Daily bump.
[official-gcc.git] / gcc / reg-stack.c
blob57924ceba28a0db106fd2fa2f98ab27052d2bb65
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173 #include "timevar.h"
174 #include "tree-pass.h"
175 #include "target.h"
176 #include "vecprim.h"
178 #ifdef STACK_REGS
180 /* We use this array to cache info about insns, because otherwise we
181 spend too much time in stack_regs_mentioned_p.
183 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
184 the insn uses stack registers, two indicates the insn does not use
185 stack registers. */
186 static VEC(char,heap) *stack_regs_mentioned_data;
188 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190 int regstack_completed = 0;
192 /* This is the basic stack record. TOP is an index into REG[] such
193 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195 If TOP is -2, REG[] is not yet initialized. Stack initialization
196 consists of placing each live reg in array `reg' and setting `top'
197 appropriately.
199 REG_SET indicates which registers are live. */
201 typedef struct stack_def
203 int top; /* index to top stack element */
204 HARD_REG_SET reg_set; /* set of live registers */
205 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
206 } *stack;
208 /* This is used to carry information about basic blocks. It is
209 attached to the AUX field of the standard CFG block. */
211 typedef struct block_info_def
213 struct stack_def stack_in; /* Input stack configuration. */
214 struct stack_def stack_out; /* Output stack configuration. */
215 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
216 int done; /* True if block already converted. */
217 int predecessors; /* Number of predecessors that need
218 to be visited. */
219 } *block_info;
221 #define BLOCK_INFO(B) ((block_info) (B)->aux)
223 /* Passed to change_stack to indicate where to emit insns. */
224 enum emit_where
226 EMIT_AFTER,
227 EMIT_BEFORE
230 /* The block we're currently working on. */
231 static basic_block current_block;
233 /* In the current_block, whether we're processing the first register
234 stack or call instruction, i.e. the regstack is currently the
235 same as BLOCK_INFO(current_block)->stack_in. */
236 static bool starting_stack_p;
238 /* This is the register file for all register after conversion. */
239 static rtx
240 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242 #define FP_MODE_REG(regno,mode) \
243 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245 /* Used to initialize uninitialized registers. */
246 static rtx not_a_num;
248 /* Forward declarations */
250 static int stack_regs_mentioned_p (rtx pat);
251 static void pop_stack (stack, int);
252 static rtx *get_true_reg (rtx *);
254 static int check_asm_stack_operands (rtx);
255 static int get_asm_operand_n_inputs (rtx);
256 static rtx stack_result (tree);
257 static void replace_reg (rtx *, int);
258 static void remove_regno_note (rtx, enum reg_note, unsigned int);
259 static int get_hard_regnum (stack, rtx);
260 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
261 static void swap_to_top(rtx, stack, rtx, rtx);
262 static bool move_for_stack_reg (rtx, stack, rtx);
263 static bool move_nan_for_stack_reg (rtx, stack, rtx);
264 static int swap_rtx_condition_1 (rtx);
265 static int swap_rtx_condition (rtx);
266 static void compare_for_stack_reg (rtx, stack, rtx);
267 static bool subst_stack_regs_pat (rtx, stack, rtx);
268 static void subst_asm_stack_regs (rtx, stack);
269 static bool subst_stack_regs (rtx, stack);
270 static void change_stack (rtx, stack, stack, enum emit_where);
271 static void print_stack (FILE *, stack);
272 static rtx next_flags_user (rtx);
274 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276 static int
277 stack_regs_mentioned_p (rtx pat)
279 const char *fmt;
280 int i;
282 if (STACK_REG_P (pat))
283 return 1;
285 fmt = GET_RTX_FORMAT (GET_CODE (pat));
286 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 if (fmt[i] == 'E')
290 int j;
292 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 return 1;
296 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 return 1;
300 return 0;
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306 stack_regs_mentioned (rtx insn)
308 unsigned int uid, max;
309 int test;
311 if (! INSN_P (insn) || !stack_regs_mentioned_data)
312 return 0;
314 uid = INSN_UID (insn);
315 max = VEC_length (char, stack_regs_mentioned_data);
316 if (uid >= max)
318 char *p;
319 unsigned int old_max = max;
321 /* Allocate some extra size to avoid too many reallocs, but
322 do not grow too quickly. */
323 max = uid + uid / 20 + 1;
324 VEC_safe_grow (char, heap, stack_regs_mentioned_data, max);
325 p = VEC_address (char, stack_regs_mentioned_data);
326 memset (&p[old_max], 0,
327 sizeof (char) * (max - old_max));
330 test = VEC_index (char, stack_regs_mentioned_data, uid);
331 if (test == 0)
333 /* This insn has yet to be examined. Do so now. */
334 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
335 VEC_replace (char, stack_regs_mentioned_data, uid, test);
338 return test == 1;
341 static rtx ix86_flags_rtx;
343 static rtx
344 next_flags_user (rtx insn)
346 /* Search forward looking for the first use of this value.
347 Stop at block boundaries. */
349 while (insn != BB_END (current_block))
351 insn = NEXT_INSN (insn);
353 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
354 return insn;
356 if (CALL_P (insn))
357 return NULL_RTX;
359 return NULL_RTX;
362 /* Reorganize the stack into ascending numbers, before this insn. */
364 static void
365 straighten_stack (rtx insn, stack regstack)
367 struct stack_def temp_stack;
368 int top;
370 /* If there is only a single register on the stack, then the stack is
371 already in increasing order and no reorganization is needed.
373 Similarly if the stack is empty. */
374 if (regstack->top <= 0)
375 return;
377 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
379 for (top = temp_stack.top = regstack->top; top >= 0; top--)
380 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
382 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
385 /* Pop a register from the stack. */
387 static void
388 pop_stack (stack regstack, int regno)
390 int top = regstack->top;
392 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
393 regstack->top--;
394 /* If regno was not at the top of stack then adjust stack. */
395 if (regstack->reg [top] != regno)
397 int i;
398 for (i = regstack->top; i >= 0; i--)
399 if (regstack->reg [i] == regno)
401 int j;
402 for (j = i; j < top; j++)
403 regstack->reg [j] = regstack->reg [j + 1];
404 break;
409 /* Return a pointer to the REG expression within PAT. If PAT is not a
410 REG, possible enclosed by a conversion rtx, return the inner part of
411 PAT that stopped the search. */
413 static rtx *
414 get_true_reg (rtx *pat)
416 for (;;)
417 switch (GET_CODE (*pat))
419 case SUBREG:
420 /* Eliminate FP subregister accesses in favor of the
421 actual FP register in use. */
423 rtx subreg;
424 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
426 int regno_off = subreg_regno_offset (REGNO (subreg),
427 GET_MODE (subreg),
428 SUBREG_BYTE (*pat),
429 GET_MODE (*pat));
430 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
431 GET_MODE (subreg));
432 default:
433 return pat;
436 case FLOAT:
437 case FIX:
438 case FLOAT_EXTEND:
439 pat = & XEXP (*pat, 0);
440 break;
442 case UNSPEC:
443 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
444 pat = & XVECEXP (*pat, 0, 0);
445 return pat;
447 case FLOAT_TRUNCATE:
448 if (!flag_unsafe_math_optimizations)
449 return pat;
450 pat = & XEXP (*pat, 0);
451 break;
455 /* Set if we find any malformed asms in a block. */
456 static bool any_malformed_asm;
458 /* There are many rules that an asm statement for stack-like regs must
459 follow. Those rules are explained at the top of this file: the rule
460 numbers below refer to that explanation. */
462 static int
463 check_asm_stack_operands (rtx insn)
465 int i;
466 int n_clobbers;
467 int malformed_asm = 0;
468 rtx body = PATTERN (insn);
470 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
471 char implicitly_dies[FIRST_PSEUDO_REGISTER];
472 int alt;
474 rtx *clobber_reg = 0;
475 int n_inputs, n_outputs;
477 /* Find out what the constraints require. If no constraint
478 alternative matches, this asm is malformed. */
479 extract_insn (insn);
480 constrain_operands (1);
481 alt = which_alternative;
483 preprocess_constraints ();
485 n_inputs = get_asm_operand_n_inputs (body);
486 n_outputs = recog_data.n_operands - n_inputs;
488 if (alt < 0)
490 malformed_asm = 1;
491 /* Avoid further trouble with this insn. */
492 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
493 return 0;
496 /* Strip SUBREGs here to make the following code simpler. */
497 for (i = 0; i < recog_data.n_operands; i++)
498 if (GET_CODE (recog_data.operand[i]) == SUBREG
499 && REG_P (SUBREG_REG (recog_data.operand[i])))
500 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
502 /* Set up CLOBBER_REG. */
504 n_clobbers = 0;
506 if (GET_CODE (body) == PARALLEL)
508 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
510 for (i = 0; i < XVECLEN (body, 0); i++)
511 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
513 rtx clobber = XVECEXP (body, 0, i);
514 rtx reg = XEXP (clobber, 0);
516 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
517 reg = SUBREG_REG (reg);
519 if (STACK_REG_P (reg))
521 clobber_reg[n_clobbers] = reg;
522 n_clobbers++;
527 /* Enforce rule #4: Output operands must specifically indicate which
528 reg an output appears in after an asm. "=f" is not allowed: the
529 operand constraints must select a class with a single reg.
531 Also enforce rule #5: Output operands must start at the top of
532 the reg-stack: output operands may not "skip" a reg. */
534 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
535 for (i = 0; i < n_outputs; i++)
536 if (STACK_REG_P (recog_data.operand[i]))
538 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
540 error_for_asm (insn, "output constraint %d must specify a single register", i);
541 malformed_asm = 1;
543 else
545 int j;
547 for (j = 0; j < n_clobbers; j++)
548 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
550 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
551 i, reg_names [REGNO (clobber_reg[j])]);
552 malformed_asm = 1;
553 break;
555 if (j == n_clobbers)
556 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
561 /* Search for first non-popped reg. */
562 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
563 if (! reg_used_as_output[i])
564 break;
566 /* If there are any other popped regs, that's an error. */
567 for (; i < LAST_STACK_REG + 1; i++)
568 if (reg_used_as_output[i])
569 break;
571 if (i != LAST_STACK_REG + 1)
573 error_for_asm (insn, "output regs must be grouped at top of stack");
574 malformed_asm = 1;
577 /* Enforce rule #2: All implicitly popped input regs must be closer
578 to the top of the reg-stack than any input that is not implicitly
579 popped. */
581 memset (implicitly_dies, 0, sizeof (implicitly_dies));
582 for (i = n_outputs; i < n_outputs + n_inputs; i++)
583 if (STACK_REG_P (recog_data.operand[i]))
585 /* An input reg is implicitly popped if it is tied to an
586 output, or if there is a CLOBBER for it. */
587 int j;
589 for (j = 0; j < n_clobbers; j++)
590 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
591 break;
593 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
594 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
597 /* Search for first non-popped reg. */
598 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
599 if (! implicitly_dies[i])
600 break;
602 /* If there are any other popped regs, that's an error. */
603 for (; i < LAST_STACK_REG + 1; i++)
604 if (implicitly_dies[i])
605 break;
607 if (i != LAST_STACK_REG + 1)
609 error_for_asm (insn,
610 "implicitly popped regs must be grouped at top of stack");
611 malformed_asm = 1;
614 /* Enforce rule #3: If any input operand uses the "f" constraint, all
615 output constraints must use the "&" earlyclobber.
617 ??? Detect this more deterministically by having constrain_asm_operands
618 record any earlyclobber. */
620 for (i = n_outputs; i < n_outputs + n_inputs; i++)
621 if (recog_op_alt[i][alt].matches == -1)
623 int j;
625 for (j = 0; j < n_outputs; j++)
626 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
628 error_for_asm (insn,
629 "output operand %d must use %<&%> constraint", j);
630 malformed_asm = 1;
634 if (malformed_asm)
636 /* Avoid further trouble with this insn. */
637 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
638 any_malformed_asm = true;
639 return 0;
642 return 1;
645 /* Calculate the number of inputs and outputs in BODY, an
646 asm_operands. N_OPERANDS is the total number of operands, and
647 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
648 placed. */
650 static int
651 get_asm_operand_n_inputs (rtx body)
653 switch (GET_CODE (body))
655 case SET:
656 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
657 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
659 case ASM_OPERANDS:
660 return ASM_OPERANDS_INPUT_LENGTH (body);
662 case PARALLEL:
663 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
665 default:
666 gcc_unreachable ();
670 /* If current function returns its result in an fp stack register,
671 return the REG. Otherwise, return 0. */
673 static rtx
674 stack_result (tree decl)
676 rtx result;
678 /* If the value is supposed to be returned in memory, then clearly
679 it is not returned in a stack register. */
680 if (aggregate_value_p (DECL_RESULT (decl), decl))
681 return 0;
683 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
684 if (result != 0)
685 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
686 decl, true);
688 return result != 0 && STACK_REG_P (result) ? result : 0;
693 * This section deals with stack register substitution, and forms the second
694 * pass over the RTL.
697 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
698 the desired hard REGNO. */
700 static void
701 replace_reg (rtx *reg, int regno)
703 gcc_assert (regno >= FIRST_STACK_REG);
704 gcc_assert (regno <= LAST_STACK_REG);
705 gcc_assert (STACK_REG_P (*reg));
707 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
708 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
710 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
713 /* Remove a note of type NOTE, which must be found, for register
714 number REGNO from INSN. Remove only one such note. */
716 static void
717 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
719 rtx *note_link, this;
721 note_link = &REG_NOTES (insn);
722 for (this = *note_link; this; this = XEXP (this, 1))
723 if (REG_NOTE_KIND (this) == note
724 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
726 *note_link = XEXP (this, 1);
727 return;
729 else
730 note_link = &XEXP (this, 1);
732 gcc_unreachable ();
735 /* Find the hard register number of virtual register REG in REGSTACK.
736 The hard register number is relative to the top of the stack. -1 is
737 returned if the register is not found. */
739 static int
740 get_hard_regnum (stack regstack, rtx reg)
742 int i;
744 gcc_assert (STACK_REG_P (reg));
746 for (i = regstack->top; i >= 0; i--)
747 if (regstack->reg[i] == REGNO (reg))
748 break;
750 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
753 /* Emit an insn to pop virtual register REG before or after INSN.
754 REGSTACK is the stack state after INSN and is updated to reflect this
755 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
756 is represented as a SET whose destination is the register to be popped
757 and source is the top of stack. A death note for the top of stack
758 cases the movdf pattern to pop. */
760 static rtx
761 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
763 rtx pop_insn, pop_rtx;
764 int hard_regno;
766 /* For complex types take care to pop both halves. These may survive in
767 CLOBBER and USE expressions. */
768 if (COMPLEX_MODE_P (GET_MODE (reg)))
770 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
771 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
773 pop_insn = NULL_RTX;
774 if (get_hard_regnum (regstack, reg1) >= 0)
775 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
776 if (get_hard_regnum (regstack, reg2) >= 0)
777 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
778 gcc_assert (pop_insn);
779 return pop_insn;
782 hard_regno = get_hard_regnum (regstack, reg);
784 gcc_assert (hard_regno >= FIRST_STACK_REG);
786 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
787 FP_MODE_REG (FIRST_STACK_REG, DFmode));
789 if (where == EMIT_AFTER)
790 pop_insn = emit_insn_after (pop_rtx, insn);
791 else
792 pop_insn = emit_insn_before (pop_rtx, insn);
794 REG_NOTES (pop_insn)
795 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
796 REG_NOTES (pop_insn));
798 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
799 = regstack->reg[regstack->top];
800 regstack->top -= 1;
801 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
803 return pop_insn;
806 /* Emit an insn before or after INSN to swap virtual register REG with
807 the top of stack. REGSTACK is the stack state before the swap, and
808 is updated to reflect the swap. A swap insn is represented as a
809 PARALLEL of two patterns: each pattern moves one reg to the other.
811 If REG is already at the top of the stack, no insn is emitted. */
813 static void
814 emit_swap_insn (rtx insn, stack regstack, rtx reg)
816 int hard_regno;
817 rtx swap_rtx;
818 int tmp, other_reg; /* swap regno temps */
819 rtx i1; /* the stack-reg insn prior to INSN */
820 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
822 hard_regno = get_hard_regnum (regstack, reg);
824 gcc_assert (hard_regno >= FIRST_STACK_REG);
825 if (hard_regno == FIRST_STACK_REG)
826 return;
828 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
830 tmp = regstack->reg[other_reg];
831 regstack->reg[other_reg] = regstack->reg[regstack->top];
832 regstack->reg[regstack->top] = tmp;
834 /* Find the previous insn involving stack regs, but don't pass a
835 block boundary. */
836 i1 = NULL;
837 if (current_block && insn != BB_HEAD (current_block))
839 rtx tmp = PREV_INSN (insn);
840 rtx limit = PREV_INSN (BB_HEAD (current_block));
841 while (tmp != limit)
843 if (LABEL_P (tmp)
844 || CALL_P (tmp)
845 || NOTE_INSN_BASIC_BLOCK_P (tmp)
846 || (NONJUMP_INSN_P (tmp)
847 && stack_regs_mentioned (tmp)))
849 i1 = tmp;
850 break;
852 tmp = PREV_INSN (tmp);
856 if (i1 != NULL_RTX
857 && (i1set = single_set (i1)) != NULL_RTX)
859 rtx i1src = *get_true_reg (&SET_SRC (i1set));
860 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
862 /* If the previous register stack push was from the reg we are to
863 swap with, omit the swap. */
865 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
866 && REG_P (i1src)
867 && REGNO (i1src) == (unsigned) hard_regno - 1
868 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
869 return;
871 /* If the previous insn wrote to the reg we are to swap with,
872 omit the swap. */
874 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
875 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
876 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
877 return;
880 /* Avoid emitting the swap if this is the first register stack insn
881 of the current_block. Instead update the current_block's stack_in
882 and let compensate edges take care of this for us. */
883 if (current_block && starting_stack_p)
885 BLOCK_INFO (current_block)->stack_in = *regstack;
886 starting_stack_p = false;
887 return;
890 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
891 FP_MODE_REG (FIRST_STACK_REG, XFmode));
893 if (i1)
894 emit_insn_after (swap_rtx, i1);
895 else if (current_block)
896 emit_insn_before (swap_rtx, BB_HEAD (current_block));
897 else
898 emit_insn_before (swap_rtx, insn);
901 /* Emit an insns before INSN to swap virtual register SRC1 with
902 the top of stack and virtual register SRC2 with second stack
903 slot. REGSTACK is the stack state before the swaps, and
904 is updated to reflect the swaps. A swap insn is represented as a
905 PARALLEL of two patterns: each pattern moves one reg to the other.
907 If SRC1 and/or SRC2 are already at the right place, no swap insn
908 is emitted. */
910 static void
911 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
913 struct stack_def temp_stack;
914 int regno, j, k, temp;
916 temp_stack = *regstack;
918 /* Place operand 1 at the top of stack. */
919 regno = get_hard_regnum (&temp_stack, src1);
920 gcc_assert (regno >= 0);
921 if (regno != FIRST_STACK_REG)
923 k = temp_stack.top - (regno - FIRST_STACK_REG);
924 j = temp_stack.top;
926 temp = temp_stack.reg[k];
927 temp_stack.reg[k] = temp_stack.reg[j];
928 temp_stack.reg[j] = temp;
931 /* Place operand 2 next on the stack. */
932 regno = get_hard_regnum (&temp_stack, src2);
933 gcc_assert (regno >= 0);
934 if (regno != FIRST_STACK_REG + 1)
936 k = temp_stack.top - (regno - FIRST_STACK_REG);
937 j = temp_stack.top - 1;
939 temp = temp_stack.reg[k];
940 temp_stack.reg[k] = temp_stack.reg[j];
941 temp_stack.reg[j] = temp;
944 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
947 /* Handle a move to or from a stack register in PAT, which is in INSN.
948 REGSTACK is the current stack. Return whether a control flow insn
949 was deleted in the process. */
951 static bool
952 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
954 rtx *psrc = get_true_reg (&SET_SRC (pat));
955 rtx *pdest = get_true_reg (&SET_DEST (pat));
956 rtx src, dest;
957 rtx note;
958 bool control_flow_insn_deleted = false;
960 src = *psrc; dest = *pdest;
962 if (STACK_REG_P (src) && STACK_REG_P (dest))
964 /* Write from one stack reg to another. If SRC dies here, then
965 just change the register mapping and delete the insn. */
967 note = find_regno_note (insn, REG_DEAD, REGNO (src));
968 if (note)
970 int i;
972 /* If this is a no-op move, there must not be a REG_DEAD note. */
973 gcc_assert (REGNO (src) != REGNO (dest));
975 for (i = regstack->top; i >= 0; i--)
976 if (regstack->reg[i] == REGNO (src))
977 break;
979 /* The destination must be dead, or life analysis is borked. */
980 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
982 /* If the source is not live, this is yet another case of
983 uninitialized variables. Load up a NaN instead. */
984 if (i < 0)
985 return move_nan_for_stack_reg (insn, regstack, dest);
987 /* It is possible that the dest is unused after this insn.
988 If so, just pop the src. */
990 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
991 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
992 else
994 regstack->reg[i] = REGNO (dest);
995 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
996 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
999 control_flow_insn_deleted |= control_flow_insn_p (insn);
1000 delete_insn (insn);
1001 return control_flow_insn_deleted;
1004 /* The source reg does not die. */
1006 /* If this appears to be a no-op move, delete it, or else it
1007 will confuse the machine description output patterns. But if
1008 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1009 for REG_UNUSED will not work for deleted insns. */
1011 if (REGNO (src) == REGNO (dest))
1013 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1014 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1016 control_flow_insn_deleted |= control_flow_insn_p (insn);
1017 delete_insn (insn);
1018 return control_flow_insn_deleted;
1021 /* The destination ought to be dead. */
1022 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1024 replace_reg (psrc, get_hard_regnum (regstack, src));
1026 regstack->reg[++regstack->top] = REGNO (dest);
1027 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1028 replace_reg (pdest, FIRST_STACK_REG);
1030 else if (STACK_REG_P (src))
1032 /* Save from a stack reg to MEM, or possibly integer reg. Since
1033 only top of stack may be saved, emit an exchange first if
1034 needs be. */
1036 emit_swap_insn (insn, regstack, src);
1038 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1039 if (note)
1041 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1042 regstack->top--;
1043 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1045 else if ((GET_MODE (src) == XFmode)
1046 && regstack->top < REG_STACK_SIZE - 1)
1048 /* A 387 cannot write an XFmode value to a MEM without
1049 clobbering the source reg. The output code can handle
1050 this by reading back the value from the MEM.
1051 But it is more efficient to use a temp register if one is
1052 available. Push the source value here if the register
1053 stack is not full, and then write the value to memory via
1054 a pop. */
1055 rtx push_rtx;
1056 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1058 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1059 emit_insn_before (push_rtx, insn);
1060 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1061 REG_NOTES (insn));
1064 replace_reg (psrc, FIRST_STACK_REG);
1066 else
1068 gcc_assert (STACK_REG_P (dest));
1070 /* Load from MEM, or possibly integer REG or constant, into the
1071 stack regs. The actual target is always the top of the
1072 stack. The stack mapping is changed to reflect that DEST is
1073 now at top of stack. */
1075 /* The destination ought to be dead. */
1076 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1078 gcc_assert (regstack->top < REG_STACK_SIZE);
1080 regstack->reg[++regstack->top] = REGNO (dest);
1081 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1082 replace_reg (pdest, FIRST_STACK_REG);
1085 return control_flow_insn_deleted;
1088 /* A helper function which replaces INSN with a pattern that loads up
1089 a NaN into DEST, then invokes move_for_stack_reg. */
1091 static bool
1092 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1094 rtx pat;
1096 dest = FP_MODE_REG (REGNO (dest), SFmode);
1097 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1098 PATTERN (insn) = pat;
1099 INSN_CODE (insn) = -1;
1101 return move_for_stack_reg (insn, regstack, pat);
1104 /* Swap the condition on a branch, if there is one. Return true if we
1105 found a condition to swap. False if the condition was not used as
1106 such. */
1108 static int
1109 swap_rtx_condition_1 (rtx pat)
1111 const char *fmt;
1112 int i, r = 0;
1114 if (COMPARISON_P (pat))
1116 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1117 r = 1;
1119 else
1121 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1122 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1124 if (fmt[i] == 'E')
1126 int j;
1128 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1129 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1131 else if (fmt[i] == 'e')
1132 r |= swap_rtx_condition_1 (XEXP (pat, i));
1136 return r;
1139 static int
1140 swap_rtx_condition (rtx insn)
1142 rtx pat = PATTERN (insn);
1144 /* We're looking for a single set to cc0 or an HImode temporary. */
1146 if (GET_CODE (pat) == SET
1147 && REG_P (SET_DEST (pat))
1148 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1150 insn = next_flags_user (insn);
1151 if (insn == NULL_RTX)
1152 return 0;
1153 pat = PATTERN (insn);
1156 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1157 with the cc value right now. We may be able to search for one
1158 though. */
1160 if (GET_CODE (pat) == SET
1161 && GET_CODE (SET_SRC (pat)) == UNSPEC
1162 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1164 rtx dest = SET_DEST (pat);
1166 /* Search forward looking for the first use of this value.
1167 Stop at block boundaries. */
1168 while (insn != BB_END (current_block))
1170 insn = NEXT_INSN (insn);
1171 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1172 break;
1173 if (CALL_P (insn))
1174 return 0;
1177 /* We haven't found it. */
1178 if (insn == BB_END (current_block))
1179 return 0;
1181 /* So we've found the insn using this value. If it is anything
1182 other than sahf or the value does not die (meaning we'd have
1183 to search further), then we must give up. */
1184 pat = PATTERN (insn);
1185 if (GET_CODE (pat) != SET
1186 || GET_CODE (SET_SRC (pat)) != UNSPEC
1187 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1188 || ! dead_or_set_p (insn, dest))
1189 return 0;
1191 /* Now we are prepared to handle this as a normal cc0 setter. */
1192 insn = next_flags_user (insn);
1193 if (insn == NULL_RTX)
1194 return 0;
1195 pat = PATTERN (insn);
1198 if (swap_rtx_condition_1 (pat))
1200 int fail = 0;
1201 INSN_CODE (insn) = -1;
1202 if (recog_memoized (insn) == -1)
1203 fail = 1;
1204 /* In case the flags don't die here, recurse to try fix
1205 following user too. */
1206 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1208 insn = next_flags_user (insn);
1209 if (!insn || !swap_rtx_condition (insn))
1210 fail = 1;
1212 if (fail)
1214 swap_rtx_condition_1 (pat);
1215 return 0;
1217 return 1;
1219 return 0;
1222 /* Handle a comparison. Special care needs to be taken to avoid
1223 causing comparisons that a 387 cannot do correctly, such as EQ.
1225 Also, a pop insn may need to be emitted. The 387 does have an
1226 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1227 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1228 set up. */
1230 static void
1231 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1233 rtx *src1, *src2;
1234 rtx src1_note, src2_note;
1236 src1 = get_true_reg (&XEXP (pat_src, 0));
1237 src2 = get_true_reg (&XEXP (pat_src, 1));
1239 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1240 registers that die in this insn - move those to stack top first. */
1241 if ((! STACK_REG_P (*src1)
1242 || (STACK_REG_P (*src2)
1243 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1244 && swap_rtx_condition (insn))
1246 rtx temp;
1247 temp = XEXP (pat_src, 0);
1248 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1249 XEXP (pat_src, 1) = temp;
1251 src1 = get_true_reg (&XEXP (pat_src, 0));
1252 src2 = get_true_reg (&XEXP (pat_src, 1));
1254 INSN_CODE (insn) = -1;
1257 /* We will fix any death note later. */
1259 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1261 if (STACK_REG_P (*src2))
1262 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1263 else
1264 src2_note = NULL_RTX;
1266 emit_swap_insn (insn, regstack, *src1);
1268 replace_reg (src1, FIRST_STACK_REG);
1270 if (STACK_REG_P (*src2))
1271 replace_reg (src2, get_hard_regnum (regstack, *src2));
1273 if (src1_note)
1275 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1276 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1279 /* If the second operand dies, handle that. But if the operands are
1280 the same stack register, don't bother, because only one death is
1281 needed, and it was just handled. */
1283 if (src2_note
1284 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1285 && REGNO (*src1) == REGNO (*src2)))
1287 /* As a special case, two regs may die in this insn if src2 is
1288 next to top of stack and the top of stack also dies. Since
1289 we have already popped src1, "next to top of stack" is really
1290 at top (FIRST_STACK_REG) now. */
1292 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1293 && src1_note)
1295 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1296 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1298 else
1300 /* The 386 can only represent death of the first operand in
1301 the case handled above. In all other cases, emit a separate
1302 pop and remove the death note from here. */
1304 /* link_cc0_insns (insn); */
1306 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1308 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1309 EMIT_AFTER);
1314 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1315 is the current register layout. Return whether a control flow insn
1316 was deleted in the process. */
1318 static bool
1319 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1321 rtx *dest, *src;
1322 bool control_flow_insn_deleted = false;
1324 switch (GET_CODE (pat))
1326 case USE:
1327 /* Deaths in USE insns can happen in non optimizing compilation.
1328 Handle them by popping the dying register. */
1329 src = get_true_reg (&XEXP (pat, 0));
1330 if (STACK_REG_P (*src)
1331 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1333 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1334 return control_flow_insn_deleted;
1336 /* ??? Uninitialized USE should not happen. */
1337 else
1338 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1339 break;
1341 case CLOBBER:
1343 rtx note;
1345 dest = get_true_reg (&XEXP (pat, 0));
1346 if (STACK_REG_P (*dest))
1348 note = find_reg_note (insn, REG_DEAD, *dest);
1350 if (pat != PATTERN (insn))
1352 /* The fix_truncdi_1 pattern wants to be able to allocate
1353 its own scratch register. It does this by clobbering
1354 an fp reg so that it is assured of an empty reg-stack
1355 register. If the register is live, kill it now.
1356 Remove the DEAD/UNUSED note so we don't try to kill it
1357 later too. */
1359 if (note)
1360 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1361 else
1363 note = find_reg_note (insn, REG_UNUSED, *dest);
1364 gcc_assert (note);
1366 remove_note (insn, note);
1367 replace_reg (dest, FIRST_STACK_REG + 1);
1369 else
1371 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1372 indicates an uninitialized value. Because reload removed
1373 all other clobbers, this must be due to a function
1374 returning without a value. Load up a NaN. */
1376 if (!note)
1378 rtx t = *dest;
1379 if (COMPLEX_MODE_P (GET_MODE (t)))
1381 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1382 if (get_hard_regnum (regstack, u) == -1)
1384 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1385 rtx insn2 = emit_insn_before (pat2, insn);
1386 control_flow_insn_deleted
1387 |= move_nan_for_stack_reg (insn2, regstack, u);
1390 if (get_hard_regnum (regstack, t) == -1)
1391 control_flow_insn_deleted
1392 |= move_nan_for_stack_reg (insn, regstack, t);
1396 break;
1399 case SET:
1401 rtx *src1 = (rtx *) 0, *src2;
1402 rtx src1_note, src2_note;
1403 rtx pat_src;
1405 dest = get_true_reg (&SET_DEST (pat));
1406 src = get_true_reg (&SET_SRC (pat));
1407 pat_src = SET_SRC (pat);
1409 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1410 if (STACK_REG_P (*src)
1411 || (STACK_REG_P (*dest)
1412 && (REG_P (*src) || MEM_P (*src)
1413 || GET_CODE (*src) == CONST_DOUBLE)))
1415 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1416 break;
1419 switch (GET_CODE (pat_src))
1421 case COMPARE:
1422 compare_for_stack_reg (insn, regstack, pat_src);
1423 break;
1425 case CALL:
1427 int count;
1428 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1429 --count >= 0;)
1431 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1432 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1435 replace_reg (dest, FIRST_STACK_REG);
1436 break;
1438 case REG:
1439 /* This is a `tstM2' case. */
1440 gcc_assert (*dest == cc0_rtx);
1441 src1 = src;
1443 /* Fall through. */
1445 case FLOAT_TRUNCATE:
1446 case SQRT:
1447 case ABS:
1448 case NEG:
1449 /* These insns only operate on the top of the stack. DEST might
1450 be cc0_rtx if we're processing a tstM pattern. Also, it's
1451 possible that the tstM case results in a REG_DEAD note on the
1452 source. */
1454 if (src1 == 0)
1455 src1 = get_true_reg (&XEXP (pat_src, 0));
1457 emit_swap_insn (insn, regstack, *src1);
1459 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1461 if (STACK_REG_P (*dest))
1462 replace_reg (dest, FIRST_STACK_REG);
1464 if (src1_note)
1466 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1467 regstack->top--;
1468 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1471 replace_reg (src1, FIRST_STACK_REG);
1472 break;
1474 case MINUS:
1475 case DIV:
1476 /* On i386, reversed forms of subM3 and divM3 exist for
1477 MODE_FLOAT, so the same code that works for addM3 and mulM3
1478 can be used. */
1479 case MULT:
1480 case PLUS:
1481 /* These insns can accept the top of stack as a destination
1482 from a stack reg or mem, or can use the top of stack as a
1483 source and some other stack register (possibly top of stack)
1484 as a destination. */
1486 src1 = get_true_reg (&XEXP (pat_src, 0));
1487 src2 = get_true_reg (&XEXP (pat_src, 1));
1489 /* We will fix any death note later. */
1491 if (STACK_REG_P (*src1))
1492 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1493 else
1494 src1_note = NULL_RTX;
1495 if (STACK_REG_P (*src2))
1496 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1497 else
1498 src2_note = NULL_RTX;
1500 /* If either operand is not a stack register, then the dest
1501 must be top of stack. */
1503 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1504 emit_swap_insn (insn, regstack, *dest);
1505 else
1507 /* Both operands are REG. If neither operand is already
1508 at the top of stack, choose to make the one that is the dest
1509 the new top of stack. */
1511 int src1_hard_regnum, src2_hard_regnum;
1513 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1514 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1515 gcc_assert (src1_hard_regnum != -1);
1516 gcc_assert (src2_hard_regnum != -1);
1518 if (src1_hard_regnum != FIRST_STACK_REG
1519 && src2_hard_regnum != FIRST_STACK_REG)
1520 emit_swap_insn (insn, regstack, *dest);
1523 if (STACK_REG_P (*src1))
1524 replace_reg (src1, get_hard_regnum (regstack, *src1));
1525 if (STACK_REG_P (*src2))
1526 replace_reg (src2, get_hard_regnum (regstack, *src2));
1528 if (src1_note)
1530 rtx src1_reg = XEXP (src1_note, 0);
1532 /* If the register that dies is at the top of stack, then
1533 the destination is somewhere else - merely substitute it.
1534 But if the reg that dies is not at top of stack, then
1535 move the top of stack to the dead reg, as though we had
1536 done the insn and then a store-with-pop. */
1538 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1540 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1541 replace_reg (dest, get_hard_regnum (regstack, *dest));
1543 else
1545 int regno = get_hard_regnum (regstack, src1_reg);
1547 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1548 replace_reg (dest, regno);
1550 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1551 = regstack->reg[regstack->top];
1554 CLEAR_HARD_REG_BIT (regstack->reg_set,
1555 REGNO (XEXP (src1_note, 0)));
1556 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1557 regstack->top--;
1559 else if (src2_note)
1561 rtx src2_reg = XEXP (src2_note, 0);
1562 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1564 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1565 replace_reg (dest, get_hard_regnum (regstack, *dest));
1567 else
1569 int regno = get_hard_regnum (regstack, src2_reg);
1571 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1572 replace_reg (dest, regno);
1574 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1575 = regstack->reg[regstack->top];
1578 CLEAR_HARD_REG_BIT (regstack->reg_set,
1579 REGNO (XEXP (src2_note, 0)));
1580 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1581 regstack->top--;
1583 else
1585 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1586 replace_reg (dest, get_hard_regnum (regstack, *dest));
1589 /* Keep operand 1 matching with destination. */
1590 if (COMMUTATIVE_ARITH_P (pat_src)
1591 && REG_P (*src1) && REG_P (*src2)
1592 && REGNO (*src1) != REGNO (*dest))
1594 int tmp = REGNO (*src1);
1595 replace_reg (src1, REGNO (*src2));
1596 replace_reg (src2, tmp);
1598 break;
1600 case UNSPEC:
1601 switch (XINT (pat_src, 1))
1603 case UNSPEC_FIST:
1605 case UNSPEC_FIST_FLOOR:
1606 case UNSPEC_FIST_CEIL:
1608 /* These insns only operate on the top of the stack. */
1610 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1611 emit_swap_insn (insn, regstack, *src1);
1613 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1615 if (STACK_REG_P (*dest))
1616 replace_reg (dest, FIRST_STACK_REG);
1618 if (src1_note)
1620 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1621 regstack->top--;
1622 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1625 replace_reg (src1, FIRST_STACK_REG);
1626 break;
1628 case UNSPEC_SIN:
1629 case UNSPEC_COS:
1630 case UNSPEC_FRNDINT:
1631 case UNSPEC_F2XM1:
1633 case UNSPEC_FRNDINT_FLOOR:
1634 case UNSPEC_FRNDINT_CEIL:
1635 case UNSPEC_FRNDINT_TRUNC:
1636 case UNSPEC_FRNDINT_MASK_PM:
1638 /* These insns only operate on the top of the stack. */
1640 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1642 emit_swap_insn (insn, regstack, *src1);
1644 /* Input should never die, it is
1645 replaced with output. */
1646 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1647 gcc_assert (!src1_note);
1649 if (STACK_REG_P (*dest))
1650 replace_reg (dest, FIRST_STACK_REG);
1652 replace_reg (src1, FIRST_STACK_REG);
1653 break;
1655 case UNSPEC_FPATAN:
1656 case UNSPEC_FYL2X:
1657 case UNSPEC_FYL2XP1:
1658 /* These insns operate on the top two stack slots. */
1660 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1661 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1663 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1664 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1666 swap_to_top (insn, regstack, *src1, *src2);
1668 replace_reg (src1, FIRST_STACK_REG);
1669 replace_reg (src2, FIRST_STACK_REG + 1);
1671 if (src1_note)
1672 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1673 if (src2_note)
1674 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1676 /* Pop both input operands from the stack. */
1677 CLEAR_HARD_REG_BIT (regstack->reg_set,
1678 regstack->reg[regstack->top]);
1679 CLEAR_HARD_REG_BIT (regstack->reg_set,
1680 regstack->reg[regstack->top - 1]);
1681 regstack->top -= 2;
1683 /* Push the result back onto the stack. */
1684 regstack->reg[++regstack->top] = REGNO (*dest);
1685 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1686 replace_reg (dest, FIRST_STACK_REG);
1687 break;
1689 case UNSPEC_FSCALE_FRACT:
1690 case UNSPEC_FPREM_F:
1691 case UNSPEC_FPREM1_F:
1692 /* These insns operate on the top two stack slots.
1693 first part of double input, double output insn. */
1695 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1696 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1698 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1699 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1701 /* Inputs should never die, they are
1702 replaced with outputs. */
1703 gcc_assert (!src1_note);
1704 gcc_assert (!src2_note);
1706 swap_to_top (insn, regstack, *src1, *src2);
1708 /* Push the result back onto stack. Empty stack slot
1709 will be filled in second part of insn. */
1710 if (STACK_REG_P (*dest))
1712 regstack->reg[regstack->top] = REGNO (*dest);
1713 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1714 replace_reg (dest, FIRST_STACK_REG);
1717 replace_reg (src1, FIRST_STACK_REG);
1718 replace_reg (src2, FIRST_STACK_REG + 1);
1719 break;
1721 case UNSPEC_FSCALE_EXP:
1722 case UNSPEC_FPREM_U:
1723 case UNSPEC_FPREM1_U:
1724 /* These insns operate on the top two stack slots./
1725 second part of double input, double output insn. */
1727 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1728 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1730 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1731 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1733 /* Inputs should never die, they are
1734 replaced with outputs. */
1735 gcc_assert (!src1_note);
1736 gcc_assert (!src2_note);
1738 swap_to_top (insn, regstack, *src1, *src2);
1740 /* Push the result back onto stack. Fill empty slot from
1741 first part of insn and fix top of stack pointer. */
1742 if (STACK_REG_P (*dest))
1744 regstack->reg[regstack->top - 1] = REGNO (*dest);
1745 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1746 replace_reg (dest, FIRST_STACK_REG + 1);
1749 replace_reg (src1, FIRST_STACK_REG);
1750 replace_reg (src2, FIRST_STACK_REG + 1);
1751 break;
1753 case UNSPEC_SINCOS_COS:
1754 case UNSPEC_TAN_ONE:
1755 case UNSPEC_XTRACT_FRACT:
1756 /* These insns operate on the top two stack slots,
1757 first part of one input, double output insn. */
1759 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1761 emit_swap_insn (insn, regstack, *src1);
1763 /* Input should never die, it is
1764 replaced with output. */
1765 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1766 gcc_assert (!src1_note);
1768 /* Push the result back onto stack. Empty stack slot
1769 will be filled in second part of insn. */
1770 if (STACK_REG_P (*dest))
1772 regstack->reg[regstack->top + 1] = REGNO (*dest);
1773 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1774 replace_reg (dest, FIRST_STACK_REG);
1777 replace_reg (src1, FIRST_STACK_REG);
1778 break;
1780 case UNSPEC_SINCOS_SIN:
1781 case UNSPEC_TAN_TAN:
1782 case UNSPEC_XTRACT_EXP:
1783 /* These insns operate on the top two stack slots,
1784 second part of one input, double output insn. */
1786 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1788 emit_swap_insn (insn, regstack, *src1);
1790 /* Input should never die, it is
1791 replaced with output. */
1792 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1793 gcc_assert (!src1_note);
1795 /* Push the result back onto stack. Fill empty slot from
1796 first part of insn and fix top of stack pointer. */
1797 if (STACK_REG_P (*dest))
1799 regstack->reg[regstack->top] = REGNO (*dest);
1800 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1801 replace_reg (dest, FIRST_STACK_REG + 1);
1803 regstack->top++;
1806 replace_reg (src1, FIRST_STACK_REG);
1807 break;
1809 case UNSPEC_SAHF:
1810 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1811 The combination matches the PPRO fcomi instruction. */
1813 pat_src = XVECEXP (pat_src, 0, 0);
1814 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1815 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1816 /* Fall through. */
1818 case UNSPEC_FNSTSW:
1819 /* Combined fcomp+fnstsw generated for doing well with
1820 CSE. When optimizing this would have been broken
1821 up before now. */
1823 pat_src = XVECEXP (pat_src, 0, 0);
1824 gcc_assert (GET_CODE (pat_src) == COMPARE);
1826 compare_for_stack_reg (insn, regstack, pat_src);
1827 break;
1829 default:
1830 gcc_unreachable ();
1832 break;
1834 case IF_THEN_ELSE:
1835 /* This insn requires the top of stack to be the destination. */
1837 src1 = get_true_reg (&XEXP (pat_src, 1));
1838 src2 = get_true_reg (&XEXP (pat_src, 2));
1840 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1841 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1843 /* If the comparison operator is an FP comparison operator,
1844 it is handled correctly by compare_for_stack_reg () who
1845 will move the destination to the top of stack. But if the
1846 comparison operator is not an FP comparison operator, we
1847 have to handle it here. */
1848 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1849 && REGNO (*dest) != regstack->reg[regstack->top])
1851 /* In case one of operands is the top of stack and the operands
1852 dies, it is safe to make it the destination operand by
1853 reversing the direction of cmove and avoid fxch. */
1854 if ((REGNO (*src1) == regstack->reg[regstack->top]
1855 && src1_note)
1856 || (REGNO (*src2) == regstack->reg[regstack->top]
1857 && src2_note))
1859 int idx1 = (get_hard_regnum (regstack, *src1)
1860 - FIRST_STACK_REG);
1861 int idx2 = (get_hard_regnum (regstack, *src2)
1862 - FIRST_STACK_REG);
1864 /* Make reg-stack believe that the operands are already
1865 swapped on the stack */
1866 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1867 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1869 /* Reverse condition to compensate the operand swap.
1870 i386 do have comparison always reversible. */
1871 PUT_CODE (XEXP (pat_src, 0),
1872 reversed_comparison_code (XEXP (pat_src, 0), insn));
1874 else
1875 emit_swap_insn (insn, regstack, *dest);
1879 rtx src_note [3];
1880 int i;
1882 src_note[0] = 0;
1883 src_note[1] = src1_note;
1884 src_note[2] = src2_note;
1886 if (STACK_REG_P (*src1))
1887 replace_reg (src1, get_hard_regnum (regstack, *src1));
1888 if (STACK_REG_P (*src2))
1889 replace_reg (src2, get_hard_regnum (regstack, *src2));
1891 for (i = 1; i <= 2; i++)
1892 if (src_note [i])
1894 int regno = REGNO (XEXP (src_note[i], 0));
1896 /* If the register that dies is not at the top of
1897 stack, then move the top of stack to the dead reg.
1898 Top of stack should never die, as it is the
1899 destination. */
1900 gcc_assert (regno != regstack->reg[regstack->top]);
1901 remove_regno_note (insn, REG_DEAD, regno);
1902 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1903 EMIT_AFTER);
1907 /* Make dest the top of stack. Add dest to regstack if
1908 not present. */
1909 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1910 regstack->reg[++regstack->top] = REGNO (*dest);
1911 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1912 replace_reg (dest, FIRST_STACK_REG);
1913 break;
1915 default:
1916 gcc_unreachable ();
1918 break;
1921 default:
1922 break;
1925 return control_flow_insn_deleted;
1928 /* Substitute hard regnums for any stack regs in INSN, which has
1929 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1930 before the insn, and is updated with changes made here.
1932 There are several requirements and assumptions about the use of
1933 stack-like regs in asm statements. These rules are enforced by
1934 record_asm_stack_regs; see comments there for details. Any
1935 asm_operands left in the RTL at this point may be assume to meet the
1936 requirements, since record_asm_stack_regs removes any problem asm. */
1938 static void
1939 subst_asm_stack_regs (rtx insn, stack regstack)
1941 rtx body = PATTERN (insn);
1942 int alt;
1944 rtx *note_reg; /* Array of note contents */
1945 rtx **note_loc; /* Address of REG field of each note */
1946 enum reg_note *note_kind; /* The type of each note */
1948 rtx *clobber_reg = 0;
1949 rtx **clobber_loc = 0;
1951 struct stack_def temp_stack;
1952 int n_notes;
1953 int n_clobbers;
1954 rtx note;
1955 int i;
1956 int n_inputs, n_outputs;
1958 if (! check_asm_stack_operands (insn))
1959 return;
1961 /* Find out what the constraints required. If no constraint
1962 alternative matches, that is a compiler bug: we should have caught
1963 such an insn in check_asm_stack_operands. */
1964 extract_insn (insn);
1965 constrain_operands (1);
1966 alt = which_alternative;
1968 preprocess_constraints ();
1970 n_inputs = get_asm_operand_n_inputs (body);
1971 n_outputs = recog_data.n_operands - n_inputs;
1973 gcc_assert (alt >= 0);
1975 /* Strip SUBREGs here to make the following code simpler. */
1976 for (i = 0; i < recog_data.n_operands; i++)
1977 if (GET_CODE (recog_data.operand[i]) == SUBREG
1978 && REG_P (SUBREG_REG (recog_data.operand[i])))
1980 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1981 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1984 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1986 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1987 i++;
1989 note_reg = alloca (i * sizeof (rtx));
1990 note_loc = alloca (i * sizeof (rtx *));
1991 note_kind = alloca (i * sizeof (enum reg_note));
1993 n_notes = 0;
1994 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1996 rtx reg = XEXP (note, 0);
1997 rtx *loc = & XEXP (note, 0);
1999 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2001 loc = & SUBREG_REG (reg);
2002 reg = SUBREG_REG (reg);
2005 if (STACK_REG_P (reg)
2006 && (REG_NOTE_KIND (note) == REG_DEAD
2007 || REG_NOTE_KIND (note) == REG_UNUSED))
2009 note_reg[n_notes] = reg;
2010 note_loc[n_notes] = loc;
2011 note_kind[n_notes] = REG_NOTE_KIND (note);
2012 n_notes++;
2016 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2018 n_clobbers = 0;
2020 if (GET_CODE (body) == PARALLEL)
2022 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2023 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2025 for (i = 0; i < XVECLEN (body, 0); i++)
2026 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2028 rtx clobber = XVECEXP (body, 0, i);
2029 rtx reg = XEXP (clobber, 0);
2030 rtx *loc = & XEXP (clobber, 0);
2032 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2034 loc = & SUBREG_REG (reg);
2035 reg = SUBREG_REG (reg);
2038 if (STACK_REG_P (reg))
2040 clobber_reg[n_clobbers] = reg;
2041 clobber_loc[n_clobbers] = loc;
2042 n_clobbers++;
2047 temp_stack = *regstack;
2049 /* Put the input regs into the desired place in TEMP_STACK. */
2051 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2052 if (STACK_REG_P (recog_data.operand[i])
2053 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2054 FLOAT_REGS)
2055 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2057 /* If an operand needs to be in a particular reg in
2058 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2059 these constraints are for single register classes, and
2060 reload guaranteed that operand[i] is already in that class,
2061 we can just use REGNO (recog_data.operand[i]) to know which
2062 actual reg this operand needs to be in. */
2064 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2066 gcc_assert (regno >= 0);
2068 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2070 /* recog_data.operand[i] is not in the right place. Find
2071 it and swap it with whatever is already in I's place.
2072 K is where recog_data.operand[i] is now. J is where it
2073 should be. */
2074 int j, k, temp;
2076 k = temp_stack.top - (regno - FIRST_STACK_REG);
2077 j = (temp_stack.top
2078 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2080 temp = temp_stack.reg[k];
2081 temp_stack.reg[k] = temp_stack.reg[j];
2082 temp_stack.reg[j] = temp;
2086 /* Emit insns before INSN to make sure the reg-stack is in the right
2087 order. */
2089 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2091 /* Make the needed input register substitutions. Do death notes and
2092 clobbers too, because these are for inputs, not outputs. */
2094 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2095 if (STACK_REG_P (recog_data.operand[i]))
2097 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2099 gcc_assert (regnum >= 0);
2101 replace_reg (recog_data.operand_loc[i], regnum);
2104 for (i = 0; i < n_notes; i++)
2105 if (note_kind[i] == REG_DEAD)
2107 int regnum = get_hard_regnum (regstack, note_reg[i]);
2109 gcc_assert (regnum >= 0);
2111 replace_reg (note_loc[i], regnum);
2114 for (i = 0; i < n_clobbers; i++)
2116 /* It's OK for a CLOBBER to reference a reg that is not live.
2117 Don't try to replace it in that case. */
2118 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2120 if (regnum >= 0)
2122 /* Sigh - clobbers always have QImode. But replace_reg knows
2123 that these regs can't be MODE_INT and will assert. Just put
2124 the right reg there without calling replace_reg. */
2126 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2130 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2132 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2133 if (STACK_REG_P (recog_data.operand[i]))
2135 /* An input reg is implicitly popped if it is tied to an
2136 output, or if there is a CLOBBER for it. */
2137 int j;
2139 for (j = 0; j < n_clobbers; j++)
2140 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2141 break;
2143 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2145 /* recog_data.operand[i] might not be at the top of stack.
2146 But that's OK, because all we need to do is pop the
2147 right number of regs off of the top of the reg-stack.
2148 record_asm_stack_regs guaranteed that all implicitly
2149 popped regs were grouped at the top of the reg-stack. */
2151 CLEAR_HARD_REG_BIT (regstack->reg_set,
2152 regstack->reg[regstack->top]);
2153 regstack->top--;
2157 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2158 Note that there isn't any need to substitute register numbers.
2159 ??? Explain why this is true. */
2161 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2163 /* See if there is an output for this hard reg. */
2164 int j;
2166 for (j = 0; j < n_outputs; j++)
2167 if (STACK_REG_P (recog_data.operand[j])
2168 && REGNO (recog_data.operand[j]) == (unsigned) i)
2170 regstack->reg[++regstack->top] = i;
2171 SET_HARD_REG_BIT (regstack->reg_set, i);
2172 break;
2176 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2177 input that the asm didn't implicitly pop. If the asm didn't
2178 implicitly pop an input reg, that reg will still be live.
2180 Note that we can't use find_regno_note here: the register numbers
2181 in the death notes have already been substituted. */
2183 for (i = 0; i < n_outputs; i++)
2184 if (STACK_REG_P (recog_data.operand[i]))
2186 int j;
2188 for (j = 0; j < n_notes; j++)
2189 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2190 && note_kind[j] == REG_UNUSED)
2192 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2193 EMIT_AFTER);
2194 break;
2198 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2199 if (STACK_REG_P (recog_data.operand[i]))
2201 int j;
2203 for (j = 0; j < n_notes; j++)
2204 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2205 && note_kind[j] == REG_DEAD
2206 && TEST_HARD_REG_BIT (regstack->reg_set,
2207 REGNO (recog_data.operand[i])))
2209 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2210 EMIT_AFTER);
2211 break;
2216 /* Substitute stack hard reg numbers for stack virtual registers in
2217 INSN. Non-stack register numbers are not changed. REGSTACK is the
2218 current stack content. Insns may be emitted as needed to arrange the
2219 stack for the 387 based on the contents of the insn. Return whether
2220 a control flow insn was deleted in the process. */
2222 static bool
2223 subst_stack_regs (rtx insn, stack regstack)
2225 rtx *note_link, note;
2226 bool control_flow_insn_deleted = false;
2227 int i;
2229 if (CALL_P (insn))
2231 int top = regstack->top;
2233 /* If there are any floating point parameters to be passed in
2234 registers for this call, make sure they are in the right
2235 order. */
2237 if (top >= 0)
2239 straighten_stack (insn, regstack);
2241 /* Now mark the arguments as dead after the call. */
2243 while (regstack->top >= 0)
2245 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2246 regstack->top--;
2251 /* Do the actual substitution if any stack regs are mentioned.
2252 Since we only record whether entire insn mentions stack regs, and
2253 subst_stack_regs_pat only works for patterns that contain stack regs,
2254 we must check each pattern in a parallel here. A call_value_pop could
2255 fail otherwise. */
2257 if (stack_regs_mentioned (insn))
2259 int n_operands = asm_noperands (PATTERN (insn));
2260 if (n_operands >= 0)
2262 /* This insn is an `asm' with operands. Decode the operands,
2263 decide how many are inputs, and do register substitution.
2264 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2266 subst_asm_stack_regs (insn, regstack);
2267 return control_flow_insn_deleted;
2270 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2271 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2273 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2275 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2276 XVECEXP (PATTERN (insn), 0, i)
2277 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2278 control_flow_insn_deleted
2279 |= subst_stack_regs_pat (insn, regstack,
2280 XVECEXP (PATTERN (insn), 0, i));
2283 else
2284 control_flow_insn_deleted
2285 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2288 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2289 REG_UNUSED will already have been dealt with, so just return. */
2291 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2292 return control_flow_insn_deleted;
2294 /* If this a noreturn call, we can't insert pop insns after it.
2295 Instead, reset the stack state to empty. */
2296 if (CALL_P (insn)
2297 && find_reg_note (insn, REG_NORETURN, NULL))
2299 regstack->top = -1;
2300 CLEAR_HARD_REG_SET (regstack->reg_set);
2301 return control_flow_insn_deleted;
2304 /* If there is a REG_UNUSED note on a stack register on this insn,
2305 the indicated reg must be popped. The REG_UNUSED note is removed,
2306 since the form of the newly emitted pop insn references the reg,
2307 making it no longer `unset'. */
2309 note_link = &REG_NOTES (insn);
2310 for (note = *note_link; note; note = XEXP (note, 1))
2311 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2313 *note_link = XEXP (note, 1);
2314 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2316 else
2317 note_link = &XEXP (note, 1);
2319 return control_flow_insn_deleted;
2322 /* Change the organization of the stack so that it fits a new basic
2323 block. Some registers might have to be popped, but there can never be
2324 a register live in the new block that is not now live.
2326 Insert any needed insns before or after INSN, as indicated by
2327 WHERE. OLD is the original stack layout, and NEW is the desired
2328 form. OLD is updated to reflect the code emitted, i.e., it will be
2329 the same as NEW upon return.
2331 This function will not preserve block_end[]. But that information
2332 is no longer needed once this has executed. */
2334 static void
2335 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2337 int reg;
2338 int update_end = 0;
2340 /* Stack adjustments for the first insn in a block update the
2341 current_block's stack_in instead of inserting insns directly.
2342 compensate_edges will add the necessary code later. */
2343 if (current_block
2344 && starting_stack_p
2345 && where == EMIT_BEFORE)
2347 BLOCK_INFO (current_block)->stack_in = *new;
2348 starting_stack_p = false;
2349 *old = *new;
2350 return;
2353 /* We will be inserting new insns "backwards". If we are to insert
2354 after INSN, find the next insn, and insert before it. */
2356 if (where == EMIT_AFTER)
2358 if (current_block && BB_END (current_block) == insn)
2359 update_end = 1;
2360 insn = NEXT_INSN (insn);
2363 /* Pop any registers that are not needed in the new block. */
2365 /* If the destination block's stack already has a specified layout
2366 and contains two or more registers, use a more intelligent algorithm
2367 to pop registers that minimizes the number number of fxchs below. */
2368 if (new->top > 0)
2370 bool slots[REG_STACK_SIZE];
2371 int pops[REG_STACK_SIZE];
2372 int next, dest, topsrc;
2374 /* First pass to determine the free slots. */
2375 for (reg = 0; reg <= new->top; reg++)
2376 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2378 /* Second pass to allocate preferred slots. */
2379 topsrc = -1;
2380 for (reg = old->top; reg > new->top; reg--)
2381 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2383 dest = -1;
2384 for (next = 0; next <= new->top; next++)
2385 if (!slots[next] && new->reg[next] == old->reg[reg])
2387 /* If this is a preference for the new top of stack, record
2388 the fact by remembering it's old->reg in topsrc. */
2389 if (next == new->top)
2390 topsrc = reg;
2391 slots[next] = true;
2392 dest = next;
2393 break;
2395 pops[reg] = dest;
2397 else
2398 pops[reg] = reg;
2400 /* Intentionally, avoid placing the top of stack in it's correct
2401 location, if we still need to permute the stack below and we
2402 can usefully place it somewhere else. This is the case if any
2403 slot is still unallocated, in which case we should place the
2404 top of stack there. */
2405 if (topsrc != -1)
2406 for (reg = 0; reg < new->top; reg++)
2407 if (!slots[reg])
2409 pops[topsrc] = reg;
2410 slots[new->top] = false;
2411 slots[reg] = true;
2412 break;
2415 /* Third pass allocates remaining slots and emits pop insns. */
2416 next = new->top;
2417 for (reg = old->top; reg > new->top; reg--)
2419 dest = pops[reg];
2420 if (dest == -1)
2422 /* Find next free slot. */
2423 while (slots[next])
2424 next--;
2425 dest = next--;
2427 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2428 EMIT_BEFORE);
2431 else
2433 /* The following loop attempts to maximize the number of times we
2434 pop the top of the stack, as this permits the use of the faster
2435 ffreep instruction on platforms that support it. */
2436 int live, next;
2438 live = 0;
2439 for (reg = 0; reg <= old->top; reg++)
2440 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2441 live++;
2443 next = live;
2444 while (old->top >= live)
2445 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2447 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2448 next--;
2449 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2450 EMIT_BEFORE);
2452 else
2453 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2454 EMIT_BEFORE);
2457 if (new->top == -2)
2459 /* If the new block has never been processed, then it can inherit
2460 the old stack order. */
2462 new->top = old->top;
2463 memcpy (new->reg, old->reg, sizeof (new->reg));
2465 else
2467 /* This block has been entered before, and we must match the
2468 previously selected stack order. */
2470 /* By now, the only difference should be the order of the stack,
2471 not their depth or liveliness. */
2473 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2474 gcc_unreachable ();
2475 win:
2476 gcc_assert (old->top == new->top);
2478 /* If the stack is not empty (new->top != -1), loop here emitting
2479 swaps until the stack is correct.
2481 The worst case number of swaps emitted is N + 2, where N is the
2482 depth of the stack. In some cases, the reg at the top of
2483 stack may be correct, but swapped anyway in order to fix
2484 other regs. But since we never swap any other reg away from
2485 its correct slot, this algorithm will converge. */
2487 if (new->top != -1)
2490 /* Swap the reg at top of stack into the position it is
2491 supposed to be in, until the correct top of stack appears. */
2493 while (old->reg[old->top] != new->reg[new->top])
2495 for (reg = new->top; reg >= 0; reg--)
2496 if (new->reg[reg] == old->reg[old->top])
2497 break;
2499 gcc_assert (reg != -1);
2501 emit_swap_insn (insn, old,
2502 FP_MODE_REG (old->reg[reg], DFmode));
2505 /* See if any regs remain incorrect. If so, bring an
2506 incorrect reg to the top of stack, and let the while loop
2507 above fix it. */
2509 for (reg = new->top; reg >= 0; reg--)
2510 if (new->reg[reg] != old->reg[reg])
2512 emit_swap_insn (insn, old,
2513 FP_MODE_REG (old->reg[reg], DFmode));
2514 break;
2516 } while (reg >= 0);
2518 /* At this point there must be no differences. */
2520 for (reg = old->top; reg >= 0; reg--)
2521 gcc_assert (old->reg[reg] == new->reg[reg]);
2524 if (update_end)
2525 BB_END (current_block) = PREV_INSN (insn);
2528 /* Print stack configuration. */
2530 static void
2531 print_stack (FILE *file, stack s)
2533 if (! file)
2534 return;
2536 if (s->top == -2)
2537 fprintf (file, "uninitialized\n");
2538 else if (s->top == -1)
2539 fprintf (file, "empty\n");
2540 else
2542 int i;
2543 fputs ("[ ", file);
2544 for (i = 0; i <= s->top; ++i)
2545 fprintf (file, "%d ", s->reg[i]);
2546 fputs ("]\n", file);
2550 /* This function was doing life analysis. We now let the regular live
2551 code do it's job, so we only need to check some extra invariants
2552 that reg-stack expects. Primary among these being that all registers
2553 are initialized before use.
2555 The function returns true when code was emitted to CFG edges and
2556 commit_edge_insertions needs to be called. */
2558 static int
2559 convert_regs_entry (void)
2561 tree params = DECL_ARGUMENTS (current_function_decl);
2562 tree p;
2563 HARD_REG_SET incoming_regs;
2564 rtx inc_rtx;
2566 int inserted = 0;
2567 edge e;
2568 edge_iterator ei;
2570 /* Find out which registers were used as argument passing registers. */
2572 CLEAR_HARD_REG_SET (incoming_regs);
2573 for (p = params; p; p = TREE_CHAIN (p))
2575 inc_rtx = DECL_INCOMING_RTL (p);
2577 if (REG_P (inc_rtx)
2578 && IN_RANGE (REGNO (inc_rtx), FIRST_STACK_REG, LAST_STACK_REG))
2579 SET_HARD_REG_BIT (incoming_regs, REGNO (inc_rtx));
2582 /* Load something into remaining stack register live at function entry.
2583 Such live registers can be caused by uninitialized variables or
2584 functions not returning values on all paths. In order to keep
2585 the push/pop code happy, and to not scrog the register stack, we
2586 must put something in these registers. Use a QNaN.
2588 Note that we are inserting converted code here. This code is
2589 never seen by the convert_regs pass. */
2591 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2593 basic_block block = e->dest;
2594 block_info bi = BLOCK_INFO (block);
2595 int reg, top = -1;
2597 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2598 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2600 rtx init;
2602 bi->stack_in.reg[++top] = reg;
2604 /* Skip argument passing registers. */
2605 if (TEST_HARD_REG_BIT (incoming_regs, reg))
2606 continue;
2608 init = gen_rtx_SET (VOIDmode,
2609 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2610 not_a_num);
2611 insert_insn_on_edge (init, e);
2612 inserted = 1;
2615 bi->stack_in.top = top;
2618 return inserted;
2621 /* Construct the desired stack for function exit. This will either
2622 be `empty', or the function return value at top-of-stack. */
2624 static void
2625 convert_regs_exit (void)
2627 int value_reg_low, value_reg_high;
2628 stack output_stack;
2629 rtx retvalue;
2631 retvalue = stack_result (current_function_decl);
2632 value_reg_low = value_reg_high = -1;
2633 if (retvalue)
2635 value_reg_low = REGNO (retvalue);
2636 value_reg_high = value_reg_low
2637 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2640 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2641 if (value_reg_low == -1)
2642 output_stack->top = -1;
2643 else
2645 int reg;
2647 output_stack->top = value_reg_high - value_reg_low;
2648 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2650 output_stack->reg[value_reg_high - reg] = reg;
2651 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2656 /* Copy the stack info from the end of edge E's source block to the
2657 start of E's destination block. */
2659 static void
2660 propagate_stack (edge e)
2662 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2663 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2664 int reg;
2666 /* Preserve the order of the original stack, but check whether
2667 any pops are needed. */
2668 dest_stack->top = -1;
2669 for (reg = 0; reg <= src_stack->top; ++reg)
2670 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2671 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2675 /* Adjust the stack of edge E's source block on exit to match the stack
2676 of it's target block upon input. The stack layouts of both blocks
2677 should have been defined by now. */
2679 static bool
2680 compensate_edge (edge e)
2682 basic_block source = e->src, target = e->dest;
2683 stack target_stack = &BLOCK_INFO (target)->stack_in;
2684 stack source_stack = &BLOCK_INFO (source)->stack_out;
2685 struct stack_def regstack;
2686 int reg;
2688 if (dump_file)
2689 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2691 gcc_assert (target_stack->top != -2);
2693 /* Check whether stacks are identical. */
2694 if (target_stack->top == source_stack->top)
2696 for (reg = target_stack->top; reg >= 0; --reg)
2697 if (target_stack->reg[reg] != source_stack->reg[reg])
2698 break;
2700 if (reg == -1)
2702 if (dump_file)
2703 fprintf (dump_file, "no changes needed\n");
2704 return false;
2708 if (dump_file)
2710 fprintf (dump_file, "correcting stack to ");
2711 print_stack (dump_file, target_stack);
2714 /* Abnormal calls may appear to have values live in st(0), but the
2715 abnormal return path will not have actually loaded the values. */
2716 if (e->flags & EDGE_ABNORMAL_CALL)
2718 /* Assert that the lifetimes are as we expect -- one value
2719 live at st(0) on the end of the source block, and no
2720 values live at the beginning of the destination block.
2721 For complex return values, we may have st(1) live as well. */
2722 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2723 gcc_assert (target_stack->top == -1);
2724 return false;
2727 /* Handle non-call EH edges specially. The normal return path have
2728 values in registers. These will be popped en masse by the unwind
2729 library. */
2730 if (e->flags & EDGE_EH)
2732 gcc_assert (target_stack->top == -1);
2733 return false;
2736 /* We don't support abnormal edges. Global takes care to
2737 avoid any live register across them, so we should never
2738 have to insert instructions on such edges. */
2739 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2741 /* Make a copy of source_stack as change_stack is destructive. */
2742 regstack = *source_stack;
2744 /* It is better to output directly to the end of the block
2745 instead of to the edge, because emit_swap can do minimal
2746 insn scheduling. We can do this when there is only one
2747 edge out, and it is not abnormal. */
2748 if (EDGE_COUNT (source->succs) == 1)
2750 current_block = source;
2751 change_stack (BB_END (source), &regstack, target_stack,
2752 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2754 else
2756 rtx seq, after;
2758 current_block = NULL;
2759 start_sequence ();
2761 /* ??? change_stack needs some point to emit insns after. */
2762 after = emit_note (NOTE_INSN_DELETED);
2764 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2766 seq = get_insns ();
2767 end_sequence ();
2769 insert_insn_on_edge (seq, e);
2770 return true;
2772 return false;
2775 /* Traverse all non-entry edges in the CFG, and emit the necessary
2776 edge compensation code to change the stack from stack_out of the
2777 source block to the stack_in of the destination block. */
2779 static bool
2780 compensate_edges (void)
2782 bool inserted = false;
2783 basic_block bb;
2785 starting_stack_p = false;
2787 FOR_EACH_BB (bb)
2788 if (bb != ENTRY_BLOCK_PTR)
2790 edge e;
2791 edge_iterator ei;
2793 FOR_EACH_EDGE (e, ei, bb->succs)
2794 inserted |= compensate_edge (e);
2796 return inserted;
2799 /* Select the better of two edges E1 and E2 to use to determine the
2800 stack layout for their shared destination basic block. This is
2801 typically the more frequently executed. The edge E1 may be NULL
2802 (in which case E2 is returned), but E2 is always non-NULL. */
2804 static edge
2805 better_edge (edge e1, edge e2)
2807 if (!e1)
2808 return e2;
2810 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2811 return e1;
2812 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2813 return e2;
2815 if (e1->count > e2->count)
2816 return e1;
2817 if (e1->count < e2->count)
2818 return e2;
2820 /* Prefer critical edges to minimize inserting compensation code on
2821 critical edges. */
2823 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2824 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2826 /* Avoid non-deterministic behavior. */
2827 return (e1->src->index < e2->src->index) ? e1 : e2;
2830 /* Convert stack register references in one block. */
2832 static void
2833 convert_regs_1 (basic_block block)
2835 struct stack_def regstack;
2836 block_info bi = BLOCK_INFO (block);
2837 int reg;
2838 rtx insn, next;
2839 bool control_flow_insn_deleted = false;
2841 any_malformed_asm = false;
2843 /* Choose an initial stack layout, if one hasn't already been chosen. */
2844 if (bi->stack_in.top == -2)
2846 edge e, beste = NULL;
2847 edge_iterator ei;
2849 /* Select the best incoming edge (typically the most frequent) to
2850 use as a template for this basic block. */
2851 FOR_EACH_EDGE (e, ei, block->preds)
2852 if (BLOCK_INFO (e->src)->done)
2853 beste = better_edge (beste, e);
2855 if (beste)
2856 propagate_stack (beste);
2857 else
2859 /* No predecessors. Create an arbitrary input stack. */
2860 bi->stack_in.top = -1;
2861 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2862 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2863 bi->stack_in.reg[++bi->stack_in.top] = reg;
2867 if (dump_file)
2869 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2870 print_stack (dump_file, &bi->stack_in);
2873 /* Process all insns in this block. Keep track of NEXT so that we
2874 don't process insns emitted while substituting in INSN. */
2875 current_block = block;
2876 next = BB_HEAD (block);
2877 regstack = bi->stack_in;
2878 starting_stack_p = true;
2882 insn = next;
2883 next = NEXT_INSN (insn);
2885 /* Ensure we have not missed a block boundary. */
2886 gcc_assert (next);
2887 if (insn == BB_END (block))
2888 next = NULL;
2890 /* Don't bother processing unless there is a stack reg
2891 mentioned or if it's a CALL_INSN. */
2892 if (stack_regs_mentioned (insn)
2893 || CALL_P (insn))
2895 if (dump_file)
2897 fprintf (dump_file, " insn %d input stack: ",
2898 INSN_UID (insn));
2899 print_stack (dump_file, &regstack);
2901 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2902 starting_stack_p = false;
2905 while (next);
2907 if (dump_file)
2909 fprintf (dump_file, "Expected live registers [");
2910 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2911 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2912 fprintf (dump_file, " %d", reg);
2913 fprintf (dump_file, " ]\nOutput stack: ");
2914 print_stack (dump_file, &regstack);
2917 insn = BB_END (block);
2918 if (JUMP_P (insn))
2919 insn = PREV_INSN (insn);
2921 /* If the function is declared to return a value, but it returns one
2922 in only some cases, some registers might come live here. Emit
2923 necessary moves for them. */
2925 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2927 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2928 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2930 rtx set;
2932 if (dump_file)
2933 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2935 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2936 insn = emit_insn_after (set, insn);
2937 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2941 /* Amongst the insns possibly deleted during the substitution process above,
2942 might have been the only trapping insn in the block. We purge the now
2943 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2944 called at the end of convert_regs. The order in which we process the
2945 blocks ensures that we never delete an already processed edge.
2947 Note that, at this point, the CFG may have been damaged by the emission
2948 of instructions after an abnormal call, which moves the basic block end
2949 (and is the reason why we call fixup_abnormal_edges later). So we must
2950 be sure that the trapping insn has been deleted before trying to purge
2951 dead edges, otherwise we risk purging valid edges.
2953 ??? We are normally supposed not to delete trapping insns, so we pretend
2954 that the insns deleted above don't actually trap. It would have been
2955 better to detect this earlier and avoid creating the EH edge in the first
2956 place, still, but we don't have enough information at that time. */
2958 if (control_flow_insn_deleted)
2959 purge_dead_edges (block);
2961 /* Something failed if the stack lives don't match. If we had malformed
2962 asms, we zapped the instruction itself, but that didn't produce the
2963 same pattern of register kills as before. */
2964 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2965 gcc_assert (any_malformed_asm);
2966 win:
2967 bi->stack_out = regstack;
2968 bi->done = true;
2971 /* Convert registers in all blocks reachable from BLOCK. */
2973 static void
2974 convert_regs_2 (basic_block block)
2976 basic_block *stack, *sp;
2978 /* We process the blocks in a top-down manner, in a way such that one block
2979 is only processed after all its predecessors. The number of predecessors
2980 of every block has already been computed. */
2982 stack = XNEWVEC (basic_block, n_basic_blocks);
2983 sp = stack;
2985 *sp++ = block;
2989 edge e;
2990 edge_iterator ei;
2992 block = *--sp;
2994 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2995 some dead EH outgoing edge after the deletion of the trapping
2996 insn inside the block. Since the number of predecessors of
2997 BLOCK's successors was computed based on the initial edge set,
2998 we check the necessity to process some of these successors
2999 before such an edge deletion may happen. However, there is
3000 a pitfall: if BLOCK is the only predecessor of a successor and
3001 the edge between them happens to be deleted, the successor
3002 becomes unreachable and should not be processed. The problem
3003 is that there is no way to preventively detect this case so we
3004 stack the successor in all cases and hand over the task of
3005 fixing up the discrepancy to convert_regs_1. */
3007 FOR_EACH_EDGE (e, ei, block->succs)
3008 if (! (e->flags & EDGE_DFS_BACK))
3010 BLOCK_INFO (e->dest)->predecessors--;
3011 if (!BLOCK_INFO (e->dest)->predecessors)
3012 *sp++ = e->dest;
3015 convert_regs_1 (block);
3017 while (sp != stack);
3019 free (stack);
3022 /* Traverse all basic blocks in a function, converting the register
3023 references in each insn from the "flat" register file that gcc uses,
3024 to the stack-like registers the 387 uses. */
3026 static void
3027 convert_regs (void)
3029 int inserted;
3030 basic_block b;
3031 edge e;
3032 edge_iterator ei;
3034 /* Initialize uninitialized registers on function entry. */
3035 inserted = convert_regs_entry ();
3037 /* Construct the desired stack for function exit. */
3038 convert_regs_exit ();
3039 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3041 /* ??? Future: process inner loops first, and give them arbitrary
3042 initial stacks which emit_swap_insn can modify. This ought to
3043 prevent double fxch that often appears at the head of a loop. */
3045 /* Process all blocks reachable from all entry points. */
3046 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3047 convert_regs_2 (e->dest);
3049 /* ??? Process all unreachable blocks. Though there's no excuse
3050 for keeping these even when not optimizing. */
3051 FOR_EACH_BB (b)
3053 block_info bi = BLOCK_INFO (b);
3055 if (! bi->done)
3056 convert_regs_2 (b);
3059 inserted |= compensate_edges ();
3061 clear_aux_for_blocks ();
3063 fixup_abnormal_edges ();
3064 if (inserted)
3065 commit_edge_insertions ();
3067 if (dump_file)
3068 fputc ('\n', dump_file);
3071 /* Convert register usage from "flat" register file usage to a "stack
3072 register file. FILE is the dump file, if used.
3074 Construct a CFG and run life analysis. Then convert each insn one
3075 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3076 code duplication created when the converter inserts pop insns on
3077 the edges. */
3079 static bool
3080 reg_to_stack (void)
3082 basic_block bb;
3083 int i;
3084 int max_uid;
3086 /* Clean up previous run. */
3087 if (stack_regs_mentioned_data != NULL)
3088 VEC_free (char, heap, stack_regs_mentioned_data);
3090 /* See if there is something to do. Flow analysis is quite
3091 expensive so we might save some compilation time. */
3092 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3093 if (regs_ever_live[i])
3094 break;
3095 if (i > LAST_STACK_REG)
3096 return false;
3098 /* Ok, floating point instructions exist. If not optimizing,
3099 build the CFG and run life analysis.
3100 Also need to rebuild life when superblock scheduling is done
3101 as it don't update liveness yet. */
3102 if (!optimize
3103 || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3104 && flag_schedule_insns_after_reload))
3106 count_or_remove_death_notes (NULL, 1);
3107 life_analysis (PROP_DEATH_NOTES);
3109 mark_dfs_back_edges ();
3111 /* Set up block info for each basic block. */
3112 alloc_aux_for_blocks (sizeof (struct block_info_def));
3113 FOR_EACH_BB (bb)
3115 block_info bi = BLOCK_INFO (bb);
3116 edge_iterator ei;
3117 edge e;
3118 int reg;
3120 FOR_EACH_EDGE (e, ei, bb->preds)
3121 if (!(e->flags & EDGE_DFS_BACK)
3122 && e->src != ENTRY_BLOCK_PTR)
3123 bi->predecessors++;
3125 /* Set current register status at last instruction `uninitialized'. */
3126 bi->stack_in.top = -2;
3128 /* Copy live_at_end and live_at_start into temporaries. */
3129 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3131 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3132 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3133 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3134 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3138 /* Create the replacement registers up front. */
3139 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3141 enum machine_mode mode;
3142 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3143 mode != VOIDmode;
3144 mode = GET_MODE_WIDER_MODE (mode))
3145 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3146 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3147 mode != VOIDmode;
3148 mode = GET_MODE_WIDER_MODE (mode))
3149 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3152 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3154 /* A QNaN for initializing uninitialized variables.
3156 ??? We can't load from constant memory in PIC mode, because
3157 we're inserting these instructions before the prologue and
3158 the PIC register hasn't been set up. In that case, fall back
3159 on zero, which we can get from `ldz'. */
3161 if (flag_pic)
3162 not_a_num = CONST0_RTX (SFmode);
3163 else
3165 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3166 not_a_num = force_const_mem (SFmode, not_a_num);
3169 /* Allocate a cache for stack_regs_mentioned. */
3170 max_uid = get_max_uid ();
3171 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3172 memset (VEC_address (char, stack_regs_mentioned_data),
3173 0, sizeof (char) * max_uid + 1);
3175 convert_regs ();
3177 free_aux_for_blocks ();
3178 return true;
3180 #endif /* STACK_REGS */
3182 static bool
3183 gate_handle_stack_regs (void)
3185 #ifdef STACK_REGS
3186 return 1;
3187 #else
3188 return 0;
3189 #endif
3192 /* Convert register usage from flat register file usage to a stack
3193 register file. */
3194 static unsigned int
3195 rest_of_handle_stack_regs (void)
3197 #ifdef STACK_REGS
3198 if (reg_to_stack () && optimize)
3200 regstack_completed = 1;
3201 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3202 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3203 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3205 reorder_basic_blocks (0);
3206 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3209 else
3210 regstack_completed = 1;
3211 #endif
3212 return 0;
3215 struct tree_opt_pass pass_stack_regs =
3217 "stack", /* name */
3218 gate_handle_stack_regs, /* gate */
3219 rest_of_handle_stack_regs, /* execute */
3220 NULL, /* sub */
3221 NULL, /* next */
3222 0, /* static_pass_number */
3223 TV_REG_STACK, /* tv_id */
3224 0, /* properties_required */
3225 0, /* properties_provided */
3226 0, /* properties_destroyed */
3227 0, /* todo_flags_start */
3228 TODO_dump_func |
3229 TODO_ggc_collect, /* todo_flags_finish */
3230 'k' /* letter */