Daily bump.
[official-gcc.git] / gcc / tree-data-ref.h
blob2d23dce82075ae773e36b47cffcbf0ca1e6d07b1
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
25 #include "lambda.h"
28 The first location accessed by data-ref in the loop is the address of data-ref's
29 base (BASE_ADDRESS) plus the initial offset from the base. We divide the initial offset
30 into two parts: loop invariant offset (OFFSET) and constant offset (INIT).
31 STEP is the stride of data-ref in the loop in bytes.
33 Example 1 Example 2
34 data-ref a[j].b[i][j] a + x + 16B (a is int*)
36 First location info:
37 base_address &a a
38 offset j_0*D_j + i_0*D_i x
39 init C_b + C_a 16
40 step D_j 4
41 access_fn NULL {16, +, 1}
43 Base object info:
44 base_object a NULL
45 access_fn <access_fns of indexes of b> NULL
48 struct first_location_in_loop
50 tree base_address;
51 tree offset;
52 tree init;
53 tree step;
54 /* Access function related to first location in the loop. */
55 VEC(tree,heap) *access_fns;
58 struct base_object_info
60 /* The object. */
61 tree base_object;
63 /* A list of chrecs. Access functions related to BASE_OBJECT. */
64 VEC(tree,heap) *access_fns;
67 enum data_ref_type {
68 ARRAY_REF_TYPE,
69 POINTER_REF_TYPE
72 struct data_reference
74 /* A pointer to the statement that contains this DR. */
75 tree stmt;
77 /* A pointer to the ARRAY_REF node. */
78 tree ref;
80 /* Auxiliary info specific to a pass. */
81 int aux;
83 /* True when the data reference is in RHS of a stmt. */
84 bool is_read;
86 /* First location accessed by the data-ref in the loop. */
87 struct first_location_in_loop first_location;
89 /* Base object related info. */
90 struct base_object_info object_info;
92 /* Aliasing information. This field represents the symbol that
93 should be aliased by a pointer holding the address of this data
94 reference. If the original data reference was a pointer
95 dereference, then this field contains the memory tag that should
96 be used by the new vector-pointer. */
97 tree memtag;
98 struct ptr_info_def *ptr_info;
99 subvar_t subvars;
101 /* Alignment information.
102 MISALIGNMENT is the offset of the data-reference from its base in bytes.
103 ALIGNED_TO is the maximum data-ref's alignment.
105 Example 1,
106 for i
107 for (j = 3; j < N; j++)
108 a[j].b[i][j] = 0;
110 For a[j].b[i][j], the offset from base (calculated in get_inner_reference()
111 will be 'i * C_i + j * C_j + C'.
112 We try to substitute the variables of the offset expression
113 with initial_condition of the corresponding access_fn in the loop.
114 'i' cannot be substituted, since its access_fn in the inner loop is i. 'j'
115 will be substituted with 3.
117 Example 2
118 for (j = 3; j < N; j++)
119 a[j].b[5][j] = 0;
121 Here the offset expression (j * C_j + C) will not contain variables after
122 substitution of j=3 (3*C_j + C).
124 Misalignment can be calculated only if all the variables can be
125 substituted with constants, otherwise, we record maximum possible alignment
126 in ALIGNED_TO. In Example 1, since 'i' cannot be substituted,
127 MISALIGNMENT will be NULL_TREE, and the biggest divider of C_i (a power of
128 2) will be recorded in ALIGNED_TO.
130 In Example 2, MISALIGNMENT will be the value of 3*C_j + C in bytes, and
131 ALIGNED_TO will be NULL_TREE.
133 tree misalignment;
134 tree aligned_to;
136 /* The type of the data-ref. */
137 enum data_ref_type type;
140 typedef struct data_reference *data_reference_p;
141 DEF_VEC_P(data_reference_p);
142 DEF_VEC_ALLOC_P (data_reference_p, heap);
144 #define DR_STMT(DR) (DR)->stmt
145 #define DR_REF(DR) (DR)->ref
146 #define DR_BASE_OBJECT(DR) (DR)->object_info.base_object
147 #define DR_TYPE(DR) (DR)->type
148 #define DR_ACCESS_FNS(DR)\
149 (DR_TYPE(DR) == ARRAY_REF_TYPE ? \
150 (DR)->object_info.access_fns : (DR)->first_location.access_fns)
151 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
152 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
153 #define DR_IS_READ(DR) (DR)->is_read
154 #define DR_BASE_ADDRESS(DR) (DR)->first_location.base_address
155 #define DR_OFFSET(DR) (DR)->first_location.offset
156 #define DR_INIT(DR) (DR)->first_location.init
157 #define DR_STEP(DR) (DR)->first_location.step
158 #define DR_MEMTAG(DR) (DR)->memtag
159 #define DR_ALIGNED_TO(DR) (DR)->aligned_to
160 #define DR_OFFSET_MISALIGNMENT(DR) (DR)->misalignment
161 #define DR_PTR_INFO(DR) (DR)->ptr_info
162 #define DR_SUBVARS(DR) (DR)->subvars
164 #define DR_ACCESS_FNS_ADDR(DR) \
165 (DR_TYPE(DR) == ARRAY_REF_TYPE ? \
166 &((DR)->object_info.access_fns) : &((DR)->first_location.access_fns))
167 #define DR_SET_ACCESS_FNS(DR, ACC_FNS) \
169 if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
170 (DR)->object_info.access_fns = ACC_FNS; \
171 else \
172 (DR)->first_location.access_fns = ACC_FNS; \
174 #define DR_FREE_ACCESS_FNS(DR) \
176 if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
177 VEC_free (tree, heap, (DR)->object_info.access_fns); \
178 else \
179 VEC_free (tree, heap, (DR)->first_location.access_fns); \
182 enum data_dependence_direction {
183 dir_positive,
184 dir_negative,
185 dir_equal,
186 dir_positive_or_negative,
187 dir_positive_or_equal,
188 dir_negative_or_equal,
189 dir_star,
190 dir_independent
193 /* What is a subscript? Given two array accesses a subscript is the
194 tuple composed of the access functions for a given dimension.
195 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
196 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
197 are stored in the data_dependence_relation structure under the form
198 of an array of subscripts. */
200 struct subscript
202 /* A description of the iterations for which the elements are
203 accessed twice. */
204 tree conflicting_iterations_in_a;
205 tree conflicting_iterations_in_b;
207 /* This field stores the information about the iteration domain
208 validity of the dependence relation. */
209 tree last_conflict;
211 /* Distance from the iteration that access a conflicting element in
212 A to the iteration that access this same conflicting element in
213 B. The distance is a tree scalar expression, i.e. a constant or a
214 symbolic expression, but certainly not a chrec function. */
215 tree distance;
218 typedef struct subscript *subscript_p;
219 DEF_VEC_P(subscript_p);
220 DEF_VEC_ALLOC_P (subscript_p, heap);
222 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
223 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
224 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
225 #define SUB_DISTANCE(SUB) SUB->distance
227 typedef struct loop *loop_p;
228 DEF_VEC_P(loop_p);
229 DEF_VEC_ALLOC_P (loop_p, heap);
231 /* A data_dependence_relation represents a relation between two
232 data_references A and B. */
234 struct data_dependence_relation
237 struct data_reference *a;
238 struct data_reference *b;
240 /* When the dependence relation is affine, it can be represented by
241 a distance vector. */
242 bool affine_p;
244 /* A "yes/no/maybe" field for the dependence relation:
246 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
247 relation between A and B, and the description of this relation
248 is given in the SUBSCRIPTS array,
250 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
251 SUBSCRIPTS is empty,
253 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
254 but the analyzer cannot be more specific. */
255 tree are_dependent;
257 /* For each subscript in the dependence test, there is an element in
258 this array. This is the attribute that labels the edge A->B of
259 the data_dependence_relation. */
260 VEC (subscript_p, heap) *subscripts;
262 /* The analyzed loop nest. */
263 VEC (loop_p, heap) *loop_nest;
265 /* The classic direction vector. */
266 VEC (lambda_vector, heap) *dir_vects;
268 /* The classic distance vector. */
269 VEC (lambda_vector, heap) *dist_vects;
272 typedef struct data_dependence_relation *ddr_p;
273 DEF_VEC_P(ddr_p);
274 DEF_VEC_ALLOC_P(ddr_p,heap);
276 #define DDR_A(DDR) DDR->a
277 #define DDR_B(DDR) DDR->b
278 #define DDR_AFFINE_P(DDR) DDR->affine_p
279 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
280 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
281 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
282 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
284 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
285 /* The size of the direction/distance vectors: the number of loops in
286 the loop nest. */
287 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
289 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
290 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
291 #define DDR_NUM_DIST_VECTS(DDR) \
292 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
293 #define DDR_NUM_DIR_VECTS(DDR) \
294 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
295 #define DDR_DIR_VECT(DDR, I) \
296 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
297 #define DDR_DIST_VECT(DDR, I) \
298 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
302 /* Describes a location of a memory reference. */
304 typedef struct data_ref_loc_d
306 /* Position of the memory reference. */
307 tree *pos;
309 /* True if the memory reference is read. */
310 bool is_read;
311 } data_ref_loc;
313 DEF_VEC_O (data_ref_loc);
314 DEF_VEC_ALLOC_O (data_ref_loc, heap);
316 bool get_references_in_stmt (tree, VEC (data_ref_loc, heap) **);
317 extern tree find_data_references_in_loop (struct loop *,
318 VEC (data_reference_p, heap) **);
319 extern void compute_data_dependences_for_loop (struct loop *, bool,
320 VEC (data_reference_p, heap) **,
321 VEC (ddr_p, heap) **);
322 extern void print_direction_vector (FILE *, lambda_vector, int);
323 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
324 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
325 extern void dump_subscript (FILE *, struct subscript *);
326 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
327 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
328 extern void dump_data_reference (FILE *, struct data_reference *);
329 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
330 extern void debug_data_dependence_relation (struct data_dependence_relation *);
331 extern void dump_data_dependence_relation (FILE *,
332 struct data_dependence_relation *);
333 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
334 extern void dump_data_dependence_direction (FILE *,
335 enum data_dependence_direction);
336 extern void free_dependence_relation (struct data_dependence_relation *);
337 extern void free_dependence_relations (VEC (ddr_p, heap) *);
338 extern void free_data_refs (VEC (data_reference_p, heap) *);
339 extern struct data_reference *analyze_array (tree, tree, bool);
342 /* Return the index of the variable VAR in the LOOP_NEST array. */
344 static inline int
345 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
347 struct loop *loopi;
348 int var_index;
350 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
351 var_index++)
352 if (loopi->num == var)
353 break;
355 return var_index;
358 /* In lambda-code.c */
359 bool lambda_transform_legal_p (lambda_trans_matrix, int, VEC (ddr_p, heap) *);
361 #endif /* GCC_TREE_DATA_REF_H */