Daily bump.
[official-gcc.git] / gcc / loop-unroll.c
blob776b2e1f6b15f854d14cfb6364372129a9d2fcfc
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 /* Information about accumulators to expand. */
89 struct var_to_expand
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
103 /* Information about optimization applied in
104 the unrolled loop. */
106 struct opt_info
108 htab_t insns_to_split; /* A hashtable of insns to split. */
109 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
110 to expand. */
111 unsigned first_new_block; /* The first basic block that was
112 duplicated. */
113 basic_block loop_exit; /* The loop exit basic block. */
114 basic_block loop_preheader; /* The loop preheader basic block. */
117 static void decide_unrolling_and_peeling (int);
118 static void peel_loops_completely (int);
119 static void decide_peel_simple (struct loop *, int);
120 static void decide_peel_once_rolling (struct loop *, int);
121 static void decide_peel_completely (struct loop *, int);
122 static void decide_unroll_stupid (struct loop *, int);
123 static void decide_unroll_constant_iterations (struct loop *, int);
124 static void decide_unroll_runtime_iterations (struct loop *, int);
125 static void peel_loop_simple (struct loop *);
126 static void peel_loop_completely (struct loop *);
127 static void unroll_loop_stupid (struct loop *);
128 static void unroll_loop_constant_iterations (struct loop *);
129 static void unroll_loop_runtime_iterations (struct loop *);
130 static struct opt_info *analyze_insns_in_loop (struct loop *);
131 static void opt_info_start_duplication (struct opt_info *);
132 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
133 static void free_opt_info (struct opt_info *);
134 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
135 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
136 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
137 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
138 static int insert_var_expansion_initialization (void **, void *);
139 static int combine_var_copies_in_loop_exit (void **, void *);
140 static int release_var_copies (void **, void *);
141 static rtx get_expansion (struct var_to_expand *);
143 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
144 void
145 unroll_and_peel_loops (int flags)
147 struct loop *loop, *next;
148 bool check;
150 /* First perform complete loop peeling (it is almost surely a win,
151 and affects parameters for further decision a lot). */
152 peel_loops_completely (flags);
154 /* Now decide rest of unrolling and peeling. */
155 decide_unrolling_and_peeling (flags);
157 loop = current_loops->tree_root;
158 while (loop->inner)
159 loop = loop->inner;
161 /* Scan the loops, inner ones first. */
162 while (loop != current_loops->tree_root)
164 if (loop->next)
166 next = loop->next;
167 while (next->inner)
168 next = next->inner;
170 else
171 next = loop->outer;
173 check = true;
174 /* And perform the appropriate transformations. */
175 switch (loop->lpt_decision.decision)
177 case LPT_PEEL_COMPLETELY:
178 /* Already done. */
179 gcc_unreachable ();
180 case LPT_PEEL_SIMPLE:
181 peel_loop_simple (loop);
182 break;
183 case LPT_UNROLL_CONSTANT:
184 unroll_loop_constant_iterations (loop);
185 break;
186 case LPT_UNROLL_RUNTIME:
187 unroll_loop_runtime_iterations (loop);
188 break;
189 case LPT_UNROLL_STUPID:
190 unroll_loop_stupid (loop);
191 break;
192 case LPT_NONE:
193 check = false;
194 break;
195 default:
196 gcc_unreachable ();
198 if (check)
200 #ifdef ENABLE_CHECKING
201 verify_dominators (CDI_DOMINATORS);
202 verify_loop_structure ();
203 #endif
205 loop = next;
208 iv_analysis_done ();
211 /* Check whether exit of the LOOP is at the end of loop body. */
213 static bool
214 loop_exit_at_end_p (struct loop *loop)
216 struct niter_desc *desc = get_simple_loop_desc (loop);
217 rtx insn;
219 if (desc->in_edge->dest != loop->latch)
220 return false;
222 /* Check that the latch is empty. */
223 FOR_BB_INSNS (loop->latch, insn)
225 if (INSN_P (insn))
226 return false;
229 return true;
232 /* Depending on FLAGS, check whether to peel loops completely and do so. */
233 static void
234 peel_loops_completely (int flags)
236 struct loop *loop;
237 unsigned i;
239 /* Scan the loops, the inner ones first. */
240 for (i = current_loops->num - 1; i > 0; i--)
242 loop = current_loops->parray[i];
243 if (!loop)
244 continue;
246 loop->lpt_decision.decision = LPT_NONE;
248 if (dump_file)
249 fprintf (dump_file,
250 "\n;; *** Considering loop %d for complete peeling ***\n",
251 loop->num);
253 loop->ninsns = num_loop_insns (loop);
255 decide_peel_once_rolling (loop, flags);
256 if (loop->lpt_decision.decision == LPT_NONE)
257 decide_peel_completely (loop, flags);
259 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
261 peel_loop_completely (loop);
262 #ifdef ENABLE_CHECKING
263 verify_dominators (CDI_DOMINATORS);
264 verify_loop_structure ();
265 #endif
270 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
271 static void
272 decide_unrolling_and_peeling (int flags)
274 struct loop *loop = current_loops->tree_root, *next;
276 while (loop->inner)
277 loop = loop->inner;
279 /* Scan the loops, inner ones first. */
280 while (loop != current_loops->tree_root)
282 if (loop->next)
284 next = loop->next;
285 while (next->inner)
286 next = next->inner;
288 else
289 next = loop->outer;
291 loop->lpt_decision.decision = LPT_NONE;
293 if (dump_file)
294 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
296 /* Do not peel cold areas. */
297 if (!maybe_hot_bb_p (loop->header))
299 if (dump_file)
300 fprintf (dump_file, ";; Not considering loop, cold area\n");
301 loop = next;
302 continue;
305 /* Can the loop be manipulated? */
306 if (!can_duplicate_loop_p (loop))
308 if (dump_file)
309 fprintf (dump_file,
310 ";; Not considering loop, cannot duplicate\n");
311 loop = next;
312 continue;
315 /* Skip non-innermost loops. */
316 if (loop->inner)
318 if (dump_file)
319 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
320 loop = next;
321 continue;
324 loop->ninsns = num_loop_insns (loop);
325 loop->av_ninsns = average_num_loop_insns (loop);
327 /* Try transformations one by one in decreasing order of
328 priority. */
330 decide_unroll_constant_iterations (loop, flags);
331 if (loop->lpt_decision.decision == LPT_NONE)
332 decide_unroll_runtime_iterations (loop, flags);
333 if (loop->lpt_decision.decision == LPT_NONE)
334 decide_unroll_stupid (loop, flags);
335 if (loop->lpt_decision.decision == LPT_NONE)
336 decide_peel_simple (loop, flags);
338 loop = next;
342 /* Decide whether the LOOP is once rolling and suitable for complete
343 peeling. */
344 static void
345 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
347 struct niter_desc *desc;
349 if (dump_file)
350 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
352 /* Is the loop small enough? */
353 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
355 if (dump_file)
356 fprintf (dump_file, ";; Not considering loop, is too big\n");
357 return;
360 /* Check for simple loops. */
361 desc = get_simple_loop_desc (loop);
363 /* Check number of iterations. */
364 if (!desc->simple_p
365 || desc->assumptions
366 || desc->infinite
367 || !desc->const_iter
368 || desc->niter != 0)
370 if (dump_file)
371 fprintf (dump_file,
372 ";; Unable to prove that the loop rolls exactly once\n");
373 return;
376 /* Success. */
377 if (dump_file)
378 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
379 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
382 /* Decide whether the LOOP is suitable for complete peeling. */
383 static void
384 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
386 unsigned npeel;
387 struct niter_desc *desc;
389 if (dump_file)
390 fprintf (dump_file, "\n;; Considering peeling completely\n");
392 /* Skip non-innermost loops. */
393 if (loop->inner)
395 if (dump_file)
396 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
397 return;
400 /* Do not peel cold areas. */
401 if (!maybe_hot_bb_p (loop->header))
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, cold area\n");
405 return;
408 /* Can the loop be manipulated? */
409 if (!can_duplicate_loop_p (loop))
411 if (dump_file)
412 fprintf (dump_file,
413 ";; Not considering loop, cannot duplicate\n");
414 return;
417 /* npeel = number of iterations to peel. */
418 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
419 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
420 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
422 /* Is the loop small enough? */
423 if (!npeel)
425 if (dump_file)
426 fprintf (dump_file, ";; Not considering loop, is too big\n");
427 return;
430 /* Check for simple loops. */
431 desc = get_simple_loop_desc (loop);
433 /* Check number of iterations. */
434 if (!desc->simple_p
435 || desc->assumptions
436 || !desc->const_iter
437 || desc->infinite)
439 if (dump_file)
440 fprintf (dump_file,
441 ";; Unable to prove that the loop iterates constant times\n");
442 return;
445 if (desc->niter > npeel - 1)
447 if (dump_file)
449 fprintf (dump_file,
450 ";; Not peeling loop completely, rolls too much (");
451 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
452 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
454 return;
457 /* Success. */
458 if (dump_file)
459 fprintf (dump_file, ";; Decided to peel loop completely\n");
460 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
463 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
464 completely. The transformation done:
466 for (i = 0; i < 4; i++)
467 body;
471 i = 0;
472 body; i++;
473 body; i++;
474 body; i++;
475 body; i++;
477 static void
478 peel_loop_completely (struct loop *loop)
480 sbitmap wont_exit;
481 unsigned HOST_WIDE_INT npeel;
482 unsigned n_remove_edges, i;
483 edge *remove_edges, ein;
484 struct niter_desc *desc = get_simple_loop_desc (loop);
485 struct opt_info *opt_info = NULL;
487 npeel = desc->niter;
489 if (npeel)
491 bool ok;
493 wont_exit = sbitmap_alloc (npeel + 1);
494 sbitmap_ones (wont_exit);
495 RESET_BIT (wont_exit, 0);
496 if (desc->noloop_assumptions)
497 RESET_BIT (wont_exit, 1);
499 remove_edges = XCNEWVEC (edge, npeel);
500 n_remove_edges = 0;
502 if (flag_split_ivs_in_unroller)
503 opt_info = analyze_insns_in_loop (loop);
505 opt_info_start_duplication (opt_info);
506 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
507 npeel,
508 wont_exit, desc->out_edge,
509 remove_edges, &n_remove_edges,
510 DLTHE_FLAG_UPDATE_FREQ
511 | DLTHE_FLAG_COMPLETTE_PEEL
512 | (opt_info
513 ? DLTHE_RECORD_COPY_NUMBER : 0));
514 gcc_assert (ok);
516 free (wont_exit);
518 if (opt_info)
520 apply_opt_in_copies (opt_info, npeel, false, true);
521 free_opt_info (opt_info);
524 /* Remove the exit edges. */
525 for (i = 0; i < n_remove_edges; i++)
526 remove_path (remove_edges[i]);
527 free (remove_edges);
530 ein = desc->in_edge;
531 free_simple_loop_desc (loop);
533 /* Now remove the unreachable part of the last iteration and cancel
534 the loop. */
535 remove_path (ein);
537 if (dump_file)
538 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
541 /* Decide whether to unroll LOOP iterating constant number of times
542 and how much. */
544 static void
545 decide_unroll_constant_iterations (struct loop *loop, int flags)
547 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
548 struct niter_desc *desc;
550 if (!(flags & UAP_UNROLL))
552 /* We were not asked to, just return back silently. */
553 return;
556 if (dump_file)
557 fprintf (dump_file,
558 "\n;; Considering unrolling loop with constant "
559 "number of iterations\n");
561 /* nunroll = total number of copies of the original loop body in
562 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
563 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
564 nunroll_by_av
565 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
566 if (nunroll > nunroll_by_av)
567 nunroll = nunroll_by_av;
568 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
569 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
571 /* Skip big loops. */
572 if (nunroll <= 1)
574 if (dump_file)
575 fprintf (dump_file, ";; Not considering loop, is too big\n");
576 return;
579 /* Check for simple loops. */
580 desc = get_simple_loop_desc (loop);
582 /* Check number of iterations. */
583 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
585 if (dump_file)
586 fprintf (dump_file,
587 ";; Unable to prove that the loop iterates constant times\n");
588 return;
591 /* Check whether the loop rolls enough to consider. */
592 if (desc->niter < 2 * nunroll)
594 if (dump_file)
595 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
596 return;
599 /* Success; now compute number of iterations to unroll. We alter
600 nunroll so that as few as possible copies of loop body are
601 necessary, while still not decreasing the number of unrollings
602 too much (at most by 1). */
603 best_copies = 2 * nunroll + 10;
605 i = 2 * nunroll + 2;
606 if (i - 1 >= desc->niter)
607 i = desc->niter - 2;
609 for (; i >= nunroll - 1; i--)
611 unsigned exit_mod = desc->niter % (i + 1);
613 if (!loop_exit_at_end_p (loop))
614 n_copies = exit_mod + i + 1;
615 else if (exit_mod != (unsigned) i
616 || desc->noloop_assumptions != NULL_RTX)
617 n_copies = exit_mod + i + 2;
618 else
619 n_copies = i + 1;
621 if (n_copies < best_copies)
623 best_copies = n_copies;
624 best_unroll = i;
628 if (dump_file)
629 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
630 best_unroll + 1, best_copies, nunroll);
632 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
633 loop->lpt_decision.times = best_unroll;
635 if (dump_file)
636 fprintf (dump_file,
637 ";; Decided to unroll the constant times rolling loop, %d times.\n",
638 loop->lpt_decision.times);
641 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
642 times. The transformation does this:
644 for (i = 0; i < 102; i++)
645 body;
649 i = 0;
650 body; i++;
651 body; i++;
652 while (i < 102)
654 body; i++;
655 body; i++;
656 body; i++;
657 body; i++;
660 static void
661 unroll_loop_constant_iterations (struct loop *loop)
663 unsigned HOST_WIDE_INT niter;
664 unsigned exit_mod;
665 sbitmap wont_exit;
666 unsigned n_remove_edges, i;
667 edge *remove_edges;
668 unsigned max_unroll = loop->lpt_decision.times;
669 struct niter_desc *desc = get_simple_loop_desc (loop);
670 bool exit_at_end = loop_exit_at_end_p (loop);
671 struct opt_info *opt_info = NULL;
672 bool ok;
674 niter = desc->niter;
676 /* Should not get here (such loop should be peeled instead). */
677 gcc_assert (niter > max_unroll + 1);
679 exit_mod = niter % (max_unroll + 1);
681 wont_exit = sbitmap_alloc (max_unroll + 1);
682 sbitmap_ones (wont_exit);
684 remove_edges = XCNEWVEC (edge, max_unroll + exit_mod + 1);
685 n_remove_edges = 0;
686 if (flag_split_ivs_in_unroller
687 || flag_variable_expansion_in_unroller)
688 opt_info = analyze_insns_in_loop (loop);
690 if (!exit_at_end)
692 /* The exit is not at the end of the loop; leave exit test
693 in the first copy, so that the loops that start with test
694 of exit condition have continuous body after unrolling. */
696 if (dump_file)
697 fprintf (dump_file, ";; Condition on beginning of loop.\n");
699 /* Peel exit_mod iterations. */
700 RESET_BIT (wont_exit, 0);
701 if (desc->noloop_assumptions)
702 RESET_BIT (wont_exit, 1);
704 if (exit_mod)
706 opt_info_start_duplication (opt_info);
707 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
708 exit_mod,
709 wont_exit, desc->out_edge,
710 remove_edges, &n_remove_edges,
711 DLTHE_FLAG_UPDATE_FREQ
712 | (opt_info && exit_mod > 1
713 ? DLTHE_RECORD_COPY_NUMBER
714 : 0));
715 gcc_assert (ok);
717 if (opt_info && exit_mod > 1)
718 apply_opt_in_copies (opt_info, exit_mod, false, false);
720 desc->noloop_assumptions = NULL_RTX;
721 desc->niter -= exit_mod;
722 desc->niter_max -= exit_mod;
725 SET_BIT (wont_exit, 1);
727 else
729 /* Leave exit test in last copy, for the same reason as above if
730 the loop tests the condition at the end of loop body. */
732 if (dump_file)
733 fprintf (dump_file, ";; Condition on end of loop.\n");
735 /* We know that niter >= max_unroll + 2; so we do not need to care of
736 case when we would exit before reaching the loop. So just peel
737 exit_mod + 1 iterations. */
738 if (exit_mod != max_unroll
739 || desc->noloop_assumptions)
741 RESET_BIT (wont_exit, 0);
742 if (desc->noloop_assumptions)
743 RESET_BIT (wont_exit, 1);
745 opt_info_start_duplication (opt_info);
746 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
747 exit_mod + 1,
748 wont_exit, desc->out_edge,
749 remove_edges, &n_remove_edges,
750 DLTHE_FLAG_UPDATE_FREQ
751 | (opt_info && exit_mod > 0
752 ? DLTHE_RECORD_COPY_NUMBER
753 : 0));
754 gcc_assert (ok);
756 if (opt_info && exit_mod > 0)
757 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
759 desc->niter -= exit_mod + 1;
760 desc->niter_max -= exit_mod + 1;
761 desc->noloop_assumptions = NULL_RTX;
763 SET_BIT (wont_exit, 0);
764 SET_BIT (wont_exit, 1);
767 RESET_BIT (wont_exit, max_unroll);
770 /* Now unroll the loop. */
772 opt_info_start_duplication (opt_info);
773 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
774 max_unroll,
775 wont_exit, desc->out_edge,
776 remove_edges, &n_remove_edges,
777 DLTHE_FLAG_UPDATE_FREQ
778 | (opt_info
779 ? DLTHE_RECORD_COPY_NUMBER
780 : 0));
781 gcc_assert (ok);
783 if (opt_info)
785 apply_opt_in_copies (opt_info, max_unroll, true, true);
786 free_opt_info (opt_info);
789 free (wont_exit);
791 if (exit_at_end)
793 basic_block exit_block = get_bb_copy (desc->in_edge->src);
794 /* Find a new in and out edge; they are in the last copy we have made. */
796 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
798 desc->out_edge = EDGE_SUCC (exit_block, 0);
799 desc->in_edge = EDGE_SUCC (exit_block, 1);
801 else
803 desc->out_edge = EDGE_SUCC (exit_block, 1);
804 desc->in_edge = EDGE_SUCC (exit_block, 0);
808 desc->niter /= max_unroll + 1;
809 desc->niter_max /= max_unroll + 1;
810 desc->niter_expr = GEN_INT (desc->niter);
812 /* Remove the edges. */
813 for (i = 0; i < n_remove_edges; i++)
814 remove_path (remove_edges[i]);
815 free (remove_edges);
817 if (dump_file)
818 fprintf (dump_file,
819 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
820 max_unroll, num_loop_insns (loop));
823 /* Decide whether to unroll LOOP iterating runtime computable number of times
824 and how much. */
825 static void
826 decide_unroll_runtime_iterations (struct loop *loop, int flags)
828 unsigned nunroll, nunroll_by_av, i;
829 struct niter_desc *desc;
831 if (!(flags & UAP_UNROLL))
833 /* We were not asked to, just return back silently. */
834 return;
837 if (dump_file)
838 fprintf (dump_file,
839 "\n;; Considering unrolling loop with runtime "
840 "computable number of iterations\n");
842 /* nunroll = total number of copies of the original loop body in
843 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
844 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
845 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
846 if (nunroll > nunroll_by_av)
847 nunroll = nunroll_by_av;
848 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
849 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
851 /* Skip big loops. */
852 if (nunroll <= 1)
854 if (dump_file)
855 fprintf (dump_file, ";; Not considering loop, is too big\n");
856 return;
859 /* Check for simple loops. */
860 desc = get_simple_loop_desc (loop);
862 /* Check simpleness. */
863 if (!desc->simple_p || desc->assumptions)
865 if (dump_file)
866 fprintf (dump_file,
867 ";; Unable to prove that the number of iterations "
868 "can be counted in runtime\n");
869 return;
872 if (desc->const_iter)
874 if (dump_file)
875 fprintf (dump_file, ";; Loop iterates constant times\n");
876 return;
879 /* If we have profile feedback, check whether the loop rolls. */
880 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
882 if (dump_file)
883 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
884 return;
887 /* Success; now force nunroll to be power of 2, as we are unable to
888 cope with overflows in computation of number of iterations. */
889 for (i = 1; 2 * i <= nunroll; i *= 2)
890 continue;
892 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
893 loop->lpt_decision.times = i - 1;
895 if (dump_file)
896 fprintf (dump_file,
897 ";; Decided to unroll the runtime computable "
898 "times rolling loop, %d times.\n",
899 loop->lpt_decision.times);
902 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
903 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
904 and NULL is returned instead. */
906 basic_block
907 split_edge_and_insert (edge e, rtx insns)
909 basic_block bb;
911 if (!insns)
912 return NULL;
913 bb = split_edge (e);
914 emit_insn_after (insns, BB_END (bb));
915 bb->flags |= BB_SUPERBLOCK;
916 return bb;
919 /* Unroll LOOP for that we are able to count number of iterations in runtime
920 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
921 extra care for case n < 0):
923 for (i = 0; i < n; i++)
924 body;
928 i = 0;
929 mod = n % 4;
931 switch (mod)
933 case 3:
934 body; i++;
935 case 2:
936 body; i++;
937 case 1:
938 body; i++;
939 case 0: ;
942 while (i < n)
944 body; i++;
945 body; i++;
946 body; i++;
947 body; i++;
950 static void
951 unroll_loop_runtime_iterations (struct loop *loop)
953 rtx old_niter, niter, init_code, branch_code, tmp;
954 unsigned i, j, p;
955 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
956 unsigned n_dom_bbs;
957 sbitmap wont_exit;
958 int may_exit_copy;
959 unsigned n_peel, n_remove_edges;
960 edge *remove_edges, e;
961 bool extra_zero_check, last_may_exit;
962 unsigned max_unroll = loop->lpt_decision.times;
963 struct niter_desc *desc = get_simple_loop_desc (loop);
964 bool exit_at_end = loop_exit_at_end_p (loop);
965 struct opt_info *opt_info = NULL;
966 bool ok;
968 if (flag_split_ivs_in_unroller
969 || flag_variable_expansion_in_unroller)
970 opt_info = analyze_insns_in_loop (loop);
972 /* Remember blocks whose dominators will have to be updated. */
973 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
974 n_dom_bbs = 0;
976 body = get_loop_body (loop);
977 for (i = 0; i < loop->num_nodes; i++)
979 unsigned nldom;
980 basic_block *ldom;
982 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
983 for (j = 0; j < nldom; j++)
984 if (!flow_bb_inside_loop_p (loop, ldom[j]))
985 dom_bbs[n_dom_bbs++] = ldom[j];
987 free (ldom);
989 free (body);
991 if (!exit_at_end)
993 /* Leave exit in first copy (for explanation why see comment in
994 unroll_loop_constant_iterations). */
995 may_exit_copy = 0;
996 n_peel = max_unroll - 1;
997 extra_zero_check = true;
998 last_may_exit = false;
1000 else
1002 /* Leave exit in last copy (for explanation why see comment in
1003 unroll_loop_constant_iterations). */
1004 may_exit_copy = max_unroll;
1005 n_peel = max_unroll;
1006 extra_zero_check = false;
1007 last_may_exit = true;
1010 /* Get expression for number of iterations. */
1011 start_sequence ();
1012 old_niter = niter = gen_reg_rtx (desc->mode);
1013 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1014 if (tmp != niter)
1015 emit_move_insn (niter, tmp);
1017 /* Count modulo by ANDing it with max_unroll; we use the fact that
1018 the number of unrollings is a power of two, and thus this is correct
1019 even if there is overflow in the computation. */
1020 niter = expand_simple_binop (desc->mode, AND,
1021 niter,
1022 GEN_INT (max_unroll),
1023 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1025 init_code = get_insns ();
1026 end_sequence ();
1028 /* Precondition the loop. */
1029 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1031 remove_edges = XCNEWVEC (edge, max_unroll + n_peel + 1);
1032 n_remove_edges = 0;
1034 wont_exit = sbitmap_alloc (max_unroll + 2);
1036 /* Peel the first copy of loop body (almost always we must leave exit test
1037 here; the only exception is when we have extra zero check and the number
1038 of iterations is reliable. Also record the place of (possible) extra
1039 zero check. */
1040 sbitmap_zero (wont_exit);
1041 if (extra_zero_check
1042 && !desc->noloop_assumptions)
1043 SET_BIT (wont_exit, 1);
1044 ezc_swtch = loop_preheader_edge (loop)->src;
1045 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1046 1, wont_exit, desc->out_edge,
1047 remove_edges, &n_remove_edges,
1048 DLTHE_FLAG_UPDATE_FREQ);
1049 gcc_assert (ok);
1051 /* Record the place where switch will be built for preconditioning. */
1052 swtch = split_edge (loop_preheader_edge (loop));
1054 for (i = 0; i < n_peel; i++)
1056 /* Peel the copy. */
1057 sbitmap_zero (wont_exit);
1058 if (i != n_peel - 1 || !last_may_exit)
1059 SET_BIT (wont_exit, 1);
1060 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1061 1, wont_exit, desc->out_edge,
1062 remove_edges, &n_remove_edges,
1063 DLTHE_FLAG_UPDATE_FREQ);
1064 gcc_assert (ok);
1066 /* Create item for switch. */
1067 j = n_peel - i - (extra_zero_check ? 0 : 1);
1068 p = REG_BR_PROB_BASE / (i + 2);
1070 preheader = split_edge (loop_preheader_edge (loop));
1071 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1072 block_label (preheader), p,
1073 NULL_RTX);
1075 /* We rely on the fact that the compare and jump cannot be optimized out,
1076 and hence the cfg we create is correct. */
1077 gcc_assert (branch_code != NULL_RTX);
1079 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1080 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1081 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1082 e = make_edge (swtch, preheader,
1083 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1084 e->probability = p;
1087 if (extra_zero_check)
1089 /* Add branch for zero iterations. */
1090 p = REG_BR_PROB_BASE / (max_unroll + 1);
1091 swtch = ezc_swtch;
1092 preheader = split_edge (loop_preheader_edge (loop));
1093 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1094 block_label (preheader), p,
1095 NULL_RTX);
1096 gcc_assert (branch_code != NULL_RTX);
1098 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1099 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1100 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1101 e = make_edge (swtch, preheader,
1102 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1103 e->probability = p;
1106 /* Recount dominators for outer blocks. */
1107 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1109 /* And unroll loop. */
1111 sbitmap_ones (wont_exit);
1112 RESET_BIT (wont_exit, may_exit_copy);
1113 opt_info_start_duplication (opt_info);
1115 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1116 max_unroll,
1117 wont_exit, desc->out_edge,
1118 remove_edges, &n_remove_edges,
1119 DLTHE_FLAG_UPDATE_FREQ
1120 | (opt_info
1121 ? DLTHE_RECORD_COPY_NUMBER
1122 : 0));
1123 gcc_assert (ok);
1125 if (opt_info)
1127 apply_opt_in_copies (opt_info, max_unroll, true, true);
1128 free_opt_info (opt_info);
1131 free (wont_exit);
1133 if (exit_at_end)
1135 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1136 /* Find a new in and out edge; they are in the last copy we have
1137 made. */
1139 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1141 desc->out_edge = EDGE_SUCC (exit_block, 0);
1142 desc->in_edge = EDGE_SUCC (exit_block, 1);
1144 else
1146 desc->out_edge = EDGE_SUCC (exit_block, 1);
1147 desc->in_edge = EDGE_SUCC (exit_block, 0);
1151 /* Remove the edges. */
1152 for (i = 0; i < n_remove_edges; i++)
1153 remove_path (remove_edges[i]);
1154 free (remove_edges);
1156 /* We must be careful when updating the number of iterations due to
1157 preconditioning and the fact that the value must be valid at entry
1158 of the loop. After passing through the above code, we see that
1159 the correct new number of iterations is this: */
1160 gcc_assert (!desc->const_iter);
1161 desc->niter_expr =
1162 simplify_gen_binary (UDIV, desc->mode, old_niter,
1163 GEN_INT (max_unroll + 1));
1164 desc->niter_max /= max_unroll + 1;
1165 if (exit_at_end)
1167 desc->niter_expr =
1168 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1169 desc->noloop_assumptions = NULL_RTX;
1170 desc->niter_max--;
1173 if (dump_file)
1174 fprintf (dump_file,
1175 ";; Unrolled loop %d times, counting # of iterations "
1176 "in runtime, %i insns\n",
1177 max_unroll, num_loop_insns (loop));
1179 if (dom_bbs)
1180 free (dom_bbs);
1183 /* Decide whether to simply peel LOOP and how much. */
1184 static void
1185 decide_peel_simple (struct loop *loop, int flags)
1187 unsigned npeel;
1188 struct niter_desc *desc;
1190 if (!(flags & UAP_PEEL))
1192 /* We were not asked to, just return back silently. */
1193 return;
1196 if (dump_file)
1197 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1199 /* npeel = number of iterations to peel. */
1200 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1201 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1202 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1204 /* Skip big loops. */
1205 if (!npeel)
1207 if (dump_file)
1208 fprintf (dump_file, ";; Not considering loop, is too big\n");
1209 return;
1212 /* Check for simple loops. */
1213 desc = get_simple_loop_desc (loop);
1215 /* Check number of iterations. */
1216 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1218 if (dump_file)
1219 fprintf (dump_file, ";; Loop iterates constant times\n");
1220 return;
1223 /* Do not simply peel loops with branches inside -- it increases number
1224 of mispredicts. */
1225 if (num_loop_branches (loop) > 1)
1227 if (dump_file)
1228 fprintf (dump_file, ";; Not peeling, contains branches\n");
1229 return;
1232 if (loop->header->count)
1234 unsigned niter = expected_loop_iterations (loop);
1235 if (niter + 1 > npeel)
1237 if (dump_file)
1239 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1240 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1241 (HOST_WIDEST_INT) (niter + 1));
1242 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1243 npeel);
1245 return;
1247 npeel = niter + 1;
1249 else
1251 /* For now we have no good heuristics to decide whether loop peeling
1252 will be effective, so disable it. */
1253 if (dump_file)
1254 fprintf (dump_file,
1255 ";; Not peeling loop, no evidence it will be profitable\n");
1256 return;
1259 /* Success. */
1260 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1261 loop->lpt_decision.times = npeel;
1263 if (dump_file)
1264 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1265 loop->lpt_decision.times);
1268 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1269 while (cond)
1270 body;
1274 if (!cond) goto end;
1275 body;
1276 if (!cond) goto end;
1277 body;
1278 while (cond)
1279 body;
1280 end: ;
1282 static void
1283 peel_loop_simple (struct loop *loop)
1285 sbitmap wont_exit;
1286 unsigned npeel = loop->lpt_decision.times;
1287 struct niter_desc *desc = get_simple_loop_desc (loop);
1288 struct opt_info *opt_info = NULL;
1289 bool ok;
1291 if (flag_split_ivs_in_unroller && npeel > 1)
1292 opt_info = analyze_insns_in_loop (loop);
1294 wont_exit = sbitmap_alloc (npeel + 1);
1295 sbitmap_zero (wont_exit);
1297 opt_info_start_duplication (opt_info);
1299 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1300 npeel, wont_exit,
1301 NULL, NULL,
1302 NULL, DLTHE_FLAG_UPDATE_FREQ
1303 | (opt_info
1304 ? DLTHE_RECORD_COPY_NUMBER
1305 : 0));
1306 gcc_assert (ok);
1308 free (wont_exit);
1310 if (opt_info)
1312 apply_opt_in_copies (opt_info, npeel, false, false);
1313 free_opt_info (opt_info);
1316 if (desc->simple_p)
1318 if (desc->const_iter)
1320 desc->niter -= npeel;
1321 desc->niter_expr = GEN_INT (desc->niter);
1322 desc->noloop_assumptions = NULL_RTX;
1324 else
1326 /* We cannot just update niter_expr, as its value might be clobbered
1327 inside loop. We could handle this by counting the number into
1328 temporary just like we do in runtime unrolling, but it does not
1329 seem worthwhile. */
1330 free_simple_loop_desc (loop);
1333 if (dump_file)
1334 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1337 /* Decide whether to unroll LOOP stupidly and how much. */
1338 static void
1339 decide_unroll_stupid (struct loop *loop, int flags)
1341 unsigned nunroll, nunroll_by_av, i;
1342 struct niter_desc *desc;
1344 if (!(flags & UAP_UNROLL_ALL))
1346 /* We were not asked to, just return back silently. */
1347 return;
1350 if (dump_file)
1351 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1353 /* nunroll = total number of copies of the original loop body in
1354 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1355 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1356 nunroll_by_av
1357 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1358 if (nunroll > nunroll_by_av)
1359 nunroll = nunroll_by_av;
1360 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1361 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1363 /* Skip big loops. */
1364 if (nunroll <= 1)
1366 if (dump_file)
1367 fprintf (dump_file, ";; Not considering loop, is too big\n");
1368 return;
1371 /* Check for simple loops. */
1372 desc = get_simple_loop_desc (loop);
1374 /* Check simpleness. */
1375 if (desc->simple_p && !desc->assumptions)
1377 if (dump_file)
1378 fprintf (dump_file, ";; The loop is simple\n");
1379 return;
1382 /* Do not unroll loops with branches inside -- it increases number
1383 of mispredicts. */
1384 if (num_loop_branches (loop) > 1)
1386 if (dump_file)
1387 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1388 return;
1391 /* If we have profile feedback, check whether the loop rolls. */
1392 if (loop->header->count
1393 && expected_loop_iterations (loop) < 2 * nunroll)
1395 if (dump_file)
1396 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1397 return;
1400 /* Success. Now force nunroll to be power of 2, as it seems that this
1401 improves results (partially because of better alignments, partially
1402 because of some dark magic). */
1403 for (i = 1; 2 * i <= nunroll; i *= 2)
1404 continue;
1406 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1407 loop->lpt_decision.times = i - 1;
1409 if (dump_file)
1410 fprintf (dump_file,
1411 ";; Decided to unroll the loop stupidly, %d times.\n",
1412 loop->lpt_decision.times);
1415 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1416 while (cond)
1417 body;
1421 while (cond)
1423 body;
1424 if (!cond) break;
1425 body;
1426 if (!cond) break;
1427 body;
1428 if (!cond) break;
1429 body;
1432 static void
1433 unroll_loop_stupid (struct loop *loop)
1435 sbitmap wont_exit;
1436 unsigned nunroll = loop->lpt_decision.times;
1437 struct niter_desc *desc = get_simple_loop_desc (loop);
1438 struct opt_info *opt_info = NULL;
1439 bool ok;
1441 if (flag_split_ivs_in_unroller
1442 || flag_variable_expansion_in_unroller)
1443 opt_info = analyze_insns_in_loop (loop);
1446 wont_exit = sbitmap_alloc (nunroll + 1);
1447 sbitmap_zero (wont_exit);
1448 opt_info_start_duplication (opt_info);
1450 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1451 nunroll, wont_exit,
1452 NULL, NULL, NULL,
1453 DLTHE_FLAG_UPDATE_FREQ
1454 | (opt_info
1455 ? DLTHE_RECORD_COPY_NUMBER
1456 : 0));
1457 gcc_assert (ok);
1459 if (opt_info)
1461 apply_opt_in_copies (opt_info, nunroll, true, true);
1462 free_opt_info (opt_info);
1465 free (wont_exit);
1467 if (desc->simple_p)
1469 /* We indeed may get here provided that there are nontrivial assumptions
1470 for a loop to be really simple. We could update the counts, but the
1471 problem is that we are unable to decide which exit will be taken
1472 (not really true in case the number of iterations is constant,
1473 but noone will do anything with this information, so we do not
1474 worry about it). */
1475 desc->simple_p = false;
1478 if (dump_file)
1479 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1480 nunroll, num_loop_insns (loop));
1483 /* A hash function for information about insns to split. */
1485 static hashval_t
1486 si_info_hash (const void *ivts)
1488 return (hashval_t) INSN_UID (((struct iv_to_split *) ivts)->insn);
1491 /* An equality functions for information about insns to split. */
1493 static int
1494 si_info_eq (const void *ivts1, const void *ivts2)
1496 const struct iv_to_split *i1 = ivts1;
1497 const struct iv_to_split *i2 = ivts2;
1499 return i1->insn == i2->insn;
1502 /* Return a hash for VES, which is really a "var_to_expand *". */
1504 static hashval_t
1505 ve_info_hash (const void *ves)
1507 return (hashval_t) INSN_UID (((struct var_to_expand *) ves)->insn);
1510 /* Return true if IVTS1 and IVTS2 (which are really both of type
1511 "var_to_expand *") refer to the same instruction. */
1513 static int
1514 ve_info_eq (const void *ivts1, const void *ivts2)
1516 const struct var_to_expand *i1 = ivts1;
1517 const struct var_to_expand *i2 = ivts2;
1519 return i1->insn == i2->insn;
1522 /* Returns true if REG is referenced in one insn in LOOP. */
1524 bool
1525 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1527 basic_block *body, bb;
1528 unsigned i;
1529 int count_ref = 0;
1530 rtx insn;
1532 body = get_loop_body (loop);
1533 for (i = 0; i < loop->num_nodes; i++)
1535 bb = body[i];
1537 FOR_BB_INSNS (bb, insn)
1539 if (rtx_referenced_p (reg, insn))
1540 count_ref++;
1543 return (count_ref == 1);
1546 /* Determine whether INSN contains an accumulator
1547 which can be expanded into separate copies,
1548 one for each copy of the LOOP body.
1550 for (i = 0 ; i < n; i++)
1551 sum += a[i];
1555 sum += a[i]
1556 ....
1557 i = i+1;
1558 sum1 += a[i]
1559 ....
1560 i = i+1
1561 sum2 += a[i];
1562 ....
1564 Return NULL if INSN contains no opportunity for expansion of accumulator.
1565 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1566 information and return a pointer to it.
1569 static struct var_to_expand *
1570 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1572 rtx set, dest, src, op1;
1573 struct var_to_expand *ves;
1574 enum machine_mode mode1, mode2;
1576 set = single_set (insn);
1577 if (!set)
1578 return NULL;
1580 dest = SET_DEST (set);
1581 src = SET_SRC (set);
1583 if (GET_CODE (src) != PLUS
1584 && GET_CODE (src) != MINUS
1585 && GET_CODE (src) != MULT)
1586 return NULL;
1588 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1589 in MD. But if there is no optab to generate the insn, we can not
1590 perform the variable expansion. This can happen if an MD provides
1591 an insn but not a named pattern to generate it, for example to avoid
1592 producing code that needs additional mode switches like for x87/mmx.
1594 So we check have_insn_for which looks for an optab for the operation
1595 in SRC. If it doesn't exist, we can't perform the expansion even
1596 though INSN is valid. */
1597 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1598 return NULL;
1600 if (!XEXP (src, 0))
1601 return NULL;
1603 op1 = XEXP (src, 0);
1605 if (!REG_P (dest)
1606 && !(GET_CODE (dest) == SUBREG
1607 && REG_P (SUBREG_REG (dest))))
1608 return NULL;
1610 if (!rtx_equal_p (dest, op1))
1611 return NULL;
1613 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1614 return NULL;
1616 if (rtx_referenced_p (dest, XEXP (src, 1)))
1617 return NULL;
1619 mode1 = GET_MODE (dest);
1620 mode2 = GET_MODE (XEXP (src, 1));
1621 if ((FLOAT_MODE_P (mode1)
1622 || FLOAT_MODE_P (mode2))
1623 && !flag_unsafe_math_optimizations)
1624 return NULL;
1626 /* Record the accumulator to expand. */
1627 ves = XNEW (struct var_to_expand);
1628 ves->insn = insn;
1629 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1630 ves->reg = copy_rtx (dest);
1631 ves->op = GET_CODE (src);
1632 ves->expansion_count = 0;
1633 ves->reuse_expansion = 0;
1634 return ves;
1637 /* Determine whether there is an induction variable in INSN that
1638 we would like to split during unrolling.
1640 I.e. replace
1642 i = i + 1;
1644 i = i + 1;
1646 i = i + 1;
1649 type chains by
1651 i0 = i + 1
1653 i = i0 + 1
1655 i = i0 + 2
1658 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1659 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1660 pointer to it. */
1662 static struct iv_to_split *
1663 analyze_iv_to_split_insn (rtx insn)
1665 rtx set, dest;
1666 struct rtx_iv iv;
1667 struct iv_to_split *ivts;
1668 bool ok;
1670 /* For now we just split the basic induction variables. Later this may be
1671 extended for example by selecting also addresses of memory references. */
1672 set = single_set (insn);
1673 if (!set)
1674 return NULL;
1676 dest = SET_DEST (set);
1677 if (!REG_P (dest))
1678 return NULL;
1680 if (!biv_p (insn, dest))
1681 return NULL;
1683 ok = iv_analyze_result (insn, dest, &iv);
1685 /* This used to be an assert under the assumption that if biv_p returns
1686 true that iv_analyze_result must also return true. However, that
1687 assumption is not strictly correct as evidenced by pr25569.
1689 Returning NULL when iv_analyze_result returns false is safe and
1690 avoids the problems in pr25569 until the iv_analyze_* routines
1691 can be fixed, which is apparently hard and time consuming
1692 according to their author. */
1693 if (! ok)
1694 return NULL;
1696 if (iv.step == const0_rtx
1697 || iv.mode != iv.extend_mode)
1698 return NULL;
1700 /* Record the insn to split. */
1701 ivts = XNEW (struct iv_to_split);
1702 ivts->insn = insn;
1703 ivts->base_var = NULL_RTX;
1704 ivts->step = iv.step;
1705 ivts->n_loc = 1;
1706 ivts->loc[0] = 1;
1708 return ivts;
1711 /* Determines which of insns in LOOP can be optimized.
1712 Return a OPT_INFO struct with the relevant hash tables filled
1713 with all insns to be optimized. The FIRST_NEW_BLOCK field
1714 is undefined for the return value. */
1716 static struct opt_info *
1717 analyze_insns_in_loop (struct loop *loop)
1719 basic_block *body, bb;
1720 unsigned i;
1721 struct opt_info *opt_info = XCNEW (struct opt_info);
1722 rtx insn;
1723 struct iv_to_split *ivts = NULL;
1724 struct var_to_expand *ves = NULL;
1725 PTR *slot1;
1726 PTR *slot2;
1727 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1728 edge exit;
1729 bool can_apply = false;
1731 iv_analysis_loop_init (loop);
1733 body = get_loop_body (loop);
1735 if (flag_split_ivs_in_unroller)
1736 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1737 si_info_hash, si_info_eq, free);
1739 /* Record the loop exit bb and loop preheader before the unrolling. */
1740 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1742 if (VEC_length (edge, edges) == 1)
1744 exit = VEC_index (edge, edges, 0);
1745 if (!(exit->flags & EDGE_COMPLEX))
1747 opt_info->loop_exit = split_edge (exit);
1748 can_apply = true;
1752 if (flag_variable_expansion_in_unroller
1753 && can_apply)
1754 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1755 ve_info_hash, ve_info_eq, free);
1757 for (i = 0; i < loop->num_nodes; i++)
1759 bb = body[i];
1760 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1761 continue;
1763 FOR_BB_INSNS (bb, insn)
1765 if (!INSN_P (insn))
1766 continue;
1768 if (opt_info->insns_to_split)
1769 ivts = analyze_iv_to_split_insn (insn);
1771 if (ivts)
1773 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1774 *slot1 = ivts;
1775 continue;
1778 if (opt_info->insns_with_var_to_expand)
1779 ves = analyze_insn_to_expand_var (loop, insn);
1781 if (ves)
1783 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1784 *slot2 = ves;
1789 VEC_free (edge, heap, edges);
1790 free (body);
1791 return opt_info;
1794 /* Called just before loop duplication. Records start of duplicated area
1795 to OPT_INFO. */
1797 static void
1798 opt_info_start_duplication (struct opt_info *opt_info)
1800 if (opt_info)
1801 opt_info->first_new_block = last_basic_block;
1804 /* Determine the number of iterations between initialization of the base
1805 variable and the current copy (N_COPY). N_COPIES is the total number
1806 of newly created copies. UNROLLING is true if we are unrolling
1807 (not peeling) the loop. */
1809 static unsigned
1810 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1812 if (unrolling)
1814 /* If we are unrolling, initialization is done in the original loop
1815 body (number 0). */
1816 return n_copy;
1818 else
1820 /* If we are peeling, the copy in that the initialization occurs has
1821 number 1. The original loop (number 0) is the last. */
1822 if (n_copy)
1823 return n_copy - 1;
1824 else
1825 return n_copies;
1829 /* Locate in EXPR the expression corresponding to the location recorded
1830 in IVTS, and return a pointer to the RTX for this location. */
1832 static rtx *
1833 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1835 unsigned i;
1836 rtx *ret = &expr;
1838 for (i = 0; i < ivts->n_loc; i++)
1839 ret = &XEXP (*ret, ivts->loc[i]);
1841 return ret;
1844 /* Allocate basic variable for the induction variable chain. Callback for
1845 htab_traverse. */
1847 static int
1848 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1850 struct iv_to_split *ivts = *slot;
1851 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1853 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1855 return 1;
1858 /* Insert initialization of basic variable of IVTS before INSN, taking
1859 the initial value from INSN. */
1861 static void
1862 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1864 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1865 rtx seq;
1867 start_sequence ();
1868 expr = force_operand (expr, ivts->base_var);
1869 if (expr != ivts->base_var)
1870 emit_move_insn (ivts->base_var, expr);
1871 seq = get_insns ();
1872 end_sequence ();
1874 emit_insn_before (seq, insn);
1877 /* Replace the use of induction variable described in IVTS in INSN
1878 by base variable + DELTA * step. */
1880 static void
1881 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1883 rtx expr, *loc, seq, incr, var;
1884 enum machine_mode mode = GET_MODE (ivts->base_var);
1885 rtx src, dest, set;
1887 /* Construct base + DELTA * step. */
1888 if (!delta)
1889 expr = ivts->base_var;
1890 else
1892 incr = simplify_gen_binary (MULT, mode,
1893 ivts->step, gen_int_mode (delta, mode));
1894 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1895 ivts->base_var, incr);
1898 /* Figure out where to do the replacement. */
1899 loc = get_ivts_expr (single_set (insn), ivts);
1901 /* If we can make the replacement right away, we're done. */
1902 if (validate_change (insn, loc, expr, 0))
1903 return;
1905 /* Otherwise, force EXPR into a register and try again. */
1906 start_sequence ();
1907 var = gen_reg_rtx (mode);
1908 expr = force_operand (expr, var);
1909 if (expr != var)
1910 emit_move_insn (var, expr);
1911 seq = get_insns ();
1912 end_sequence ();
1913 emit_insn_before (seq, insn);
1915 if (validate_change (insn, loc, var, 0))
1916 return;
1918 /* The last chance. Try recreating the assignment in insn
1919 completely from scratch. */
1920 set = single_set (insn);
1921 gcc_assert (set);
1923 start_sequence ();
1924 *loc = var;
1925 src = copy_rtx (SET_SRC (set));
1926 dest = copy_rtx (SET_DEST (set));
1927 src = force_operand (src, dest);
1928 if (src != dest)
1929 emit_move_insn (dest, src);
1930 seq = get_insns ();
1931 end_sequence ();
1933 emit_insn_before (seq, insn);
1934 delete_insn (insn);
1938 /* Return one expansion of the accumulator recorded in struct VE. */
1940 static rtx
1941 get_expansion (struct var_to_expand *ve)
1943 rtx reg;
1945 if (ve->reuse_expansion == 0)
1946 reg = ve->reg;
1947 else
1948 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1950 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1951 ve->reuse_expansion = 0;
1952 else
1953 ve->reuse_expansion++;
1955 return reg;
1959 /* Given INSN replace the uses of the accumulator recorded in VE
1960 with a new register. */
1962 static void
1963 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1965 rtx new_reg, set;
1966 bool really_new_expansion = false;
1968 set = single_set (insn);
1969 gcc_assert (set);
1971 /* Generate a new register only if the expansion limit has not been
1972 reached. Else reuse an already existing expansion. */
1973 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1975 really_new_expansion = true;
1976 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1978 else
1979 new_reg = get_expansion (ve);
1981 validate_change (insn, &SET_DEST (set), new_reg, 1);
1982 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1984 if (apply_change_group ())
1985 if (really_new_expansion)
1987 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1988 ve->expansion_count++;
1992 /* Initialize the variable expansions in loop preheader.
1993 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1994 basic block where the initialization of the expansions
1995 should take place. */
1997 static int
1998 insert_var_expansion_initialization (void **slot, void *place_p)
2000 struct var_to_expand *ve = *slot;
2001 basic_block place = (basic_block)place_p;
2002 rtx seq, var, zero_init, insn;
2003 unsigned i;
2005 if (VEC_length (rtx, ve->var_expansions) == 0)
2006 return 1;
2008 start_sequence ();
2009 if (ve->op == PLUS || ve->op == MINUS)
2010 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2012 zero_init = CONST0_RTX (GET_MODE (var));
2013 emit_move_insn (var, zero_init);
2015 else if (ve->op == MULT)
2016 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2018 zero_init = CONST1_RTX (GET_MODE (var));
2019 emit_move_insn (var, zero_init);
2022 seq = get_insns ();
2023 end_sequence ();
2025 insn = BB_HEAD (place);
2026 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2027 insn = NEXT_INSN (insn);
2029 emit_insn_after (seq, insn);
2030 /* Continue traversing the hash table. */
2031 return 1;
2034 /* Combine the variable expansions at the loop exit.
2035 Callbacks for htab_traverse. PLACE_P is the loop exit
2036 basic block where the summation of the expansions should
2037 take place. */
2039 static int
2040 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2042 struct var_to_expand *ve = *slot;
2043 basic_block place = (basic_block)place_p;
2044 rtx sum = ve->reg;
2045 rtx expr, seq, var, insn;
2046 unsigned i;
2048 if (VEC_length (rtx, ve->var_expansions) == 0)
2049 return 1;
2051 start_sequence ();
2052 if (ve->op == PLUS || ve->op == MINUS)
2053 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2055 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2056 var, sum);
2058 else if (ve->op == MULT)
2059 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2061 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2062 var, sum);
2065 expr = force_operand (sum, ve->reg);
2066 if (expr != ve->reg)
2067 emit_move_insn (ve->reg, expr);
2068 seq = get_insns ();
2069 end_sequence ();
2071 insn = BB_HEAD (place);
2072 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2073 insn = NEXT_INSN (insn);
2075 emit_insn_after (seq, insn);
2077 /* Continue traversing the hash table. */
2078 return 1;
2081 /* Apply loop optimizations in loop copies using the
2082 data which gathered during the unrolling. Structure
2083 OPT_INFO record that data.
2085 UNROLLING is true if we unrolled (not peeled) the loop.
2086 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2087 the loop (as it should happen in complete unrolling, but not in ordinary
2088 peeling of the loop). */
2090 static void
2091 apply_opt_in_copies (struct opt_info *opt_info,
2092 unsigned n_copies, bool unrolling,
2093 bool rewrite_original_loop)
2095 unsigned i, delta;
2096 basic_block bb, orig_bb;
2097 rtx insn, orig_insn, next;
2098 struct iv_to_split ivts_templ, *ivts;
2099 struct var_to_expand ve_templ, *ves;
2101 /* Sanity check -- we need to put initialization in the original loop
2102 body. */
2103 gcc_assert (!unrolling || rewrite_original_loop);
2105 /* Allocate the basic variables (i0). */
2106 if (opt_info->insns_to_split)
2107 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2109 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2111 bb = BASIC_BLOCK (i);
2112 orig_bb = get_bb_original (bb);
2114 /* bb->aux holds position in copy sequence initialized by
2115 duplicate_loop_to_header_edge. */
2116 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2117 unrolling);
2118 bb->aux = 0;
2119 orig_insn = BB_HEAD (orig_bb);
2120 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2122 next = NEXT_INSN (insn);
2123 if (!INSN_P (insn))
2124 continue;
2126 while (!INSN_P (orig_insn))
2127 orig_insn = NEXT_INSN (orig_insn);
2129 ivts_templ.insn = orig_insn;
2130 ve_templ.insn = orig_insn;
2132 /* Apply splitting iv optimization. */
2133 if (opt_info->insns_to_split)
2135 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2137 if (ivts)
2139 gcc_assert (GET_CODE (PATTERN (insn))
2140 == GET_CODE (PATTERN (orig_insn)));
2142 if (!delta)
2143 insert_base_initialization (ivts, insn);
2144 split_iv (ivts, insn, delta);
2147 /* Apply variable expansion optimization. */
2148 if (unrolling && opt_info->insns_with_var_to_expand)
2150 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2151 if (ves)
2153 gcc_assert (GET_CODE (PATTERN (insn))
2154 == GET_CODE (PATTERN (orig_insn)));
2155 expand_var_during_unrolling (ves, insn);
2158 orig_insn = NEXT_INSN (orig_insn);
2162 if (!rewrite_original_loop)
2163 return;
2165 /* Initialize the variable expansions in the loop preheader
2166 and take care of combining them at the loop exit. */
2167 if (opt_info->insns_with_var_to_expand)
2169 htab_traverse (opt_info->insns_with_var_to_expand,
2170 insert_var_expansion_initialization,
2171 opt_info->loop_preheader);
2172 htab_traverse (opt_info->insns_with_var_to_expand,
2173 combine_var_copies_in_loop_exit,
2174 opt_info->loop_exit);
2177 /* Rewrite also the original loop body. Find them as originals of the blocks
2178 in the last copied iteration, i.e. those that have
2179 get_bb_copy (get_bb_original (bb)) == bb. */
2180 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2182 bb = BASIC_BLOCK (i);
2183 orig_bb = get_bb_original (bb);
2184 if (get_bb_copy (orig_bb) != bb)
2185 continue;
2187 delta = determine_split_iv_delta (0, n_copies, unrolling);
2188 for (orig_insn = BB_HEAD (orig_bb);
2189 orig_insn != NEXT_INSN (BB_END (bb));
2190 orig_insn = next)
2192 next = NEXT_INSN (orig_insn);
2194 if (!INSN_P (orig_insn))
2195 continue;
2197 ivts_templ.insn = orig_insn;
2198 if (opt_info->insns_to_split)
2200 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2201 if (ivts)
2203 if (!delta)
2204 insert_base_initialization (ivts, orig_insn);
2205 split_iv (ivts, orig_insn, delta);
2206 continue;
2214 /* Release the data structures used for the variable expansion
2215 optimization. Callbacks for htab_traverse. */
2217 static int
2218 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2220 struct var_to_expand *ve = *slot;
2222 VEC_free (rtx, heap, ve->var_expansions);
2224 /* Continue traversing the hash table. */
2225 return 1;
2228 /* Release OPT_INFO. */
2230 static void
2231 free_opt_info (struct opt_info *opt_info)
2233 if (opt_info->insns_to_split)
2234 htab_delete (opt_info->insns_to_split);
2235 if (opt_info->insns_with_var_to_expand)
2237 htab_traverse (opt_info->insns_with_var_to_expand,
2238 release_var_copies, NULL);
2239 htab_delete (opt_info->insns_with_var_to_expand);
2241 free (opt_info);