* config/rx/rx.c (add_vector_labels): New.
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blobd9afccff6a5eca7cd816ae240f7b1b1722ae4030
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify.h"
102 #include "gimplify-me.h"
103 #include "stor-layout.h"
104 #include "gimple-ssa.h"
105 #include "tree-cfg.h"
106 #include "tree-phinodes.h"
107 #include "ssa-iterators.h"
108 #include "stringpool.h"
109 #include "tree-ssanames.h"
110 #include "expr.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "tree-pass.h"
114 #include "alloc-pool.h"
115 #include "target.h"
116 #include "gimple-pretty-print.h"
118 /* FIXME: RTL headers have to be included here for optabs. */
119 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
120 #include "expr.h" /* Because optabs.h wants sepops. */
121 #include "optabs.h"
123 /* This structure represents one basic block that either computes a
124 division, or is a common dominator for basic block that compute a
125 division. */
126 struct occurrence {
127 /* The basic block represented by this structure. */
128 basic_block bb;
130 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
131 inserted in BB. */
132 tree recip_def;
134 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
135 was inserted in BB. */
136 gimple recip_def_stmt;
138 /* Pointer to a list of "struct occurrence"s for blocks dominated
139 by BB. */
140 struct occurrence *children;
142 /* Pointer to the next "struct occurrence"s in the list of blocks
143 sharing a common dominator. */
144 struct occurrence *next;
146 /* The number of divisions that are in BB before compute_merit. The
147 number of divisions that are in BB or post-dominate it after
148 compute_merit. */
149 int num_divisions;
151 /* True if the basic block has a division, false if it is a common
152 dominator for basic blocks that do. If it is false and trapping
153 math is active, BB is not a candidate for inserting a reciprocal. */
154 bool bb_has_division;
157 static struct
159 /* Number of 1.0/X ops inserted. */
160 int rdivs_inserted;
162 /* Number of 1.0/FUNC ops inserted. */
163 int rfuncs_inserted;
164 } reciprocal_stats;
166 static struct
168 /* Number of cexpi calls inserted. */
169 int inserted;
170 } sincos_stats;
172 static struct
174 /* Number of hand-written 16-bit nop / bswaps found. */
175 int found_16bit;
177 /* Number of hand-written 32-bit nop / bswaps found. */
178 int found_32bit;
180 /* Number of hand-written 64-bit nop / bswaps found. */
181 int found_64bit;
182 } nop_stats, bswap_stats;
184 static struct
186 /* Number of widening multiplication ops inserted. */
187 int widen_mults_inserted;
189 /* Number of integer multiply-and-accumulate ops inserted. */
190 int maccs_inserted;
192 /* Number of fp fused multiply-add ops inserted. */
193 int fmas_inserted;
194 } widen_mul_stats;
196 /* The instance of "struct occurrence" representing the highest
197 interesting block in the dominator tree. */
198 static struct occurrence *occ_head;
200 /* Allocation pool for getting instances of "struct occurrence". */
201 static alloc_pool occ_pool;
205 /* Allocate and return a new struct occurrence for basic block BB, and
206 whose children list is headed by CHILDREN. */
207 static struct occurrence *
208 occ_new (basic_block bb, struct occurrence *children)
210 struct occurrence *occ;
212 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
213 memset (occ, 0, sizeof (struct occurrence));
215 occ->bb = bb;
216 occ->children = children;
217 return occ;
221 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
222 list of "struct occurrence"s, one per basic block, having IDOM as
223 their common dominator.
225 We try to insert NEW_OCC as deep as possible in the tree, and we also
226 insert any other block that is a common dominator for BB and one
227 block already in the tree. */
229 static void
230 insert_bb (struct occurrence *new_occ, basic_block idom,
231 struct occurrence **p_head)
233 struct occurrence *occ, **p_occ;
235 for (p_occ = p_head; (occ = *p_occ) != NULL; )
237 basic_block bb = new_occ->bb, occ_bb = occ->bb;
238 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
239 if (dom == bb)
241 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
242 from its list. */
243 *p_occ = occ->next;
244 occ->next = new_occ->children;
245 new_occ->children = occ;
247 /* Try the next block (it may as well be dominated by BB). */
250 else if (dom == occ_bb)
252 /* OCC_BB dominates BB. Tail recurse to look deeper. */
253 insert_bb (new_occ, dom, &occ->children);
254 return;
257 else if (dom != idom)
259 gcc_assert (!dom->aux);
261 /* There is a dominator between IDOM and BB, add it and make
262 two children out of NEW_OCC and OCC. First, remove OCC from
263 its list. */
264 *p_occ = occ->next;
265 new_occ->next = occ;
266 occ->next = NULL;
268 /* None of the previous blocks has DOM as a dominator: if we tail
269 recursed, we would reexamine them uselessly. Just switch BB with
270 DOM, and go on looking for blocks dominated by DOM. */
271 new_occ = occ_new (dom, new_occ);
274 else
276 /* Nothing special, go on with the next element. */
277 p_occ = &occ->next;
281 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
282 new_occ->next = *p_head;
283 *p_head = new_occ;
286 /* Register that we found a division in BB. */
288 static inline void
289 register_division_in (basic_block bb)
291 struct occurrence *occ;
293 occ = (struct occurrence *) bb->aux;
294 if (!occ)
296 occ = occ_new (bb, NULL);
297 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
300 occ->bb_has_division = true;
301 occ->num_divisions++;
305 /* Compute the number of divisions that postdominate each block in OCC and
306 its children. */
308 static void
309 compute_merit (struct occurrence *occ)
311 struct occurrence *occ_child;
312 basic_block dom = occ->bb;
314 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
316 basic_block bb;
317 if (occ_child->children)
318 compute_merit (occ_child);
320 if (flag_exceptions)
321 bb = single_noncomplex_succ (dom);
322 else
323 bb = dom;
325 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
326 occ->num_divisions += occ_child->num_divisions;
331 /* Return whether USE_STMT is a floating-point division by DEF. */
332 static inline bool
333 is_division_by (gimple use_stmt, tree def)
335 return is_gimple_assign (use_stmt)
336 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
337 && gimple_assign_rhs2 (use_stmt) == def
338 /* Do not recognize x / x as valid division, as we are getting
339 confused later by replacing all immediate uses x in such
340 a stmt. */
341 && gimple_assign_rhs1 (use_stmt) != def;
344 /* Walk the subset of the dominator tree rooted at OCC, setting the
345 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
346 the given basic block. The field may be left NULL, of course,
347 if it is not possible or profitable to do the optimization.
349 DEF_BSI is an iterator pointing at the statement defining DEF.
350 If RECIP_DEF is set, a dominator already has a computation that can
351 be used. */
353 static void
354 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
355 tree def, tree recip_def, int threshold)
357 tree type;
358 gimple new_stmt;
359 gimple_stmt_iterator gsi;
360 struct occurrence *occ_child;
362 if (!recip_def
363 && (occ->bb_has_division || !flag_trapping_math)
364 && occ->num_divisions >= threshold)
366 /* Make a variable with the replacement and substitute it. */
367 type = TREE_TYPE (def);
368 recip_def = create_tmp_reg (type, "reciptmp");
369 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
370 build_one_cst (type), def);
372 if (occ->bb_has_division)
374 /* Case 1: insert before an existing division. */
375 gsi = gsi_after_labels (occ->bb);
376 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
377 gsi_next (&gsi);
379 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
381 else if (def_gsi && occ->bb == def_gsi->bb)
383 /* Case 2: insert right after the definition. Note that this will
384 never happen if the definition statement can throw, because in
385 that case the sole successor of the statement's basic block will
386 dominate all the uses as well. */
387 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
389 else
391 /* Case 3: insert in a basic block not containing defs/uses. */
392 gsi = gsi_after_labels (occ->bb);
393 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
396 reciprocal_stats.rdivs_inserted++;
398 occ->recip_def_stmt = new_stmt;
401 occ->recip_def = recip_def;
402 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
403 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
407 /* Replace the division at USE_P with a multiplication by the reciprocal, if
408 possible. */
410 static inline void
411 replace_reciprocal (use_operand_p use_p)
413 gimple use_stmt = USE_STMT (use_p);
414 basic_block bb = gimple_bb (use_stmt);
415 struct occurrence *occ = (struct occurrence *) bb->aux;
417 if (optimize_bb_for_speed_p (bb)
418 && occ->recip_def && use_stmt != occ->recip_def_stmt)
420 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
421 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
422 SET_USE (use_p, occ->recip_def);
423 fold_stmt_inplace (&gsi);
424 update_stmt (use_stmt);
429 /* Free OCC and return one more "struct occurrence" to be freed. */
431 static struct occurrence *
432 free_bb (struct occurrence *occ)
434 struct occurrence *child, *next;
436 /* First get the two pointers hanging off OCC. */
437 next = occ->next;
438 child = occ->children;
439 occ->bb->aux = NULL;
440 pool_free (occ_pool, occ);
442 /* Now ensure that we don't recurse unless it is necessary. */
443 if (!child)
444 return next;
445 else
447 while (next)
448 next = free_bb (next);
450 return child;
455 /* Look for floating-point divisions among DEF's uses, and try to
456 replace them by multiplications with the reciprocal. Add
457 as many statements computing the reciprocal as needed.
459 DEF must be a GIMPLE register of a floating-point type. */
461 static void
462 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
464 use_operand_p use_p;
465 imm_use_iterator use_iter;
466 struct occurrence *occ;
467 int count = 0, threshold;
469 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
471 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
473 gimple use_stmt = USE_STMT (use_p);
474 if (is_division_by (use_stmt, def))
476 register_division_in (gimple_bb (use_stmt));
477 count++;
481 /* Do the expensive part only if we can hope to optimize something. */
482 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
483 if (count >= threshold)
485 gimple use_stmt;
486 for (occ = occ_head; occ; occ = occ->next)
488 compute_merit (occ);
489 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
492 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
494 if (is_division_by (use_stmt, def))
496 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
497 replace_reciprocal (use_p);
502 for (occ = occ_head; occ; )
503 occ = free_bb (occ);
505 occ_head = NULL;
508 /* Go through all the floating-point SSA_NAMEs, and call
509 execute_cse_reciprocals_1 on each of them. */
510 namespace {
512 const pass_data pass_data_cse_reciprocals =
514 GIMPLE_PASS, /* type */
515 "recip", /* name */
516 OPTGROUP_NONE, /* optinfo_flags */
517 true, /* has_execute */
518 TV_NONE, /* tv_id */
519 PROP_ssa, /* properties_required */
520 0, /* properties_provided */
521 0, /* properties_destroyed */
522 0, /* todo_flags_start */
523 TODO_update_ssa, /* todo_flags_finish */
526 class pass_cse_reciprocals : public gimple_opt_pass
528 public:
529 pass_cse_reciprocals (gcc::context *ctxt)
530 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
533 /* opt_pass methods: */
534 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
535 virtual unsigned int execute (function *);
537 }; // class pass_cse_reciprocals
539 unsigned int
540 pass_cse_reciprocals::execute (function *fun)
542 basic_block bb;
543 tree arg;
545 occ_pool = create_alloc_pool ("dominators for recip",
546 sizeof (struct occurrence),
547 n_basic_blocks_for_fn (fun) / 3 + 1);
549 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
550 calculate_dominance_info (CDI_DOMINATORS);
551 calculate_dominance_info (CDI_POST_DOMINATORS);
553 #ifdef ENABLE_CHECKING
554 FOR_EACH_BB_FN (bb, fun)
555 gcc_assert (!bb->aux);
556 #endif
558 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
559 if (FLOAT_TYPE_P (TREE_TYPE (arg))
560 && is_gimple_reg (arg))
562 tree name = ssa_default_def (fun, arg);
563 if (name)
564 execute_cse_reciprocals_1 (NULL, name);
567 FOR_EACH_BB_FN (bb, fun)
569 gimple_stmt_iterator gsi;
570 gimple phi;
571 tree def;
573 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
575 phi = gsi_stmt (gsi);
576 def = PHI_RESULT (phi);
577 if (! virtual_operand_p (def)
578 && FLOAT_TYPE_P (TREE_TYPE (def)))
579 execute_cse_reciprocals_1 (NULL, def);
582 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
584 gimple stmt = gsi_stmt (gsi);
586 if (gimple_has_lhs (stmt)
587 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
588 && FLOAT_TYPE_P (TREE_TYPE (def))
589 && TREE_CODE (def) == SSA_NAME)
590 execute_cse_reciprocals_1 (&gsi, def);
593 if (optimize_bb_for_size_p (bb))
594 continue;
596 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
597 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
599 gimple stmt = gsi_stmt (gsi);
600 tree fndecl;
602 if (is_gimple_assign (stmt)
603 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
605 tree arg1 = gimple_assign_rhs2 (stmt);
606 gimple stmt1;
608 if (TREE_CODE (arg1) != SSA_NAME)
609 continue;
611 stmt1 = SSA_NAME_DEF_STMT (arg1);
613 if (is_gimple_call (stmt1)
614 && gimple_call_lhs (stmt1)
615 && (fndecl = gimple_call_fndecl (stmt1))
616 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
617 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
619 enum built_in_function code;
620 bool md_code, fail;
621 imm_use_iterator ui;
622 use_operand_p use_p;
624 code = DECL_FUNCTION_CODE (fndecl);
625 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
627 fndecl = targetm.builtin_reciprocal (code, md_code, false);
628 if (!fndecl)
629 continue;
631 /* Check that all uses of the SSA name are divisions,
632 otherwise replacing the defining statement will do
633 the wrong thing. */
634 fail = false;
635 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
637 gimple stmt2 = USE_STMT (use_p);
638 if (is_gimple_debug (stmt2))
639 continue;
640 if (!is_gimple_assign (stmt2)
641 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
642 || gimple_assign_rhs1 (stmt2) == arg1
643 || gimple_assign_rhs2 (stmt2) != arg1)
645 fail = true;
646 break;
649 if (fail)
650 continue;
652 gimple_replace_ssa_lhs (stmt1, arg1);
653 gimple_call_set_fndecl (stmt1, fndecl);
654 update_stmt (stmt1);
655 reciprocal_stats.rfuncs_inserted++;
657 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
659 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
660 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
661 fold_stmt_inplace (&gsi);
662 update_stmt (stmt);
669 statistics_counter_event (fun, "reciprocal divs inserted",
670 reciprocal_stats.rdivs_inserted);
671 statistics_counter_event (fun, "reciprocal functions inserted",
672 reciprocal_stats.rfuncs_inserted);
674 free_dominance_info (CDI_DOMINATORS);
675 free_dominance_info (CDI_POST_DOMINATORS);
676 free_alloc_pool (occ_pool);
677 return 0;
680 } // anon namespace
682 gimple_opt_pass *
683 make_pass_cse_reciprocals (gcc::context *ctxt)
685 return new pass_cse_reciprocals (ctxt);
688 /* Records an occurrence at statement USE_STMT in the vector of trees
689 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
690 is not yet initialized. Returns true if the occurrence was pushed on
691 the vector. Adjusts *TOP_BB to be the basic block dominating all
692 statements in the vector. */
694 static bool
695 maybe_record_sincos (vec<gimple> *stmts,
696 basic_block *top_bb, gimple use_stmt)
698 basic_block use_bb = gimple_bb (use_stmt);
699 if (*top_bb
700 && (*top_bb == use_bb
701 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
702 stmts->safe_push (use_stmt);
703 else if (!*top_bb
704 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
706 stmts->safe_push (use_stmt);
707 *top_bb = use_bb;
709 else
710 return false;
712 return true;
715 /* Look for sin, cos and cexpi calls with the same argument NAME and
716 create a single call to cexpi CSEing the result in this case.
717 We first walk over all immediate uses of the argument collecting
718 statements that we can CSE in a vector and in a second pass replace
719 the statement rhs with a REALPART or IMAGPART expression on the
720 result of the cexpi call we insert before the use statement that
721 dominates all other candidates. */
723 static bool
724 execute_cse_sincos_1 (tree name)
726 gimple_stmt_iterator gsi;
727 imm_use_iterator use_iter;
728 tree fndecl, res, type;
729 gimple def_stmt, use_stmt, stmt;
730 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
731 vec<gimple> stmts = vNULL;
732 basic_block top_bb = NULL;
733 int i;
734 bool cfg_changed = false;
736 type = TREE_TYPE (name);
737 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
739 if (gimple_code (use_stmt) != GIMPLE_CALL
740 || !gimple_call_lhs (use_stmt)
741 || !(fndecl = gimple_call_fndecl (use_stmt))
742 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
743 continue;
745 switch (DECL_FUNCTION_CODE (fndecl))
747 CASE_FLT_FN (BUILT_IN_COS):
748 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
749 break;
751 CASE_FLT_FN (BUILT_IN_SIN):
752 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
753 break;
755 CASE_FLT_FN (BUILT_IN_CEXPI):
756 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
757 break;
759 default:;
763 if (seen_cos + seen_sin + seen_cexpi <= 1)
765 stmts.release ();
766 return false;
769 /* Simply insert cexpi at the beginning of top_bb but not earlier than
770 the name def statement. */
771 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
772 if (!fndecl)
773 return false;
774 stmt = gimple_build_call (fndecl, 1, name);
775 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
776 gimple_call_set_lhs (stmt, res);
778 def_stmt = SSA_NAME_DEF_STMT (name);
779 if (!SSA_NAME_IS_DEFAULT_DEF (name)
780 && gimple_code (def_stmt) != GIMPLE_PHI
781 && gimple_bb (def_stmt) == top_bb)
783 gsi = gsi_for_stmt (def_stmt);
784 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
786 else
788 gsi = gsi_after_labels (top_bb);
789 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
791 sincos_stats.inserted++;
793 /* And adjust the recorded old call sites. */
794 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
796 tree rhs = NULL;
797 fndecl = gimple_call_fndecl (use_stmt);
799 switch (DECL_FUNCTION_CODE (fndecl))
801 CASE_FLT_FN (BUILT_IN_COS):
802 rhs = fold_build1 (REALPART_EXPR, type, res);
803 break;
805 CASE_FLT_FN (BUILT_IN_SIN):
806 rhs = fold_build1 (IMAGPART_EXPR, type, res);
807 break;
809 CASE_FLT_FN (BUILT_IN_CEXPI):
810 rhs = res;
811 break;
813 default:;
814 gcc_unreachable ();
817 /* Replace call with a copy. */
818 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
820 gsi = gsi_for_stmt (use_stmt);
821 gsi_replace (&gsi, stmt, true);
822 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
823 cfg_changed = true;
826 stmts.release ();
828 return cfg_changed;
831 /* To evaluate powi(x,n), the floating point value x raised to the
832 constant integer exponent n, we use a hybrid algorithm that
833 combines the "window method" with look-up tables. For an
834 introduction to exponentiation algorithms and "addition chains",
835 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
836 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
837 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
838 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
840 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
841 multiplications to inline before calling the system library's pow
842 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
843 so this default never requires calling pow, powf or powl. */
845 #ifndef POWI_MAX_MULTS
846 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
847 #endif
849 /* The size of the "optimal power tree" lookup table. All
850 exponents less than this value are simply looked up in the
851 powi_table below. This threshold is also used to size the
852 cache of pseudo registers that hold intermediate results. */
853 #define POWI_TABLE_SIZE 256
855 /* The size, in bits of the window, used in the "window method"
856 exponentiation algorithm. This is equivalent to a radix of
857 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
858 #define POWI_WINDOW_SIZE 3
860 /* The following table is an efficient representation of an
861 "optimal power tree". For each value, i, the corresponding
862 value, j, in the table states than an optimal evaluation
863 sequence for calculating pow(x,i) can be found by evaluating
864 pow(x,j)*pow(x,i-j). An optimal power tree for the first
865 100 integers is given in Knuth's "Seminumerical algorithms". */
867 static const unsigned char powi_table[POWI_TABLE_SIZE] =
869 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
870 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
871 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
872 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
873 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
874 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
875 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
876 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
877 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
878 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
879 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
880 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
881 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
882 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
883 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
884 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
885 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
886 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
887 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
888 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
889 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
890 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
891 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
892 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
893 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
894 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
895 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
896 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
897 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
898 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
899 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
900 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
904 /* Return the number of multiplications required to calculate
905 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
906 subroutine of powi_cost. CACHE is an array indicating
907 which exponents have already been calculated. */
909 static int
910 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
912 /* If we've already calculated this exponent, then this evaluation
913 doesn't require any additional multiplications. */
914 if (cache[n])
915 return 0;
917 cache[n] = true;
918 return powi_lookup_cost (n - powi_table[n], cache)
919 + powi_lookup_cost (powi_table[n], cache) + 1;
922 /* Return the number of multiplications required to calculate
923 powi(x,n) for an arbitrary x, given the exponent N. This
924 function needs to be kept in sync with powi_as_mults below. */
926 static int
927 powi_cost (HOST_WIDE_INT n)
929 bool cache[POWI_TABLE_SIZE];
930 unsigned HOST_WIDE_INT digit;
931 unsigned HOST_WIDE_INT val;
932 int result;
934 if (n == 0)
935 return 0;
937 /* Ignore the reciprocal when calculating the cost. */
938 val = (n < 0) ? -n : n;
940 /* Initialize the exponent cache. */
941 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
942 cache[1] = true;
944 result = 0;
946 while (val >= POWI_TABLE_SIZE)
948 if (val & 1)
950 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
951 result += powi_lookup_cost (digit, cache)
952 + POWI_WINDOW_SIZE + 1;
953 val >>= POWI_WINDOW_SIZE;
955 else
957 val >>= 1;
958 result++;
962 return result + powi_lookup_cost (val, cache);
965 /* Recursive subroutine of powi_as_mults. This function takes the
966 array, CACHE, of already calculated exponents and an exponent N and
967 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
969 static tree
970 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
971 HOST_WIDE_INT n, tree *cache)
973 tree op0, op1, ssa_target;
974 unsigned HOST_WIDE_INT digit;
975 gimple mult_stmt;
977 if (n < POWI_TABLE_SIZE && cache[n])
978 return cache[n];
980 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
982 if (n < POWI_TABLE_SIZE)
984 cache[n] = ssa_target;
985 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
986 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
988 else if (n & 1)
990 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
991 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
992 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
994 else
996 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
997 op1 = op0;
1000 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1001 gimple_set_location (mult_stmt, loc);
1002 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1004 return ssa_target;
1007 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1008 This function needs to be kept in sync with powi_cost above. */
1010 static tree
1011 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1012 tree arg0, HOST_WIDE_INT n)
1014 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1015 gimple div_stmt;
1016 tree target;
1018 if (n == 0)
1019 return build_real (type, dconst1);
1021 memset (cache, 0, sizeof (cache));
1022 cache[1] = arg0;
1024 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1025 if (n >= 0)
1026 return result;
1028 /* If the original exponent was negative, reciprocate the result. */
1029 target = make_temp_ssa_name (type, NULL, "powmult");
1030 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1031 build_real (type, dconst1),
1032 result);
1033 gimple_set_location (div_stmt, loc);
1034 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1036 return target;
1039 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1040 location info LOC. If the arguments are appropriate, create an
1041 equivalent sequence of statements prior to GSI using an optimal
1042 number of multiplications, and return an expession holding the
1043 result. */
1045 static tree
1046 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1047 tree arg0, HOST_WIDE_INT n)
1049 /* Avoid largest negative number. */
1050 if (n != -n
1051 && ((n >= -1 && n <= 2)
1052 || (optimize_function_for_speed_p (cfun)
1053 && powi_cost (n) <= POWI_MAX_MULTS)))
1054 return powi_as_mults (gsi, loc, arg0, n);
1056 return NULL_TREE;
1059 /* Build a gimple call statement that calls FN with argument ARG.
1060 Set the lhs of the call statement to a fresh SSA name. Insert the
1061 statement prior to GSI's current position, and return the fresh
1062 SSA name. */
1064 static tree
1065 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1066 tree fn, tree arg)
1068 gimple call_stmt;
1069 tree ssa_target;
1071 call_stmt = gimple_build_call (fn, 1, arg);
1072 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1073 gimple_set_lhs (call_stmt, ssa_target);
1074 gimple_set_location (call_stmt, loc);
1075 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1077 return ssa_target;
1080 /* Build a gimple binary operation with the given CODE and arguments
1081 ARG0, ARG1, assigning the result to a new SSA name for variable
1082 TARGET. Insert the statement prior to GSI's current position, and
1083 return the fresh SSA name.*/
1085 static tree
1086 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1087 const char *name, enum tree_code code,
1088 tree arg0, tree arg1)
1090 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1091 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1092 gimple_set_location (stmt, loc);
1093 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1094 return result;
1097 /* Build a gimple reference operation with the given CODE and argument
1098 ARG, assigning the result to a new SSA name of TYPE with NAME.
1099 Insert the statement prior to GSI's current position, and return
1100 the fresh SSA name. */
1102 static inline tree
1103 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1104 const char *name, enum tree_code code, tree arg0)
1106 tree result = make_temp_ssa_name (type, NULL, name);
1107 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1108 gimple_set_location (stmt, loc);
1109 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1110 return result;
1113 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1114 prior to GSI's current position, and return the fresh SSA name. */
1116 static tree
1117 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1118 tree type, tree val)
1120 tree result = make_ssa_name (type, NULL);
1121 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1122 gimple_set_location (stmt, loc);
1123 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1124 return result;
1127 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1128 with location info LOC. If possible, create an equivalent and
1129 less expensive sequence of statements prior to GSI, and return an
1130 expession holding the result. */
1132 static tree
1133 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1134 tree arg0, tree arg1)
1136 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1137 REAL_VALUE_TYPE c2, dconst3;
1138 HOST_WIDE_INT n;
1139 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1140 enum machine_mode mode;
1141 bool hw_sqrt_exists, c_is_int, c2_is_int;
1143 /* If the exponent isn't a constant, there's nothing of interest
1144 to be done. */
1145 if (TREE_CODE (arg1) != REAL_CST)
1146 return NULL_TREE;
1148 /* If the exponent is equivalent to an integer, expand to an optimal
1149 multiplication sequence when profitable. */
1150 c = TREE_REAL_CST (arg1);
1151 n = real_to_integer (&c);
1152 real_from_integer (&cint, VOIDmode, n, SIGNED);
1153 c_is_int = real_identical (&c, &cint);
1155 if (c_is_int
1156 && ((n >= -1 && n <= 2)
1157 || (flag_unsafe_math_optimizations
1158 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1159 && powi_cost (n) <= POWI_MAX_MULTS)))
1160 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1162 /* Attempt various optimizations using sqrt and cbrt. */
1163 type = TREE_TYPE (arg0);
1164 mode = TYPE_MODE (type);
1165 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1167 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1168 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1169 sqrt(-0) = -0. */
1170 if (sqrtfn
1171 && REAL_VALUES_EQUAL (c, dconsthalf)
1172 && !HONOR_SIGNED_ZEROS (mode))
1173 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1175 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1176 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1177 so do this optimization even if -Os. Don't do this optimization
1178 if we don't have a hardware sqrt insn. */
1179 dconst1_4 = dconst1;
1180 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1181 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1183 if (flag_unsafe_math_optimizations
1184 && sqrtfn
1185 && REAL_VALUES_EQUAL (c, dconst1_4)
1186 && hw_sqrt_exists)
1188 /* sqrt(x) */
1189 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1191 /* sqrt(sqrt(x)) */
1192 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1195 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1196 optimizing for space. Don't do this optimization if we don't have
1197 a hardware sqrt insn. */
1198 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1199 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1201 if (flag_unsafe_math_optimizations
1202 && sqrtfn
1203 && optimize_function_for_speed_p (cfun)
1204 && REAL_VALUES_EQUAL (c, dconst3_4)
1205 && hw_sqrt_exists)
1207 /* sqrt(x) */
1208 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1210 /* sqrt(sqrt(x)) */
1211 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1213 /* sqrt(x) * sqrt(sqrt(x)) */
1214 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1215 sqrt_arg0, sqrt_sqrt);
1218 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1219 optimizations since 1./3. is not exactly representable. If x
1220 is negative and finite, the correct value of pow(x,1./3.) is
1221 a NaN with the "invalid" exception raised, because the value
1222 of 1./3. actually has an even denominator. The correct value
1223 of cbrt(x) is a negative real value. */
1224 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1225 dconst1_3 = real_value_truncate (mode, dconst_third ());
1227 if (flag_unsafe_math_optimizations
1228 && cbrtfn
1229 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1230 && REAL_VALUES_EQUAL (c, dconst1_3))
1231 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1233 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1234 if we don't have a hardware sqrt insn. */
1235 dconst1_6 = dconst1_3;
1236 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1238 if (flag_unsafe_math_optimizations
1239 && sqrtfn
1240 && cbrtfn
1241 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1242 && optimize_function_for_speed_p (cfun)
1243 && hw_sqrt_exists
1244 && REAL_VALUES_EQUAL (c, dconst1_6))
1246 /* sqrt(x) */
1247 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1249 /* cbrt(sqrt(x)) */
1250 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1253 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1254 and c not an integer, into
1256 sqrt(x) * powi(x, n/2), n > 0;
1257 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1259 Do not calculate the powi factor when n/2 = 0. */
1260 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1261 n = real_to_integer (&c2);
1262 real_from_integer (&cint, VOIDmode, n, SIGNED);
1263 c2_is_int = real_identical (&c2, &cint);
1265 if (flag_unsafe_math_optimizations
1266 && sqrtfn
1267 && c2_is_int
1268 && !c_is_int
1269 && optimize_function_for_speed_p (cfun))
1271 tree powi_x_ndiv2 = NULL_TREE;
1273 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1274 possible or profitable, give up. Skip the degenerate case when
1275 n is 1 or -1, where the result is always 1. */
1276 if (absu_hwi (n) != 1)
1278 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1279 abs_hwi (n / 2));
1280 if (!powi_x_ndiv2)
1281 return NULL_TREE;
1284 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1285 result of the optimal multiply sequence just calculated. */
1286 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1288 if (absu_hwi (n) == 1)
1289 result = sqrt_arg0;
1290 else
1291 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1292 sqrt_arg0, powi_x_ndiv2);
1294 /* If n is negative, reciprocate the result. */
1295 if (n < 0)
1296 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1297 build_real (type, dconst1), result);
1298 return result;
1301 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1303 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1304 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1306 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1307 different from pow(x, 1./3.) due to rounding and behavior with
1308 negative x, we need to constrain this transformation to unsafe
1309 math and positive x or finite math. */
1310 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1311 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1312 real_round (&c2, mode, &c2);
1313 n = real_to_integer (&c2);
1314 real_from_integer (&cint, VOIDmode, n, SIGNED);
1315 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1316 real_convert (&c2, mode, &c2);
1318 if (flag_unsafe_math_optimizations
1319 && cbrtfn
1320 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1321 && real_identical (&c2, &c)
1322 && !c2_is_int
1323 && optimize_function_for_speed_p (cfun)
1324 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1326 tree powi_x_ndiv3 = NULL_TREE;
1328 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1329 possible or profitable, give up. Skip the degenerate case when
1330 abs(n) < 3, where the result is always 1. */
1331 if (absu_hwi (n) >= 3)
1333 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1334 abs_hwi (n / 3));
1335 if (!powi_x_ndiv3)
1336 return NULL_TREE;
1339 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1340 as that creates an unnecessary variable. Instead, just produce
1341 either cbrt(x) or cbrt(x) * cbrt(x). */
1342 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1344 if (absu_hwi (n) % 3 == 1)
1345 powi_cbrt_x = cbrt_x;
1346 else
1347 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1348 cbrt_x, cbrt_x);
1350 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1351 if (absu_hwi (n) < 3)
1352 result = powi_cbrt_x;
1353 else
1354 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1355 powi_x_ndiv3, powi_cbrt_x);
1357 /* If n is negative, reciprocate the result. */
1358 if (n < 0)
1359 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1360 build_real (type, dconst1), result);
1362 return result;
1365 /* No optimizations succeeded. */
1366 return NULL_TREE;
1369 /* ARG is the argument to a cabs builtin call in GSI with location info
1370 LOC. Create a sequence of statements prior to GSI that calculates
1371 sqrt(R*R + I*I), where R and I are the real and imaginary components
1372 of ARG, respectively. Return an expression holding the result. */
1374 static tree
1375 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1377 tree real_part, imag_part, addend1, addend2, sum, result;
1378 tree type = TREE_TYPE (TREE_TYPE (arg));
1379 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1380 enum machine_mode mode = TYPE_MODE (type);
1382 if (!flag_unsafe_math_optimizations
1383 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1384 || !sqrtfn
1385 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1386 return NULL_TREE;
1388 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1389 REALPART_EXPR, arg);
1390 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1391 real_part, real_part);
1392 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1393 IMAGPART_EXPR, arg);
1394 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1395 imag_part, imag_part);
1396 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1397 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1399 return result;
1402 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1403 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1404 an optimal number of multiplies, when n is a constant. */
1406 namespace {
1408 const pass_data pass_data_cse_sincos =
1410 GIMPLE_PASS, /* type */
1411 "sincos", /* name */
1412 OPTGROUP_NONE, /* optinfo_flags */
1413 true, /* has_execute */
1414 TV_NONE, /* tv_id */
1415 PROP_ssa, /* properties_required */
1416 0, /* properties_provided */
1417 0, /* properties_destroyed */
1418 0, /* todo_flags_start */
1419 TODO_update_ssa, /* todo_flags_finish */
1422 class pass_cse_sincos : public gimple_opt_pass
1424 public:
1425 pass_cse_sincos (gcc::context *ctxt)
1426 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1429 /* opt_pass methods: */
1430 virtual bool gate (function *)
1432 /* We no longer require either sincos or cexp, since powi expansion
1433 piggybacks on this pass. */
1434 return optimize;
1437 virtual unsigned int execute (function *);
1439 }; // class pass_cse_sincos
1441 unsigned int
1442 pass_cse_sincos::execute (function *fun)
1444 basic_block bb;
1445 bool cfg_changed = false;
1447 calculate_dominance_info (CDI_DOMINATORS);
1448 memset (&sincos_stats, 0, sizeof (sincos_stats));
1450 FOR_EACH_BB_FN (bb, fun)
1452 gimple_stmt_iterator gsi;
1453 bool cleanup_eh = false;
1455 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1457 gimple stmt = gsi_stmt (gsi);
1458 tree fndecl;
1460 /* Only the last stmt in a bb could throw, no need to call
1461 gimple_purge_dead_eh_edges if we change something in the middle
1462 of a basic block. */
1463 cleanup_eh = false;
1465 if (is_gimple_call (stmt)
1466 && gimple_call_lhs (stmt)
1467 && (fndecl = gimple_call_fndecl (stmt))
1468 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1470 tree arg, arg0, arg1, result;
1471 HOST_WIDE_INT n;
1472 location_t loc;
1474 switch (DECL_FUNCTION_CODE (fndecl))
1476 CASE_FLT_FN (BUILT_IN_COS):
1477 CASE_FLT_FN (BUILT_IN_SIN):
1478 CASE_FLT_FN (BUILT_IN_CEXPI):
1479 /* Make sure we have either sincos or cexp. */
1480 if (!targetm.libc_has_function (function_c99_math_complex)
1481 && !targetm.libc_has_function (function_sincos))
1482 break;
1484 arg = gimple_call_arg (stmt, 0);
1485 if (TREE_CODE (arg) == SSA_NAME)
1486 cfg_changed |= execute_cse_sincos_1 (arg);
1487 break;
1489 CASE_FLT_FN (BUILT_IN_POW):
1490 arg0 = gimple_call_arg (stmt, 0);
1491 arg1 = gimple_call_arg (stmt, 1);
1493 loc = gimple_location (stmt);
1494 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1496 if (result)
1498 tree lhs = gimple_get_lhs (stmt);
1499 gimple new_stmt = gimple_build_assign (lhs, result);
1500 gimple_set_location (new_stmt, loc);
1501 unlink_stmt_vdef (stmt);
1502 gsi_replace (&gsi, new_stmt, true);
1503 cleanup_eh = true;
1504 if (gimple_vdef (stmt))
1505 release_ssa_name (gimple_vdef (stmt));
1507 break;
1509 CASE_FLT_FN (BUILT_IN_POWI):
1510 arg0 = gimple_call_arg (stmt, 0);
1511 arg1 = gimple_call_arg (stmt, 1);
1512 loc = gimple_location (stmt);
1514 if (real_minus_onep (arg0))
1516 tree t0, t1, cond, one, minus_one;
1517 gimple stmt;
1519 t0 = TREE_TYPE (arg0);
1520 t1 = TREE_TYPE (arg1);
1521 one = build_real (t0, dconst1);
1522 minus_one = build_real (t0, dconstm1);
1524 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1525 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1526 arg1,
1527 build_int_cst (t1,
1528 1));
1529 gimple_set_location (stmt, loc);
1530 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1532 result = make_temp_ssa_name (t0, NULL, "powi");
1533 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1534 cond,
1535 minus_one, one);
1536 gimple_set_location (stmt, loc);
1537 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1539 else
1541 if (!tree_fits_shwi_p (arg1))
1542 break;
1544 n = tree_to_shwi (arg1);
1545 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1548 if (result)
1550 tree lhs = gimple_get_lhs (stmt);
1551 gimple new_stmt = gimple_build_assign (lhs, result);
1552 gimple_set_location (new_stmt, loc);
1553 unlink_stmt_vdef (stmt);
1554 gsi_replace (&gsi, new_stmt, true);
1555 cleanup_eh = true;
1556 if (gimple_vdef (stmt))
1557 release_ssa_name (gimple_vdef (stmt));
1559 break;
1561 CASE_FLT_FN (BUILT_IN_CABS):
1562 arg0 = gimple_call_arg (stmt, 0);
1563 loc = gimple_location (stmt);
1564 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1566 if (result)
1568 tree lhs = gimple_get_lhs (stmt);
1569 gimple new_stmt = gimple_build_assign (lhs, result);
1570 gimple_set_location (new_stmt, loc);
1571 unlink_stmt_vdef (stmt);
1572 gsi_replace (&gsi, new_stmt, true);
1573 cleanup_eh = true;
1574 if (gimple_vdef (stmt))
1575 release_ssa_name (gimple_vdef (stmt));
1577 break;
1579 default:;
1583 if (cleanup_eh)
1584 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1587 statistics_counter_event (fun, "sincos statements inserted",
1588 sincos_stats.inserted);
1590 free_dominance_info (CDI_DOMINATORS);
1591 return cfg_changed ? TODO_cleanup_cfg : 0;
1594 } // anon namespace
1596 gimple_opt_pass *
1597 make_pass_cse_sincos (gcc::context *ctxt)
1599 return new pass_cse_sincos (ctxt);
1602 /* A symbolic number is used to detect byte permutation and selection
1603 patterns. Therefore the field N contains an artificial number
1604 consisting of byte size markers:
1606 0 - byte has the value 0
1607 1..size - byte contains the content of the byte
1608 number indexed with that value minus one.
1610 To detect permutations on memory sources (arrays and structures), a symbolic
1611 number is also associated a base address (the array or structure the load is
1612 made from), an offset from the base address and a range which gives the
1613 difference between the highest and lowest accessed memory location to make
1614 such a symbolic number. The range is thus different from size which reflects
1615 the size of the type of current expression. Note that for non memory source,
1616 range holds the same value as size.
1618 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1619 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1620 still have a size of 2 but this time a range of 1. */
1622 struct symbolic_number {
1623 uint64_t n;
1624 int size;
1625 tree base_addr;
1626 tree offset;
1627 HOST_WIDE_INT bytepos;
1628 tree alias_set;
1629 tree vuse;
1630 unsigned HOST_WIDE_INT range;
1633 /* The number which the find_bswap_or_nop_1 result should match in
1634 order to have a nop. The number is masked according to the size of
1635 the symbolic number before using it. */
1636 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1637 (uint64_t)0x08070605 << 32 | 0x04030201)
1639 /* The number which the find_bswap_or_nop_1 result should match in
1640 order to have a byte swap. The number is masked according to the
1641 size of the symbolic number before using it. */
1642 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1643 (uint64_t)0x01020304 << 32 | 0x05060708)
1645 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1646 number N. Return false if the requested operation is not permitted
1647 on a symbolic number. */
1649 static inline bool
1650 do_shift_rotate (enum tree_code code,
1651 struct symbolic_number *n,
1652 int count)
1654 if (count % 8 != 0)
1655 return false;
1657 /* Zero out the extra bits of N in order to avoid them being shifted
1658 into the significant bits. */
1659 if (n->size < (int)sizeof (int64_t))
1660 n->n &= ((uint64_t)1 << (n->size * BITS_PER_UNIT)) - 1;
1662 switch (code)
1664 case LSHIFT_EXPR:
1665 n->n <<= count;
1666 break;
1667 case RSHIFT_EXPR:
1668 n->n >>= count;
1669 break;
1670 case LROTATE_EXPR:
1671 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1672 break;
1673 case RROTATE_EXPR:
1674 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1675 break;
1676 default:
1677 return false;
1679 /* Zero unused bits for size. */
1680 if (n->size < (int)sizeof (int64_t))
1681 n->n &= ((uint64_t)1 << (n->size * BITS_PER_UNIT)) - 1;
1682 return true;
1685 /* Perform sanity checking for the symbolic number N and the gimple
1686 statement STMT. */
1688 static inline bool
1689 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1691 tree lhs_type;
1693 lhs_type = gimple_expr_type (stmt);
1695 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1696 return false;
1698 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1699 return false;
1701 return true;
1704 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1705 the answer. If so, REF is that memory source and the base of the memory area
1706 accessed and the offset of the access from that base are recorded in N. */
1708 bool
1709 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1711 /* Leaf node is an array or component ref. Memorize its base and
1712 offset from base to compare to other such leaf node. */
1713 HOST_WIDE_INT bitsize, bitpos;
1714 enum machine_mode mode;
1715 int unsignedp, volatilep;
1717 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1718 return false;
1720 n->base_addr = get_inner_reference (ref, &bitsize, &bitpos, &n->offset,
1721 &mode, &unsignedp, &volatilep, false);
1723 if (TREE_CODE (n->base_addr) == MEM_REF)
1725 offset_int bit_offset = 0;
1726 tree off = TREE_OPERAND (n->base_addr, 1);
1728 if (!integer_zerop (off))
1730 offset_int boff, coff = mem_ref_offset (n->base_addr);
1731 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1732 bit_offset += boff;
1735 n->base_addr = TREE_OPERAND (n->base_addr, 0);
1737 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1738 if (wi::neg_p (bit_offset))
1740 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1741 offset_int tem = bit_offset.and_not (mask);
1742 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1743 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1744 bit_offset -= tem;
1745 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1746 if (n->offset)
1747 n->offset = size_binop (PLUS_EXPR, n->offset,
1748 wide_int_to_tree (sizetype, tem));
1749 else
1750 n->offset = wide_int_to_tree (sizetype, tem);
1753 bitpos += bit_offset.to_shwi ();
1756 if (bitpos % BITS_PER_UNIT)
1757 return false;
1758 if (bitsize % BITS_PER_UNIT)
1759 return false;
1761 n->bytepos = bitpos / BITS_PER_UNIT;
1762 n->alias_set = reference_alias_ptr_type (ref);
1763 n->vuse = gimple_vuse (stmt);
1764 return true;
1767 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1768 the operation given by the rhs of STMT on the result. If the operation
1769 could successfully be executed the function returns the tree expression of
1770 the source operand and NULL otherwise. */
1772 static tree
1773 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1775 enum tree_code code;
1776 tree rhs1, rhs2 = NULL;
1777 gimple rhs1_stmt, rhs2_stmt;
1778 tree source_expr1;
1779 enum gimple_rhs_class rhs_class;
1781 if (!limit || !is_gimple_assign (stmt))
1782 return NULL_TREE;
1784 rhs1 = gimple_assign_rhs1 (stmt);
1786 if (find_bswap_or_nop_load (stmt, rhs1, n))
1787 return rhs1;
1789 if (TREE_CODE (rhs1) != SSA_NAME)
1790 return NULL_TREE;
1792 code = gimple_assign_rhs_code (stmt);
1793 rhs_class = gimple_assign_rhs_class (stmt);
1794 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1796 if (rhs_class == GIMPLE_BINARY_RHS)
1797 rhs2 = gimple_assign_rhs2 (stmt);
1799 /* Handle unary rhs and binary rhs with integer constants as second
1800 operand. */
1802 if (rhs_class == GIMPLE_UNARY_RHS
1803 || (rhs_class == GIMPLE_BINARY_RHS
1804 && TREE_CODE (rhs2) == INTEGER_CST))
1806 if (code != BIT_AND_EXPR
1807 && code != LSHIFT_EXPR
1808 && code != RSHIFT_EXPR
1809 && code != LROTATE_EXPR
1810 && code != RROTATE_EXPR
1811 && code != NOP_EXPR
1812 && code != CONVERT_EXPR)
1813 return NULL_TREE;
1815 source_expr1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1817 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1818 we have to initialize the symbolic number. */
1819 if (!source_expr1 || gimple_assign_load_p (rhs1_stmt))
1821 /* Set up the symbolic number N by setting each byte to a
1822 value between 1 and the byte size of rhs1. The highest
1823 order byte is set to n->size and the lowest order
1824 byte to 1. */
1825 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1826 if (n->size % BITS_PER_UNIT != 0)
1827 return NULL_TREE;
1828 n->size /= BITS_PER_UNIT;
1829 n->range = n->size;
1830 n->n = CMPNOP;
1832 if (n->size < (int)sizeof (int64_t))
1833 n->n &= ((uint64_t)1 <<
1834 (n->size * BITS_PER_UNIT)) - 1;
1836 if (!source_expr1)
1838 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1839 source_expr1 = rhs1;
1843 switch (code)
1845 case BIT_AND_EXPR:
1847 int i;
1848 uint64_t val = int_cst_value (rhs2);
1849 uint64_t tmp = val;
1851 /* Only constants masking full bytes are allowed. */
1852 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1853 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1854 return NULL_TREE;
1856 n->n &= val;
1858 break;
1859 case LSHIFT_EXPR:
1860 case RSHIFT_EXPR:
1861 case LROTATE_EXPR:
1862 case RROTATE_EXPR:
1863 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1864 return NULL_TREE;
1865 break;
1866 CASE_CONVERT:
1868 int type_size;
1870 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1871 if (type_size % BITS_PER_UNIT != 0)
1872 return NULL_TREE;
1874 if (type_size / BITS_PER_UNIT < (int)(sizeof (int64_t)))
1876 /* If STMT casts to a smaller type mask out the bits not
1877 belonging to the target type. */
1878 n->n &= ((uint64_t)1 << type_size) - 1;
1880 n->size = type_size / BITS_PER_UNIT;
1881 if (!n->base_addr)
1882 n->range = n->size;
1884 break;
1885 default:
1886 return NULL_TREE;
1888 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1891 /* Handle binary rhs. */
1893 if (rhs_class == GIMPLE_BINARY_RHS)
1895 int i;
1896 struct symbolic_number n1, n2;
1897 uint64_t mask;
1898 tree source_expr2;
1900 if (code != BIT_IOR_EXPR)
1901 return NULL_TREE;
1903 if (TREE_CODE (rhs2) != SSA_NAME)
1904 return NULL_TREE;
1906 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1908 switch (code)
1910 case BIT_IOR_EXPR:
1911 source_expr1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1913 if (!source_expr1)
1914 return NULL_TREE;
1916 source_expr2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1918 if (n1.size != n2.size || !source_expr2)
1919 return NULL_TREE;
1921 if (!n1.vuse != !n2.vuse ||
1922 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1923 return NULL_TREE;
1925 if (source_expr1 != source_expr2)
1927 int64_t inc, mask;
1928 unsigned i;
1929 HOST_WIDE_INT off_sub;
1930 struct symbolic_number *n_ptr;
1932 if (!n1.base_addr || !n2.base_addr
1933 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1934 return NULL_TREE;
1935 if (!n1.offset != !n2.offset ||
1936 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1937 return NULL_TREE;
1939 /* We swap n1 with n2 to have n1 < n2. */
1940 if (n2.bytepos < n1.bytepos)
1942 struct symbolic_number tmpn;
1944 tmpn = n2;
1945 n2 = n1;
1946 n1 = tmpn;
1947 source_expr1 = source_expr2;
1950 off_sub = n2.bytepos - n1.bytepos;
1952 /* Check that the range of memory covered < biggest int size. */
1953 if (off_sub + n2.range > (int) sizeof (int64_t))
1954 return NULL_TREE;
1955 n->range = n2.range + off_sub;
1957 /* Reinterpret byte marks in symbolic number holding the value of
1958 bigger weight according to host endianness. */
1959 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
1960 mask = 0xFF;
1961 if (BYTES_BIG_ENDIAN)
1962 n_ptr = &n1;
1963 else
1964 n_ptr = &n2;
1965 for (i = 0; i < sizeof (int64_t); i++, inc <<= 8,
1966 mask <<= 8)
1968 if (n_ptr->n & mask)
1969 n_ptr->n += inc;
1972 else
1973 n->range = n1.range;
1975 if (!n1.alias_set
1976 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
1977 n->alias_set = n1.alias_set;
1978 else
1979 n->alias_set = ptr_type_node;
1980 n->vuse = n1.vuse;
1981 n->base_addr = n1.base_addr;
1982 n->offset = n1.offset;
1983 n->bytepos = n1.bytepos;
1984 n->size = n1.size;
1985 for (i = 0, mask = 0xff; i < n->size; i++, mask <<= BITS_PER_UNIT)
1987 uint64_t masked1, masked2;
1989 masked1 = n1.n & mask;
1990 masked2 = n2.n & mask;
1991 if (masked1 && masked2 && masked1 != masked2)
1992 return NULL_TREE;
1994 n->n = n1.n | n2.n;
1996 if (!verify_symbolic_number_p (n, stmt))
1997 return NULL_TREE;
1999 break;
2000 default:
2001 return NULL_TREE;
2003 return source_expr1;
2005 return NULL_TREE;
2008 /* Check if STMT completes a bswap implementation or a read in a given
2009 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2010 accordingly. It also sets N to represent the kind of operations
2011 performed: size of the resulting expression and whether it works on
2012 a memory source, and if so alias-set and vuse. At last, the
2013 function returns the source tree expression. */
2015 static tree
2016 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2018 /* The number which the find_bswap_or_nop_1 result should match in order
2019 to have a full byte swap. The number is shifted to the right
2020 according to the size of the symbolic number before using it. */
2021 uint64_t cmpxchg = CMPXCHG;
2022 uint64_t cmpnop = CMPNOP;
2024 tree source_expr;
2025 int limit;
2027 /* The last parameter determines the depth search limit. It usually
2028 correlates directly to the number n of bytes to be touched. We
2029 increase that number by log2(n) + 1 here in order to also
2030 cover signed -> unsigned conversions of the src operand as can be seen
2031 in libgcc, and for initial shift/and operation of the src operand. */
2032 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2033 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2034 source_expr = find_bswap_or_nop_1 (stmt, n, limit);
2036 if (!source_expr)
2037 return NULL_TREE;
2039 /* Find real size of result (highest non zero byte). */
2040 if (n->base_addr)
2042 int rsize;
2043 uint64_t tmpn;
2045 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_UNIT, rsize++);
2046 n->range = rsize;
2049 /* Zero out the extra bits of N and CMP*. */
2050 if (n->range < (int)sizeof (int64_t))
2052 uint64_t mask;
2054 mask = ((uint64_t)1 << (n->range * BITS_PER_UNIT)) - 1;
2055 cmpxchg >>= (sizeof (int64_t) - n->range) * BITS_PER_UNIT;
2056 cmpnop &= mask;
2059 /* A complete byte swap should make the symbolic number to start with
2060 the largest digit in the highest order byte. Unchanged symbolic
2061 number indicates a read with same endianness as host architecture. */
2062 if (n->n == cmpnop)
2063 *bswap = false;
2064 else if (n->n == cmpxchg)
2065 *bswap = true;
2066 else
2067 return NULL_TREE;
2069 /* Useless bit manipulation performed by code. */
2070 if (!n->base_addr && n->n == cmpnop)
2071 return NULL_TREE;
2073 n->range *= BITS_PER_UNIT;
2074 return source_expr;
2077 namespace {
2079 const pass_data pass_data_optimize_bswap =
2081 GIMPLE_PASS, /* type */
2082 "bswap", /* name */
2083 OPTGROUP_NONE, /* optinfo_flags */
2084 true, /* has_execute */
2085 TV_NONE, /* tv_id */
2086 PROP_ssa, /* properties_required */
2087 0, /* properties_provided */
2088 0, /* properties_destroyed */
2089 0, /* todo_flags_start */
2090 0, /* todo_flags_finish */
2093 class pass_optimize_bswap : public gimple_opt_pass
2095 public:
2096 pass_optimize_bswap (gcc::context *ctxt)
2097 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2100 /* opt_pass methods: */
2101 virtual bool gate (function *)
2103 return flag_expensive_optimizations && optimize;
2106 virtual unsigned int execute (function *);
2108 }; // class pass_optimize_bswap
2110 /* Perform the bswap optimization: replace the statement STMT at GSI
2111 with load type, VUSE and set-alias as described by N if a memory
2112 source is involved (N->base_addr is non null), followed by the
2113 builtin bswap invocation in FNDECL if BSWAP is true. SRC gives
2114 the source on which STMT is operating and N->range gives the
2115 size of the expression involved for maintaining some statistics. */
2117 static bool
2118 bswap_replace (gimple stmt, gimple_stmt_iterator *gsi, tree src, tree fndecl,
2119 tree bswap_type, tree load_type, struct symbolic_number *n,
2120 bool bswap)
2122 tree tmp, tgt;
2123 gimple call;
2125 tgt = gimple_assign_lhs (stmt);
2127 /* Need to load the value from memory first. */
2128 if (n->base_addr)
2130 tree addr_expr, addr_tmp, val_expr, val_tmp;
2131 tree load_offset_ptr, aligned_load_type;
2132 gimple addr_stmt, load_stmt;
2133 unsigned align;
2135 align = get_object_alignment (src);
2136 if (bswap && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2137 return false;
2139 /* Compute address to load from and cast according to the size
2140 of the load. */
2141 addr_expr = build_fold_addr_expr (unshare_expr (src));
2142 if (is_gimple_min_invariant (addr_expr))
2143 addr_tmp = addr_expr;
2144 else
2146 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2147 "load_src");
2148 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2149 gsi_insert_before (gsi, addr_stmt, GSI_SAME_STMT);
2152 /* Perform the load. */
2153 aligned_load_type = load_type;
2154 if (align < TYPE_ALIGN (load_type))
2155 aligned_load_type = build_aligned_type (load_type, align);
2156 load_offset_ptr = build_int_cst (n->alias_set, 0);
2157 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2158 load_offset_ptr);
2160 if (!bswap)
2162 if (n->range == 16)
2163 nop_stats.found_16bit++;
2164 else if (n->range == 32)
2165 nop_stats.found_32bit++;
2166 else
2168 gcc_assert (n->range == 64);
2169 nop_stats.found_64bit++;
2172 /* Convert the result of load if necessary. */
2173 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2175 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2176 "load_dst");
2177 load_stmt = gimple_build_assign (val_tmp, val_expr);
2178 gimple_set_vuse (load_stmt, n->vuse);
2179 gsi_insert_before (gsi, load_stmt, GSI_SAME_STMT);
2180 gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR, val_tmp,
2181 NULL_TREE, NULL_TREE);
2183 else
2184 gimple_assign_set_rhs_with_ops_1 (gsi, MEM_REF, val_expr,
2185 NULL_TREE, NULL_TREE);
2186 update_stmt (gsi_stmt (*gsi));
2188 if (dump_file)
2190 fprintf (dump_file,
2191 "%d bit load in host endianness found at: ",
2192 (int)n->range);
2193 print_gimple_stmt (dump_file, stmt, 0, 0);
2195 return true;
2197 else
2199 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2200 load_stmt = gimple_build_assign (val_tmp, val_expr);
2201 gimple_set_vuse (load_stmt, n->vuse);
2202 gsi_insert_before (gsi, load_stmt, GSI_SAME_STMT);
2204 src = val_tmp;
2207 if (n->range == 16)
2208 bswap_stats.found_16bit++;
2209 else if (n->range == 32)
2210 bswap_stats.found_32bit++;
2211 else
2213 gcc_assert (n->range == 64);
2214 bswap_stats.found_64bit++;
2217 tmp = src;
2219 /* Convert the src expression if necessary. */
2220 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2222 gimple convert_stmt;
2223 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2224 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
2225 gsi_insert_before (gsi, convert_stmt, GSI_SAME_STMT);
2228 call = gimple_build_call (fndecl, 1, tmp);
2230 tmp = tgt;
2232 /* Convert the result if necessary. */
2233 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2235 gimple convert_stmt;
2236 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2237 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2238 gsi_insert_after (gsi, convert_stmt, GSI_SAME_STMT);
2241 gimple_call_set_lhs (call, tmp);
2243 if (dump_file)
2245 fprintf (dump_file, "%d bit bswap implementation found at: ",
2246 (int)n->range);
2247 print_gimple_stmt (dump_file, stmt, 0, 0);
2250 gsi_insert_after (gsi, call, GSI_SAME_STMT);
2251 gsi_remove (gsi, true);
2252 return true;
2255 /* Find manual byte swap implementations as well as load in a given
2256 endianness. Byte swaps are turned into a bswap builtin invokation
2257 while endian loads are converted to bswap builtin invokation or
2258 simple load according to the host endianness. */
2260 unsigned int
2261 pass_optimize_bswap::execute (function *fun)
2263 basic_block bb;
2264 bool bswap16_p, bswap32_p, bswap64_p;
2265 bool changed = false;
2266 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2268 if (BITS_PER_UNIT != 8)
2269 return 0;
2271 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2272 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2273 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2274 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2275 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2276 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2277 || (bswap32_p && word_mode == SImode)));
2279 /* Determine the argument type of the builtins. The code later on
2280 assumes that the return and argument type are the same. */
2281 if (bswap16_p)
2283 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2284 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2287 if (bswap32_p)
2289 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2290 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2293 if (bswap64_p)
2295 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2296 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2299 memset (&nop_stats, 0, sizeof (nop_stats));
2300 memset (&bswap_stats, 0, sizeof (bswap_stats));
2302 FOR_EACH_BB_FN (bb, fun)
2304 gimple_stmt_iterator gsi;
2306 /* We do a reverse scan for bswap patterns to make sure we get the
2307 widest match. As bswap pattern matching doesn't handle
2308 previously inserted smaller bswap replacements as sub-
2309 patterns, the wider variant wouldn't be detected. */
2310 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2312 gimple stmt = gsi_stmt (gsi);
2313 tree fndecl = NULL_TREE, bswap_type = NULL_TREE;
2314 tree src, load_type;
2315 struct symbolic_number n;
2316 bool bswap;
2318 if (!is_gimple_assign (stmt)
2319 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
2320 continue;
2322 src = find_bswap_or_nop (stmt, &n, &bswap);
2324 if (!src)
2325 continue;
2327 switch (n.range)
2329 case 16:
2330 load_type = uint16_type_node;
2331 if (bswap16_p)
2333 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2334 bswap_type = bswap16_type;
2336 break;
2337 case 32:
2338 load_type = uint32_type_node;
2339 if (bswap32_p)
2341 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2342 bswap_type = bswap32_type;
2344 break;
2345 case 64:
2346 load_type = uint64_type_node;
2347 if (bswap64_p)
2349 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2350 bswap_type = bswap64_type;
2352 break;
2353 default:
2354 continue;
2357 if (bswap && !fndecl)
2358 continue;
2360 if (bswap_replace (stmt, &gsi, src, fndecl, bswap_type, load_type,
2361 &n, bswap))
2362 changed = true;
2366 statistics_counter_event (fun, "16-bit nop implementations found",
2367 nop_stats.found_16bit);
2368 statistics_counter_event (fun, "32-bit nop implementations found",
2369 nop_stats.found_32bit);
2370 statistics_counter_event (fun, "64-bit nop implementations found",
2371 nop_stats.found_64bit);
2372 statistics_counter_event (fun, "16-bit bswap implementations found",
2373 bswap_stats.found_16bit);
2374 statistics_counter_event (fun, "32-bit bswap implementations found",
2375 bswap_stats.found_32bit);
2376 statistics_counter_event (fun, "64-bit bswap implementations found",
2377 bswap_stats.found_64bit);
2379 return (changed ? TODO_update_ssa : 0);
2382 } // anon namespace
2384 gimple_opt_pass *
2385 make_pass_optimize_bswap (gcc::context *ctxt)
2387 return new pass_optimize_bswap (ctxt);
2390 /* Return true if stmt is a type conversion operation that can be stripped
2391 when used in a widening multiply operation. */
2392 static bool
2393 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2395 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2397 if (TREE_CODE (result_type) == INTEGER_TYPE)
2399 tree op_type;
2400 tree inner_op_type;
2402 if (!CONVERT_EXPR_CODE_P (rhs_code))
2403 return false;
2405 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2407 /* If the type of OP has the same precision as the result, then
2408 we can strip this conversion. The multiply operation will be
2409 selected to create the correct extension as a by-product. */
2410 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2411 return true;
2413 /* We can also strip a conversion if it preserves the signed-ness of
2414 the operation and doesn't narrow the range. */
2415 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2417 /* If the inner-most type is unsigned, then we can strip any
2418 intermediate widening operation. If it's signed, then the
2419 intermediate widening operation must also be signed. */
2420 if ((TYPE_UNSIGNED (inner_op_type)
2421 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2422 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2423 return true;
2425 return false;
2428 return rhs_code == FIXED_CONVERT_EXPR;
2431 /* Return true if RHS is a suitable operand for a widening multiplication,
2432 assuming a target type of TYPE.
2433 There are two cases:
2435 - RHS makes some value at least twice as wide. Store that value
2436 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2438 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2439 but leave *TYPE_OUT untouched. */
2441 static bool
2442 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2443 tree *new_rhs_out)
2445 gimple stmt;
2446 tree type1, rhs1;
2448 if (TREE_CODE (rhs) == SSA_NAME)
2450 stmt = SSA_NAME_DEF_STMT (rhs);
2451 if (is_gimple_assign (stmt))
2453 if (! widening_mult_conversion_strippable_p (type, stmt))
2454 rhs1 = rhs;
2455 else
2457 rhs1 = gimple_assign_rhs1 (stmt);
2459 if (TREE_CODE (rhs1) == INTEGER_CST)
2461 *new_rhs_out = rhs1;
2462 *type_out = NULL;
2463 return true;
2467 else
2468 rhs1 = rhs;
2470 type1 = TREE_TYPE (rhs1);
2472 if (TREE_CODE (type1) != TREE_CODE (type)
2473 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2474 return false;
2476 *new_rhs_out = rhs1;
2477 *type_out = type1;
2478 return true;
2481 if (TREE_CODE (rhs) == INTEGER_CST)
2483 *new_rhs_out = rhs;
2484 *type_out = NULL;
2485 return true;
2488 return false;
2491 /* Return true if STMT performs a widening multiplication, assuming the
2492 output type is TYPE. If so, store the unwidened types of the operands
2493 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2494 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2495 and *TYPE2_OUT would give the operands of the multiplication. */
2497 static bool
2498 is_widening_mult_p (gimple stmt,
2499 tree *type1_out, tree *rhs1_out,
2500 tree *type2_out, tree *rhs2_out)
2502 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2504 if (TREE_CODE (type) != INTEGER_TYPE
2505 && TREE_CODE (type) != FIXED_POINT_TYPE)
2506 return false;
2508 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2509 rhs1_out))
2510 return false;
2512 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2513 rhs2_out))
2514 return false;
2516 if (*type1_out == NULL)
2518 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2519 return false;
2520 *type1_out = *type2_out;
2523 if (*type2_out == NULL)
2525 if (!int_fits_type_p (*rhs2_out, *type1_out))
2526 return false;
2527 *type2_out = *type1_out;
2530 /* Ensure that the larger of the two operands comes first. */
2531 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2533 tree tmp;
2534 tmp = *type1_out;
2535 *type1_out = *type2_out;
2536 *type2_out = tmp;
2537 tmp = *rhs1_out;
2538 *rhs1_out = *rhs2_out;
2539 *rhs2_out = tmp;
2542 return true;
2545 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2546 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2547 value is true iff we converted the statement. */
2549 static bool
2550 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2552 tree lhs, rhs1, rhs2, type, type1, type2;
2553 enum insn_code handler;
2554 enum machine_mode to_mode, from_mode, actual_mode;
2555 optab op;
2556 int actual_precision;
2557 location_t loc = gimple_location (stmt);
2558 bool from_unsigned1, from_unsigned2;
2560 lhs = gimple_assign_lhs (stmt);
2561 type = TREE_TYPE (lhs);
2562 if (TREE_CODE (type) != INTEGER_TYPE)
2563 return false;
2565 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2566 return false;
2568 to_mode = TYPE_MODE (type);
2569 from_mode = TYPE_MODE (type1);
2570 from_unsigned1 = TYPE_UNSIGNED (type1);
2571 from_unsigned2 = TYPE_UNSIGNED (type2);
2573 if (from_unsigned1 && from_unsigned2)
2574 op = umul_widen_optab;
2575 else if (!from_unsigned1 && !from_unsigned2)
2576 op = smul_widen_optab;
2577 else
2578 op = usmul_widen_optab;
2580 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2581 0, &actual_mode);
2583 if (handler == CODE_FOR_nothing)
2585 if (op != smul_widen_optab)
2587 /* We can use a signed multiply with unsigned types as long as
2588 there is a wider mode to use, or it is the smaller of the two
2589 types that is unsigned. Note that type1 >= type2, always. */
2590 if ((TYPE_UNSIGNED (type1)
2591 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2592 || (TYPE_UNSIGNED (type2)
2593 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2595 from_mode = GET_MODE_WIDER_MODE (from_mode);
2596 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2597 return false;
2600 op = smul_widen_optab;
2601 handler = find_widening_optab_handler_and_mode (op, to_mode,
2602 from_mode, 0,
2603 &actual_mode);
2605 if (handler == CODE_FOR_nothing)
2606 return false;
2608 from_unsigned1 = from_unsigned2 = false;
2610 else
2611 return false;
2614 /* Ensure that the inputs to the handler are in the correct precison
2615 for the opcode. This will be the full mode size. */
2616 actual_precision = GET_MODE_PRECISION (actual_mode);
2617 if (2 * actual_precision > TYPE_PRECISION (type))
2618 return false;
2619 if (actual_precision != TYPE_PRECISION (type1)
2620 || from_unsigned1 != TYPE_UNSIGNED (type1))
2621 rhs1 = build_and_insert_cast (gsi, loc,
2622 build_nonstandard_integer_type
2623 (actual_precision, from_unsigned1), rhs1);
2624 if (actual_precision != TYPE_PRECISION (type2)
2625 || from_unsigned2 != TYPE_UNSIGNED (type2))
2626 rhs2 = build_and_insert_cast (gsi, loc,
2627 build_nonstandard_integer_type
2628 (actual_precision, from_unsigned2), rhs2);
2630 /* Handle constants. */
2631 if (TREE_CODE (rhs1) == INTEGER_CST)
2632 rhs1 = fold_convert (type1, rhs1);
2633 if (TREE_CODE (rhs2) == INTEGER_CST)
2634 rhs2 = fold_convert (type2, rhs2);
2636 gimple_assign_set_rhs1 (stmt, rhs1);
2637 gimple_assign_set_rhs2 (stmt, rhs2);
2638 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2639 update_stmt (stmt);
2640 widen_mul_stats.widen_mults_inserted++;
2641 return true;
2644 /* Process a single gimple statement STMT, which is found at the
2645 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2646 rhs (given by CODE), and try to convert it into a
2647 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2648 is true iff we converted the statement. */
2650 static bool
2651 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2652 enum tree_code code)
2654 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2655 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2656 tree type, type1, type2, optype;
2657 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2658 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2659 optab this_optab;
2660 enum tree_code wmult_code;
2661 enum insn_code handler;
2662 enum machine_mode to_mode, from_mode, actual_mode;
2663 location_t loc = gimple_location (stmt);
2664 int actual_precision;
2665 bool from_unsigned1, from_unsigned2;
2667 lhs = gimple_assign_lhs (stmt);
2668 type = TREE_TYPE (lhs);
2669 if (TREE_CODE (type) != INTEGER_TYPE
2670 && TREE_CODE (type) != FIXED_POINT_TYPE)
2671 return false;
2673 if (code == MINUS_EXPR)
2674 wmult_code = WIDEN_MULT_MINUS_EXPR;
2675 else
2676 wmult_code = WIDEN_MULT_PLUS_EXPR;
2678 rhs1 = gimple_assign_rhs1 (stmt);
2679 rhs2 = gimple_assign_rhs2 (stmt);
2681 if (TREE_CODE (rhs1) == SSA_NAME)
2683 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2684 if (is_gimple_assign (rhs1_stmt))
2685 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2688 if (TREE_CODE (rhs2) == SSA_NAME)
2690 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2691 if (is_gimple_assign (rhs2_stmt))
2692 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2695 /* Allow for one conversion statement between the multiply
2696 and addition/subtraction statement. If there are more than
2697 one conversions then we assume they would invalidate this
2698 transformation. If that's not the case then they should have
2699 been folded before now. */
2700 if (CONVERT_EXPR_CODE_P (rhs1_code))
2702 conv1_stmt = rhs1_stmt;
2703 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2704 if (TREE_CODE (rhs1) == SSA_NAME)
2706 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2707 if (is_gimple_assign (rhs1_stmt))
2708 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2710 else
2711 return false;
2713 if (CONVERT_EXPR_CODE_P (rhs2_code))
2715 conv2_stmt = rhs2_stmt;
2716 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2717 if (TREE_CODE (rhs2) == SSA_NAME)
2719 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2720 if (is_gimple_assign (rhs2_stmt))
2721 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2723 else
2724 return false;
2727 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2728 is_widening_mult_p, but we still need the rhs returns.
2730 It might also appear that it would be sufficient to use the existing
2731 operands of the widening multiply, but that would limit the choice of
2732 multiply-and-accumulate instructions.
2734 If the widened-multiplication result has more than one uses, it is
2735 probably wiser not to do the conversion. */
2736 if (code == PLUS_EXPR
2737 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2739 if (!has_single_use (rhs1)
2740 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2741 &type2, &mult_rhs2))
2742 return false;
2743 add_rhs = rhs2;
2744 conv_stmt = conv1_stmt;
2746 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2748 if (!has_single_use (rhs2)
2749 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2750 &type2, &mult_rhs2))
2751 return false;
2752 add_rhs = rhs1;
2753 conv_stmt = conv2_stmt;
2755 else
2756 return false;
2758 to_mode = TYPE_MODE (type);
2759 from_mode = TYPE_MODE (type1);
2760 from_unsigned1 = TYPE_UNSIGNED (type1);
2761 from_unsigned2 = TYPE_UNSIGNED (type2);
2762 optype = type1;
2764 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2765 if (from_unsigned1 != from_unsigned2)
2767 if (!INTEGRAL_TYPE_P (type))
2768 return false;
2769 /* We can use a signed multiply with unsigned types as long as
2770 there is a wider mode to use, or it is the smaller of the two
2771 types that is unsigned. Note that type1 >= type2, always. */
2772 if ((from_unsigned1
2773 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2774 || (from_unsigned2
2775 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2777 from_mode = GET_MODE_WIDER_MODE (from_mode);
2778 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2779 return false;
2782 from_unsigned1 = from_unsigned2 = false;
2783 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2784 false);
2787 /* If there was a conversion between the multiply and addition
2788 then we need to make sure it fits a multiply-and-accumulate.
2789 The should be a single mode change which does not change the
2790 value. */
2791 if (conv_stmt)
2793 /* We use the original, unmodified data types for this. */
2794 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2795 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2796 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2797 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2799 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2801 /* Conversion is a truncate. */
2802 if (TYPE_PRECISION (to_type) < data_size)
2803 return false;
2805 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2807 /* Conversion is an extend. Check it's the right sort. */
2808 if (TYPE_UNSIGNED (from_type) != is_unsigned
2809 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2810 return false;
2812 /* else convert is a no-op for our purposes. */
2815 /* Verify that the machine can perform a widening multiply
2816 accumulate in this mode/signedness combination, otherwise
2817 this transformation is likely to pessimize code. */
2818 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2819 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2820 from_mode, 0, &actual_mode);
2822 if (handler == CODE_FOR_nothing)
2823 return false;
2825 /* Ensure that the inputs to the handler are in the correct precison
2826 for the opcode. This will be the full mode size. */
2827 actual_precision = GET_MODE_PRECISION (actual_mode);
2828 if (actual_precision != TYPE_PRECISION (type1)
2829 || from_unsigned1 != TYPE_UNSIGNED (type1))
2830 mult_rhs1 = build_and_insert_cast (gsi, loc,
2831 build_nonstandard_integer_type
2832 (actual_precision, from_unsigned1),
2833 mult_rhs1);
2834 if (actual_precision != TYPE_PRECISION (type2)
2835 || from_unsigned2 != TYPE_UNSIGNED (type2))
2836 mult_rhs2 = build_and_insert_cast (gsi, loc,
2837 build_nonstandard_integer_type
2838 (actual_precision, from_unsigned2),
2839 mult_rhs2);
2841 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2842 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2844 /* Handle constants. */
2845 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2846 mult_rhs1 = fold_convert (type1, mult_rhs1);
2847 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2848 mult_rhs2 = fold_convert (type2, mult_rhs2);
2850 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2851 add_rhs);
2852 update_stmt (gsi_stmt (*gsi));
2853 widen_mul_stats.maccs_inserted++;
2854 return true;
2857 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2858 with uses in additions and subtractions to form fused multiply-add
2859 operations. Returns true if successful and MUL_STMT should be removed. */
2861 static bool
2862 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2864 tree mul_result = gimple_get_lhs (mul_stmt);
2865 tree type = TREE_TYPE (mul_result);
2866 gimple use_stmt, neguse_stmt, fma_stmt;
2867 use_operand_p use_p;
2868 imm_use_iterator imm_iter;
2870 if (FLOAT_TYPE_P (type)
2871 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2872 return false;
2874 /* We don't want to do bitfield reduction ops. */
2875 if (INTEGRAL_TYPE_P (type)
2876 && (TYPE_PRECISION (type)
2877 != GET_MODE_PRECISION (TYPE_MODE (type))))
2878 return false;
2880 /* If the target doesn't support it, don't generate it. We assume that
2881 if fma isn't available then fms, fnma or fnms are not either. */
2882 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2883 return false;
2885 /* If the multiplication has zero uses, it is kept around probably because
2886 of -fnon-call-exceptions. Don't optimize it away in that case,
2887 it is DCE job. */
2888 if (has_zero_uses (mul_result))
2889 return false;
2891 /* Make sure that the multiplication statement becomes dead after
2892 the transformation, thus that all uses are transformed to FMAs.
2893 This means we assume that an FMA operation has the same cost
2894 as an addition. */
2895 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2897 enum tree_code use_code;
2898 tree result = mul_result;
2899 bool negate_p = false;
2901 use_stmt = USE_STMT (use_p);
2903 if (is_gimple_debug (use_stmt))
2904 continue;
2906 /* For now restrict this operations to single basic blocks. In theory
2907 we would want to support sinking the multiplication in
2908 m = a*b;
2909 if ()
2910 ma = m + c;
2911 else
2912 d = m;
2913 to form a fma in the then block and sink the multiplication to the
2914 else block. */
2915 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2916 return false;
2918 if (!is_gimple_assign (use_stmt))
2919 return false;
2921 use_code = gimple_assign_rhs_code (use_stmt);
2923 /* A negate on the multiplication leads to FNMA. */
2924 if (use_code == NEGATE_EXPR)
2926 ssa_op_iter iter;
2927 use_operand_p usep;
2929 result = gimple_assign_lhs (use_stmt);
2931 /* Make sure the negate statement becomes dead with this
2932 single transformation. */
2933 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2934 &use_p, &neguse_stmt))
2935 return false;
2937 /* Make sure the multiplication isn't also used on that stmt. */
2938 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2939 if (USE_FROM_PTR (usep) == mul_result)
2940 return false;
2942 /* Re-validate. */
2943 use_stmt = neguse_stmt;
2944 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2945 return false;
2946 if (!is_gimple_assign (use_stmt))
2947 return false;
2949 use_code = gimple_assign_rhs_code (use_stmt);
2950 negate_p = true;
2953 switch (use_code)
2955 case MINUS_EXPR:
2956 if (gimple_assign_rhs2 (use_stmt) == result)
2957 negate_p = !negate_p;
2958 break;
2959 case PLUS_EXPR:
2960 break;
2961 default:
2962 /* FMA can only be formed from PLUS and MINUS. */
2963 return false;
2966 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2967 by a MULT_EXPR that we'll visit later, we might be able to
2968 get a more profitable match with fnma.
2969 OTOH, if we don't, a negate / fma pair has likely lower latency
2970 that a mult / subtract pair. */
2971 if (use_code == MINUS_EXPR && !negate_p
2972 && gimple_assign_rhs1 (use_stmt) == result
2973 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2974 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2976 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2978 if (TREE_CODE (rhs2) == SSA_NAME)
2980 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
2981 if (has_single_use (rhs2)
2982 && is_gimple_assign (stmt2)
2983 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2984 return false;
2988 /* We can't handle a * b + a * b. */
2989 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2990 return false;
2992 /* While it is possible to validate whether or not the exact form
2993 that we've recognized is available in the backend, the assumption
2994 is that the transformation is never a loss. For instance, suppose
2995 the target only has the plain FMA pattern available. Consider
2996 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2997 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2998 still have 3 operations, but in the FMA form the two NEGs are
2999 independent and could be run in parallel. */
3002 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3004 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3005 enum tree_code use_code;
3006 tree addop, mulop1 = op1, result = mul_result;
3007 bool negate_p = false;
3009 if (is_gimple_debug (use_stmt))
3010 continue;
3012 use_code = gimple_assign_rhs_code (use_stmt);
3013 if (use_code == NEGATE_EXPR)
3015 result = gimple_assign_lhs (use_stmt);
3016 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3017 gsi_remove (&gsi, true);
3018 release_defs (use_stmt);
3020 use_stmt = neguse_stmt;
3021 gsi = gsi_for_stmt (use_stmt);
3022 use_code = gimple_assign_rhs_code (use_stmt);
3023 negate_p = true;
3026 if (gimple_assign_rhs1 (use_stmt) == result)
3028 addop = gimple_assign_rhs2 (use_stmt);
3029 /* a * b - c -> a * b + (-c) */
3030 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3031 addop = force_gimple_operand_gsi (&gsi,
3032 build1 (NEGATE_EXPR,
3033 type, addop),
3034 true, NULL_TREE, true,
3035 GSI_SAME_STMT);
3037 else
3039 addop = gimple_assign_rhs1 (use_stmt);
3040 /* a - b * c -> (-b) * c + a */
3041 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3042 negate_p = !negate_p;
3045 if (negate_p)
3046 mulop1 = force_gimple_operand_gsi (&gsi,
3047 build1 (NEGATE_EXPR,
3048 type, mulop1),
3049 true, NULL_TREE, true,
3050 GSI_SAME_STMT);
3052 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3053 gimple_assign_lhs (use_stmt),
3054 mulop1, op2,
3055 addop);
3056 gsi_replace (&gsi, fma_stmt, true);
3057 widen_mul_stats.fmas_inserted++;
3060 return true;
3063 /* Find integer multiplications where the operands are extended from
3064 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3065 where appropriate. */
3067 namespace {
3069 const pass_data pass_data_optimize_widening_mul =
3071 GIMPLE_PASS, /* type */
3072 "widening_mul", /* name */
3073 OPTGROUP_NONE, /* optinfo_flags */
3074 true, /* has_execute */
3075 TV_NONE, /* tv_id */
3076 PROP_ssa, /* properties_required */
3077 0, /* properties_provided */
3078 0, /* properties_destroyed */
3079 0, /* todo_flags_start */
3080 TODO_update_ssa, /* todo_flags_finish */
3083 class pass_optimize_widening_mul : public gimple_opt_pass
3085 public:
3086 pass_optimize_widening_mul (gcc::context *ctxt)
3087 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3090 /* opt_pass methods: */
3091 virtual bool gate (function *)
3093 return flag_expensive_optimizations && optimize;
3096 virtual unsigned int execute (function *);
3098 }; // class pass_optimize_widening_mul
3100 unsigned int
3101 pass_optimize_widening_mul::execute (function *fun)
3103 basic_block bb;
3104 bool cfg_changed = false;
3106 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3108 FOR_EACH_BB_FN (bb, fun)
3110 gimple_stmt_iterator gsi;
3112 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3114 gimple stmt = gsi_stmt (gsi);
3115 enum tree_code code;
3117 if (is_gimple_assign (stmt))
3119 code = gimple_assign_rhs_code (stmt);
3120 switch (code)
3122 case MULT_EXPR:
3123 if (!convert_mult_to_widen (stmt, &gsi)
3124 && convert_mult_to_fma (stmt,
3125 gimple_assign_rhs1 (stmt),
3126 gimple_assign_rhs2 (stmt)))
3128 gsi_remove (&gsi, true);
3129 release_defs (stmt);
3130 continue;
3132 break;
3134 case PLUS_EXPR:
3135 case MINUS_EXPR:
3136 convert_plusminus_to_widen (&gsi, stmt, code);
3137 break;
3139 default:;
3142 else if (is_gimple_call (stmt)
3143 && gimple_call_lhs (stmt))
3145 tree fndecl = gimple_call_fndecl (stmt);
3146 if (fndecl
3147 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3149 switch (DECL_FUNCTION_CODE (fndecl))
3151 case BUILT_IN_POWF:
3152 case BUILT_IN_POW:
3153 case BUILT_IN_POWL:
3154 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3155 && REAL_VALUES_EQUAL
3156 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3157 dconst2)
3158 && convert_mult_to_fma (stmt,
3159 gimple_call_arg (stmt, 0),
3160 gimple_call_arg (stmt, 0)))
3162 unlink_stmt_vdef (stmt);
3163 if (gsi_remove (&gsi, true)
3164 && gimple_purge_dead_eh_edges (bb))
3165 cfg_changed = true;
3166 release_defs (stmt);
3167 continue;
3169 break;
3171 default:;
3175 gsi_next (&gsi);
3179 statistics_counter_event (fun, "widening multiplications inserted",
3180 widen_mul_stats.widen_mults_inserted);
3181 statistics_counter_event (fun, "widening maccs inserted",
3182 widen_mul_stats.maccs_inserted);
3183 statistics_counter_event (fun, "fused multiply-adds inserted",
3184 widen_mul_stats.fmas_inserted);
3186 return cfg_changed ? TODO_cleanup_cfg : 0;
3189 } // anon namespace
3191 gimple_opt_pass *
3192 make_pass_optimize_widening_mul (gcc::context *ctxt)
3194 return new pass_optimize_widening_mul (ctxt);