Daily bump.
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob862f993f3b686aea7c493003a6657db982ba1129
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "diagnostic.h"
32 #include "intl.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "cfgloop.h"
36 #include "tree-pass.h"
37 #include "ggc.h"
38 #include "tree-chrec.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-data-ref.h"
41 #include "params.h"
42 #include "flags.h"
43 #include "toplev.h"
44 #include "tree-inline.h"
46 #define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
51 Analysis of number of iterations of an affine exit test.
55 /* Returns true if ARG is either NULL_TREE or constant zero. Unlike
56 integer_zerop, it does not care about overflow flags. */
58 bool
59 zero_p (tree arg)
61 if (!arg)
62 return true;
64 if (TREE_CODE (arg) != INTEGER_CST)
65 return false;
67 return (TREE_INT_CST_LOW (arg) == 0 && TREE_INT_CST_HIGH (arg) == 0);
70 /* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does
71 not care about overflow flags. */
73 static bool
74 nonzero_p (tree arg)
76 if (!arg)
77 return false;
79 if (TREE_CODE (arg) != INTEGER_CST)
80 return false;
82 return (TREE_INT_CST_LOW (arg) != 0 || TREE_INT_CST_HIGH (arg) != 0);
85 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
87 static tree
88 inverse (tree x, tree mask)
90 tree type = TREE_TYPE (x);
91 tree rslt;
92 unsigned ctr = tree_floor_log2 (mask);
94 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
96 unsigned HOST_WIDE_INT ix;
97 unsigned HOST_WIDE_INT imask;
98 unsigned HOST_WIDE_INT irslt = 1;
100 gcc_assert (cst_and_fits_in_hwi (x));
101 gcc_assert (cst_and_fits_in_hwi (mask));
103 ix = int_cst_value (x);
104 imask = int_cst_value (mask);
106 for (; ctr; ctr--)
108 irslt *= ix;
109 ix *= ix;
111 irslt &= imask;
113 rslt = build_int_cst_type (type, irslt);
115 else
117 rslt = build_int_cst (type, 1);
118 for (; ctr; ctr--)
120 rslt = int_const_binop (MULT_EXPR, rslt, x, 0);
121 x = int_const_binop (MULT_EXPR, x, x, 0);
123 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask, 0);
126 return rslt;
129 /* Determines number of iterations of loop whose ending condition
130 is IV <> FINAL. TYPE is the type of the iv. The number of
131 iterations is stored to NITER. NEVER_INFINITE is true if
132 we know that the exit must be taken eventually, i.e., that the IV
133 ever reaches the value FINAL (we derived this earlier, and possibly set
134 NITER->assumptions to make sure this is the case). */
136 static bool
137 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
138 struct tree_niter_desc *niter, bool never_infinite)
140 tree niter_type = unsigned_type_for (type);
141 tree s, c, d, bits, assumption, tmp, bound;
143 niter->control = *iv;
144 niter->bound = final;
145 niter->cmp = NE_EXPR;
147 /* Rearrange the terms so that we get inequality s * i <> c, with s
148 positive. Also cast everything to the unsigned type. */
149 if (tree_int_cst_sign_bit (iv->step))
151 s = fold_convert (niter_type,
152 fold_build1 (NEGATE_EXPR, type, iv->step));
153 c = fold_build2 (MINUS_EXPR, niter_type,
154 fold_convert (niter_type, iv->base),
155 fold_convert (niter_type, final));
157 else
159 s = fold_convert (niter_type, iv->step);
160 c = fold_build2 (MINUS_EXPR, niter_type,
161 fold_convert (niter_type, final),
162 fold_convert (niter_type, iv->base));
165 /* First the trivial cases -- when the step is 1. */
166 if (integer_onep (s))
168 niter->niter = c;
169 return true;
172 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
173 is infinite. Otherwise, the number of iterations is
174 (inverse(s/d) * (c/d)) mod (size of mode/d). */
175 bits = num_ending_zeros (s);
176 bound = build_low_bits_mask (niter_type,
177 (TYPE_PRECISION (niter_type)
178 - tree_low_cst (bits, 1)));
180 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
181 build_int_cst (niter_type, 1), bits);
182 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
184 if (!never_infinite)
186 /* If we cannot assume that the loop is not infinite, record the
187 assumptions for divisibility of c. */
188 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
189 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
190 assumption, build_int_cst (niter_type, 0));
191 if (!nonzero_p (assumption))
192 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
193 niter->assumptions, assumption);
196 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
197 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
198 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
199 return true;
202 /* Checks whether we can determine the final value of the control variable
203 of the loop with ending condition IV0 < IV1 (computed in TYPE).
204 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
205 of the step. The assumptions necessary to ensure that the computation
206 of the final value does not overflow are recorded in NITER. If we
207 find the final value, we adjust DELTA and return TRUE. Otherwise
208 we return false. */
210 static bool
211 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
212 struct tree_niter_desc *niter,
213 tree *delta, tree step)
215 tree niter_type = TREE_TYPE (step);
216 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
217 tree tmod;
218 tree assumption = boolean_true_node, bound, noloop;
220 if (TREE_CODE (mod) != INTEGER_CST)
221 return false;
222 if (nonzero_p (mod))
223 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
224 tmod = fold_convert (type, mod);
226 if (nonzero_p (iv0->step))
228 /* The final value of the iv is iv1->base + MOD, assuming that this
229 computation does not overflow, and that
230 iv0->base <= iv1->base + MOD. */
231 if (!iv1->no_overflow && !zero_p (mod))
233 bound = fold_build2 (MINUS_EXPR, type,
234 TYPE_MAX_VALUE (type), tmod);
235 assumption = fold_build2 (LE_EXPR, boolean_type_node,
236 iv1->base, bound);
237 if (zero_p (assumption))
238 return false;
240 noloop = fold_build2 (GT_EXPR, boolean_type_node,
241 iv0->base,
242 fold_build2 (PLUS_EXPR, type,
243 iv1->base, tmod));
245 else
247 /* The final value of the iv is iv0->base - MOD, assuming that this
248 computation does not overflow, and that
249 iv0->base - MOD <= iv1->base. */
250 if (!iv0->no_overflow && !zero_p (mod))
252 bound = fold_build2 (PLUS_EXPR, type,
253 TYPE_MIN_VALUE (type), tmod);
254 assumption = fold_build2 (GE_EXPR, boolean_type_node,
255 iv0->base, bound);
256 if (zero_p (assumption))
257 return false;
259 noloop = fold_build2 (GT_EXPR, boolean_type_node,
260 fold_build2 (MINUS_EXPR, type,
261 iv0->base, tmod),
262 iv1->base);
265 if (!nonzero_p (assumption))
266 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
267 niter->assumptions,
268 assumption);
269 if (!zero_p (noloop))
270 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
271 niter->may_be_zero,
272 noloop);
273 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
274 return true;
277 /* Add assertions to NITER that ensure that the control variable of the loop
278 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
279 are TYPE. Returns false if we can prove that there is an overflow, true
280 otherwise. STEP is the absolute value of the step. */
282 static bool
283 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
284 struct tree_niter_desc *niter, tree step)
286 tree bound, d, assumption, diff;
287 tree niter_type = TREE_TYPE (step);
289 if (nonzero_p (iv0->step))
291 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
292 if (iv0->no_overflow)
293 return true;
295 /* If iv0->base is a constant, we can determine the last value before
296 overflow precisely; otherwise we conservatively assume
297 MAX - STEP + 1. */
299 if (TREE_CODE (iv0->base) == INTEGER_CST)
301 d = fold_build2 (MINUS_EXPR, niter_type,
302 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
303 fold_convert (niter_type, iv0->base));
304 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
306 else
307 diff = fold_build2 (MINUS_EXPR, niter_type, step,
308 build_int_cst (niter_type, 1));
309 bound = fold_build2 (MINUS_EXPR, type,
310 TYPE_MAX_VALUE (type), fold_convert (type, diff));
311 assumption = fold_build2 (LE_EXPR, boolean_type_node,
312 iv1->base, bound);
314 else
316 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
317 if (iv1->no_overflow)
318 return true;
320 if (TREE_CODE (iv1->base) == INTEGER_CST)
322 d = fold_build2 (MINUS_EXPR, niter_type,
323 fold_convert (niter_type, iv1->base),
324 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
325 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
327 else
328 diff = fold_build2 (MINUS_EXPR, niter_type, step,
329 build_int_cst (niter_type, 1));
330 bound = fold_build2 (PLUS_EXPR, type,
331 TYPE_MIN_VALUE (type), fold_convert (type, diff));
332 assumption = fold_build2 (GE_EXPR, boolean_type_node,
333 iv0->base, bound);
336 if (zero_p (assumption))
337 return false;
338 if (!nonzero_p (assumption))
339 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
340 niter->assumptions, assumption);
342 iv0->no_overflow = true;
343 iv1->no_overflow = true;
344 return true;
347 /* Add an assumption to NITER that a loop whose ending condition
348 is IV0 < IV1 rolls. TYPE is the type of the control iv. */
350 static void
351 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
352 struct tree_niter_desc *niter)
354 tree assumption = boolean_true_node, bound, diff;
355 tree mbz, mbzl, mbzr;
357 if (nonzero_p (iv0->step))
359 diff = fold_build2 (MINUS_EXPR, type,
360 iv0->step, build_int_cst (type, 1));
362 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
363 0 address never belongs to any object, we can assume this for
364 pointers. */
365 if (!POINTER_TYPE_P (type))
367 bound = fold_build2 (PLUS_EXPR, type,
368 TYPE_MIN_VALUE (type), diff);
369 assumption = fold_build2 (GE_EXPR, boolean_type_node,
370 iv0->base, bound);
373 /* And then we can compute iv0->base - diff, and compare it with
374 iv1->base. */
375 mbzl = fold_build2 (MINUS_EXPR, type, iv0->base, diff);
376 mbzr = iv1->base;
378 else
380 diff = fold_build2 (PLUS_EXPR, type,
381 iv1->step, build_int_cst (type, 1));
383 if (!POINTER_TYPE_P (type))
385 bound = fold_build2 (PLUS_EXPR, type,
386 TYPE_MAX_VALUE (type), diff);
387 assumption = fold_build2 (LE_EXPR, boolean_type_node,
388 iv1->base, bound);
391 mbzl = iv0->base;
392 mbzr = fold_build2 (MINUS_EXPR, type, iv1->base, diff);
395 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
397 if (!nonzero_p (assumption))
398 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
399 niter->assumptions, assumption);
400 if (!zero_p (mbz))
401 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
402 niter->may_be_zero, mbz);
405 /* Determines number of iterations of loop whose ending condition
406 is IV0 < IV1. TYPE is the type of the iv. The number of
407 iterations is stored to NITER. */
409 static bool
410 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
411 struct tree_niter_desc *niter,
412 bool never_infinite ATTRIBUTE_UNUSED)
414 tree niter_type = unsigned_type_for (type);
415 tree delta, step, s;
417 if (nonzero_p (iv0->step))
419 niter->control = *iv0;
420 niter->cmp = LT_EXPR;
421 niter->bound = iv1->base;
423 else
425 niter->control = *iv1;
426 niter->cmp = GT_EXPR;
427 niter->bound = iv0->base;
430 delta = fold_build2 (MINUS_EXPR, niter_type,
431 fold_convert (niter_type, iv1->base),
432 fold_convert (niter_type, iv0->base));
434 /* First handle the special case that the step is +-1. */
435 if ((iv0->step && integer_onep (iv0->step)
436 && zero_p (iv1->step))
437 || (iv1->step && integer_all_onesp (iv1->step)
438 && zero_p (iv0->step)))
440 /* for (i = iv0->base; i < iv1->base; i++)
444 for (i = iv1->base; i > iv0->base; i--).
446 In both cases # of iterations is iv1->base - iv0->base, assuming that
447 iv1->base >= iv0->base. */
448 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
449 iv1->base, iv0->base);
450 niter->niter = delta;
451 return true;
454 if (nonzero_p (iv0->step))
455 step = fold_convert (niter_type, iv0->step);
456 else
457 step = fold_convert (niter_type,
458 fold_build1 (NEGATE_EXPR, type, iv1->step));
460 /* If we can determine the final value of the control iv exactly, we can
461 transform the condition to != comparison. In particular, this will be
462 the case if DELTA is constant. */
463 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step))
465 affine_iv zps;
467 zps.base = build_int_cst (niter_type, 0);
468 zps.step = step;
469 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
470 zps does not overflow. */
471 zps.no_overflow = true;
473 return number_of_iterations_ne (type, &zps, delta, niter, true);
476 /* Make sure that the control iv does not overflow. */
477 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
478 return false;
480 /* We determine the number of iterations as (delta + step - 1) / step. For
481 this to work, we must know that iv1->base >= iv0->base - step + 1,
482 otherwise the loop does not roll. */
483 assert_loop_rolls_lt (type, iv0, iv1, niter);
485 s = fold_build2 (MINUS_EXPR, niter_type,
486 step, build_int_cst (niter_type, 1));
487 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
488 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
489 return true;
492 /* Determines number of iterations of loop whose ending condition
493 is IV0 <= IV1. TYPE is the type of the iv. The number of
494 iterations is stored to NITER. NEVER_INFINITE is true if
495 we know that this condition must eventually become false (we derived this
496 earlier, and possibly set NITER->assumptions to make sure this
497 is the case). */
499 static bool
500 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
501 struct tree_niter_desc *niter, bool never_infinite)
503 tree assumption;
505 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
506 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
507 value of the type. This we must know anyway, since if it is
508 equal to this value, the loop rolls forever. */
510 if (!never_infinite)
512 if (nonzero_p (iv0->step))
513 assumption = fold_build2 (NE_EXPR, boolean_type_node,
514 iv1->base, TYPE_MAX_VALUE (type));
515 else
516 assumption = fold_build2 (NE_EXPR, boolean_type_node,
517 iv0->base, TYPE_MIN_VALUE (type));
519 if (zero_p (assumption))
520 return false;
521 if (!nonzero_p (assumption))
522 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
523 niter->assumptions, assumption);
526 if (nonzero_p (iv0->step))
527 iv1->base = fold_build2 (PLUS_EXPR, type,
528 iv1->base, build_int_cst (type, 1));
529 else
530 iv0->base = fold_build2 (MINUS_EXPR, type,
531 iv0->base, build_int_cst (type, 1));
532 return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
535 /* Determine the number of iterations according to condition (for staying
536 inside loop) which compares two induction variables using comparison
537 operator CODE. The induction variable on left side of the comparison
538 is IV0, the right-hand side is IV1. Both induction variables must have
539 type TYPE, which must be an integer or pointer type. The steps of the
540 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
542 ONLY_EXIT is true if we are sure this is the only way the loop could be
543 exited (including possibly non-returning function calls, exceptions, etc.)
544 -- in this case we can use the information whether the control induction
545 variables can overflow or not in a more efficient way.
547 The results (number of iterations and assumptions as described in
548 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
549 Returns false if it fails to determine number of iterations, true if it
550 was determined (possibly with some assumptions). */
552 static bool
553 number_of_iterations_cond (tree type, affine_iv *iv0, enum tree_code code,
554 affine_iv *iv1, struct tree_niter_desc *niter,
555 bool only_exit)
557 bool never_infinite;
559 /* The meaning of these assumptions is this:
560 if !assumptions
561 then the rest of information does not have to be valid
562 if may_be_zero then the loop does not roll, even if
563 niter != 0. */
564 niter->assumptions = boolean_true_node;
565 niter->may_be_zero = boolean_false_node;
566 niter->niter = NULL_TREE;
567 niter->additional_info = boolean_true_node;
569 niter->bound = NULL_TREE;
570 niter->cmp = ERROR_MARK;
572 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
573 the control variable is on lhs. */
574 if (code == GE_EXPR || code == GT_EXPR
575 || (code == NE_EXPR && zero_p (iv0->step)))
577 SWAP (iv0, iv1);
578 code = swap_tree_comparison (code);
581 if (!only_exit)
583 /* If this is not the only possible exit from the loop, the information
584 that the induction variables cannot overflow as derived from
585 signedness analysis cannot be relied upon. We use them e.g. in the
586 following way: given loop for (i = 0; i <= n; i++), if i is
587 signed, it cannot overflow, thus this loop is equivalent to
588 for (i = 0; i < n + 1; i++); however, if n == MAX, but the loop
589 is exited in some other way before i overflows, this transformation
590 is incorrect (the new loop exits immediately). */
591 iv0->no_overflow = false;
592 iv1->no_overflow = false;
595 if (POINTER_TYPE_P (type))
597 /* Comparison of pointers is undefined unless both iv0 and iv1 point
598 to the same object. If they do, the control variable cannot wrap
599 (as wrap around the bounds of memory will never return a pointer
600 that would be guaranteed to point to the same object, even if we
601 avoid undefined behavior by casting to size_t and back). The
602 restrictions on pointer arithmetics and comparisons of pointers
603 ensure that using the no-overflow assumptions is correct in this
604 case even if ONLY_EXIT is false. */
605 iv0->no_overflow = true;
606 iv1->no_overflow = true;
609 /* If the control induction variable does not overflow, the loop obviously
610 cannot be infinite. */
611 if (!zero_p (iv0->step) && iv0->no_overflow)
612 never_infinite = true;
613 else if (!zero_p (iv1->step) && iv1->no_overflow)
614 never_infinite = true;
615 else
616 never_infinite = false;
618 /* We can handle the case when neither of the sides of the comparison is
619 invariant, provided that the test is NE_EXPR. This rarely occurs in
620 practice, but it is simple enough to manage. */
621 if (!zero_p (iv0->step) && !zero_p (iv1->step))
623 if (code != NE_EXPR)
624 return false;
626 iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
627 iv0->step, iv1->step);
628 iv0->no_overflow = false;
629 iv1->step = NULL_TREE;
630 iv1->no_overflow = true;
633 /* If the result of the comparison is a constant, the loop is weird. More
634 precise handling would be possible, but the situation is not common enough
635 to waste time on it. */
636 if (zero_p (iv0->step) && zero_p (iv1->step))
637 return false;
639 /* Ignore loops of while (i-- < 10) type. */
640 if (code != NE_EXPR)
642 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
643 return false;
645 if (!zero_p (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
646 return false;
649 /* If the loop exits immediately, there is nothing to do. */
650 if (zero_p (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
652 niter->niter = build_int_cst (unsigned_type_for (type), 0);
653 return true;
656 /* OK, now we know we have a senseful loop. Handle several cases, depending
657 on what comparison operator is used. */
658 switch (code)
660 case NE_EXPR:
661 gcc_assert (zero_p (iv1->step));
662 return number_of_iterations_ne (type, iv0, iv1->base, niter, never_infinite);
663 case LT_EXPR:
664 return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
665 case LE_EXPR:
666 return number_of_iterations_le (type, iv0, iv1, niter, never_infinite);
667 default:
668 gcc_unreachable ();
672 /* Substitute NEW for OLD in EXPR and fold the result. */
674 static tree
675 simplify_replace_tree (tree expr, tree old, tree new)
677 unsigned i, n;
678 tree ret = NULL_TREE, e, se;
680 if (!expr)
681 return NULL_TREE;
683 if (expr == old
684 || operand_equal_p (expr, old, 0))
685 return unshare_expr (new);
687 if (!EXPR_P (expr))
688 return expr;
690 n = TREE_CODE_LENGTH (TREE_CODE (expr));
691 for (i = 0; i < n; i++)
693 e = TREE_OPERAND (expr, i);
694 se = simplify_replace_tree (e, old, new);
695 if (e == se)
696 continue;
698 if (!ret)
699 ret = copy_node (expr);
701 TREE_OPERAND (ret, i) = se;
704 return (ret ? fold (ret) : expr);
707 /* Expand definitions of ssa names in EXPR as long as they are simple
708 enough, and return the new expression. */
710 tree
711 expand_simple_operations (tree expr)
713 unsigned i, n;
714 tree ret = NULL_TREE, e, ee, stmt;
715 enum tree_code code;
717 if (expr == NULL_TREE)
718 return expr;
720 if (is_gimple_min_invariant (expr))
721 return expr;
723 code = TREE_CODE (expr);
724 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
726 n = TREE_CODE_LENGTH (code);
727 for (i = 0; i < n; i++)
729 e = TREE_OPERAND (expr, i);
730 ee = expand_simple_operations (e);
731 if (e == ee)
732 continue;
734 if (!ret)
735 ret = copy_node (expr);
737 TREE_OPERAND (ret, i) = ee;
740 return (ret ? fold (ret) : expr);
743 if (TREE_CODE (expr) != SSA_NAME)
744 return expr;
746 stmt = SSA_NAME_DEF_STMT (expr);
747 if (TREE_CODE (stmt) != MODIFY_EXPR)
748 return expr;
750 e = TREE_OPERAND (stmt, 1);
751 if (/* Casts are simple. */
752 TREE_CODE (e) != NOP_EXPR
753 && TREE_CODE (e) != CONVERT_EXPR
754 /* Copies are simple. */
755 && TREE_CODE (e) != SSA_NAME
756 /* Assignments of invariants are simple. */
757 && !is_gimple_min_invariant (e)
758 /* And increments and decrements by a constant are simple. */
759 && !((TREE_CODE (e) == PLUS_EXPR
760 || TREE_CODE (e) == MINUS_EXPR)
761 && is_gimple_min_invariant (TREE_OPERAND (e, 1))))
762 return expr;
764 return expand_simple_operations (e);
767 /* Tries to simplify EXPR using the condition COND. Returns the simplified
768 expression (or EXPR unchanged, if no simplification was possible). */
770 static tree
771 tree_simplify_using_condition_1 (tree cond, tree expr)
773 bool changed;
774 tree e, te, e0, e1, e2, notcond;
775 enum tree_code code = TREE_CODE (expr);
777 if (code == INTEGER_CST)
778 return expr;
780 if (code == TRUTH_OR_EXPR
781 || code == TRUTH_AND_EXPR
782 || code == COND_EXPR)
784 changed = false;
786 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
787 if (TREE_OPERAND (expr, 0) != e0)
788 changed = true;
790 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
791 if (TREE_OPERAND (expr, 1) != e1)
792 changed = true;
794 if (code == COND_EXPR)
796 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
797 if (TREE_OPERAND (expr, 2) != e2)
798 changed = true;
800 else
801 e2 = NULL_TREE;
803 if (changed)
805 if (code == COND_EXPR)
806 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
807 else
808 expr = fold_build2 (code, boolean_type_node, e0, e1);
811 return expr;
814 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
815 propagation, and vice versa. Fold does not handle this, since it is
816 considered too expensive. */
817 if (TREE_CODE (cond) == EQ_EXPR)
819 e0 = TREE_OPERAND (cond, 0);
820 e1 = TREE_OPERAND (cond, 1);
822 /* We know that e0 == e1. Check whether we cannot simplify expr
823 using this fact. */
824 e = simplify_replace_tree (expr, e0, e1);
825 if (zero_p (e) || nonzero_p (e))
826 return e;
828 e = simplify_replace_tree (expr, e1, e0);
829 if (zero_p (e) || nonzero_p (e))
830 return e;
832 if (TREE_CODE (expr) == EQ_EXPR)
834 e0 = TREE_OPERAND (expr, 0);
835 e1 = TREE_OPERAND (expr, 1);
837 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
838 e = simplify_replace_tree (cond, e0, e1);
839 if (zero_p (e))
840 return e;
841 e = simplify_replace_tree (cond, e1, e0);
842 if (zero_p (e))
843 return e;
845 if (TREE_CODE (expr) == NE_EXPR)
847 e0 = TREE_OPERAND (expr, 0);
848 e1 = TREE_OPERAND (expr, 1);
850 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
851 e = simplify_replace_tree (cond, e0, e1);
852 if (zero_p (e))
853 return boolean_true_node;
854 e = simplify_replace_tree (cond, e1, e0);
855 if (zero_p (e))
856 return boolean_true_node;
859 te = expand_simple_operations (expr);
861 /* Check whether COND ==> EXPR. */
862 notcond = invert_truthvalue (cond);
863 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
864 if (nonzero_p (e))
865 return e;
867 /* Check whether COND ==> not EXPR. */
868 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
869 if (e && zero_p (e))
870 return e;
872 return expr;
875 /* Tries to simplify EXPR using the condition COND. Returns the simplified
876 expression (or EXPR unchanged, if no simplification was possible).
877 Wrapper around tree_simplify_using_condition_1 that ensures that chains
878 of simple operations in definitions of ssa names in COND are expanded,
879 so that things like casts or incrementing the value of the bound before
880 the loop do not cause us to fail. */
882 static tree
883 tree_simplify_using_condition (tree cond, tree expr)
885 cond = expand_simple_operations (cond);
887 return tree_simplify_using_condition_1 (cond, expr);
890 /* The maximum number of dominator BBs we search for conditions
891 of loop header copies we use for simplifying a conditional
892 expression. */
893 #define MAX_DOMINATORS_TO_WALK 8
895 /* Tries to simplify EXPR using the conditions on entry to LOOP.
896 Record the conditions used for simplification to CONDS_USED.
897 Returns the simplified expression (or EXPR unchanged, if no
898 simplification was possible).*/
900 static tree
901 simplify_using_initial_conditions (struct loop *loop, tree expr,
902 tree *conds_used)
904 edge e;
905 basic_block bb;
906 tree exp, cond;
907 int cnt = 0;
909 if (TREE_CODE (expr) == INTEGER_CST)
910 return expr;
912 /* Limit walking the dominators to avoid quadraticness in
913 the number of BBs times the number of loops in degenerate
914 cases. */
915 for (bb = loop->header;
916 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
917 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
919 if (!single_pred_p (bb))
920 continue;
921 e = single_pred_edge (bb);
923 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
924 continue;
926 cond = COND_EXPR_COND (last_stmt (e->src));
927 if (e->flags & EDGE_FALSE_VALUE)
928 cond = invert_truthvalue (cond);
929 exp = tree_simplify_using_condition (cond, expr);
931 if (exp != expr)
932 *conds_used = fold_build2 (TRUTH_AND_EXPR,
933 boolean_type_node,
934 *conds_used,
935 cond);
937 expr = exp;
938 ++cnt;
941 return expr;
944 /* Tries to simplify EXPR using the evolutions of the loop invariants
945 in the superloops of LOOP. Returns the simplified expression
946 (or EXPR unchanged, if no simplification was possible). */
948 static tree
949 simplify_using_outer_evolutions (struct loop *loop, tree expr)
951 enum tree_code code = TREE_CODE (expr);
952 bool changed;
953 tree e, e0, e1, e2;
955 if (is_gimple_min_invariant (expr))
956 return expr;
958 if (code == TRUTH_OR_EXPR
959 || code == TRUTH_AND_EXPR
960 || code == COND_EXPR)
962 changed = false;
964 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
965 if (TREE_OPERAND (expr, 0) != e0)
966 changed = true;
968 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
969 if (TREE_OPERAND (expr, 1) != e1)
970 changed = true;
972 if (code == COND_EXPR)
974 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
975 if (TREE_OPERAND (expr, 2) != e2)
976 changed = true;
978 else
979 e2 = NULL_TREE;
981 if (changed)
983 if (code == COND_EXPR)
984 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
985 else
986 expr = fold_build2 (code, boolean_type_node, e0, e1);
989 return expr;
992 e = instantiate_parameters (loop, expr);
993 if (is_gimple_min_invariant (e))
994 return e;
996 return expr;
999 /* Returns true if EXIT is the only possible exit from LOOP. */
1001 static bool
1002 loop_only_exit_p (struct loop *loop, edge exit)
1004 basic_block *body;
1005 block_stmt_iterator bsi;
1006 unsigned i;
1007 tree call;
1009 if (exit != single_exit (loop))
1010 return false;
1012 body = get_loop_body (loop);
1013 for (i = 0; i < loop->num_nodes; i++)
1015 for (bsi = bsi_start (body[0]); !bsi_end_p (bsi); bsi_next (&bsi))
1017 call = get_call_expr_in (bsi_stmt (bsi));
1018 if (call && TREE_SIDE_EFFECTS (call))
1020 free (body);
1021 return false;
1026 free (body);
1027 return true;
1030 /* Stores description of number of iterations of LOOP derived from
1031 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1032 useful information could be derived (and fields of NITER has
1033 meaning described in comments at struct tree_niter_desc
1034 declaration), false otherwise. If WARN is true and
1035 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1036 potentially unsafe assumptions. */
1038 bool
1039 number_of_iterations_exit (struct loop *loop, edge exit,
1040 struct tree_niter_desc *niter,
1041 bool warn)
1043 tree stmt, cond, type;
1044 tree op0, op1;
1045 enum tree_code code;
1046 affine_iv iv0, iv1;
1048 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1049 return false;
1051 niter->assumptions = boolean_false_node;
1052 stmt = last_stmt (exit->src);
1053 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1054 return false;
1056 /* We want the condition for staying inside loop. */
1057 cond = COND_EXPR_COND (stmt);
1058 if (exit->flags & EDGE_TRUE_VALUE)
1059 cond = invert_truthvalue (cond);
1061 code = TREE_CODE (cond);
1062 switch (code)
1064 case GT_EXPR:
1065 case GE_EXPR:
1066 case NE_EXPR:
1067 case LT_EXPR:
1068 case LE_EXPR:
1069 break;
1071 default:
1072 return false;
1075 op0 = TREE_OPERAND (cond, 0);
1076 op1 = TREE_OPERAND (cond, 1);
1077 type = TREE_TYPE (op0);
1079 if (TREE_CODE (type) != INTEGER_TYPE
1080 && !POINTER_TYPE_P (type))
1081 return false;
1083 if (!simple_iv (loop, stmt, op0, &iv0, false))
1084 return false;
1085 if (!simple_iv (loop, stmt, op1, &iv1, false))
1086 return false;
1088 iv0.base = expand_simple_operations (iv0.base);
1089 iv1.base = expand_simple_operations (iv1.base);
1090 if (!number_of_iterations_cond (type, &iv0, code, &iv1, niter,
1091 loop_only_exit_p (loop, exit)))
1092 return false;
1094 if (optimize >= 3)
1096 niter->assumptions = simplify_using_outer_evolutions (loop,
1097 niter->assumptions);
1098 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1099 niter->may_be_zero);
1100 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1103 niter->additional_info = boolean_true_node;
1104 niter->assumptions
1105 = simplify_using_initial_conditions (loop,
1106 niter->assumptions,
1107 &niter->additional_info);
1108 niter->may_be_zero
1109 = simplify_using_initial_conditions (loop,
1110 niter->may_be_zero,
1111 &niter->additional_info);
1113 if (integer_onep (niter->assumptions))
1114 return true;
1116 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1117 But if we can prove that there is overflow or some other source of weird
1118 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1119 if (integer_zerop (niter->assumptions))
1120 return false;
1122 if (flag_unsafe_loop_optimizations)
1123 niter->assumptions = boolean_true_node;
1125 if (warn)
1127 const char *wording;
1128 location_t loc = EXPR_LOCATION (stmt);
1130 /* We can provide a more specific warning if one of the operator is
1131 constant and the other advances by +1 or -1. */
1132 if (!zero_p (iv1.step)
1133 ? (zero_p (iv0.step)
1134 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1135 : (iv0.step
1136 && (integer_onep (iv0.step) || integer_all_onesp (iv0.step))))
1137 wording =
1138 flag_unsafe_loop_optimizations
1139 ? N_("assuming that the loop is not infinite")
1140 : N_("cannot optimize possibly infinite loops");
1141 else
1142 wording =
1143 flag_unsafe_loop_optimizations
1144 ? N_("assuming that the loop counter does not overflow")
1145 : N_("cannot optimize loop, the loop counter may overflow");
1147 if (LOCATION_LINE (loc) > 0)
1148 warning (OPT_Wunsafe_loop_optimizations, "%H%s", &loc, gettext (wording));
1149 else
1150 warning (OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1153 return flag_unsafe_loop_optimizations;
1156 /* Try to determine the number of iterations of LOOP. If we succeed,
1157 expression giving number of iterations is returned and *EXIT is
1158 set to the edge from that the information is obtained. Otherwise
1159 chrec_dont_know is returned. */
1161 tree
1162 find_loop_niter (struct loop *loop, edge *exit)
1164 unsigned i;
1165 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1166 edge ex;
1167 tree niter = NULL_TREE, aniter;
1168 struct tree_niter_desc desc;
1170 *exit = NULL;
1171 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
1173 if (!just_once_each_iteration_p (loop, ex->src))
1174 continue;
1176 if (!number_of_iterations_exit (loop, ex, &desc, false))
1177 continue;
1179 if (nonzero_p (desc.may_be_zero))
1181 /* We exit in the first iteration through this exit.
1182 We won't find anything better. */
1183 niter = build_int_cst (unsigned_type_node, 0);
1184 *exit = ex;
1185 break;
1188 if (!zero_p (desc.may_be_zero))
1189 continue;
1191 aniter = desc.niter;
1193 if (!niter)
1195 /* Nothing recorded yet. */
1196 niter = aniter;
1197 *exit = ex;
1198 continue;
1201 /* Prefer constants, the lower the better. */
1202 if (TREE_CODE (aniter) != INTEGER_CST)
1203 continue;
1205 if (TREE_CODE (niter) != INTEGER_CST)
1207 niter = aniter;
1208 *exit = ex;
1209 continue;
1212 if (tree_int_cst_lt (aniter, niter))
1214 niter = aniter;
1215 *exit = ex;
1216 continue;
1219 VEC_free (edge, heap, exits);
1221 return niter ? niter : chrec_dont_know;
1226 Analysis of a number of iterations of a loop by a brute-force evaluation.
1230 /* Bound on the number of iterations we try to evaluate. */
1232 #define MAX_ITERATIONS_TO_TRACK \
1233 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
1235 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
1236 result by a chain of operations such that all but exactly one of their
1237 operands are constants. */
1239 static tree
1240 chain_of_csts_start (struct loop *loop, tree x)
1242 tree stmt = SSA_NAME_DEF_STMT (x);
1243 tree use;
1244 basic_block bb = bb_for_stmt (stmt);
1246 if (!bb
1247 || !flow_bb_inside_loop_p (loop, bb))
1248 return NULL_TREE;
1250 if (TREE_CODE (stmt) == PHI_NODE)
1252 if (bb == loop->header)
1253 return stmt;
1255 return NULL_TREE;
1258 if (TREE_CODE (stmt) != MODIFY_EXPR)
1259 return NULL_TREE;
1261 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
1262 return NULL_TREE;
1263 if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P)
1264 return NULL_TREE;
1266 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1267 if (use == NULL_USE_OPERAND_P)
1268 return NULL_TREE;
1270 return chain_of_csts_start (loop, use);
1273 /* Determines whether the expression X is derived from a result of a phi node
1274 in header of LOOP such that
1276 * the derivation of X consists only from operations with constants
1277 * the initial value of the phi node is constant
1278 * the value of the phi node in the next iteration can be derived from the
1279 value in the current iteration by a chain of operations with constants.
1281 If such phi node exists, it is returned. If X is a constant, X is returned
1282 unchanged. Otherwise NULL_TREE is returned. */
1284 static tree
1285 get_base_for (struct loop *loop, tree x)
1287 tree phi, init, next;
1289 if (is_gimple_min_invariant (x))
1290 return x;
1292 phi = chain_of_csts_start (loop, x);
1293 if (!phi)
1294 return NULL_TREE;
1296 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1297 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1299 if (TREE_CODE (next) != SSA_NAME)
1300 return NULL_TREE;
1302 if (!is_gimple_min_invariant (init))
1303 return NULL_TREE;
1305 if (chain_of_csts_start (loop, next) != phi)
1306 return NULL_TREE;
1308 return phi;
1311 /* Given an expression X, then
1313 * if X is NULL_TREE, we return the constant BASE.
1314 * otherwise X is a SSA name, whose value in the considered loop is derived
1315 by a chain of operations with constant from a result of a phi node in
1316 the header of the loop. Then we return value of X when the value of the
1317 result of this phi node is given by the constant BASE. */
1319 static tree
1320 get_val_for (tree x, tree base)
1322 tree stmt, nx, val;
1323 use_operand_p op;
1324 ssa_op_iter iter;
1326 gcc_assert (is_gimple_min_invariant (base));
1328 if (!x)
1329 return base;
1331 stmt = SSA_NAME_DEF_STMT (x);
1332 if (TREE_CODE (stmt) == PHI_NODE)
1333 return base;
1335 FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE)
1337 nx = USE_FROM_PTR (op);
1338 val = get_val_for (nx, base);
1339 SET_USE (op, val);
1340 val = fold (TREE_OPERAND (stmt, 1));
1341 SET_USE (op, nx);
1342 /* only iterate loop once. */
1343 return val;
1346 /* Should never reach here. */
1347 gcc_unreachable();
1350 /* Tries to count the number of iterations of LOOP till it exits by EXIT
1351 by brute force -- i.e. by determining the value of the operands of the
1352 condition at EXIT in first few iterations of the loop (assuming that
1353 these values are constant) and determining the first one in that the
1354 condition is not satisfied. Returns the constant giving the number
1355 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
1357 tree
1358 loop_niter_by_eval (struct loop *loop, edge exit)
1360 tree cond, cnd, acnd;
1361 tree op[2], val[2], next[2], aval[2], phi[2];
1362 unsigned i, j;
1363 enum tree_code cmp;
1365 cond = last_stmt (exit->src);
1366 if (!cond || TREE_CODE (cond) != COND_EXPR)
1367 return chrec_dont_know;
1369 cnd = COND_EXPR_COND (cond);
1370 if (exit->flags & EDGE_TRUE_VALUE)
1371 cnd = invert_truthvalue (cnd);
1373 cmp = TREE_CODE (cnd);
1374 switch (cmp)
1376 case EQ_EXPR:
1377 case NE_EXPR:
1378 case GT_EXPR:
1379 case GE_EXPR:
1380 case LT_EXPR:
1381 case LE_EXPR:
1382 for (j = 0; j < 2; j++)
1383 op[j] = TREE_OPERAND (cnd, j);
1384 break;
1386 default:
1387 return chrec_dont_know;
1390 for (j = 0; j < 2; j++)
1392 phi[j] = get_base_for (loop, op[j]);
1393 if (!phi[j])
1394 return chrec_dont_know;
1397 for (j = 0; j < 2; j++)
1399 if (TREE_CODE (phi[j]) == PHI_NODE)
1401 val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
1402 next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
1404 else
1406 val[j] = phi[j];
1407 next[j] = NULL_TREE;
1408 op[j] = NULL_TREE;
1412 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
1414 for (j = 0; j < 2; j++)
1415 aval[j] = get_val_for (op[j], val[j]);
1417 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
1418 if (acnd && zero_p (acnd))
1420 if (dump_file && (dump_flags & TDF_DETAILS))
1421 fprintf (dump_file,
1422 "Proved that loop %d iterates %d times using brute force.\n",
1423 loop->num, i);
1424 return build_int_cst (unsigned_type_node, i);
1427 for (j = 0; j < 2; j++)
1429 val[j] = get_val_for (next[j], val[j]);
1430 if (!is_gimple_min_invariant (val[j]))
1431 return chrec_dont_know;
1435 return chrec_dont_know;
1438 /* Finds the exit of the LOOP by that the loop exits after a constant
1439 number of iterations and stores the exit edge to *EXIT. The constant
1440 giving the number of iterations of LOOP is returned. The number of
1441 iterations is determined using loop_niter_by_eval (i.e. by brute force
1442 evaluation). If we are unable to find the exit for that loop_niter_by_eval
1443 determines the number of iterations, chrec_dont_know is returned. */
1445 tree
1446 find_loop_niter_by_eval (struct loop *loop, edge *exit)
1448 unsigned i;
1449 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1450 edge ex;
1451 tree niter = NULL_TREE, aniter;
1453 *exit = NULL;
1454 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
1456 if (!just_once_each_iteration_p (loop, ex->src))
1457 continue;
1459 aniter = loop_niter_by_eval (loop, ex);
1460 if (chrec_contains_undetermined (aniter))
1461 continue;
1463 if (niter
1464 && !tree_int_cst_lt (aniter, niter))
1465 continue;
1467 niter = aniter;
1468 *exit = ex;
1470 VEC_free (edge, heap, exits);
1472 return niter ? niter : chrec_dont_know;
1477 Analysis of upper bounds on number of iterations of a loop.
1481 /* Returns true if we can prove that COND ==> VAL >= 0. */
1483 static bool
1484 implies_nonnegative_p (tree cond, tree val)
1486 tree type = TREE_TYPE (val);
1487 tree compare;
1489 if (tree_expr_nonnegative_p (val))
1490 return true;
1492 if (nonzero_p (cond))
1493 return false;
1495 compare = fold_build2 (GE_EXPR,
1496 boolean_type_node, val, build_int_cst (type, 0));
1497 compare = tree_simplify_using_condition_1 (cond, compare);
1499 return nonzero_p (compare);
1502 /* Returns true if we can prove that COND ==> A >= B. */
1504 static bool
1505 implies_ge_p (tree cond, tree a, tree b)
1507 tree compare = fold_build2 (GE_EXPR, boolean_type_node, a, b);
1509 if (nonzero_p (compare))
1510 return true;
1512 if (nonzero_p (cond))
1513 return false;
1515 compare = tree_simplify_using_condition_1 (cond, compare);
1517 return nonzero_p (compare);
1520 /* Returns a constant upper bound on the value of expression VAL. VAL
1521 is considered to be unsigned. If its type is signed, its value must
1522 be nonnegative.
1524 The condition ADDITIONAL must be satisfied (for example, if VAL is
1525 "(unsigned) n" and ADDITIONAL is "n > 0", then we can derive that
1526 VAL is at most (unsigned) MAX_INT). */
1528 static double_int
1529 derive_constant_upper_bound (tree val, tree additional)
1531 tree type = TREE_TYPE (val);
1532 tree op0, op1, subtype, maxt;
1533 double_int bnd, max, mmax, cst;
1534 tree stmt;
1536 if (INTEGRAL_TYPE_P (type))
1537 maxt = TYPE_MAX_VALUE (type);
1538 else
1539 maxt = upper_bound_in_type (type, type);
1541 max = tree_to_double_int (maxt);
1543 switch (TREE_CODE (val))
1545 case INTEGER_CST:
1546 return tree_to_double_int (val);
1548 case NOP_EXPR:
1549 case CONVERT_EXPR:
1550 op0 = TREE_OPERAND (val, 0);
1551 subtype = TREE_TYPE (op0);
1552 if (!TYPE_UNSIGNED (subtype)
1553 /* If TYPE is also signed, the fact that VAL is nonnegative implies
1554 that OP0 is nonnegative. */
1555 && TYPE_UNSIGNED (type)
1556 && !implies_nonnegative_p (additional, op0))
1558 /* If we cannot prove that the casted expression is nonnegative,
1559 we cannot establish more useful upper bound than the precision
1560 of the type gives us. */
1561 return max;
1564 /* We now know that op0 is an nonnegative value. Try deriving an upper
1565 bound for it. */
1566 bnd = derive_constant_upper_bound (op0, additional);
1568 /* If the bound does not fit in TYPE, max. value of TYPE could be
1569 attained. */
1570 if (double_int_ucmp (max, bnd) < 0)
1571 return max;
1573 return bnd;
1575 case PLUS_EXPR:
1576 case MINUS_EXPR:
1577 op0 = TREE_OPERAND (val, 0);
1578 op1 = TREE_OPERAND (val, 1);
1580 if (TREE_CODE (op1) != INTEGER_CST
1581 || !implies_nonnegative_p (additional, op0))
1582 return max;
1584 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
1585 choose the most logical way how to treat this constant regardless
1586 of the signedness of the type. */
1587 cst = tree_to_double_int (op1);
1588 cst = double_int_sext (cst, TYPE_PRECISION (type));
1589 if (TREE_CODE (val) == PLUS_EXPR)
1590 cst = double_int_neg (cst);
1592 bnd = derive_constant_upper_bound (op0, additional);
1594 if (double_int_negative_p (cst))
1596 cst = double_int_neg (cst);
1597 /* Avoid CST == 0x80000... */
1598 if (double_int_negative_p (cst))
1599 return max;;
1601 /* OP0 + CST. We need to check that
1602 BND <= MAX (type) - CST. */
1604 mmax = double_int_add (max, double_int_neg (cst));
1605 if (double_int_ucmp (bnd, mmax) > 0)
1606 return max;
1608 return double_int_add (bnd, cst);
1610 else
1612 /* OP0 - CST, where CST >= 0.
1614 If TYPE is signed, we have already verified that OP0 >= 0, and we
1615 know that the result is nonnegative. This implies that
1616 VAL <= BND - CST.
1618 If TYPE is unsigned, we must additionally know that OP0 >= CST,
1619 otherwise the operation underflows.
1622 /* This should only happen if the type is unsigned; however, for
1623 programs that use overflowing signed arithmetics even with
1624 -fno-wrapv, this condition may also be true for signed values. */
1625 if (double_int_ucmp (bnd, cst) < 0)
1626 return max;
1628 if (TYPE_UNSIGNED (type)
1629 && !implies_ge_p (additional,
1630 op0, double_int_to_tree (type, cst)))
1631 return max;
1633 bnd = double_int_add (bnd, double_int_neg (cst));
1636 return bnd;
1638 case FLOOR_DIV_EXPR:
1639 case EXACT_DIV_EXPR:
1640 op0 = TREE_OPERAND (val, 0);
1641 op1 = TREE_OPERAND (val, 1);
1642 if (TREE_CODE (op1) != INTEGER_CST
1643 || tree_int_cst_sign_bit (op1))
1644 return max;
1646 bnd = derive_constant_upper_bound (op0, additional);
1647 return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
1649 case BIT_AND_EXPR:
1650 op1 = TREE_OPERAND (val, 1);
1651 if (TREE_CODE (op1) != INTEGER_CST
1652 || tree_int_cst_sign_bit (op1))
1653 return max;
1654 return tree_to_double_int (op1);
1656 case SSA_NAME:
1657 stmt = SSA_NAME_DEF_STMT (val);
1658 if (TREE_CODE (stmt) != MODIFY_EXPR
1659 || TREE_OPERAND (stmt, 0) != val)
1660 return max;
1661 return derive_constant_upper_bound (TREE_OPERAND (stmt, 1), additional);
1663 default:
1664 return max;
1668 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. The
1669 additional condition ADDITIONAL is recorded with the bound. IS_EXIT
1670 is true if the loop is exited immediately after STMT, and this exit
1671 is taken at last when the STMT is executed BOUND + 1 times.
1672 REALISTIC is true if the estimate comes from a reliable source
1673 (number of iterations analysis, or size of data accessed in the loop). */
1675 static void
1676 record_estimate (struct loop *loop, tree bound, tree additional, tree at_stmt,
1677 bool is_exit, bool realistic)
1679 struct nb_iter_bound *elt = xmalloc (sizeof (struct nb_iter_bound));
1680 double_int i_bound = derive_constant_upper_bound (bound, additional);
1682 if (dump_file && (dump_flags & TDF_DETAILS))
1684 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
1685 print_generic_expr (dump_file, at_stmt, TDF_SLIM);
1686 fprintf (dump_file, " is executed at most ");
1687 print_generic_expr (dump_file, bound, TDF_SLIM);
1688 fprintf (dump_file, " (bounded by ");
1689 dump_double_int (dump_file, i_bound, true);
1690 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
1693 elt->bound = i_bound;
1694 elt->stmt = at_stmt;
1695 elt->is_exit = is_exit;
1696 elt->realistic = realistic && TREE_CODE (bound) == INTEGER_CST;
1697 elt->next = loop->bounds;
1698 loop->bounds = elt;
1701 /* Record the estimate on number of iterations of LOOP based on the fact that
1702 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
1703 its values belong to the range <LOW, HIGH>. DATA_SIZE_BOUNDS_P is true if
1704 LOW and HIGH are derived from the size of data. */
1706 static void
1707 record_nonwrapping_iv (struct loop *loop, tree base, tree step, tree stmt,
1708 tree low, tree high, bool data_size_bounds_p)
1710 tree niter_bound, extreme, delta;
1711 tree type = TREE_TYPE (base), unsigned_type;
1713 if (TREE_CODE (step) != INTEGER_CST || zero_p (step))
1714 return;
1716 if (dump_file && (dump_flags & TDF_DETAILS))
1718 fprintf (dump_file, "Induction variable (");
1719 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
1720 fprintf (dump_file, ") ");
1721 print_generic_expr (dump_file, base, TDF_SLIM);
1722 fprintf (dump_file, " + ");
1723 print_generic_expr (dump_file, step, TDF_SLIM);
1724 fprintf (dump_file, " * iteration does not wrap in statement ");
1725 print_generic_expr (dump_file, stmt, TDF_SLIM);
1726 fprintf (dump_file, " in loop %d.\n", loop->num);
1729 unsigned_type = unsigned_type_for (type);
1730 base = fold_convert (unsigned_type, base);
1731 step = fold_convert (unsigned_type, step);
1733 if (tree_int_cst_sign_bit (step))
1735 extreme = fold_convert (unsigned_type, low);
1736 if (TREE_CODE (base) != INTEGER_CST)
1737 base = fold_convert (unsigned_type, high);
1738 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
1739 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
1741 else
1743 extreme = fold_convert (unsigned_type, high);
1744 if (TREE_CODE (base) != INTEGER_CST)
1745 base = fold_convert (unsigned_type, low);
1746 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
1749 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
1750 would get out of the range. */
1751 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
1752 record_estimate (loop, niter_bound, boolean_true_node, stmt,
1753 false, data_size_bounds_p);
1756 /* Initialize LOOP->ESTIMATED_NB_ITERATIONS with the lowest safe
1757 approximation of the number of iterations for LOOP. */
1759 static void
1760 compute_estimated_nb_iterations (struct loop *loop)
1762 struct nb_iter_bound *bound;
1764 gcc_assert (loop->estimate_state == EST_NOT_AVAILABLE);
1766 for (bound = loop->bounds; bound; bound = bound->next)
1768 if (!bound->realistic)
1769 continue;
1771 /* Update only when there is no previous estimation, or when the current
1772 estimation is smaller. */
1773 if (loop->estimate_state == EST_NOT_AVAILABLE
1774 || double_int_ucmp (bound->bound, loop->estimated_nb_iterations) < 0)
1776 loop->estimate_state = EST_AVAILABLE;
1777 loop->estimated_nb_iterations = bound->bound;
1782 /* Determine information about number of iterations a LOOP from the index
1783 IDX of a data reference accessed in STMT. Callback for for_each_index. */
1785 struct ilb_data
1787 struct loop *loop;
1788 tree stmt;
1791 static bool
1792 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
1794 struct ilb_data *data = dta;
1795 tree ev, init, step;
1796 tree low, high, type, next;
1797 bool sign;
1798 struct loop *loop = data->loop;
1800 if (TREE_CODE (base) != ARRAY_REF)
1801 return true;
1803 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
1804 init = initial_condition (ev);
1805 step = evolution_part_in_loop_num (ev, loop->num);
1807 if (!init
1808 || !step
1809 || TREE_CODE (step) != INTEGER_CST
1810 || zero_p (step)
1811 || tree_contains_chrecs (init, NULL)
1812 || chrec_contains_symbols_defined_in_loop (init, loop->num))
1813 return true;
1815 low = array_ref_low_bound (base);
1816 high = array_ref_up_bound (base);
1818 /* The case of nonconstant bounds could be handled, but it would be
1819 complicated. */
1820 if (TREE_CODE (low) != INTEGER_CST
1821 || !high
1822 || TREE_CODE (high) != INTEGER_CST)
1823 return true;
1824 sign = tree_int_cst_sign_bit (step);
1825 type = TREE_TYPE (step);
1827 /* In case the relevant bound of the array does not fit in type, or
1828 it does, but bound + step (in type) still belongs into the range of the
1829 array, the index may wrap and still stay within the range of the array
1830 (consider e.g. if the array is indexed by the full range of
1831 unsigned char).
1833 To make things simpler, we require both bounds to fit into type, although
1834 there are cases where this would not be strictly necessary. */
1835 if (!int_fits_type_p (high, type)
1836 || !int_fits_type_p (low, type))
1837 return true;
1838 low = fold_convert (type, low);
1839 high = fold_convert (type, high);
1841 if (sign)
1842 next = fold_binary (PLUS_EXPR, type, low, step);
1843 else
1844 next = fold_binary (PLUS_EXPR, type, high, step);
1846 if (tree_int_cst_compare (low, next) <= 0
1847 && tree_int_cst_compare (next, high) <= 0)
1848 return true;
1850 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true);
1851 return true;
1854 /* Determine information about number of iterations a LOOP from the bounds
1855 of arrays in the data reference REF accessed in STMT. */
1857 static void
1858 infer_loop_bounds_from_ref (struct loop *loop, tree stmt, tree ref)
1860 struct ilb_data data;
1862 data.loop = loop;
1863 data.stmt = stmt;
1864 for_each_index (&ref, idx_infer_loop_bounds, &data);
1867 /* Determine information about number of iterations of a LOOP from the way
1868 arrays are used in STMT. */
1870 static void
1871 infer_loop_bounds_from_array (struct loop *loop, tree stmt)
1873 tree call;
1875 if (TREE_CODE (stmt) == MODIFY_EXPR)
1877 tree op0 = TREE_OPERAND (stmt, 0);
1878 tree op1 = TREE_OPERAND (stmt, 1);
1880 /* For each memory access, analyze its access function
1881 and record a bound on the loop iteration domain. */
1882 if (REFERENCE_CLASS_P (op0))
1883 infer_loop_bounds_from_ref (loop, stmt, op0);
1885 if (REFERENCE_CLASS_P (op1))
1886 infer_loop_bounds_from_ref (loop, stmt, op1);
1890 call = get_call_expr_in (stmt);
1891 if (call)
1893 tree args;
1895 for (args = TREE_OPERAND (call, 1); args; args = TREE_CHAIN (args))
1896 if (REFERENCE_CLASS_P (TREE_VALUE (args)))
1897 infer_loop_bounds_from_ref (loop, stmt, TREE_VALUE (args));
1901 /* Determine information about number of iterations of a LOOP from the fact
1902 that signed arithmetics in STMT does not overflow. */
1904 static void
1905 infer_loop_bounds_from_signedness (struct loop *loop, tree stmt)
1907 tree def, base, step, scev, type, low, high;
1909 if (flag_wrapv || TREE_CODE (stmt) != MODIFY_EXPR)
1910 return;
1912 def = TREE_OPERAND (stmt, 0);
1914 if (TREE_CODE (def) != SSA_NAME)
1915 return;
1917 type = TREE_TYPE (def);
1918 if (!INTEGRAL_TYPE_P (type)
1919 || TYPE_UNSIGNED (type))
1920 return;
1922 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
1923 if (chrec_contains_undetermined (scev))
1924 return;
1926 base = initial_condition_in_loop_num (scev, loop->num);
1927 step = evolution_part_in_loop_num (scev, loop->num);
1929 if (!base || !step
1930 || TREE_CODE (step) != INTEGER_CST
1931 || tree_contains_chrecs (base, NULL)
1932 || chrec_contains_symbols_defined_in_loop (base, loop->num))
1933 return;
1935 low = lower_bound_in_type (type, type);
1936 high = upper_bound_in_type (type, type);
1938 record_nonwrapping_iv (loop, base, step, stmt, low, high, false);
1941 /* The following analyzers are extracting informations on the bounds
1942 of LOOP from the following undefined behaviors:
1944 - data references should not access elements over the statically
1945 allocated size,
1947 - signed variables should not overflow when flag_wrapv is not set.
1950 static void
1951 infer_loop_bounds_from_undefined (struct loop *loop)
1953 unsigned i;
1954 basic_block *bbs;
1955 block_stmt_iterator bsi;
1956 basic_block bb;
1958 bbs = get_loop_body (loop);
1960 for (i = 0; i < loop->num_nodes; i++)
1962 bb = bbs[i];
1964 /* If BB is not executed in each iteration of the loop, we cannot
1965 use it to infer any information about # of iterations of the loop. */
1966 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1967 continue;
1969 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1971 tree stmt = bsi_stmt (bsi);
1973 infer_loop_bounds_from_array (loop, stmt);
1974 infer_loop_bounds_from_signedness (loop, stmt);
1979 free (bbs);
1982 /* Records estimates on numbers of iterations of LOOP. */
1984 static void
1985 estimate_numbers_of_iterations_loop (struct loop *loop)
1987 VEC (edge, heap) *exits;
1988 tree niter, type;
1989 unsigned i;
1990 struct tree_niter_desc niter_desc;
1991 edge ex;
1993 /* Give up if we already have tried to compute an estimation. */
1994 if (loop->estimate_state != EST_NOT_COMPUTED)
1995 return;
1996 loop->estimate_state = EST_NOT_AVAILABLE;
1998 exits = get_loop_exit_edges (loop);
1999 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
2001 if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
2002 continue;
2004 niter = niter_desc.niter;
2005 type = TREE_TYPE (niter);
2006 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
2007 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
2008 build_int_cst (type, 0),
2009 niter);
2010 record_estimate (loop, niter,
2011 niter_desc.additional_info,
2012 last_stmt (ex->src),
2013 true, true);
2015 VEC_free (edge, heap, exits);
2017 infer_loop_bounds_from_undefined (loop);
2018 compute_estimated_nb_iterations (loop);
2021 /* Records estimates on numbers of iterations of loops. */
2023 void
2024 estimate_numbers_of_iterations (void)
2026 unsigned i;
2027 struct loop *loop;
2029 for (i = 1; i < current_loops->num; i++)
2031 loop = current_loops->parray[i];
2032 if (loop)
2033 estimate_numbers_of_iterations_loop (loop);
2037 /* Returns true if statement S1 dominates statement S2. */
2039 static bool
2040 stmt_dominates_stmt_p (tree s1, tree s2)
2042 basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
2044 if (!bb1
2045 || s1 == s2)
2046 return true;
2048 if (bb1 == bb2)
2050 block_stmt_iterator bsi;
2052 for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
2053 if (bsi_stmt (bsi) == s1)
2054 return true;
2056 return false;
2059 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
2062 /* Returns true when we can prove that the number of executions of
2063 STMT in the loop is at most NITER, according to the bound on
2064 the number of executions of the statement NITER_BOUND->stmt recorded in
2065 NITER_BOUND. If STMT is NULL, we must prove this bound for all
2066 statements in the loop. */
2068 static bool
2069 n_of_executions_at_most (tree stmt,
2070 struct nb_iter_bound *niter_bound,
2071 tree niter)
2073 double_int bound = niter_bound->bound;
2074 tree nit_type = TREE_TYPE (niter);
2075 enum tree_code cmp;
2077 gcc_assert (TYPE_UNSIGNED (nit_type));
2079 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
2080 the number of iterations is small. */
2081 if (!double_int_fits_to_tree_p (nit_type, bound))
2082 return false;
2084 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
2085 times. This means that:
2087 -- if NITER_BOUND->is_exit is true, then everything before
2088 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
2089 times, and everything after it at most NITER_BOUND->bound times.
2091 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
2092 is executed, then NITER_BOUND->stmt is executed as well in the same
2093 iteration (we conclude that if both statements belong to the same
2094 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
2095 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
2096 executed at most NITER_BOUND->bound + 2 times. */
2098 if (niter_bound->is_exit)
2100 if (stmt
2101 && stmt != niter_bound->stmt
2102 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
2103 cmp = GE_EXPR;
2104 else
2105 cmp = GT_EXPR;
2107 else
2109 if (!stmt
2110 || (bb_for_stmt (stmt) != bb_for_stmt (niter_bound->stmt)
2111 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
2113 bound = double_int_add (bound, double_int_one);
2114 if (double_int_zero_p (bound)
2115 || !double_int_fits_to_tree_p (nit_type, bound))
2116 return false;
2118 cmp = GT_EXPR;
2121 return nonzero_p (fold_binary (cmp, boolean_type_node,
2122 niter,
2123 double_int_to_tree (nit_type, bound)));
2126 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
2128 bool
2129 nowrap_type_p (tree type)
2131 if (!flag_wrapv
2132 && INTEGRAL_TYPE_P (type)
2133 && !TYPE_UNSIGNED (type))
2134 return true;
2136 if (POINTER_TYPE_P (type))
2137 return true;
2139 return false;
2142 /* Return false only when the induction variable BASE + STEP * I is
2143 known to not overflow: i.e. when the number of iterations is small
2144 enough with respect to the step and initial condition in order to
2145 keep the evolution confined in TYPEs bounds. Return true when the
2146 iv is known to overflow or when the property is not computable.
2148 USE_OVERFLOW_SEMANTICS is true if this function should assume that
2149 the rules for overflow of the given language apply (e.g., that signed
2150 arithmetics in C does not overflow). */
2152 bool
2153 scev_probably_wraps_p (tree base, tree step,
2154 tree at_stmt, struct loop *loop,
2155 bool use_overflow_semantics)
2157 struct nb_iter_bound *bound;
2158 tree delta, step_abs;
2159 tree unsigned_type, valid_niter;
2160 tree type = TREE_TYPE (step);
2162 /* FIXME: We really need something like
2163 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
2165 We used to test for the following situation that frequently appears
2166 during address arithmetics:
2168 D.1621_13 = (long unsigned intD.4) D.1620_12;
2169 D.1622_14 = D.1621_13 * 8;
2170 D.1623_15 = (doubleD.29 *) D.1622_14;
2172 And derived that the sequence corresponding to D_14
2173 can be proved to not wrap because it is used for computing a
2174 memory access; however, this is not really the case -- for example,
2175 if D_12 = (unsigned char) [254,+,1], then D_14 has values
2176 2032, 2040, 0, 8, ..., but the code is still legal. */
2178 if (chrec_contains_undetermined (base)
2179 || chrec_contains_undetermined (step)
2180 || TREE_CODE (step) != INTEGER_CST)
2181 return true;
2183 if (zero_p (step))
2184 return false;
2186 /* If we can use the fact that signed and pointer arithmetics does not
2187 wrap, we are done. */
2188 if (use_overflow_semantics && nowrap_type_p (type))
2189 return false;
2191 /* Otherwise, compute the number of iterations before we reach the
2192 bound of the type, and verify that the loop is exited before this
2193 occurs. */
2194 unsigned_type = unsigned_type_for (type);
2195 base = fold_convert (unsigned_type, base);
2197 if (tree_int_cst_sign_bit (step))
2199 tree extreme = fold_convert (unsigned_type,
2200 lower_bound_in_type (type, type));
2201 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2202 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
2203 fold_convert (unsigned_type, step));
2205 else
2207 tree extreme = fold_convert (unsigned_type,
2208 upper_bound_in_type (type, type));
2209 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2210 step_abs = fold_convert (unsigned_type, step);
2213 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
2215 estimate_numbers_of_iterations_loop (loop);
2216 for (bound = loop->bounds; bound; bound = bound->next)
2217 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
2218 return false;
2220 /* At this point we still don't have a proof that the iv does not
2221 overflow: give up. */
2222 return true;
2225 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
2227 void
2228 free_numbers_of_iterations_estimates_loop (struct loop *loop)
2230 struct nb_iter_bound *bound, *next;
2232 loop->nb_iterations = NULL;
2233 loop->estimate_state = EST_NOT_COMPUTED;
2234 for (bound = loop->bounds; bound; bound = next)
2236 next = bound->next;
2237 free (bound);
2240 loop->bounds = NULL;
2243 /* Frees the information on upper bounds on numbers of iterations of loops. */
2245 void
2246 free_numbers_of_iterations_estimates (void)
2248 unsigned i;
2249 struct loop *loop;
2251 for (i = 1; i < current_loops->num; i++)
2253 loop = current_loops->parray[i];
2254 if (loop)
2255 free_numbers_of_iterations_estimates_loop (loop);
2259 /* Substitute value VAL for ssa name NAME inside expressions held
2260 at LOOP. */
2262 void
2263 substitute_in_loop_info (struct loop *loop, tree name, tree val)
2265 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);