* dbxout.c (current_file): Also wrap inside DBX_DEBUGGING_INFO ||
[official-gcc.git] / gcc / function.c
blob332310a94f57f6b8b390c4b34d140e4de6e850ed
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
65 #include "target.h"
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
75 #ifndef STACK_ALIGNMENT_NEEDED
76 #define STACK_ALIGNMENT_NEEDED 1
77 #endif
79 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
81 /* Some systems use __main in a way incompatible with its use in gcc, in these
82 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
83 give the same symbol without quotes for an alternative entry point. You
84 must define both, or neither. */
85 #ifndef NAME__MAIN
86 #define NAME__MAIN "__main"
87 #endif
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
117 int current_function_nothrow;
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero.
131 calls.c:emit_library_call_value_1 uses it to set up
132 post-instantiation libcalls. */
133 int virtuals_instantiated;
135 /* Nonzero if at least one trampoline has been created. */
136 int trampolines_created;
138 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
139 static GTY(()) int funcdef_no;
141 /* These variables hold pointers to functions to create and destroy
142 target specific, per-function data structures. */
143 struct machine_function * (*init_machine_status) (void);
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
148 /* The currently compiled function. */
149 struct function *cfun = 0;
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static GTY(()) varray_type prologue;
153 static GTY(()) varray_type epilogue;
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static GTY(()) varray_type sibcall_epilogue;
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
177 struct temp_slot GTY(())
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 unsigned int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Nonzero if this temporary is currently in use. */
198 char in_use;
199 /* Nonzero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Nonzero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
218 struct fixup_replacement GTY(())
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
225 struct insns_for_mem_entry
227 /* A MEM. */
228 rtx key;
229 /* These are the INSNs which reference the MEM. */
230 rtx insns;
233 /* Forward declarations. */
235 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
236 struct function *);
237 static struct temp_slot *find_temp_slot_from_address (rtx);
238 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
239 enum machine_mode, int, unsigned int, int, htab_t);
240 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
241 htab_t);
242 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
243 static struct fixup_replacement
244 *find_fixup_replacement (struct fixup_replacement **, rtx);
245 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
246 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
247 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
248 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
249 struct fixup_replacement **, rtx);
250 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
251 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
252 static rtx fixup_stack_1 (rtx, rtx);
253 static void optimize_bit_field (rtx, rtx, rtx *);
254 static void instantiate_decls (tree, int);
255 static void instantiate_decls_1 (tree, int);
256 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
257 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
258 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
259 static void delete_handlers (void);
260 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
261 static void pad_below (struct args_size *, enum machine_mode, tree);
262 static rtx round_trampoline_addr (rtx);
263 static rtx adjust_trampoline_addr (rtx);
264 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
265 static void reorder_blocks_0 (tree);
266 static void reorder_blocks_1 (rtx, tree, varray_type *);
267 static void reorder_fix_fragments (tree);
268 static tree blocks_nreverse (tree);
269 static int all_blocks (tree, tree *);
270 static tree *get_block_vector (tree, int *);
271 extern tree debug_find_var_in_block_tree (tree, tree);
272 /* We always define `record_insns' even if its not used so that we
273 can always export `prologue_epilogue_contains'. */
274 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
275 static int contains (rtx, varray_type);
276 #ifdef HAVE_return
277 static void emit_return_into_block (basic_block, rtx);
278 #endif
279 static void put_addressof_into_stack (rtx, htab_t);
280 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
281 static void purge_single_hard_subreg_set (rtx);
282 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
283 static rtx keep_stack_depressed (rtx);
284 #endif
285 static int is_addressof (rtx *, void *);
286 static hashval_t insns_for_mem_hash (const void *);
287 static int insns_for_mem_comp (const void *, const void *);
288 static int insns_for_mem_walk (rtx *, void *);
289 static void compute_insns_for_mem (rtx, rtx, htab_t);
290 static void prepare_function_start (tree);
291 static void do_clobber_return_reg (rtx, void *);
292 static void do_use_return_reg (rtx, void *);
293 static void instantiate_virtual_regs_lossage (rtx);
294 static tree split_complex_args (tree);
295 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
297 /* Pointer to chain of `struct function' for containing functions. */
298 static GTY(()) struct function *outer_function_chain;
300 /* List of insns that were postponed by purge_addressof_1. */
301 static rtx postponed_insns;
303 /* Given a function decl for a containing function,
304 return the `struct function' for it. */
306 struct function *
307 find_function_data (tree decl)
309 struct function *p;
311 for (p = outer_function_chain; p; p = p->outer)
312 if (p->decl == decl)
313 return p;
315 abort ();
318 /* Save the current context for compilation of a nested function.
319 This is called from language-specific code. The caller should use
320 the enter_nested langhook to save any language-specific state,
321 since this function knows only about language-independent
322 variables. */
324 void
325 push_function_context_to (tree context)
327 struct function *p;
329 if (context)
331 if (context == current_function_decl)
332 cfun->contains_functions = 1;
333 else
335 struct function *containing = find_function_data (context);
336 containing->contains_functions = 1;
340 if (cfun == 0)
341 init_dummy_function_start ();
342 p = cfun;
344 p->outer = outer_function_chain;
345 outer_function_chain = p;
346 p->fixup_var_refs_queue = 0;
348 (*lang_hooks.function.enter_nested) (p);
350 cfun = 0;
353 void
354 push_function_context (void)
356 push_function_context_to (current_function_decl);
359 /* Restore the last saved context, at the end of a nested function.
360 This function is called from language-specific code. */
362 void
363 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
365 struct function *p = outer_function_chain;
366 struct var_refs_queue *queue;
368 cfun = p;
369 outer_function_chain = p->outer;
371 current_function_decl = p->decl;
372 reg_renumber = 0;
374 restore_emit_status (p);
376 (*lang_hooks.function.leave_nested) (p);
378 /* Finish doing put_var_into_stack for any of our variables which became
379 addressable during the nested function. If only one entry has to be
380 fixed up, just do that one. Otherwise, first make a list of MEMs that
381 are not to be unshared. */
382 if (p->fixup_var_refs_queue == 0)
384 else if (p->fixup_var_refs_queue->next == 0)
385 fixup_var_refs (p->fixup_var_refs_queue->modified,
386 p->fixup_var_refs_queue->promoted_mode,
387 p->fixup_var_refs_queue->unsignedp,
388 p->fixup_var_refs_queue->modified, 0);
389 else
391 rtx list = 0;
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 fixup_var_refs (queue->modified, queue->promoted_mode,
398 queue->unsignedp, list, 0);
402 p->fixup_var_refs_queue = 0;
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
410 void
411 pop_function_context (void)
413 pop_function_context_from (current_function_decl);
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
420 void
421 free_after_parsing (struct function *f)
423 /* f->expr->forced_labels is used by code generation. */
424 /* f->emit->regno_reg_rtx is used by code generation. */
425 /* f->varasm is used by code generation. */
426 /* f->eh->eh_return_stub_label is used by code generation. */
428 (*lang_hooks.function.final) (f);
429 f->stmt = NULL;
432 /* Clear out all parts of the state in F that can safely be discarded
433 after the function has been compiled, to let garbage collection
434 reclaim the memory. */
436 void
437 free_after_compilation (struct function *f)
439 f->eh = NULL;
440 f->expr = NULL;
441 f->emit = NULL;
442 f->varasm = NULL;
443 f->machine = NULL;
445 f->x_temp_slots = NULL;
446 f->arg_offset_rtx = NULL;
447 f->return_rtx = NULL;
448 f->internal_arg_pointer = NULL;
449 f->x_nonlocal_labels = NULL;
450 f->x_nonlocal_goto_handler_slots = NULL;
451 f->x_nonlocal_goto_handler_labels = NULL;
452 f->x_nonlocal_goto_stack_level = NULL;
453 f->x_cleanup_label = NULL;
454 f->x_return_label = NULL;
455 f->computed_goto_common_label = NULL;
456 f->computed_goto_common_reg = NULL;
457 f->x_save_expr_regs = NULL;
458 f->x_stack_slot_list = NULL;
459 f->x_rtl_expr_chain = NULL;
460 f->x_tail_recursion_label = NULL;
461 f->x_tail_recursion_reentry = NULL;
462 f->x_arg_pointer_save_area = NULL;
463 f->x_clobber_return_insn = NULL;
464 f->x_context_display = NULL;
465 f->x_trampoline_list = NULL;
466 f->x_parm_birth_insn = NULL;
467 f->x_last_parm_insn = NULL;
468 f->x_parm_reg_stack_loc = NULL;
469 f->fixup_var_refs_queue = NULL;
470 f->original_arg_vector = NULL;
471 f->original_decl_initial = NULL;
472 f->inl_last_parm_insn = NULL;
473 f->epilogue_delay_list = NULL;
476 /* Allocate fixed slots in the stack frame of the current function. */
478 /* Return size needed for stack frame based on slots so far allocated in
479 function F.
480 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
481 the caller may have to do that. */
483 HOST_WIDE_INT
484 get_func_frame_size (struct function *f)
486 #ifdef FRAME_GROWS_DOWNWARD
487 return -f->x_frame_offset;
488 #else
489 return f->x_frame_offset;
490 #endif
493 /* Return size needed for stack frame based on slots so far allocated.
494 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
495 the caller may have to do that. */
496 HOST_WIDE_INT
497 get_frame_size (void)
499 return get_func_frame_size (cfun);
502 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
503 with machine mode MODE.
505 ALIGN controls the amount of alignment for the address of the slot:
506 0 means according to MODE,
507 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
508 positive specifies alignment boundary in bits.
510 We do not round to stack_boundary here.
512 FUNCTION specifies the function to allocate in. */
514 static rtx
515 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
516 struct function *function)
518 rtx x, addr;
519 int bigend_correction = 0;
520 int alignment;
521 int frame_off, frame_alignment, frame_phase;
523 if (align == 0)
525 tree type;
527 if (mode == BLKmode)
528 alignment = BIGGEST_ALIGNMENT;
529 else
530 alignment = GET_MODE_ALIGNMENT (mode);
532 /* Allow the target to (possibly) increase the alignment of this
533 stack slot. */
534 type = (*lang_hooks.types.type_for_mode) (mode, 0);
535 if (type)
536 alignment = LOCAL_ALIGNMENT (type, alignment);
538 alignment /= BITS_PER_UNIT;
540 else if (align == -1)
542 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
543 size = CEIL_ROUND (size, alignment);
545 else
546 alignment = align / BITS_PER_UNIT;
548 #ifdef FRAME_GROWS_DOWNWARD
549 function->x_frame_offset -= size;
550 #endif
552 /* Ignore alignment we can't do with expected alignment of the boundary. */
553 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
554 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
556 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
557 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
559 /* Calculate how many bytes the start of local variables is off from
560 stack alignment. */
561 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
562 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
563 frame_phase = frame_off ? frame_alignment - frame_off : 0;
565 /* Round the frame offset to the specified alignment. The default is
566 to always honor requests to align the stack but a port may choose to
567 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
568 if (STACK_ALIGNMENT_NEEDED
569 || mode != BLKmode
570 || size != 0)
572 /* We must be careful here, since FRAME_OFFSET might be negative and
573 division with a negative dividend isn't as well defined as we might
574 like. So we instead assume that ALIGNMENT is a power of two and
575 use logical operations which are unambiguous. */
576 #ifdef FRAME_GROWS_DOWNWARD
577 function->x_frame_offset
578 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
579 + frame_phase);
580 #else
581 function->x_frame_offset
582 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
583 + frame_phase);
584 #endif
587 /* On a big-endian machine, if we are allocating more space than we will use,
588 use the least significant bytes of those that are allocated. */
589 if (BYTES_BIG_ENDIAN && mode != BLKmode)
590 bigend_correction = size - GET_MODE_SIZE (mode);
592 /* If we have already instantiated virtual registers, return the actual
593 address relative to the frame pointer. */
594 if (function == cfun && virtuals_instantiated)
595 addr = plus_constant (frame_pointer_rtx,
596 trunc_int_for_mode
597 (frame_offset + bigend_correction
598 + STARTING_FRAME_OFFSET, Pmode));
599 else
600 addr = plus_constant (virtual_stack_vars_rtx,
601 trunc_int_for_mode
602 (function->x_frame_offset + bigend_correction,
603 Pmode));
605 #ifndef FRAME_GROWS_DOWNWARD
606 function->x_frame_offset += size;
607 #endif
609 x = gen_rtx_MEM (mode, addr);
611 function->x_stack_slot_list
612 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614 return x;
617 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
618 current function. */
621 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
623 return assign_stack_local_1 (mode, size, align, cfun);
626 /* Allocate a temporary stack slot and record it for possible later
627 reuse.
629 MODE is the machine mode to be given to the returned rtx.
631 SIZE is the size in units of the space required. We do no rounding here
632 since assign_stack_local will do any required rounding.
634 KEEP is 1 if this slot is to be retained after a call to
635 free_temp_slots. Automatic variables for a block are allocated
636 with this flag. KEEP is 2 if we allocate a longer term temporary,
637 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
638 if we are to allocate something at an inner level to be treated as
639 a variable in the block (e.g., a SAVE_EXPR).
641 TYPE is the type that will be used for the stack slot. */
644 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
645 tree type)
647 unsigned int align;
648 struct temp_slot *p, *best_p = 0;
649 rtx slot;
651 /* If SIZE is -1 it means that somebody tried to allocate a temporary
652 of a variable size. */
653 if (size == -1)
654 abort ();
656 if (mode == BLKmode)
657 align = BIGGEST_ALIGNMENT;
658 else
659 align = GET_MODE_ALIGNMENT (mode);
661 if (! type)
662 type = (*lang_hooks.types.type_for_mode) (mode, 0);
664 if (type)
665 align = LOCAL_ALIGNMENT (type, align);
667 /* Try to find an available, already-allocated temporary of the proper
668 mode which meets the size and alignment requirements. Choose the
669 smallest one with the closest alignment. */
670 for (p = temp_slots; p; p = p->next)
671 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
672 && ! p->in_use
673 && objects_must_conflict_p (p->type, type)
674 && (best_p == 0 || best_p->size > p->size
675 || (best_p->size == p->size && best_p->align > p->align)))
677 if (p->align == align && p->size == size)
679 best_p = 0;
680 break;
682 best_p = p;
685 /* Make our best, if any, the one to use. */
686 if (best_p)
688 /* If there are enough aligned bytes left over, make them into a new
689 temp_slot so that the extra bytes don't get wasted. Do this only
690 for BLKmode slots, so that we can be sure of the alignment. */
691 if (GET_MODE (best_p->slot) == BLKmode)
693 int alignment = best_p->align / BITS_PER_UNIT;
694 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
696 if (best_p->size - rounded_size >= alignment)
698 p = ggc_alloc (sizeof (struct temp_slot));
699 p->in_use = p->addr_taken = 0;
700 p->size = best_p->size - rounded_size;
701 p->base_offset = best_p->base_offset + rounded_size;
702 p->full_size = best_p->full_size - rounded_size;
703 p->slot = gen_rtx_MEM (BLKmode,
704 plus_constant (XEXP (best_p->slot, 0),
705 rounded_size));
706 p->align = best_p->align;
707 p->address = 0;
708 p->rtl_expr = 0;
709 p->type = best_p->type;
710 p->next = temp_slots;
711 temp_slots = p;
713 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
714 stack_slot_list);
716 best_p->size = rounded_size;
717 best_p->full_size = rounded_size;
721 p = best_p;
724 /* If we still didn't find one, make a new temporary. */
725 if (p == 0)
727 HOST_WIDE_INT frame_offset_old = frame_offset;
729 p = ggc_alloc (sizeof (struct temp_slot));
731 /* We are passing an explicit alignment request to assign_stack_local.
732 One side effect of that is assign_stack_local will not round SIZE
733 to ensure the frame offset remains suitably aligned.
735 So for requests which depended on the rounding of SIZE, we go ahead
736 and round it now. We also make sure ALIGNMENT is at least
737 BIGGEST_ALIGNMENT. */
738 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
739 abort ();
740 p->slot = assign_stack_local (mode,
741 (mode == BLKmode
742 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
743 : size),
744 align);
746 p->align = align;
748 /* The following slot size computation is necessary because we don't
749 know the actual size of the temporary slot until assign_stack_local
750 has performed all the frame alignment and size rounding for the
751 requested temporary. Note that extra space added for alignment
752 can be either above or below this stack slot depending on which
753 way the frame grows. We include the extra space if and only if it
754 is above this slot. */
755 #ifdef FRAME_GROWS_DOWNWARD
756 p->size = frame_offset_old - frame_offset;
757 #else
758 p->size = size;
759 #endif
761 /* Now define the fields used by combine_temp_slots. */
762 #ifdef FRAME_GROWS_DOWNWARD
763 p->base_offset = frame_offset;
764 p->full_size = frame_offset_old - frame_offset;
765 #else
766 p->base_offset = frame_offset_old;
767 p->full_size = frame_offset - frame_offset_old;
768 #endif
769 p->address = 0;
770 p->next = temp_slots;
771 temp_slots = p;
774 p->in_use = 1;
775 p->addr_taken = 0;
776 p->rtl_expr = seq_rtl_expr;
777 p->type = type;
779 if (keep == 2)
781 p->level = target_temp_slot_level;
782 p->keep = 0;
784 else if (keep == 3)
786 p->level = var_temp_slot_level;
787 p->keep = 0;
789 else
791 p->level = temp_slot_level;
792 p->keep = keep;
796 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
797 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
798 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
800 /* If we know the alias set for the memory that will be used, use
801 it. If there's no TYPE, then we don't know anything about the
802 alias set for the memory. */
803 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
804 set_mem_align (slot, align);
806 /* If a type is specified, set the relevant flags. */
807 if (type != 0)
809 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
810 && TYPE_READONLY (type));
811 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
812 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
815 return slot;
818 /* Allocate a temporary stack slot and record it for possible later
819 reuse. First three arguments are same as in preceding function. */
822 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
824 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
827 /* Assign a temporary.
828 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
829 and so that should be used in error messages. In either case, we
830 allocate of the given type.
831 KEEP is as for assign_stack_temp.
832 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
833 it is 0 if a register is OK.
834 DONT_PROMOTE is 1 if we should not promote values in register
835 to wider modes. */
838 assign_temp (tree type_or_decl, int keep, int memory_required,
839 int dont_promote ATTRIBUTE_UNUSED)
841 tree type, decl;
842 enum machine_mode mode;
843 #ifndef PROMOTE_FOR_CALL_ONLY
844 int unsignedp;
845 #endif
847 if (DECL_P (type_or_decl))
848 decl = type_or_decl, type = TREE_TYPE (decl);
849 else
850 decl = NULL, type = type_or_decl;
852 mode = TYPE_MODE (type);
853 #ifndef PROMOTE_FOR_CALL_ONLY
854 unsignedp = TREE_UNSIGNED (type);
855 #endif
857 if (mode == BLKmode || memory_required)
859 HOST_WIDE_INT size = int_size_in_bytes (type);
860 rtx tmp;
862 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
863 problems with allocating the stack space. */
864 if (size == 0)
865 size = 1;
867 /* Unfortunately, we don't yet know how to allocate variable-sized
868 temporaries. However, sometimes we have a fixed upper limit on
869 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
870 instead. This is the case for Chill variable-sized strings. */
871 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
872 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
873 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
874 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876 /* The size of the temporary may be too large to fit into an integer. */
877 /* ??? Not sure this should happen except for user silliness, so limit
878 this to things that aren't compiler-generated temporaries. The
879 rest of the time we'll abort in assign_stack_temp_for_type. */
880 if (decl && size == -1
881 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
883 error ("%Jsize of variable '%D' is too large", decl, decl);
884 size = 1;
887 tmp = assign_stack_temp_for_type (mode, size, keep, type);
888 return tmp;
891 #ifndef PROMOTE_FOR_CALL_ONLY
892 if (! dont_promote)
893 mode = promote_mode (type, mode, &unsignedp, 0);
894 #endif
896 return gen_reg_rtx (mode);
899 /* Combine temporary stack slots which are adjacent on the stack.
901 This allows for better use of already allocated stack space. This is only
902 done for BLKmode slots because we can be sure that we won't have alignment
903 problems in this case. */
905 void
906 combine_temp_slots (void)
908 struct temp_slot *p, *q;
909 struct temp_slot *prev_p, *prev_q;
910 int num_slots;
912 /* We can't combine slots, because the information about which slot
913 is in which alias set will be lost. */
914 if (flag_strict_aliasing)
915 return;
917 /* If there are a lot of temp slots, don't do anything unless
918 high levels of optimization. */
919 if (! flag_expensive_optimizations)
920 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
921 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
922 return;
924 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
926 int delete_p = 0;
928 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
929 for (q = p->next, prev_q = p; q; q = prev_q->next)
931 int delete_q = 0;
932 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
934 if (p->base_offset + p->full_size == q->base_offset)
936 /* Q comes after P; combine Q into P. */
937 p->size += q->size;
938 p->full_size += q->full_size;
939 delete_q = 1;
941 else if (q->base_offset + q->full_size == p->base_offset)
943 /* P comes after Q; combine P into Q. */
944 q->size += p->size;
945 q->full_size += p->full_size;
946 delete_p = 1;
947 break;
950 /* Either delete Q or advance past it. */
951 if (delete_q)
952 prev_q->next = q->next;
953 else
954 prev_q = q;
956 /* Either delete P or advance past it. */
957 if (delete_p)
959 if (prev_p)
960 prev_p->next = p->next;
961 else
962 temp_slots = p->next;
964 else
965 prev_p = p;
969 /* Find the temp slot corresponding to the object at address X. */
971 static struct temp_slot *
972 find_temp_slot_from_address (rtx x)
974 struct temp_slot *p;
975 rtx next;
977 for (p = temp_slots; p; p = p->next)
979 if (! p->in_use)
980 continue;
982 else if (XEXP (p->slot, 0) == x
983 || p->address == x
984 || (GET_CODE (x) == PLUS
985 && XEXP (x, 0) == virtual_stack_vars_rtx
986 && GET_CODE (XEXP (x, 1)) == CONST_INT
987 && INTVAL (XEXP (x, 1)) >= p->base_offset
988 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
989 return p;
991 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
992 for (next = p->address; next; next = XEXP (next, 1))
993 if (XEXP (next, 0) == x)
994 return p;
997 /* If we have a sum involving a register, see if it points to a temp
998 slot. */
999 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1000 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1001 return p;
1002 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1003 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1004 return p;
1006 return 0;
1009 /* Indicate that NEW is an alternate way of referring to the temp slot
1010 that previously was known by OLD. */
1012 void
1013 update_temp_slot_address (rtx old, rtx new)
1015 struct temp_slot *p;
1017 if (rtx_equal_p (old, new))
1018 return;
1020 p = find_temp_slot_from_address (old);
1022 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1023 is a register, see if one operand of the PLUS is a temporary
1024 location. If so, NEW points into it. Otherwise, if both OLD and
1025 NEW are a PLUS and if there is a register in common between them.
1026 If so, try a recursive call on those values. */
1027 if (p == 0)
1029 if (GET_CODE (old) != PLUS)
1030 return;
1032 if (GET_CODE (new) == REG)
1034 update_temp_slot_address (XEXP (old, 0), new);
1035 update_temp_slot_address (XEXP (old, 1), new);
1036 return;
1038 else if (GET_CODE (new) != PLUS)
1039 return;
1041 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1047 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1050 return;
1053 /* Otherwise add an alias for the temp's address. */
1054 else if (p->address == 0)
1055 p->address = new;
1056 else
1058 if (GET_CODE (p->address) != EXPR_LIST)
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1065 /* If X could be a reference to a temporary slot, mark the fact that its
1066 address was taken. */
1068 void
1069 mark_temp_addr_taken (rtx x)
1071 struct temp_slot *p;
1073 if (x == 0)
1074 return;
1076 /* If X is not in memory or is at a constant address, it cannot be in
1077 a temporary slot. */
1078 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1079 return;
1081 p = find_temp_slot_from_address (XEXP (x, 0));
1082 if (p != 0)
1083 p->addr_taken = 1;
1086 /* If X could be a reference to a temporary slot, mark that slot as
1087 belonging to the to one level higher than the current level. If X
1088 matched one of our slots, just mark that one. Otherwise, we can't
1089 easily predict which it is, so upgrade all of them. Kept slots
1090 need not be touched.
1092 This is called when an ({...}) construct occurs and a statement
1093 returns a value in memory. */
1095 void
1096 preserve_temp_slots (rtx x)
1098 struct temp_slot *p = 0;
1100 /* If there is no result, we still might have some objects whose address
1101 were taken, so we need to make sure they stay around. */
1102 if (x == 0)
1104 for (p = temp_slots; p; p = p->next)
1105 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1106 p->level--;
1108 return;
1111 /* If X is a register that is being used as a pointer, see if we have
1112 a temporary slot we know it points to. To be consistent with
1113 the code below, we really should preserve all non-kept slots
1114 if we can't find a match, but that seems to be much too costly. */
1115 if (GET_CODE (x) == REG && REG_POINTER (x))
1116 p = find_temp_slot_from_address (x);
1118 /* If X is not in memory or is at a constant address, it cannot be in
1119 a temporary slot, but it can contain something whose address was
1120 taken. */
1121 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1123 for (p = temp_slots; p; p = p->next)
1124 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1125 p->level--;
1127 return;
1130 /* First see if we can find a match. */
1131 if (p == 0)
1132 p = find_temp_slot_from_address (XEXP (x, 0));
1134 if (p != 0)
1136 /* Move everything at our level whose address was taken to our new
1137 level in case we used its address. */
1138 struct temp_slot *q;
1140 if (p->level == temp_slot_level)
1142 for (q = temp_slots; q; q = q->next)
1143 if (q != p && q->addr_taken && q->level == p->level)
1144 q->level--;
1146 p->level--;
1147 p->addr_taken = 0;
1149 return;
1152 /* Otherwise, preserve all non-kept slots at this level. */
1153 for (p = temp_slots; p; p = p->next)
1154 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1155 p->level--;
1158 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1159 with that RTL_EXPR, promote it into a temporary slot at the present
1160 level so it will not be freed when we free slots made in the
1161 RTL_EXPR. */
1163 void
1164 preserve_rtl_expr_result (rtx x)
1166 struct temp_slot *p;
1168 /* If X is not in memory or is at a constant address, it cannot be in
1169 a temporary slot. */
1170 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1171 return;
1173 /* If we can find a match, move it to our level unless it is already at
1174 an upper level. */
1175 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 p->level = MIN (p->level, temp_slot_level);
1179 p->rtl_expr = 0;
1182 return;
1185 /* Free all temporaries used so far. This is normally called at the end
1186 of generating code for a statement. Don't free any temporaries
1187 currently in use for an RTL_EXPR that hasn't yet been emitted.
1188 We could eventually do better than this since it can be reused while
1189 generating the same RTL_EXPR, but this is complex and probably not
1190 worthwhile. */
1192 void
1193 free_temp_slots (void)
1195 struct temp_slot *p;
1197 for (p = temp_slots; p; p = p->next)
1198 if (p->in_use && p->level == temp_slot_level && ! p->keep
1199 && p->rtl_expr == 0)
1200 p->in_use = 0;
1202 combine_temp_slots ();
1205 /* Free all temporary slots used in T, an RTL_EXPR node. */
1207 void
1208 free_temps_for_rtl_expr (tree t)
1210 struct temp_slot *p;
1212 for (p = temp_slots; p; p = p->next)
1213 if (p->rtl_expr == t)
1215 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1216 needs to be preserved. This can happen if a temporary in
1217 the RTL_EXPR was addressed; preserve_temp_slots will move
1218 the temporary into a higher level. */
1219 if (temp_slot_level <= p->level)
1220 p->in_use = 0;
1221 else
1222 p->rtl_expr = NULL_TREE;
1225 combine_temp_slots ();
1228 /* Mark all temporaries ever allocated in this function as not suitable
1229 for reuse until the current level is exited. */
1231 void
1232 mark_all_temps_used (void)
1234 struct temp_slot *p;
1236 for (p = temp_slots; p; p = p->next)
1238 p->in_use = p->keep = 1;
1239 p->level = MIN (p->level, temp_slot_level);
1243 /* Push deeper into the nesting level for stack temporaries. */
1245 void
1246 push_temp_slots (void)
1248 temp_slot_level++;
1251 /* Pop a temporary nesting level. All slots in use in the current level
1252 are freed. */
1254 void
1255 pop_temp_slots (void)
1257 struct temp_slot *p;
1259 for (p = temp_slots; p; p = p->next)
1260 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1261 p->in_use = 0;
1263 combine_temp_slots ();
1265 temp_slot_level--;
1268 /* Initialize temporary slots. */
1270 void
1271 init_temp_slots (void)
1273 /* We have not allocated any temporaries yet. */
1274 temp_slots = 0;
1275 temp_slot_level = 0;
1276 var_temp_slot_level = 0;
1277 target_temp_slot_level = 0;
1280 /* Retroactively move an auto variable from a register to a stack
1281 slot. This is done when an address-reference to the variable is
1282 seen. If RESCAN is true, all previously emitted instructions are
1283 examined and modified to handle the fact that DECL is now
1284 addressable. */
1286 void
1287 put_var_into_stack (tree decl, int rescan)
1289 rtx reg;
1290 enum machine_mode promoted_mode, decl_mode;
1291 struct function *function = 0;
1292 tree context;
1293 int can_use_addressof;
1294 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1295 int usedp = (TREE_USED (decl)
1296 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1298 context = decl_function_context (decl);
1300 /* Get the current rtl used for this object and its original mode. */
1301 reg = (TREE_CODE (decl) == SAVE_EXPR
1302 ? SAVE_EXPR_RTL (decl)
1303 : DECL_RTL_IF_SET (decl));
1305 /* No need to do anything if decl has no rtx yet
1306 since in that case caller is setting TREE_ADDRESSABLE
1307 and a stack slot will be assigned when the rtl is made. */
1308 if (reg == 0)
1309 return;
1311 /* Get the declared mode for this object. */
1312 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1313 : DECL_MODE (decl));
1314 /* Get the mode it's actually stored in. */
1315 promoted_mode = GET_MODE (reg);
1317 /* If this variable comes from an outer function, find that
1318 function's saved context. Don't use find_function_data here,
1319 because it might not be in any active function.
1320 FIXME: Is that really supposed to happen?
1321 It does in ObjC at least. */
1322 if (context != current_function_decl && context != inline_function_decl)
1323 for (function = outer_function_chain; function; function = function->outer)
1324 if (function->decl == context)
1325 break;
1327 /* If this is a variable-sized object or a structure passed by invisible
1328 reference, with a pseudo to address it, put that pseudo into the stack
1329 if the var is non-local. */
1330 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1331 && GET_CODE (reg) == MEM
1332 && GET_CODE (XEXP (reg, 0)) == REG
1333 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1335 reg = XEXP (reg, 0);
1336 decl_mode = promoted_mode = GET_MODE (reg);
1339 /* If this variable lives in the current function and we don't need to put it
1340 in the stack for the sake of setjmp or the non-locality, try to keep it in
1341 a register until we know we actually need the address. */
1342 can_use_addressof
1343 = (function == 0
1344 && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1345 && optimize > 0
1346 /* FIXME make it work for promoted modes too */
1347 && decl_mode == promoted_mode
1348 #ifdef NON_SAVING_SETJMP
1349 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1350 #endif
1353 /* If we can't use ADDRESSOF, make sure we see through one we already
1354 generated. */
1355 if (! can_use_addressof && GET_CODE (reg) == MEM
1356 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1357 reg = XEXP (XEXP (reg, 0), 0);
1359 /* Now we should have a value that resides in one or more pseudo regs. */
1361 if (GET_CODE (reg) == REG)
1363 if (can_use_addressof)
1364 gen_mem_addressof (reg, decl, rescan);
1365 else
1366 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1367 decl_mode, volatilep, 0, usedp, 0);
1369 else if (GET_CODE (reg) == CONCAT)
1371 /* A CONCAT contains two pseudos; put them both in the stack.
1372 We do it so they end up consecutive.
1373 We fixup references to the parts only after we fixup references
1374 to the whole CONCAT, lest we do double fixups for the latter
1375 references. */
1376 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1377 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1378 rtx lopart = XEXP (reg, 0);
1379 rtx hipart = XEXP (reg, 1);
1380 #ifdef FRAME_GROWS_DOWNWARD
1381 /* Since part 0 should have a lower address, do it second. */
1382 put_reg_into_stack (function, hipart, part_type, part_mode,
1383 part_mode, volatilep, 0, 0, 0);
1384 put_reg_into_stack (function, lopart, part_type, part_mode,
1385 part_mode, volatilep, 0, 0, 0);
1386 #else
1387 put_reg_into_stack (function, lopart, part_type, part_mode,
1388 part_mode, volatilep, 0, 0, 0);
1389 put_reg_into_stack (function, hipart, part_type, part_mode,
1390 part_mode, volatilep, 0, 0, 0);
1391 #endif
1393 /* Change the CONCAT into a combined MEM for both parts. */
1394 PUT_CODE (reg, MEM);
1395 MEM_ATTRS (reg) = 0;
1397 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1398 already computed alias sets. Here we want to re-generate. */
1399 if (DECL_P (decl))
1400 SET_DECL_RTL (decl, NULL);
1401 set_mem_attributes (reg, decl, 1);
1402 if (DECL_P (decl))
1403 SET_DECL_RTL (decl, reg);
1405 /* The two parts are in memory order already.
1406 Use the lower parts address as ours. */
1407 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1408 /* Prevent sharing of rtl that might lose. */
1409 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1410 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1411 if (usedp && rescan)
1413 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1414 promoted_mode, 0);
1415 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1416 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1419 else
1420 return;
1423 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1424 into the stack frame of FUNCTION (0 means the current function).
1425 DECL_MODE is the machine mode of the user-level data type.
1426 PROMOTED_MODE is the machine mode of the register.
1427 VOLATILE_P is nonzero if this is for a "volatile" decl.
1428 USED_P is nonzero if this reg might have already been used in an insn. */
1430 static void
1431 put_reg_into_stack (struct function *function, rtx reg, tree type,
1432 enum machine_mode promoted_mode, enum machine_mode decl_mode,
1433 int volatile_p, unsigned int original_regno, int used_p, htab_t ht)
1435 struct function *func = function ? function : cfun;
1436 rtx new = 0;
1437 unsigned int regno = original_regno;
1439 if (regno == 0)
1440 regno = REGNO (reg);
1442 if (regno < func->x_max_parm_reg)
1443 new = func->x_parm_reg_stack_loc[regno];
1445 if (new == 0)
1446 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1448 PUT_CODE (reg, MEM);
1449 PUT_MODE (reg, decl_mode);
1450 XEXP (reg, 0) = XEXP (new, 0);
1451 MEM_ATTRS (reg) = 0;
1452 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1453 MEM_VOLATILE_P (reg) = volatile_p;
1455 /* If this is a memory ref that contains aggregate components,
1456 mark it as such for cse and loop optimize. If we are reusing a
1457 previously generated stack slot, then we need to copy the bit in
1458 case it was set for other reasons. For instance, it is set for
1459 __builtin_va_alist. */
1460 if (type)
1462 MEM_SET_IN_STRUCT_P (reg,
1463 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1464 set_mem_alias_set (reg, get_alias_set (type));
1467 if (used_p)
1468 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1471 /* Make sure that all refs to the variable, previously made
1472 when it was a register, are fixed up to be valid again.
1473 See function above for meaning of arguments. */
1475 static void
1476 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1477 enum machine_mode promoted_mode, htab_t ht)
1479 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1481 if (function != 0)
1483 struct var_refs_queue *temp;
1485 temp = ggc_alloc (sizeof (struct var_refs_queue));
1486 temp->modified = reg;
1487 temp->promoted_mode = promoted_mode;
1488 temp->unsignedp = unsigned_p;
1489 temp->next = function->fixup_var_refs_queue;
1490 function->fixup_var_refs_queue = temp;
1492 else
1493 /* Variable is local; fix it up now. */
1494 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1497 static void
1498 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1499 rtx may_share, htab_t ht)
1501 tree pending;
1502 rtx first_insn = get_insns ();
1503 struct sequence_stack *stack = seq_stack;
1504 tree rtl_exps = rtl_expr_chain;
1506 /* If there's a hash table, it must record all uses of VAR. */
1507 if (ht)
1509 if (stack != 0)
1510 abort ();
1511 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1512 may_share);
1513 return;
1516 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1517 stack == 0, may_share);
1519 /* Scan all pending sequences too. */
1520 for (; stack; stack = stack->next)
1522 push_to_full_sequence (stack->first, stack->last);
1523 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1524 stack->next != 0, may_share);
1525 /* Update remembered end of sequence
1526 in case we added an insn at the end. */
1527 stack->last = get_last_insn ();
1528 end_sequence ();
1531 /* Scan all waiting RTL_EXPRs too. */
1532 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1534 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1535 if (seq != const0_rtx && seq != 0)
1537 push_to_sequence (seq);
1538 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1539 may_share);
1540 end_sequence ();
1545 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1546 some part of an insn. Return a struct fixup_replacement whose OLD
1547 value is equal to X. Allocate a new structure if no such entry exists. */
1549 static struct fixup_replacement *
1550 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1552 struct fixup_replacement *p;
1554 /* See if we have already replaced this. */
1555 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1558 if (p == 0)
1560 p = xmalloc (sizeof (struct fixup_replacement));
1561 p->old = x;
1562 p->new = 0;
1563 p->next = *replacements;
1564 *replacements = p;
1567 return p;
1570 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1571 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1572 for the current function. MAY_SHARE is either a MEM that is not
1573 to be unshared or a list of them. */
1575 static void
1576 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1577 int unsignedp, int toplevel, rtx may_share)
1579 while (insn)
1581 /* fixup_var_refs_insn might modify insn, so save its next
1582 pointer now. */
1583 rtx next = NEXT_INSN (insn);
1585 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1586 the three sequences they (potentially) contain, and process
1587 them recursively. The CALL_INSN itself is not interesting. */
1589 if (GET_CODE (insn) == CALL_INSN
1590 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1592 int i;
1594 /* Look at the Normal call, sibling call and tail recursion
1595 sequences attached to the CALL_PLACEHOLDER. */
1596 for (i = 0; i < 3; i++)
1598 rtx seq = XEXP (PATTERN (insn), i);
1599 if (seq)
1601 push_to_sequence (seq);
1602 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1603 may_share);
1604 XEXP (PATTERN (insn), i) = get_insns ();
1605 end_sequence ();
1610 else if (INSN_P (insn))
1611 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1612 may_share);
1614 insn = next;
1618 /* Look up the insns which reference VAR in HT and fix them up. Other
1619 arguments are the same as fixup_var_refs_insns.
1621 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1622 because the hash table will point straight to the interesting insn
1623 (inside the CALL_PLACEHOLDER). */
1625 static void
1626 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1627 int unsignedp, rtx may_share)
1629 struct insns_for_mem_entry tmp;
1630 struct insns_for_mem_entry *ime;
1631 rtx insn_list;
1633 tmp.key = var;
1634 ime = htab_find (ht, &tmp);
1635 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1636 if (INSN_P (XEXP (insn_list, 0)))
1637 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1638 unsignedp, 1, may_share);
1642 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1643 the insn under examination, VAR is the variable to fix up
1644 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1645 TOPLEVEL is nonzero if this is the main insn chain for this
1646 function. */
1648 static void
1649 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1650 int unsignedp, int toplevel, rtx no_share)
1652 rtx call_dest = 0;
1653 rtx set, prev, prev_set;
1654 rtx note;
1656 /* Remember the notes in case we delete the insn. */
1657 note = REG_NOTES (insn);
1659 /* If this is a CLOBBER of VAR, delete it.
1661 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1662 and REG_RETVAL notes too. */
1663 if (GET_CODE (PATTERN (insn)) == CLOBBER
1664 && (XEXP (PATTERN (insn), 0) == var
1665 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1666 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1667 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1669 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1670 /* The REG_LIBCALL note will go away since we are going to
1671 turn INSN into a NOTE, so just delete the
1672 corresponding REG_RETVAL note. */
1673 remove_note (XEXP (note, 0),
1674 find_reg_note (XEXP (note, 0), REG_RETVAL,
1675 NULL_RTX));
1677 delete_insn (insn);
1680 /* The insn to load VAR from a home in the arglist
1681 is now a no-op. When we see it, just delete it.
1682 Similarly if this is storing VAR from a register from which
1683 it was loaded in the previous insn. This will occur
1684 when an ADDRESSOF was made for an arglist slot. */
1685 else if (toplevel
1686 && (set = single_set (insn)) != 0
1687 && SET_DEST (set) == var
1688 /* If this represents the result of an insn group,
1689 don't delete the insn. */
1690 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1691 && (rtx_equal_p (SET_SRC (set), var)
1692 || (GET_CODE (SET_SRC (set)) == REG
1693 && (prev = prev_nonnote_insn (insn)) != 0
1694 && (prev_set = single_set (prev)) != 0
1695 && SET_DEST (prev_set) == SET_SRC (set)
1696 && rtx_equal_p (SET_SRC (prev_set), var))))
1698 delete_insn (insn);
1700 else
1702 struct fixup_replacement *replacements = 0;
1703 rtx next_insn = NEXT_INSN (insn);
1705 if (SMALL_REGISTER_CLASSES)
1707 /* If the insn that copies the results of a CALL_INSN
1708 into a pseudo now references VAR, we have to use an
1709 intermediate pseudo since we want the life of the
1710 return value register to be only a single insn.
1712 If we don't use an intermediate pseudo, such things as
1713 address computations to make the address of VAR valid
1714 if it is not can be placed between the CALL_INSN and INSN.
1716 To make sure this doesn't happen, we record the destination
1717 of the CALL_INSN and see if the next insn uses both that
1718 and VAR. */
1720 if (call_dest != 0 && GET_CODE (insn) == INSN
1721 && reg_mentioned_p (var, PATTERN (insn))
1722 && reg_mentioned_p (call_dest, PATTERN (insn)))
1724 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1726 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1728 PATTERN (insn) = replace_rtx (PATTERN (insn),
1729 call_dest, temp);
1732 if (GET_CODE (insn) == CALL_INSN
1733 && GET_CODE (PATTERN (insn)) == SET)
1734 call_dest = SET_DEST (PATTERN (insn));
1735 else if (GET_CODE (insn) == CALL_INSN
1736 && GET_CODE (PATTERN (insn)) == PARALLEL
1737 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1738 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1739 else
1740 call_dest = 0;
1743 /* See if we have to do anything to INSN now that VAR is in
1744 memory. If it needs to be loaded into a pseudo, use a single
1745 pseudo for the entire insn in case there is a MATCH_DUP
1746 between two operands. We pass a pointer to the head of
1747 a list of struct fixup_replacements. If fixup_var_refs_1
1748 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1749 it will record them in this list.
1751 If it allocated a pseudo for any replacement, we copy into
1752 it here. */
1754 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1755 &replacements, no_share);
1757 /* If this is last_parm_insn, and any instructions were output
1758 after it to fix it up, then we must set last_parm_insn to
1759 the last such instruction emitted. */
1760 if (insn == last_parm_insn)
1761 last_parm_insn = PREV_INSN (next_insn);
1763 while (replacements)
1765 struct fixup_replacement *next;
1767 if (GET_CODE (replacements->new) == REG)
1769 rtx insert_before;
1770 rtx seq;
1772 /* OLD might be a (subreg (mem)). */
1773 if (GET_CODE (replacements->old) == SUBREG)
1774 replacements->old
1775 = fixup_memory_subreg (replacements->old, insn,
1776 promoted_mode, 0);
1777 else
1778 replacements->old
1779 = fixup_stack_1 (replacements->old, insn);
1781 insert_before = insn;
1783 /* If we are changing the mode, do a conversion.
1784 This might be wasteful, but combine.c will
1785 eliminate much of the waste. */
1787 if (GET_MODE (replacements->new)
1788 != GET_MODE (replacements->old))
1790 start_sequence ();
1791 convert_move (replacements->new,
1792 replacements->old, unsignedp);
1793 seq = get_insns ();
1794 end_sequence ();
1796 else
1797 seq = gen_move_insn (replacements->new,
1798 replacements->old);
1800 emit_insn_before (seq, insert_before);
1803 next = replacements->next;
1804 free (replacements);
1805 replacements = next;
1809 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1810 But don't touch other insns referred to by reg-notes;
1811 we will get them elsewhere. */
1812 while (note)
1814 if (GET_CODE (note) != INSN_LIST)
1815 XEXP (note, 0)
1816 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1817 promoted_mode, 1);
1818 note = XEXP (note, 1);
1822 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1823 See if the rtx expression at *LOC in INSN needs to be changed.
1825 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1826 contain a list of original rtx's and replacements. If we find that we need
1827 to modify this insn by replacing a memory reference with a pseudo or by
1828 making a new MEM to implement a SUBREG, we consult that list to see if
1829 we have already chosen a replacement. If none has already been allocated,
1830 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1831 or the SUBREG, as appropriate, to the pseudo. */
1833 static void
1834 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1835 struct fixup_replacement **replacements, rtx no_share)
1837 int i;
1838 rtx x = *loc;
1839 RTX_CODE code = GET_CODE (x);
1840 const char *fmt;
1841 rtx tem, tem1;
1842 struct fixup_replacement *replacement;
1844 switch (code)
1846 case ADDRESSOF:
1847 if (XEXP (x, 0) == var)
1849 /* Prevent sharing of rtl that might lose. */
1850 rtx sub = copy_rtx (XEXP (var, 0));
1852 if (! validate_change (insn, loc, sub, 0))
1854 rtx y = gen_reg_rtx (GET_MODE (sub));
1855 rtx seq, new_insn;
1857 /* We should be able to replace with a register or all is lost.
1858 Note that we can't use validate_change to verify this, since
1859 we're not caring for replacing all dups simultaneously. */
1860 if (! validate_replace_rtx (*loc, y, insn))
1861 abort ();
1863 /* Careful! First try to recognize a direct move of the
1864 value, mimicking how things are done in gen_reload wrt
1865 PLUS. Consider what happens when insn is a conditional
1866 move instruction and addsi3 clobbers flags. */
1868 start_sequence ();
1869 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1870 seq = get_insns ();
1871 end_sequence ();
1873 if (recog_memoized (new_insn) < 0)
1875 /* That failed. Fall back on force_operand and hope. */
1877 start_sequence ();
1878 sub = force_operand (sub, y);
1879 if (sub != y)
1880 emit_insn (gen_move_insn (y, sub));
1881 seq = get_insns ();
1882 end_sequence ();
1885 #ifdef HAVE_cc0
1886 /* Don't separate setter from user. */
1887 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1888 insn = PREV_INSN (insn);
1889 #endif
1891 emit_insn_before (seq, insn);
1894 return;
1896 case MEM:
1897 if (var == x)
1899 /* If we already have a replacement, use it. Otherwise,
1900 try to fix up this address in case it is invalid. */
1902 replacement = find_fixup_replacement (replacements, var);
1903 if (replacement->new)
1905 *loc = replacement->new;
1906 return;
1909 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1911 /* Unless we are forcing memory to register or we changed the mode,
1912 we can leave things the way they are if the insn is valid. */
1914 INSN_CODE (insn) = -1;
1915 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1916 && recog_memoized (insn) >= 0)
1917 return;
1919 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1920 return;
1923 /* If X contains VAR, we need to unshare it here so that we update
1924 each occurrence separately. But all identical MEMs in one insn
1925 must be replaced with the same rtx because of the possibility of
1926 MATCH_DUPs. */
1928 if (reg_mentioned_p (var, x))
1930 replacement = find_fixup_replacement (replacements, x);
1931 if (replacement->new == 0)
1932 replacement->new = copy_most_rtx (x, no_share);
1934 *loc = x = replacement->new;
1935 code = GET_CODE (x);
1937 break;
1939 case REG:
1940 case CC0:
1941 case PC:
1942 case CONST_INT:
1943 case CONST:
1944 case SYMBOL_REF:
1945 case LABEL_REF:
1946 case CONST_DOUBLE:
1947 case CONST_VECTOR:
1948 return;
1950 case SIGN_EXTRACT:
1951 case ZERO_EXTRACT:
1952 /* Note that in some cases those types of expressions are altered
1953 by optimize_bit_field, and do not survive to get here. */
1954 if (XEXP (x, 0) == var
1955 || (GET_CODE (XEXP (x, 0)) == SUBREG
1956 && SUBREG_REG (XEXP (x, 0)) == var))
1958 /* Get TEM as a valid MEM in the mode presently in the insn.
1960 We don't worry about the possibility of MATCH_DUP here; it
1961 is highly unlikely and would be tricky to handle. */
1963 tem = XEXP (x, 0);
1964 if (GET_CODE (tem) == SUBREG)
1966 if (GET_MODE_BITSIZE (GET_MODE (tem))
1967 > GET_MODE_BITSIZE (GET_MODE (var)))
1969 replacement = find_fixup_replacement (replacements, var);
1970 if (replacement->new == 0)
1971 replacement->new = gen_reg_rtx (GET_MODE (var));
1972 SUBREG_REG (tem) = replacement->new;
1974 /* The following code works only if we have a MEM, so we
1975 need to handle the subreg here. We directly substitute
1976 it assuming that a subreg must be OK here. We already
1977 scheduled a replacement to copy the mem into the
1978 subreg. */
1979 XEXP (x, 0) = tem;
1980 return;
1982 else
1983 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
1985 else
1986 tem = fixup_stack_1 (tem, insn);
1988 /* Unless we want to load from memory, get TEM into the proper mode
1989 for an extract from memory. This can only be done if the
1990 extract is at a constant position and length. */
1992 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1993 && GET_CODE (XEXP (x, 2)) == CONST_INT
1994 && ! mode_dependent_address_p (XEXP (tem, 0))
1995 && ! MEM_VOLATILE_P (tem))
1997 enum machine_mode wanted_mode = VOIDmode;
1998 enum machine_mode is_mode = GET_MODE (tem);
1999 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2001 if (GET_CODE (x) == ZERO_EXTRACT)
2003 enum machine_mode new_mode
2004 = mode_for_extraction (EP_extzv, 1);
2005 if (new_mode != MAX_MACHINE_MODE)
2006 wanted_mode = new_mode;
2008 else if (GET_CODE (x) == SIGN_EXTRACT)
2010 enum machine_mode new_mode
2011 = mode_for_extraction (EP_extv, 1);
2012 if (new_mode != MAX_MACHINE_MODE)
2013 wanted_mode = new_mode;
2016 /* If we have a narrower mode, we can do something. */
2017 if (wanted_mode != VOIDmode
2018 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2020 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2021 rtx old_pos = XEXP (x, 2);
2022 rtx newmem;
2024 /* If the bytes and bits are counted differently, we
2025 must adjust the offset. */
2026 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2027 offset = (GET_MODE_SIZE (is_mode)
2028 - GET_MODE_SIZE (wanted_mode) - offset);
2030 pos %= GET_MODE_BITSIZE (wanted_mode);
2032 newmem = adjust_address_nv (tem, wanted_mode, offset);
2034 /* Make the change and see if the insn remains valid. */
2035 INSN_CODE (insn) = -1;
2036 XEXP (x, 0) = newmem;
2037 XEXP (x, 2) = GEN_INT (pos);
2039 if (recog_memoized (insn) >= 0)
2040 return;
2042 /* Otherwise, restore old position. XEXP (x, 0) will be
2043 restored later. */
2044 XEXP (x, 2) = old_pos;
2048 /* If we get here, the bitfield extract insn can't accept a memory
2049 reference. Copy the input into a register. */
2051 tem1 = gen_reg_rtx (GET_MODE (tem));
2052 emit_insn_before (gen_move_insn (tem1, tem), insn);
2053 XEXP (x, 0) = tem1;
2054 return;
2056 break;
2058 case SUBREG:
2059 if (SUBREG_REG (x) == var)
2061 /* If this is a special SUBREG made because VAR was promoted
2062 from a wider mode, replace it with VAR and call ourself
2063 recursively, this time saying that the object previously
2064 had its current mode (by virtue of the SUBREG). */
2066 if (SUBREG_PROMOTED_VAR_P (x))
2068 *loc = var;
2069 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2070 no_share);
2071 return;
2074 /* If this SUBREG makes VAR wider, it has become a paradoxical
2075 SUBREG with VAR in memory, but these aren't allowed at this
2076 stage of the compilation. So load VAR into a pseudo and take
2077 a SUBREG of that pseudo. */
2078 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2080 replacement = find_fixup_replacement (replacements, var);
2081 if (replacement->new == 0)
2082 replacement->new = gen_reg_rtx (promoted_mode);
2083 SUBREG_REG (x) = replacement->new;
2084 return;
2087 /* See if we have already found a replacement for this SUBREG.
2088 If so, use it. Otherwise, make a MEM and see if the insn
2089 is recognized. If not, or if we should force MEM into a register,
2090 make a pseudo for this SUBREG. */
2091 replacement = find_fixup_replacement (replacements, x);
2092 if (replacement->new)
2094 *loc = replacement->new;
2095 return;
2098 replacement->new = *loc = fixup_memory_subreg (x, insn,
2099 promoted_mode, 0);
2101 INSN_CODE (insn) = -1;
2102 if (! flag_force_mem && recog_memoized (insn) >= 0)
2103 return;
2105 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2106 return;
2108 break;
2110 case SET:
2111 /* First do special simplification of bit-field references. */
2112 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2113 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2114 optimize_bit_field (x, insn, 0);
2115 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2116 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2117 optimize_bit_field (x, insn, 0);
2119 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2120 into a register and then store it back out. */
2121 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2122 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2123 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2124 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2125 > GET_MODE_SIZE (GET_MODE (var))))
2127 replacement = find_fixup_replacement (replacements, var);
2128 if (replacement->new == 0)
2129 replacement->new = gen_reg_rtx (GET_MODE (var));
2131 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2132 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2135 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2136 insn into a pseudo and store the low part of the pseudo into VAR. */
2137 if (GET_CODE (SET_DEST (x)) == SUBREG
2138 && SUBREG_REG (SET_DEST (x)) == var
2139 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2140 > GET_MODE_SIZE (GET_MODE (var))))
2142 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2143 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2144 tem)),
2145 insn);
2146 break;
2150 rtx dest = SET_DEST (x);
2151 rtx src = SET_SRC (x);
2152 rtx outerdest = dest;
2154 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2155 || GET_CODE (dest) == SIGN_EXTRACT
2156 || GET_CODE (dest) == ZERO_EXTRACT)
2157 dest = XEXP (dest, 0);
2159 if (GET_CODE (src) == SUBREG)
2160 src = SUBREG_REG (src);
2162 /* If VAR does not appear at the top level of the SET
2163 just scan the lower levels of the tree. */
2165 if (src != var && dest != var)
2166 break;
2168 /* We will need to rerecognize this insn. */
2169 INSN_CODE (insn) = -1;
2171 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2172 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2174 /* Since this case will return, ensure we fixup all the
2175 operands here. */
2176 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2177 insn, replacements, no_share);
2178 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2179 insn, replacements, no_share);
2180 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2181 insn, replacements, no_share);
2183 tem = XEXP (outerdest, 0);
2185 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2186 that may appear inside a ZERO_EXTRACT.
2187 This was legitimate when the MEM was a REG. */
2188 if (GET_CODE (tem) == SUBREG
2189 && SUBREG_REG (tem) == var)
2190 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2191 else
2192 tem = fixup_stack_1 (tem, insn);
2194 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2195 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2196 && ! mode_dependent_address_p (XEXP (tem, 0))
2197 && ! MEM_VOLATILE_P (tem))
2199 enum machine_mode wanted_mode;
2200 enum machine_mode is_mode = GET_MODE (tem);
2201 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2203 wanted_mode = mode_for_extraction (EP_insv, 0);
2205 /* If we have a narrower mode, we can do something. */
2206 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2208 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2209 rtx old_pos = XEXP (outerdest, 2);
2210 rtx newmem;
2212 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2213 offset = (GET_MODE_SIZE (is_mode)
2214 - GET_MODE_SIZE (wanted_mode) - offset);
2216 pos %= GET_MODE_BITSIZE (wanted_mode);
2218 newmem = adjust_address_nv (tem, wanted_mode, offset);
2220 /* Make the change and see if the insn remains valid. */
2221 INSN_CODE (insn) = -1;
2222 XEXP (outerdest, 0) = newmem;
2223 XEXP (outerdest, 2) = GEN_INT (pos);
2225 if (recog_memoized (insn) >= 0)
2226 return;
2228 /* Otherwise, restore old position. XEXP (x, 0) will be
2229 restored later. */
2230 XEXP (outerdest, 2) = old_pos;
2234 /* If we get here, the bit-field store doesn't allow memory
2235 or isn't located at a constant position. Load the value into
2236 a register, do the store, and put it back into memory. */
2238 tem1 = gen_reg_rtx (GET_MODE (tem));
2239 emit_insn_before (gen_move_insn (tem1, tem), insn);
2240 emit_insn_after (gen_move_insn (tem, tem1), insn);
2241 XEXP (outerdest, 0) = tem1;
2242 return;
2245 /* STRICT_LOW_PART is a no-op on memory references
2246 and it can cause combinations to be unrecognizable,
2247 so eliminate it. */
2249 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2250 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2252 /* A valid insn to copy VAR into or out of a register
2253 must be left alone, to avoid an infinite loop here.
2254 If the reference to VAR is by a subreg, fix that up,
2255 since SUBREG is not valid for a memref.
2256 Also fix up the address of the stack slot.
2258 Note that we must not try to recognize the insn until
2259 after we know that we have valid addresses and no
2260 (subreg (mem ...) ...) constructs, since these interfere
2261 with determining the validity of the insn. */
2263 if ((SET_SRC (x) == var
2264 || (GET_CODE (SET_SRC (x)) == SUBREG
2265 && SUBREG_REG (SET_SRC (x)) == var))
2266 && (GET_CODE (SET_DEST (x)) == REG
2267 || (GET_CODE (SET_DEST (x)) == SUBREG
2268 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2269 && GET_MODE (var) == promoted_mode
2270 && x == single_set (insn))
2272 rtx pat, last;
2274 if (GET_CODE (SET_SRC (x)) == SUBREG
2275 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2276 > GET_MODE_SIZE (GET_MODE (var))))
2278 /* This (subreg VAR) is now a paradoxical subreg. We need
2279 to replace VAR instead of the subreg. */
2280 replacement = find_fixup_replacement (replacements, var);
2281 if (replacement->new == NULL_RTX)
2282 replacement->new = gen_reg_rtx (GET_MODE (var));
2283 SUBREG_REG (SET_SRC (x)) = replacement->new;
2285 else
2287 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2288 if (replacement->new)
2289 SET_SRC (x) = replacement->new;
2290 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2291 SET_SRC (x) = replacement->new
2292 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2294 else
2295 SET_SRC (x) = replacement->new
2296 = fixup_stack_1 (SET_SRC (x), insn);
2299 if (recog_memoized (insn) >= 0)
2300 return;
2302 /* INSN is not valid, but we know that we want to
2303 copy SET_SRC (x) to SET_DEST (x) in some way. So
2304 we generate the move and see whether it requires more
2305 than one insn. If it does, we emit those insns and
2306 delete INSN. Otherwise, we can just replace the pattern
2307 of INSN; we have already verified above that INSN has
2308 no other function that to do X. */
2310 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2311 if (NEXT_INSN (pat) != NULL_RTX)
2313 last = emit_insn_before (pat, insn);
2315 /* INSN might have REG_RETVAL or other important notes, so
2316 we need to store the pattern of the last insn in the
2317 sequence into INSN similarly to the normal case. LAST
2318 should not have REG_NOTES, but we allow them if INSN has
2319 no REG_NOTES. */
2320 if (REG_NOTES (last) && REG_NOTES (insn))
2321 abort ();
2322 if (REG_NOTES (last))
2323 REG_NOTES (insn) = REG_NOTES (last);
2324 PATTERN (insn) = PATTERN (last);
2326 delete_insn (last);
2328 else
2329 PATTERN (insn) = PATTERN (pat);
2331 return;
2334 if ((SET_DEST (x) == var
2335 || (GET_CODE (SET_DEST (x)) == SUBREG
2336 && SUBREG_REG (SET_DEST (x)) == var))
2337 && (GET_CODE (SET_SRC (x)) == REG
2338 || (GET_CODE (SET_SRC (x)) == SUBREG
2339 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2340 && GET_MODE (var) == promoted_mode
2341 && x == single_set (insn))
2343 rtx pat, last;
2345 if (GET_CODE (SET_DEST (x)) == SUBREG)
2346 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2347 promoted_mode, 0);
2348 else
2349 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2351 if (recog_memoized (insn) >= 0)
2352 return;
2354 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2355 if (NEXT_INSN (pat) != NULL_RTX)
2357 last = emit_insn_before (pat, insn);
2359 /* INSN might have REG_RETVAL or other important notes, so
2360 we need to store the pattern of the last insn in the
2361 sequence into INSN similarly to the normal case. LAST
2362 should not have REG_NOTES, but we allow them if INSN has
2363 no REG_NOTES. */
2364 if (REG_NOTES (last) && REG_NOTES (insn))
2365 abort ();
2366 if (REG_NOTES (last))
2367 REG_NOTES (insn) = REG_NOTES (last);
2368 PATTERN (insn) = PATTERN (last);
2370 delete_insn (last);
2372 else
2373 PATTERN (insn) = PATTERN (pat);
2375 return;
2378 /* Otherwise, storing into VAR must be handled specially
2379 by storing into a temporary and copying that into VAR
2380 with a new insn after this one. Note that this case
2381 will be used when storing into a promoted scalar since
2382 the insn will now have different modes on the input
2383 and output and hence will be invalid (except for the case
2384 of setting it to a constant, which does not need any
2385 change if it is valid). We generate extra code in that case,
2386 but combine.c will eliminate it. */
2388 if (dest == var)
2390 rtx temp;
2391 rtx fixeddest = SET_DEST (x);
2392 enum machine_mode temp_mode;
2394 /* STRICT_LOW_PART can be discarded, around a MEM. */
2395 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2396 fixeddest = XEXP (fixeddest, 0);
2397 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2398 if (GET_CODE (fixeddest) == SUBREG)
2400 fixeddest = fixup_memory_subreg (fixeddest, insn,
2401 promoted_mode, 0);
2402 temp_mode = GET_MODE (fixeddest);
2404 else
2406 fixeddest = fixup_stack_1 (fixeddest, insn);
2407 temp_mode = promoted_mode;
2410 temp = gen_reg_rtx (temp_mode);
2412 emit_insn_after (gen_move_insn (fixeddest,
2413 gen_lowpart (GET_MODE (fixeddest),
2414 temp)),
2415 insn);
2417 SET_DEST (x) = temp;
2421 default:
2422 break;
2425 /* Nothing special about this RTX; fix its operands. */
2427 fmt = GET_RTX_FORMAT (code);
2428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2430 if (fmt[i] == 'e')
2431 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2432 no_share);
2433 else if (fmt[i] == 'E')
2435 int j;
2436 for (j = 0; j < XVECLEN (x, i); j++)
2437 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2438 insn, replacements, no_share);
2443 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2444 The REG was placed on the stack, so X now has the form (SUBREG:m1
2445 (MEM:m2 ...)).
2447 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2448 must be emitted to compute NEWADDR, put them before INSN.
2450 UNCRITICAL nonzero means accept paradoxical subregs.
2451 This is used for subregs found inside REG_NOTES. */
2453 static rtx
2454 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2456 int offset;
2457 rtx mem = SUBREG_REG (x);
2458 rtx addr = XEXP (mem, 0);
2459 enum machine_mode mode = GET_MODE (x);
2460 rtx result, seq;
2462 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2463 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2464 abort ();
2466 offset = SUBREG_BYTE (x);
2467 if (BYTES_BIG_ENDIAN)
2468 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2469 the offset so that it points to the right location within the
2470 MEM. */
2471 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2473 if (!flag_force_addr
2474 && memory_address_p (mode, plus_constant (addr, offset)))
2475 /* Shortcut if no insns need be emitted. */
2476 return adjust_address (mem, mode, offset);
2478 start_sequence ();
2479 result = adjust_address (mem, mode, offset);
2480 seq = get_insns ();
2481 end_sequence ();
2483 emit_insn_before (seq, insn);
2484 return result;
2487 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2488 Replace subexpressions of X in place.
2489 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2490 Otherwise return X, with its contents possibly altered.
2492 INSN, PROMOTED_MODE and UNCRITICAL are as for
2493 fixup_memory_subreg. */
2495 static rtx
2496 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2497 int uncritical)
2499 enum rtx_code code;
2500 const char *fmt;
2501 int i;
2503 if (x == 0)
2504 return 0;
2506 code = GET_CODE (x);
2508 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2509 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2511 /* Nothing special about this RTX; fix its operands. */
2513 fmt = GET_RTX_FORMAT (code);
2514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2516 if (fmt[i] == 'e')
2517 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2518 promoted_mode, uncritical);
2519 else if (fmt[i] == 'E')
2521 int j;
2522 for (j = 0; j < XVECLEN (x, i); j++)
2523 XVECEXP (x, i, j)
2524 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2525 promoted_mode, uncritical);
2528 return x;
2531 /* For each memory ref within X, if it refers to a stack slot
2532 with an out of range displacement, put the address in a temp register
2533 (emitting new insns before INSN to load these registers)
2534 and alter the memory ref to use that register.
2535 Replace each such MEM rtx with a copy, to avoid clobberage. */
2537 static rtx
2538 fixup_stack_1 (rtx x, rtx insn)
2540 int i;
2541 RTX_CODE code = GET_CODE (x);
2542 const char *fmt;
2544 if (code == MEM)
2546 rtx ad = XEXP (x, 0);
2547 /* If we have address of a stack slot but it's not valid
2548 (displacement is too large), compute the sum in a register. */
2549 if (GET_CODE (ad) == PLUS
2550 && GET_CODE (XEXP (ad, 0)) == REG
2551 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2552 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2553 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2554 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2555 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2556 #endif
2557 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2558 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2559 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2560 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2562 rtx temp, seq;
2563 if (memory_address_p (GET_MODE (x), ad))
2564 return x;
2566 start_sequence ();
2567 temp = copy_to_reg (ad);
2568 seq = get_insns ();
2569 end_sequence ();
2570 emit_insn_before (seq, insn);
2571 return replace_equiv_address (x, temp);
2573 return x;
2576 fmt = GET_RTX_FORMAT (code);
2577 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2579 if (fmt[i] == 'e')
2580 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2581 else if (fmt[i] == 'E')
2583 int j;
2584 for (j = 0; j < XVECLEN (x, i); j++)
2585 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2588 return x;
2591 /* Optimization: a bit-field instruction whose field
2592 happens to be a byte or halfword in memory
2593 can be changed to a move instruction.
2595 We call here when INSN is an insn to examine or store into a bit-field.
2596 BODY is the SET-rtx to be altered.
2598 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2599 (Currently this is called only from function.c, and EQUIV_MEM
2600 is always 0.) */
2602 static void
2603 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2605 rtx bitfield;
2606 int destflag;
2607 rtx seq = 0;
2608 enum machine_mode mode;
2610 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2611 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2612 bitfield = SET_DEST (body), destflag = 1;
2613 else
2614 bitfield = SET_SRC (body), destflag = 0;
2616 /* First check that the field being stored has constant size and position
2617 and is in fact a byte or halfword suitably aligned. */
2619 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2620 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2621 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2622 != BLKmode)
2623 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2625 rtx memref = 0;
2627 /* Now check that the containing word is memory, not a register,
2628 and that it is safe to change the machine mode. */
2630 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2631 memref = XEXP (bitfield, 0);
2632 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2633 && equiv_mem != 0)
2634 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2635 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2636 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2637 memref = SUBREG_REG (XEXP (bitfield, 0));
2638 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2639 && equiv_mem != 0
2640 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2641 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2643 if (memref
2644 && ! mode_dependent_address_p (XEXP (memref, 0))
2645 && ! MEM_VOLATILE_P (memref))
2647 /* Now adjust the address, first for any subreg'ing
2648 that we are now getting rid of,
2649 and then for which byte of the word is wanted. */
2651 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2652 rtx insns;
2654 /* Adjust OFFSET to count bits from low-address byte. */
2655 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2656 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2657 - offset - INTVAL (XEXP (bitfield, 1)));
2659 /* Adjust OFFSET to count bytes from low-address byte. */
2660 offset /= BITS_PER_UNIT;
2661 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2663 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2664 / UNITS_PER_WORD) * UNITS_PER_WORD;
2665 if (BYTES_BIG_ENDIAN)
2666 offset -= (MIN (UNITS_PER_WORD,
2667 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2668 - MIN (UNITS_PER_WORD,
2669 GET_MODE_SIZE (GET_MODE (memref))));
2672 start_sequence ();
2673 memref = adjust_address (memref, mode, offset);
2674 insns = get_insns ();
2675 end_sequence ();
2676 emit_insn_before (insns, insn);
2678 /* Store this memory reference where
2679 we found the bit field reference. */
2681 if (destflag)
2683 validate_change (insn, &SET_DEST (body), memref, 1);
2684 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2686 rtx src = SET_SRC (body);
2687 while (GET_CODE (src) == SUBREG
2688 && SUBREG_BYTE (src) == 0)
2689 src = SUBREG_REG (src);
2690 if (GET_MODE (src) != GET_MODE (memref))
2691 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2692 validate_change (insn, &SET_SRC (body), src, 1);
2694 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2695 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2696 /* This shouldn't happen because anything that didn't have
2697 one of these modes should have got converted explicitly
2698 and then referenced through a subreg.
2699 This is so because the original bit-field was
2700 handled by agg_mode and so its tree structure had
2701 the same mode that memref now has. */
2702 abort ();
2704 else
2706 rtx dest = SET_DEST (body);
2708 while (GET_CODE (dest) == SUBREG
2709 && SUBREG_BYTE (dest) == 0
2710 && (GET_MODE_CLASS (GET_MODE (dest))
2711 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2712 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2713 <= UNITS_PER_WORD))
2714 dest = SUBREG_REG (dest);
2716 validate_change (insn, &SET_DEST (body), dest, 1);
2718 if (GET_MODE (dest) == GET_MODE (memref))
2719 validate_change (insn, &SET_SRC (body), memref, 1);
2720 else
2722 /* Convert the mem ref to the destination mode. */
2723 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2725 start_sequence ();
2726 convert_move (newreg, memref,
2727 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2728 seq = get_insns ();
2729 end_sequence ();
2731 validate_change (insn, &SET_SRC (body), newreg, 1);
2735 /* See if we can convert this extraction or insertion into
2736 a simple move insn. We might not be able to do so if this
2737 was, for example, part of a PARALLEL.
2739 If we succeed, write out any needed conversions. If we fail,
2740 it is hard to guess why we failed, so don't do anything
2741 special; just let the optimization be suppressed. */
2743 if (apply_change_group () && seq)
2744 emit_insn_before (seq, insn);
2749 /* These routines are responsible for converting virtual register references
2750 to the actual hard register references once RTL generation is complete.
2752 The following four variables are used for communication between the
2753 routines. They contain the offsets of the virtual registers from their
2754 respective hard registers. */
2756 static int in_arg_offset;
2757 static int var_offset;
2758 static int dynamic_offset;
2759 static int out_arg_offset;
2760 static int cfa_offset;
2762 /* In most machines, the stack pointer register is equivalent to the bottom
2763 of the stack. */
2765 #ifndef STACK_POINTER_OFFSET
2766 #define STACK_POINTER_OFFSET 0
2767 #endif
2769 /* If not defined, pick an appropriate default for the offset of dynamically
2770 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2771 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2773 #ifndef STACK_DYNAMIC_OFFSET
2775 /* The bottom of the stack points to the actual arguments. If
2776 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2777 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2778 stack space for register parameters is not pushed by the caller, but
2779 rather part of the fixed stack areas and hence not included in
2780 `current_function_outgoing_args_size'. Nevertheless, we must allow
2781 for it when allocating stack dynamic objects. */
2783 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2784 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2785 ((ACCUMULATE_OUTGOING_ARGS \
2786 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2787 + (STACK_POINTER_OFFSET)) \
2789 #else
2790 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2791 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2792 + (STACK_POINTER_OFFSET))
2793 #endif
2794 #endif
2796 /* On most machines, the CFA coincides with the first incoming parm. */
2798 #ifndef ARG_POINTER_CFA_OFFSET
2799 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2800 #endif
2802 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2803 had its address taken. DECL is the decl or SAVE_EXPR for the
2804 object stored in the register, for later use if we do need to force
2805 REG into the stack. REG is overwritten by the MEM like in
2806 put_reg_into_stack. RESCAN is true if previously emitted
2807 instructions must be rescanned and modified now that the REG has
2808 been transformed. */
2811 gen_mem_addressof (rtx reg, tree decl, int rescan)
2813 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2814 REGNO (reg), decl);
2816 /* Calculate this before we start messing with decl's RTL. */
2817 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2819 /* If the original REG was a user-variable, then so is the REG whose
2820 address is being taken. Likewise for unchanging. */
2821 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2822 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2824 PUT_CODE (reg, MEM);
2825 MEM_ATTRS (reg) = 0;
2826 XEXP (reg, 0) = r;
2828 if (decl)
2830 tree type = TREE_TYPE (decl);
2831 enum machine_mode decl_mode
2832 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2833 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2834 : DECL_RTL_IF_SET (decl));
2836 PUT_MODE (reg, decl_mode);
2838 /* Clear DECL_RTL momentarily so functions below will work
2839 properly, then set it again. */
2840 if (DECL_P (decl) && decl_rtl == reg)
2841 SET_DECL_RTL (decl, 0);
2843 set_mem_attributes (reg, decl, 1);
2844 set_mem_alias_set (reg, set);
2846 if (DECL_P (decl) && decl_rtl == reg)
2847 SET_DECL_RTL (decl, reg);
2849 if (rescan
2850 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2851 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2853 else if (rescan)
2854 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2856 return reg;
2859 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2861 void
2862 flush_addressof (tree decl)
2864 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2865 && DECL_RTL (decl) != 0
2866 && GET_CODE (DECL_RTL (decl)) == MEM
2867 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2868 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2869 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2872 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2874 static void
2875 put_addressof_into_stack (rtx r, htab_t ht)
2877 tree decl, type;
2878 int volatile_p, used_p;
2880 rtx reg = XEXP (r, 0);
2882 if (GET_CODE (reg) != REG)
2883 abort ();
2885 decl = ADDRESSOF_DECL (r);
2886 if (decl)
2888 type = TREE_TYPE (decl);
2889 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2890 && TREE_THIS_VOLATILE (decl));
2891 used_p = (TREE_USED (decl)
2892 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2894 else
2896 type = NULL_TREE;
2897 volatile_p = 0;
2898 used_p = 1;
2901 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2902 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2905 /* List of replacements made below in purge_addressof_1 when creating
2906 bitfield insertions. */
2907 static rtx purge_bitfield_addressof_replacements;
2909 /* List of replacements made below in purge_addressof_1 for patterns
2910 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2911 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2912 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2913 enough in complex cases, e.g. when some field values can be
2914 extracted by usage MEM with narrower mode. */
2915 static rtx purge_addressof_replacements;
2917 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2918 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2919 the stack. If the function returns FALSE then the replacement could not
2920 be made. If MAY_POSTPONE is true and we would not put the addressof
2921 to stack, postpone processing of the insn. */
2923 static bool
2924 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2925 htab_t ht)
2927 rtx x;
2928 RTX_CODE code;
2929 int i, j;
2930 const char *fmt;
2931 bool result = true;
2933 /* Re-start here to avoid recursion in common cases. */
2934 restart:
2936 x = *loc;
2937 if (x == 0)
2938 return true;
2940 code = GET_CODE (x);
2942 /* If we don't return in any of the cases below, we will recurse inside
2943 the RTX, which will normally result in any ADDRESSOF being forced into
2944 memory. */
2945 if (code == SET)
2947 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2948 may_postpone, ht);
2949 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2950 may_postpone, ht);
2951 return result;
2953 else if (code == ADDRESSOF)
2955 rtx sub, insns;
2957 if (GET_CODE (XEXP (x, 0)) != MEM)
2958 put_addressof_into_stack (x, ht);
2960 /* We must create a copy of the rtx because it was created by
2961 overwriting a REG rtx which is always shared. */
2962 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2963 if (validate_change (insn, loc, sub, 0)
2964 || validate_replace_rtx (x, sub, insn))
2965 return true;
2967 start_sequence ();
2969 /* If SUB is a hard or virtual register, try it as a pseudo-register.
2970 Otherwise, perhaps SUB is an expression, so generate code to compute
2971 it. */
2972 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
2973 sub = copy_to_reg (sub);
2974 else
2975 sub = force_operand (sub, NULL_RTX);
2977 if (! validate_change (insn, loc, sub, 0)
2978 && ! validate_replace_rtx (x, sub, insn))
2979 abort ();
2981 insns = get_insns ();
2982 end_sequence ();
2983 emit_insn_before (insns, insn);
2984 return true;
2987 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2989 rtx sub = XEXP (XEXP (x, 0), 0);
2991 if (GET_CODE (sub) == MEM)
2992 sub = adjust_address_nv (sub, GET_MODE (x), 0);
2993 else if (GET_CODE (sub) == REG
2994 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2996 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2998 int size_x, size_sub;
3000 if (may_postpone)
3002 /* Postpone for now, so that we do not emit bitfield arithmetics
3003 unless there is some benefit from it. */
3004 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3005 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3006 return true;
3009 if (!insn)
3011 /* When processing REG_NOTES look at the list of
3012 replacements done on the insn to find the register that X
3013 was replaced by. */
3014 rtx tem;
3016 for (tem = purge_bitfield_addressof_replacements;
3017 tem != NULL_RTX;
3018 tem = XEXP (XEXP (tem, 1), 1))
3019 if (rtx_equal_p (x, XEXP (tem, 0)))
3021 *loc = XEXP (XEXP (tem, 1), 0);
3022 return true;
3025 /* See comment for purge_addressof_replacements. */
3026 for (tem = purge_addressof_replacements;
3027 tem != NULL_RTX;
3028 tem = XEXP (XEXP (tem, 1), 1))
3029 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3031 rtx z = XEXP (XEXP (tem, 1), 0);
3033 if (GET_MODE (x) == GET_MODE (z)
3034 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3035 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3036 abort ();
3038 /* It can happen that the note may speak of things
3039 in a wider (or just different) mode than the
3040 code did. This is especially true of
3041 REG_RETVAL. */
3043 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3044 z = SUBREG_REG (z);
3046 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3047 && (GET_MODE_SIZE (GET_MODE (x))
3048 > GET_MODE_SIZE (GET_MODE (z))))
3050 /* This can occur as a result in invalid
3051 pointer casts, e.g. float f; ...
3052 *(long long int *)&f.
3053 ??? We could emit a warning here, but
3054 without a line number that wouldn't be
3055 very helpful. */
3056 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3058 else
3059 z = gen_lowpart (GET_MODE (x), z);
3061 *loc = z;
3062 return true;
3065 /* When we are processing the REG_NOTES of the last instruction
3066 of a libcall, there will be typically no replacements
3067 for that insn; the replacements happened before, piecemeal
3068 fashion. OTOH we are not interested in the details of
3069 this for the REG_EQUAL note, we want to know the big picture,
3070 which can be succinctly described with a simple SUBREG.
3071 Note that removing the REG_EQUAL note is not an option
3072 on the last insn of a libcall, so we must do a replacement. */
3073 if (! purge_addressof_replacements
3074 && ! purge_bitfield_addressof_replacements)
3076 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3077 we got
3078 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3079 [0 S8 A32]), which can be expressed with a simple
3080 same-size subreg */
3081 if ((GET_MODE_SIZE (GET_MODE (x))
3082 == GET_MODE_SIZE (GET_MODE (sub)))
3083 /* Again, invalid pointer casts (as in
3084 compile/990203-1.c) can require paradoxical
3085 subregs. */
3086 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3087 && (GET_MODE_SIZE (GET_MODE (x))
3088 > GET_MODE_SIZE (GET_MODE (sub))))
3089 || (GET_MODE_SIZE (GET_MODE (x))
3090 < GET_MODE_SIZE (GET_MODE (sub))))
3093 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3094 return true;
3096 /* ??? Are there other cases we should handle? */
3098 /* Sometimes we may not be able to find the replacement. For
3099 example when the original insn was a MEM in a wider mode,
3100 and the note is part of a sign extension of a narrowed
3101 version of that MEM. Gcc testcase compile/990829-1.c can
3102 generate an example of this situation. Rather than complain
3103 we return false, which will prompt our caller to remove the
3104 offending note. */
3105 return false;
3108 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3109 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3111 /* Do not frob unchanging MEMs. If a later reference forces the
3112 pseudo to the stack, we can wind up with multiple writes to
3113 an unchanging memory, which is invalid. */
3114 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3117 /* Don't even consider working with paradoxical subregs,
3118 or the moral equivalent seen here. */
3119 else if (size_x <= size_sub
3120 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3122 /* Do a bitfield insertion to mirror what would happen
3123 in memory. */
3125 rtx val, seq;
3127 if (store)
3129 rtx p = PREV_INSN (insn);
3131 start_sequence ();
3132 val = gen_reg_rtx (GET_MODE (x));
3133 if (! validate_change (insn, loc, val, 0))
3135 /* Discard the current sequence and put the
3136 ADDRESSOF on stack. */
3137 end_sequence ();
3138 goto give_up;
3140 seq = get_insns ();
3141 end_sequence ();
3142 emit_insn_before (seq, insn);
3143 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3144 insn, ht);
3146 start_sequence ();
3147 store_bit_field (sub, size_x, 0, GET_MODE (x),
3148 val, GET_MODE_SIZE (GET_MODE (sub)));
3150 /* Make sure to unshare any shared rtl that store_bit_field
3151 might have created. */
3152 unshare_all_rtl_again (get_insns ());
3154 seq = get_insns ();
3155 end_sequence ();
3156 p = emit_insn_after (seq, insn);
3157 if (NEXT_INSN (insn))
3158 compute_insns_for_mem (NEXT_INSN (insn),
3159 p ? NEXT_INSN (p) : NULL_RTX,
3160 ht);
3162 else
3164 rtx p = PREV_INSN (insn);
3166 start_sequence ();
3167 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3168 GET_MODE (x), GET_MODE (x),
3169 GET_MODE_SIZE (GET_MODE (sub)));
3171 if (! validate_change (insn, loc, val, 0))
3173 /* Discard the current sequence and put the
3174 ADDRESSOF on stack. */
3175 end_sequence ();
3176 goto give_up;
3179 seq = get_insns ();
3180 end_sequence ();
3181 emit_insn_before (seq, insn);
3182 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3183 insn, ht);
3186 /* Remember the replacement so that the same one can be done
3187 on the REG_NOTES. */
3188 purge_bitfield_addressof_replacements
3189 = gen_rtx_EXPR_LIST (VOIDmode, x,
3190 gen_rtx_EXPR_LIST
3191 (VOIDmode, val,
3192 purge_bitfield_addressof_replacements));
3194 /* We replaced with a reg -- all done. */
3195 return true;
3199 else if (validate_change (insn, loc, sub, 0))
3201 /* Remember the replacement so that the same one can be done
3202 on the REG_NOTES. */
3203 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3205 rtx tem;
3207 for (tem = purge_addressof_replacements;
3208 tem != NULL_RTX;
3209 tem = XEXP (XEXP (tem, 1), 1))
3210 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3212 XEXP (XEXP (tem, 1), 0) = sub;
3213 return true;
3215 purge_addressof_replacements
3216 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3217 gen_rtx_EXPR_LIST (VOIDmode, sub,
3218 purge_addressof_replacements));
3219 return true;
3221 goto restart;
3225 give_up:
3226 /* Scan all subexpressions. */
3227 fmt = GET_RTX_FORMAT (code);
3228 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3230 if (*fmt == 'e')
3231 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3232 may_postpone, ht);
3233 else if (*fmt == 'E')
3234 for (j = 0; j < XVECLEN (x, i); j++)
3235 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3236 may_postpone, ht);
3239 return result;
3242 /* Return a hash value for K, a REG. */
3244 static hashval_t
3245 insns_for_mem_hash (const void *k)
3247 /* Use the address of the key for the hash value. */
3248 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3249 return htab_hash_pointer (m->key);
3252 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3254 static int
3255 insns_for_mem_comp (const void *k1, const void *k2)
3257 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3258 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3259 return m1->key == m2->key;
3262 struct insns_for_mem_walk_info
3264 /* The hash table that we are using to record which INSNs use which
3265 MEMs. */
3266 htab_t ht;
3268 /* The INSN we are currently processing. */
3269 rtx insn;
3271 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3272 to find the insns that use the REGs in the ADDRESSOFs. */
3273 int pass;
3276 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3277 that might be used in an ADDRESSOF expression, record this INSN in
3278 the hash table given by DATA (which is really a pointer to an
3279 insns_for_mem_walk_info structure). */
3281 static int
3282 insns_for_mem_walk (rtx *r, void *data)
3284 struct insns_for_mem_walk_info *ifmwi
3285 = (struct insns_for_mem_walk_info *) data;
3286 struct insns_for_mem_entry tmp;
3287 tmp.insns = NULL_RTX;
3289 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3290 && GET_CODE (XEXP (*r, 0)) == REG)
3292 void **e;
3293 tmp.key = XEXP (*r, 0);
3294 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3295 if (*e == NULL)
3297 *e = ggc_alloc (sizeof (tmp));
3298 memcpy (*e, &tmp, sizeof (tmp));
3301 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3303 struct insns_for_mem_entry *ifme;
3304 tmp.key = *r;
3305 ifme = htab_find (ifmwi->ht, &tmp);
3307 /* If we have not already recorded this INSN, do so now. Since
3308 we process the INSNs in order, we know that if we have
3309 recorded it it must be at the front of the list. */
3310 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3311 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3312 ifme->insns);
3315 return 0;
3318 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3319 which REGs in HT. */
3321 static void
3322 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3324 rtx insn;
3325 struct insns_for_mem_walk_info ifmwi;
3326 ifmwi.ht = ht;
3328 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3329 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3330 if (INSN_P (insn))
3332 ifmwi.insn = insn;
3333 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3337 /* Helper function for purge_addressof called through for_each_rtx.
3338 Returns true iff the rtl is an ADDRESSOF. */
3340 static int
3341 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3343 return GET_CODE (*rtl) == ADDRESSOF;
3346 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3347 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3348 stack. */
3350 void
3351 purge_addressof (rtx insns)
3353 rtx insn, tmp;
3354 htab_t ht;
3356 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3357 requires a fixup pass over the instruction stream to correct
3358 INSNs that depended on the REG being a REG, and not a MEM. But,
3359 these fixup passes are slow. Furthermore, most MEMs are not
3360 mentioned in very many instructions. So, we speed up the process
3361 by pre-calculating which REGs occur in which INSNs; that allows
3362 us to perform the fixup passes much more quickly. */
3363 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3364 compute_insns_for_mem (insns, NULL_RTX, ht);
3366 postponed_insns = NULL;
3368 for (insn = insns; insn; insn = NEXT_INSN (insn))
3369 if (INSN_P (insn))
3371 if (! purge_addressof_1 (&PATTERN (insn), insn,
3372 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3373 /* If we could not replace the ADDRESSOFs in the insn,
3374 something is wrong. */
3375 abort ();
3377 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3379 /* If we could not replace the ADDRESSOFs in the insn's notes,
3380 we can just remove the offending notes instead. */
3381 rtx note;
3383 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3385 /* If we find a REG_RETVAL note then the insn is a libcall.
3386 Such insns must have REG_EQUAL notes as well, in order
3387 for later passes of the compiler to work. So it is not
3388 safe to delete the notes here, and instead we abort. */
3389 if (REG_NOTE_KIND (note) == REG_RETVAL)
3390 abort ();
3391 if (for_each_rtx (&note, is_addressof, NULL))
3392 remove_note (insn, note);
3397 /* Process the postponed insns. */
3398 while (postponed_insns)
3400 insn = XEXP (postponed_insns, 0);
3401 tmp = postponed_insns;
3402 postponed_insns = XEXP (postponed_insns, 1);
3403 free_INSN_LIST_node (tmp);
3405 if (! purge_addressof_1 (&PATTERN (insn), insn,
3406 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3407 abort ();
3410 /* Clean up. */
3411 purge_bitfield_addressof_replacements = 0;
3412 purge_addressof_replacements = 0;
3414 /* REGs are shared. purge_addressof will destructively replace a REG
3415 with a MEM, which creates shared MEMs.
3417 Unfortunately, the children of put_reg_into_stack assume that MEMs
3418 referring to the same stack slot are shared (fixup_var_refs and
3419 the associated hash table code).
3421 So, we have to do another unsharing pass after we have flushed any
3422 REGs that had their address taken into the stack.
3424 It may be worth tracking whether or not we converted any REGs into
3425 MEMs to avoid this overhead when it is not needed. */
3426 unshare_all_rtl_again (get_insns ());
3429 /* Convert a SET of a hard subreg to a set of the appropriate hard
3430 register. A subroutine of purge_hard_subreg_sets. */
3432 static void
3433 purge_single_hard_subreg_set (rtx pattern)
3435 rtx reg = SET_DEST (pattern);
3436 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3437 int offset = 0;
3439 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3440 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3442 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3443 GET_MODE (SUBREG_REG (reg)),
3444 SUBREG_BYTE (reg),
3445 GET_MODE (reg));
3446 reg = SUBREG_REG (reg);
3450 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3452 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3453 SET_DEST (pattern) = reg;
3457 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3458 only such SETs that we expect to see are those left in because
3459 integrate can't handle sets of parts of a return value register.
3461 We don't use alter_subreg because we only want to eliminate subregs
3462 of hard registers. */
3464 void
3465 purge_hard_subreg_sets (rtx insn)
3467 for (; insn; insn = NEXT_INSN (insn))
3469 if (INSN_P (insn))
3471 rtx pattern = PATTERN (insn);
3472 switch (GET_CODE (pattern))
3474 case SET:
3475 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3476 purge_single_hard_subreg_set (pattern);
3477 break;
3478 case PARALLEL:
3480 int j;
3481 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3483 rtx inner_pattern = XVECEXP (pattern, 0, j);
3484 if (GET_CODE (inner_pattern) == SET
3485 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3486 purge_single_hard_subreg_set (inner_pattern);
3489 break;
3490 default:
3491 break;
3497 /* Pass through the INSNS of function FNDECL and convert virtual register
3498 references to hard register references. */
3500 void
3501 instantiate_virtual_regs (tree fndecl, rtx insns)
3503 rtx insn;
3504 unsigned int i;
3506 /* Compute the offsets to use for this function. */
3507 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3508 var_offset = STARTING_FRAME_OFFSET;
3509 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3510 out_arg_offset = STACK_POINTER_OFFSET;
3511 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3513 /* Scan all variables and parameters of this function. For each that is
3514 in memory, instantiate all virtual registers if the result is a valid
3515 address. If not, we do it later. That will handle most uses of virtual
3516 regs on many machines. */
3517 instantiate_decls (fndecl, 1);
3519 /* Initialize recognition, indicating that volatile is OK. */
3520 init_recog ();
3522 /* Scan through all the insns, instantiating every virtual register still
3523 present. */
3524 for (insn = insns; insn; insn = NEXT_INSN (insn))
3525 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3526 || GET_CODE (insn) == CALL_INSN)
3528 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3529 if (INSN_DELETED_P (insn))
3530 continue;
3531 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3532 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3533 if (GET_CODE (insn) == CALL_INSN)
3534 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3535 NULL_RTX, 0);
3537 /* Past this point all ASM statements should match. Verify that
3538 to avoid failures later in the compilation process. */
3539 if (asm_noperands (PATTERN (insn)) >= 0
3540 && ! check_asm_operands (PATTERN (insn)))
3541 instantiate_virtual_regs_lossage (insn);
3544 /* Instantiate the stack slots for the parm registers, for later use in
3545 addressof elimination. */
3546 for (i = 0; i < max_parm_reg; ++i)
3547 if (parm_reg_stack_loc[i])
3548 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3550 /* Now instantiate the remaining register equivalences for debugging info.
3551 These will not be valid addresses. */
3552 instantiate_decls (fndecl, 0);
3554 /* Indicate that, from now on, assign_stack_local should use
3555 frame_pointer_rtx. */
3556 virtuals_instantiated = 1;
3559 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3560 all virtual registers in their DECL_RTL's.
3562 If VALID_ONLY, do this only if the resulting address is still valid.
3563 Otherwise, always do it. */
3565 static void
3566 instantiate_decls (tree fndecl, int valid_only)
3568 tree decl;
3570 /* Process all parameters of the function. */
3571 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3573 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3574 HOST_WIDE_INT size_rtl;
3576 instantiate_decl (DECL_RTL (decl), size, valid_only);
3578 /* If the parameter was promoted, then the incoming RTL mode may be
3579 larger than the declared type size. We must use the larger of
3580 the two sizes. */
3581 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3582 size = MAX (size_rtl, size);
3583 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3586 /* Now process all variables defined in the function or its subblocks. */
3587 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3590 /* Subroutine of instantiate_decls: Process all decls in the given
3591 BLOCK node and all its subblocks. */
3593 static void
3594 instantiate_decls_1 (tree let, int valid_only)
3596 tree t;
3598 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3599 if (DECL_RTL_SET_P (t))
3600 instantiate_decl (DECL_RTL (t),
3601 int_size_in_bytes (TREE_TYPE (t)),
3602 valid_only);
3604 /* Process all subblocks. */
3605 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3606 instantiate_decls_1 (t, valid_only);
3609 /* Subroutine of the preceding procedures: Given RTL representing a
3610 decl and the size of the object, do any instantiation required.
3612 If VALID_ONLY is nonzero, it means that the RTL should only be
3613 changed if the new address is valid. */
3615 static void
3616 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3618 enum machine_mode mode;
3619 rtx addr;
3621 /* If this is not a MEM, no need to do anything. Similarly if the
3622 address is a constant or a register that is not a virtual register. */
3624 if (x == 0 || GET_CODE (x) != MEM)
3625 return;
3627 addr = XEXP (x, 0);
3628 if (CONSTANT_P (addr)
3629 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3630 || (GET_CODE (addr) == REG
3631 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3632 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3633 return;
3635 /* If we should only do this if the address is valid, copy the address.
3636 We need to do this so we can undo any changes that might make the
3637 address invalid. This copy is unfortunate, but probably can't be
3638 avoided. */
3640 if (valid_only)
3641 addr = copy_rtx (addr);
3643 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3645 if (valid_only && size >= 0)
3647 unsigned HOST_WIDE_INT decl_size = size;
3649 /* Now verify that the resulting address is valid for every integer or
3650 floating-point mode up to and including SIZE bytes long. We do this
3651 since the object might be accessed in any mode and frame addresses
3652 are shared. */
3654 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3655 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3656 mode = GET_MODE_WIDER_MODE (mode))
3657 if (! memory_address_p (mode, addr))
3658 return;
3660 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3661 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3662 mode = GET_MODE_WIDER_MODE (mode))
3663 if (! memory_address_p (mode, addr))
3664 return;
3667 /* Put back the address now that we have updated it and we either know
3668 it is valid or we don't care whether it is valid. */
3670 XEXP (x, 0) = addr;
3673 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3674 is a virtual register, return the equivalent hard register and set the
3675 offset indirectly through the pointer. Otherwise, return 0. */
3677 static rtx
3678 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3680 rtx new;
3681 HOST_WIDE_INT offset;
3683 if (x == virtual_incoming_args_rtx)
3684 new = arg_pointer_rtx, offset = in_arg_offset;
3685 else if (x == virtual_stack_vars_rtx)
3686 new = frame_pointer_rtx, offset = var_offset;
3687 else if (x == virtual_stack_dynamic_rtx)
3688 new = stack_pointer_rtx, offset = dynamic_offset;
3689 else if (x == virtual_outgoing_args_rtx)
3690 new = stack_pointer_rtx, offset = out_arg_offset;
3691 else if (x == virtual_cfa_rtx)
3692 new = arg_pointer_rtx, offset = cfa_offset;
3693 else
3694 return 0;
3696 *poffset = offset;
3697 return new;
3701 /* Called when instantiate_virtual_regs has failed to update the instruction.
3702 Usually this means that non-matching instruction has been emit, however for
3703 asm statements it may be the problem in the constraints. */
3704 static void
3705 instantiate_virtual_regs_lossage (rtx insn)
3707 if (asm_noperands (PATTERN (insn)) >= 0)
3709 error_for_asm (insn, "impossible constraint in `asm'");
3710 delete_insn (insn);
3712 else
3713 abort ();
3715 /* Given a pointer to a piece of rtx and an optional pointer to the
3716 containing object, instantiate any virtual registers present in it.
3718 If EXTRA_INSNS, we always do the replacement and generate
3719 any extra insns before OBJECT. If it zero, we do nothing if replacement
3720 is not valid.
3722 Return 1 if we either had nothing to do or if we were able to do the
3723 needed replacement. Return 0 otherwise; we only return zero if
3724 EXTRA_INSNS is zero.
3726 We first try some simple transformations to avoid the creation of extra
3727 pseudos. */
3729 static int
3730 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3732 rtx x;
3733 RTX_CODE code;
3734 rtx new = 0;
3735 HOST_WIDE_INT offset = 0;
3736 rtx temp;
3737 rtx seq;
3738 int i, j;
3739 const char *fmt;
3741 /* Re-start here to avoid recursion in common cases. */
3742 restart:
3744 x = *loc;
3745 if (x == 0)
3746 return 1;
3748 /* We may have detected and deleted invalid asm statements. */
3749 if (object && INSN_P (object) && INSN_DELETED_P (object))
3750 return 1;
3752 code = GET_CODE (x);
3754 /* Check for some special cases. */
3755 switch (code)
3757 case CONST_INT:
3758 case CONST_DOUBLE:
3759 case CONST_VECTOR:
3760 case CONST:
3761 case SYMBOL_REF:
3762 case CODE_LABEL:
3763 case PC:
3764 case CC0:
3765 case ASM_INPUT:
3766 case ADDR_VEC:
3767 case ADDR_DIFF_VEC:
3768 case RETURN:
3769 return 1;
3771 case SET:
3772 /* We are allowed to set the virtual registers. This means that
3773 the actual register should receive the source minus the
3774 appropriate offset. This is used, for example, in the handling
3775 of non-local gotos. */
3776 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3778 rtx src = SET_SRC (x);
3780 /* We are setting the register, not using it, so the relevant
3781 offset is the negative of the offset to use were we using
3782 the register. */
3783 offset = - offset;
3784 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3786 /* The only valid sources here are PLUS or REG. Just do
3787 the simplest possible thing to handle them. */
3788 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3790 instantiate_virtual_regs_lossage (object);
3791 return 1;
3794 start_sequence ();
3795 if (GET_CODE (src) != REG)
3796 temp = force_operand (src, NULL_RTX);
3797 else
3798 temp = src;
3799 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3800 seq = get_insns ();
3801 end_sequence ();
3803 emit_insn_before (seq, object);
3804 SET_DEST (x) = new;
3806 if (! validate_change (object, &SET_SRC (x), temp, 0)
3807 || ! extra_insns)
3808 instantiate_virtual_regs_lossage (object);
3810 return 1;
3813 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3814 loc = &SET_SRC (x);
3815 goto restart;
3817 case PLUS:
3818 /* Handle special case of virtual register plus constant. */
3819 if (CONSTANT_P (XEXP (x, 1)))
3821 rtx old, new_offset;
3823 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3824 if (GET_CODE (XEXP (x, 0)) == PLUS)
3826 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3828 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3829 extra_insns);
3830 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3832 else
3834 loc = &XEXP (x, 0);
3835 goto restart;
3839 #ifdef POINTERS_EXTEND_UNSIGNED
3840 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3841 we can commute the PLUS and SUBREG because pointers into the
3842 frame are well-behaved. */
3843 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3844 && GET_CODE (XEXP (x, 1)) == CONST_INT
3845 && 0 != (new
3846 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3847 &offset))
3848 && validate_change (object, loc,
3849 plus_constant (gen_lowpart (ptr_mode,
3850 new),
3851 offset
3852 + INTVAL (XEXP (x, 1))),
3854 return 1;
3855 #endif
3856 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3858 /* We know the second operand is a constant. Unless the
3859 first operand is a REG (which has been already checked),
3860 it needs to be checked. */
3861 if (GET_CODE (XEXP (x, 0)) != REG)
3863 loc = &XEXP (x, 0);
3864 goto restart;
3866 return 1;
3869 new_offset = plus_constant (XEXP (x, 1), offset);
3871 /* If the new constant is zero, try to replace the sum with just
3872 the register. */
3873 if (new_offset == const0_rtx
3874 && validate_change (object, loc, new, 0))
3875 return 1;
3877 /* Next try to replace the register and new offset.
3878 There are two changes to validate here and we can't assume that
3879 in the case of old offset equals new just changing the register
3880 will yield a valid insn. In the interests of a little efficiency,
3881 however, we only call validate change once (we don't queue up the
3882 changes and then call apply_change_group). */
3884 old = XEXP (x, 0);
3885 if (offset == 0
3886 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3887 : (XEXP (x, 0) = new,
3888 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3890 if (! extra_insns)
3892 XEXP (x, 0) = old;
3893 return 0;
3896 /* Otherwise copy the new constant into a register and replace
3897 constant with that register. */
3898 temp = gen_reg_rtx (Pmode);
3899 XEXP (x, 0) = new;
3900 if (validate_change (object, &XEXP (x, 1), temp, 0))
3901 emit_insn_before (gen_move_insn (temp, new_offset), object);
3902 else
3904 /* If that didn't work, replace this expression with a
3905 register containing the sum. */
3907 XEXP (x, 0) = old;
3908 new = gen_rtx_PLUS (Pmode, new, new_offset);
3910 start_sequence ();
3911 temp = force_operand (new, NULL_RTX);
3912 seq = get_insns ();
3913 end_sequence ();
3915 emit_insn_before (seq, object);
3916 if (! validate_change (object, loc, temp, 0)
3917 && ! validate_replace_rtx (x, temp, object))
3919 instantiate_virtual_regs_lossage (object);
3920 return 1;
3925 return 1;
3928 /* Fall through to generic two-operand expression case. */
3929 case EXPR_LIST:
3930 case CALL:
3931 case COMPARE:
3932 case MINUS:
3933 case MULT:
3934 case DIV: case UDIV:
3935 case MOD: case UMOD:
3936 case AND: case IOR: case XOR:
3937 case ROTATERT: case ROTATE:
3938 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3939 case NE: case EQ:
3940 case GE: case GT: case GEU: case GTU:
3941 case LE: case LT: case LEU: case LTU:
3942 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3943 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3944 loc = &XEXP (x, 0);
3945 goto restart;
3947 case MEM:
3948 /* Most cases of MEM that convert to valid addresses have already been
3949 handled by our scan of decls. The only special handling we
3950 need here is to make a copy of the rtx to ensure it isn't being
3951 shared if we have to change it to a pseudo.
3953 If the rtx is a simple reference to an address via a virtual register,
3954 it can potentially be shared. In such cases, first try to make it
3955 a valid address, which can also be shared. Otherwise, copy it and
3956 proceed normally.
3958 First check for common cases that need no processing. These are
3959 usually due to instantiation already being done on a previous instance
3960 of a shared rtx. */
3962 temp = XEXP (x, 0);
3963 if (CONSTANT_ADDRESS_P (temp)
3964 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3965 || temp == arg_pointer_rtx
3966 #endif
3967 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3968 || temp == hard_frame_pointer_rtx
3969 #endif
3970 || temp == frame_pointer_rtx)
3971 return 1;
3973 if (GET_CODE (temp) == PLUS
3974 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3975 && (XEXP (temp, 0) == frame_pointer_rtx
3976 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3977 || XEXP (temp, 0) == hard_frame_pointer_rtx
3978 #endif
3979 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3980 || XEXP (temp, 0) == arg_pointer_rtx
3981 #endif
3983 return 1;
3985 if (temp == virtual_stack_vars_rtx
3986 || temp == virtual_incoming_args_rtx
3987 || (GET_CODE (temp) == PLUS
3988 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3989 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3990 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3992 /* This MEM may be shared. If the substitution can be done without
3993 the need to generate new pseudos, we want to do it in place
3994 so all copies of the shared rtx benefit. The call below will
3995 only make substitutions if the resulting address is still
3996 valid.
3998 Note that we cannot pass X as the object in the recursive call
3999 since the insn being processed may not allow all valid
4000 addresses. However, if we were not passed on object, we can
4001 only modify X without copying it if X will have a valid
4002 address.
4004 ??? Also note that this can still lose if OBJECT is an insn that
4005 has less restrictions on an address that some other insn.
4006 In that case, we will modify the shared address. This case
4007 doesn't seem very likely, though. One case where this could
4008 happen is in the case of a USE or CLOBBER reference, but we
4009 take care of that below. */
4011 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4012 object ? object : x, 0))
4013 return 1;
4015 /* Otherwise make a copy and process that copy. We copy the entire
4016 RTL expression since it might be a PLUS which could also be
4017 shared. */
4018 *loc = x = copy_rtx (x);
4021 /* Fall through to generic unary operation case. */
4022 case PREFETCH:
4023 case SUBREG:
4024 case STRICT_LOW_PART:
4025 case NEG: case NOT:
4026 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4027 case SIGN_EXTEND: case ZERO_EXTEND:
4028 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4029 case FLOAT: case FIX:
4030 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4031 case ABS:
4032 case SQRT:
4033 case FFS:
4034 case CLZ: case CTZ:
4035 case POPCOUNT: case PARITY:
4036 /* These case either have just one operand or we know that we need not
4037 check the rest of the operands. */
4038 loc = &XEXP (x, 0);
4039 goto restart;
4041 case USE:
4042 case CLOBBER:
4043 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4044 go ahead and make the invalid one, but do it to a copy. For a REG,
4045 just make the recursive call, since there's no chance of a problem. */
4047 if ((GET_CODE (XEXP (x, 0)) == MEM
4048 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4050 || (GET_CODE (XEXP (x, 0)) == REG
4051 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4052 return 1;
4054 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4055 loc = &XEXP (x, 0);
4056 goto restart;
4058 case REG:
4059 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4060 in front of this insn and substitute the temporary. */
4061 if ((new = instantiate_new_reg (x, &offset)) != 0)
4063 temp = plus_constant (new, offset);
4064 if (!validate_change (object, loc, temp, 0))
4066 if (! extra_insns)
4067 return 0;
4069 start_sequence ();
4070 temp = force_operand (temp, NULL_RTX);
4071 seq = get_insns ();
4072 end_sequence ();
4074 emit_insn_before (seq, object);
4075 if (! validate_change (object, loc, temp, 0)
4076 && ! validate_replace_rtx (x, temp, object))
4077 instantiate_virtual_regs_lossage (object);
4081 return 1;
4083 case ADDRESSOF:
4084 if (GET_CODE (XEXP (x, 0)) == REG)
4085 return 1;
4087 else if (GET_CODE (XEXP (x, 0)) == MEM)
4089 /* If we have a (addressof (mem ..)), do any instantiation inside
4090 since we know we'll be making the inside valid when we finally
4091 remove the ADDRESSOF. */
4092 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4093 return 1;
4095 break;
4097 default:
4098 break;
4101 /* Scan all subexpressions. */
4102 fmt = GET_RTX_FORMAT (code);
4103 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4104 if (*fmt == 'e')
4106 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4107 return 0;
4109 else if (*fmt == 'E')
4110 for (j = 0; j < XVECLEN (x, i); j++)
4111 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4112 extra_insns))
4113 return 0;
4115 return 1;
4118 /* Optimization: assuming this function does not receive nonlocal gotos,
4119 delete the handlers for such, as well as the insns to establish
4120 and disestablish them. */
4122 static void
4123 delete_handlers (void)
4125 rtx insn;
4126 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4128 /* Delete the handler by turning off the flag that would
4129 prevent jump_optimize from deleting it.
4130 Also permit deletion of the nonlocal labels themselves
4131 if nothing local refers to them. */
4132 if (GET_CODE (insn) == CODE_LABEL)
4134 tree t, last_t;
4136 LABEL_PRESERVE_P (insn) = 0;
4138 /* Remove it from the nonlocal_label list, to avoid confusing
4139 flow. */
4140 for (t = nonlocal_labels, last_t = 0; t;
4141 last_t = t, t = TREE_CHAIN (t))
4142 if (DECL_RTL (TREE_VALUE (t)) == insn)
4143 break;
4144 if (t)
4146 if (! last_t)
4147 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4148 else
4149 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4152 if (GET_CODE (insn) == INSN)
4154 int can_delete = 0;
4155 rtx t;
4156 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4157 if (reg_mentioned_p (t, PATTERN (insn)))
4159 can_delete = 1;
4160 break;
4162 if (can_delete
4163 || (nonlocal_goto_stack_level != 0
4164 && reg_mentioned_p (nonlocal_goto_stack_level,
4165 PATTERN (insn))))
4166 delete_related_insns (insn);
4171 /* Return the first insn following those generated by `assign_parms'. */
4174 get_first_nonparm_insn (void)
4176 if (last_parm_insn)
4177 return NEXT_INSN (last_parm_insn);
4178 return get_insns ();
4181 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4182 This means a type for which function calls must pass an address to the
4183 function or get an address back from the function.
4184 EXP may be a type node or an expression (whose type is tested). */
4187 aggregate_value_p (tree exp, tree fntype)
4189 int i, regno, nregs;
4190 rtx reg;
4192 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4194 if (fntype)
4195 switch (TREE_CODE (fntype))
4197 case CALL_EXPR:
4198 fntype = get_callee_fndecl (fntype);
4199 fntype = fntype ? TREE_TYPE (fntype) : 0;
4200 break;
4201 case FUNCTION_DECL:
4202 fntype = TREE_TYPE (fntype);
4203 break;
4204 case FUNCTION_TYPE:
4205 case METHOD_TYPE:
4206 break;
4207 case IDENTIFIER_NODE:
4208 fntype = 0;
4209 break;
4210 default:
4211 /* We don't expect other rtl types here. */
4212 abort();
4215 if (TREE_CODE (type) == VOID_TYPE)
4216 return 0;
4217 if (targetm.calls.return_in_memory (type, fntype))
4218 return 1;
4219 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4220 and thus can't be returned in registers. */
4221 if (TREE_ADDRESSABLE (type))
4222 return 1;
4223 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4224 return 1;
4225 /* Make sure we have suitable call-clobbered regs to return
4226 the value in; if not, we must return it in memory. */
4227 reg = hard_function_value (type, 0, 0);
4229 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4230 it is OK. */
4231 if (GET_CODE (reg) != REG)
4232 return 0;
4234 regno = REGNO (reg);
4235 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4236 for (i = 0; i < nregs; i++)
4237 if (! call_used_regs[regno + i])
4238 return 1;
4239 return 0;
4242 /* Assign RTL expressions to the function's parameters.
4243 This may involve copying them into registers and using
4244 those registers as the RTL for them. */
4246 void
4247 assign_parms (tree fndecl)
4249 tree parm;
4250 CUMULATIVE_ARGS args_so_far;
4251 /* Total space needed so far for args on the stack,
4252 given as a constant and a tree-expression. */
4253 struct args_size stack_args_size;
4254 tree fntype = TREE_TYPE (fndecl);
4255 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4256 /* This is used for the arg pointer when referring to stack args. */
4257 rtx internal_arg_pointer;
4258 /* This is a dummy PARM_DECL that we used for the function result if
4259 the function returns a structure. */
4260 tree function_result_decl = 0;
4261 int varargs_setup = 0;
4262 int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
4263 rtx conversion_insns = 0;
4265 /* Nonzero if function takes extra anonymous args.
4266 This means the last named arg must be on the stack
4267 right before the anonymous ones. */
4268 int stdarg
4269 = (TYPE_ARG_TYPES (fntype) != 0
4270 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4271 != void_type_node));
4273 current_function_stdarg = stdarg;
4275 /* If the reg that the virtual arg pointer will be translated into is
4276 not a fixed reg or is the stack pointer, make a copy of the virtual
4277 arg pointer, and address parms via the copy. The frame pointer is
4278 considered fixed even though it is not marked as such.
4280 The second time through, simply use ap to avoid generating rtx. */
4282 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4283 || ! (fixed_regs[ARG_POINTER_REGNUM]
4284 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4285 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4286 else
4287 internal_arg_pointer = virtual_incoming_args_rtx;
4288 current_function_internal_arg_pointer = internal_arg_pointer;
4290 stack_args_size.constant = 0;
4291 stack_args_size.var = 0;
4293 /* If struct value address is treated as the first argument, make it so. */
4294 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
4295 && ! current_function_returns_pcc_struct
4296 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
4298 tree type = build_pointer_type (TREE_TYPE (fntype));
4300 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4302 DECL_ARG_TYPE (function_result_decl) = type;
4303 TREE_CHAIN (function_result_decl) = fnargs;
4304 fnargs = function_result_decl;
4307 orig_fnargs = fnargs;
4309 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4310 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4312 if (SPLIT_COMPLEX_ARGS)
4313 fnargs = split_complex_args (fnargs);
4315 #ifdef REG_PARM_STACK_SPACE
4316 #ifdef MAYBE_REG_PARM_STACK_SPACE
4317 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4318 #else
4319 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4320 #endif
4321 #endif
4323 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4324 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4325 #else
4326 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4327 #endif
4329 /* We haven't yet found an argument that we must push and pretend the
4330 caller did. */
4331 current_function_pretend_args_size = 0;
4333 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4335 rtx entry_parm;
4336 rtx stack_parm;
4337 enum machine_mode promoted_mode, passed_mode;
4338 enum machine_mode nominal_mode, promoted_nominal_mode;
4339 int unsignedp;
4340 struct locate_and_pad_arg_data locate;
4341 int passed_pointer = 0;
4342 int did_conversion = 0;
4343 tree passed_type = DECL_ARG_TYPE (parm);
4344 tree nominal_type = TREE_TYPE (parm);
4345 int last_named = 0, named_arg;
4346 int in_regs;
4347 int partial = 0;
4348 int pretend_bytes = 0;
4350 /* Set LAST_NAMED if this is last named arg before last
4351 anonymous args. */
4352 if (stdarg)
4354 tree tem;
4356 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4357 if (DECL_NAME (tem))
4358 break;
4360 if (tem == 0)
4361 last_named = 1;
4363 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4364 most machines, if this is a varargs/stdarg function, then we treat
4365 the last named arg as if it were anonymous too. */
4366 named_arg = targetm.calls.strict_argument_naming (&args_so_far) ? 1 : ! last_named;
4368 if (TREE_TYPE (parm) == error_mark_node
4369 /* This can happen after weird syntax errors
4370 or if an enum type is defined among the parms. */
4371 || TREE_CODE (parm) != PARM_DECL
4372 || passed_type == NULL)
4374 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4375 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4376 TREE_USED (parm) = 1;
4377 continue;
4380 /* Find mode of arg as it is passed, and mode of arg
4381 as it should be during execution of this function. */
4382 passed_mode = TYPE_MODE (passed_type);
4383 nominal_mode = TYPE_MODE (nominal_type);
4385 /* If the parm's mode is VOID, its value doesn't matter,
4386 and avoid the usual things like emit_move_insn that could crash. */
4387 if (nominal_mode == VOIDmode)
4389 SET_DECL_RTL (parm, const0_rtx);
4390 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4391 continue;
4394 /* If the parm is to be passed as a transparent union, use the
4395 type of the first field for the tests below. We have already
4396 verified that the modes are the same. */
4397 if (DECL_TRANSPARENT_UNION (parm)
4398 || (TREE_CODE (passed_type) == UNION_TYPE
4399 && TYPE_TRANSPARENT_UNION (passed_type)))
4400 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4402 /* See if this arg was passed by invisible reference. It is if
4403 it is an object whose size depends on the contents of the
4404 object itself or if the machine requires these objects be passed
4405 that way. */
4407 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4408 || TREE_ADDRESSABLE (passed_type)
4409 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4410 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4411 passed_type, named_arg)
4412 #endif
4415 passed_type = nominal_type = build_pointer_type (passed_type);
4416 passed_pointer = 1;
4417 passed_mode = nominal_mode = Pmode;
4419 /* See if the frontend wants to pass this by invisible reference. */
4420 else if (passed_type != nominal_type
4421 && POINTER_TYPE_P (passed_type)
4422 && TREE_TYPE (passed_type) == nominal_type)
4424 nominal_type = passed_type;
4425 passed_pointer = 1;
4426 passed_mode = nominal_mode = Pmode;
4429 promoted_mode = passed_mode;
4431 if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
4433 /* Compute the mode in which the arg is actually extended to. */
4434 unsignedp = TREE_UNSIGNED (passed_type);
4435 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4438 /* Let machine desc say which reg (if any) the parm arrives in.
4439 0 means it arrives on the stack. */
4440 #ifdef FUNCTION_INCOMING_ARG
4441 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4442 passed_type, named_arg);
4443 #else
4444 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4445 passed_type, named_arg);
4446 #endif
4448 if (entry_parm == 0)
4449 promoted_mode = passed_mode;
4451 /* If this is the last named parameter, do any required setup for
4452 varargs or stdargs. We need to know about the case of this being an
4453 addressable type, in which case we skip the registers it
4454 would have arrived in.
4456 For stdargs, LAST_NAMED will be set for two parameters, the one that
4457 is actually the last named, and the dummy parameter. We only
4458 want to do this action once.
4460 Also, indicate when RTL generation is to be suppressed. */
4461 if (last_named && !varargs_setup)
4463 int varargs_pretend_bytes = 0;
4464 targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
4465 passed_type,
4466 &varargs_pretend_bytes, 0);
4467 varargs_setup = 1;
4469 /* If the back-end has requested extra stack space, record how
4470 much is needed. Do not change pretend_args_size otherwise
4471 since it may be nonzero from an earlier partial argument. */
4472 if (varargs_pretend_bytes > 0)
4473 current_function_pretend_args_size = varargs_pretend_bytes;
4476 /* Determine parm's home in the stack,
4477 in case it arrives in the stack or we should pretend it did.
4479 Compute the stack position and rtx where the argument arrives
4480 and its size.
4482 There is one complexity here: If this was a parameter that would
4483 have been passed in registers, but wasn't only because it is
4484 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4485 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4486 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4487 0 as it was the previous time. */
4488 in_regs = entry_parm != 0;
4489 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4490 in_regs = 1;
4491 #endif
4492 if (!in_regs && !named_arg)
4494 int pretend_named =
4495 targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
4496 if (pretend_named)
4498 #ifdef FUNCTION_INCOMING_ARG
4499 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4500 passed_type,
4501 pretend_named) != 0;
4502 #else
4503 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4504 passed_type,
4505 pretend_named) != 0;
4506 #endif
4510 /* If this parameter was passed both in registers and in the stack,
4511 use the copy on the stack. */
4512 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4513 entry_parm = 0;
4515 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4516 if (entry_parm)
4518 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4519 passed_type, named_arg);
4520 if (partial
4521 #ifndef MAYBE_REG_PARM_STACK_SPACE
4522 /* The caller might already have allocated stack space
4523 for the register parameters. */
4524 && reg_parm_stack_space == 0
4525 #endif
4528 /* Part of this argument is passed in registers and part
4529 is passed on the stack. Ask the prologue code to extend
4530 the stack part so that we can recreate the full value.
4532 PRETEND_BYTES is the size of the registers we need to store.
4533 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
4534 stack space that the prologue should allocate.
4536 Internally, gcc assumes that the argument pointer is
4537 aligned to STACK_BOUNDARY bits. This is used both for
4538 alignment optimizations (see init_emit) and to locate
4539 arguments that are aligned to more than PARM_BOUNDARY
4540 bits. We must preserve this invariant by rounding
4541 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
4542 boundary. */
4543 pretend_bytes = partial * UNITS_PER_WORD;
4544 current_function_pretend_args_size
4545 = CEIL_ROUND (pretend_bytes, STACK_BYTES);
4547 /* If PRETEND_BYTES != CURRENT_FUNCTION_PRETEND_ARGS_SIZE,
4548 insert the padding before the start of the first pretend
4549 argument. */
4550 stack_args_size.constant
4551 = (current_function_pretend_args_size - pretend_bytes);
4554 #endif
4556 memset (&locate, 0, sizeof (locate));
4557 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4558 entry_parm ? partial : 0, fndecl,
4559 &stack_args_size, &locate);
4562 rtx offset_rtx;
4564 /* If we're passing this arg using a reg, make its stack home
4565 the aligned stack slot. */
4566 if (entry_parm)
4567 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4568 else
4569 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4571 if (offset_rtx == const0_rtx)
4572 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4573 else
4574 stack_parm = gen_rtx_MEM (promoted_mode,
4575 gen_rtx_PLUS (Pmode,
4576 internal_arg_pointer,
4577 offset_rtx));
4579 set_mem_attributes (stack_parm, parm, 1);
4580 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4581 set_mem_align (stack_parm, PARM_BOUNDARY);
4583 /* Set also REG_ATTRS if parameter was passed in a register. */
4584 if (entry_parm)
4585 set_reg_attrs_for_parm (entry_parm, stack_parm);
4588 /* If this parm was passed part in regs and part in memory,
4589 pretend it arrived entirely in memory
4590 by pushing the register-part onto the stack.
4592 In the special case of a DImode or DFmode that is split,
4593 we could put it together in a pseudoreg directly,
4594 but for now that's not worth bothering with. */
4596 if (partial)
4598 /* Handle calls that pass values in multiple non-contiguous
4599 locations. The Irix 6 ABI has examples of this. */
4600 if (GET_CODE (entry_parm) == PARALLEL)
4601 emit_group_store (validize_mem (stack_parm), entry_parm,
4602 TREE_TYPE (parm),
4603 int_size_in_bytes (TREE_TYPE (parm)));
4605 else
4606 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4607 partial);
4609 entry_parm = stack_parm;
4612 /* If we didn't decide this parm came in a register,
4613 by default it came on the stack. */
4614 if (entry_parm == 0)
4615 entry_parm = stack_parm;
4617 /* Record permanently how this parm was passed. */
4618 DECL_INCOMING_RTL (parm) = entry_parm;
4620 /* If there is actually space on the stack for this parm,
4621 count it in stack_args_size; otherwise set stack_parm to 0
4622 to indicate there is no preallocated stack slot for the parm. */
4624 if (entry_parm == stack_parm
4625 || (GET_CODE (entry_parm) == PARALLEL
4626 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4627 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4628 /* On some machines, even if a parm value arrives in a register
4629 there is still an (uninitialized) stack slot allocated for it.
4631 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4632 whether this parameter already has a stack slot allocated,
4633 because an arg block exists only if current_function_args_size
4634 is larger than some threshold, and we haven't calculated that
4635 yet. So, for now, we just assume that stack slots never exist
4636 in this case. */
4637 || REG_PARM_STACK_SPACE (fndecl) > 0
4638 #endif
4641 stack_args_size.constant += pretend_bytes + locate.size.constant;
4642 if (locate.size.var)
4643 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4645 else
4646 /* No stack slot was pushed for this parm. */
4647 stack_parm = 0;
4649 /* Update info on where next arg arrives in registers. */
4651 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4652 passed_type, named_arg);
4654 /* If we can't trust the parm stack slot to be aligned enough
4655 for its ultimate type, don't use that slot after entry.
4656 We'll make another stack slot, if we need one. */
4658 unsigned int thisparm_boundary
4659 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4661 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4662 stack_parm = 0;
4665 /* If parm was passed in memory, and we need to convert it on entry,
4666 don't store it back in that same slot. */
4667 if (entry_parm == stack_parm
4668 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4669 stack_parm = 0;
4671 /* When an argument is passed in multiple locations, we can't
4672 make use of this information, but we can save some copying if
4673 the whole argument is passed in a single register. */
4674 if (GET_CODE (entry_parm) == PARALLEL
4675 && nominal_mode != BLKmode && passed_mode != BLKmode)
4677 int i, len = XVECLEN (entry_parm, 0);
4679 for (i = 0; i < len; i++)
4680 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4681 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4682 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4683 == passed_mode)
4684 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4686 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4687 DECL_INCOMING_RTL (parm) = entry_parm;
4688 break;
4692 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4693 in the mode in which it arrives.
4694 STACK_PARM is an RTX for a stack slot where the parameter can live
4695 during the function (in case we want to put it there).
4696 STACK_PARM is 0 if no stack slot was pushed for it.
4698 Now output code if necessary to convert ENTRY_PARM to
4699 the type in which this function declares it,
4700 and store that result in an appropriate place,
4701 which may be a pseudo reg, may be STACK_PARM,
4702 or may be a local stack slot if STACK_PARM is 0.
4704 Set DECL_RTL to that place. */
4706 if (nominal_mode == BLKmode
4707 #ifdef BLOCK_REG_PADDING
4708 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4709 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4710 #endif
4711 || GET_CODE (entry_parm) == PARALLEL)
4713 /* If a BLKmode arrives in registers, copy it to a stack slot.
4714 Handle calls that pass values in multiple non-contiguous
4715 locations. The Irix 6 ABI has examples of this. */
4716 if (GET_CODE (entry_parm) == REG
4717 || GET_CODE (entry_parm) == PARALLEL)
4719 int size = int_size_in_bytes (TREE_TYPE (parm));
4720 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4721 rtx mem;
4723 /* Note that we will be storing an integral number of words.
4724 So we have to be careful to ensure that we allocate an
4725 integral number of words. We do this below in the
4726 assign_stack_local if space was not allocated in the argument
4727 list. If it was, this will not work if PARM_BOUNDARY is not
4728 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4729 if it becomes a problem. */
4731 if (stack_parm == 0)
4733 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4734 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4735 set_mem_attributes (stack_parm, parm, 1);
4738 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4739 abort ();
4741 mem = validize_mem (stack_parm);
4743 /* Handle calls that pass values in multiple non-contiguous
4744 locations. The Irix 6 ABI has examples of this. */
4745 if (GET_CODE (entry_parm) == PARALLEL)
4746 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4748 else if (size == 0)
4751 /* If SIZE is that of a mode no bigger than a word, just use
4752 that mode's store operation. */
4753 else if (size <= UNITS_PER_WORD)
4755 enum machine_mode mode
4756 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4758 if (mode != BLKmode
4759 #ifdef BLOCK_REG_PADDING
4760 && (size == UNITS_PER_WORD
4761 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4762 != (BYTES_BIG_ENDIAN ? upward : downward)))
4763 #endif
4766 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4767 emit_move_insn (change_address (mem, mode, 0), reg);
4770 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4771 machine must be aligned to the left before storing
4772 to memory. Note that the previous test doesn't
4773 handle all cases (e.g. SIZE == 3). */
4774 else if (size != UNITS_PER_WORD
4775 #ifdef BLOCK_REG_PADDING
4776 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4777 == downward)
4778 #else
4779 && BYTES_BIG_ENDIAN
4780 #endif
4783 rtx tem, x;
4784 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4785 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4787 x = expand_binop (word_mode, ashl_optab, reg,
4788 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4789 tem = change_address (mem, word_mode, 0);
4790 emit_move_insn (tem, x);
4792 else
4793 move_block_from_reg (REGNO (entry_parm), mem,
4794 size_stored / UNITS_PER_WORD);
4796 else
4797 move_block_from_reg (REGNO (entry_parm), mem,
4798 size_stored / UNITS_PER_WORD);
4800 SET_DECL_RTL (parm, stack_parm);
4802 else if (! ((! optimize
4803 && ! DECL_REGISTER (parm))
4804 || TREE_SIDE_EFFECTS (parm)
4805 /* If -ffloat-store specified, don't put explicit
4806 float variables into registers. */
4807 || (flag_float_store
4808 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4809 /* Always assign pseudo to structure return or item passed
4810 by invisible reference. */
4811 || passed_pointer || parm == function_result_decl)
4813 /* Store the parm in a pseudoregister during the function, but we
4814 may need to do it in a wider mode. */
4816 rtx parmreg;
4817 unsigned int regno, regnoi = 0, regnor = 0;
4819 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4821 promoted_nominal_mode
4822 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4824 parmreg = gen_reg_rtx (promoted_nominal_mode);
4825 mark_user_reg (parmreg);
4827 /* If this was an item that we received a pointer to, set DECL_RTL
4828 appropriately. */
4829 if (passed_pointer)
4831 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4832 parmreg);
4833 set_mem_attributes (x, parm, 1);
4834 SET_DECL_RTL (parm, x);
4836 else
4838 SET_DECL_RTL (parm, parmreg);
4839 maybe_set_unchanging (DECL_RTL (parm), parm);
4842 /* Copy the value into the register. */
4843 if (nominal_mode != passed_mode
4844 || promoted_nominal_mode != promoted_mode)
4846 int save_tree_used;
4847 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4848 mode, by the caller. We now have to convert it to
4849 NOMINAL_MODE, if different. However, PARMREG may be in
4850 a different mode than NOMINAL_MODE if it is being stored
4851 promoted.
4853 If ENTRY_PARM is a hard register, it might be in a register
4854 not valid for operating in its mode (e.g., an odd-numbered
4855 register for a DFmode). In that case, moves are the only
4856 thing valid, so we can't do a convert from there. This
4857 occurs when the calling sequence allow such misaligned
4858 usages.
4860 In addition, the conversion may involve a call, which could
4861 clobber parameters which haven't been copied to pseudo
4862 registers yet. Therefore, we must first copy the parm to
4863 a pseudo reg here, and save the conversion until after all
4864 parameters have been moved. */
4866 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4868 emit_move_insn (tempreg, validize_mem (entry_parm));
4870 push_to_sequence (conversion_insns);
4871 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4873 if (GET_CODE (tempreg) == SUBREG
4874 && GET_MODE (tempreg) == nominal_mode
4875 && GET_CODE (SUBREG_REG (tempreg)) == REG
4876 && nominal_mode == passed_mode
4877 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4878 && GET_MODE_SIZE (GET_MODE (tempreg))
4879 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4881 /* The argument is already sign/zero extended, so note it
4882 into the subreg. */
4883 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4884 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4887 /* TREE_USED gets set erroneously during expand_assignment. */
4888 save_tree_used = TREE_USED (parm);
4889 expand_assignment (parm,
4890 make_tree (nominal_type, tempreg), 0);
4891 TREE_USED (parm) = save_tree_used;
4892 conversion_insns = get_insns ();
4893 did_conversion = 1;
4894 end_sequence ();
4896 else
4897 emit_move_insn (parmreg, validize_mem (entry_parm));
4899 /* If we were passed a pointer but the actual value
4900 can safely live in a register, put it in one. */
4901 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4902 /* If by-reference argument was promoted, demote it. */
4903 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4904 || ! ((! optimize
4905 && ! DECL_REGISTER (parm))
4906 || TREE_SIDE_EFFECTS (parm)
4907 /* If -ffloat-store specified, don't put explicit
4908 float variables into registers. */
4909 || (flag_float_store
4910 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4912 /* We can't use nominal_mode, because it will have been set to
4913 Pmode above. We must use the actual mode of the parm. */
4914 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4915 mark_user_reg (parmreg);
4916 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4918 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4919 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4920 push_to_sequence (conversion_insns);
4921 emit_move_insn (tempreg, DECL_RTL (parm));
4922 SET_DECL_RTL (parm,
4923 convert_to_mode (GET_MODE (parmreg),
4924 tempreg,
4925 unsigned_p));
4926 emit_move_insn (parmreg, DECL_RTL (parm));
4927 conversion_insns = get_insns();
4928 did_conversion = 1;
4929 end_sequence ();
4931 else
4932 emit_move_insn (parmreg, DECL_RTL (parm));
4933 SET_DECL_RTL (parm, parmreg);
4934 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4935 now the parm. */
4936 stack_parm = 0;
4938 #ifdef FUNCTION_ARG_CALLEE_COPIES
4939 /* If we are passed an arg by reference and it is our responsibility
4940 to make a copy, do it now.
4941 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4942 original argument, so we must recreate them in the call to
4943 FUNCTION_ARG_CALLEE_COPIES. */
4944 /* ??? Later add code to handle the case that if the argument isn't
4945 modified, don't do the copy. */
4947 else if (passed_pointer
4948 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4949 TYPE_MODE (DECL_ARG_TYPE (parm)),
4950 DECL_ARG_TYPE (parm),
4951 named_arg)
4952 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4954 rtx copy;
4955 tree type = DECL_ARG_TYPE (parm);
4957 /* This sequence may involve a library call perhaps clobbering
4958 registers that haven't been copied to pseudos yet. */
4960 push_to_sequence (conversion_insns);
4962 if (!COMPLETE_TYPE_P (type)
4963 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4964 /* This is a variable sized object. */
4965 copy = gen_rtx_MEM (BLKmode,
4966 allocate_dynamic_stack_space
4967 (expr_size (parm), NULL_RTX,
4968 TYPE_ALIGN (type)));
4969 else
4970 copy = assign_stack_temp (TYPE_MODE (type),
4971 int_size_in_bytes (type), 1);
4972 set_mem_attributes (copy, parm, 1);
4974 store_expr (parm, copy, 0);
4975 emit_move_insn (parmreg, XEXP (copy, 0));
4976 conversion_insns = get_insns ();
4977 did_conversion = 1;
4978 end_sequence ();
4980 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4982 /* In any case, record the parm's desired stack location
4983 in case we later discover it must live in the stack.
4985 If it is a COMPLEX value, store the stack location for both
4986 halves. */
4988 if (GET_CODE (parmreg) == CONCAT)
4989 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4990 else
4991 regno = REGNO (parmreg);
4993 if (regno >= max_parm_reg)
4995 rtx *new;
4996 int old_max_parm_reg = max_parm_reg;
4998 /* It's slow to expand this one register at a time,
4999 but it's also rare and we need max_parm_reg to be
5000 precisely correct. */
5001 max_parm_reg = regno + 1;
5002 new = ggc_realloc (parm_reg_stack_loc,
5003 max_parm_reg * sizeof (rtx));
5004 memset (new + old_max_parm_reg, 0,
5005 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5006 parm_reg_stack_loc = new;
5009 if (GET_CODE (parmreg) == CONCAT)
5011 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5013 regnor = REGNO (gen_realpart (submode, parmreg));
5014 regnoi = REGNO (gen_imagpart (submode, parmreg));
5016 if (stack_parm != 0)
5018 parm_reg_stack_loc[regnor]
5019 = gen_realpart (submode, stack_parm);
5020 parm_reg_stack_loc[regnoi]
5021 = gen_imagpart (submode, stack_parm);
5023 else
5025 parm_reg_stack_loc[regnor] = 0;
5026 parm_reg_stack_loc[regnoi] = 0;
5029 else
5030 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5032 /* Mark the register as eliminable if we did no conversion
5033 and it was copied from memory at a fixed offset,
5034 and the arg pointer was not copied to a pseudo-reg.
5035 If the arg pointer is a pseudo reg or the offset formed
5036 an invalid address, such memory-equivalences
5037 as we make here would screw up life analysis for it. */
5038 if (nominal_mode == passed_mode
5039 && ! did_conversion
5040 && stack_parm != 0
5041 && GET_CODE (stack_parm) == MEM
5042 && locate.offset.var == 0
5043 && reg_mentioned_p (virtual_incoming_args_rtx,
5044 XEXP (stack_parm, 0)))
5046 rtx linsn = get_last_insn ();
5047 rtx sinsn, set;
5049 /* Mark complex types separately. */
5050 if (GET_CODE (parmreg) == CONCAT)
5051 /* Scan backwards for the set of the real and
5052 imaginary parts. */
5053 for (sinsn = linsn; sinsn != 0;
5054 sinsn = prev_nonnote_insn (sinsn))
5056 set = single_set (sinsn);
5057 if (set != 0
5058 && SET_DEST (set) == regno_reg_rtx [regnoi])
5059 REG_NOTES (sinsn)
5060 = gen_rtx_EXPR_LIST (REG_EQUIV,
5061 parm_reg_stack_loc[regnoi],
5062 REG_NOTES (sinsn));
5063 else if (set != 0
5064 && SET_DEST (set) == regno_reg_rtx [regnor])
5065 REG_NOTES (sinsn)
5066 = gen_rtx_EXPR_LIST (REG_EQUIV,
5067 parm_reg_stack_loc[regnor],
5068 REG_NOTES (sinsn));
5070 else if ((set = single_set (linsn)) != 0
5071 && SET_DEST (set) == parmreg)
5072 REG_NOTES (linsn)
5073 = gen_rtx_EXPR_LIST (REG_EQUIV,
5074 stack_parm, REG_NOTES (linsn));
5077 /* For pointer data type, suggest pointer register. */
5078 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5079 mark_reg_pointer (parmreg,
5080 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5082 /* If something wants our address, try to use ADDRESSOF. */
5083 if (TREE_ADDRESSABLE (parm))
5085 /* If we end up putting something into the stack,
5086 fixup_var_refs_insns will need to make a pass over
5087 all the instructions. It looks through the pending
5088 sequences -- but it can't see the ones in the
5089 CONVERSION_INSNS, if they're not on the sequence
5090 stack. So, we go back to that sequence, just so that
5091 the fixups will happen. */
5092 push_to_sequence (conversion_insns);
5093 put_var_into_stack (parm, /*rescan=*/true);
5094 conversion_insns = get_insns ();
5095 end_sequence ();
5098 else
5100 /* Value must be stored in the stack slot STACK_PARM
5101 during function execution. */
5103 if (promoted_mode != nominal_mode)
5105 /* Conversion is required. */
5106 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5108 emit_move_insn (tempreg, validize_mem (entry_parm));
5110 push_to_sequence (conversion_insns);
5111 entry_parm = convert_to_mode (nominal_mode, tempreg,
5112 TREE_UNSIGNED (TREE_TYPE (parm)));
5113 if (stack_parm)
5114 /* ??? This may need a big-endian conversion on sparc64. */
5115 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5117 conversion_insns = get_insns ();
5118 did_conversion = 1;
5119 end_sequence ();
5122 if (entry_parm != stack_parm)
5124 if (stack_parm == 0)
5126 stack_parm
5127 = assign_stack_local (GET_MODE (entry_parm),
5128 GET_MODE_SIZE (GET_MODE (entry_parm)),
5130 set_mem_attributes (stack_parm, parm, 1);
5133 if (promoted_mode != nominal_mode)
5135 push_to_sequence (conversion_insns);
5136 emit_move_insn (validize_mem (stack_parm),
5137 validize_mem (entry_parm));
5138 conversion_insns = get_insns ();
5139 end_sequence ();
5141 else
5142 emit_move_insn (validize_mem (stack_parm),
5143 validize_mem (entry_parm));
5146 SET_DECL_RTL (parm, stack_parm);
5150 if (SPLIT_COMPLEX_ARGS && fnargs != orig_fnargs)
5152 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5154 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE)
5156 SET_DECL_RTL (parm,
5157 gen_rtx_CONCAT (DECL_MODE (parm),
5158 DECL_RTL (fnargs),
5159 DECL_RTL (TREE_CHAIN (fnargs))));
5160 DECL_INCOMING_RTL (parm)
5161 = gen_rtx_CONCAT (DECL_MODE (parm),
5162 DECL_INCOMING_RTL (fnargs),
5163 DECL_INCOMING_RTL (TREE_CHAIN (fnargs)));
5164 fnargs = TREE_CHAIN (fnargs);
5166 else
5168 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5169 DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
5171 fnargs = TREE_CHAIN (fnargs);
5175 /* Output all parameter conversion instructions (possibly including calls)
5176 now that all parameters have been copied out of hard registers. */
5177 emit_insn (conversion_insns);
5179 /* If we are receiving a struct value address as the first argument, set up
5180 the RTL for the function result. As this might require code to convert
5181 the transmitted address to Pmode, we do this here to ensure that possible
5182 preliminary conversions of the address have been emitted already. */
5183 if (function_result_decl)
5185 tree result = DECL_RESULT (fndecl);
5186 rtx addr = DECL_RTL (function_result_decl);
5187 rtx x;
5189 addr = convert_memory_address (Pmode, addr);
5190 x = gen_rtx_MEM (DECL_MODE (result), addr);
5191 set_mem_attributes (x, result, 1);
5192 SET_DECL_RTL (result, x);
5195 last_parm_insn = get_last_insn ();
5197 current_function_args_size = stack_args_size.constant;
5199 /* Adjust function incoming argument size for alignment and
5200 minimum length. */
5202 #ifdef REG_PARM_STACK_SPACE
5203 #ifndef MAYBE_REG_PARM_STACK_SPACE
5204 current_function_args_size = MAX (current_function_args_size,
5205 REG_PARM_STACK_SPACE (fndecl));
5206 #endif
5207 #endif
5209 current_function_args_size
5210 = ((current_function_args_size + STACK_BYTES - 1)
5211 / STACK_BYTES) * STACK_BYTES;
5213 #ifdef ARGS_GROW_DOWNWARD
5214 current_function_arg_offset_rtx
5215 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5216 : expand_expr (size_diffop (stack_args_size.var,
5217 size_int (-stack_args_size.constant)),
5218 NULL_RTX, VOIDmode, 0));
5219 #else
5220 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5221 #endif
5223 /* See how many bytes, if any, of its args a function should try to pop
5224 on return. */
5226 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5227 current_function_args_size);
5229 /* For stdarg.h function, save info about
5230 regs and stack space used by the named args. */
5232 current_function_args_info = args_so_far;
5234 /* Set the rtx used for the function return value. Put this in its
5235 own variable so any optimizers that need this information don't have
5236 to include tree.h. Do this here so it gets done when an inlined
5237 function gets output. */
5239 current_function_return_rtx
5240 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5241 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5243 /* If scalar return value was computed in a pseudo-reg, or was a named
5244 return value that got dumped to the stack, copy that to the hard
5245 return register. */
5246 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5248 tree decl_result = DECL_RESULT (fndecl);
5249 rtx decl_rtl = DECL_RTL (decl_result);
5251 if (REG_P (decl_rtl)
5252 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5253 : DECL_REGISTER (decl_result))
5255 rtx real_decl_rtl;
5257 #ifdef FUNCTION_OUTGOING_VALUE
5258 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5259 fndecl);
5260 #else
5261 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5262 fndecl);
5263 #endif
5264 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5265 /* The delay slot scheduler assumes that current_function_return_rtx
5266 holds the hard register containing the return value, not a
5267 temporary pseudo. */
5268 current_function_return_rtx = real_decl_rtl;
5273 /* If ARGS contains entries with complex types, split the entry into two
5274 entries of the component type. Return a new list of substitutions are
5275 needed, else the old list. */
5277 static tree
5278 split_complex_args (tree args)
5280 tree p;
5282 /* Before allocating memory, check for the common case of no complex. */
5283 for (p = args; p; p = TREE_CHAIN (p))
5284 if (TREE_CODE (TREE_TYPE (p)) == COMPLEX_TYPE)
5285 goto found;
5286 return args;
5288 found:
5289 args = copy_list (args);
5291 for (p = args; p; p = TREE_CHAIN (p))
5293 tree type = TREE_TYPE (p);
5294 if (TREE_CODE (type) == COMPLEX_TYPE)
5296 tree decl;
5297 tree subtype = TREE_TYPE (type);
5299 /* Rewrite the PARM_DECL's type with its component. */
5300 TREE_TYPE (p) = subtype;
5301 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5302 DECL_MODE (p) = VOIDmode;
5303 DECL_SIZE (p) = NULL;
5304 DECL_SIZE_UNIT (p) = NULL;
5305 layout_decl (p, 0);
5307 /* Build a second synthetic decl. */
5308 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5309 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5310 layout_decl (decl, 0);
5312 /* Splice it in; skip the new decl. */
5313 TREE_CHAIN (decl) = TREE_CHAIN (p);
5314 TREE_CHAIN (p) = decl;
5315 p = decl;
5319 return args;
5322 /* Indicate whether REGNO is an incoming argument to the current function
5323 that was promoted to a wider mode. If so, return the RTX for the
5324 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5325 that REGNO is promoted from and whether the promotion was signed or
5326 unsigned. */
5329 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5331 tree arg;
5333 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5334 arg = TREE_CHAIN (arg))
5335 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5336 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5337 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5339 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5340 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5342 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5343 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5344 && mode != DECL_MODE (arg))
5346 *pmode = DECL_MODE (arg);
5347 *punsignedp = unsignedp;
5348 return DECL_INCOMING_RTL (arg);
5352 return 0;
5356 /* Compute the size and offset from the start of the stacked arguments for a
5357 parm passed in mode PASSED_MODE and with type TYPE.
5359 INITIAL_OFFSET_PTR points to the current offset into the stacked
5360 arguments.
5362 The starting offset and size for this parm are returned in
5363 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5364 nonzero, the offset is that of stack slot, which is returned in
5365 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5366 padding required from the initial offset ptr to the stack slot.
5368 IN_REGS is nonzero if the argument will be passed in registers. It will
5369 never be set if REG_PARM_STACK_SPACE is not defined.
5371 FNDECL is the function in which the argument was defined.
5373 There are two types of rounding that are done. The first, controlled by
5374 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5375 list to be aligned to the specific boundary (in bits). This rounding
5376 affects the initial and starting offsets, but not the argument size.
5378 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5379 optionally rounds the size of the parm to PARM_BOUNDARY. The
5380 initial offset is not affected by this rounding, while the size always
5381 is and the starting offset may be. */
5383 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5384 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5385 callers pass in the total size of args so far as
5386 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5388 void
5389 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5390 int partial, tree fndecl ATTRIBUTE_UNUSED,
5391 struct args_size *initial_offset_ptr,
5392 struct locate_and_pad_arg_data *locate)
5394 tree sizetree;
5395 enum direction where_pad;
5396 int boundary;
5397 int reg_parm_stack_space = 0;
5398 int part_size_in_regs;
5400 #ifdef REG_PARM_STACK_SPACE
5401 #ifdef MAYBE_REG_PARM_STACK_SPACE
5402 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5403 #else
5404 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5405 #endif
5407 /* If we have found a stack parm before we reach the end of the
5408 area reserved for registers, skip that area. */
5409 if (! in_regs)
5411 if (reg_parm_stack_space > 0)
5413 if (initial_offset_ptr->var)
5415 initial_offset_ptr->var
5416 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5417 ssize_int (reg_parm_stack_space));
5418 initial_offset_ptr->constant = 0;
5420 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5421 initial_offset_ptr->constant = reg_parm_stack_space;
5424 #endif /* REG_PARM_STACK_SPACE */
5426 part_size_in_regs = 0;
5427 if (reg_parm_stack_space == 0)
5428 part_size_in_regs = ((partial * UNITS_PER_WORD)
5429 / (PARM_BOUNDARY / BITS_PER_UNIT)
5430 * (PARM_BOUNDARY / BITS_PER_UNIT));
5432 sizetree
5433 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5434 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5435 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5436 locate->where_pad = where_pad;
5438 #ifdef ARGS_GROW_DOWNWARD
5439 locate->slot_offset.constant = -initial_offset_ptr->constant;
5440 if (initial_offset_ptr->var)
5441 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5442 initial_offset_ptr->var);
5445 tree s2 = sizetree;
5446 if (where_pad != none
5447 && (!host_integerp (sizetree, 1)
5448 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5449 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5450 SUB_PARM_SIZE (locate->slot_offset, s2);
5453 locate->slot_offset.constant += part_size_in_regs;
5455 if (!in_regs
5456 #ifdef REG_PARM_STACK_SPACE
5457 || REG_PARM_STACK_SPACE (fndecl) > 0
5458 #endif
5460 pad_to_arg_alignment (&locate->slot_offset, boundary,
5461 &locate->alignment_pad);
5463 locate->size.constant = (-initial_offset_ptr->constant
5464 - locate->slot_offset.constant);
5465 if (initial_offset_ptr->var)
5466 locate->size.var = size_binop (MINUS_EXPR,
5467 size_binop (MINUS_EXPR,
5468 ssize_int (0),
5469 initial_offset_ptr->var),
5470 locate->slot_offset.var);
5472 /* Pad_below needs the pre-rounded size to know how much to pad
5473 below. */
5474 locate->offset = locate->slot_offset;
5475 if (where_pad == downward)
5476 pad_below (&locate->offset, passed_mode, sizetree);
5478 #else /* !ARGS_GROW_DOWNWARD */
5479 if (!in_regs
5480 #ifdef REG_PARM_STACK_SPACE
5481 || REG_PARM_STACK_SPACE (fndecl) > 0
5482 #endif
5484 pad_to_arg_alignment (initial_offset_ptr, boundary,
5485 &locate->alignment_pad);
5486 locate->slot_offset = *initial_offset_ptr;
5488 #ifdef PUSH_ROUNDING
5489 if (passed_mode != BLKmode)
5490 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5491 #endif
5493 /* Pad_below needs the pre-rounded size to know how much to pad below
5494 so this must be done before rounding up. */
5495 locate->offset = locate->slot_offset;
5496 if (where_pad == downward)
5497 pad_below (&locate->offset, passed_mode, sizetree);
5499 if (where_pad != none
5500 && (!host_integerp (sizetree, 1)
5501 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5502 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5504 ADD_PARM_SIZE (locate->size, sizetree);
5506 locate->size.constant -= part_size_in_regs;
5507 #endif /* ARGS_GROW_DOWNWARD */
5510 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5511 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5513 static void
5514 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5515 struct args_size *alignment_pad)
5517 tree save_var = NULL_TREE;
5518 HOST_WIDE_INT save_constant = 0;
5519 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5520 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
5522 #ifdef SPARC_STACK_BOUNDARY_HACK
5523 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
5524 higher than the real alignment of %sp. However, when it does this,
5525 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
5526 This is a temporary hack while the sparc port is fixed. */
5527 if (SPARC_STACK_BOUNDARY_HACK)
5528 sp_offset = 0;
5529 #endif
5531 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5533 save_var = offset_ptr->var;
5534 save_constant = offset_ptr->constant;
5537 alignment_pad->var = NULL_TREE;
5538 alignment_pad->constant = 0;
5540 if (boundary > BITS_PER_UNIT)
5542 if (offset_ptr->var)
5544 tree sp_offset_tree = ssize_int (sp_offset);
5545 tree offset = size_binop (PLUS_EXPR,
5546 ARGS_SIZE_TREE (*offset_ptr),
5547 sp_offset_tree);
5548 #ifdef ARGS_GROW_DOWNWARD
5549 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
5550 #else
5551 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
5552 #endif
5554 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
5555 /* ARGS_SIZE_TREE includes constant term. */
5556 offset_ptr->constant = 0;
5557 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5558 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5559 save_var);
5561 else
5563 offset_ptr->constant = -sp_offset +
5564 #ifdef ARGS_GROW_DOWNWARD
5565 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5566 #else
5567 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5568 #endif
5569 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5570 alignment_pad->constant = offset_ptr->constant - save_constant;
5575 static void
5576 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5578 if (passed_mode != BLKmode)
5580 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5581 offset_ptr->constant
5582 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5583 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5584 - GET_MODE_SIZE (passed_mode));
5586 else
5588 if (TREE_CODE (sizetree) != INTEGER_CST
5589 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5591 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5592 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5593 /* Add it in. */
5594 ADD_PARM_SIZE (*offset_ptr, s2);
5595 SUB_PARM_SIZE (*offset_ptr, sizetree);
5600 /* Walk the tree of blocks describing the binding levels within a function
5601 and warn about uninitialized variables.
5602 This is done after calling flow_analysis and before global_alloc
5603 clobbers the pseudo-regs to hard regs. */
5605 void
5606 uninitialized_vars_warning (tree block)
5608 tree decl, sub;
5609 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5611 if (warn_uninitialized
5612 && TREE_CODE (decl) == VAR_DECL
5613 /* These warnings are unreliable for and aggregates
5614 because assigning the fields one by one can fail to convince
5615 flow.c that the entire aggregate was initialized.
5616 Unions are troublesome because members may be shorter. */
5617 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5618 && DECL_RTL (decl) != 0
5619 && GET_CODE (DECL_RTL (decl)) == REG
5620 /* Global optimizations can make it difficult to determine if a
5621 particular variable has been initialized. However, a VAR_DECL
5622 with a nonzero DECL_INITIAL had an initializer, so do not
5623 claim it is potentially uninitialized.
5625 When the DECL_INITIAL is NULL call the language hook to tell us
5626 if we want to warn. */
5627 && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
5628 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5629 warning ("%J'%D' might be used uninitialized in this function",
5630 decl, decl);
5631 if (extra_warnings
5632 && TREE_CODE (decl) == VAR_DECL
5633 && DECL_RTL (decl) != 0
5634 && GET_CODE (DECL_RTL (decl)) == REG
5635 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5636 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
5637 decl, decl);
5639 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5640 uninitialized_vars_warning (sub);
5643 /* Do the appropriate part of uninitialized_vars_warning
5644 but for arguments instead of local variables. */
5646 void
5647 setjmp_args_warning (void)
5649 tree decl;
5650 for (decl = DECL_ARGUMENTS (current_function_decl);
5651 decl; decl = TREE_CHAIN (decl))
5652 if (DECL_RTL (decl) != 0
5653 && GET_CODE (DECL_RTL (decl)) == REG
5654 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5655 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
5656 decl, decl);
5659 /* If this function call setjmp, put all vars into the stack
5660 unless they were declared `register'. */
5662 void
5663 setjmp_protect (tree block)
5665 tree decl, sub;
5666 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5667 if ((TREE_CODE (decl) == VAR_DECL
5668 || TREE_CODE (decl) == PARM_DECL)
5669 && DECL_RTL (decl) != 0
5670 && (GET_CODE (DECL_RTL (decl)) == REG
5671 || (GET_CODE (DECL_RTL (decl)) == MEM
5672 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5673 /* If this variable came from an inline function, it must be
5674 that its life doesn't overlap the setjmp. If there was a
5675 setjmp in the function, it would already be in memory. We
5676 must exclude such variable because their DECL_RTL might be
5677 set to strange things such as virtual_stack_vars_rtx. */
5678 && ! DECL_FROM_INLINE (decl)
5679 && (
5680 #ifdef NON_SAVING_SETJMP
5681 /* If longjmp doesn't restore the registers,
5682 don't put anything in them. */
5683 NON_SAVING_SETJMP
5685 #endif
5686 ! DECL_REGISTER (decl)))
5687 put_var_into_stack (decl, /*rescan=*/true);
5688 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5689 setjmp_protect (sub);
5692 /* Like the previous function, but for args instead of local variables. */
5694 void
5695 setjmp_protect_args (void)
5697 tree decl;
5698 for (decl = DECL_ARGUMENTS (current_function_decl);
5699 decl; decl = TREE_CHAIN (decl))
5700 if ((TREE_CODE (decl) == VAR_DECL
5701 || TREE_CODE (decl) == PARM_DECL)
5702 && DECL_RTL (decl) != 0
5703 && (GET_CODE (DECL_RTL (decl)) == REG
5704 || (GET_CODE (DECL_RTL (decl)) == MEM
5705 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5706 && (
5707 /* If longjmp doesn't restore the registers,
5708 don't put anything in them. */
5709 #ifdef NON_SAVING_SETJMP
5710 NON_SAVING_SETJMP
5712 #endif
5713 ! DECL_REGISTER (decl)))
5714 put_var_into_stack (decl, /*rescan=*/true);
5717 /* Return the context-pointer register corresponding to DECL,
5718 or 0 if it does not need one. */
5721 lookup_static_chain (tree decl)
5723 tree context = decl_function_context (decl);
5724 tree link;
5726 if (context == 0
5727 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5728 return 0;
5730 /* We treat inline_function_decl as an alias for the current function
5731 because that is the inline function whose vars, types, etc.
5732 are being merged into the current function.
5733 See expand_inline_function. */
5734 if (context == current_function_decl || context == inline_function_decl)
5735 return virtual_stack_vars_rtx;
5737 for (link = context_display; link; link = TREE_CHAIN (link))
5738 if (TREE_PURPOSE (link) == context)
5739 return RTL_EXPR_RTL (TREE_VALUE (link));
5741 abort ();
5744 /* Convert a stack slot address ADDR for variable VAR
5745 (from a containing function)
5746 into an address valid in this function (using a static chain). */
5749 fix_lexical_addr (rtx addr, tree var)
5751 rtx basereg;
5752 HOST_WIDE_INT displacement;
5753 tree context = decl_function_context (var);
5754 struct function *fp;
5755 rtx base = 0;
5757 /* If this is the present function, we need not do anything. */
5758 if (context == current_function_decl || context == inline_function_decl)
5759 return addr;
5761 fp = find_function_data (context);
5763 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5764 addr = XEXP (XEXP (addr, 0), 0);
5766 /* Decode given address as base reg plus displacement. */
5767 if (GET_CODE (addr) == REG)
5768 basereg = addr, displacement = 0;
5769 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5770 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5771 else
5772 abort ();
5774 /* We accept vars reached via the containing function's
5775 incoming arg pointer and via its stack variables pointer. */
5776 if (basereg == fp->internal_arg_pointer)
5778 /* If reached via arg pointer, get the arg pointer value
5779 out of that function's stack frame.
5781 There are two cases: If a separate ap is needed, allocate a
5782 slot in the outer function for it and dereference it that way.
5783 This is correct even if the real ap is actually a pseudo.
5784 Otherwise, just adjust the offset from the frame pointer to
5785 compensate. */
5787 #ifdef NEED_SEPARATE_AP
5788 rtx addr;
5790 addr = get_arg_pointer_save_area (fp);
5791 addr = fix_lexical_addr (XEXP (addr, 0), var);
5792 addr = memory_address (Pmode, addr);
5794 base = gen_rtx_MEM (Pmode, addr);
5795 set_mem_alias_set (base, get_frame_alias_set ());
5796 base = copy_to_reg (base);
5797 #else
5798 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5799 base = lookup_static_chain (var);
5800 #endif
5803 else if (basereg == virtual_stack_vars_rtx)
5805 /* This is the same code as lookup_static_chain, duplicated here to
5806 avoid an extra call to decl_function_context. */
5807 tree link;
5809 for (link = context_display; link; link = TREE_CHAIN (link))
5810 if (TREE_PURPOSE (link) == context)
5812 base = RTL_EXPR_RTL (TREE_VALUE (link));
5813 break;
5817 if (base == 0)
5818 abort ();
5820 /* Use same offset, relative to appropriate static chain or argument
5821 pointer. */
5822 return plus_constant (base, displacement);
5825 /* Return the address of the trampoline for entering nested fn FUNCTION.
5826 If necessary, allocate a trampoline (in the stack frame)
5827 and emit rtl to initialize its contents (at entry to this function). */
5830 trampoline_address (tree function)
5832 tree link;
5833 tree rtlexp;
5834 rtx tramp;
5835 struct function *fp;
5836 tree fn_context;
5838 /* Find an existing trampoline and return it. */
5839 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5840 if (TREE_PURPOSE (link) == function)
5841 return
5842 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5844 for (fp = outer_function_chain; fp; fp = fp->outer)
5845 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5846 if (TREE_PURPOSE (link) == function)
5848 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5849 function);
5850 return adjust_trampoline_addr (tramp);
5853 /* None exists; we must make one. */
5855 /* Find the `struct function' for the function containing FUNCTION. */
5856 fp = 0;
5857 fn_context = decl_function_context (function);
5858 if (fn_context != current_function_decl
5859 && fn_context != inline_function_decl)
5860 fp = find_function_data (fn_context);
5862 /* Allocate run-time space for this trampoline. */
5863 /* If rounding needed, allocate extra space
5864 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5865 #define TRAMPOLINE_REAL_SIZE \
5866 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5867 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5868 fp ? fp : cfun);
5869 /* Record the trampoline for reuse and note it for later initialization
5870 by expand_function_end. */
5871 if (fp != 0)
5873 rtlexp = make_node (RTL_EXPR);
5874 RTL_EXPR_RTL (rtlexp) = tramp;
5875 fp->x_trampoline_list = tree_cons (function, rtlexp,
5876 fp->x_trampoline_list);
5878 else
5880 /* Make the RTL_EXPR node temporary, not momentary, so that the
5881 trampoline_list doesn't become garbage. */
5882 rtlexp = make_node (RTL_EXPR);
5884 RTL_EXPR_RTL (rtlexp) = tramp;
5885 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5888 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5889 return adjust_trampoline_addr (tramp);
5892 /* Given a trampoline address,
5893 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5895 static rtx
5896 round_trampoline_addr (rtx tramp)
5898 /* Round address up to desired boundary. */
5899 rtx temp = gen_reg_rtx (Pmode);
5900 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5901 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5903 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5904 temp, 0, OPTAB_LIB_WIDEN);
5905 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5906 temp, 0, OPTAB_LIB_WIDEN);
5908 return tramp;
5911 /* Given a trampoline address, round it then apply any
5912 platform-specific adjustments so that the result can be used for a
5913 function call . */
5915 static rtx
5916 adjust_trampoline_addr (rtx tramp)
5918 tramp = round_trampoline_addr (tramp);
5919 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5920 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5921 #endif
5922 return tramp;
5925 /* Put all this function's BLOCK nodes including those that are chained
5926 onto the first block into a vector, and return it.
5927 Also store in each NOTE for the beginning or end of a block
5928 the index of that block in the vector.
5929 The arguments are BLOCK, the chain of top-level blocks of the function,
5930 and INSNS, the insn chain of the function. */
5932 void
5933 identify_blocks (void)
5935 int n_blocks;
5936 tree *block_vector, *last_block_vector;
5937 tree *block_stack;
5938 tree block = DECL_INITIAL (current_function_decl);
5940 if (block == 0)
5941 return;
5943 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5944 depth-first order. */
5945 block_vector = get_block_vector (block, &n_blocks);
5946 block_stack = xmalloc (n_blocks * sizeof (tree));
5948 last_block_vector = identify_blocks_1 (get_insns (),
5949 block_vector + 1,
5950 block_vector + n_blocks,
5951 block_stack);
5953 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5954 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5955 if (0 && last_block_vector != block_vector + n_blocks)
5956 abort ();
5958 free (block_vector);
5959 free (block_stack);
5962 /* Subroutine of identify_blocks. Do the block substitution on the
5963 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5965 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5966 BLOCK_VECTOR is incremented for each block seen. */
5968 static tree *
5969 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
5970 tree *orig_block_stack)
5972 rtx insn;
5973 tree *block_stack = orig_block_stack;
5975 for (insn = insns; insn; insn = NEXT_INSN (insn))
5977 if (GET_CODE (insn) == NOTE)
5979 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5981 tree b;
5983 /* If there are more block notes than BLOCKs, something
5984 is badly wrong. */
5985 if (block_vector == end_block_vector)
5986 abort ();
5988 b = *block_vector++;
5989 NOTE_BLOCK (insn) = b;
5990 *block_stack++ = b;
5992 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5994 /* If there are more NOTE_INSN_BLOCK_ENDs than
5995 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5996 if (block_stack == orig_block_stack)
5997 abort ();
5999 NOTE_BLOCK (insn) = *--block_stack;
6002 else if (GET_CODE (insn) == CALL_INSN
6003 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6005 rtx cp = PATTERN (insn);
6007 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
6008 end_block_vector, block_stack);
6009 if (XEXP (cp, 1))
6010 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
6011 end_block_vector, block_stack);
6012 if (XEXP (cp, 2))
6013 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
6014 end_block_vector, block_stack);
6018 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
6019 something is badly wrong. */
6020 if (block_stack != orig_block_stack)
6021 abort ();
6023 return block_vector;
6026 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
6027 and create duplicate blocks. */
6028 /* ??? Need an option to either create block fragments or to create
6029 abstract origin duplicates of a source block. It really depends
6030 on what optimization has been performed. */
6032 void
6033 reorder_blocks (void)
6035 tree block = DECL_INITIAL (current_function_decl);
6036 varray_type block_stack;
6038 if (block == NULL_TREE)
6039 return;
6041 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
6043 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6044 reorder_blocks_0 (block);
6046 /* Prune the old trees away, so that they don't get in the way. */
6047 BLOCK_SUBBLOCKS (block) = NULL_TREE;
6048 BLOCK_CHAIN (block) = NULL_TREE;
6050 /* Recreate the block tree from the note nesting. */
6051 reorder_blocks_1 (get_insns (), block, &block_stack);
6052 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6054 /* Remove deleted blocks from the block fragment chains. */
6055 reorder_fix_fragments (block);
6058 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
6060 static void
6061 reorder_blocks_0 (tree block)
6063 while (block)
6065 TREE_ASM_WRITTEN (block) = 0;
6066 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6067 block = BLOCK_CHAIN (block);
6071 static void
6072 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
6074 rtx insn;
6076 for (insn = insns; insn; insn = NEXT_INSN (insn))
6078 if (GET_CODE (insn) == NOTE)
6080 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6082 tree block = NOTE_BLOCK (insn);
6084 /* If we have seen this block before, that means it now
6085 spans multiple address regions. Create a new fragment. */
6086 if (TREE_ASM_WRITTEN (block))
6088 tree new_block = copy_node (block);
6089 tree origin;
6091 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6092 ? BLOCK_FRAGMENT_ORIGIN (block)
6093 : block);
6094 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6095 BLOCK_FRAGMENT_CHAIN (new_block)
6096 = BLOCK_FRAGMENT_CHAIN (origin);
6097 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6099 NOTE_BLOCK (insn) = new_block;
6100 block = new_block;
6103 BLOCK_SUBBLOCKS (block) = 0;
6104 TREE_ASM_WRITTEN (block) = 1;
6105 /* When there's only one block for the entire function,
6106 current_block == block and we mustn't do this, it
6107 will cause infinite recursion. */
6108 if (block != current_block)
6110 BLOCK_SUPERCONTEXT (block) = current_block;
6111 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6112 BLOCK_SUBBLOCKS (current_block) = block;
6113 current_block = block;
6115 VARRAY_PUSH_TREE (*p_block_stack, block);
6117 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6119 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6120 VARRAY_POP (*p_block_stack);
6121 BLOCK_SUBBLOCKS (current_block)
6122 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6123 current_block = BLOCK_SUPERCONTEXT (current_block);
6126 else if (GET_CODE (insn) == CALL_INSN
6127 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6129 rtx cp = PATTERN (insn);
6130 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6131 if (XEXP (cp, 1))
6132 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6133 if (XEXP (cp, 2))
6134 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6139 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6140 appears in the block tree, select one of the fragments to become
6141 the new origin block. */
6143 static void
6144 reorder_fix_fragments (tree block)
6146 while (block)
6148 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6149 tree new_origin = NULL_TREE;
6151 if (dup_origin)
6153 if (! TREE_ASM_WRITTEN (dup_origin))
6155 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6157 /* Find the first of the remaining fragments. There must
6158 be at least one -- the current block. */
6159 while (! TREE_ASM_WRITTEN (new_origin))
6160 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6161 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6164 else if (! dup_origin)
6165 new_origin = block;
6167 /* Re-root the rest of the fragments to the new origin. In the
6168 case that DUP_ORIGIN was null, that means BLOCK was the origin
6169 of a chain of fragments and we want to remove those fragments
6170 that didn't make it to the output. */
6171 if (new_origin)
6173 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6174 tree chain = *pp;
6176 while (chain)
6178 if (TREE_ASM_WRITTEN (chain))
6180 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6181 *pp = chain;
6182 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6184 chain = BLOCK_FRAGMENT_CHAIN (chain);
6186 *pp = NULL_TREE;
6189 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6190 block = BLOCK_CHAIN (block);
6194 /* Reverse the order of elements in the chain T of blocks,
6195 and return the new head of the chain (old last element). */
6197 static tree
6198 blocks_nreverse (tree t)
6200 tree prev = 0, decl, next;
6201 for (decl = t; decl; decl = next)
6203 next = BLOCK_CHAIN (decl);
6204 BLOCK_CHAIN (decl) = prev;
6205 prev = decl;
6207 return prev;
6210 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6211 non-NULL, list them all into VECTOR, in a depth-first preorder
6212 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6213 blocks. */
6215 static int
6216 all_blocks (tree block, tree *vector)
6218 int n_blocks = 0;
6220 while (block)
6222 TREE_ASM_WRITTEN (block) = 0;
6224 /* Record this block. */
6225 if (vector)
6226 vector[n_blocks] = block;
6228 ++n_blocks;
6230 /* Record the subblocks, and their subblocks... */
6231 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6232 vector ? vector + n_blocks : 0);
6233 block = BLOCK_CHAIN (block);
6236 return n_blocks;
6239 /* Return a vector containing all the blocks rooted at BLOCK. The
6240 number of elements in the vector is stored in N_BLOCKS_P. The
6241 vector is dynamically allocated; it is the caller's responsibility
6242 to call `free' on the pointer returned. */
6244 static tree *
6245 get_block_vector (tree block, int *n_blocks_p)
6247 tree *block_vector;
6249 *n_blocks_p = all_blocks (block, NULL);
6250 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6251 all_blocks (block, block_vector);
6253 return block_vector;
6256 static GTY(()) int next_block_index = 2;
6258 /* Set BLOCK_NUMBER for all the blocks in FN. */
6260 void
6261 number_blocks (tree fn)
6263 int i;
6264 int n_blocks;
6265 tree *block_vector;
6267 /* For SDB and XCOFF debugging output, we start numbering the blocks
6268 from 1 within each function, rather than keeping a running
6269 count. */
6270 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6271 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6272 next_block_index = 1;
6273 #endif
6275 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6277 /* The top-level BLOCK isn't numbered at all. */
6278 for (i = 1; i < n_blocks; ++i)
6279 /* We number the blocks from two. */
6280 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6282 free (block_vector);
6284 return;
6287 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6289 tree
6290 debug_find_var_in_block_tree (tree var, tree block)
6292 tree t;
6294 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6295 if (t == var)
6296 return block;
6298 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6300 tree ret = debug_find_var_in_block_tree (var, t);
6301 if (ret)
6302 return ret;
6305 return NULL_TREE;
6308 /* Allocate a function structure for FNDECL and set its contents
6309 to the defaults. */
6311 void
6312 allocate_struct_function (tree fndecl)
6314 tree result;
6316 cfun = ggc_alloc_cleared (sizeof (struct function));
6318 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6320 cfun->stack_alignment_needed = STACK_BOUNDARY;
6321 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6323 current_function_funcdef_no = funcdef_no++;
6325 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6327 init_stmt_for_function ();
6328 init_eh_for_function ();
6329 init_emit ();
6330 init_expr ();
6331 init_varasm_status (cfun);
6333 (*lang_hooks.function.init) (cfun);
6334 if (init_machine_status)
6335 cfun->machine = (*init_machine_status) ();
6337 if (fndecl == NULL)
6338 return;
6340 DECL_SAVED_INSNS (fndecl) = cfun;
6341 cfun->decl = fndecl;
6343 current_function_name = (*lang_hooks.decl_printable_name) (fndecl, 2);
6345 result = DECL_RESULT (fndecl);
6346 if (aggregate_value_p (result, fndecl))
6348 #ifdef PCC_STATIC_STRUCT_RETURN
6349 current_function_returns_pcc_struct = 1;
6350 #endif
6351 current_function_returns_struct = 1;
6354 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6356 current_function_needs_context
6357 = (decl_function_context (current_function_decl) != 0
6358 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6361 /* Reset cfun, and other non-struct-function variables to defaults as
6362 appropriate for emitting rtl at the start of a function. */
6364 static void
6365 prepare_function_start (tree fndecl)
6367 if (fndecl && DECL_SAVED_INSNS (fndecl))
6368 cfun = DECL_SAVED_INSNS (fndecl);
6369 else
6370 allocate_struct_function (fndecl);
6372 cse_not_expected = ! optimize;
6374 /* Caller save not needed yet. */
6375 caller_save_needed = 0;
6377 /* We haven't done register allocation yet. */
6378 reg_renumber = 0;
6380 /* Indicate that we need to distinguish between the return value of the
6381 present function and the return value of a function being called. */
6382 rtx_equal_function_value_matters = 1;
6384 /* Indicate that we have not instantiated virtual registers yet. */
6385 virtuals_instantiated = 0;
6387 /* Indicate that we want CONCATs now. */
6388 generating_concat_p = 1;
6390 /* Indicate we have no need of a frame pointer yet. */
6391 frame_pointer_needed = 0;
6394 /* Initialize the rtl expansion mechanism so that we can do simple things
6395 like generate sequences. This is used to provide a context during global
6396 initialization of some passes. */
6397 void
6398 init_dummy_function_start (void)
6400 prepare_function_start (NULL);
6403 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6404 and initialize static variables for generating RTL for the statements
6405 of the function. */
6407 void
6408 init_function_start (tree subr)
6410 prepare_function_start (subr);
6412 /* Within function body, compute a type's size as soon it is laid out. */
6413 immediate_size_expand++;
6415 /* Prevent ever trying to delete the first instruction of a
6416 function. Also tell final how to output a linenum before the
6417 function prologue. Note linenums could be missing, e.g. when
6418 compiling a Java .class file. */
6419 if (DECL_SOURCE_LINE (subr))
6420 emit_line_note (DECL_SOURCE_LOCATION (subr));
6422 /* Make sure first insn is a note even if we don't want linenums.
6423 This makes sure the first insn will never be deleted.
6424 Also, final expects a note to appear there. */
6425 emit_note (NOTE_INSN_DELETED);
6427 /* Warn if this value is an aggregate type,
6428 regardless of which calling convention we are using for it. */
6429 if (warn_aggregate_return
6430 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6431 warning ("function returns an aggregate");
6434 /* Make sure all values used by the optimization passes have sane
6435 defaults. */
6436 void
6437 init_function_for_compilation (void)
6439 reg_renumber = 0;
6441 /* No prologue/epilogue insns yet. */
6442 VARRAY_GROW (prologue, 0);
6443 VARRAY_GROW (epilogue, 0);
6444 VARRAY_GROW (sibcall_epilogue, 0);
6447 /* Expand a call to __main at the beginning of a possible main function. */
6449 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6450 #undef HAS_INIT_SECTION
6451 #define HAS_INIT_SECTION
6452 #endif
6454 void
6455 expand_main_function (void)
6457 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6458 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6460 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6461 rtx tmp, seq;
6463 start_sequence ();
6464 /* Forcibly align the stack. */
6465 #ifdef STACK_GROWS_DOWNWARD
6466 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6467 stack_pointer_rtx, 1, OPTAB_WIDEN);
6468 #else
6469 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6470 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6471 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6472 stack_pointer_rtx, 1, OPTAB_WIDEN);
6473 #endif
6474 if (tmp != stack_pointer_rtx)
6475 emit_move_insn (stack_pointer_rtx, tmp);
6477 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6478 tmp = force_reg (Pmode, const0_rtx);
6479 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6480 seq = get_insns ();
6481 end_sequence ();
6483 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6484 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6485 break;
6486 if (tmp)
6487 emit_insn_before (seq, tmp);
6488 else
6489 emit_insn (seq);
6491 #endif
6493 #ifndef HAS_INIT_SECTION
6494 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6495 #endif
6498 /* The PENDING_SIZES represent the sizes of variable-sized types.
6499 Create RTL for the various sizes now (using temporary variables),
6500 so that we can refer to the sizes from the RTL we are generating
6501 for the current function. The PENDING_SIZES are a TREE_LIST. The
6502 TREE_VALUE of each node is a SAVE_EXPR. */
6504 void
6505 expand_pending_sizes (tree pending_sizes)
6507 tree tem;
6509 /* Evaluate now the sizes of any types declared among the arguments. */
6510 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6512 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6513 /* Flush the queue in case this parameter declaration has
6514 side-effects. */
6515 emit_queue ();
6519 /* Start the RTL for a new function, and set variables used for
6520 emitting RTL.
6521 SUBR is the FUNCTION_DECL node.
6522 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6523 the function's parameters, which must be run at any return statement. */
6525 void
6526 expand_function_start (tree subr, int parms_have_cleanups)
6528 tree tem;
6529 rtx last_ptr = NULL_RTX;
6531 /* Make sure volatile mem refs aren't considered
6532 valid operands of arithmetic insns. */
6533 init_recog_no_volatile ();
6535 current_function_instrument_entry_exit
6536 = (flag_instrument_function_entry_exit
6537 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6539 current_function_profile
6540 = (profile_flag
6541 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6543 current_function_limit_stack
6544 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6546 /* If function gets a static chain arg, store it in the stack frame.
6547 Do this first, so it gets the first stack slot offset. */
6548 if (current_function_needs_context)
6550 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6552 /* Delay copying static chain if it is not a register to avoid
6553 conflicts with regs used for parameters. */
6554 if (! SMALL_REGISTER_CLASSES
6555 || GET_CODE (static_chain_incoming_rtx) == REG)
6556 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6559 /* If the parameters of this function need cleaning up, get a label
6560 for the beginning of the code which executes those cleanups. This must
6561 be done before doing anything with return_label. */
6562 if (parms_have_cleanups)
6563 cleanup_label = gen_label_rtx ();
6564 else
6565 cleanup_label = 0;
6567 /* Make the label for return statements to jump to. Do not special
6568 case machines with special return instructions -- they will be
6569 handled later during jump, ifcvt, or epilogue creation. */
6570 return_label = gen_label_rtx ();
6572 /* Initialize rtx used to return the value. */
6573 /* Do this before assign_parms so that we copy the struct value address
6574 before any library calls that assign parms might generate. */
6576 /* Decide whether to return the value in memory or in a register. */
6577 if (aggregate_value_p (DECL_RESULT (subr), subr))
6579 /* Returning something that won't go in a register. */
6580 rtx value_address = 0;
6582 #ifdef PCC_STATIC_STRUCT_RETURN
6583 if (current_function_returns_pcc_struct)
6585 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6586 value_address = assemble_static_space (size);
6588 else
6589 #endif
6591 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6592 /* Expect to be passed the address of a place to store the value.
6593 If it is passed as an argument, assign_parms will take care of
6594 it. */
6595 if (sv)
6597 value_address = gen_reg_rtx (Pmode);
6598 emit_move_insn (value_address, sv);
6601 if (value_address)
6603 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6604 set_mem_attributes (x, DECL_RESULT (subr), 1);
6605 SET_DECL_RTL (DECL_RESULT (subr), x);
6608 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6609 /* If return mode is void, this decl rtl should not be used. */
6610 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6611 else
6613 /* Compute the return values into a pseudo reg, which we will copy
6614 into the true return register after the cleanups are done. */
6616 /* In order to figure out what mode to use for the pseudo, we
6617 figure out what the mode of the eventual return register will
6618 actually be, and use that. */
6619 rtx hard_reg
6620 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6621 subr, 1);
6623 /* Structures that are returned in registers are not aggregate_value_p,
6624 so we may see a PARALLEL or a REG. */
6625 if (REG_P (hard_reg))
6626 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6627 else if (GET_CODE (hard_reg) == PARALLEL)
6628 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6629 else
6630 abort ();
6632 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6633 result to the real return register(s). */
6634 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6637 /* Initialize rtx for parameters and local variables.
6638 In some cases this requires emitting insns. */
6640 assign_parms (subr);
6642 /* Copy the static chain now if it wasn't a register. The delay is to
6643 avoid conflicts with the parameter passing registers. */
6645 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6646 if (GET_CODE (static_chain_incoming_rtx) != REG)
6647 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6649 /* The following was moved from init_function_start.
6650 The move is supposed to make sdb output more accurate. */
6651 /* Indicate the beginning of the function body,
6652 as opposed to parm setup. */
6653 emit_note (NOTE_INSN_FUNCTION_BEG);
6655 if (GET_CODE (get_last_insn ()) != NOTE)
6656 emit_note (NOTE_INSN_DELETED);
6657 parm_birth_insn = get_last_insn ();
6659 context_display = 0;
6660 if (current_function_needs_context)
6662 /* Fetch static chain values for containing functions. */
6663 tem = decl_function_context (current_function_decl);
6664 /* Copy the static chain pointer into a pseudo. If we have
6665 small register classes, copy the value from memory if
6666 static_chain_incoming_rtx is a REG. */
6667 if (tem)
6669 /* If the static chain originally came in a register, put it back
6670 there, then move it out in the next insn. The reason for
6671 this peculiar code is to satisfy function integration. */
6672 if (SMALL_REGISTER_CLASSES
6673 && GET_CODE (static_chain_incoming_rtx) == REG)
6674 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6675 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6678 while (tem)
6680 tree rtlexp = make_node (RTL_EXPR);
6682 RTL_EXPR_RTL (rtlexp) = last_ptr;
6683 context_display = tree_cons (tem, rtlexp, context_display);
6684 tem = decl_function_context (tem);
6685 if (tem == 0)
6686 break;
6687 /* Chain thru stack frames, assuming pointer to next lexical frame
6688 is found at the place we always store it. */
6689 #ifdef FRAME_GROWS_DOWNWARD
6690 last_ptr = plus_constant (last_ptr,
6691 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6692 #endif
6693 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6694 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6695 last_ptr = copy_to_reg (last_ptr);
6697 /* If we are not optimizing, ensure that we know that this
6698 piece of context is live over the entire function. */
6699 if (! optimize)
6700 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6701 save_expr_regs);
6705 if (current_function_instrument_entry_exit)
6707 rtx fun = DECL_RTL (current_function_decl);
6708 if (GET_CODE (fun) == MEM)
6709 fun = XEXP (fun, 0);
6710 else
6711 abort ();
6712 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6713 2, fun, Pmode,
6714 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6716 hard_frame_pointer_rtx),
6717 Pmode);
6720 if (current_function_profile)
6722 #ifdef PROFILE_HOOK
6723 PROFILE_HOOK (current_function_funcdef_no);
6724 #endif
6727 /* After the display initializations is where the tail-recursion label
6728 should go, if we end up needing one. Ensure we have a NOTE here
6729 since some things (like trampolines) get placed before this. */
6730 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6732 /* Evaluate now the sizes of any types declared among the arguments. */
6733 expand_pending_sizes (nreverse (get_pending_sizes ()));
6735 /* Make sure there is a line number after the function entry setup code. */
6736 force_next_line_note ();
6739 /* Undo the effects of init_dummy_function_start. */
6740 void
6741 expand_dummy_function_end (void)
6743 /* End any sequences that failed to be closed due to syntax errors. */
6744 while (in_sequence_p ())
6745 end_sequence ();
6747 /* Outside function body, can't compute type's actual size
6748 until next function's body starts. */
6750 free_after_parsing (cfun);
6751 free_after_compilation (cfun);
6752 cfun = 0;
6755 /* Call DOIT for each hard register used as a return value from
6756 the current function. */
6758 void
6759 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6761 rtx outgoing = current_function_return_rtx;
6763 if (! outgoing)
6764 return;
6766 if (GET_CODE (outgoing) == REG)
6767 (*doit) (outgoing, arg);
6768 else if (GET_CODE (outgoing) == PARALLEL)
6770 int i;
6772 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6774 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6776 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6777 (*doit) (x, arg);
6782 static void
6783 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6785 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6788 void
6789 clobber_return_register (void)
6791 diddle_return_value (do_clobber_return_reg, NULL);
6793 /* In case we do use pseudo to return value, clobber it too. */
6794 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6796 tree decl_result = DECL_RESULT (current_function_decl);
6797 rtx decl_rtl = DECL_RTL (decl_result);
6798 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6800 do_clobber_return_reg (decl_rtl, NULL);
6805 static void
6806 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6808 emit_insn (gen_rtx_USE (VOIDmode, reg));
6811 void
6812 use_return_register (void)
6814 diddle_return_value (do_use_return_reg, NULL);
6817 static GTY(()) rtx initial_trampoline;
6819 /* Generate RTL for the end of the current function. */
6821 void
6822 expand_function_end (void)
6824 tree link;
6825 rtx clobber_after;
6827 finish_expr_for_function ();
6829 /* If arg_pointer_save_area was referenced only from a nested
6830 function, we will not have initialized it yet. Do that now. */
6831 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6832 get_arg_pointer_save_area (cfun);
6834 #ifdef NON_SAVING_SETJMP
6835 /* Don't put any variables in registers if we call setjmp
6836 on a machine that fails to restore the registers. */
6837 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6839 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6840 setjmp_protect (DECL_INITIAL (current_function_decl));
6842 setjmp_protect_args ();
6844 #endif
6846 /* Initialize any trampolines required by this function. */
6847 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6849 tree function = TREE_PURPOSE (link);
6850 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6851 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6852 #ifdef TRAMPOLINE_TEMPLATE
6853 rtx blktramp;
6854 #endif
6855 rtx seq;
6857 #ifdef TRAMPOLINE_TEMPLATE
6858 /* First make sure this compilation has a template for
6859 initializing trampolines. */
6860 if (initial_trampoline == 0)
6862 initial_trampoline
6863 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6864 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6866 #endif
6868 /* Generate insns to initialize the trampoline. */
6869 start_sequence ();
6870 tramp = round_trampoline_addr (XEXP (tramp, 0));
6871 #ifdef TRAMPOLINE_TEMPLATE
6872 blktramp = replace_equiv_address (initial_trampoline, tramp);
6873 emit_block_move (blktramp, initial_trampoline,
6874 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6875 #endif
6876 trampolines_created = 1;
6877 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6878 seq = get_insns ();
6879 end_sequence ();
6881 /* Put those insns at entry to the containing function (this one). */
6882 emit_insn_before (seq, tail_recursion_reentry);
6885 /* If we are doing stack checking and this function makes calls,
6886 do a stack probe at the start of the function to ensure we have enough
6887 space for another stack frame. */
6888 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6890 rtx insn, seq;
6892 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6893 if (GET_CODE (insn) == CALL_INSN)
6895 start_sequence ();
6896 probe_stack_range (STACK_CHECK_PROTECT,
6897 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6898 seq = get_insns ();
6899 end_sequence ();
6900 emit_insn_before (seq, tail_recursion_reentry);
6901 break;
6905 /* Possibly warn about unused parameters. */
6906 if (warn_unused_parameter)
6908 tree decl;
6910 for (decl = DECL_ARGUMENTS (current_function_decl);
6911 decl; decl = TREE_CHAIN (decl))
6912 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6913 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6914 warning ("%Junused parameter '%D'", decl, decl);
6917 /* Delete handlers for nonlocal gotos if nothing uses them. */
6918 if (nonlocal_goto_handler_slots != 0
6919 && ! current_function_has_nonlocal_label)
6920 delete_handlers ();
6922 /* End any sequences that failed to be closed due to syntax errors. */
6923 while (in_sequence_p ())
6924 end_sequence ();
6926 /* Outside function body, can't compute type's actual size
6927 until next function's body starts. */
6928 immediate_size_expand--;
6930 clear_pending_stack_adjust ();
6931 do_pending_stack_adjust ();
6933 /* Mark the end of the function body.
6934 If control reaches this insn, the function can drop through
6935 without returning a value. */
6936 emit_note (NOTE_INSN_FUNCTION_END);
6938 /* Must mark the last line number note in the function, so that the test
6939 coverage code can avoid counting the last line twice. This just tells
6940 the code to ignore the immediately following line note, since there
6941 already exists a copy of this note somewhere above. This line number
6942 note is still needed for debugging though, so we can't delete it. */
6943 if (flag_test_coverage)
6944 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
6946 /* Output a linenumber for the end of the function.
6947 SDB depends on this. */
6948 force_next_line_note ();
6949 emit_line_note (input_location);
6951 /* Before the return label (if any), clobber the return
6952 registers so that they are not propagated live to the rest of
6953 the function. This can only happen with functions that drop
6954 through; if there had been a return statement, there would
6955 have either been a return rtx, or a jump to the return label.
6957 We delay actual code generation after the current_function_value_rtx
6958 is computed. */
6959 clobber_after = get_last_insn ();
6961 /* Output the label for the actual return from the function,
6962 if one is expected. This happens either because a function epilogue
6963 is used instead of a return instruction, or because a return was done
6964 with a goto in order to run local cleanups, or because of pcc-style
6965 structure returning. */
6966 if (return_label)
6967 emit_label (return_label);
6969 if (current_function_instrument_entry_exit)
6971 rtx fun = DECL_RTL (current_function_decl);
6972 if (GET_CODE (fun) == MEM)
6973 fun = XEXP (fun, 0);
6974 else
6975 abort ();
6976 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6977 2, fun, Pmode,
6978 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6980 hard_frame_pointer_rtx),
6981 Pmode);
6984 /* Let except.c know where it should emit the call to unregister
6985 the function context for sjlj exceptions. */
6986 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6987 sjlj_emit_function_exit_after (get_last_insn ());
6989 /* If we had calls to alloca, and this machine needs
6990 an accurate stack pointer to exit the function,
6991 insert some code to save and restore the stack pointer. */
6992 #ifdef EXIT_IGNORE_STACK
6993 if (! EXIT_IGNORE_STACK)
6994 #endif
6995 if (current_function_calls_alloca)
6997 rtx tem = 0;
6999 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7000 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7003 /* If scalar return value was computed in a pseudo-reg, or was a named
7004 return value that got dumped to the stack, copy that to the hard
7005 return register. */
7006 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7008 tree decl_result = DECL_RESULT (current_function_decl);
7009 rtx decl_rtl = DECL_RTL (decl_result);
7011 if (REG_P (decl_rtl)
7012 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7013 : DECL_REGISTER (decl_result))
7015 rtx real_decl_rtl = current_function_return_rtx;
7017 /* This should be set in assign_parms. */
7018 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7019 abort ();
7021 /* If this is a BLKmode structure being returned in registers,
7022 then use the mode computed in expand_return. Note that if
7023 decl_rtl is memory, then its mode may have been changed,
7024 but that current_function_return_rtx has not. */
7025 if (GET_MODE (real_decl_rtl) == BLKmode)
7026 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7028 /* If a named return value dumped decl_return to memory, then
7029 we may need to re-do the PROMOTE_MODE signed/unsigned
7030 extension. */
7031 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7033 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7035 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
7036 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7037 &unsignedp, 1);
7039 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7041 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7043 /* If expand_function_start has created a PARALLEL for decl_rtl,
7044 move the result to the real return registers. Otherwise, do
7045 a group load from decl_rtl for a named return. */
7046 if (GET_CODE (decl_rtl) == PARALLEL)
7047 emit_group_move (real_decl_rtl, decl_rtl);
7048 else
7049 emit_group_load (real_decl_rtl, decl_rtl,
7050 TREE_TYPE (decl_result),
7051 int_size_in_bytes (TREE_TYPE (decl_result)));
7053 else
7054 emit_move_insn (real_decl_rtl, decl_rtl);
7058 /* If returning a structure, arrange to return the address of the value
7059 in a place where debuggers expect to find it.
7061 If returning a structure PCC style,
7062 the caller also depends on this value.
7063 And current_function_returns_pcc_struct is not necessarily set. */
7064 if (current_function_returns_struct
7065 || current_function_returns_pcc_struct)
7067 rtx value_address
7068 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7069 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7070 #ifdef FUNCTION_OUTGOING_VALUE
7071 rtx outgoing
7072 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7073 current_function_decl);
7074 #else
7075 rtx outgoing
7076 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7077 #endif
7079 /* Mark this as a function return value so integrate will delete the
7080 assignment and USE below when inlining this function. */
7081 REG_FUNCTION_VALUE_P (outgoing) = 1;
7083 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7084 value_address = convert_memory_address (GET_MODE (outgoing),
7085 value_address);
7087 emit_move_insn (outgoing, value_address);
7089 /* Show return register used to hold result (in this case the address
7090 of the result. */
7091 current_function_return_rtx = outgoing;
7094 /* If this is an implementation of throw, do what's necessary to
7095 communicate between __builtin_eh_return and the epilogue. */
7096 expand_eh_return ();
7098 /* Emit the actual code to clobber return register. */
7100 rtx seq, after;
7102 start_sequence ();
7103 clobber_return_register ();
7104 seq = get_insns ();
7105 end_sequence ();
7107 after = emit_insn_after (seq, clobber_after);
7109 if (clobber_after != after)
7110 cfun->x_clobber_return_insn = after;
7113 /* ??? This should no longer be necessary since stupid is no longer with
7114 us, but there are some parts of the compiler (eg reload_combine, and
7115 sh mach_dep_reorg) that still try and compute their own lifetime info
7116 instead of using the general framework. */
7117 use_return_register ();
7119 /* Fix up any gotos that jumped out to the outermost
7120 binding level of the function.
7121 Must follow emitting RETURN_LABEL. */
7123 /* If you have any cleanups to do at this point,
7124 and they need to create temporary variables,
7125 then you will lose. */
7126 expand_fixups (get_insns ());
7130 get_arg_pointer_save_area (struct function *f)
7132 rtx ret = f->x_arg_pointer_save_area;
7134 if (! ret)
7136 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7137 f->x_arg_pointer_save_area = ret;
7140 if (f == cfun && ! f->arg_pointer_save_area_init)
7142 rtx seq;
7144 /* Save the arg pointer at the beginning of the function. The
7145 generated stack slot may not be a valid memory address, so we
7146 have to check it and fix it if necessary. */
7147 start_sequence ();
7148 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7149 seq = get_insns ();
7150 end_sequence ();
7152 push_topmost_sequence ();
7153 emit_insn_after (seq, get_insns ());
7154 pop_topmost_sequence ();
7157 return ret;
7160 /* Extend a vector that records the INSN_UIDs of INSNS
7161 (a list of one or more insns). */
7163 static void
7164 record_insns (rtx insns, varray_type *vecp)
7166 int i, len;
7167 rtx tmp;
7169 tmp = insns;
7170 len = 0;
7171 while (tmp != NULL_RTX)
7173 len++;
7174 tmp = NEXT_INSN (tmp);
7177 i = VARRAY_SIZE (*vecp);
7178 VARRAY_GROW (*vecp, i + len);
7179 tmp = insns;
7180 while (tmp != NULL_RTX)
7182 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7183 i++;
7184 tmp = NEXT_INSN (tmp);
7188 /* Set the specified locator to the insn chain. */
7189 static void
7190 set_insn_locators (rtx insn, int loc)
7192 while (insn != NULL_RTX)
7194 if (INSN_P (insn))
7195 INSN_LOCATOR (insn) = loc;
7196 insn = NEXT_INSN (insn);
7200 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7201 be running after reorg, SEQUENCE rtl is possible. */
7203 static int
7204 contains (rtx insn, varray_type vec)
7206 int i, j;
7208 if (GET_CODE (insn) == INSN
7209 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7211 int count = 0;
7212 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7213 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7214 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7215 count++;
7216 return count;
7218 else
7220 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7221 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7222 return 1;
7224 return 0;
7228 prologue_epilogue_contains (rtx insn)
7230 if (contains (insn, prologue))
7231 return 1;
7232 if (contains (insn, epilogue))
7233 return 1;
7234 return 0;
7238 sibcall_epilogue_contains (rtx insn)
7240 if (sibcall_epilogue)
7241 return contains (insn, sibcall_epilogue);
7242 return 0;
7245 #ifdef HAVE_return
7246 /* Insert gen_return at the end of block BB. This also means updating
7247 block_for_insn appropriately. */
7249 static void
7250 emit_return_into_block (basic_block bb, rtx line_note)
7252 emit_jump_insn_after (gen_return (), bb->end);
7253 if (line_note)
7254 emit_note_copy_after (line_note, PREV_INSN (bb->end));
7256 #endif /* HAVE_return */
7258 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7260 /* These functions convert the epilogue into a variant that does not modify the
7261 stack pointer. This is used in cases where a function returns an object
7262 whose size is not known until it is computed. The called function leaves the
7263 object on the stack, leaves the stack depressed, and returns a pointer to
7264 the object.
7266 What we need to do is track all modifications and references to the stack
7267 pointer, deleting the modifications and changing the references to point to
7268 the location the stack pointer would have pointed to had the modifications
7269 taken place.
7271 These functions need to be portable so we need to make as few assumptions
7272 about the epilogue as we can. However, the epilogue basically contains
7273 three things: instructions to reset the stack pointer, instructions to
7274 reload registers, possibly including the frame pointer, and an
7275 instruction to return to the caller.
7277 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7278 We also make no attempt to validate the insns we make since if they are
7279 invalid, we probably can't do anything valid. The intent is that these
7280 routines get "smarter" as more and more machines start to use them and
7281 they try operating on different epilogues.
7283 We use the following structure to track what the part of the epilogue that
7284 we've already processed has done. We keep two copies of the SP equivalence,
7285 one for use during the insn we are processing and one for use in the next
7286 insn. The difference is because one part of a PARALLEL may adjust SP
7287 and the other may use it. */
7289 struct epi_info
7291 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7292 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7293 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7294 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7295 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7296 should be set to once we no longer need
7297 its value. */
7300 static void handle_epilogue_set (rtx, struct epi_info *);
7301 static void emit_equiv_load (struct epi_info *);
7303 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7304 no modifications to the stack pointer. Return the new list of insns. */
7306 static rtx
7307 keep_stack_depressed (rtx insns)
7309 int j;
7310 struct epi_info info;
7311 rtx insn, next;
7313 /* If the epilogue is just a single instruction, it ust be OK as is. */
7315 if (NEXT_INSN (insns) == NULL_RTX)
7316 return insns;
7318 /* Otherwise, start a sequence, initialize the information we have, and
7319 process all the insns we were given. */
7320 start_sequence ();
7322 info.sp_equiv_reg = stack_pointer_rtx;
7323 info.sp_offset = 0;
7324 info.equiv_reg_src = 0;
7326 insn = insns;
7327 next = NULL_RTX;
7328 while (insn != NULL_RTX)
7330 next = NEXT_INSN (insn);
7332 if (!INSN_P (insn))
7334 add_insn (insn);
7335 insn = next;
7336 continue;
7339 /* If this insn references the register that SP is equivalent to and
7340 we have a pending load to that register, we must force out the load
7341 first and then indicate we no longer know what SP's equivalent is. */
7342 if (info.equiv_reg_src != 0
7343 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7345 emit_equiv_load (&info);
7346 info.sp_equiv_reg = 0;
7349 info.new_sp_equiv_reg = info.sp_equiv_reg;
7350 info.new_sp_offset = info.sp_offset;
7352 /* If this is a (RETURN) and the return address is on the stack,
7353 update the address and change to an indirect jump. */
7354 if (GET_CODE (PATTERN (insn)) == RETURN
7355 || (GET_CODE (PATTERN (insn)) == PARALLEL
7356 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7358 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7359 rtx base = 0;
7360 HOST_WIDE_INT offset = 0;
7361 rtx jump_insn, jump_set;
7363 /* If the return address is in a register, we can emit the insn
7364 unchanged. Otherwise, it must be a MEM and we see what the
7365 base register and offset are. In any case, we have to emit any
7366 pending load to the equivalent reg of SP, if any. */
7367 if (GET_CODE (retaddr) == REG)
7369 emit_equiv_load (&info);
7370 add_insn (insn);
7371 insn = next;
7372 continue;
7374 else if (GET_CODE (retaddr) == MEM
7375 && GET_CODE (XEXP (retaddr, 0)) == REG)
7376 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7377 else if (GET_CODE (retaddr) == MEM
7378 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7379 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7380 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7382 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7383 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7385 else
7386 abort ();
7388 /* If the base of the location containing the return pointer
7389 is SP, we must update it with the replacement address. Otherwise,
7390 just build the necessary MEM. */
7391 retaddr = plus_constant (base, offset);
7392 if (base == stack_pointer_rtx)
7393 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7394 plus_constant (info.sp_equiv_reg,
7395 info.sp_offset));
7397 retaddr = gen_rtx_MEM (Pmode, retaddr);
7399 /* If there is a pending load to the equivalent register for SP
7400 and we reference that register, we must load our address into
7401 a scratch register and then do that load. */
7402 if (info.equiv_reg_src
7403 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7405 unsigned int regno;
7406 rtx reg;
7408 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7409 if (HARD_REGNO_MODE_OK (regno, Pmode)
7410 && !fixed_regs[regno]
7411 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7412 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7413 regno)
7414 && !refers_to_regno_p (regno,
7415 regno + HARD_REGNO_NREGS (regno,
7416 Pmode),
7417 info.equiv_reg_src, NULL))
7418 break;
7420 if (regno == FIRST_PSEUDO_REGISTER)
7421 abort ();
7423 reg = gen_rtx_REG (Pmode, regno);
7424 emit_move_insn (reg, retaddr);
7425 retaddr = reg;
7428 emit_equiv_load (&info);
7429 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7431 /* Show the SET in the above insn is a RETURN. */
7432 jump_set = single_set (jump_insn);
7433 if (jump_set == 0)
7434 abort ();
7435 else
7436 SET_IS_RETURN_P (jump_set) = 1;
7439 /* If SP is not mentioned in the pattern and its equivalent register, if
7440 any, is not modified, just emit it. Otherwise, if neither is set,
7441 replace the reference to SP and emit the insn. If none of those are
7442 true, handle each SET individually. */
7443 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7444 && (info.sp_equiv_reg == stack_pointer_rtx
7445 || !reg_set_p (info.sp_equiv_reg, insn)))
7446 add_insn (insn);
7447 else if (! reg_set_p (stack_pointer_rtx, insn)
7448 && (info.sp_equiv_reg == stack_pointer_rtx
7449 || !reg_set_p (info.sp_equiv_reg, insn)))
7451 if (! validate_replace_rtx (stack_pointer_rtx,
7452 plus_constant (info.sp_equiv_reg,
7453 info.sp_offset),
7454 insn))
7455 abort ();
7457 add_insn (insn);
7459 else if (GET_CODE (PATTERN (insn)) == SET)
7460 handle_epilogue_set (PATTERN (insn), &info);
7461 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7463 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7464 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7465 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7467 else
7468 add_insn (insn);
7470 info.sp_equiv_reg = info.new_sp_equiv_reg;
7471 info.sp_offset = info.new_sp_offset;
7473 insn = next;
7476 insns = get_insns ();
7477 end_sequence ();
7478 return insns;
7481 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7482 structure that contains information about what we've seen so far. We
7483 process this SET by either updating that data or by emitting one or
7484 more insns. */
7486 static void
7487 handle_epilogue_set (rtx set, struct epi_info *p)
7489 /* First handle the case where we are setting SP. Record what it is being
7490 set from. If unknown, abort. */
7491 if (reg_set_p (stack_pointer_rtx, set))
7493 if (SET_DEST (set) != stack_pointer_rtx)
7494 abort ();
7496 if (GET_CODE (SET_SRC (set)) == PLUS
7497 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7499 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7500 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7502 else
7503 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7505 /* If we are adjusting SP, we adjust from the old data. */
7506 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7508 p->new_sp_equiv_reg = p->sp_equiv_reg;
7509 p->new_sp_offset += p->sp_offset;
7512 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7513 abort ();
7515 return;
7518 /* Next handle the case where we are setting SP's equivalent register.
7519 If we already have a value to set it to, abort. We could update, but
7520 there seems little point in handling that case. Note that we have
7521 to allow for the case where we are setting the register set in
7522 the previous part of a PARALLEL inside a single insn. But use the
7523 old offset for any updates within this insn. */
7524 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7526 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7527 || p->equiv_reg_src != 0)
7528 abort ();
7529 else
7530 p->equiv_reg_src
7531 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7532 plus_constant (p->sp_equiv_reg,
7533 p->sp_offset));
7536 /* Otherwise, replace any references to SP in the insn to its new value
7537 and emit the insn. */
7538 else
7540 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7541 plus_constant (p->sp_equiv_reg,
7542 p->sp_offset));
7543 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7544 plus_constant (p->sp_equiv_reg,
7545 p->sp_offset));
7546 emit_insn (set);
7550 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7552 static void
7553 emit_equiv_load (struct epi_info *p)
7555 if (p->equiv_reg_src != 0)
7556 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7558 p->equiv_reg_src = 0;
7560 #endif
7562 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7563 this into place with notes indicating where the prologue ends and where
7564 the epilogue begins. Update the basic block information when possible. */
7566 void
7567 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7569 int inserted = 0;
7570 edge e;
7571 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7572 rtx seq;
7573 #endif
7574 #ifdef HAVE_prologue
7575 rtx prologue_end = NULL_RTX;
7576 #endif
7577 #if defined (HAVE_epilogue) || defined(HAVE_return)
7578 rtx epilogue_end = NULL_RTX;
7579 #endif
7581 #ifdef HAVE_prologue
7582 if (HAVE_prologue)
7584 start_sequence ();
7585 seq = gen_prologue ();
7586 emit_insn (seq);
7588 /* Retain a map of the prologue insns. */
7589 record_insns (seq, &prologue);
7590 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7592 seq = get_insns ();
7593 end_sequence ();
7594 set_insn_locators (seq, prologue_locator);
7596 /* Can't deal with multiple successors of the entry block
7597 at the moment. Function should always have at least one
7598 entry point. */
7599 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7600 abort ();
7602 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7603 inserted = 1;
7605 #endif
7607 /* If the exit block has no non-fake predecessors, we don't need
7608 an epilogue. */
7609 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7610 if ((e->flags & EDGE_FAKE) == 0)
7611 break;
7612 if (e == NULL)
7613 goto epilogue_done;
7615 #ifdef HAVE_return
7616 if (optimize && HAVE_return)
7618 /* If we're allowed to generate a simple return instruction,
7619 then by definition we don't need a full epilogue. Examine
7620 the block that falls through to EXIT. If it does not
7621 contain any code, examine its predecessors and try to
7622 emit (conditional) return instructions. */
7624 basic_block last;
7625 edge e_next;
7626 rtx label;
7628 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7629 if (e->flags & EDGE_FALLTHRU)
7630 break;
7631 if (e == NULL)
7632 goto epilogue_done;
7633 last = e->src;
7635 /* Verify that there are no active instructions in the last block. */
7636 label = last->end;
7637 while (label && GET_CODE (label) != CODE_LABEL)
7639 if (active_insn_p (label))
7640 break;
7641 label = PREV_INSN (label);
7644 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7646 rtx epilogue_line_note = NULL_RTX;
7648 /* Locate the line number associated with the closing brace,
7649 if we can find one. */
7650 for (seq = get_last_insn ();
7651 seq && ! active_insn_p (seq);
7652 seq = PREV_INSN (seq))
7653 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7655 epilogue_line_note = seq;
7656 break;
7659 for (e = last->pred; e; e = e_next)
7661 basic_block bb = e->src;
7662 rtx jump;
7664 e_next = e->pred_next;
7665 if (bb == ENTRY_BLOCK_PTR)
7666 continue;
7668 jump = bb->end;
7669 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7670 continue;
7672 /* If we have an unconditional jump, we can replace that
7673 with a simple return instruction. */
7674 if (simplejump_p (jump))
7676 emit_return_into_block (bb, epilogue_line_note);
7677 delete_insn (jump);
7680 /* If we have a conditional jump, we can try to replace
7681 that with a conditional return instruction. */
7682 else if (condjump_p (jump))
7684 if (! redirect_jump (jump, 0, 0))
7685 continue;
7687 /* If this block has only one successor, it both jumps
7688 and falls through to the fallthru block, so we can't
7689 delete the edge. */
7690 if (bb->succ->succ_next == NULL)
7691 continue;
7693 else
7694 continue;
7696 /* Fix up the CFG for the successful change we just made. */
7697 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7700 /* Emit a return insn for the exit fallthru block. Whether
7701 this is still reachable will be determined later. */
7703 emit_barrier_after (last->end);
7704 emit_return_into_block (last, epilogue_line_note);
7705 epilogue_end = last->end;
7706 last->succ->flags &= ~EDGE_FALLTHRU;
7707 goto epilogue_done;
7710 #endif
7711 #ifdef HAVE_epilogue
7712 if (HAVE_epilogue)
7714 /* Find the edge that falls through to EXIT. Other edges may exist
7715 due to RETURN instructions, but those don't need epilogues.
7716 There really shouldn't be a mixture -- either all should have
7717 been converted or none, however... */
7719 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7720 if (e->flags & EDGE_FALLTHRU)
7721 break;
7722 if (e == NULL)
7723 goto epilogue_done;
7725 start_sequence ();
7726 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7728 seq = gen_epilogue ();
7730 #ifdef INCOMING_RETURN_ADDR_RTX
7731 /* If this function returns with the stack depressed and we can support
7732 it, massage the epilogue to actually do that. */
7733 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7734 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7735 seq = keep_stack_depressed (seq);
7736 #endif
7738 emit_jump_insn (seq);
7740 /* Retain a map of the epilogue insns. */
7741 record_insns (seq, &epilogue);
7742 set_insn_locators (seq, epilogue_locator);
7744 seq = get_insns ();
7745 end_sequence ();
7747 insert_insn_on_edge (seq, e);
7748 inserted = 1;
7750 #endif
7751 epilogue_done:
7753 if (inserted)
7754 commit_edge_insertions ();
7756 #ifdef HAVE_sibcall_epilogue
7757 /* Emit sibling epilogues before any sibling call sites. */
7758 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7760 basic_block bb = e->src;
7761 rtx insn = bb->end;
7762 rtx i;
7763 rtx newinsn;
7765 if (GET_CODE (insn) != CALL_INSN
7766 || ! SIBLING_CALL_P (insn))
7767 continue;
7769 start_sequence ();
7770 emit_insn (gen_sibcall_epilogue ());
7771 seq = get_insns ();
7772 end_sequence ();
7774 /* Retain a map of the epilogue insns. Used in life analysis to
7775 avoid getting rid of sibcall epilogue insns. Do this before we
7776 actually emit the sequence. */
7777 record_insns (seq, &sibcall_epilogue);
7778 set_insn_locators (seq, epilogue_locator);
7780 i = PREV_INSN (insn);
7781 newinsn = emit_insn_before (seq, insn);
7783 #endif
7785 #ifdef HAVE_prologue
7786 if (prologue_end)
7788 rtx insn, prev;
7790 /* GDB handles `break f' by setting a breakpoint on the first
7791 line note after the prologue. Which means (1) that if
7792 there are line number notes before where we inserted the
7793 prologue we should move them, and (2) we should generate a
7794 note before the end of the first basic block, if there isn't
7795 one already there.
7797 ??? This behavior is completely broken when dealing with
7798 multiple entry functions. We simply place the note always
7799 into first basic block and let alternate entry points
7800 to be missed.
7803 for (insn = prologue_end; insn; insn = prev)
7805 prev = PREV_INSN (insn);
7806 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7808 /* Note that we cannot reorder the first insn in the
7809 chain, since rest_of_compilation relies on that
7810 remaining constant. */
7811 if (prev == NULL)
7812 break;
7813 reorder_insns (insn, insn, prologue_end);
7817 /* Find the last line number note in the first block. */
7818 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7819 insn != prologue_end && insn;
7820 insn = PREV_INSN (insn))
7821 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7822 break;
7824 /* If we didn't find one, make a copy of the first line number
7825 we run across. */
7826 if (! insn)
7828 for (insn = next_active_insn (prologue_end);
7829 insn;
7830 insn = PREV_INSN (insn))
7831 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7833 emit_note_copy_after (insn, prologue_end);
7834 break;
7838 #endif
7839 #ifdef HAVE_epilogue
7840 if (epilogue_end)
7842 rtx insn, next;
7844 /* Similarly, move any line notes that appear after the epilogue.
7845 There is no need, however, to be quite so anal about the existence
7846 of such a note. */
7847 for (insn = epilogue_end; insn; insn = next)
7849 next = NEXT_INSN (insn);
7850 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7851 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7854 #endif
7857 /* Reposition the prologue-end and epilogue-begin notes after instruction
7858 scheduling and delayed branch scheduling. */
7860 void
7861 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7863 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7864 rtx insn, last, note;
7865 int len;
7867 if ((len = VARRAY_SIZE (prologue)) > 0)
7869 last = 0, note = 0;
7871 /* Scan from the beginning until we reach the last prologue insn.
7872 We apparently can't depend on basic_block_{head,end} after
7873 reorg has run. */
7874 for (insn = f; insn; insn = NEXT_INSN (insn))
7876 if (GET_CODE (insn) == NOTE)
7878 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7879 note = insn;
7881 else if (contains (insn, prologue))
7883 last = insn;
7884 if (--len == 0)
7885 break;
7889 if (last)
7891 /* Find the prologue-end note if we haven't already, and
7892 move it to just after the last prologue insn. */
7893 if (note == 0)
7895 for (note = last; (note = NEXT_INSN (note));)
7896 if (GET_CODE (note) == NOTE
7897 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7898 break;
7901 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7902 if (GET_CODE (last) == CODE_LABEL)
7903 last = NEXT_INSN (last);
7904 reorder_insns (note, note, last);
7908 if ((len = VARRAY_SIZE (epilogue)) > 0)
7910 last = 0, note = 0;
7912 /* Scan from the end until we reach the first epilogue insn.
7913 We apparently can't depend on basic_block_{head,end} after
7914 reorg has run. */
7915 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7917 if (GET_CODE (insn) == NOTE)
7919 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7920 note = insn;
7922 else if (contains (insn, epilogue))
7924 last = insn;
7925 if (--len == 0)
7926 break;
7930 if (last)
7932 /* Find the epilogue-begin note if we haven't already, and
7933 move it to just before the first epilogue insn. */
7934 if (note == 0)
7936 for (note = insn; (note = PREV_INSN (note));)
7937 if (GET_CODE (note) == NOTE
7938 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7939 break;
7942 if (PREV_INSN (last) != note)
7943 reorder_insns (note, note, PREV_INSN (last));
7946 #endif /* HAVE_prologue or HAVE_epilogue */
7949 /* Called once, at initialization, to initialize function.c. */
7951 void
7952 init_function_once (void)
7954 VARRAY_INT_INIT (prologue, 0, "prologue");
7955 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7956 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7959 #include "gt-function.h"