SRC (x));
13870 return;
13872 default:
13873 break;
13876 /* Recursively scan the operands of this expression. */
13879 const char *fmt = GET_RTX_FORMAT (code);
13881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13883 if (fmt[i] == 'e')
13884 mark_used_regs_combine (XEXP (x, i));
13885 else if (fmt[i] == 'E')
13887 int j;
13889 for (j = 0; j < XVECLEN (x, i); j++)
13890 mark_used_regs_combine (XVECEXP (x, i, j));
13896 /* Remove register number REGNO from the dead registers list of INSN.
13898 Return the note used to record the death, if there was one. */
13901 remove_death (unsigned int regno, rtx_insn *insn)
13903 rtx note = find_regno_note (insn, REG_DEAD, regno);
13905 if (note)
13906 remove_note (insn, note);
13908 return note;
13911 /* For each register (hardware or pseudo) used within expression X, if its
13912 death is in an instruction with luid between FROM_LUID (inclusive) and
13913 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13914 list headed by PNOTES.
13916 That said, don't move registers killed by maybe_kill_insn.
13918 This is done when X is being merged by combination into TO_INSN. These
13919 notes will then be distributed as needed. */
13921 static void
13922 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13923 rtx *pnotes)
13925 const char *fmt;
13926 int len, i;
13927 enum rtx_code code = GET_CODE (x);
13929 if (code == REG)
13931 unsigned int regno = REGNO (x);
13932 rtx_insn *where_dead = reg_stat[regno].last_death;
13934 /* Don't move the register if it gets killed in between from and to. */
13935 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13936 && ! reg_referenced_p (x, maybe_kill_insn))
13937 return;
13939 if (where_dead
13940 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13941 && DF_INSN_LUID (where_dead) >= from_luid
13942 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13944 rtx note = remove_death (regno, where_dead);
13946 /* It is possible for the call above to return 0. This can occur
13947 when last_death points to I2 or I1 that we combined with.
13948 In that case make a new note.
13950 We must also check for the case where X is a hard register
13951 and NOTE is a death note for a range of hard registers
13952 including X. In that case, we must put REG_DEAD notes for
13953 the remaining registers in place of NOTE. */
13955 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13956 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13958 unsigned int deadregno = REGNO (XEXP (note, 0));
13959 unsigned int deadend = END_REGNO (XEXP (note, 0));
13960 unsigned int ourend = END_REGNO (x);
13961 unsigned int i;
13963 for (i = deadregno; i < deadend; i++)
13964 if (i < regno || i >= ourend)
13965 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13968 /* If we didn't find any note, or if we found a REG_DEAD note that
13969 covers only part of the given reg, and we have a multi-reg hard
13970 register, then to be safe we must check for REG_DEAD notes
13971 for each register other than the first. They could have
13972 their own REG_DEAD notes lying around. */
13973 else if ((note == 0
13974 || (note != 0
13975 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
13976 GET_MODE (x))))
13977 && regno < FIRST_PSEUDO_REGISTER
13978 && REG_NREGS (x) > 1)
13980 unsigned int ourend = END_REGNO (x);
13981 unsigned int i, offset;
13982 rtx oldnotes = 0;
13984 if (note)
13985 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
13986 else
13987 offset = 1;
13989 for (i = regno + offset; i < ourend; i++)
13990 move_deaths (regno_reg_rtx[i],
13991 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13994 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13996 XEXP (note, 1) = *pnotes;
13997 *pnotes = note;
13999 else
14000 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14003 return;
14006 else if (GET_CODE (x) == SET)
14008 rtx dest = SET_DEST (x);
14010 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14012 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14013 that accesses one word of a multi-word item, some
14014 piece of everything register in the expression is used by
14015 this insn, so remove any old death. */
14016 /* ??? So why do we test for equality of the sizes? */
14018 if (GET_CODE (dest) == ZERO_EXTRACT
14019 || GET_CODE (dest) == STRICT_LOW_PART
14020 || (GET_CODE (dest) == SUBREG
14021 && !read_modify_subreg_p (dest)))
14023 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14024 return;
14027 /* If this is some other SUBREG, we know it replaces the entire
14028 value, so use that as the destination. */
14029 if (GET_CODE (dest) == SUBREG)
14030 dest = SUBREG_REG (dest);
14032 /* If this is a MEM, adjust deaths of anything used in the address.
14033 For a REG (the only other possibility), the entire value is
14034 being replaced so the old value is not used in this insn. */
14036 if (MEM_P (dest))
14037 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14038 to_insn, pnotes);
14039 return;
14042 else if (GET_CODE (x) == CLOBBER)
14043 return;
14045 len = GET_RTX_LENGTH (code);
14046 fmt = GET_RTX_FORMAT (code);
14048 for (i = 0; i < len; i++)
14050 if (fmt[i] == 'E')
14052 int j;
14053 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14054 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14055 to_insn, pnotes);
14057 else if (fmt[i] == 'e')
14058 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14062 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14063 pattern of an insn. X must be a REG. */
14065 static int
14066 reg_bitfield_target_p (rtx x, rtx body)
14068 int i;
14070 if (GET_CODE (body) == SET)
14072 rtx dest = SET_DEST (body);
14073 rtx target;
14074 unsigned int regno, tregno, endregno, endtregno;
14076 if (GET_CODE (dest) == ZERO_EXTRACT)
14077 target = XEXP (dest, 0);
14078 else if (GET_CODE (dest) == STRICT_LOW_PART)
14079 target = SUBREG_REG (XEXP (dest, 0));
14080 else
14081 return 0;
14083 if (GET_CODE (target) == SUBREG)
14084 target = SUBREG_REG (target);
14086 if (!REG_P (target))
14087 return 0;
14089 tregno = REGNO (target), regno = REGNO (x);
14090 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14091 return target == x;
14093 endtregno = end_hard_regno (GET_MODE (target), tregno);
14094 endregno = end_hard_regno (GET_MODE (x), regno);
14096 return endregno > tregno && regno < endtregno;
14099 else if (GET_CODE (body) == PARALLEL)
14100 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14101 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14102 return 1;
14104 return 0;
14107 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14108 as appropriate. I3 and I2 are the insns resulting from the combination
14109 insns including FROM (I2 may be zero).
14111 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14112 not need REG_DEAD notes because they are being substituted for. This
14113 saves searching in the most common cases.
14115 Each note in the list is either ignored or placed on some insns, depending
14116 on the type of note. */
14118 static void
14119 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14120 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14122 rtx note, next_note;
14123 rtx tem_note;
14124 rtx_insn *tem_insn;
14126 for (note = notes; note; note = next_note)
14128 rtx_insn *place = 0, *place2 = 0;
14130 next_note = XEXP (note, 1);
14131 switch (REG_NOTE_KIND (note))
14133 case REG_BR_PROB:
14134 case REG_BR_PRED:
14135 /* Doesn't matter much where we put this, as long as it's somewhere.
14136 It is preferable to keep these notes on branches, which is most
14137 likely to be i3. */
14138 place = i3;
14139 break;
14141 case REG_NON_LOCAL_GOTO:
14142 if (JUMP_P (i3))
14143 place = i3;
14144 else
14146 gcc_assert (i2 && JUMP_P (i2));
14147 place = i2;
14149 break;
14151 case REG_EH_REGION:
14152 /* These notes must remain with the call or trapping instruction. */
14153 if (CALL_P (i3))
14154 place = i3;
14155 else if (i2 && CALL_P (i2))
14156 place = i2;
14157 else
14159 gcc_assert (cfun->can_throw_non_call_exceptions);
14160 if (may_trap_p (i3))
14161 place = i3;
14162 else if (i2 && may_trap_p (i2))
14163 place = i2;
14164 /* ??? Otherwise assume we've combined things such that we
14165 can now prove that the instructions can't trap. Drop the
14166 note in this case. */
14168 break;
14170 case REG_ARGS_SIZE:
14171 /* ??? How to distribute between i3-i1. Assume i3 contains the
14172 entire adjustment. Assert i3 contains at least some adjust. */
14173 if (!noop_move_p (i3))
14175 int old_size, args_size = INTVAL (XEXP (note, 0));
14176 /* fixup_args_size_notes looks at REG_NORETURN note,
14177 so ensure the note is placed there first. */
14178 if (CALL_P (i3))
14180 rtx *np;
14181 for (np = &next_note; *np; np = &XEXP (*np, 1))
14182 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14184 rtx n = *np;
14185 *np = XEXP (n, 1);
14186 XEXP (n, 1) = REG_NOTES (i3);
14187 REG_NOTES (i3) = n;
14188 break;
14191 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14192 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14193 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14194 gcc_assert (old_size != args_size
14195 || (CALL_P (i3)
14196 && !ACCUMULATE_OUTGOING_ARGS
14197 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14199 break;
14201 case REG_NORETURN:
14202 case REG_SETJMP:
14203 case REG_TM:
14204 case REG_CALL_DECL:
14205 case REG_CALL_NOCF_CHECK:
14206 /* These notes must remain with the call. It should not be
14207 possible for both I2 and I3 to be a call. */
14208 if (CALL_P (i3))
14209 place = i3;
14210 else
14212 gcc_assert (i2 && CALL_P (i2));
14213 place = i2;
14215 break;
14217 case REG_UNUSED:
14218 /* Any clobbers for i3 may still exist, and so we must process
14219 REG_UNUSED notes from that insn.
14221 Any clobbers from i2 or i1 can only exist if they were added by
14222 recog_for_combine. In that case, recog_for_combine created the
14223 necessary REG_UNUSED notes. Trying to keep any original
14224 REG_UNUSED notes from these insns can cause incorrect output
14225 if it is for the same register as the original i3 dest.
14226 In that case, we will notice that the register is set in i3,
14227 and then add a REG_UNUSED note for the destination of i3, which
14228 is wrong. However, it is possible to have REG_UNUSED notes from
14229 i2 or i1 for register which were both used and clobbered, so
14230 we keep notes from i2 or i1 if they will turn into REG_DEAD
14231 notes. */
14233 /* If this register is set or clobbered in I3, put the note there
14234 unless there is one already. */
14235 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14237 if (from_insn != i3)
14238 break;
14240 if (! (REG_P (XEXP (note, 0))
14241 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14242 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14243 place = i3;
14245 /* Otherwise, if this register is used by I3, then this register
14246 now dies here, so we must put a REG_DEAD note here unless there
14247 is one already. */
14248 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14249 && ! (REG_P (XEXP (note, 0))
14250 ? find_regno_note (i3, REG_DEAD,
14251 REGNO (XEXP (note, 0)))
14252 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14254 PUT_REG_NOTE_KIND (note, REG_DEAD);
14255 place = i3;
14257 break;
14259 case REG_EQUAL:
14260 case REG_EQUIV:
14261 case REG_NOALIAS:
14262 /* These notes say something about results of an insn. We can
14263 only support them if they used to be on I3 in which case they
14264 remain on I3. Otherwise they are ignored.
14266 If the note refers to an expression that is not a constant, we
14267 must also ignore the note since we cannot tell whether the
14268 equivalence is still true. It might be possible to do
14269 slightly better than this (we only have a problem if I2DEST
14270 or I1DEST is present in the expression), but it doesn't
14271 seem worth the trouble. */
14273 if (from_insn == i3
14274 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14275 place = i3;
14276 break;
14278 case REG_INC:
14279 /* These notes say something about how a register is used. They must
14280 be present on any use of the register in I2 or I3. */
14281 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14282 place = i3;
14284 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14286 if (place)
14287 place2 = i2;
14288 else
14289 place = i2;
14291 break;
14293 case REG_LABEL_TARGET:
14294 case REG_LABEL_OPERAND:
14295 /* This can show up in several ways -- either directly in the
14296 pattern, or hidden off in the constant pool with (or without?)
14297 a REG_EQUAL note. */
14298 /* ??? Ignore the without-reg_equal-note problem for now. */
14299 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14300 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14301 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14302 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14303 place = i3;
14305 if (i2
14306 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14307 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14308 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14309 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14311 if (place)
14312 place2 = i2;
14313 else
14314 place = i2;
14317 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14318 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14319 there. */
14320 if (place && JUMP_P (place)
14321 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14322 && (JUMP_LABEL (place) == NULL
14323 || JUMP_LABEL (place) == XEXP (note, 0)))
14325 rtx label = JUMP_LABEL (place);
14327 if (!label)
14328 JUMP_LABEL (place) = XEXP (note, 0);
14329 else if (LABEL_P (label))
14330 LABEL_NUSES (label)--;
14333 if (place2 && JUMP_P (place2)
14334 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14335 && (JUMP_LABEL (place2) == NULL
14336 || JUMP_LABEL (place2) == XEXP (note, 0)))
14338 rtx label = JUMP_LABEL (place2);
14340 if (!label)
14341 JUMP_LABEL (place2) = XEXP (note, 0);
14342 else if (LABEL_P (label))
14343 LABEL_NUSES (label)--;
14344 place2 = 0;
14346 break;
14348 case REG_NONNEG:
14349 /* This note says something about the value of a register prior
14350 to the execution of an insn. It is too much trouble to see
14351 if the note is still correct in all situations. It is better
14352 to simply delete it. */
14353 break;
14355 case REG_DEAD:
14356 /* If we replaced the right hand side of FROM_INSN with a
14357 REG_EQUAL note, the original use of the dying register
14358 will not have been combined into I3 and I2. In such cases,
14359 FROM_INSN is guaranteed to be the first of the combined
14360 instructions, so we simply need to search back before
14361 FROM_INSN for the previous use or set of this register,
14362 then alter the notes there appropriately.
14364 If the register is used as an input in I3, it dies there.
14365 Similarly for I2, if it is nonzero and adjacent to I3.
14367 If the register is not used as an input in either I3 or I2
14368 and it is not one of the registers we were supposed to eliminate,
14369 there are two possibilities. We might have a non-adjacent I2
14370 or we might have somehow eliminated an additional register
14371 from a computation. For example, we might have had A & B where
14372 we discover that B will always be zero. In this case we will
14373 eliminate the reference to A.
14375 In both cases, we must search to see if we can find a previous
14376 use of A and put the death note there. */
14378 if (from_insn
14379 && from_insn == i2mod
14380 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14381 tem_insn = from_insn;
14382 else
14384 if (from_insn
14385 && CALL_P (from_insn)
14386 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14387 place = from_insn;
14388 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14390 /* If the new I2 sets the same register that is marked
14391 dead in the note, we do not in general know where to
14392 put the note. One important case we _can_ handle is
14393 when the note comes from I3. */
14394 if (from_insn == i3)
14395 place = i3;
14396 else
14397 break;
14399 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14400 place = i3;
14401 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14402 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14403 place = i2;
14404 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14405 && !(i2mod
14406 && reg_overlap_mentioned_p (XEXP (note, 0),
14407 i2mod_old_rhs)))
14408 || rtx_equal_p (XEXP (note, 0), elim_i1)
14409 || rtx_equal_p (XEXP (note, 0), elim_i0))
14410 break;
14411 tem_insn = i3;
14414 if (place == 0)
14416 basic_block bb = this_basic_block;
14418 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14420 if (!NONDEBUG_INSN_P (tem_insn))
14422 if (tem_insn == BB_HEAD (bb))
14423 break;
14424 continue;
14427 /* If the register is being set at TEM_INSN, see if that is all
14428 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14429 into a REG_UNUSED note instead. Don't delete sets to
14430 global register vars. */
14431 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14432 || !global_regs[REGNO (XEXP (note, 0))])
14433 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14435 rtx set = single_set (tem_insn);
14436 rtx inner_dest = 0;
14437 rtx_insn *cc0_setter = NULL;
14439 if (set != 0)
14440 for (inner_dest = SET_DEST (set);
14441 (GET_CODE (inner_dest) == STRICT_LOW_PART
14442 || GET_CODE (inner_dest) == SUBREG
14443 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14444 inner_dest = XEXP (inner_dest, 0))
14447 /* Verify that it was the set, and not a clobber that
14448 modified the register.
14450 CC0 targets must be careful to maintain setter/user
14451 pairs. If we cannot delete the setter due to side
14452 effects, mark the user with an UNUSED note instead
14453 of deleting it. */
14455 if (set != 0 && ! side_effects_p (SET_SRC (set))
14456 && rtx_equal_p (XEXP (note, 0), inner_dest)
14457 && (!HAVE_cc0
14458 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14459 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14460 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14462 /* Move the notes and links of TEM_INSN elsewhere.
14463 This might delete other dead insns recursively.
14464 First set the pattern to something that won't use
14465 any register. */
14466 rtx old_notes = REG_NOTES (tem_insn);
14468 PATTERN (tem_insn) = pc_rtx;
14469 REG_NOTES (tem_insn) = NULL;
14471 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14472 NULL_RTX, NULL_RTX, NULL_RTX);
14473 distribute_links (LOG_LINKS (tem_insn));
14475 unsigned int regno = REGNO (XEXP (note, 0));
14476 reg_stat_type *rsp = &reg_stat[regno];
14477 if (rsp->last_set == tem_insn)
14478 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14480 SET_INSN_DELETED (tem_insn);
14481 if (tem_insn == i2)
14482 i2 = NULL;
14484 /* Delete the setter too. */
14485 if (cc0_setter)
14487 PATTERN (cc0_setter) = pc_rtx;
14488 old_notes = REG_NOTES (cc0_setter);
14489 REG_NOTES (cc0_setter) = NULL;
14491 distribute_notes (old_notes, cc0_setter,
14492 cc0_setter, NULL,
14493 NULL_RTX, NULL_RTX, NULL_RTX);
14494 distribute_links (LOG_LINKS (cc0_setter));
14496 SET_INSN_DELETED (cc0_setter);
14497 if (cc0_setter == i2)
14498 i2 = NULL;
14501 else
14503 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14505 /* If there isn't already a REG_UNUSED note, put one
14506 here. Do not place a REG_DEAD note, even if
14507 the register is also used here; that would not
14508 match the algorithm used in lifetime analysis
14509 and can cause the consistency check in the
14510 scheduler to fail. */
14511 if (! find_regno_note (tem_insn, REG_UNUSED,
14512 REGNO (XEXP (note, 0))))
14513 place = tem_insn;
14514 break;
14517 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14518 || (CALL_P (tem_insn)
14519 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14521 place = tem_insn;
14523 /* If we are doing a 3->2 combination, and we have a
14524 register which formerly died in i3 and was not used
14525 by i2, which now no longer dies in i3 and is used in
14526 i2 but does not die in i2, and place is between i2
14527 and i3, then we may need to move a link from place to
14528 i2. */
14529 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14530 && from_insn
14531 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14532 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14534 struct insn_link *links = LOG_LINKS (place);
14535 LOG_LINKS (place) = NULL;
14536 distribute_links (links);
14538 break;
14541 if (tem_insn == BB_HEAD (bb))
14542 break;
14547 /* If the register is set or already dead at PLACE, we needn't do
14548 anything with this note if it is still a REG_DEAD note.
14549 We check here if it is set at all, not if is it totally replaced,
14550 which is what `dead_or_set_p' checks, so also check for it being
14551 set partially. */
14553 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14555 unsigned int regno = REGNO (XEXP (note, 0));
14556 reg_stat_type *rsp = &reg_stat[regno];
14558 if (dead_or_set_p (place, XEXP (note, 0))
14559 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14561 /* Unless the register previously died in PLACE, clear
14562 last_death. [I no longer understand why this is
14563 being done.] */
14564 if (rsp->last_death != place)
14565 rsp->last_death = 0;
14566 place = 0;
14568 else
14569 rsp->last_death = place;
14571 /* If this is a death note for a hard reg that is occupying
14572 multiple registers, ensure that we are still using all
14573 parts of the object. If we find a piece of the object
14574 that is unused, we must arrange for an appropriate REG_DEAD
14575 note to be added for it. However, we can't just emit a USE
14576 and tag the note to it, since the register might actually
14577 be dead; so we recourse, and the recursive call then finds
14578 the previous insn that used this register. */
14580 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14582 unsigned int endregno = END_REGNO (XEXP (note, 0));
14583 bool all_used = true;
14584 unsigned int i;
14586 for (i = regno; i < endregno; i++)
14587 if ((! refers_to_regno_p (i, PATTERN (place))
14588 && ! find_regno_fusage (place, USE, i))
14589 || dead_or_set_regno_p (place, i))
14591 all_used = false;
14592 break;
14595 if (! all_used)
14597 /* Put only REG_DEAD notes for pieces that are
14598 not already dead or set. */
14600 for (i = regno; i < endregno;
14601 i += hard_regno_nregs (i, reg_raw_mode[i]))
14603 rtx piece = regno_reg_rtx[i];
14604 basic_block bb = this_basic_block;
14606 if (! dead_or_set_p (place, piece)
14607 && ! reg_bitfield_target_p (piece,
14608 PATTERN (place)))
14610 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14611 NULL_RTX);
14613 distribute_notes (new_note, place, place,
14614 NULL, NULL_RTX, NULL_RTX,
14615 NULL_RTX);
14617 else if (! refers_to_regno_p (i, PATTERN (place))
14618 && ! find_regno_fusage (place, USE, i))
14619 for (tem_insn = PREV_INSN (place); ;
14620 tem_insn = PREV_INSN (tem_insn))
14622 if (!NONDEBUG_INSN_P (tem_insn))
14624 if (tem_insn == BB_HEAD (bb))
14625 break;
14626 continue;
14628 if (dead_or_set_p (tem_insn, piece)
14629 || reg_bitfield_target_p (piece,
14630 PATTERN (tem_insn)))
14632 add_reg_note (tem_insn, REG_UNUSED, piece);
14633 break;
14638 place = 0;
14642 break;
14644 default:
14645 /* Any other notes should not be present at this point in the
14646 compilation. */
14647 gcc_unreachable ();
14650 if (place)
14652 XEXP (note, 1) = REG_NOTES (place);
14653 REG_NOTES (place) = note;
14655 /* Set added_notes_insn to the earliest insn we added a note to. */
14656 if (added_notes_insn == 0
14657 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14658 added_notes_insn = place;
14661 if (place2)
14663 add_shallow_copy_of_reg_note (place2, note);
14665 /* Set added_notes_insn to the earliest insn we added a note to. */
14666 if (added_notes_insn == 0
14667 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14668 added_notes_insn = place2;
14673 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14674 I3, I2, and I1 to new locations. This is also called to add a link
14675 pointing at I3 when I3's destination is changed. */
14677 static void
14678 distribute_links (struct insn_link *links)
14680 struct insn_link *link, *next_link;
14682 for (link = links; link; link = next_link)
14684 rtx_insn *place = 0;
14685 rtx_insn *insn;
14686 rtx set, reg;
14688 next_link = link->next;
14690 /* If the insn that this link points to is a NOTE, ignore it. */
14691 if (NOTE_P (link->insn))
14692 continue;
14694 set = 0;
14695 rtx pat = PATTERN (link->insn);
14696 if (GET_CODE (pat) == SET)
14697 set = pat;
14698 else if (GET_CODE (pat) == PARALLEL)
14700 int i;
14701 for (i = 0; i < XVECLEN (pat, 0); i++)
14703 set = XVECEXP (pat, 0, i);
14704 if (GET_CODE (set) != SET)
14705 continue;
14707 reg = SET_DEST (set);
14708 while (GET_CODE (reg) == ZERO_EXTRACT
14709 || GET_CODE (reg) == STRICT_LOW_PART
14710 || GET_CODE (reg) == SUBREG)
14711 reg = XEXP (reg, 0);
14713 if (!REG_P (reg))
14714 continue;
14716 if (REGNO (reg) == link->regno)
14717 break;
14719 if (i == XVECLEN (pat, 0))
14720 continue;
14722 else
14723 continue;
14725 reg = SET_DEST (set);
14727 while (GET_CODE (reg) == ZERO_EXTRACT
14728 || GET_CODE (reg) == STRICT_LOW_PART
14729 || GET_CODE (reg) == SUBREG)
14730 reg = XEXP (reg, 0);
14732 /* A LOG_LINK is defined as being placed on the first insn that uses
14733 a register and points to the insn that sets the register. Start
14734 searching at the next insn after the target of the link and stop
14735 when we reach a set of the register or the end of the basic block.
14737 Note that this correctly handles the link that used to point from
14738 I3 to I2. Also note that not much searching is typically done here
14739 since most links don't point very far away. */
14741 for (insn = NEXT_INSN (link->insn);
14742 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14743 || BB_HEAD (this_basic_block->next_bb) != insn));
14744 insn = NEXT_INSN (insn))
14745 if (DEBUG_INSN_P (insn))
14746 continue;
14747 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14749 if (reg_referenced_p (reg, PATTERN (insn)))
14750 place = insn;
14751 break;
14753 else if (CALL_P (insn)
14754 && find_reg_fusage (insn, USE, reg))
14756 place = insn;
14757 break;
14759 else if (INSN_P (insn) && reg_set_p (reg, insn))
14760 break;
14762 /* If we found a place to put the link, place it there unless there
14763 is already a link to the same insn as LINK at that point. */
14765 if (place)
14767 struct insn_link *link2;
14769 FOR_EACH_LOG_LINK (link2, place)
14770 if (link2->insn == link->insn && link2->regno == link->regno)
14771 break;
14773 if (link2 == NULL)
14775 link->next = LOG_LINKS (place);
14776 LOG_LINKS (place) = link;
14778 /* Set added_links_insn to the earliest insn we added a
14779 link to. */
14780 if (added_links_insn == 0
14781 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14782 added_links_insn = place;
14788 /* Check for any register or memory mentioned in EQUIV that is not
14789 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14790 of EXPR where some registers may have been replaced by constants. */
14792 static bool
14793 unmentioned_reg_p (rtx equiv, rtx expr)
14795 subrtx_iterator::array_type array;
14796 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14798 const_rtx x = *iter;
14799 if ((REG_P (x) || MEM_P (x))
14800 && !reg_mentioned_p (x, expr))
14801 return true;
14803 return false;
14806 DEBUG_FUNCTION void
14807 dump_combine_stats (FILE *file)
14809 fprintf
14810 (file,
14811 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14812 combine_attempts, combine_merges, combine_extras, combine_successes);
14815 void
14816 dump_combine_total_stats (FILE *file)
14818 fprintf
14819 (file,
14820 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14821 total_attempts, total_merges, total_extras, total_successes);
14824 /* Try combining insns through substitution. */
14825 static unsigned int
14826 rest_of_handle_combine (void)
14828 int rebuild_jump_labels_after_combine;
14830 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14831 df_note_add_problem ();
14832 df_analyze ();
14834 regstat_init_n_sets_and_refs ();
14835 reg_n_sets_max = max_reg_num ();
14837 rebuild_jump_labels_after_combine
14838 = combine_instructions (get_insns (), max_reg_num ());
14840 /* Combining insns may have turned an indirect jump into a
14841 direct jump. Rebuild the JUMP_LABEL fields of jumping
14842 instructions. */
14843 if (rebuild_jump_labels_after_combine)
14845 if (dom_info_available_p (CDI_DOMINATORS))
14846 free_dominance_info (CDI_DOMINATORS);
14847 timevar_push (TV_JUMP);
14848 rebuild_jump_labels (get_insns ());
14849 cleanup_cfg (0);
14850 timevar_pop (TV_JUMP);
14853 regstat_free_n_sets_and_refs ();
14854 return 0;
14857 namespace {
14859 const pass_data pass_data_combine =
14861 RTL_PASS, /* type */
14862 "combine", /* name */
14863 OPTGROUP_NONE, /* optinfo_flags */
14864 TV_COMBINE, /* tv_id */
14865 PROP_cfglayout, /* properties_required */
14866 0, /* properties_provided */
14867 0, /* properties_destroyed */
14868 0, /* todo_flags_start */
14869 TODO_df_finish, /* todo_flags_finish */
14872 class pass_combine : public rtl_opt_pass
14874 public:
14875 pass_combine (gcc::context *ctxt)
14876 : rtl_opt_pass (pass_data_combine, ctxt)
14879 /* opt_pass methods: */
14880 virtual bool gate (function *) { return (optimize > 0); }
14881 virtual unsigned int execute (function *)
14883 return rest_of_handle_combine ();
14886 }; // class pass_combine
14888 } // anon namespace
14890 rtl_opt_pass *
14891 make_pass_combine (gcc::context *ctxt)
14893 return new pass_combine (ctxt);