Daily bump.
[official-gcc.git] / gcc / gcse.c
blob0518e4c597ac438b00061c32a6b2965904e102ad
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
172 #include "tree-pass.h"
173 #include "hashtab.h"
175 /* Propagate flow information through back edges and thus enable PRE's
176 moving loop invariant calculations out of loops.
178 Originally this tended to create worse overall code, but several
179 improvements during the development of PRE seem to have made following
180 back edges generally a win.
182 Note much of the loop invariant code motion done here would normally
183 be done by loop.c, which has more heuristics for when to move invariants
184 out of loops. At some point we might need to move some of those
185 heuristics into gcse.c. */
187 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
188 are a superset of those done by GCSE.
190 We perform the following steps:
192 1) Compute basic block information.
194 2) Compute table of places where registers are set.
196 3) Perform copy/constant propagation.
198 4) Perform global cse using lazy code motion if not optimizing
199 for size, or code hoisting if we are.
201 5) Perform another pass of copy/constant propagation.
203 Two passes of copy/constant propagation are done because the first one
204 enables more GCSE and the second one helps to clean up the copies that
205 GCSE creates. This is needed more for PRE than for Classic because Classic
206 GCSE will try to use an existing register containing the common
207 subexpression rather than create a new one. This is harder to do for PRE
208 because of the code motion (which Classic GCSE doesn't do).
210 Expressions we are interested in GCSE-ing are of the form
211 (set (pseudo-reg) (expression)).
212 Function want_to_gcse_p says what these are.
214 PRE handles moving invariant expressions out of loops (by treating them as
215 partially redundant).
217 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218 assignment) based GVN (global value numbering). L. T. Simpson's paper
219 (Rice University) on value numbering is a useful reference for this.
221 **********************
223 We used to support multiple passes but there are diminishing returns in
224 doing so. The first pass usually makes 90% of the changes that are doable.
225 A second pass can make a few more changes made possible by the first pass.
226 Experiments show any further passes don't make enough changes to justify
227 the expense.
229 A study of spec92 using an unlimited number of passes:
230 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
234 It was found doing copy propagation between each pass enables further
235 substitutions.
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass. The parameter
239 max-gcse-passes can be modified if one wants to experiment.
241 **********************
243 The steps for PRE are:
245 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
247 2) Perform the data flow analysis for PRE.
249 3) Delete the redundant instructions
251 4) Insert the required copies [if any] that make the partially
252 redundant instructions fully redundant.
254 5) For other reaching expressions, insert an instruction to copy the value
255 to a newly created pseudo that will reach the redundant instruction.
257 The deletion is done first so that when we do insertions we
258 know which pseudo reg to use.
260 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261 argue it is not. The number of iterations for the algorithm to converge
262 is typically 2-4 so I don't view it as that expensive (relatively speaking).
264 PRE GCSE depends heavily on the second CSE pass to clean up the copies
265 we create. To make an expression reach the place where it's redundant,
266 the result of the expression is copied to a new register, and the redundant
267 expression is deleted by replacing it with this new register. Classic GCSE
268 doesn't have this problem as much as it computes the reaching defs of
269 each register in each block and thus can try to use an existing
270 register. */
272 /* GCSE global vars. */
274 /* Note whether or not we should run jump optimization after gcse. We
275 want to do this for two cases.
277 * If we changed any jumps via cprop.
279 * If we added any labels via edge splitting. */
280 static int run_jump_opt_after_gcse;
282 /* An obstack for our working variables. */
283 static struct obstack gcse_obstack;
285 struct reg_use {rtx reg_rtx; };
287 /* Hash table of expressions. */
289 struct expr
291 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
292 rtx expr;
293 /* Index in the available expression bitmaps. */
294 int bitmap_index;
295 /* Next entry with the same hash. */
296 struct expr *next_same_hash;
297 /* List of anticipatable occurrences in basic blocks in the function.
298 An "anticipatable occurrence" is one that is the first occurrence in the
299 basic block, the operands are not modified in the basic block prior
300 to the occurrence and the output is not used between the start of
301 the block and the occurrence. */
302 struct occr *antic_occr;
303 /* List of available occurrence in basic blocks in the function.
304 An "available occurrence" is one that is the last occurrence in the
305 basic block and the operands are not modified by following statements in
306 the basic block [including this insn]. */
307 struct occr *avail_occr;
308 /* Non-null if the computation is PRE redundant.
309 The value is the newly created pseudo-reg to record a copy of the
310 expression in all the places that reach the redundant copy. */
311 rtx reaching_reg;
314 /* Occurrence of an expression.
315 There is one per basic block. If a pattern appears more than once the
316 last appearance is used [or first for anticipatable expressions]. */
318 struct occr
320 /* Next occurrence of this expression. */
321 struct occr *next;
322 /* The insn that computes the expression. */
323 rtx insn;
324 /* Nonzero if this [anticipatable] occurrence has been deleted. */
325 char deleted_p;
326 /* Nonzero if this [available] occurrence has been copied to
327 reaching_reg. */
328 /* ??? This is mutually exclusive with deleted_p, so they could share
329 the same byte. */
330 char copied_p;
333 /* Expression and copy propagation hash tables.
334 Each hash table is an array of buckets.
335 ??? It is known that if it were an array of entries, structure elements
336 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
337 not clear whether in the final analysis a sufficient amount of memory would
338 be saved as the size of the available expression bitmaps would be larger
339 [one could build a mapping table without holes afterwards though].
340 Someday I'll perform the computation and figure it out. */
342 struct hash_table
344 /* The table itself.
345 This is an array of `expr_hash_table_size' elements. */
346 struct expr **table;
348 /* Size of the hash table, in elements. */
349 unsigned int size;
351 /* Number of hash table elements. */
352 unsigned int n_elems;
354 /* Whether the table is expression of copy propagation one. */
355 int set_p;
358 /* Expression hash table. */
359 static struct hash_table expr_hash_table;
361 /* Copy propagation hash table. */
362 static struct hash_table set_hash_table;
364 /* Mapping of uids to cuids.
365 Only real insns get cuids. */
366 static int *uid_cuid;
368 /* Highest UID in UID_CUID. */
369 static int max_uid;
371 /* Get the cuid of an insn. */
372 #ifdef ENABLE_CHECKING
373 #define INSN_CUID(INSN) \
374 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
375 #else
376 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
377 #endif
379 /* Number of cuids. */
380 static int max_cuid;
382 /* Mapping of cuids to insns. */
383 static rtx *cuid_insn;
385 /* Get insn from cuid. */
386 #define CUID_INSN(CUID) (cuid_insn[CUID])
388 /* Maximum register number in function prior to doing gcse + 1.
389 Registers created during this pass have regno >= max_gcse_regno.
390 This is named with "gcse" to not collide with global of same name. */
391 static unsigned int max_gcse_regno;
393 /* Table of registers that are modified.
395 For each register, each element is a list of places where the pseudo-reg
396 is set.
398 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
399 requires knowledge of which blocks kill which regs [and thus could use
400 a bitmap instead of the lists `reg_set_table' uses].
402 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
403 num-regs) [however perhaps it may be useful to keep the data as is]. One
404 advantage of recording things this way is that `reg_set_table' is fairly
405 sparse with respect to pseudo regs but for hard regs could be fairly dense
406 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
407 up functions like compute_transp since in the case of pseudo-regs we only
408 need to iterate over the number of times a pseudo-reg is set, not over the
409 number of basic blocks [clearly there is a bit of a slow down in the cases
410 where a pseudo is set more than once in a block, however it is believed
411 that the net effect is to speed things up]. This isn't done for hard-regs
412 because recording call-clobbered hard-regs in `reg_set_table' at each
413 function call can consume a fair bit of memory, and iterating over
414 hard-regs stored this way in compute_transp will be more expensive. */
416 typedef struct reg_set
418 /* The next setting of this register. */
419 struct reg_set *next;
420 /* The index of the block where it was set. */
421 int bb_index;
422 } reg_set;
424 static reg_set **reg_set_table;
426 /* Size of `reg_set_table'.
427 The table starts out at max_gcse_regno + slop, and is enlarged as
428 necessary. */
429 static int reg_set_table_size;
431 /* Amount to grow `reg_set_table' by when it's full. */
432 #define REG_SET_TABLE_SLOP 100
434 /* This is a list of expressions which are MEMs and will be used by load
435 or store motion.
436 Load motion tracks MEMs which aren't killed by
437 anything except itself. (i.e., loads and stores to a single location).
438 We can then allow movement of these MEM refs with a little special
439 allowance. (all stores copy the same value to the reaching reg used
440 for the loads). This means all values used to store into memory must have
441 no side effects so we can re-issue the setter value.
442 Store Motion uses this structure as an expression table to track stores
443 which look interesting, and might be moveable towards the exit block. */
445 struct ls_expr
447 struct expr * expr; /* Gcse expression reference for LM. */
448 rtx pattern; /* Pattern of this mem. */
449 rtx pattern_regs; /* List of registers mentioned by the mem. */
450 rtx loads; /* INSN list of loads seen. */
451 rtx stores; /* INSN list of stores seen. */
452 struct ls_expr * next; /* Next in the list. */
453 int invalid; /* Invalid for some reason. */
454 int index; /* If it maps to a bitmap index. */
455 unsigned int hash_index; /* Index when in a hash table. */
456 rtx reaching_reg; /* Register to use when re-writing. */
459 /* Array of implicit set patterns indexed by basic block index. */
460 static rtx *implicit_sets;
462 /* Head of the list of load/store memory refs. */
463 static struct ls_expr * pre_ldst_mems = NULL;
465 /* Hashtable for the load/store memory refs. */
466 static htab_t pre_ldst_table = NULL;
468 /* Bitmap containing one bit for each register in the program.
469 Used when performing GCSE to track which registers have been set since
470 the start of the basic block. */
471 static regset reg_set_bitmap;
473 /* For each block, a bitmap of registers set in the block.
474 This is used by compute_transp.
475 It is computed during hash table computation and not by compute_sets
476 as it includes registers added since the last pass (or between cprop and
477 gcse) and it's currently not easy to realloc sbitmap vectors. */
478 static sbitmap *reg_set_in_block;
480 /* Array, indexed by basic block number for a list of insns which modify
481 memory within that block. */
482 static rtx * modify_mem_list;
483 static bitmap modify_mem_list_set;
485 /* This array parallels modify_mem_list, but is kept canonicalized. */
486 static rtx * canon_modify_mem_list;
488 /* Bitmap indexed by block numbers to record which blocks contain
489 function calls. */
490 static bitmap blocks_with_calls;
492 /* Various variables for statistics gathering. */
494 /* Memory used in a pass.
495 This isn't intended to be absolutely precise. Its intent is only
496 to keep an eye on memory usage. */
497 static int bytes_used;
499 /* GCSE substitutions made. */
500 static int gcse_subst_count;
501 /* Number of copy instructions created. */
502 static int gcse_create_count;
503 /* Number of local constants propagated. */
504 static int local_const_prop_count;
505 /* Number of local copies propagated. */
506 static int local_copy_prop_count;
507 /* Number of global constants propagated. */
508 static int global_const_prop_count;
509 /* Number of global copies propagated. */
510 static int global_copy_prop_count;
512 /* For available exprs */
513 static sbitmap *ae_kill, *ae_gen;
515 static void compute_can_copy (void);
516 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
517 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
518 static void *grealloc (void *, size_t);
519 static void *gcse_alloc (unsigned long);
520 static void alloc_gcse_mem (void);
521 static void free_gcse_mem (void);
522 static void alloc_reg_set_mem (int);
523 static void free_reg_set_mem (void);
524 static void record_one_set (int, rtx);
525 static void record_set_info (rtx, rtx, void *);
526 static void compute_sets (void);
527 static void hash_scan_insn (rtx, struct hash_table *, int);
528 static void hash_scan_set (rtx, rtx, struct hash_table *);
529 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
530 static void hash_scan_call (rtx, rtx, struct hash_table *);
531 static int want_to_gcse_p (rtx);
532 static bool can_assign_to_reg_p (rtx);
533 static bool gcse_constant_p (rtx);
534 static int oprs_unchanged_p (rtx, rtx, int);
535 static int oprs_anticipatable_p (rtx, rtx);
536 static int oprs_available_p (rtx, rtx);
537 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
538 struct hash_table *);
539 static void insert_set_in_table (rtx, rtx, struct hash_table *);
540 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
541 static unsigned int hash_set (int, int);
542 static int expr_equiv_p (rtx, rtx);
543 static void record_last_reg_set_info (rtx, int);
544 static void record_last_mem_set_info (rtx);
545 static void record_last_set_info (rtx, rtx, void *);
546 static void compute_hash_table (struct hash_table *);
547 static void alloc_hash_table (int, struct hash_table *, int);
548 static void free_hash_table (struct hash_table *);
549 static void compute_hash_table_work (struct hash_table *);
550 static void dump_hash_table (FILE *, const char *, struct hash_table *);
551 static struct expr *lookup_set (unsigned int, struct hash_table *);
552 static struct expr *next_set (unsigned int, struct expr *);
553 static void reset_opr_set_tables (void);
554 static int oprs_not_set_p (rtx, rtx);
555 static void mark_call (rtx);
556 static void mark_set (rtx, rtx);
557 static void mark_clobber (rtx, rtx);
558 static void mark_oprs_set (rtx);
559 static void alloc_cprop_mem (int, int);
560 static void free_cprop_mem (void);
561 static void compute_transp (rtx, int, sbitmap *, int);
562 static void compute_transpout (void);
563 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
564 struct hash_table *);
565 static void compute_cprop_data (void);
566 static void find_used_regs (rtx *, void *);
567 static int try_replace_reg (rtx, rtx, rtx);
568 static struct expr *find_avail_set (int, rtx);
569 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
570 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
571 static int load_killed_in_block_p (basic_block, int, rtx, int);
572 static void canon_list_insert (rtx, rtx, void *);
573 static int cprop_insn (rtx, int);
574 static int cprop (int);
575 static void find_implicit_sets (void);
576 static int one_cprop_pass (int, bool, bool);
577 static bool constprop_register (rtx, rtx, rtx, bool);
578 static struct expr *find_bypass_set (int, int);
579 static bool reg_killed_on_edge (rtx, edge);
580 static int bypass_block (basic_block, rtx, rtx);
581 static int bypass_conditional_jumps (void);
582 static void alloc_pre_mem (int, int);
583 static void free_pre_mem (void);
584 static void compute_pre_data (void);
585 static int pre_expr_reaches_here_p (basic_block, struct expr *,
586 basic_block);
587 static void insert_insn_end_bb (struct expr *, basic_block, int);
588 static void pre_insert_copy_insn (struct expr *, rtx);
589 static void pre_insert_copies (void);
590 static int pre_delete (void);
591 static int pre_gcse (void);
592 static int one_pre_gcse_pass (int);
593 static void add_label_notes (rtx, rtx);
594 static void alloc_code_hoist_mem (int, int);
595 static void free_code_hoist_mem (void);
596 static void compute_code_hoist_vbeinout (void);
597 static void compute_code_hoist_data (void);
598 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
599 static void hoist_code (void);
600 static int one_code_hoisting_pass (void);
601 static rtx process_insert_insn (struct expr *);
602 static int pre_edge_insert (struct edge_list *, struct expr **);
603 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
604 basic_block, char *);
605 static struct ls_expr * ldst_entry (rtx);
606 static void free_ldst_entry (struct ls_expr *);
607 static void free_ldst_mems (void);
608 static void print_ldst_list (FILE *);
609 static struct ls_expr * find_rtx_in_ldst (rtx);
610 static int enumerate_ldsts (void);
611 static inline struct ls_expr * first_ls_expr (void);
612 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
613 static int simple_mem (rtx);
614 static void invalidate_any_buried_refs (rtx);
615 static void compute_ld_motion_mems (void);
616 static void trim_ld_motion_mems (void);
617 static void update_ld_motion_stores (struct expr *);
618 static void reg_set_info (rtx, rtx, void *);
619 static void reg_clear_last_set (rtx, rtx, void *);
620 static bool store_ops_ok (rtx, int *);
621 static rtx extract_mentioned_regs (rtx);
622 static rtx extract_mentioned_regs_helper (rtx, rtx);
623 static void find_moveable_store (rtx, int *, int *);
624 static int compute_store_table (void);
625 static bool load_kills_store (rtx, rtx, int);
626 static bool find_loads (rtx, rtx, int);
627 static bool store_killed_in_insn (rtx, rtx, rtx, int);
628 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
629 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
630 static void build_store_vectors (void);
631 static void insert_insn_start_bb (rtx, basic_block);
632 static int insert_store (struct ls_expr *, edge);
633 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
634 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
635 static void delete_store (struct ls_expr *, basic_block);
636 static void free_store_memory (void);
637 static void store_motion (void);
638 static void free_insn_expr_list_list (rtx *);
639 static void clear_modify_mem_tables (void);
640 static void free_modify_mem_tables (void);
641 static rtx gcse_emit_move_after (rtx, rtx, rtx);
642 static void local_cprop_find_used_regs (rtx *, void *);
643 static bool do_local_cprop (rtx, rtx, bool, rtx*);
644 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
645 static void local_cprop_pass (bool);
646 static bool is_too_expensive (const char *);
649 /* Entry point for global common subexpression elimination.
650 F is the first instruction in the function. Return nonzero if a
651 change is mode. */
653 static int
654 gcse_main (rtx f ATTRIBUTE_UNUSED)
656 int changed, pass;
657 /* Bytes used at start of pass. */
658 int initial_bytes_used;
659 /* Maximum number of bytes used by a pass. */
660 int max_pass_bytes;
661 /* Point to release obstack data from for each pass. */
662 char *gcse_obstack_bottom;
664 /* We do not construct an accurate cfg in functions which call
665 setjmp, so just punt to be safe. */
666 if (current_function_calls_setjmp)
667 return 0;
669 /* Assume that we do not need to run jump optimizations after gcse. */
670 run_jump_opt_after_gcse = 0;
672 /* Identify the basic block information for this function, including
673 successors and predecessors. */
674 max_gcse_regno = max_reg_num ();
676 if (dump_file)
677 dump_flow_info (dump_file, dump_flags);
679 /* Return if there's nothing to do, or it is too expensive. */
680 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
681 || is_too_expensive (_("GCSE disabled")))
682 return 0;
684 gcc_obstack_init (&gcse_obstack);
685 bytes_used = 0;
687 /* We need alias. */
688 init_alias_analysis ();
689 /* Record where pseudo-registers are set. This data is kept accurate
690 during each pass. ??? We could also record hard-reg information here
691 [since it's unchanging], however it is currently done during hash table
692 computation.
694 It may be tempting to compute MEM set information here too, but MEM sets
695 will be subject to code motion one day and thus we need to compute
696 information about memory sets when we build the hash tables. */
698 alloc_reg_set_mem (max_gcse_regno);
699 compute_sets ();
701 pass = 0;
702 initial_bytes_used = bytes_used;
703 max_pass_bytes = 0;
704 gcse_obstack_bottom = gcse_alloc (1);
705 changed = 1;
706 while (changed && pass < MAX_GCSE_PASSES)
708 changed = 0;
709 if (dump_file)
710 fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
712 /* Initialize bytes_used to the space for the pred/succ lists,
713 and the reg_set_table data. */
714 bytes_used = initial_bytes_used;
716 /* Each pass may create new registers, so recalculate each time. */
717 max_gcse_regno = max_reg_num ();
719 alloc_gcse_mem ();
721 /* Don't allow constant propagation to modify jumps
722 during this pass. */
723 timevar_push (TV_CPROP1);
724 changed = one_cprop_pass (pass + 1, false, false);
725 timevar_pop (TV_CPROP1);
727 if (optimize_size)
728 /* Do nothing. */ ;
729 else
731 timevar_push (TV_PRE);
732 changed |= one_pre_gcse_pass (pass + 1);
733 /* We may have just created new basic blocks. Release and
734 recompute various things which are sized on the number of
735 basic blocks. */
736 if (changed)
738 free_modify_mem_tables ();
739 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
740 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
742 free_reg_set_mem ();
743 alloc_reg_set_mem (max_reg_num ());
744 compute_sets ();
745 run_jump_opt_after_gcse = 1;
746 timevar_pop (TV_PRE);
749 if (max_pass_bytes < bytes_used)
750 max_pass_bytes = bytes_used;
752 /* Free up memory, then reallocate for code hoisting. We can
753 not re-use the existing allocated memory because the tables
754 will not have info for the insns or registers created by
755 partial redundancy elimination. */
756 free_gcse_mem ();
758 /* It does not make sense to run code hoisting unless we are optimizing
759 for code size -- it rarely makes programs faster, and can make
760 them bigger if we did partial redundancy elimination (when optimizing
761 for space, we don't run the partial redundancy algorithms). */
762 if (optimize_size)
764 timevar_push (TV_HOIST);
765 max_gcse_regno = max_reg_num ();
766 alloc_gcse_mem ();
767 changed |= one_code_hoisting_pass ();
768 free_gcse_mem ();
770 if (max_pass_bytes < bytes_used)
771 max_pass_bytes = bytes_used;
772 timevar_pop (TV_HOIST);
775 if (dump_file)
777 fprintf (dump_file, "\n");
778 fflush (dump_file);
781 obstack_free (&gcse_obstack, gcse_obstack_bottom);
782 pass++;
785 /* Do one last pass of copy propagation, including cprop into
786 conditional jumps. */
788 max_gcse_regno = max_reg_num ();
789 alloc_gcse_mem ();
790 /* This time, go ahead and allow cprop to alter jumps. */
791 timevar_push (TV_CPROP2);
792 one_cprop_pass (pass + 1, true, false);
793 timevar_pop (TV_CPROP2);
794 free_gcse_mem ();
796 if (dump_file)
798 fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
799 current_function_name (), n_basic_blocks);
800 fprintf (dump_file, "%d pass%s, %d bytes\n\n",
801 pass, pass > 1 ? "es" : "", max_pass_bytes);
804 obstack_free (&gcse_obstack, NULL);
805 free_reg_set_mem ();
807 /* We are finished with alias. */
808 end_alias_analysis ();
809 allocate_reg_info (max_reg_num (), FALSE, FALSE);
811 if (!optimize_size && flag_gcse_sm)
813 timevar_push (TV_LSM);
814 store_motion ();
815 timevar_pop (TV_LSM);
818 /* Record where pseudo-registers are set. */
819 return run_jump_opt_after_gcse;
822 /* Misc. utilities. */
824 /* Nonzero for each mode that supports (set (reg) (reg)).
825 This is trivially true for integer and floating point values.
826 It may or may not be true for condition codes. */
827 static char can_copy[(int) NUM_MACHINE_MODES];
829 /* Compute which modes support reg/reg copy operations. */
831 static void
832 compute_can_copy (void)
834 int i;
835 #ifndef AVOID_CCMODE_COPIES
836 rtx reg, insn;
837 #endif
838 memset (can_copy, 0, NUM_MACHINE_MODES);
840 start_sequence ();
841 for (i = 0; i < NUM_MACHINE_MODES; i++)
842 if (GET_MODE_CLASS (i) == MODE_CC)
844 #ifdef AVOID_CCMODE_COPIES
845 can_copy[i] = 0;
846 #else
847 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
848 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
849 if (recog (PATTERN (insn), insn, NULL) >= 0)
850 can_copy[i] = 1;
851 #endif
853 else
854 can_copy[i] = 1;
856 end_sequence ();
859 /* Returns whether the mode supports reg/reg copy operations. */
861 bool
862 can_copy_p (enum machine_mode mode)
864 static bool can_copy_init_p = false;
866 if (! can_copy_init_p)
868 compute_can_copy ();
869 can_copy_init_p = true;
872 return can_copy[mode] != 0;
875 /* Cover function to xmalloc to record bytes allocated. */
877 static void *
878 gmalloc (size_t size)
880 bytes_used += size;
881 return xmalloc (size);
884 /* Cover function to xcalloc to record bytes allocated. */
886 static void *
887 gcalloc (size_t nelem, size_t elsize)
889 bytes_used += nelem * elsize;
890 return xcalloc (nelem, elsize);
893 /* Cover function to xrealloc.
894 We don't record the additional size since we don't know it.
895 It won't affect memory usage stats much anyway. */
897 static void *
898 grealloc (void *ptr, size_t size)
900 return xrealloc (ptr, size);
903 /* Cover function to obstack_alloc. */
905 static void *
906 gcse_alloc (unsigned long size)
908 bytes_used += size;
909 return obstack_alloc (&gcse_obstack, size);
912 /* Allocate memory for the cuid mapping array,
913 and reg/memory set tracking tables.
915 This is called at the start of each pass. */
917 static void
918 alloc_gcse_mem (void)
920 int i;
921 basic_block bb;
922 rtx insn;
924 /* Find the largest UID and create a mapping from UIDs to CUIDs.
925 CUIDs are like UIDs except they increase monotonically, have no gaps,
926 and only apply to real insns.
927 (Actually, there are gaps, for insn that are not inside a basic block.
928 but we should never see those anyway, so this is OK.) */
930 max_uid = get_max_uid ();
931 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
932 i = 0;
933 FOR_EACH_BB (bb)
934 FOR_BB_INSNS (bb, insn)
936 if (INSN_P (insn))
937 uid_cuid[INSN_UID (insn)] = i++;
938 else
939 uid_cuid[INSN_UID (insn)] = i;
942 /* Create a table mapping cuids to insns. */
944 max_cuid = i;
945 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
946 i = 0;
947 FOR_EACH_BB (bb)
948 FOR_BB_INSNS (bb, insn)
949 if (INSN_P (insn))
950 CUID_INSN (i++) = insn;
952 /* Allocate vars to track sets of regs. */
953 reg_set_bitmap = BITMAP_ALLOC (NULL);
955 /* Allocate vars to track sets of regs, memory per block. */
956 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
957 /* Allocate array to keep a list of insns which modify memory in each
958 basic block. */
959 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
960 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
961 modify_mem_list_set = BITMAP_ALLOC (NULL);
962 blocks_with_calls = BITMAP_ALLOC (NULL);
965 /* Free memory allocated by alloc_gcse_mem. */
967 static void
968 free_gcse_mem (void)
970 free (uid_cuid);
971 free (cuid_insn);
973 BITMAP_FREE (reg_set_bitmap);
975 sbitmap_vector_free (reg_set_in_block);
976 free_modify_mem_tables ();
977 BITMAP_FREE (modify_mem_list_set);
978 BITMAP_FREE (blocks_with_calls);
981 /* Compute the local properties of each recorded expression.
983 Local properties are those that are defined by the block, irrespective of
984 other blocks.
986 An expression is transparent in a block if its operands are not modified
987 in the block.
989 An expression is computed (locally available) in a block if it is computed
990 at least once and expression would contain the same value if the
991 computation was moved to the end of the block.
993 An expression is locally anticipatable in a block if it is computed at
994 least once and expression would contain the same value if the computation
995 was moved to the beginning of the block.
997 We call this routine for cprop, pre and code hoisting. They all compute
998 basically the same information and thus can easily share this code.
1000 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1001 properties. If NULL, then it is not necessary to compute or record that
1002 particular property.
1004 TABLE controls which hash table to look at. If it is set hash table,
1005 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1006 ABSALTERED. */
1008 static void
1009 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1010 struct hash_table *table)
1012 unsigned int i;
1014 /* Initialize any bitmaps that were passed in. */
1015 if (transp)
1017 if (table->set_p)
1018 sbitmap_vector_zero (transp, last_basic_block);
1019 else
1020 sbitmap_vector_ones (transp, last_basic_block);
1023 if (comp)
1024 sbitmap_vector_zero (comp, last_basic_block);
1025 if (antloc)
1026 sbitmap_vector_zero (antloc, last_basic_block);
1028 for (i = 0; i < table->size; i++)
1030 struct expr *expr;
1032 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1034 int indx = expr->bitmap_index;
1035 struct occr *occr;
1037 /* The expression is transparent in this block if it is not killed.
1038 We start by assuming all are transparent [none are killed], and
1039 then reset the bits for those that are. */
1040 if (transp)
1041 compute_transp (expr->expr, indx, transp, table->set_p);
1043 /* The occurrences recorded in antic_occr are exactly those that
1044 we want to set to nonzero in ANTLOC. */
1045 if (antloc)
1046 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1048 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1050 /* While we're scanning the table, this is a good place to
1051 initialize this. */
1052 occr->deleted_p = 0;
1055 /* The occurrences recorded in avail_occr are exactly those that
1056 we want to set to nonzero in COMP. */
1057 if (comp)
1058 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1060 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1062 /* While we're scanning the table, this is a good place to
1063 initialize this. */
1064 occr->copied_p = 0;
1067 /* While we're scanning the table, this is a good place to
1068 initialize this. */
1069 expr->reaching_reg = 0;
1074 /* Register set information.
1076 `reg_set_table' records where each register is set or otherwise
1077 modified. */
1079 static struct obstack reg_set_obstack;
1081 static void
1082 alloc_reg_set_mem (int n_regs)
1084 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1085 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1087 gcc_obstack_init (&reg_set_obstack);
1090 static void
1091 free_reg_set_mem (void)
1093 free (reg_set_table);
1094 obstack_free (&reg_set_obstack, NULL);
1097 /* Record REGNO in the reg_set table. */
1099 static void
1100 record_one_set (int regno, rtx insn)
1102 /* Allocate a new reg_set element and link it onto the list. */
1103 struct reg_set *new_reg_info;
1105 /* If the table isn't big enough, enlarge it. */
1106 if (regno >= reg_set_table_size)
1108 int new_size = regno + REG_SET_TABLE_SLOP;
1110 reg_set_table = grealloc (reg_set_table,
1111 new_size * sizeof (struct reg_set *));
1112 memset (reg_set_table + reg_set_table_size, 0,
1113 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1114 reg_set_table_size = new_size;
1117 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1118 bytes_used += sizeof (struct reg_set);
1119 new_reg_info->bb_index = BLOCK_NUM (insn);
1120 new_reg_info->next = reg_set_table[regno];
1121 reg_set_table[regno] = new_reg_info;
1124 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1125 an insn. The DATA is really the instruction in which the SET is
1126 occurring. */
1128 static void
1129 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1131 rtx record_set_insn = (rtx) data;
1133 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1134 record_one_set (REGNO (dest), record_set_insn);
1137 /* Scan the function and record each set of each pseudo-register.
1139 This is called once, at the start of the gcse pass. See the comments for
1140 `reg_set_table' for further documentation. */
1142 static void
1143 compute_sets (void)
1145 basic_block bb;
1146 rtx insn;
1148 FOR_EACH_BB (bb)
1149 FOR_BB_INSNS (bb, insn)
1150 if (INSN_P (insn))
1151 note_stores (PATTERN (insn), record_set_info, insn);
1154 /* Hash table support. */
1156 struct reg_avail_info
1158 basic_block last_bb;
1159 int first_set;
1160 int last_set;
1163 static struct reg_avail_info *reg_avail_info;
1164 static basic_block current_bb;
1167 /* See whether X, the source of a set, is something we want to consider for
1168 GCSE. */
1170 static int
1171 want_to_gcse_p (rtx x)
1173 #ifdef STACK_REGS
1174 /* On register stack architectures, don't GCSE constants from the
1175 constant pool, as the benefits are often swamped by the overhead
1176 of shuffling the register stack between basic blocks. */
1177 if (IS_STACK_MODE (GET_MODE (x)))
1178 x = avoid_constant_pool_reference (x);
1179 #endif
1181 switch (GET_CODE (x))
1183 case REG:
1184 case SUBREG:
1185 case CONST_INT:
1186 case CONST_DOUBLE:
1187 case CONST_VECTOR:
1188 case CALL:
1189 return 0;
1191 default:
1192 return can_assign_to_reg_p (x);
1196 /* Used internally by can_assign_to_reg_p. */
1198 static GTY(()) rtx test_insn;
1200 /* Return true if we can assign X to a pseudo register. */
1202 static bool
1203 can_assign_to_reg_p (rtx x)
1205 int num_clobbers = 0;
1206 int icode;
1208 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1209 if (general_operand (x, GET_MODE (x)))
1210 return 1;
1211 else if (GET_MODE (x) == VOIDmode)
1212 return 0;
1214 /* Otherwise, check if we can make a valid insn from it. First initialize
1215 our test insn if we haven't already. */
1216 if (test_insn == 0)
1218 test_insn
1219 = make_insn_raw (gen_rtx_SET (VOIDmode,
1220 gen_rtx_REG (word_mode,
1221 FIRST_PSEUDO_REGISTER * 2),
1222 const0_rtx));
1223 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1226 /* Now make an insn like the one we would make when GCSE'ing and see if
1227 valid. */
1228 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1229 SET_SRC (PATTERN (test_insn)) = x;
1230 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1231 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1234 /* Return nonzero if the operands of expression X are unchanged from the
1235 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1236 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1238 static int
1239 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1241 int i, j;
1242 enum rtx_code code;
1243 const char *fmt;
1245 if (x == 0)
1246 return 1;
1248 code = GET_CODE (x);
1249 switch (code)
1251 case REG:
1253 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1255 if (info->last_bb != current_bb)
1256 return 1;
1257 if (avail_p)
1258 return info->last_set < INSN_CUID (insn);
1259 else
1260 return info->first_set >= INSN_CUID (insn);
1263 case MEM:
1264 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1265 x, avail_p))
1266 return 0;
1267 else
1268 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1270 case PRE_DEC:
1271 case PRE_INC:
1272 case POST_DEC:
1273 case POST_INC:
1274 case PRE_MODIFY:
1275 case POST_MODIFY:
1276 return 0;
1278 case PC:
1279 case CC0: /*FIXME*/
1280 case CONST:
1281 case CONST_INT:
1282 case CONST_DOUBLE:
1283 case CONST_VECTOR:
1284 case SYMBOL_REF:
1285 case LABEL_REF:
1286 case ADDR_VEC:
1287 case ADDR_DIFF_VEC:
1288 return 1;
1290 default:
1291 break;
1294 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1296 if (fmt[i] == 'e')
1298 /* If we are about to do the last recursive call needed at this
1299 level, change it into iteration. This function is called enough
1300 to be worth it. */
1301 if (i == 0)
1302 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1304 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1305 return 0;
1307 else if (fmt[i] == 'E')
1308 for (j = 0; j < XVECLEN (x, i); j++)
1309 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1310 return 0;
1313 return 1;
1316 /* Used for communication between mems_conflict_for_gcse_p and
1317 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1318 conflict between two memory references. */
1319 static int gcse_mems_conflict_p;
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. A memory reference for a load instruction,
1323 mems_conflict_for_gcse_p will see if a memory store conflicts with
1324 this memory load. */
1325 static rtx gcse_mem_operand;
1327 /* DEST is the output of an instruction. If it is a memory reference, and
1328 possibly conflicts with the load found in gcse_mem_operand, then set
1329 gcse_mems_conflict_p to a nonzero value. */
1331 static void
1332 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1333 void *data ATTRIBUTE_UNUSED)
1335 while (GET_CODE (dest) == SUBREG
1336 || GET_CODE (dest) == ZERO_EXTRACT
1337 || GET_CODE (dest) == STRICT_LOW_PART)
1338 dest = XEXP (dest, 0);
1340 /* If DEST is not a MEM, then it will not conflict with the load. Note
1341 that function calls are assumed to clobber memory, but are handled
1342 elsewhere. */
1343 if (! MEM_P (dest))
1344 return;
1346 /* If we are setting a MEM in our list of specially recognized MEMs,
1347 don't mark as killed this time. */
1349 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1351 if (!find_rtx_in_ldst (dest))
1352 gcse_mems_conflict_p = 1;
1353 return;
1356 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1357 rtx_addr_varies_p))
1358 gcse_mems_conflict_p = 1;
1361 /* Return nonzero if the expression in X (a memory reference) is killed
1362 in block BB before or after the insn with the CUID in UID_LIMIT.
1363 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1364 before UID_LIMIT.
1366 To check the entire block, set UID_LIMIT to max_uid + 1 and
1367 AVAIL_P to 0. */
1369 static int
1370 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1372 rtx list_entry = modify_mem_list[bb->index];
1374 /* If this is a readonly then we aren't going to be changing it. */
1375 if (MEM_READONLY_P (x))
1376 return 0;
1378 while (list_entry)
1380 rtx setter;
1381 /* Ignore entries in the list that do not apply. */
1382 if ((avail_p
1383 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1384 || (! avail_p
1385 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1387 list_entry = XEXP (list_entry, 1);
1388 continue;
1391 setter = XEXP (list_entry, 0);
1393 /* If SETTER is a call everything is clobbered. Note that calls
1394 to pure functions are never put on the list, so we need not
1395 worry about them. */
1396 if (CALL_P (setter))
1397 return 1;
1399 /* SETTER must be an INSN of some kind that sets memory. Call
1400 note_stores to examine each hunk of memory that is modified.
1402 The note_stores interface is pretty limited, so we have to
1403 communicate via global variables. Yuk. */
1404 gcse_mem_operand = x;
1405 gcse_mems_conflict_p = 0;
1406 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1407 if (gcse_mems_conflict_p)
1408 return 1;
1409 list_entry = XEXP (list_entry, 1);
1411 return 0;
1414 /* Return nonzero if the operands of expression X are unchanged from
1415 the start of INSN's basic block up to but not including INSN. */
1417 static int
1418 oprs_anticipatable_p (rtx x, rtx insn)
1420 return oprs_unchanged_p (x, insn, 0);
1423 /* Return nonzero if the operands of expression X are unchanged from
1424 INSN to the end of INSN's basic block. */
1426 static int
1427 oprs_available_p (rtx x, rtx insn)
1429 return oprs_unchanged_p (x, insn, 1);
1432 /* Hash expression X.
1434 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1435 indicating if a volatile operand is found or if the expression contains
1436 something we don't want to insert in the table. HASH_TABLE_SIZE is
1437 the current size of the hash table to be probed. */
1439 static unsigned int
1440 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1441 int hash_table_size)
1443 unsigned int hash;
1445 *do_not_record_p = 0;
1447 hash = hash_rtx (x, mode, do_not_record_p,
1448 NULL, /*have_reg_qty=*/false);
1449 return hash % hash_table_size;
1452 /* Hash a set of register REGNO.
1454 Sets are hashed on the register that is set. This simplifies the PRE copy
1455 propagation code.
1457 ??? May need to make things more elaborate. Later, as necessary. */
1459 static unsigned int
1460 hash_set (int regno, int hash_table_size)
1462 unsigned int hash;
1464 hash = regno;
1465 return hash % hash_table_size;
1468 /* Return nonzero if exp1 is equivalent to exp2. */
1470 static int
1471 expr_equiv_p (rtx x, rtx y)
1473 return exp_equiv_p (x, y, 0, true);
1476 /* Insert expression X in INSN in the hash TABLE.
1477 If it is already present, record it as the last occurrence in INSN's
1478 basic block.
1480 MODE is the mode of the value X is being stored into.
1481 It is only used if X is a CONST_INT.
1483 ANTIC_P is nonzero if X is an anticipatable expression.
1484 AVAIL_P is nonzero if X is an available expression. */
1486 static void
1487 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1488 int avail_p, struct hash_table *table)
1490 int found, do_not_record_p;
1491 unsigned int hash;
1492 struct expr *cur_expr, *last_expr = NULL;
1493 struct occr *antic_occr, *avail_occr;
1495 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1497 /* Do not insert expression in table if it contains volatile operands,
1498 or if hash_expr determines the expression is something we don't want
1499 to or can't handle. */
1500 if (do_not_record_p)
1501 return;
1503 cur_expr = table->table[hash];
1504 found = 0;
1506 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1508 /* If the expression isn't found, save a pointer to the end of
1509 the list. */
1510 last_expr = cur_expr;
1511 cur_expr = cur_expr->next_same_hash;
1514 if (! found)
1516 cur_expr = gcse_alloc (sizeof (struct expr));
1517 bytes_used += sizeof (struct expr);
1518 if (table->table[hash] == NULL)
1519 /* This is the first pattern that hashed to this index. */
1520 table->table[hash] = cur_expr;
1521 else
1522 /* Add EXPR to end of this hash chain. */
1523 last_expr->next_same_hash = cur_expr;
1525 /* Set the fields of the expr element. */
1526 cur_expr->expr = x;
1527 cur_expr->bitmap_index = table->n_elems++;
1528 cur_expr->next_same_hash = NULL;
1529 cur_expr->antic_occr = NULL;
1530 cur_expr->avail_occr = NULL;
1533 /* Now record the occurrence(s). */
1534 if (antic_p)
1536 antic_occr = cur_expr->antic_occr;
1538 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1539 antic_occr = NULL;
1541 if (antic_occr)
1542 /* Found another instance of the expression in the same basic block.
1543 Prefer the currently recorded one. We want the first one in the
1544 block and the block is scanned from start to end. */
1545 ; /* nothing to do */
1546 else
1548 /* First occurrence of this expression in this basic block. */
1549 antic_occr = gcse_alloc (sizeof (struct occr));
1550 bytes_used += sizeof (struct occr);
1551 antic_occr->insn = insn;
1552 antic_occr->next = cur_expr->antic_occr;
1553 antic_occr->deleted_p = 0;
1554 cur_expr->antic_occr = antic_occr;
1558 if (avail_p)
1560 avail_occr = cur_expr->avail_occr;
1562 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1564 /* Found another instance of the expression in the same basic block.
1565 Prefer this occurrence to the currently recorded one. We want
1566 the last one in the block and the block is scanned from start
1567 to end. */
1568 avail_occr->insn = insn;
1570 else
1572 /* First occurrence of this expression in this basic block. */
1573 avail_occr = gcse_alloc (sizeof (struct occr));
1574 bytes_used += sizeof (struct occr);
1575 avail_occr->insn = insn;
1576 avail_occr->next = cur_expr->avail_occr;
1577 avail_occr->deleted_p = 0;
1578 cur_expr->avail_occr = avail_occr;
1583 /* Insert pattern X in INSN in the hash table.
1584 X is a SET of a reg to either another reg or a constant.
1585 If it is already present, record it as the last occurrence in INSN's
1586 basic block. */
1588 static void
1589 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1591 int found;
1592 unsigned int hash;
1593 struct expr *cur_expr, *last_expr = NULL;
1594 struct occr *cur_occr;
1596 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1598 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1600 cur_expr = table->table[hash];
1601 found = 0;
1603 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1605 /* If the expression isn't found, save a pointer to the end of
1606 the list. */
1607 last_expr = cur_expr;
1608 cur_expr = cur_expr->next_same_hash;
1611 if (! found)
1613 cur_expr = gcse_alloc (sizeof (struct expr));
1614 bytes_used += sizeof (struct expr);
1615 if (table->table[hash] == NULL)
1616 /* This is the first pattern that hashed to this index. */
1617 table->table[hash] = cur_expr;
1618 else
1619 /* Add EXPR to end of this hash chain. */
1620 last_expr->next_same_hash = cur_expr;
1622 /* Set the fields of the expr element.
1623 We must copy X because it can be modified when copy propagation is
1624 performed on its operands. */
1625 cur_expr->expr = copy_rtx (x);
1626 cur_expr->bitmap_index = table->n_elems++;
1627 cur_expr->next_same_hash = NULL;
1628 cur_expr->antic_occr = NULL;
1629 cur_expr->avail_occr = NULL;
1632 /* Now record the occurrence. */
1633 cur_occr = cur_expr->avail_occr;
1635 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1637 /* Found another instance of the expression in the same basic block.
1638 Prefer this occurrence to the currently recorded one. We want
1639 the last one in the block and the block is scanned from start
1640 to end. */
1641 cur_occr->insn = insn;
1643 else
1645 /* First occurrence of this expression in this basic block. */
1646 cur_occr = gcse_alloc (sizeof (struct occr));
1647 bytes_used += sizeof (struct occr);
1649 cur_occr->insn = insn;
1650 cur_occr->next = cur_expr->avail_occr;
1651 cur_occr->deleted_p = 0;
1652 cur_expr->avail_occr = cur_occr;
1656 /* Determine whether the rtx X should be treated as a constant for
1657 the purposes of GCSE's constant propagation. */
1659 static bool
1660 gcse_constant_p (rtx x)
1662 /* Consider a COMPARE of two integers constant. */
1663 if (GET_CODE (x) == COMPARE
1664 && GET_CODE (XEXP (x, 0)) == CONST_INT
1665 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1666 return true;
1668 /* Consider a COMPARE of the same registers is a constant
1669 if they are not floating point registers. */
1670 if (GET_CODE(x) == COMPARE
1671 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1672 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1673 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1674 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1675 return true;
1677 return CONSTANT_P (x);
1680 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1681 expression one). */
1683 static void
1684 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1686 rtx src = SET_SRC (pat);
1687 rtx dest = SET_DEST (pat);
1688 rtx note;
1690 if (GET_CODE (src) == CALL)
1691 hash_scan_call (src, insn, table);
1693 else if (REG_P (dest))
1695 unsigned int regno = REGNO (dest);
1696 rtx tmp;
1698 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1699 This allows us to do a single GCSE pass and still eliminate
1700 redundant constants, addresses or other expressions that are
1701 constructed with multiple instructions. */
1702 note = find_reg_equal_equiv_note (insn);
1703 if (note != 0
1704 && (table->set_p
1705 ? gcse_constant_p (XEXP (note, 0))
1706 : want_to_gcse_p (XEXP (note, 0))))
1707 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1709 /* Only record sets of pseudo-regs in the hash table. */
1710 if (! table->set_p
1711 && regno >= FIRST_PSEUDO_REGISTER
1712 /* Don't GCSE something if we can't do a reg/reg copy. */
1713 && can_copy_p (GET_MODE (dest))
1714 /* GCSE commonly inserts instruction after the insn. We can't
1715 do that easily for EH_REGION notes so disable GCSE on these
1716 for now. */
1717 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1718 /* Is SET_SRC something we want to gcse? */
1719 && want_to_gcse_p (src)
1720 /* Don't CSE a nop. */
1721 && ! set_noop_p (pat)
1722 /* Don't GCSE if it has attached REG_EQUIV note.
1723 At this point this only function parameters should have
1724 REG_EQUIV notes and if the argument slot is used somewhere
1725 explicitly, it means address of parameter has been taken,
1726 so we should not extend the lifetime of the pseudo. */
1727 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1729 /* An expression is not anticipatable if its operands are
1730 modified before this insn or if this is not the only SET in
1731 this insn. */
1732 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1733 /* An expression is not available if its operands are
1734 subsequently modified, including this insn. It's also not
1735 available if this is a branch, because we can't insert
1736 a set after the branch. */
1737 int avail_p = (oprs_available_p (src, insn)
1738 && ! JUMP_P (insn));
1740 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1743 /* Record sets for constant/copy propagation. */
1744 else if (table->set_p
1745 && regno >= FIRST_PSEUDO_REGISTER
1746 && ((REG_P (src)
1747 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1748 && can_copy_p (GET_MODE (dest))
1749 && REGNO (src) != regno)
1750 || gcse_constant_p (src))
1751 /* A copy is not available if its src or dest is subsequently
1752 modified. Here we want to search from INSN+1 on, but
1753 oprs_available_p searches from INSN on. */
1754 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1755 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1756 && oprs_available_p (pat, tmp))))
1757 insert_set_in_table (pat, insn, table);
1759 /* In case of store we want to consider the memory value as available in
1760 the REG stored in that memory. This makes it possible to remove
1761 redundant loads from due to stores to the same location. */
1762 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1764 unsigned int regno = REGNO (src);
1766 /* Do not do this for constant/copy propagation. */
1767 if (! table->set_p
1768 /* Only record sets of pseudo-regs in the hash table. */
1769 && regno >= FIRST_PSEUDO_REGISTER
1770 /* Don't GCSE something if we can't do a reg/reg copy. */
1771 && can_copy_p (GET_MODE (src))
1772 /* GCSE commonly inserts instruction after the insn. We can't
1773 do that easily for EH_REGION notes so disable GCSE on these
1774 for now. */
1775 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1776 /* Is SET_DEST something we want to gcse? */
1777 && want_to_gcse_p (dest)
1778 /* Don't CSE a nop. */
1779 && ! set_noop_p (pat)
1780 /* Don't GCSE if it has attached REG_EQUIV note.
1781 At this point this only function parameters should have
1782 REG_EQUIV notes and if the argument slot is used somewhere
1783 explicitly, it means address of parameter has been taken,
1784 so we should not extend the lifetime of the pseudo. */
1785 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1786 || ! MEM_P (XEXP (note, 0))))
1788 /* Stores are never anticipatable. */
1789 int antic_p = 0;
1790 /* An expression is not available if its operands are
1791 subsequently modified, including this insn. It's also not
1792 available if this is a branch, because we can't insert
1793 a set after the branch. */
1794 int avail_p = oprs_available_p (dest, insn)
1795 && ! JUMP_P (insn);
1797 /* Record the memory expression (DEST) in the hash table. */
1798 insert_expr_in_table (dest, GET_MODE (dest), insn,
1799 antic_p, avail_p, table);
1804 static void
1805 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1806 struct hash_table *table ATTRIBUTE_UNUSED)
1808 /* Currently nothing to do. */
1811 static void
1812 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1813 struct hash_table *table ATTRIBUTE_UNUSED)
1815 /* Currently nothing to do. */
1818 /* Process INSN and add hash table entries as appropriate.
1820 Only available expressions that set a single pseudo-reg are recorded.
1822 Single sets in a PARALLEL could be handled, but it's an extra complication
1823 that isn't dealt with right now. The trick is handling the CLOBBERs that
1824 are also in the PARALLEL. Later.
1826 If SET_P is nonzero, this is for the assignment hash table,
1827 otherwise it is for the expression hash table.
1828 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1829 not record any expressions. */
1831 static void
1832 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1834 rtx pat = PATTERN (insn);
1835 int i;
1837 if (in_libcall_block)
1838 return;
1840 /* Pick out the sets of INSN and for other forms of instructions record
1841 what's been modified. */
1843 if (GET_CODE (pat) == SET)
1844 hash_scan_set (pat, insn, table);
1845 else if (GET_CODE (pat) == PARALLEL)
1846 for (i = 0; i < XVECLEN (pat, 0); i++)
1848 rtx x = XVECEXP (pat, 0, i);
1850 if (GET_CODE (x) == SET)
1851 hash_scan_set (x, insn, table);
1852 else if (GET_CODE (x) == CLOBBER)
1853 hash_scan_clobber (x, insn, table);
1854 else if (GET_CODE (x) == CALL)
1855 hash_scan_call (x, insn, table);
1858 else if (GET_CODE (pat) == CLOBBER)
1859 hash_scan_clobber (pat, insn, table);
1860 else if (GET_CODE (pat) == CALL)
1861 hash_scan_call (pat, insn, table);
1864 static void
1865 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1867 int i;
1868 /* Flattened out table, so it's printed in proper order. */
1869 struct expr **flat_table;
1870 unsigned int *hash_val;
1871 struct expr *expr;
1873 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1874 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1876 for (i = 0; i < (int) table->size; i++)
1877 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1879 flat_table[expr->bitmap_index] = expr;
1880 hash_val[expr->bitmap_index] = i;
1883 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1884 name, table->size, table->n_elems);
1886 for (i = 0; i < (int) table->n_elems; i++)
1887 if (flat_table[i] != 0)
1889 expr = flat_table[i];
1890 fprintf (file, "Index %d (hash value %d)\n ",
1891 expr->bitmap_index, hash_val[i]);
1892 print_rtl (file, expr->expr);
1893 fprintf (file, "\n");
1896 fprintf (file, "\n");
1898 free (flat_table);
1899 free (hash_val);
1902 /* Record register first/last/block set information for REGNO in INSN.
1904 first_set records the first place in the block where the register
1905 is set and is used to compute "anticipatability".
1907 last_set records the last place in the block where the register
1908 is set and is used to compute "availability".
1910 last_bb records the block for which first_set and last_set are
1911 valid, as a quick test to invalidate them.
1913 reg_set_in_block records whether the register is set in the block
1914 and is used to compute "transparency". */
1916 static void
1917 record_last_reg_set_info (rtx insn, int regno)
1919 struct reg_avail_info *info = &reg_avail_info[regno];
1920 int cuid = INSN_CUID (insn);
1922 info->last_set = cuid;
1923 if (info->last_bb != current_bb)
1925 info->last_bb = current_bb;
1926 info->first_set = cuid;
1927 SET_BIT (reg_set_in_block[current_bb->index], regno);
1932 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1933 Note we store a pair of elements in the list, so they have to be
1934 taken off pairwise. */
1936 static void
1937 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1938 void * v_insn)
1940 rtx dest_addr, insn;
1941 int bb;
1943 while (GET_CODE (dest) == SUBREG
1944 || GET_CODE (dest) == ZERO_EXTRACT
1945 || GET_CODE (dest) == STRICT_LOW_PART)
1946 dest = XEXP (dest, 0);
1948 /* If DEST is not a MEM, then it will not conflict with a load. Note
1949 that function calls are assumed to clobber memory, but are handled
1950 elsewhere. */
1952 if (! MEM_P (dest))
1953 return;
1955 dest_addr = get_addr (XEXP (dest, 0));
1956 dest_addr = canon_rtx (dest_addr);
1957 insn = (rtx) v_insn;
1958 bb = BLOCK_NUM (insn);
1960 canon_modify_mem_list[bb] =
1961 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1962 canon_modify_mem_list[bb] =
1963 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1966 /* Record memory modification information for INSN. We do not actually care
1967 about the memory location(s) that are set, or even how they are set (consider
1968 a CALL_INSN). We merely need to record which insns modify memory. */
1970 static void
1971 record_last_mem_set_info (rtx insn)
1973 int bb = BLOCK_NUM (insn);
1975 /* load_killed_in_block_p will handle the case of calls clobbering
1976 everything. */
1977 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1978 bitmap_set_bit (modify_mem_list_set, bb);
1980 if (CALL_P (insn))
1982 /* Note that traversals of this loop (other than for free-ing)
1983 will break after encountering a CALL_INSN. So, there's no
1984 need to insert a pair of items, as canon_list_insert does. */
1985 canon_modify_mem_list[bb] =
1986 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1987 bitmap_set_bit (blocks_with_calls, bb);
1989 else
1990 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1993 /* Called from compute_hash_table via note_stores to handle one
1994 SET or CLOBBER in an insn. DATA is really the instruction in which
1995 the SET is taking place. */
1997 static void
1998 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2000 rtx last_set_insn = (rtx) data;
2002 if (GET_CODE (dest) == SUBREG)
2003 dest = SUBREG_REG (dest);
2005 if (REG_P (dest))
2006 record_last_reg_set_info (last_set_insn, REGNO (dest));
2007 else if (MEM_P (dest)
2008 /* Ignore pushes, they clobber nothing. */
2009 && ! push_operand (dest, GET_MODE (dest)))
2010 record_last_mem_set_info (last_set_insn);
2013 /* Top level function to create an expression or assignment hash table.
2015 Expression entries are placed in the hash table if
2016 - they are of the form (set (pseudo-reg) src),
2017 - src is something we want to perform GCSE on,
2018 - none of the operands are subsequently modified in the block
2020 Assignment entries are placed in the hash table if
2021 - they are of the form (set (pseudo-reg) src),
2022 - src is something we want to perform const/copy propagation on,
2023 - none of the operands or target are subsequently modified in the block
2025 Currently src must be a pseudo-reg or a const_int.
2027 TABLE is the table computed. */
2029 static void
2030 compute_hash_table_work (struct hash_table *table)
2032 unsigned int i;
2034 /* While we compute the hash table we also compute a bit array of which
2035 registers are set in which blocks.
2036 ??? This isn't needed during const/copy propagation, but it's cheap to
2037 compute. Later. */
2038 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2040 /* re-Cache any INSN_LIST nodes we have allocated. */
2041 clear_modify_mem_tables ();
2042 /* Some working arrays used to track first and last set in each block. */
2043 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2045 for (i = 0; i < max_gcse_regno; ++i)
2046 reg_avail_info[i].last_bb = NULL;
2048 FOR_EACH_BB (current_bb)
2050 rtx insn;
2051 unsigned int regno;
2052 int in_libcall_block;
2054 /* First pass over the instructions records information used to
2055 determine when registers and memory are first and last set.
2056 ??? hard-reg reg_set_in_block computation
2057 could be moved to compute_sets since they currently don't change. */
2059 FOR_BB_INSNS (current_bb, insn)
2061 if (! INSN_P (insn))
2062 continue;
2064 if (CALL_P (insn))
2066 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2067 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2068 record_last_reg_set_info (insn, regno);
2070 mark_call (insn);
2073 note_stores (PATTERN (insn), record_last_set_info, insn);
2076 /* Insert implicit sets in the hash table. */
2077 if (table->set_p
2078 && implicit_sets[current_bb->index] != NULL_RTX)
2079 hash_scan_set (implicit_sets[current_bb->index],
2080 BB_HEAD (current_bb), table);
2082 /* The next pass builds the hash table. */
2083 in_libcall_block = 0;
2084 FOR_BB_INSNS (current_bb, insn)
2085 if (INSN_P (insn))
2087 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2088 in_libcall_block = 1;
2089 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2090 in_libcall_block = 0;
2091 hash_scan_insn (insn, table, in_libcall_block);
2092 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2093 in_libcall_block = 0;
2097 free (reg_avail_info);
2098 reg_avail_info = NULL;
2101 /* Allocate space for the set/expr hash TABLE.
2102 N_INSNS is the number of instructions in the function.
2103 It is used to determine the number of buckets to use.
2104 SET_P determines whether set or expression table will
2105 be created. */
2107 static void
2108 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2110 int n;
2112 table->size = n_insns / 4;
2113 if (table->size < 11)
2114 table->size = 11;
2116 /* Attempt to maintain efficient use of hash table.
2117 Making it an odd number is simplest for now.
2118 ??? Later take some measurements. */
2119 table->size |= 1;
2120 n = table->size * sizeof (struct expr *);
2121 table->table = gmalloc (n);
2122 table->set_p = set_p;
2125 /* Free things allocated by alloc_hash_table. */
2127 static void
2128 free_hash_table (struct hash_table *table)
2130 free (table->table);
2133 /* Compute the hash TABLE for doing copy/const propagation or
2134 expression hash table. */
2136 static void
2137 compute_hash_table (struct hash_table *table)
2139 /* Initialize count of number of entries in hash table. */
2140 table->n_elems = 0;
2141 memset (table->table, 0, table->size * sizeof (struct expr *));
2143 compute_hash_table_work (table);
2146 /* Expression tracking support. */
2148 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2149 table entry, or NULL if not found. */
2151 static struct expr *
2152 lookup_set (unsigned int regno, struct hash_table *table)
2154 unsigned int hash = hash_set (regno, table->size);
2155 struct expr *expr;
2157 expr = table->table[hash];
2159 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2160 expr = expr->next_same_hash;
2162 return expr;
2165 /* Return the next entry for REGNO in list EXPR. */
2167 static struct expr *
2168 next_set (unsigned int regno, struct expr *expr)
2171 expr = expr->next_same_hash;
2172 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2174 return expr;
2177 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2178 types may be mixed. */
2180 static void
2181 free_insn_expr_list_list (rtx *listp)
2183 rtx list, next;
2185 for (list = *listp; list ; list = next)
2187 next = XEXP (list, 1);
2188 if (GET_CODE (list) == EXPR_LIST)
2189 free_EXPR_LIST_node (list);
2190 else
2191 free_INSN_LIST_node (list);
2194 *listp = NULL;
2197 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2198 static void
2199 clear_modify_mem_tables (void)
2201 unsigned i;
2202 bitmap_iterator bi;
2204 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2206 free_INSN_LIST_list (modify_mem_list + i);
2207 free_insn_expr_list_list (canon_modify_mem_list + i);
2209 bitmap_clear (modify_mem_list_set);
2210 bitmap_clear (blocks_with_calls);
2213 /* Release memory used by modify_mem_list_set. */
2215 static void
2216 free_modify_mem_tables (void)
2218 clear_modify_mem_tables ();
2219 free (modify_mem_list);
2220 free (canon_modify_mem_list);
2221 modify_mem_list = 0;
2222 canon_modify_mem_list = 0;
2225 /* Reset tables used to keep track of what's still available [since the
2226 start of the block]. */
2228 static void
2229 reset_opr_set_tables (void)
2231 /* Maintain a bitmap of which regs have been set since beginning of
2232 the block. */
2233 CLEAR_REG_SET (reg_set_bitmap);
2235 /* Also keep a record of the last instruction to modify memory.
2236 For now this is very trivial, we only record whether any memory
2237 location has been modified. */
2238 clear_modify_mem_tables ();
2241 /* Return nonzero if the operands of X are not set before INSN in
2242 INSN's basic block. */
2244 static int
2245 oprs_not_set_p (rtx x, rtx insn)
2247 int i, j;
2248 enum rtx_code code;
2249 const char *fmt;
2251 if (x == 0)
2252 return 1;
2254 code = GET_CODE (x);
2255 switch (code)
2257 case PC:
2258 case CC0:
2259 case CONST:
2260 case CONST_INT:
2261 case CONST_DOUBLE:
2262 case CONST_VECTOR:
2263 case SYMBOL_REF:
2264 case LABEL_REF:
2265 case ADDR_VEC:
2266 case ADDR_DIFF_VEC:
2267 return 1;
2269 case MEM:
2270 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2271 INSN_CUID (insn), x, 0))
2272 return 0;
2273 else
2274 return oprs_not_set_p (XEXP (x, 0), insn);
2276 case REG:
2277 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2279 default:
2280 break;
2283 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2285 if (fmt[i] == 'e')
2287 /* If we are about to do the last recursive call
2288 needed at this level, change it into iteration.
2289 This function is called enough to be worth it. */
2290 if (i == 0)
2291 return oprs_not_set_p (XEXP (x, i), insn);
2293 if (! oprs_not_set_p (XEXP (x, i), insn))
2294 return 0;
2296 else if (fmt[i] == 'E')
2297 for (j = 0; j < XVECLEN (x, i); j++)
2298 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2299 return 0;
2302 return 1;
2305 /* Mark things set by a CALL. */
2307 static void
2308 mark_call (rtx insn)
2310 if (! CONST_OR_PURE_CALL_P (insn))
2311 record_last_mem_set_info (insn);
2314 /* Mark things set by a SET. */
2316 static void
2317 mark_set (rtx pat, rtx insn)
2319 rtx dest = SET_DEST (pat);
2321 while (GET_CODE (dest) == SUBREG
2322 || GET_CODE (dest) == ZERO_EXTRACT
2323 || GET_CODE (dest) == STRICT_LOW_PART)
2324 dest = XEXP (dest, 0);
2326 if (REG_P (dest))
2327 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2328 else if (MEM_P (dest))
2329 record_last_mem_set_info (insn);
2331 if (GET_CODE (SET_SRC (pat)) == CALL)
2332 mark_call (insn);
2335 /* Record things set by a CLOBBER. */
2337 static void
2338 mark_clobber (rtx pat, rtx insn)
2340 rtx clob = XEXP (pat, 0);
2342 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2343 clob = XEXP (clob, 0);
2345 if (REG_P (clob))
2346 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2347 else
2348 record_last_mem_set_info (insn);
2351 /* Record things set by INSN.
2352 This data is used by oprs_not_set_p. */
2354 static void
2355 mark_oprs_set (rtx insn)
2357 rtx pat = PATTERN (insn);
2358 int i;
2360 if (GET_CODE (pat) == SET)
2361 mark_set (pat, insn);
2362 else if (GET_CODE (pat) == PARALLEL)
2363 for (i = 0; i < XVECLEN (pat, 0); i++)
2365 rtx x = XVECEXP (pat, 0, i);
2367 if (GET_CODE (x) == SET)
2368 mark_set (x, insn);
2369 else if (GET_CODE (x) == CLOBBER)
2370 mark_clobber (x, insn);
2371 else if (GET_CODE (x) == CALL)
2372 mark_call (insn);
2375 else if (GET_CODE (pat) == CLOBBER)
2376 mark_clobber (pat, insn);
2377 else if (GET_CODE (pat) == CALL)
2378 mark_call (insn);
2382 /* Compute copy/constant propagation working variables. */
2384 /* Local properties of assignments. */
2385 static sbitmap *cprop_pavloc;
2386 static sbitmap *cprop_absaltered;
2388 /* Global properties of assignments (computed from the local properties). */
2389 static sbitmap *cprop_avin;
2390 static sbitmap *cprop_avout;
2392 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2393 basic blocks. N_SETS is the number of sets. */
2395 static void
2396 alloc_cprop_mem (int n_blocks, int n_sets)
2398 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2399 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2401 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2402 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2405 /* Free vars used by copy/const propagation. */
2407 static void
2408 free_cprop_mem (void)
2410 sbitmap_vector_free (cprop_pavloc);
2411 sbitmap_vector_free (cprop_absaltered);
2412 sbitmap_vector_free (cprop_avin);
2413 sbitmap_vector_free (cprop_avout);
2416 /* For each block, compute whether X is transparent. X is either an
2417 expression or an assignment [though we don't care which, for this context
2418 an assignment is treated as an expression]. For each block where an
2419 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2420 bit in BMAP. */
2422 static void
2423 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2425 int i, j;
2426 basic_block bb;
2427 enum rtx_code code;
2428 reg_set *r;
2429 const char *fmt;
2431 /* repeat is used to turn tail-recursion into iteration since GCC
2432 can't do it when there's no return value. */
2433 repeat:
2435 if (x == 0)
2436 return;
2438 code = GET_CODE (x);
2439 switch (code)
2441 case REG:
2442 if (set_p)
2444 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2446 FOR_EACH_BB (bb)
2447 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2448 SET_BIT (bmap[bb->index], indx);
2450 else
2452 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2453 SET_BIT (bmap[r->bb_index], indx);
2456 else
2458 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2460 FOR_EACH_BB (bb)
2461 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2462 RESET_BIT (bmap[bb->index], indx);
2464 else
2466 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2467 RESET_BIT (bmap[r->bb_index], indx);
2471 return;
2473 case MEM:
2474 if (! MEM_READONLY_P (x))
2476 bitmap_iterator bi;
2477 unsigned bb_index;
2479 /* First handle all the blocks with calls. We don't need to
2480 do any list walking for them. */
2481 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2483 if (set_p)
2484 SET_BIT (bmap[bb_index], indx);
2485 else
2486 RESET_BIT (bmap[bb_index], indx);
2489 /* Now iterate over the blocks which have memory modifications
2490 but which do not have any calls. */
2491 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2492 blocks_with_calls,
2493 0, bb_index, bi)
2495 rtx list_entry = canon_modify_mem_list[bb_index];
2497 while (list_entry)
2499 rtx dest, dest_addr;
2501 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2502 Examine each hunk of memory that is modified. */
2504 dest = XEXP (list_entry, 0);
2505 list_entry = XEXP (list_entry, 1);
2506 dest_addr = XEXP (list_entry, 0);
2508 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2509 x, rtx_addr_varies_p))
2511 if (set_p)
2512 SET_BIT (bmap[bb_index], indx);
2513 else
2514 RESET_BIT (bmap[bb_index], indx);
2515 break;
2517 list_entry = XEXP (list_entry, 1);
2522 x = XEXP (x, 0);
2523 goto repeat;
2525 case PC:
2526 case CC0: /*FIXME*/
2527 case CONST:
2528 case CONST_INT:
2529 case CONST_DOUBLE:
2530 case CONST_VECTOR:
2531 case SYMBOL_REF:
2532 case LABEL_REF:
2533 case ADDR_VEC:
2534 case ADDR_DIFF_VEC:
2535 return;
2537 default:
2538 break;
2541 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2543 if (fmt[i] == 'e')
2545 /* If we are about to do the last recursive call
2546 needed at this level, change it into iteration.
2547 This function is called enough to be worth it. */
2548 if (i == 0)
2550 x = XEXP (x, i);
2551 goto repeat;
2554 compute_transp (XEXP (x, i), indx, bmap, set_p);
2556 else if (fmt[i] == 'E')
2557 for (j = 0; j < XVECLEN (x, i); j++)
2558 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2562 /* Top level routine to do the dataflow analysis needed by copy/const
2563 propagation. */
2565 static void
2566 compute_cprop_data (void)
2568 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2569 compute_available (cprop_pavloc, cprop_absaltered,
2570 cprop_avout, cprop_avin);
2573 /* Copy/constant propagation. */
2575 /* Maximum number of register uses in an insn that we handle. */
2576 #define MAX_USES 8
2578 /* Table of uses found in an insn.
2579 Allocated statically to avoid alloc/free complexity and overhead. */
2580 static struct reg_use reg_use_table[MAX_USES];
2582 /* Index into `reg_use_table' while building it. */
2583 static int reg_use_count;
2585 /* Set up a list of register numbers used in INSN. The found uses are stored
2586 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2587 and contains the number of uses in the table upon exit.
2589 ??? If a register appears multiple times we will record it multiple times.
2590 This doesn't hurt anything but it will slow things down. */
2592 static void
2593 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2595 int i, j;
2596 enum rtx_code code;
2597 const char *fmt;
2598 rtx x = *xptr;
2600 /* repeat is used to turn tail-recursion into iteration since GCC
2601 can't do it when there's no return value. */
2602 repeat:
2603 if (x == 0)
2604 return;
2606 code = GET_CODE (x);
2607 if (REG_P (x))
2609 if (reg_use_count == MAX_USES)
2610 return;
2612 reg_use_table[reg_use_count].reg_rtx = x;
2613 reg_use_count++;
2616 /* Recursively scan the operands of this expression. */
2618 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2620 if (fmt[i] == 'e')
2622 /* If we are about to do the last recursive call
2623 needed at this level, change it into iteration.
2624 This function is called enough to be worth it. */
2625 if (i == 0)
2627 x = XEXP (x, 0);
2628 goto repeat;
2631 find_used_regs (&XEXP (x, i), data);
2633 else if (fmt[i] == 'E')
2634 for (j = 0; j < XVECLEN (x, i); j++)
2635 find_used_regs (&XVECEXP (x, i, j), data);
2639 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2640 Returns nonzero is successful. */
2642 static int
2643 try_replace_reg (rtx from, rtx to, rtx insn)
2645 rtx note = find_reg_equal_equiv_note (insn);
2646 rtx src = 0;
2647 int success = 0;
2648 rtx set = single_set (insn);
2650 /* Usually we substitute easy stuff, so we won't copy everything.
2651 We however need to take care to not duplicate non-trivial CONST
2652 expressions. */
2653 to = copy_rtx (to);
2655 validate_replace_src_group (from, to, insn);
2656 if (num_changes_pending () && apply_change_group ())
2657 success = 1;
2659 /* Try to simplify SET_SRC if we have substituted a constant. */
2660 if (success && set && CONSTANT_P (to))
2662 src = simplify_rtx (SET_SRC (set));
2664 if (src)
2665 validate_change (insn, &SET_SRC (set), src, 0);
2668 /* If there is already a REG_EQUAL note, update the expression in it
2669 with our replacement. */
2670 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2671 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2673 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2675 /* If above failed and this is a single set, try to simplify the source of
2676 the set given our substitution. We could perhaps try this for multiple
2677 SETs, but it probably won't buy us anything. */
2678 src = simplify_replace_rtx (SET_SRC (set), from, to);
2680 if (!rtx_equal_p (src, SET_SRC (set))
2681 && validate_change (insn, &SET_SRC (set), src, 0))
2682 success = 1;
2684 /* If we've failed to do replacement, have a single SET, don't already
2685 have a note, and have no special SET, add a REG_EQUAL note to not
2686 lose information. */
2687 if (!success && note == 0 && set != 0
2688 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2689 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2690 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2693 /* REG_EQUAL may get simplified into register.
2694 We don't allow that. Remove that note. This code ought
2695 not to happen, because previous code ought to synthesize
2696 reg-reg move, but be on the safe side. */
2697 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2698 remove_note (insn, note);
2700 return success;
2703 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2704 NULL no such set is found. */
2706 static struct expr *
2707 find_avail_set (int regno, rtx insn)
2709 /* SET1 contains the last set found that can be returned to the caller for
2710 use in a substitution. */
2711 struct expr *set1 = 0;
2713 /* Loops are not possible here. To get a loop we would need two sets
2714 available at the start of the block containing INSN. i.e. we would
2715 need two sets like this available at the start of the block:
2717 (set (reg X) (reg Y))
2718 (set (reg Y) (reg X))
2720 This can not happen since the set of (reg Y) would have killed the
2721 set of (reg X) making it unavailable at the start of this block. */
2722 while (1)
2724 rtx src;
2725 struct expr *set = lookup_set (regno, &set_hash_table);
2727 /* Find a set that is available at the start of the block
2728 which contains INSN. */
2729 while (set)
2731 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2732 break;
2733 set = next_set (regno, set);
2736 /* If no available set was found we've reached the end of the
2737 (possibly empty) copy chain. */
2738 if (set == 0)
2739 break;
2741 gcc_assert (GET_CODE (set->expr) == SET);
2743 src = SET_SRC (set->expr);
2745 /* We know the set is available.
2746 Now check that SRC is ANTLOC (i.e. none of the source operands
2747 have changed since the start of the block).
2749 If the source operand changed, we may still use it for the next
2750 iteration of this loop, but we may not use it for substitutions. */
2752 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2753 set1 = set;
2755 /* If the source of the set is anything except a register, then
2756 we have reached the end of the copy chain. */
2757 if (! REG_P (src))
2758 break;
2760 /* Follow the copy chain, i.e. start another iteration of the loop
2761 and see if we have an available copy into SRC. */
2762 regno = REGNO (src);
2765 /* SET1 holds the last set that was available and anticipatable at
2766 INSN. */
2767 return set1;
2770 /* Subroutine of cprop_insn that tries to propagate constants into
2771 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2772 it is the instruction that immediately precedes JUMP, and must be a
2773 single SET of a register. FROM is what we will try to replace,
2774 SRC is the constant we will try to substitute for it. Returns nonzero
2775 if a change was made. */
2777 static int
2778 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2780 rtx new, set_src, note_src;
2781 rtx set = pc_set (jump);
2782 rtx note = find_reg_equal_equiv_note (jump);
2784 if (note)
2786 note_src = XEXP (note, 0);
2787 if (GET_CODE (note_src) == EXPR_LIST)
2788 note_src = NULL_RTX;
2790 else note_src = NULL_RTX;
2792 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2793 set_src = note_src ? note_src : SET_SRC (set);
2795 /* First substitute the SETCC condition into the JUMP instruction,
2796 then substitute that given values into this expanded JUMP. */
2797 if (setcc != NULL_RTX
2798 && !modified_between_p (from, setcc, jump)
2799 && !modified_between_p (src, setcc, jump))
2801 rtx setcc_src;
2802 rtx setcc_set = single_set (setcc);
2803 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2804 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2805 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2806 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2807 setcc_src);
2809 else
2810 setcc = NULL_RTX;
2812 new = simplify_replace_rtx (set_src, from, src);
2814 /* If no simplification can be made, then try the next register. */
2815 if (rtx_equal_p (new, SET_SRC (set)))
2816 return 0;
2818 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2819 if (new == pc_rtx)
2820 delete_insn (jump);
2821 else
2823 /* Ensure the value computed inside the jump insn to be equivalent
2824 to one computed by setcc. */
2825 if (setcc && modified_in_p (new, setcc))
2826 return 0;
2827 if (! validate_change (jump, &SET_SRC (set), new, 0))
2829 /* When (some) constants are not valid in a comparison, and there
2830 are two registers to be replaced by constants before the entire
2831 comparison can be folded into a constant, we need to keep
2832 intermediate information in REG_EQUAL notes. For targets with
2833 separate compare insns, such notes are added by try_replace_reg.
2834 When we have a combined compare-and-branch instruction, however,
2835 we need to attach a note to the branch itself to make this
2836 optimization work. */
2838 if (!rtx_equal_p (new, note_src))
2839 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2840 return 0;
2843 /* Remove REG_EQUAL note after simplification. */
2844 if (note_src)
2845 remove_note (jump, note);
2847 /* If this has turned into an unconditional jump,
2848 then put a barrier after it so that the unreachable
2849 code will be deleted. */
2850 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2851 emit_barrier_after (jump);
2854 #ifdef HAVE_cc0
2855 /* Delete the cc0 setter. */
2856 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2857 delete_insn (setcc);
2858 #endif
2860 run_jump_opt_after_gcse = 1;
2862 global_const_prop_count++;
2863 if (dump_file != NULL)
2865 fprintf (dump_file,
2866 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2867 REGNO (from), INSN_UID (jump));
2868 print_rtl (dump_file, src);
2869 fprintf (dump_file, "\n");
2871 purge_dead_edges (bb);
2873 return 1;
2876 static bool
2877 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2879 rtx sset;
2881 /* Check for reg or cc0 setting instructions followed by
2882 conditional branch instructions first. */
2883 if (alter_jumps
2884 && (sset = single_set (insn)) != NULL
2885 && NEXT_INSN (insn)
2886 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2888 rtx dest = SET_DEST (sset);
2889 if ((REG_P (dest) || CC0_P (dest))
2890 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2891 return 1;
2894 /* Handle normal insns next. */
2895 if (NONJUMP_INSN_P (insn)
2896 && try_replace_reg (from, to, insn))
2897 return 1;
2899 /* Try to propagate a CONST_INT into a conditional jump.
2900 We're pretty specific about what we will handle in this
2901 code, we can extend this as necessary over time.
2903 Right now the insn in question must look like
2904 (set (pc) (if_then_else ...)) */
2905 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2906 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2907 return 0;
2910 /* Perform constant and copy propagation on INSN.
2911 The result is nonzero if a change was made. */
2913 static int
2914 cprop_insn (rtx insn, int alter_jumps)
2916 struct reg_use *reg_used;
2917 int changed = 0;
2918 rtx note;
2920 if (!INSN_P (insn))
2921 return 0;
2923 reg_use_count = 0;
2924 note_uses (&PATTERN (insn), find_used_regs, NULL);
2926 note = find_reg_equal_equiv_note (insn);
2928 /* We may win even when propagating constants into notes. */
2929 if (note)
2930 find_used_regs (&XEXP (note, 0), NULL);
2932 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2933 reg_used++, reg_use_count--)
2935 unsigned int regno = REGNO (reg_used->reg_rtx);
2936 rtx pat, src;
2937 struct expr *set;
2939 /* Ignore registers created by GCSE.
2940 We do this because ... */
2941 if (regno >= max_gcse_regno)
2942 continue;
2944 /* If the register has already been set in this block, there's
2945 nothing we can do. */
2946 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2947 continue;
2949 /* Find an assignment that sets reg_used and is available
2950 at the start of the block. */
2951 set = find_avail_set (regno, insn);
2952 if (! set)
2953 continue;
2955 pat = set->expr;
2956 /* ??? We might be able to handle PARALLELs. Later. */
2957 gcc_assert (GET_CODE (pat) == SET);
2959 src = SET_SRC (pat);
2961 /* Constant propagation. */
2962 if (gcse_constant_p (src))
2964 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2966 changed = 1;
2967 global_const_prop_count++;
2968 if (dump_file != NULL)
2970 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2971 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2972 print_rtl (dump_file, src);
2973 fprintf (dump_file, "\n");
2975 if (INSN_DELETED_P (insn))
2976 return 1;
2979 else if (REG_P (src)
2980 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2981 && REGNO (src) != regno)
2983 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2985 changed = 1;
2986 global_copy_prop_count++;
2987 if (dump_file != NULL)
2989 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2990 regno, INSN_UID (insn));
2991 fprintf (dump_file, " with reg %d\n", REGNO (src));
2994 /* The original insn setting reg_used may or may not now be
2995 deletable. We leave the deletion to flow. */
2996 /* FIXME: If it turns out that the insn isn't deletable,
2997 then we may have unnecessarily extended register lifetimes
2998 and made things worse. */
3003 return changed;
3006 /* Like find_used_regs, but avoid recording uses that appear in
3007 input-output contexts such as zero_extract or pre_dec. This
3008 restricts the cases we consider to those for which local cprop
3009 can legitimately make replacements. */
3011 static void
3012 local_cprop_find_used_regs (rtx *xptr, void *data)
3014 rtx x = *xptr;
3016 if (x == 0)
3017 return;
3019 switch (GET_CODE (x))
3021 case ZERO_EXTRACT:
3022 case SIGN_EXTRACT:
3023 case STRICT_LOW_PART:
3024 return;
3026 case PRE_DEC:
3027 case PRE_INC:
3028 case POST_DEC:
3029 case POST_INC:
3030 case PRE_MODIFY:
3031 case POST_MODIFY:
3032 /* Can only legitimately appear this early in the context of
3033 stack pushes for function arguments, but handle all of the
3034 codes nonetheless. */
3035 return;
3037 case SUBREG:
3038 /* Setting a subreg of a register larger than word_mode leaves
3039 the non-written words unchanged. */
3040 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3041 return;
3042 break;
3044 default:
3045 break;
3048 find_used_regs (xptr, data);
3051 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3052 their REG_EQUAL notes need updating. */
3054 static bool
3055 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3057 rtx newreg = NULL, newcnst = NULL;
3059 /* Rule out USE instructions and ASM statements as we don't want to
3060 change the hard registers mentioned. */
3061 if (REG_P (x)
3062 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3063 || (GET_CODE (PATTERN (insn)) != USE
3064 && asm_noperands (PATTERN (insn)) < 0)))
3066 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3067 struct elt_loc_list *l;
3069 if (!val)
3070 return false;
3071 for (l = val->locs; l; l = l->next)
3073 rtx this_rtx = l->loc;
3074 rtx note;
3076 /* Don't CSE non-constant values out of libcall blocks. */
3077 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3078 continue;
3080 if (gcse_constant_p (this_rtx))
3081 newcnst = this_rtx;
3082 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3083 /* Don't copy propagate if it has attached REG_EQUIV note.
3084 At this point this only function parameters should have
3085 REG_EQUIV notes and if the argument slot is used somewhere
3086 explicitly, it means address of parameter has been taken,
3087 so we should not extend the lifetime of the pseudo. */
3088 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3089 || ! MEM_P (XEXP (note, 0))))
3090 newreg = this_rtx;
3092 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3094 /* If we find a case where we can't fix the retval REG_EQUAL notes
3095 match the new register, we either have to abandon this replacement
3096 or fix delete_trivially_dead_insns to preserve the setting insn,
3097 or make it delete the REG_EUAQL note, and fix up all passes that
3098 require the REG_EQUAL note there. */
3099 bool adjusted;
3101 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3102 gcc_assert (adjusted);
3104 if (dump_file != NULL)
3106 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3107 REGNO (x));
3108 fprintf (dump_file, "insn %d with constant ",
3109 INSN_UID (insn));
3110 print_rtl (dump_file, newcnst);
3111 fprintf (dump_file, "\n");
3113 local_const_prop_count++;
3114 return true;
3116 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3118 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3119 if (dump_file != NULL)
3121 fprintf (dump_file,
3122 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3123 REGNO (x), INSN_UID (insn));
3124 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3126 local_copy_prop_count++;
3127 return true;
3130 return false;
3133 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3134 their REG_EQUAL notes need updating to reflect that OLDREG has been
3135 replaced with NEWVAL in INSN. Return true if all substitutions could
3136 be made. */
3137 static bool
3138 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3140 rtx end;
3142 while ((end = *libcall_sp++))
3144 rtx note = find_reg_equal_equiv_note (end);
3146 if (! note)
3147 continue;
3149 if (REG_P (newval))
3151 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3155 note = find_reg_equal_equiv_note (end);
3156 if (! note)
3157 continue;
3158 if (reg_mentioned_p (newval, XEXP (note, 0)))
3159 return false;
3161 while ((end = *libcall_sp++));
3162 return true;
3165 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3166 insn = end;
3168 return true;
3171 #define MAX_NESTED_LIBCALLS 9
3173 /* Do local const/copy propagation (i.e. within each basic block).
3174 If ALTER_JUMPS is true, allow propagating into jump insns, which
3175 could modify the CFG. */
3177 static void
3178 local_cprop_pass (bool alter_jumps)
3180 basic_block bb;
3181 rtx insn;
3182 struct reg_use *reg_used;
3183 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3184 bool changed = false;
3186 cselib_init (false);
3187 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3188 *libcall_sp = 0;
3189 FOR_EACH_BB (bb)
3191 FOR_BB_INSNS (bb, insn)
3193 if (INSN_P (insn))
3195 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3197 if (note)
3199 gcc_assert (libcall_sp != libcall_stack);
3200 *--libcall_sp = XEXP (note, 0);
3202 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3203 if (note)
3204 libcall_sp++;
3205 note = find_reg_equal_equiv_note (insn);
3208 reg_use_count = 0;
3209 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3210 NULL);
3211 if (note)
3212 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3214 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3215 reg_used++, reg_use_count--)
3216 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3217 libcall_sp))
3219 changed = true;
3220 break;
3222 if (INSN_DELETED_P (insn))
3223 break;
3225 while (reg_use_count);
3227 cselib_process_insn (insn);
3230 /* Forget everything at the end of a basic block. Make sure we are
3231 not inside a libcall, they should never cross basic blocks. */
3232 cselib_clear_table ();
3233 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3236 cselib_finish ();
3238 /* Global analysis may get into infinite loops for unreachable blocks. */
3239 if (changed && alter_jumps)
3241 delete_unreachable_blocks ();
3242 free_reg_set_mem ();
3243 alloc_reg_set_mem (max_reg_num ());
3244 compute_sets ();
3248 /* Forward propagate copies. This includes copies and constants. Return
3249 nonzero if a change was made. */
3251 static int
3252 cprop (int alter_jumps)
3254 int changed;
3255 basic_block bb;
3256 rtx insn;
3258 /* Note we start at block 1. */
3259 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3261 if (dump_file != NULL)
3262 fprintf (dump_file, "\n");
3263 return 0;
3266 changed = 0;
3267 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3269 /* Reset tables used to keep track of what's still valid [since the
3270 start of the block]. */
3271 reset_opr_set_tables ();
3273 FOR_BB_INSNS (bb, insn)
3274 if (INSN_P (insn))
3276 changed |= cprop_insn (insn, alter_jumps);
3278 /* Keep track of everything modified by this insn. */
3279 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3280 call mark_oprs_set if we turned the insn into a NOTE. */
3281 if (! NOTE_P (insn))
3282 mark_oprs_set (insn);
3286 if (dump_file != NULL)
3287 fprintf (dump_file, "\n");
3289 return changed;
3292 /* Similar to get_condition, only the resulting condition must be
3293 valid at JUMP, instead of at EARLIEST.
3295 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3296 settle for the condition variable in the jump instruction being integral.
3297 We prefer to be able to record the value of a user variable, rather than
3298 the value of a temporary used in a condition. This could be solved by
3299 recording the value of *every* register scanned by canonicalize_condition,
3300 but this would require some code reorganization. */
3303 fis_get_condition (rtx jump)
3305 return get_condition (jump, NULL, false, true);
3308 /* Check the comparison COND to see if we can safely form an implicit set from
3309 it. COND is either an EQ or NE comparison. */
3311 static bool
3312 implicit_set_cond_p (rtx cond)
3314 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3315 rtx cst = XEXP (cond, 1);
3317 /* We can't perform this optimization if either operand might be or might
3318 contain a signed zero. */
3319 if (HONOR_SIGNED_ZEROS (mode))
3321 /* It is sufficient to check if CST is or contains a zero. We must
3322 handle float, complex, and vector. If any subpart is a zero, then
3323 the optimization can't be performed. */
3324 /* ??? The complex and vector checks are not implemented yet. We just
3325 always return zero for them. */
3326 if (GET_CODE (cst) == CONST_DOUBLE)
3328 REAL_VALUE_TYPE d;
3329 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3330 if (REAL_VALUES_EQUAL (d, dconst0))
3331 return 0;
3333 else
3334 return 0;
3337 return gcse_constant_p (cst);
3340 /* Find the implicit sets of a function. An "implicit set" is a constraint
3341 on the value of a variable, implied by a conditional jump. For example,
3342 following "if (x == 2)", the then branch may be optimized as though the
3343 conditional performed an "explicit set", in this example, "x = 2". This
3344 function records the set patterns that are implicit at the start of each
3345 basic block. */
3347 static void
3348 find_implicit_sets (void)
3350 basic_block bb, dest;
3351 unsigned int count;
3352 rtx cond, new;
3354 count = 0;
3355 FOR_EACH_BB (bb)
3356 /* Check for more than one successor. */
3357 if (EDGE_COUNT (bb->succs) > 1)
3359 cond = fis_get_condition (BB_END (bb));
3361 if (cond
3362 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3363 && REG_P (XEXP (cond, 0))
3364 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3365 && implicit_set_cond_p (cond))
3367 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3368 : FALLTHRU_EDGE (bb)->dest;
3370 if (dest && single_pred_p (dest)
3371 && dest != EXIT_BLOCK_PTR)
3373 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3374 XEXP (cond, 1));
3375 implicit_sets[dest->index] = new;
3376 if (dump_file)
3378 fprintf(dump_file, "Implicit set of reg %d in ",
3379 REGNO (XEXP (cond, 0)));
3380 fprintf(dump_file, "basic block %d\n", dest->index);
3382 count++;
3387 if (dump_file)
3388 fprintf (dump_file, "Found %d implicit sets\n", count);
3391 /* Perform one copy/constant propagation pass.
3392 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3393 propagation into conditional jumps. If BYPASS_JUMPS is true,
3394 perform conditional jump bypassing optimizations. */
3396 static int
3397 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3399 int changed = 0;
3401 global_const_prop_count = local_const_prop_count = 0;
3402 global_copy_prop_count = local_copy_prop_count = 0;
3404 if (cprop_jumps)
3405 local_cprop_pass (cprop_jumps);
3407 /* Determine implicit sets. */
3408 implicit_sets = XCNEWVEC (rtx, last_basic_block);
3409 find_implicit_sets ();
3411 alloc_hash_table (max_cuid, &set_hash_table, 1);
3412 compute_hash_table (&set_hash_table);
3414 /* Free implicit_sets before peak usage. */
3415 free (implicit_sets);
3416 implicit_sets = NULL;
3418 if (dump_file)
3419 dump_hash_table (dump_file, "SET", &set_hash_table);
3420 if (set_hash_table.n_elems > 0)
3422 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3423 compute_cprop_data ();
3424 changed = cprop (cprop_jumps);
3425 if (bypass_jumps)
3426 changed |= bypass_conditional_jumps ();
3427 free_cprop_mem ();
3430 free_hash_table (&set_hash_table);
3432 if (dump_file)
3434 fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3435 current_function_name (), pass, bytes_used);
3436 fprintf (dump_file, "%d local const props, %d local copy props, ",
3437 local_const_prop_count, local_copy_prop_count);
3438 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3439 global_const_prop_count, global_copy_prop_count);
3441 /* Global analysis may get into infinite loops for unreachable blocks. */
3442 if (changed && cprop_jumps)
3443 delete_unreachable_blocks ();
3445 return changed;
3448 /* Bypass conditional jumps. */
3450 /* The value of last_basic_block at the beginning of the jump_bypass
3451 pass. The use of redirect_edge_and_branch_force may introduce new
3452 basic blocks, but the data flow analysis is only valid for basic
3453 block indices less than bypass_last_basic_block. */
3455 static int bypass_last_basic_block;
3457 /* Find a set of REGNO to a constant that is available at the end of basic
3458 block BB. Returns NULL if no such set is found. Based heavily upon
3459 find_avail_set. */
3461 static struct expr *
3462 find_bypass_set (int regno, int bb)
3464 struct expr *result = 0;
3466 for (;;)
3468 rtx src;
3469 struct expr *set = lookup_set (regno, &set_hash_table);
3471 while (set)
3473 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3474 break;
3475 set = next_set (regno, set);
3478 if (set == 0)
3479 break;
3481 gcc_assert (GET_CODE (set->expr) == SET);
3483 src = SET_SRC (set->expr);
3484 if (gcse_constant_p (src))
3485 result = set;
3487 if (! REG_P (src))
3488 break;
3490 regno = REGNO (src);
3492 return result;
3496 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3497 any of the instructions inserted on an edge. Jump bypassing places
3498 condition code setters on CFG edges using insert_insn_on_edge. This
3499 function is required to check that our data flow analysis is still
3500 valid prior to commit_edge_insertions. */
3502 static bool
3503 reg_killed_on_edge (rtx reg, edge e)
3505 rtx insn;
3507 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3508 if (INSN_P (insn) && reg_set_p (reg, insn))
3509 return true;
3511 return false;
3514 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3515 basic block BB which has more than one predecessor. If not NULL, SETCC
3516 is the first instruction of BB, which is immediately followed by JUMP_INSN
3517 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3518 Returns nonzero if a change was made.
3520 During the jump bypassing pass, we may place copies of SETCC instructions
3521 on CFG edges. The following routine must be careful to pay attention to
3522 these inserted insns when performing its transformations. */
3524 static int
3525 bypass_block (basic_block bb, rtx setcc, rtx jump)
3527 rtx insn, note;
3528 edge e, edest;
3529 int i, change;
3530 int may_be_loop_header;
3531 unsigned removed_p;
3532 edge_iterator ei;
3534 insn = (setcc != NULL) ? setcc : jump;
3536 /* Determine set of register uses in INSN. */
3537 reg_use_count = 0;
3538 note_uses (&PATTERN (insn), find_used_regs, NULL);
3539 note = find_reg_equal_equiv_note (insn);
3540 if (note)
3541 find_used_regs (&XEXP (note, 0), NULL);
3543 may_be_loop_header = false;
3544 FOR_EACH_EDGE (e, ei, bb->preds)
3545 if (e->flags & EDGE_DFS_BACK)
3547 may_be_loop_header = true;
3548 break;
3551 change = 0;
3552 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3554 removed_p = 0;
3556 if (e->flags & EDGE_COMPLEX)
3558 ei_next (&ei);
3559 continue;
3562 /* We can't redirect edges from new basic blocks. */
3563 if (e->src->index >= bypass_last_basic_block)
3565 ei_next (&ei);
3566 continue;
3569 /* The irreducible loops created by redirecting of edges entering the
3570 loop from outside would decrease effectiveness of some of the following
3571 optimizations, so prevent this. */
3572 if (may_be_loop_header
3573 && !(e->flags & EDGE_DFS_BACK))
3575 ei_next (&ei);
3576 continue;
3579 for (i = 0; i < reg_use_count; i++)
3581 struct reg_use *reg_used = &reg_use_table[i];
3582 unsigned int regno = REGNO (reg_used->reg_rtx);
3583 basic_block dest, old_dest;
3584 struct expr *set;
3585 rtx src, new;
3587 if (regno >= max_gcse_regno)
3588 continue;
3590 set = find_bypass_set (regno, e->src->index);
3592 if (! set)
3593 continue;
3595 /* Check the data flow is valid after edge insertions. */
3596 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3597 continue;
3599 src = SET_SRC (pc_set (jump));
3601 if (setcc != NULL)
3602 src = simplify_replace_rtx (src,
3603 SET_DEST (PATTERN (setcc)),
3604 SET_SRC (PATTERN (setcc)));
3606 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3607 SET_SRC (set->expr));
3609 /* Jump bypassing may have already placed instructions on
3610 edges of the CFG. We can't bypass an outgoing edge that
3611 has instructions associated with it, as these insns won't
3612 get executed if the incoming edge is redirected. */
3614 if (new == pc_rtx)
3616 edest = FALLTHRU_EDGE (bb);
3617 dest = edest->insns.r ? NULL : edest->dest;
3619 else if (GET_CODE (new) == LABEL_REF)
3621 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3622 /* Don't bypass edges containing instructions. */
3623 edest = find_edge (bb, dest);
3624 if (edest && edest->insns.r)
3625 dest = NULL;
3627 else
3628 dest = NULL;
3630 /* Avoid unification of the edge with other edges from original
3631 branch. We would end up emitting the instruction on "both"
3632 edges. */
3634 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3635 && find_edge (e->src, dest))
3636 dest = NULL;
3638 old_dest = e->dest;
3639 if (dest != NULL
3640 && dest != old_dest
3641 && dest != EXIT_BLOCK_PTR)
3643 redirect_edge_and_branch_force (e, dest);
3645 /* Copy the register setter to the redirected edge.
3646 Don't copy CC0 setters, as CC0 is dead after jump. */
3647 if (setcc)
3649 rtx pat = PATTERN (setcc);
3650 if (!CC0_P (SET_DEST (pat)))
3651 insert_insn_on_edge (copy_insn (pat), e);
3654 if (dump_file != NULL)
3656 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3657 "in jump_insn %d equals constant ",
3658 regno, INSN_UID (jump));
3659 print_rtl (dump_file, SET_SRC (set->expr));
3660 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3661 e->src->index, old_dest->index, dest->index);
3663 change = 1;
3664 removed_p = 1;
3665 break;
3668 if (!removed_p)
3669 ei_next (&ei);
3671 return change;
3674 /* Find basic blocks with more than one predecessor that only contain a
3675 single conditional jump. If the result of the comparison is known at
3676 compile-time from any incoming edge, redirect that edge to the
3677 appropriate target. Returns nonzero if a change was made.
3679 This function is now mis-named, because we also handle indirect jumps. */
3681 static int
3682 bypass_conditional_jumps (void)
3684 basic_block bb;
3685 int changed;
3686 rtx setcc;
3687 rtx insn;
3688 rtx dest;
3690 /* Note we start at block 1. */
3691 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3692 return 0;
3694 bypass_last_basic_block = last_basic_block;
3695 mark_dfs_back_edges ();
3697 changed = 0;
3698 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3699 EXIT_BLOCK_PTR, next_bb)
3701 /* Check for more than one predecessor. */
3702 if (!single_pred_p (bb))
3704 setcc = NULL_RTX;
3705 FOR_BB_INSNS (bb, insn)
3706 if (NONJUMP_INSN_P (insn))
3708 if (setcc)
3709 break;
3710 if (GET_CODE (PATTERN (insn)) != SET)
3711 break;
3713 dest = SET_DEST (PATTERN (insn));
3714 if (REG_P (dest) || CC0_P (dest))
3715 setcc = insn;
3716 else
3717 break;
3719 else if (JUMP_P (insn))
3721 if ((any_condjump_p (insn) || computed_jump_p (insn))
3722 && onlyjump_p (insn))
3723 changed |= bypass_block (bb, setcc, insn);
3724 break;
3726 else if (INSN_P (insn))
3727 break;
3731 /* If we bypassed any register setting insns, we inserted a
3732 copy on the redirected edge. These need to be committed. */
3733 if (changed)
3734 commit_edge_insertions();
3736 return changed;
3739 /* Compute PRE+LCM working variables. */
3741 /* Local properties of expressions. */
3742 /* Nonzero for expressions that are transparent in the block. */
3743 static sbitmap *transp;
3745 /* Nonzero for expressions that are transparent at the end of the block.
3746 This is only zero for expressions killed by abnormal critical edge
3747 created by a calls. */
3748 static sbitmap *transpout;
3750 /* Nonzero for expressions that are computed (available) in the block. */
3751 static sbitmap *comp;
3753 /* Nonzero for expressions that are locally anticipatable in the block. */
3754 static sbitmap *antloc;
3756 /* Nonzero for expressions where this block is an optimal computation
3757 point. */
3758 static sbitmap *pre_optimal;
3760 /* Nonzero for expressions which are redundant in a particular block. */
3761 static sbitmap *pre_redundant;
3763 /* Nonzero for expressions which should be inserted on a specific edge. */
3764 static sbitmap *pre_insert_map;
3766 /* Nonzero for expressions which should be deleted in a specific block. */
3767 static sbitmap *pre_delete_map;
3769 /* Contains the edge_list returned by pre_edge_lcm. */
3770 static struct edge_list *edge_list;
3772 /* Redundant insns. */
3773 static sbitmap pre_redundant_insns;
3775 /* Allocate vars used for PRE analysis. */
3777 static void
3778 alloc_pre_mem (int n_blocks, int n_exprs)
3780 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3781 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3782 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3784 pre_optimal = NULL;
3785 pre_redundant = NULL;
3786 pre_insert_map = NULL;
3787 pre_delete_map = NULL;
3788 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3790 /* pre_insert and pre_delete are allocated later. */
3793 /* Free vars used for PRE analysis. */
3795 static void
3796 free_pre_mem (void)
3798 sbitmap_vector_free (transp);
3799 sbitmap_vector_free (comp);
3801 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3803 if (pre_optimal)
3804 sbitmap_vector_free (pre_optimal);
3805 if (pre_redundant)
3806 sbitmap_vector_free (pre_redundant);
3807 if (pre_insert_map)
3808 sbitmap_vector_free (pre_insert_map);
3809 if (pre_delete_map)
3810 sbitmap_vector_free (pre_delete_map);
3812 transp = comp = NULL;
3813 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3816 /* Top level routine to do the dataflow analysis needed by PRE. */
3818 static void
3819 compute_pre_data (void)
3821 sbitmap trapping_expr;
3822 basic_block bb;
3823 unsigned int ui;
3825 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3826 sbitmap_vector_zero (ae_kill, last_basic_block);
3828 /* Collect expressions which might trap. */
3829 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3830 sbitmap_zero (trapping_expr);
3831 for (ui = 0; ui < expr_hash_table.size; ui++)
3833 struct expr *e;
3834 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3835 if (may_trap_p (e->expr))
3836 SET_BIT (trapping_expr, e->bitmap_index);
3839 /* Compute ae_kill for each basic block using:
3841 ~(TRANSP | COMP)
3844 FOR_EACH_BB (bb)
3846 edge e;
3847 edge_iterator ei;
3849 /* If the current block is the destination of an abnormal edge, we
3850 kill all trapping expressions because we won't be able to properly
3851 place the instruction on the edge. So make them neither
3852 anticipatable nor transparent. This is fairly conservative. */
3853 FOR_EACH_EDGE (e, ei, bb->preds)
3854 if (e->flags & EDGE_ABNORMAL)
3856 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3857 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3858 break;
3861 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3862 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3865 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3866 ae_kill, &pre_insert_map, &pre_delete_map);
3867 sbitmap_vector_free (antloc);
3868 antloc = NULL;
3869 sbitmap_vector_free (ae_kill);
3870 ae_kill = NULL;
3871 sbitmap_free (trapping_expr);
3874 /* PRE utilities */
3876 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3877 block BB.
3879 VISITED is a pointer to a working buffer for tracking which BB's have
3880 been visited. It is NULL for the top-level call.
3882 We treat reaching expressions that go through blocks containing the same
3883 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3884 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3885 2 as not reaching. The intent is to improve the probability of finding
3886 only one reaching expression and to reduce register lifetimes by picking
3887 the closest such expression. */
3889 static int
3890 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3892 edge pred;
3893 edge_iterator ei;
3895 FOR_EACH_EDGE (pred, ei, bb->preds)
3897 basic_block pred_bb = pred->src;
3899 if (pred->src == ENTRY_BLOCK_PTR
3900 /* Has predecessor has already been visited? */
3901 || visited[pred_bb->index])
3902 ;/* Nothing to do. */
3904 /* Does this predecessor generate this expression? */
3905 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3907 /* Is this the occurrence we're looking for?
3908 Note that there's only one generating occurrence per block
3909 so we just need to check the block number. */
3910 if (occr_bb == pred_bb)
3911 return 1;
3913 visited[pred_bb->index] = 1;
3915 /* Ignore this predecessor if it kills the expression. */
3916 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3917 visited[pred_bb->index] = 1;
3919 /* Neither gen nor kill. */
3920 else
3922 visited[pred_bb->index] = 1;
3923 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3924 return 1;
3928 /* All paths have been checked. */
3929 return 0;
3932 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3933 memory allocated for that function is returned. */
3935 static int
3936 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3938 int rval;
3939 char *visited = XCNEWVEC (char, last_basic_block);
3941 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3943 free (visited);
3944 return rval;
3948 /* Given an expr, generate RTL which we can insert at the end of a BB,
3949 or on an edge. Set the block number of any insns generated to
3950 the value of BB. */
3952 static rtx
3953 process_insert_insn (struct expr *expr)
3955 rtx reg = expr->reaching_reg;
3956 rtx exp = copy_rtx (expr->expr);
3957 rtx pat;
3959 start_sequence ();
3961 /* If the expression is something that's an operand, like a constant,
3962 just copy it to a register. */
3963 if (general_operand (exp, GET_MODE (reg)))
3964 emit_move_insn (reg, exp);
3966 /* Otherwise, make a new insn to compute this expression and make sure the
3967 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3968 expression to make sure we don't have any sharing issues. */
3969 else
3971 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3973 if (insn_invalid_p (insn))
3974 gcc_unreachable ();
3978 pat = get_insns ();
3979 end_sequence ();
3981 return pat;
3984 /* Add EXPR to the end of basic block BB.
3986 This is used by both the PRE and code hoisting.
3988 For PRE, we want to verify that the expr is either transparent
3989 or locally anticipatable in the target block. This check makes
3990 no sense for code hoisting. */
3992 static void
3993 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3995 rtx insn = BB_END (bb);
3996 rtx new_insn;
3997 rtx reg = expr->reaching_reg;
3998 int regno = REGNO (reg);
3999 rtx pat, pat_end;
4001 pat = process_insert_insn (expr);
4002 gcc_assert (pat && INSN_P (pat));
4004 pat_end = pat;
4005 while (NEXT_INSN (pat_end) != NULL_RTX)
4006 pat_end = NEXT_INSN (pat_end);
4008 /* If the last insn is a jump, insert EXPR in front [taking care to
4009 handle cc0, etc. properly]. Similarly we need to care trapping
4010 instructions in presence of non-call exceptions. */
4012 if (JUMP_P (insn)
4013 || (NONJUMP_INSN_P (insn)
4014 && (!single_succ_p (bb)
4015 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4017 #ifdef HAVE_cc0
4018 rtx note;
4019 #endif
4020 /* It should always be the case that we can put these instructions
4021 anywhere in the basic block with performing PRE optimizations.
4022 Check this. */
4023 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4024 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4025 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4027 /* If this is a jump table, then we can't insert stuff here. Since
4028 we know the previous real insn must be the tablejump, we insert
4029 the new instruction just before the tablejump. */
4030 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4031 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4032 insn = prev_real_insn (insn);
4034 #ifdef HAVE_cc0
4035 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4036 if cc0 isn't set. */
4037 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4038 if (note)
4039 insn = XEXP (note, 0);
4040 else
4042 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4043 if (maybe_cc0_setter
4044 && INSN_P (maybe_cc0_setter)
4045 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4046 insn = maybe_cc0_setter;
4048 #endif
4049 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4050 new_insn = emit_insn_before_noloc (pat, insn);
4053 /* Likewise if the last insn is a call, as will happen in the presence
4054 of exception handling. */
4055 else if (CALL_P (insn)
4056 && (!single_succ_p (bb)
4057 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4059 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4060 we search backward and place the instructions before the first
4061 parameter is loaded. Do this for everyone for consistency and a
4062 presumption that we'll get better code elsewhere as well.
4064 It should always be the case that we can put these instructions
4065 anywhere in the basic block with performing PRE optimizations.
4066 Check this. */
4068 gcc_assert (!pre
4069 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4070 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4072 /* Since different machines initialize their parameter registers
4073 in different orders, assume nothing. Collect the set of all
4074 parameter registers. */
4075 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4077 /* If we found all the parameter loads, then we want to insert
4078 before the first parameter load.
4080 If we did not find all the parameter loads, then we might have
4081 stopped on the head of the block, which could be a CODE_LABEL.
4082 If we inserted before the CODE_LABEL, then we would be putting
4083 the insn in the wrong basic block. In that case, put the insn
4084 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4085 while (LABEL_P (insn)
4086 || NOTE_INSN_BASIC_BLOCK_P (insn))
4087 insn = NEXT_INSN (insn);
4089 new_insn = emit_insn_before_noloc (pat, insn);
4091 else
4092 new_insn = emit_insn_after_noloc (pat, insn);
4094 while (1)
4096 if (INSN_P (pat))
4098 add_label_notes (PATTERN (pat), new_insn);
4099 note_stores (PATTERN (pat), record_set_info, pat);
4101 if (pat == pat_end)
4102 break;
4103 pat = NEXT_INSN (pat);
4106 gcse_create_count++;
4108 if (dump_file)
4110 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
4111 bb->index, INSN_UID (new_insn));
4112 fprintf (dump_file, "copying expression %d to reg %d\n",
4113 expr->bitmap_index, regno);
4117 /* Insert partially redundant expressions on edges in the CFG to make
4118 the expressions fully redundant. */
4120 static int
4121 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4123 int e, i, j, num_edges, set_size, did_insert = 0;
4124 sbitmap *inserted;
4126 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4127 if it reaches any of the deleted expressions. */
4129 set_size = pre_insert_map[0]->size;
4130 num_edges = NUM_EDGES (edge_list);
4131 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4132 sbitmap_vector_zero (inserted, num_edges);
4134 for (e = 0; e < num_edges; e++)
4136 int indx;
4137 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4139 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4141 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4143 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4144 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4146 struct expr *expr = index_map[j];
4147 struct occr *occr;
4149 /* Now look at each deleted occurrence of this expression. */
4150 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4152 if (! occr->deleted_p)
4153 continue;
4155 /* Insert this expression on this edge if it would
4156 reach the deleted occurrence in BB. */
4157 if (!TEST_BIT (inserted[e], j))
4159 rtx insn;
4160 edge eg = INDEX_EDGE (edge_list, e);
4162 /* We can't insert anything on an abnormal and
4163 critical edge, so we insert the insn at the end of
4164 the previous block. There are several alternatives
4165 detailed in Morgans book P277 (sec 10.5) for
4166 handling this situation. This one is easiest for
4167 now. */
4169 if (eg->flags & EDGE_ABNORMAL)
4170 insert_insn_end_bb (index_map[j], bb, 0);
4171 else
4173 insn = process_insert_insn (index_map[j]);
4174 insert_insn_on_edge (insn, eg);
4177 if (dump_file)
4179 fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
4180 bb->index,
4181 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4182 fprintf (dump_file, "copy expression %d\n",
4183 expr->bitmap_index);
4186 update_ld_motion_stores (expr);
4187 SET_BIT (inserted[e], j);
4188 did_insert = 1;
4189 gcse_create_count++;
4196 sbitmap_vector_free (inserted);
4197 return did_insert;
4200 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4201 Given "old_reg <- expr" (INSN), instead of adding after it
4202 reaching_reg <- old_reg
4203 it's better to do the following:
4204 reaching_reg <- expr
4205 old_reg <- reaching_reg
4206 because this way copy propagation can discover additional PRE
4207 opportunities. But if this fails, we try the old way.
4208 When "expr" is a store, i.e.
4209 given "MEM <- old_reg", instead of adding after it
4210 reaching_reg <- old_reg
4211 it's better to add it before as follows:
4212 reaching_reg <- old_reg
4213 MEM <- reaching_reg. */
4215 static void
4216 pre_insert_copy_insn (struct expr *expr, rtx insn)
4218 rtx reg = expr->reaching_reg;
4219 int regno = REGNO (reg);
4220 int indx = expr->bitmap_index;
4221 rtx pat = PATTERN (insn);
4222 rtx set, first_set, new_insn;
4223 rtx old_reg;
4224 int i;
4226 /* This block matches the logic in hash_scan_insn. */
4227 switch (GET_CODE (pat))
4229 case SET:
4230 set = pat;
4231 break;
4233 case PARALLEL:
4234 /* Search through the parallel looking for the set whose
4235 source was the expression that we're interested in. */
4236 first_set = NULL_RTX;
4237 set = NULL_RTX;
4238 for (i = 0; i < XVECLEN (pat, 0); i++)
4240 rtx x = XVECEXP (pat, 0, i);
4241 if (GET_CODE (x) == SET)
4243 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4244 may not find an equivalent expression, but in this
4245 case the PARALLEL will have a single set. */
4246 if (first_set == NULL_RTX)
4247 first_set = x;
4248 if (expr_equiv_p (SET_SRC (x), expr->expr))
4250 set = x;
4251 break;
4256 gcc_assert (first_set);
4257 if (set == NULL_RTX)
4258 set = first_set;
4259 break;
4261 default:
4262 gcc_unreachable ();
4265 if (REG_P (SET_DEST (set)))
4267 old_reg = SET_DEST (set);
4268 /* Check if we can modify the set destination in the original insn. */
4269 if (validate_change (insn, &SET_DEST (set), reg, 0))
4271 new_insn = gen_move_insn (old_reg, reg);
4272 new_insn = emit_insn_after (new_insn, insn);
4274 /* Keep register set table up to date. */
4275 record_one_set (regno, insn);
4277 else
4279 new_insn = gen_move_insn (reg, old_reg);
4280 new_insn = emit_insn_after (new_insn, insn);
4282 /* Keep register set table up to date. */
4283 record_one_set (regno, new_insn);
4286 else /* This is possible only in case of a store to memory. */
4288 old_reg = SET_SRC (set);
4289 new_insn = gen_move_insn (reg, old_reg);
4291 /* Check if we can modify the set source in the original insn. */
4292 if (validate_change (insn, &SET_SRC (set), reg, 0))
4293 new_insn = emit_insn_before (new_insn, insn);
4294 else
4295 new_insn = emit_insn_after (new_insn, insn);
4297 /* Keep register set table up to date. */
4298 record_one_set (regno, new_insn);
4301 gcse_create_count++;
4303 if (dump_file)
4304 fprintf (dump_file,
4305 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4306 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4307 INSN_UID (insn), regno);
4310 /* Copy available expressions that reach the redundant expression
4311 to `reaching_reg'. */
4313 static void
4314 pre_insert_copies (void)
4316 unsigned int i, added_copy;
4317 struct expr *expr;
4318 struct occr *occr;
4319 struct occr *avail;
4321 /* For each available expression in the table, copy the result to
4322 `reaching_reg' if the expression reaches a deleted one.
4324 ??? The current algorithm is rather brute force.
4325 Need to do some profiling. */
4327 for (i = 0; i < expr_hash_table.size; i++)
4328 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4330 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4331 we don't want to insert a copy here because the expression may not
4332 really be redundant. So only insert an insn if the expression was
4333 deleted. This test also avoids further processing if the
4334 expression wasn't deleted anywhere. */
4335 if (expr->reaching_reg == NULL)
4336 continue;
4338 /* Set when we add a copy for that expression. */
4339 added_copy = 0;
4341 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4343 if (! occr->deleted_p)
4344 continue;
4346 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4348 rtx insn = avail->insn;
4350 /* No need to handle this one if handled already. */
4351 if (avail->copied_p)
4352 continue;
4354 /* Don't handle this one if it's a redundant one. */
4355 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4356 continue;
4358 /* Or if the expression doesn't reach the deleted one. */
4359 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4360 expr,
4361 BLOCK_FOR_INSN (occr->insn)))
4362 continue;
4364 added_copy = 1;
4366 /* Copy the result of avail to reaching_reg. */
4367 pre_insert_copy_insn (expr, insn);
4368 avail->copied_p = 1;
4372 if (added_copy)
4373 update_ld_motion_stores (expr);
4377 /* Emit move from SRC to DEST noting the equivalence with expression computed
4378 in INSN. */
4379 static rtx
4380 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4382 rtx new;
4383 rtx set = single_set (insn), set2;
4384 rtx note;
4385 rtx eqv;
4387 /* This should never fail since we're creating a reg->reg copy
4388 we've verified to be valid. */
4390 new = emit_insn_after (gen_move_insn (dest, src), insn);
4392 /* Note the equivalence for local CSE pass. */
4393 set2 = single_set (new);
4394 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4395 return new;
4396 if ((note = find_reg_equal_equiv_note (insn)))
4397 eqv = XEXP (note, 0);
4398 else
4399 eqv = SET_SRC (set);
4401 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4403 return new;
4406 /* Delete redundant computations.
4407 Deletion is done by changing the insn to copy the `reaching_reg' of
4408 the expression into the result of the SET. It is left to later passes
4409 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4411 Returns nonzero if a change is made. */
4413 static int
4414 pre_delete (void)
4416 unsigned int i;
4417 int changed;
4418 struct expr *expr;
4419 struct occr *occr;
4421 changed = 0;
4422 for (i = 0; i < expr_hash_table.size; i++)
4423 for (expr = expr_hash_table.table[i];
4424 expr != NULL;
4425 expr = expr->next_same_hash)
4427 int indx = expr->bitmap_index;
4429 /* We only need to search antic_occr since we require
4430 ANTLOC != 0. */
4432 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4434 rtx insn = occr->insn;
4435 rtx set;
4436 basic_block bb = BLOCK_FOR_INSN (insn);
4438 /* We only delete insns that have a single_set. */
4439 if (TEST_BIT (pre_delete_map[bb->index], indx)
4440 && (set = single_set (insn)) != 0)
4442 /* Create a pseudo-reg to store the result of reaching
4443 expressions into. Get the mode for the new pseudo from
4444 the mode of the original destination pseudo. */
4445 if (expr->reaching_reg == NULL)
4446 expr->reaching_reg
4447 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4449 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4450 delete_insn (insn);
4451 occr->deleted_p = 1;
4452 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4453 changed = 1;
4454 gcse_subst_count++;
4456 if (dump_file)
4458 fprintf (dump_file,
4459 "PRE: redundant insn %d (expression %d) in ",
4460 INSN_UID (insn), indx);
4461 fprintf (dump_file, "bb %d, reaching reg is %d\n",
4462 bb->index, REGNO (expr->reaching_reg));
4468 return changed;
4471 /* Perform GCSE optimizations using PRE.
4472 This is called by one_pre_gcse_pass after all the dataflow analysis
4473 has been done.
4475 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4476 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4477 Compiler Design and Implementation.
4479 ??? A new pseudo reg is created to hold the reaching expression. The nice
4480 thing about the classical approach is that it would try to use an existing
4481 reg. If the register can't be adequately optimized [i.e. we introduce
4482 reload problems], one could add a pass here to propagate the new register
4483 through the block.
4485 ??? We don't handle single sets in PARALLELs because we're [currently] not
4486 able to copy the rest of the parallel when we insert copies to create full
4487 redundancies from partial redundancies. However, there's no reason why we
4488 can't handle PARALLELs in the cases where there are no partial
4489 redundancies. */
4491 static int
4492 pre_gcse (void)
4494 unsigned int i;
4495 int did_insert, changed;
4496 struct expr **index_map;
4497 struct expr *expr;
4499 /* Compute a mapping from expression number (`bitmap_index') to
4500 hash table entry. */
4502 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4503 for (i = 0; i < expr_hash_table.size; i++)
4504 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4505 index_map[expr->bitmap_index] = expr;
4507 /* Reset bitmap used to track which insns are redundant. */
4508 pre_redundant_insns = sbitmap_alloc (max_cuid);
4509 sbitmap_zero (pre_redundant_insns);
4511 /* Delete the redundant insns first so that
4512 - we know what register to use for the new insns and for the other
4513 ones with reaching expressions
4514 - we know which insns are redundant when we go to create copies */
4516 changed = pre_delete ();
4518 did_insert = pre_edge_insert (edge_list, index_map);
4520 /* In other places with reaching expressions, copy the expression to the
4521 specially allocated pseudo-reg that reaches the redundant expr. */
4522 pre_insert_copies ();
4523 if (did_insert)
4525 commit_edge_insertions ();
4526 changed = 1;
4529 free (index_map);
4530 sbitmap_free (pre_redundant_insns);
4531 return changed;
4534 /* Top level routine to perform one PRE GCSE pass.
4536 Return nonzero if a change was made. */
4538 static int
4539 one_pre_gcse_pass (int pass)
4541 int changed = 0;
4543 gcse_subst_count = 0;
4544 gcse_create_count = 0;
4546 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4547 add_noreturn_fake_exit_edges ();
4548 if (flag_gcse_lm)
4549 compute_ld_motion_mems ();
4551 compute_hash_table (&expr_hash_table);
4552 trim_ld_motion_mems ();
4553 if (dump_file)
4554 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4556 if (expr_hash_table.n_elems > 0)
4558 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4559 compute_pre_data ();
4560 changed |= pre_gcse ();
4561 free_edge_list (edge_list);
4562 free_pre_mem ();
4565 free_ldst_mems ();
4566 remove_fake_exit_edges ();
4567 free_hash_table (&expr_hash_table);
4569 if (dump_file)
4571 fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4572 current_function_name (), pass, bytes_used);
4573 fprintf (dump_file, "%d substs, %d insns created\n",
4574 gcse_subst_count, gcse_create_count);
4577 return changed;
4580 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4581 If notes are added to an insn which references a CODE_LABEL, the
4582 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4583 because the following loop optimization pass requires them. */
4585 /* ??? If there was a jump optimization pass after gcse and before loop,
4586 then we would not need to do this here, because jump would add the
4587 necessary REG_LABEL notes. */
4589 static void
4590 add_label_notes (rtx x, rtx insn)
4592 enum rtx_code code = GET_CODE (x);
4593 int i, j;
4594 const char *fmt;
4596 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4598 /* This code used to ignore labels that referred to dispatch tables to
4599 avoid flow generating (slightly) worse code.
4601 We no longer ignore such label references (see LABEL_REF handling in
4602 mark_jump_label for additional information). */
4604 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4605 REG_NOTES (insn));
4606 if (LABEL_P (XEXP (x, 0)))
4607 LABEL_NUSES (XEXP (x, 0))++;
4608 return;
4611 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4613 if (fmt[i] == 'e')
4614 add_label_notes (XEXP (x, i), insn);
4615 else if (fmt[i] == 'E')
4616 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4617 add_label_notes (XVECEXP (x, i, j), insn);
4621 /* Compute transparent outgoing information for each block.
4623 An expression is transparent to an edge unless it is killed by
4624 the edge itself. This can only happen with abnormal control flow,
4625 when the edge is traversed through a call. This happens with
4626 non-local labels and exceptions.
4628 This would not be necessary if we split the edge. While this is
4629 normally impossible for abnormal critical edges, with some effort
4630 it should be possible with exception handling, since we still have
4631 control over which handler should be invoked. But due to increased
4632 EH table sizes, this may not be worthwhile. */
4634 static void
4635 compute_transpout (void)
4637 basic_block bb;
4638 unsigned int i;
4639 struct expr *expr;
4641 sbitmap_vector_ones (transpout, last_basic_block);
4643 FOR_EACH_BB (bb)
4645 /* Note that flow inserted a nop a the end of basic blocks that
4646 end in call instructions for reasons other than abnormal
4647 control flow. */
4648 if (! CALL_P (BB_END (bb)))
4649 continue;
4651 for (i = 0; i < expr_hash_table.size; i++)
4652 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4653 if (MEM_P (expr->expr))
4655 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4656 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4657 continue;
4659 /* ??? Optimally, we would use interprocedural alias
4660 analysis to determine if this mem is actually killed
4661 by this call. */
4662 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4667 /* Code Hoisting variables and subroutines. */
4669 /* Very busy expressions. */
4670 static sbitmap *hoist_vbein;
4671 static sbitmap *hoist_vbeout;
4673 /* Hoistable expressions. */
4674 static sbitmap *hoist_exprs;
4676 /* ??? We could compute post dominators and run this algorithm in
4677 reverse to perform tail merging, doing so would probably be
4678 more effective than the tail merging code in jump.c.
4680 It's unclear if tail merging could be run in parallel with
4681 code hoisting. It would be nice. */
4683 /* Allocate vars used for code hoisting analysis. */
4685 static void
4686 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4688 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4689 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4690 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4692 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4693 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4694 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4695 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4698 /* Free vars used for code hoisting analysis. */
4700 static void
4701 free_code_hoist_mem (void)
4703 sbitmap_vector_free (antloc);
4704 sbitmap_vector_free (transp);
4705 sbitmap_vector_free (comp);
4707 sbitmap_vector_free (hoist_vbein);
4708 sbitmap_vector_free (hoist_vbeout);
4709 sbitmap_vector_free (hoist_exprs);
4710 sbitmap_vector_free (transpout);
4712 free_dominance_info (CDI_DOMINATORS);
4715 /* Compute the very busy expressions at entry/exit from each block.
4717 An expression is very busy if all paths from a given point
4718 compute the expression. */
4720 static void
4721 compute_code_hoist_vbeinout (void)
4723 int changed, passes;
4724 basic_block bb;
4726 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4727 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4729 passes = 0;
4730 changed = 1;
4732 while (changed)
4734 changed = 0;
4736 /* We scan the blocks in the reverse order to speed up
4737 the convergence. */
4738 FOR_EACH_BB_REVERSE (bb)
4740 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4741 hoist_vbeout[bb->index], transp[bb->index]);
4742 if (bb->next_bb != EXIT_BLOCK_PTR)
4743 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4746 passes++;
4749 if (dump_file)
4750 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4753 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4755 static void
4756 compute_code_hoist_data (void)
4758 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4759 compute_transpout ();
4760 compute_code_hoist_vbeinout ();
4761 calculate_dominance_info (CDI_DOMINATORS);
4762 if (dump_file)
4763 fprintf (dump_file, "\n");
4766 /* Determine if the expression identified by EXPR_INDEX would
4767 reach BB unimpared if it was placed at the end of EXPR_BB.
4769 It's unclear exactly what Muchnick meant by "unimpared". It seems
4770 to me that the expression must either be computed or transparent in
4771 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4772 would allow the expression to be hoisted out of loops, even if
4773 the expression wasn't a loop invariant.
4775 Contrast this to reachability for PRE where an expression is
4776 considered reachable if *any* path reaches instead of *all*
4777 paths. */
4779 static int
4780 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4782 edge pred;
4783 edge_iterator ei;
4784 int visited_allocated_locally = 0;
4787 if (visited == NULL)
4789 visited_allocated_locally = 1;
4790 visited = XCNEWVEC (char, last_basic_block);
4793 FOR_EACH_EDGE (pred, ei, bb->preds)
4795 basic_block pred_bb = pred->src;
4797 if (pred->src == ENTRY_BLOCK_PTR)
4798 break;
4799 else if (pred_bb == expr_bb)
4800 continue;
4801 else if (visited[pred_bb->index])
4802 continue;
4804 /* Does this predecessor generate this expression? */
4805 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4806 break;
4807 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4808 break;
4810 /* Not killed. */
4811 else
4813 visited[pred_bb->index] = 1;
4814 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4815 pred_bb, visited))
4816 break;
4819 if (visited_allocated_locally)
4820 free (visited);
4822 return (pred == NULL);
4825 /* Actually perform code hoisting. */
4827 static void
4828 hoist_code (void)
4830 basic_block bb, dominated;
4831 basic_block *domby;
4832 unsigned int domby_len;
4833 unsigned int i,j;
4834 struct expr **index_map;
4835 struct expr *expr;
4837 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4839 /* Compute a mapping from expression number (`bitmap_index') to
4840 hash table entry. */
4842 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4843 for (i = 0; i < expr_hash_table.size; i++)
4844 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4845 index_map[expr->bitmap_index] = expr;
4847 /* Walk over each basic block looking for potentially hoistable
4848 expressions, nothing gets hoisted from the entry block. */
4849 FOR_EACH_BB (bb)
4851 int found = 0;
4852 int insn_inserted_p;
4854 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4855 /* Examine each expression that is very busy at the exit of this
4856 block. These are the potentially hoistable expressions. */
4857 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4859 int hoistable = 0;
4861 if (TEST_BIT (hoist_vbeout[bb->index], i)
4862 && TEST_BIT (transpout[bb->index], i))
4864 /* We've found a potentially hoistable expression, now
4865 we look at every block BB dominates to see if it
4866 computes the expression. */
4867 for (j = 0; j < domby_len; j++)
4869 dominated = domby[j];
4870 /* Ignore self dominance. */
4871 if (bb == dominated)
4872 continue;
4873 /* We've found a dominated block, now see if it computes
4874 the busy expression and whether or not moving that
4875 expression to the "beginning" of that block is safe. */
4876 if (!TEST_BIT (antloc[dominated->index], i))
4877 continue;
4879 /* Note if the expression would reach the dominated block
4880 unimpared if it was placed at the end of BB.
4882 Keep track of how many times this expression is hoistable
4883 from a dominated block into BB. */
4884 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4885 hoistable++;
4888 /* If we found more than one hoistable occurrence of this
4889 expression, then note it in the bitmap of expressions to
4890 hoist. It makes no sense to hoist things which are computed
4891 in only one BB, and doing so tends to pessimize register
4892 allocation. One could increase this value to try harder
4893 to avoid any possible code expansion due to register
4894 allocation issues; however experiments have shown that
4895 the vast majority of hoistable expressions are only movable
4896 from two successors, so raising this threshold is likely
4897 to nullify any benefit we get from code hoisting. */
4898 if (hoistable > 1)
4900 SET_BIT (hoist_exprs[bb->index], i);
4901 found = 1;
4905 /* If we found nothing to hoist, then quit now. */
4906 if (! found)
4908 free (domby);
4909 continue;
4912 /* Loop over all the hoistable expressions. */
4913 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4915 /* We want to insert the expression into BB only once, so
4916 note when we've inserted it. */
4917 insn_inserted_p = 0;
4919 /* These tests should be the same as the tests above. */
4920 if (TEST_BIT (hoist_exprs[bb->index], i))
4922 /* We've found a potentially hoistable expression, now
4923 we look at every block BB dominates to see if it
4924 computes the expression. */
4925 for (j = 0; j < domby_len; j++)
4927 dominated = domby[j];
4928 /* Ignore self dominance. */
4929 if (bb == dominated)
4930 continue;
4932 /* We've found a dominated block, now see if it computes
4933 the busy expression and whether or not moving that
4934 expression to the "beginning" of that block is safe. */
4935 if (!TEST_BIT (antloc[dominated->index], i))
4936 continue;
4938 /* The expression is computed in the dominated block and
4939 it would be safe to compute it at the start of the
4940 dominated block. Now we have to determine if the
4941 expression would reach the dominated block if it was
4942 placed at the end of BB. */
4943 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4945 struct expr *expr = index_map[i];
4946 struct occr *occr = expr->antic_occr;
4947 rtx insn;
4948 rtx set;
4950 /* Find the right occurrence of this expression. */
4951 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4952 occr = occr->next;
4954 gcc_assert (occr);
4955 insn = occr->insn;
4956 set = single_set (insn);
4957 gcc_assert (set);
4959 /* Create a pseudo-reg to store the result of reaching
4960 expressions into. Get the mode for the new pseudo
4961 from the mode of the original destination pseudo. */
4962 if (expr->reaching_reg == NULL)
4963 expr->reaching_reg
4964 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4966 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4967 delete_insn (insn);
4968 occr->deleted_p = 1;
4969 if (!insn_inserted_p)
4971 insert_insn_end_bb (index_map[i], bb, 0);
4972 insn_inserted_p = 1;
4978 free (domby);
4981 free (index_map);
4984 /* Top level routine to perform one code hoisting (aka unification) pass
4986 Return nonzero if a change was made. */
4988 static int
4989 one_code_hoisting_pass (void)
4991 int changed = 0;
4993 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4994 compute_hash_table (&expr_hash_table);
4995 if (dump_file)
4996 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4998 if (expr_hash_table.n_elems > 0)
5000 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5001 compute_code_hoist_data ();
5002 hoist_code ();
5003 free_code_hoist_mem ();
5006 free_hash_table (&expr_hash_table);
5008 return changed;
5011 /* Here we provide the things required to do store motion towards
5012 the exit. In order for this to be effective, gcse also needed to
5013 be taught how to move a load when it is kill only by a store to itself.
5015 int i;
5016 float a[10];
5018 void foo(float scale)
5020 for (i=0; i<10; i++)
5021 a[i] *= scale;
5024 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5025 the load out since its live around the loop, and stored at the bottom
5026 of the loop.
5028 The 'Load Motion' referred to and implemented in this file is
5029 an enhancement to gcse which when using edge based lcm, recognizes
5030 this situation and allows gcse to move the load out of the loop.
5032 Once gcse has hoisted the load, store motion can then push this
5033 load towards the exit, and we end up with no loads or stores of 'i'
5034 in the loop. */
5036 static hashval_t
5037 pre_ldst_expr_hash (const void *p)
5039 int do_not_record_p = 0;
5040 const struct ls_expr *x = p;
5041 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5044 static int
5045 pre_ldst_expr_eq (const void *p1, const void *p2)
5047 const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5048 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5051 /* This will search the ldst list for a matching expression. If it
5052 doesn't find one, we create one and initialize it. */
5054 static struct ls_expr *
5055 ldst_entry (rtx x)
5057 int do_not_record_p = 0;
5058 struct ls_expr * ptr;
5059 unsigned int hash;
5060 void **slot;
5061 struct ls_expr e;
5063 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5064 NULL, /*have_reg_qty=*/false);
5066 e.pattern = x;
5067 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5068 if (*slot)
5069 return (struct ls_expr *)*slot;
5071 ptr = XNEW (struct ls_expr);
5073 ptr->next = pre_ldst_mems;
5074 ptr->expr = NULL;
5075 ptr->pattern = x;
5076 ptr->pattern_regs = NULL_RTX;
5077 ptr->loads = NULL_RTX;
5078 ptr->stores = NULL_RTX;
5079 ptr->reaching_reg = NULL_RTX;
5080 ptr->invalid = 0;
5081 ptr->index = 0;
5082 ptr->hash_index = hash;
5083 pre_ldst_mems = ptr;
5084 *slot = ptr;
5086 return ptr;
5089 /* Free up an individual ldst entry. */
5091 static void
5092 free_ldst_entry (struct ls_expr * ptr)
5094 free_INSN_LIST_list (& ptr->loads);
5095 free_INSN_LIST_list (& ptr->stores);
5097 free (ptr);
5100 /* Free up all memory associated with the ldst list. */
5102 static void
5103 free_ldst_mems (void)
5105 if (pre_ldst_table)
5106 htab_delete (pre_ldst_table);
5107 pre_ldst_table = NULL;
5109 while (pre_ldst_mems)
5111 struct ls_expr * tmp = pre_ldst_mems;
5113 pre_ldst_mems = pre_ldst_mems->next;
5115 free_ldst_entry (tmp);
5118 pre_ldst_mems = NULL;
5121 /* Dump debugging info about the ldst list. */
5123 static void
5124 print_ldst_list (FILE * file)
5126 struct ls_expr * ptr;
5128 fprintf (file, "LDST list: \n");
5130 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5132 fprintf (file, " Pattern (%3d): ", ptr->index);
5134 print_rtl (file, ptr->pattern);
5136 fprintf (file, "\n Loads : ");
5138 if (ptr->loads)
5139 print_rtl (file, ptr->loads);
5140 else
5141 fprintf (file, "(nil)");
5143 fprintf (file, "\n Stores : ");
5145 if (ptr->stores)
5146 print_rtl (file, ptr->stores);
5147 else
5148 fprintf (file, "(nil)");
5150 fprintf (file, "\n\n");
5153 fprintf (file, "\n");
5156 /* Returns 1 if X is in the list of ldst only expressions. */
5158 static struct ls_expr *
5159 find_rtx_in_ldst (rtx x)
5161 struct ls_expr e;
5162 void **slot;
5163 if (!pre_ldst_table)
5164 return NULL;
5165 e.pattern = x;
5166 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5167 if (!slot || ((struct ls_expr *)*slot)->invalid)
5168 return NULL;
5169 return *slot;
5172 /* Assign each element of the list of mems a monotonically increasing value. */
5174 static int
5175 enumerate_ldsts (void)
5177 struct ls_expr * ptr;
5178 int n = 0;
5180 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5181 ptr->index = n++;
5183 return n;
5186 /* Return first item in the list. */
5188 static inline struct ls_expr *
5189 first_ls_expr (void)
5191 return pre_ldst_mems;
5194 /* Return the next item in the list after the specified one. */
5196 static inline struct ls_expr *
5197 next_ls_expr (struct ls_expr * ptr)
5199 return ptr->next;
5202 /* Load Motion for loads which only kill themselves. */
5204 /* Return true if x is a simple MEM operation, with no registers or
5205 side effects. These are the types of loads we consider for the
5206 ld_motion list, otherwise we let the usual aliasing take care of it. */
5208 static int
5209 simple_mem (rtx x)
5211 if (! MEM_P (x))
5212 return 0;
5214 if (MEM_VOLATILE_P (x))
5215 return 0;
5217 if (GET_MODE (x) == BLKmode)
5218 return 0;
5220 /* If we are handling exceptions, we must be careful with memory references
5221 that may trap. If we are not, the behavior is undefined, so we may just
5222 continue. */
5223 if (flag_non_call_exceptions && may_trap_p (x))
5224 return 0;
5226 if (side_effects_p (x))
5227 return 0;
5229 /* Do not consider function arguments passed on stack. */
5230 if (reg_mentioned_p (stack_pointer_rtx, x))
5231 return 0;
5233 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5234 return 0;
5236 return 1;
5239 /* Make sure there isn't a buried reference in this pattern anywhere.
5240 If there is, invalidate the entry for it since we're not capable
5241 of fixing it up just yet.. We have to be sure we know about ALL
5242 loads since the aliasing code will allow all entries in the
5243 ld_motion list to not-alias itself. If we miss a load, we will get
5244 the wrong value since gcse might common it and we won't know to
5245 fix it up. */
5247 static void
5248 invalidate_any_buried_refs (rtx x)
5250 const char * fmt;
5251 int i, j;
5252 struct ls_expr * ptr;
5254 /* Invalidate it in the list. */
5255 if (MEM_P (x) && simple_mem (x))
5257 ptr = ldst_entry (x);
5258 ptr->invalid = 1;
5261 /* Recursively process the insn. */
5262 fmt = GET_RTX_FORMAT (GET_CODE (x));
5264 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5266 if (fmt[i] == 'e')
5267 invalidate_any_buried_refs (XEXP (x, i));
5268 else if (fmt[i] == 'E')
5269 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5270 invalidate_any_buried_refs (XVECEXP (x, i, j));
5274 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5275 being defined as MEM loads and stores to symbols, with no side effects
5276 and no registers in the expression. For a MEM destination, we also
5277 check that the insn is still valid if we replace the destination with a
5278 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5279 which don't match this criteria, they are invalidated and trimmed out
5280 later. */
5282 static void
5283 compute_ld_motion_mems (void)
5285 struct ls_expr * ptr;
5286 basic_block bb;
5287 rtx insn;
5289 pre_ldst_mems = NULL;
5290 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5291 pre_ldst_expr_eq, NULL);
5293 FOR_EACH_BB (bb)
5295 FOR_BB_INSNS (bb, insn)
5297 if (INSN_P (insn))
5299 if (GET_CODE (PATTERN (insn)) == SET)
5301 rtx src = SET_SRC (PATTERN (insn));
5302 rtx dest = SET_DEST (PATTERN (insn));
5304 /* Check for a simple LOAD... */
5305 if (MEM_P (src) && simple_mem (src))
5307 ptr = ldst_entry (src);
5308 if (REG_P (dest))
5309 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5310 else
5311 ptr->invalid = 1;
5313 else
5315 /* Make sure there isn't a buried load somewhere. */
5316 invalidate_any_buried_refs (src);
5319 /* Check for stores. Don't worry about aliased ones, they
5320 will block any movement we might do later. We only care
5321 about this exact pattern since those are the only
5322 circumstance that we will ignore the aliasing info. */
5323 if (MEM_P (dest) && simple_mem (dest))
5325 ptr = ldst_entry (dest);
5327 if (! MEM_P (src)
5328 && GET_CODE (src) != ASM_OPERANDS
5329 /* Check for REG manually since want_to_gcse_p
5330 returns 0 for all REGs. */
5331 && can_assign_to_reg_p (src))
5332 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5333 else
5334 ptr->invalid = 1;
5337 else
5338 invalidate_any_buried_refs (PATTERN (insn));
5344 /* Remove any references that have been either invalidated or are not in the
5345 expression list for pre gcse. */
5347 static void
5348 trim_ld_motion_mems (void)
5350 struct ls_expr * * last = & pre_ldst_mems;
5351 struct ls_expr * ptr = pre_ldst_mems;
5353 while (ptr != NULL)
5355 struct expr * expr;
5357 /* Delete if entry has been made invalid. */
5358 if (! ptr->invalid)
5360 /* Delete if we cannot find this mem in the expression list. */
5361 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5363 for (expr = expr_hash_table.table[hash];
5364 expr != NULL;
5365 expr = expr->next_same_hash)
5366 if (expr_equiv_p (expr->expr, ptr->pattern))
5367 break;
5369 else
5370 expr = (struct expr *) 0;
5372 if (expr)
5374 /* Set the expression field if we are keeping it. */
5375 ptr->expr = expr;
5376 last = & ptr->next;
5377 ptr = ptr->next;
5379 else
5381 *last = ptr->next;
5382 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5383 free_ldst_entry (ptr);
5384 ptr = * last;
5388 /* Show the world what we've found. */
5389 if (dump_file && pre_ldst_mems != NULL)
5390 print_ldst_list (dump_file);
5393 /* This routine will take an expression which we are replacing with
5394 a reaching register, and update any stores that are needed if
5395 that expression is in the ld_motion list. Stores are updated by
5396 copying their SRC to the reaching register, and then storing
5397 the reaching register into the store location. These keeps the
5398 correct value in the reaching register for the loads. */
5400 static void
5401 update_ld_motion_stores (struct expr * expr)
5403 struct ls_expr * mem_ptr;
5405 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5407 /* We can try to find just the REACHED stores, but is shouldn't
5408 matter to set the reaching reg everywhere... some might be
5409 dead and should be eliminated later. */
5411 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5412 where reg is the reaching reg used in the load. We checked in
5413 compute_ld_motion_mems that we can replace (set mem expr) with
5414 (set reg expr) in that insn. */
5415 rtx list = mem_ptr->stores;
5417 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5419 rtx insn = XEXP (list, 0);
5420 rtx pat = PATTERN (insn);
5421 rtx src = SET_SRC (pat);
5422 rtx reg = expr->reaching_reg;
5423 rtx copy, new;
5425 /* If we've already copied it, continue. */
5426 if (expr->reaching_reg == src)
5427 continue;
5429 if (dump_file)
5431 fprintf (dump_file, "PRE: store updated with reaching reg ");
5432 print_rtl (dump_file, expr->reaching_reg);
5433 fprintf (dump_file, ":\n ");
5434 print_inline_rtx (dump_file, insn, 8);
5435 fprintf (dump_file, "\n");
5438 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5439 new = emit_insn_before (copy, insn);
5440 record_one_set (REGNO (reg), new);
5441 SET_SRC (pat) = reg;
5443 /* un-recognize this pattern since it's probably different now. */
5444 INSN_CODE (insn) = -1;
5445 gcse_create_count++;
5450 /* Store motion code. */
5452 #define ANTIC_STORE_LIST(x) ((x)->loads)
5453 #define AVAIL_STORE_LIST(x) ((x)->stores)
5454 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5456 /* This is used to communicate the target bitvector we want to use in the
5457 reg_set_info routine when called via the note_stores mechanism. */
5458 static int * regvec;
5460 /* And current insn, for the same routine. */
5461 static rtx compute_store_table_current_insn;
5463 /* Used in computing the reverse edge graph bit vectors. */
5464 static sbitmap * st_antloc;
5466 /* Global holding the number of store expressions we are dealing with. */
5467 static int num_stores;
5469 /* Checks to set if we need to mark a register set. Called from
5470 note_stores. */
5472 static void
5473 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5474 void *data)
5476 sbitmap bb_reg = data;
5478 if (GET_CODE (dest) == SUBREG)
5479 dest = SUBREG_REG (dest);
5481 if (REG_P (dest))
5483 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5484 if (bb_reg)
5485 SET_BIT (bb_reg, REGNO (dest));
5489 /* Clear any mark that says that this insn sets dest. Called from
5490 note_stores. */
5492 static void
5493 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5494 void *data)
5496 int *dead_vec = data;
5498 if (GET_CODE (dest) == SUBREG)
5499 dest = SUBREG_REG (dest);
5501 if (REG_P (dest) &&
5502 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5503 dead_vec[REGNO (dest)] = 0;
5506 /* Return zero if some of the registers in list X are killed
5507 due to set of registers in bitmap REGS_SET. */
5509 static bool
5510 store_ops_ok (rtx x, int *regs_set)
5512 rtx reg;
5514 for (; x; x = XEXP (x, 1))
5516 reg = XEXP (x, 0);
5517 if (regs_set[REGNO(reg)])
5518 return false;
5521 return true;
5524 /* Returns a list of registers mentioned in X. */
5525 static rtx
5526 extract_mentioned_regs (rtx x)
5528 return extract_mentioned_regs_helper (x, NULL_RTX);
5531 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5532 registers. */
5533 static rtx
5534 extract_mentioned_regs_helper (rtx x, rtx accum)
5536 int i;
5537 enum rtx_code code;
5538 const char * fmt;
5540 /* Repeat is used to turn tail-recursion into iteration. */
5541 repeat:
5543 if (x == 0)
5544 return accum;
5546 code = GET_CODE (x);
5547 switch (code)
5549 case REG:
5550 return alloc_EXPR_LIST (0, x, accum);
5552 case MEM:
5553 x = XEXP (x, 0);
5554 goto repeat;
5556 case PRE_DEC:
5557 case PRE_INC:
5558 case POST_DEC:
5559 case POST_INC:
5560 /* We do not run this function with arguments having side effects. */
5561 gcc_unreachable ();
5563 case PC:
5564 case CC0: /*FIXME*/
5565 case CONST:
5566 case CONST_INT:
5567 case CONST_DOUBLE:
5568 case CONST_VECTOR:
5569 case SYMBOL_REF:
5570 case LABEL_REF:
5571 case ADDR_VEC:
5572 case ADDR_DIFF_VEC:
5573 return accum;
5575 default:
5576 break;
5579 i = GET_RTX_LENGTH (code) - 1;
5580 fmt = GET_RTX_FORMAT (code);
5582 for (; i >= 0; i--)
5584 if (fmt[i] == 'e')
5586 rtx tem = XEXP (x, i);
5588 /* If we are about to do the last recursive call
5589 needed at this level, change it into iteration. */
5590 if (i == 0)
5592 x = tem;
5593 goto repeat;
5596 accum = extract_mentioned_regs_helper (tem, accum);
5598 else if (fmt[i] == 'E')
5600 int j;
5602 for (j = 0; j < XVECLEN (x, i); j++)
5603 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5607 return accum;
5610 /* Determine whether INSN is MEM store pattern that we will consider moving.
5611 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5612 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5613 including) the insn in this basic block. We must be passing through BB from
5614 head to end, as we are using this fact to speed things up.
5616 The results are stored this way:
5618 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5619 -- if the processed expression is not anticipatable, NULL_RTX is added
5620 there instead, so that we can use it as indicator that no further
5621 expression of this type may be anticipatable
5622 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5623 consequently, all of them but this head are dead and may be deleted.
5624 -- if the expression is not available, the insn due to that it fails to be
5625 available is stored in reaching_reg.
5627 The things are complicated a bit by fact that there already may be stores
5628 to the same MEM from other blocks; also caller must take care of the
5629 necessary cleanup of the temporary markers after end of the basic block.
5632 static void
5633 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5635 struct ls_expr * ptr;
5636 rtx dest, set, tmp;
5637 int check_anticipatable, check_available;
5638 basic_block bb = BLOCK_FOR_INSN (insn);
5640 set = single_set (insn);
5641 if (!set)
5642 return;
5644 dest = SET_DEST (set);
5646 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5647 || GET_MODE (dest) == BLKmode)
5648 return;
5650 if (side_effects_p (dest))
5651 return;
5653 /* If we are handling exceptions, we must be careful with memory references
5654 that may trap. If we are not, the behavior is undefined, so we may just
5655 continue. */
5656 if (flag_non_call_exceptions && may_trap_p (dest))
5657 return;
5659 /* Even if the destination cannot trap, the source may. In this case we'd
5660 need to handle updating the REG_EH_REGION note. */
5661 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5662 return;
5664 /* Make sure that the SET_SRC of this store insns can be assigned to
5665 a register, or we will fail later on in replace_store_insn, which
5666 assumes that we can do this. But sometimes the target machine has
5667 oddities like MEM read-modify-write instruction. See for example
5668 PR24257. */
5669 if (!can_assign_to_reg_p (SET_SRC (set)))
5670 return;
5672 ptr = ldst_entry (dest);
5673 if (!ptr->pattern_regs)
5674 ptr->pattern_regs = extract_mentioned_regs (dest);
5676 /* Do not check for anticipatability if we either found one anticipatable
5677 store already, or tested for one and found out that it was killed. */
5678 check_anticipatable = 0;
5679 if (!ANTIC_STORE_LIST (ptr))
5680 check_anticipatable = 1;
5681 else
5683 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5684 if (tmp != NULL_RTX
5685 && BLOCK_FOR_INSN (tmp) != bb)
5686 check_anticipatable = 1;
5688 if (check_anticipatable)
5690 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5691 tmp = NULL_RTX;
5692 else
5693 tmp = insn;
5694 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5695 ANTIC_STORE_LIST (ptr));
5698 /* It is not necessary to check whether store is available if we did
5699 it successfully before; if we failed before, do not bother to check
5700 until we reach the insn that caused us to fail. */
5701 check_available = 0;
5702 if (!AVAIL_STORE_LIST (ptr))
5703 check_available = 1;
5704 else
5706 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5707 if (BLOCK_FOR_INSN (tmp) != bb)
5708 check_available = 1;
5710 if (check_available)
5712 /* Check that we have already reached the insn at that the check
5713 failed last time. */
5714 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5716 for (tmp = BB_END (bb);
5717 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5718 tmp = PREV_INSN (tmp))
5719 continue;
5720 if (tmp == insn)
5721 check_available = 0;
5723 else
5724 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5725 bb, regs_set_after,
5726 &LAST_AVAIL_CHECK_FAILURE (ptr));
5728 if (!check_available)
5729 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5732 /* Find available and anticipatable stores. */
5734 static int
5735 compute_store_table (void)
5737 int ret;
5738 basic_block bb;
5739 unsigned regno;
5740 rtx insn, pat, tmp;
5741 int *last_set_in, *already_set;
5742 struct ls_expr * ptr, **prev_next_ptr_ptr;
5744 max_gcse_regno = max_reg_num ();
5746 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5747 max_gcse_regno);
5748 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5749 pre_ldst_mems = 0;
5750 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5751 pre_ldst_expr_eq, NULL);
5752 last_set_in = XCNEWVEC (int, max_gcse_regno);
5753 already_set = XNEWVEC (int, max_gcse_regno);
5755 /* Find all the stores we care about. */
5756 FOR_EACH_BB (bb)
5758 /* First compute the registers set in this block. */
5759 regvec = last_set_in;
5761 FOR_BB_INSNS (bb, insn)
5763 if (! INSN_P (insn))
5764 continue;
5766 if (CALL_P (insn))
5768 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5769 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5771 last_set_in[regno] = INSN_UID (insn);
5772 SET_BIT (reg_set_in_block[bb->index], regno);
5776 pat = PATTERN (insn);
5777 compute_store_table_current_insn = insn;
5778 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5781 /* Now find the stores. */
5782 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5783 regvec = already_set;
5784 FOR_BB_INSNS (bb, insn)
5786 if (! INSN_P (insn))
5787 continue;
5789 if (CALL_P (insn))
5791 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5792 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5793 already_set[regno] = 1;
5796 pat = PATTERN (insn);
5797 note_stores (pat, reg_set_info, NULL);
5799 /* Now that we've marked regs, look for stores. */
5800 find_moveable_store (insn, already_set, last_set_in);
5802 /* Unmark regs that are no longer set. */
5803 compute_store_table_current_insn = insn;
5804 note_stores (pat, reg_clear_last_set, last_set_in);
5805 if (CALL_P (insn))
5807 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5808 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5809 && last_set_in[regno] == INSN_UID (insn))
5810 last_set_in[regno] = 0;
5814 #ifdef ENABLE_CHECKING
5815 /* last_set_in should now be all-zero. */
5816 for (regno = 0; regno < max_gcse_regno; regno++)
5817 gcc_assert (!last_set_in[regno]);
5818 #endif
5820 /* Clear temporary marks. */
5821 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5823 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5824 if (ANTIC_STORE_LIST (ptr)
5825 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5826 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5830 /* Remove the stores that are not available anywhere, as there will
5831 be no opportunity to optimize them. */
5832 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5833 ptr != NULL;
5834 ptr = *prev_next_ptr_ptr)
5836 if (!AVAIL_STORE_LIST (ptr))
5838 *prev_next_ptr_ptr = ptr->next;
5839 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5840 free_ldst_entry (ptr);
5842 else
5843 prev_next_ptr_ptr = &ptr->next;
5846 ret = enumerate_ldsts ();
5848 if (dump_file)
5850 fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
5851 print_ldst_list (dump_file);
5854 free (last_set_in);
5855 free (already_set);
5856 return ret;
5859 /* Check to see if the load X is aliased with STORE_PATTERN.
5860 AFTER is true if we are checking the case when STORE_PATTERN occurs
5861 after the X. */
5863 static bool
5864 load_kills_store (rtx x, rtx store_pattern, int after)
5866 if (after)
5867 return anti_dependence (x, store_pattern);
5868 else
5869 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5870 rtx_addr_varies_p);
5873 /* Go through the entire insn X, looking for any loads which might alias
5874 STORE_PATTERN. Return true if found.
5875 AFTER is true if we are checking the case when STORE_PATTERN occurs
5876 after the insn X. */
5878 static bool
5879 find_loads (rtx x, rtx store_pattern, int after)
5881 const char * fmt;
5882 int i, j;
5883 int ret = false;
5885 if (!x)
5886 return false;
5888 if (GET_CODE (x) == SET)
5889 x = SET_SRC (x);
5891 if (MEM_P (x))
5893 if (load_kills_store (x, store_pattern, after))
5894 return true;
5897 /* Recursively process the insn. */
5898 fmt = GET_RTX_FORMAT (GET_CODE (x));
5900 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5902 if (fmt[i] == 'e')
5903 ret |= find_loads (XEXP (x, i), store_pattern, after);
5904 else if (fmt[i] == 'E')
5905 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5906 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5908 return ret;
5911 /* Check if INSN kills the store pattern X (is aliased with it).
5912 AFTER is true if we are checking the case when store X occurs
5913 after the insn. Return true if it does. */
5915 static bool
5916 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5918 rtx reg, base, note;
5920 if (!INSN_P (insn))
5921 return false;
5923 if (CALL_P (insn))
5925 /* A normal or pure call might read from pattern,
5926 but a const call will not. */
5927 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5928 return true;
5930 /* But even a const call reads its parameters. Check whether the
5931 base of some of registers used in mem is stack pointer. */
5932 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5934 base = find_base_term (XEXP (reg, 0));
5935 if (!base
5936 || (GET_CODE (base) == ADDRESS
5937 && GET_MODE (base) == Pmode
5938 && XEXP (base, 0) == stack_pointer_rtx))
5939 return true;
5942 return false;
5945 if (GET_CODE (PATTERN (insn)) == SET)
5947 rtx pat = PATTERN (insn);
5948 rtx dest = SET_DEST (pat);
5950 if (GET_CODE (dest) == ZERO_EXTRACT)
5951 dest = XEXP (dest, 0);
5953 /* Check for memory stores to aliased objects. */
5954 if (MEM_P (dest)
5955 && !expr_equiv_p (dest, x))
5957 if (after)
5959 if (output_dependence (dest, x))
5960 return true;
5962 else
5964 if (output_dependence (x, dest))
5965 return true;
5968 if (find_loads (SET_SRC (pat), x, after))
5969 return true;
5971 else if (find_loads (PATTERN (insn), x, after))
5972 return true;
5974 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5975 location aliased with X, then this insn kills X. */
5976 note = find_reg_equal_equiv_note (insn);
5977 if (! note)
5978 return false;
5979 note = XEXP (note, 0);
5981 /* However, if the note represents a must alias rather than a may
5982 alias relationship, then it does not kill X. */
5983 if (expr_equiv_p (note, x))
5984 return false;
5986 /* See if there are any aliased loads in the note. */
5987 return find_loads (note, x, after);
5990 /* Returns true if the expression X is loaded or clobbered on or after INSN
5991 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5992 or after the insn. X_REGS is list of registers mentioned in X. If the store
5993 is killed, return the last insn in that it occurs in FAIL_INSN. */
5995 static bool
5996 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5997 int *regs_set_after, rtx *fail_insn)
5999 rtx last = BB_END (bb), act;
6001 if (!store_ops_ok (x_regs, regs_set_after))
6003 /* We do not know where it will happen. */
6004 if (fail_insn)
6005 *fail_insn = NULL_RTX;
6006 return true;
6009 /* Scan from the end, so that fail_insn is determined correctly. */
6010 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6011 if (store_killed_in_insn (x, x_regs, act, false))
6013 if (fail_insn)
6014 *fail_insn = act;
6015 return true;
6018 return false;
6021 /* Returns true if the expression X is loaded or clobbered on or before INSN
6022 within basic block BB. X_REGS is list of registers mentioned in X.
6023 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6024 static bool
6025 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6026 int *regs_set_before)
6028 rtx first = BB_HEAD (bb);
6030 if (!store_ops_ok (x_regs, regs_set_before))
6031 return true;
6033 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6034 if (store_killed_in_insn (x, x_regs, insn, true))
6035 return true;
6037 return false;
6040 /* Fill in available, anticipatable, transparent and kill vectors in
6041 STORE_DATA, based on lists of available and anticipatable stores. */
6042 static void
6043 build_store_vectors (void)
6045 basic_block bb;
6046 int *regs_set_in_block;
6047 rtx insn, st;
6048 struct ls_expr * ptr;
6049 unsigned regno;
6051 /* Build the gen_vector. This is any store in the table which is not killed
6052 by aliasing later in its block. */
6053 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6054 sbitmap_vector_zero (ae_gen, last_basic_block);
6056 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6057 sbitmap_vector_zero (st_antloc, last_basic_block);
6059 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6061 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6063 insn = XEXP (st, 0);
6064 bb = BLOCK_FOR_INSN (insn);
6066 /* If we've already seen an available expression in this block,
6067 we can delete this one (It occurs earlier in the block). We'll
6068 copy the SRC expression to an unused register in case there
6069 are any side effects. */
6070 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6072 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6073 if (dump_file)
6074 fprintf (dump_file, "Removing redundant store:\n");
6075 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6076 continue;
6078 SET_BIT (ae_gen[bb->index], ptr->index);
6081 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6083 insn = XEXP (st, 0);
6084 bb = BLOCK_FOR_INSN (insn);
6085 SET_BIT (st_antloc[bb->index], ptr->index);
6089 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6090 sbitmap_vector_zero (ae_kill, last_basic_block);
6092 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6093 sbitmap_vector_zero (transp, last_basic_block);
6094 regs_set_in_block = XNEWVEC (int, max_gcse_regno);
6096 FOR_EACH_BB (bb)
6098 for (regno = 0; regno < max_gcse_regno; regno++)
6099 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6101 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6103 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6104 bb, regs_set_in_block, NULL))
6106 /* It should not be necessary to consider the expression
6107 killed if it is both anticipatable and available. */
6108 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6109 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6110 SET_BIT (ae_kill[bb->index], ptr->index);
6112 else
6113 SET_BIT (transp[bb->index], ptr->index);
6117 free (regs_set_in_block);
6119 if (dump_file)
6121 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
6122 dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
6123 dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
6124 dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
6128 /* Insert an instruction at the beginning of a basic block, and update
6129 the BB_HEAD if needed. */
6131 static void
6132 insert_insn_start_bb (rtx insn, basic_block bb)
6134 /* Insert at start of successor block. */
6135 rtx prev = PREV_INSN (BB_HEAD (bb));
6136 rtx before = BB_HEAD (bb);
6137 while (before != 0)
6139 if (! LABEL_P (before)
6140 && (! NOTE_P (before)
6141 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6142 break;
6143 prev = before;
6144 if (prev == BB_END (bb))
6145 break;
6146 before = NEXT_INSN (before);
6149 insn = emit_insn_after_noloc (insn, prev);
6151 if (dump_file)
6153 fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n",
6154 bb->index);
6155 print_inline_rtx (dump_file, insn, 6);
6156 fprintf (dump_file, "\n");
6160 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6161 the memory reference, and E is the edge to insert it on. Returns nonzero
6162 if an edge insertion was performed. */
6164 static int
6165 insert_store (struct ls_expr * expr, edge e)
6167 rtx reg, insn;
6168 basic_block bb;
6169 edge tmp;
6170 edge_iterator ei;
6172 /* We did all the deleted before this insert, so if we didn't delete a
6173 store, then we haven't set the reaching reg yet either. */
6174 if (expr->reaching_reg == NULL_RTX)
6175 return 0;
6177 if (e->flags & EDGE_FAKE)
6178 return 0;
6180 reg = expr->reaching_reg;
6181 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6183 /* If we are inserting this expression on ALL predecessor edges of a BB,
6184 insert it at the start of the BB, and reset the insert bits on the other
6185 edges so we don't try to insert it on the other edges. */
6186 bb = e->dest;
6187 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6188 if (!(tmp->flags & EDGE_FAKE))
6190 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6192 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6193 if (! TEST_BIT (pre_insert_map[index], expr->index))
6194 break;
6197 /* If tmp is NULL, we found an insertion on every edge, blank the
6198 insertion vector for these edges, and insert at the start of the BB. */
6199 if (!tmp && bb != EXIT_BLOCK_PTR)
6201 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6203 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6204 RESET_BIT (pre_insert_map[index], expr->index);
6206 insert_insn_start_bb (insn, bb);
6207 return 0;
6210 /* We can't put stores in the front of blocks pointed to by abnormal
6211 edges since that may put a store where one didn't used to be. */
6212 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6214 insert_insn_on_edge (insn, e);
6216 if (dump_file)
6218 fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6219 e->src->index, e->dest->index);
6220 print_inline_rtx (dump_file, insn, 6);
6221 fprintf (dump_file, "\n");
6224 return 1;
6227 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6228 memory location in SMEXPR set in basic block BB.
6230 This could be rather expensive. */
6232 static void
6233 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6235 edge_iterator *stack, ei;
6236 int sp;
6237 edge act;
6238 sbitmap visited = sbitmap_alloc (last_basic_block);
6239 rtx last, insn, note;
6240 rtx mem = smexpr->pattern;
6242 stack = XNEWVEC (edge_iterator, n_basic_blocks);
6243 sp = 0;
6244 ei = ei_start (bb->succs);
6246 sbitmap_zero (visited);
6248 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6249 while (1)
6251 if (!act)
6253 if (!sp)
6255 free (stack);
6256 sbitmap_free (visited);
6257 return;
6259 act = ei_edge (stack[--sp]);
6261 bb = act->dest;
6263 if (bb == EXIT_BLOCK_PTR
6264 || TEST_BIT (visited, bb->index))
6266 if (!ei_end_p (ei))
6267 ei_next (&ei);
6268 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6269 continue;
6271 SET_BIT (visited, bb->index);
6273 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6275 for (last = ANTIC_STORE_LIST (smexpr);
6276 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6277 last = XEXP (last, 1))
6278 continue;
6279 last = XEXP (last, 0);
6281 else
6282 last = NEXT_INSN (BB_END (bb));
6284 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6285 if (INSN_P (insn))
6287 note = find_reg_equal_equiv_note (insn);
6288 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6289 continue;
6291 if (dump_file)
6292 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6293 INSN_UID (insn));
6294 remove_note (insn, note);
6297 if (!ei_end_p (ei))
6298 ei_next (&ei);
6299 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6301 if (EDGE_COUNT (bb->succs) > 0)
6303 if (act)
6304 stack[sp++] = ei;
6305 ei = ei_start (bb->succs);
6306 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6311 /* This routine will replace a store with a SET to a specified register. */
6313 static void
6314 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6316 rtx insn, mem, note, set, ptr, pair;
6318 mem = smexpr->pattern;
6319 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6320 insn = emit_insn_after (insn, del);
6322 if (dump_file)
6324 fprintf (dump_file,
6325 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6326 print_inline_rtx (dump_file, del, 6);
6327 fprintf (dump_file, "\nSTORE MOTION replaced with insn:\n ");
6328 print_inline_rtx (dump_file, insn, 6);
6329 fprintf (dump_file, "\n");
6332 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6333 if (XEXP (ptr, 0) == del)
6335 XEXP (ptr, 0) = insn;
6336 break;
6339 /* Move the notes from the deleted insn to its replacement, and patch
6340 up the LIBCALL notes. */
6341 REG_NOTES (insn) = REG_NOTES (del);
6343 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6344 if (note)
6346 pair = XEXP (note, 0);
6347 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6348 XEXP (note, 0) = insn;
6350 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6351 if (note)
6353 pair = XEXP (note, 0);
6354 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6355 XEXP (note, 0) = insn;
6358 delete_insn (del);
6360 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6361 they are no longer accurate provided that they are reached by this
6362 definition, so drop them. */
6363 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6364 if (INSN_P (insn))
6366 set = single_set (insn);
6367 if (!set)
6368 continue;
6369 if (expr_equiv_p (SET_DEST (set), mem))
6370 return;
6371 note = find_reg_equal_equiv_note (insn);
6372 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6373 continue;
6375 if (dump_file)
6376 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6377 INSN_UID (insn));
6378 remove_note (insn, note);
6380 remove_reachable_equiv_notes (bb, smexpr);
6384 /* Delete a store, but copy the value that would have been stored into
6385 the reaching_reg for later storing. */
6387 static void
6388 delete_store (struct ls_expr * expr, basic_block bb)
6390 rtx reg, i, del;
6392 if (expr->reaching_reg == NULL_RTX)
6393 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6395 reg = expr->reaching_reg;
6397 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6399 del = XEXP (i, 0);
6400 if (BLOCK_FOR_INSN (del) == bb)
6402 /* We know there is only one since we deleted redundant
6403 ones during the available computation. */
6404 replace_store_insn (reg, del, bb, expr);
6405 break;
6410 /* Free memory used by store motion. */
6412 static void
6413 free_store_memory (void)
6415 free_ldst_mems ();
6417 if (ae_gen)
6418 sbitmap_vector_free (ae_gen);
6419 if (ae_kill)
6420 sbitmap_vector_free (ae_kill);
6421 if (transp)
6422 sbitmap_vector_free (transp);
6423 if (st_antloc)
6424 sbitmap_vector_free (st_antloc);
6425 if (pre_insert_map)
6426 sbitmap_vector_free (pre_insert_map);
6427 if (pre_delete_map)
6428 sbitmap_vector_free (pre_delete_map);
6429 if (reg_set_in_block)
6430 sbitmap_vector_free (reg_set_in_block);
6432 ae_gen = ae_kill = transp = st_antloc = NULL;
6433 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6436 /* Perform store motion. Much like gcse, except we move expressions the
6437 other way by looking at the flowgraph in reverse. */
6439 static void
6440 store_motion (void)
6442 basic_block bb;
6443 int x;
6444 struct ls_expr * ptr;
6445 int update_flow = 0;
6447 if (dump_file)
6449 fprintf (dump_file, "before store motion\n");
6450 print_rtl (dump_file, get_insns ());
6453 init_alias_analysis ();
6455 /* Find all the available and anticipatable stores. */
6456 num_stores = compute_store_table ();
6457 if (num_stores == 0)
6459 htab_delete (pre_ldst_table);
6460 pre_ldst_table = NULL;
6461 sbitmap_vector_free (reg_set_in_block);
6462 end_alias_analysis ();
6463 return;
6466 /* Now compute kill & transp vectors. */
6467 build_store_vectors ();
6468 add_noreturn_fake_exit_edges ();
6469 connect_infinite_loops_to_exit ();
6471 edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
6472 st_antloc, ae_kill, &pre_insert_map,
6473 &pre_delete_map);
6475 /* Now we want to insert the new stores which are going to be needed. */
6476 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6478 /* If any of the edges we have above are abnormal, we can't move this
6479 store. */
6480 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6481 if (TEST_BIT (pre_insert_map[x], ptr->index)
6482 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6483 break;
6485 if (x >= 0)
6487 if (dump_file != NULL)
6488 fprintf (dump_file,
6489 "Can't replace store %d: abnormal edge from %d to %d\n",
6490 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6491 INDEX_EDGE (edge_list, x)->dest->index);
6492 continue;
6495 /* Now we want to insert the new stores which are going to be needed. */
6497 FOR_EACH_BB (bb)
6498 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6499 delete_store (ptr, bb);
6501 for (x = 0; x < NUM_EDGES (edge_list); x++)
6502 if (TEST_BIT (pre_insert_map[x], ptr->index))
6503 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6506 if (update_flow)
6507 commit_edge_insertions ();
6509 free_store_memory ();
6510 free_edge_list (edge_list);
6511 remove_fake_exit_edges ();
6512 end_alias_analysis ();
6516 /* Entry point for jump bypassing optimization pass. */
6518 static int
6519 bypass_jumps (void)
6521 int changed;
6523 /* We do not construct an accurate cfg in functions which call
6524 setjmp, so just punt to be safe. */
6525 if (current_function_calls_setjmp)
6526 return 0;
6528 /* Identify the basic block information for this function, including
6529 successors and predecessors. */
6530 max_gcse_regno = max_reg_num ();
6532 if (dump_file)
6533 dump_flow_info (dump_file, dump_flags);
6535 /* Return if there's nothing to do, or it is too expensive. */
6536 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6537 || is_too_expensive (_ ("jump bypassing disabled")))
6538 return 0;
6540 gcc_obstack_init (&gcse_obstack);
6541 bytes_used = 0;
6543 /* We need alias. */
6544 init_alias_analysis ();
6546 /* Record where pseudo-registers are set. This data is kept accurate
6547 during each pass. ??? We could also record hard-reg information here
6548 [since it's unchanging], however it is currently done during hash table
6549 computation.
6551 It may be tempting to compute MEM set information here too, but MEM sets
6552 will be subject to code motion one day and thus we need to compute
6553 information about memory sets when we build the hash tables. */
6555 alloc_reg_set_mem (max_gcse_regno);
6556 compute_sets ();
6558 max_gcse_regno = max_reg_num ();
6559 alloc_gcse_mem ();
6560 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6561 free_gcse_mem ();
6563 if (dump_file)
6565 fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
6566 current_function_name (), n_basic_blocks);
6567 fprintf (dump_file, "%d bytes\n\n", bytes_used);
6570 obstack_free (&gcse_obstack, NULL);
6571 free_reg_set_mem ();
6573 /* We are finished with alias. */
6574 end_alias_analysis ();
6575 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6577 return changed;
6580 /* Return true if the graph is too expensive to optimize. PASS is the
6581 optimization about to be performed. */
6583 static bool
6584 is_too_expensive (const char *pass)
6586 /* Trying to perform global optimizations on flow graphs which have
6587 a high connectivity will take a long time and is unlikely to be
6588 particularly useful.
6590 In normal circumstances a cfg should have about twice as many
6591 edges as blocks. But we do not want to punish small functions
6592 which have a couple switch statements. Rather than simply
6593 threshold the number of blocks, uses something with a more
6594 graceful degradation. */
6595 if (n_edges > 20000 + n_basic_blocks * 4)
6597 warning (OPT_Wdisabled_optimization,
6598 "%s: %d basic blocks and %d edges/basic block",
6599 pass, n_basic_blocks, n_edges / n_basic_blocks);
6601 return true;
6604 /* If allocating memory for the cprop bitmap would take up too much
6605 storage it's better just to disable the optimization. */
6606 if ((n_basic_blocks
6607 * SBITMAP_SET_SIZE (max_reg_num ())
6608 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6610 warning (OPT_Wdisabled_optimization,
6611 "%s: %d basic blocks and %d registers",
6612 pass, n_basic_blocks, max_reg_num ());
6614 return true;
6617 return false;
6620 static bool
6621 gate_handle_jump_bypass (void)
6623 return optimize > 0 && flag_gcse;
6626 /* Perform jump bypassing and control flow optimizations. */
6627 static unsigned int
6628 rest_of_handle_jump_bypass (void)
6630 cleanup_cfg (CLEANUP_EXPENSIVE);
6631 reg_scan (get_insns (), max_reg_num ());
6633 if (bypass_jumps ())
6635 rebuild_jump_labels (get_insns ());
6636 cleanup_cfg (CLEANUP_EXPENSIVE);
6637 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6639 return 0;
6642 struct tree_opt_pass pass_jump_bypass =
6644 "bypass", /* name */
6645 gate_handle_jump_bypass, /* gate */
6646 rest_of_handle_jump_bypass, /* execute */
6647 NULL, /* sub */
6648 NULL, /* next */
6649 0, /* static_pass_number */
6650 TV_BYPASS, /* tv_id */
6651 0, /* properties_required */
6652 0, /* properties_provided */
6653 0, /* properties_destroyed */
6654 0, /* todo_flags_start */
6655 TODO_dump_func |
6656 TODO_ggc_collect | TODO_verify_flow, /* todo_flags_finish */
6657 'G' /* letter */
6661 static bool
6662 gate_handle_gcse (void)
6664 return optimize > 0 && flag_gcse;
6668 static unsigned int
6669 rest_of_handle_gcse (void)
6671 int save_csb, save_cfj;
6672 int tem2 = 0, tem;
6674 tem = gcse_main (get_insns ());
6675 rebuild_jump_labels (get_insns ());
6676 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6678 save_csb = flag_cse_skip_blocks;
6679 save_cfj = flag_cse_follow_jumps;
6680 flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6682 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6683 by gcse. */
6684 if (flag_expensive_optimizations)
6686 timevar_push (TV_CSE);
6687 reg_scan (get_insns (), max_reg_num ());
6688 tem2 = cse_main (get_insns (), max_reg_num ());
6689 purge_all_dead_edges ();
6690 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6691 timevar_pop (TV_CSE);
6692 cse_not_expected = !flag_rerun_cse_after_loop;
6695 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6696 things up. */
6697 if (tem || tem2)
6699 timevar_push (TV_JUMP);
6700 rebuild_jump_labels (get_insns ());
6701 delete_dead_jumptables ();
6702 cleanup_cfg (CLEANUP_EXPENSIVE);
6703 timevar_pop (TV_JUMP);
6706 flag_cse_skip_blocks = save_csb;
6707 flag_cse_follow_jumps = save_cfj;
6708 return 0;
6711 struct tree_opt_pass pass_gcse =
6713 "gcse1", /* name */
6714 gate_handle_gcse, /* gate */
6715 rest_of_handle_gcse, /* execute */
6716 NULL, /* sub */
6717 NULL, /* next */
6718 0, /* static_pass_number */
6719 TV_GCSE, /* tv_id */
6720 0, /* properties_required */
6721 0, /* properties_provided */
6722 0, /* properties_destroyed */
6723 0, /* todo_flags_start */
6724 TODO_dump_func |
6725 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
6726 'G' /* letter */
6730 #include "gt-gcse.h"