Daily bump.
[official-gcc.git] / gcc / dwarf2out.c
blobe853b2fde2e8720611d5b88557d4f65bc7759568
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_pubtypes_section;
160 static GTY(()) section *debug_str_section;
161 static GTY(()) section *debug_ranges_section;
162 static GTY(()) section *debug_frame_section;
164 /* How to start an assembler comment. */
165 #ifndef ASM_COMMENT_START
166 #define ASM_COMMENT_START ";#"
167 #endif
169 typedef struct dw_cfi_struct *dw_cfi_ref;
170 typedef struct dw_fde_struct *dw_fde_ref;
171 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173 /* Call frames are described using a sequence of Call Frame
174 Information instructions. The register number, offset
175 and address fields are provided as possible operands;
176 their use is selected by the opcode field. */
178 enum dw_cfi_oprnd_type {
179 dw_cfi_oprnd_unused,
180 dw_cfi_oprnd_reg_num,
181 dw_cfi_oprnd_offset,
182 dw_cfi_oprnd_addr,
183 dw_cfi_oprnd_loc
186 typedef union dw_cfi_oprnd_struct GTY(())
188 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
189 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
190 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
191 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 dw_cfi_oprnd;
195 typedef struct dw_cfi_struct GTY(())
197 dw_cfi_ref dw_cfi_next;
198 enum dwarf_call_frame_info dw_cfi_opc;
199 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd1;
201 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
202 dw_cfi_oprnd2;
204 dw_cfi_node;
206 /* This is how we define the location of the CFA. We use to handle it
207 as REG + OFFSET all the time, but now it can be more complex.
208 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
209 Instead of passing around REG and OFFSET, we pass a copy
210 of this structure. */
211 typedef struct cfa_loc GTY(())
213 HOST_WIDE_INT offset;
214 HOST_WIDE_INT base_offset;
215 unsigned int reg;
216 int indirect; /* 1 if CFA is accessed via a dereference. */
217 } dw_cfa_location;
219 /* All call frame descriptions (FDE's) in the GCC generated DWARF
220 refer to a single Common Information Entry (CIE), defined at
221 the beginning of the .debug_frame section. This use of a single
222 CIE obviates the need to keep track of multiple CIE's
223 in the DWARF generation routines below. */
225 typedef struct dw_fde_struct GTY(())
227 tree decl;
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 const char *dw_fde_hot_section_label;
232 const char *dw_fde_hot_section_end_label;
233 const char *dw_fde_unlikely_section_label;
234 const char *dw_fde_unlikely_section_end_label;
235 bool dw_fde_switched_sections;
236 dw_cfi_ref dw_fde_cfi;
237 unsigned funcdef_number;
238 unsigned all_throwers_are_sibcalls : 1;
239 unsigned nothrow : 1;
240 unsigned uses_eh_lsda : 1;
242 dw_fde_node;
244 /* Maximum size (in bytes) of an artificially generated label. */
245 #define MAX_ARTIFICIAL_LABEL_BYTES 30
247 /* The size of addresses as they appear in the Dwarf 2 data.
248 Some architectures use word addresses to refer to code locations,
249 but Dwarf 2 info always uses byte addresses. On such machines,
250 Dwarf 2 addresses need to be larger than the architecture's
251 pointers. */
252 #ifndef DWARF2_ADDR_SIZE
253 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
254 #endif
256 /* The size in bytes of a DWARF field indicating an offset or length
257 relative to a debug info section, specified to be 4 bytes in the
258 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
259 as PTR_SIZE. */
261 #ifndef DWARF_OFFSET_SIZE
262 #define DWARF_OFFSET_SIZE 4
263 #endif
265 /* According to the (draft) DWARF 3 specification, the initial length
266 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
267 bytes are 0xffffffff, followed by the length stored in the next 8
268 bytes.
270 However, the SGI/MIPS ABI uses an initial length which is equal to
271 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
273 #ifndef DWARF_INITIAL_LENGTH_SIZE
274 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
275 #endif
277 #define DWARF_VERSION 2
279 /* Round SIZE up to the nearest BOUNDARY. */
280 #define DWARF_ROUND(SIZE,BOUNDARY) \
281 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
283 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
284 #ifndef DWARF_CIE_DATA_ALIGNMENT
285 #ifdef STACK_GROWS_DOWNWARD
286 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287 #else
288 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
289 #endif
290 #endif
292 /* CIE identifier. */
293 #if HOST_BITS_PER_WIDE_INT >= 64
294 #define DWARF_CIE_ID \
295 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296 #else
297 #define DWARF_CIE_ID DW_CIE_ID
298 #endif
300 /* A pointer to the base of a table that contains frame description
301 information for each routine. */
302 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
304 /* Number of elements currently allocated for fde_table. */
305 static GTY(()) unsigned fde_table_allocated;
307 /* Number of elements in fde_table currently in use. */
308 static GTY(()) unsigned fde_table_in_use;
310 /* Size (in elements) of increments by which we may expand the
311 fde_table. */
312 #define FDE_TABLE_INCREMENT 256
314 /* A list of call frame insns for the CIE. */
315 static GTY(()) dw_cfi_ref cie_cfi_head;
317 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
318 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
319 attribute that accelerates the lookup of the FDE associated
320 with the subprogram. This variable holds the table index of the FDE
321 associated with the current function (body) definition. */
322 static unsigned current_funcdef_fde;
323 #endif
325 struct indirect_string_node GTY(())
327 const char *str;
328 unsigned int refcount;
329 unsigned int form;
330 char *label;
333 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
335 static GTY(()) int dw2_string_counter;
336 static GTY(()) unsigned long dwarf2out_cfi_label_num;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
340 /* Forward declarations for functions defined in this file. */
342 static char *stripattributes (const char *);
343 static const char *dwarf_cfi_name (unsigned);
344 static dw_cfi_ref new_cfi (void);
345 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
346 static void add_fde_cfi (const char *, dw_cfi_ref);
347 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
348 static void lookup_cfa (dw_cfa_location *);
349 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
350 static void initial_return_save (rtx);
351 static HOST_WIDE_INT stack_adjust_offset (rtx);
352 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
353 static void output_call_frame_info (int);
354 static void dwarf2out_stack_adjust (rtx, bool);
355 static void flush_queued_reg_saves (void);
356 static bool clobbers_queued_reg_save (rtx);
357 static void dwarf2out_frame_debug_expr (rtx, const char *);
359 /* Support for complex CFA locations. */
360 static void output_cfa_loc (dw_cfi_ref);
361 static void get_cfa_from_loc_descr (dw_cfa_location *,
362 struct dw_loc_descr_struct *);
363 static struct dw_loc_descr_struct *build_cfa_loc
364 (dw_cfa_location *, HOST_WIDE_INT);
365 static void def_cfa_1 (const char *, dw_cfa_location *);
367 /* How to start an assembler comment. */
368 #ifndef ASM_COMMENT_START
369 #define ASM_COMMENT_START ";#"
370 #endif
372 /* Data and reference forms for relocatable data. */
373 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
374 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
376 #ifndef DEBUG_FRAME_SECTION
377 #define DEBUG_FRAME_SECTION ".debug_frame"
378 #endif
380 #ifndef FUNC_BEGIN_LABEL
381 #define FUNC_BEGIN_LABEL "LFB"
382 #endif
384 #ifndef FUNC_END_LABEL
385 #define FUNC_END_LABEL "LFE"
386 #endif
388 #ifndef FRAME_BEGIN_LABEL
389 #define FRAME_BEGIN_LABEL "Lframe"
390 #endif
391 #define CIE_AFTER_SIZE_LABEL "LSCIE"
392 #define CIE_END_LABEL "LECIE"
393 #define FDE_LABEL "LSFDE"
394 #define FDE_AFTER_SIZE_LABEL "LASFDE"
395 #define FDE_END_LABEL "LEFDE"
396 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
397 #define LINE_NUMBER_END_LABEL "LELT"
398 #define LN_PROLOG_AS_LABEL "LASLTP"
399 #define LN_PROLOG_END_LABEL "LELTP"
400 #define DIE_LABEL_PREFIX "DW"
402 /* The DWARF 2 CFA column which tracks the return address. Normally this
403 is the column for PC, or the first column after all of the hard
404 registers. */
405 #ifndef DWARF_FRAME_RETURN_COLUMN
406 #ifdef PC_REGNUM
407 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
408 #else
409 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
410 #endif
411 #endif
413 /* The mapping from gcc register number to DWARF 2 CFA column number. By
414 default, we just provide columns for all registers. */
415 #ifndef DWARF_FRAME_REGNUM
416 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
417 #endif
419 /* Hook used by __throw. */
422 expand_builtin_dwarf_sp_column (void)
424 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
425 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
428 /* Return a pointer to a copy of the section string name S with all
429 attributes stripped off, and an asterisk prepended (for assemble_name). */
431 static inline char *
432 stripattributes (const char *s)
434 char *stripped = XNEWVEC (char, strlen (s) + 2);
435 char *p = stripped;
437 *p++ = '*';
439 while (*s && *s != ',')
440 *p++ = *s++;
442 *p = '\0';
443 return stripped;
446 /* Generate code to initialize the register size table. */
448 void
449 expand_builtin_init_dwarf_reg_sizes (tree address)
451 unsigned int i;
452 enum machine_mode mode = TYPE_MODE (char_type_node);
453 rtx addr = expand_normal (address);
454 rtx mem = gen_rtx_MEM (BLKmode, addr);
455 bool wrote_return_column = false;
457 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
459 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
461 if (rnum < DWARF_FRAME_REGISTERS)
463 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
464 enum machine_mode save_mode = reg_raw_mode[i];
465 HOST_WIDE_INT size;
467 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
468 save_mode = choose_hard_reg_mode (i, 1, true);
469 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
471 if (save_mode == VOIDmode)
472 continue;
473 wrote_return_column = true;
475 size = GET_MODE_SIZE (save_mode);
476 if (offset < 0)
477 continue;
479 emit_move_insn (adjust_address (mem, mode, offset),
480 gen_int_mode (size, mode));
484 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
485 gcc_assert (wrote_return_column);
486 i = DWARF_ALT_FRAME_RETURN_COLUMN;
487 wrote_return_column = false;
488 #else
489 i = DWARF_FRAME_RETURN_COLUMN;
490 #endif
492 if (! wrote_return_column)
494 enum machine_mode save_mode = Pmode;
495 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
496 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
497 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
501 /* Convert a DWARF call frame info. operation to its string name */
503 static const char *
504 dwarf_cfi_name (unsigned int cfi_opc)
506 switch (cfi_opc)
508 case DW_CFA_advance_loc:
509 return "DW_CFA_advance_loc";
510 case DW_CFA_offset:
511 return "DW_CFA_offset";
512 case DW_CFA_restore:
513 return "DW_CFA_restore";
514 case DW_CFA_nop:
515 return "DW_CFA_nop";
516 case DW_CFA_set_loc:
517 return "DW_CFA_set_loc";
518 case DW_CFA_advance_loc1:
519 return "DW_CFA_advance_loc1";
520 case DW_CFA_advance_loc2:
521 return "DW_CFA_advance_loc2";
522 case DW_CFA_advance_loc4:
523 return "DW_CFA_advance_loc4";
524 case DW_CFA_offset_extended:
525 return "DW_CFA_offset_extended";
526 case DW_CFA_restore_extended:
527 return "DW_CFA_restore_extended";
528 case DW_CFA_undefined:
529 return "DW_CFA_undefined";
530 case DW_CFA_same_value:
531 return "DW_CFA_same_value";
532 case DW_CFA_register:
533 return "DW_CFA_register";
534 case DW_CFA_remember_state:
535 return "DW_CFA_remember_state";
536 case DW_CFA_restore_state:
537 return "DW_CFA_restore_state";
538 case DW_CFA_def_cfa:
539 return "DW_CFA_def_cfa";
540 case DW_CFA_def_cfa_register:
541 return "DW_CFA_def_cfa_register";
542 case DW_CFA_def_cfa_offset:
543 return "DW_CFA_def_cfa_offset";
545 /* DWARF 3 */
546 case DW_CFA_def_cfa_expression:
547 return "DW_CFA_def_cfa_expression";
548 case DW_CFA_expression:
549 return "DW_CFA_expression";
550 case DW_CFA_offset_extended_sf:
551 return "DW_CFA_offset_extended_sf";
552 case DW_CFA_def_cfa_sf:
553 return "DW_CFA_def_cfa_sf";
554 case DW_CFA_def_cfa_offset_sf:
555 return "DW_CFA_def_cfa_offset_sf";
557 /* SGI/MIPS specific */
558 case DW_CFA_MIPS_advance_loc8:
559 return "DW_CFA_MIPS_advance_loc8";
561 /* GNU extensions */
562 case DW_CFA_GNU_window_save:
563 return "DW_CFA_GNU_window_save";
564 case DW_CFA_GNU_args_size:
565 return "DW_CFA_GNU_args_size";
566 case DW_CFA_GNU_negative_offset_extended:
567 return "DW_CFA_GNU_negative_offset_extended";
569 default:
570 return "DW_CFA_<unknown>";
574 /* Return a pointer to a newly allocated Call Frame Instruction. */
576 static inline dw_cfi_ref
577 new_cfi (void)
579 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
581 cfi->dw_cfi_next = NULL;
582 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
583 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
585 return cfi;
588 /* Add a Call Frame Instruction to list of instructions. */
590 static inline void
591 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
593 dw_cfi_ref *p;
595 /* Find the end of the chain. */
596 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
599 *p = cfi;
602 /* Generate a new label for the CFI info to refer to. */
604 char *
605 dwarf2out_cfi_label (void)
607 static char label[20];
609 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
610 ASM_OUTPUT_LABEL (asm_out_file, label);
611 return label;
614 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
615 or to the CIE if LABEL is NULL. */
617 static void
618 add_fde_cfi (const char *label, dw_cfi_ref cfi)
620 if (label)
622 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
624 if (*label == 0)
625 label = dwarf2out_cfi_label ();
627 if (fde->dw_fde_current_label == NULL
628 || strcmp (label, fde->dw_fde_current_label) != 0)
630 dw_cfi_ref xcfi;
632 label = xstrdup (label);
634 /* Set the location counter to the new label. */
635 xcfi = new_cfi ();
636 /* If we have a current label, advance from there, otherwise
637 set the location directly using set_loc. */
638 xcfi->dw_cfi_opc = fde->dw_fde_current_label
639 ? DW_CFA_advance_loc4
640 : DW_CFA_set_loc;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
644 fde->dw_fde_current_label = label;
647 add_cfi (&fde->dw_fde_cfi, cfi);
650 else
651 add_cfi (&cie_cfi_head, cfi);
654 /* Subroutine of lookup_cfa. */
656 static void
657 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
659 switch (cfi->dw_cfi_opc)
661 case DW_CFA_def_cfa_offset:
662 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
663 break;
664 case DW_CFA_def_cfa_offset_sf:
665 loc->offset
666 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
667 break;
668 case DW_CFA_def_cfa_register:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 break;
671 case DW_CFA_def_cfa:
672 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
673 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
674 break;
675 case DW_CFA_def_cfa_sf:
676 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677 loc->offset
678 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
679 break;
680 case DW_CFA_def_cfa_expression:
681 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
682 break;
683 default:
684 break;
688 /* Find the previous value for the CFA. */
690 static void
691 lookup_cfa (dw_cfa_location *loc)
693 dw_cfi_ref cfi;
695 loc->reg = INVALID_REGNUM;
696 loc->offset = 0;
697 loc->indirect = 0;
698 loc->base_offset = 0;
700 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
701 lookup_cfa_1 (cfi, loc);
703 if (fde_table_in_use)
705 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
706 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
707 lookup_cfa_1 (cfi, loc);
711 /* The current rule for calculating the DWARF2 canonical frame address. */
712 static dw_cfa_location cfa;
714 /* The register used for saving registers to the stack, and its offset
715 from the CFA. */
716 static dw_cfa_location cfa_store;
718 /* The running total of the size of arguments pushed onto the stack. */
719 static HOST_WIDE_INT args_size;
721 /* The last args_size we actually output. */
722 static HOST_WIDE_INT old_args_size;
724 /* Entry point to update the canonical frame address (CFA).
725 LABEL is passed to add_fde_cfi. The value of CFA is now to be
726 calculated from REG+OFFSET. */
728 void
729 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
731 dw_cfa_location loc;
732 loc.indirect = 0;
733 loc.base_offset = 0;
734 loc.reg = reg;
735 loc.offset = offset;
736 def_cfa_1 (label, &loc);
739 /* Determine if two dw_cfa_location structures define the same data. */
741 static bool
742 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
744 return (loc1->reg == loc2->reg
745 && loc1->offset == loc2->offset
746 && loc1->indirect == loc2->indirect
747 && (loc1->indirect == 0
748 || loc1->base_offset == loc2->base_offset));
751 /* This routine does the actual work. The CFA is now calculated from
752 the dw_cfa_location structure. */
754 static void
755 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
757 dw_cfi_ref cfi;
758 dw_cfa_location old_cfa, loc;
760 cfa = *loc_p;
761 loc = *loc_p;
763 if (cfa_store.reg == loc.reg && loc.indirect == 0)
764 cfa_store.offset = loc.offset;
766 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
767 lookup_cfa (&old_cfa);
769 /* If nothing changed, no need to issue any call frame instructions. */
770 if (cfa_equal_p (&loc, &old_cfa))
771 return;
773 cfi = new_cfi ();
775 if (loc.reg == old_cfa.reg && !loc.indirect)
777 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
778 the CFA register did not change but the offset did. */
779 if (loc.offset < 0)
781 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
782 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
784 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
785 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
787 else
789 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
790 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
794 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
795 else if (loc.offset == old_cfa.offset
796 && old_cfa.reg != INVALID_REGNUM
797 && !loc.indirect)
799 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
800 indicating the CFA register has changed to <register> but the
801 offset has not changed. */
802 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
805 #endif
807 else if (loc.indirect == 0)
809 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
810 indicating the CFA register has changed to <register> with
811 the specified offset. */
812 if (loc.offset < 0)
814 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
815 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
817 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
818 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
819 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
821 else
823 cfi->dw_cfi_opc = DW_CFA_def_cfa;
824 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
825 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
828 else
830 /* Construct a DW_CFA_def_cfa_expression instruction to
831 calculate the CFA using a full location expression since no
832 register-offset pair is available. */
833 struct dw_loc_descr_struct *loc_list;
835 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
836 loc_list = build_cfa_loc (&loc, 0);
837 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
840 add_fde_cfi (label, cfi);
843 /* Add the CFI for saving a register. REG is the CFA column number.
844 LABEL is passed to add_fde_cfi.
845 If SREG is -1, the register is saved at OFFSET from the CFA;
846 otherwise it is saved in SREG. */
848 static void
849 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
851 dw_cfi_ref cfi = new_cfi ();
853 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
855 if (sreg == INVALID_REGNUM)
857 if (reg & ~0x3f)
858 /* The register number won't fit in 6 bits, so we have to use
859 the long form. */
860 cfi->dw_cfi_opc = DW_CFA_offset_extended;
861 else
862 cfi->dw_cfi_opc = DW_CFA_offset;
864 #ifdef ENABLE_CHECKING
866 /* If we get an offset that is not a multiple of
867 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
868 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
869 description. */
870 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
872 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
874 #endif
875 offset /= DWARF_CIE_DATA_ALIGNMENT;
876 if (offset < 0)
877 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
879 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
881 else if (sreg == reg)
882 cfi->dw_cfi_opc = DW_CFA_same_value;
883 else
885 cfi->dw_cfi_opc = DW_CFA_register;
886 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
889 add_fde_cfi (label, cfi);
892 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
893 This CFI tells the unwinder that it needs to restore the window registers
894 from the previous frame's window save area.
896 ??? Perhaps we should note in the CIE where windows are saved (instead of
897 assuming 0(cfa)) and what registers are in the window. */
899 void
900 dwarf2out_window_save (const char *label)
902 dw_cfi_ref cfi = new_cfi ();
904 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
905 add_fde_cfi (label, cfi);
908 /* Add a CFI to update the running total of the size of arguments
909 pushed onto the stack. */
911 void
912 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
914 dw_cfi_ref cfi;
916 if (size == old_args_size)
917 return;
919 old_args_size = size;
921 cfi = new_cfi ();
922 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
923 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
924 add_fde_cfi (label, cfi);
927 /* Entry point for saving a register to the stack. REG is the GCC register
928 number. LABEL and OFFSET are passed to reg_save. */
930 void
931 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
933 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
936 /* Entry point for saving the return address in the stack.
937 LABEL and OFFSET are passed to reg_save. */
939 void
940 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
942 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
945 /* Entry point for saving the return address in a register.
946 LABEL and SREG are passed to reg_save. */
948 void
949 dwarf2out_return_reg (const char *label, unsigned int sreg)
951 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
954 /* Record the initial position of the return address. RTL is
955 INCOMING_RETURN_ADDR_RTX. */
957 static void
958 initial_return_save (rtx rtl)
960 unsigned int reg = INVALID_REGNUM;
961 HOST_WIDE_INT offset = 0;
963 switch (GET_CODE (rtl))
965 case REG:
966 /* RA is in a register. */
967 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
968 break;
970 case MEM:
971 /* RA is on the stack. */
972 rtl = XEXP (rtl, 0);
973 switch (GET_CODE (rtl))
975 case REG:
976 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
977 offset = 0;
978 break;
980 case PLUS:
981 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
982 offset = INTVAL (XEXP (rtl, 1));
983 break;
985 case MINUS:
986 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
987 offset = -INTVAL (XEXP (rtl, 1));
988 break;
990 default:
991 gcc_unreachable ();
994 break;
996 case PLUS:
997 /* The return address is at some offset from any value we can
998 actually load. For instance, on the SPARC it is in %i7+8. Just
999 ignore the offset for now; it doesn't matter for unwinding frames. */
1000 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1001 initial_return_save (XEXP (rtl, 0));
1002 return;
1004 default:
1005 gcc_unreachable ();
1008 if (reg != DWARF_FRAME_RETURN_COLUMN)
1009 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1012 /* Given a SET, calculate the amount of stack adjustment it
1013 contains. */
1015 static HOST_WIDE_INT
1016 stack_adjust_offset (rtx pattern)
1018 rtx src = SET_SRC (pattern);
1019 rtx dest = SET_DEST (pattern);
1020 HOST_WIDE_INT offset = 0;
1021 enum rtx_code code;
1023 if (dest == stack_pointer_rtx)
1025 /* (set (reg sp) (plus (reg sp) (const_int))) */
1026 code = GET_CODE (src);
1027 if (! (code == PLUS || code == MINUS)
1028 || XEXP (src, 0) != stack_pointer_rtx
1029 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1030 return 0;
1032 offset = INTVAL (XEXP (src, 1));
1033 if (code == PLUS)
1034 offset = -offset;
1036 else if (MEM_P (dest))
1038 /* (set (mem (pre_dec (reg sp))) (foo)) */
1039 src = XEXP (dest, 0);
1040 code = GET_CODE (src);
1042 switch (code)
1044 case PRE_MODIFY:
1045 case POST_MODIFY:
1046 if (XEXP (src, 0) == stack_pointer_rtx)
1048 rtx val = XEXP (XEXP (src, 1), 1);
1049 /* We handle only adjustments by constant amount. */
1050 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1051 && GET_CODE (val) == CONST_INT);
1052 offset = -INTVAL (val);
1053 break;
1055 return 0;
1057 case PRE_DEC:
1058 case POST_DEC:
1059 if (XEXP (src, 0) == stack_pointer_rtx)
1061 offset = GET_MODE_SIZE (GET_MODE (dest));
1062 break;
1064 return 0;
1066 case PRE_INC:
1067 case POST_INC:
1068 if (XEXP (src, 0) == stack_pointer_rtx)
1070 offset = -GET_MODE_SIZE (GET_MODE (dest));
1071 break;
1073 return 0;
1075 default:
1076 return 0;
1079 else
1080 return 0;
1082 return offset;
1085 /* Check INSN to see if it looks like a push or a stack adjustment, and
1086 make a note of it if it does. EH uses this information to find out how
1087 much extra space it needs to pop off the stack. */
1089 static void
1090 dwarf2out_stack_adjust (rtx insn, bool after_p)
1092 HOST_WIDE_INT offset;
1093 const char *label;
1094 int i;
1096 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1097 with this function. Proper support would require all frame-related
1098 insns to be marked, and to be able to handle saving state around
1099 epilogues textually in the middle of the function. */
1100 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1101 return;
1103 /* If only calls can throw, and we have a frame pointer,
1104 save up adjustments until we see the CALL_INSN. */
1105 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1107 if (CALL_P (insn) && !after_p)
1109 /* Extract the size of the args from the CALL rtx itself. */
1110 insn = PATTERN (insn);
1111 if (GET_CODE (insn) == PARALLEL)
1112 insn = XVECEXP (insn, 0, 0);
1113 if (GET_CODE (insn) == SET)
1114 insn = SET_SRC (insn);
1115 gcc_assert (GET_CODE (insn) == CALL);
1116 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1118 return;
1121 if (CALL_P (insn) && !after_p)
1123 if (!flag_asynchronous_unwind_tables)
1124 dwarf2out_args_size ("", args_size);
1125 return;
1127 else if (BARRIER_P (insn))
1129 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1130 the compiler will have already emitted a stack adjustment, but
1131 doesn't bother for calls to noreturn functions. */
1132 #ifdef STACK_GROWS_DOWNWARD
1133 offset = -args_size;
1134 #else
1135 offset = args_size;
1136 #endif
1138 else if (GET_CODE (PATTERN (insn)) == SET)
1139 offset = stack_adjust_offset (PATTERN (insn));
1140 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1141 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1143 /* There may be stack adjustments inside compound insns. Search
1144 for them. */
1145 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1146 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1147 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1149 else
1150 return;
1152 if (offset == 0)
1153 return;
1155 if (cfa.reg == STACK_POINTER_REGNUM)
1156 cfa.offset += offset;
1158 #ifndef STACK_GROWS_DOWNWARD
1159 offset = -offset;
1160 #endif
1162 args_size += offset;
1163 if (args_size < 0)
1164 args_size = 0;
1166 label = dwarf2out_cfi_label ();
1167 def_cfa_1 (label, &cfa);
1168 if (flag_asynchronous_unwind_tables)
1169 dwarf2out_args_size (label, args_size);
1172 #endif
1174 /* We delay emitting a register save until either (a) we reach the end
1175 of the prologue or (b) the register is clobbered. This clusters
1176 register saves so that there are fewer pc advances. */
1178 struct queued_reg_save GTY(())
1180 struct queued_reg_save *next;
1181 rtx reg;
1182 HOST_WIDE_INT cfa_offset;
1183 rtx saved_reg;
1186 static GTY(()) struct queued_reg_save *queued_reg_saves;
1188 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1189 struct reg_saved_in_data GTY(()) {
1190 rtx orig_reg;
1191 rtx saved_in_reg;
1194 /* A list of registers saved in other registers.
1195 The list intentionally has a small maximum capacity of 4; if your
1196 port needs more than that, you might consider implementing a
1197 more efficient data structure. */
1198 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1199 static GTY(()) size_t num_regs_saved_in_regs;
1201 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1202 static const char *last_reg_save_label;
1204 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1205 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1207 static void
1208 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1210 struct queued_reg_save *q;
1212 /* Duplicates waste space, but it's also necessary to remove them
1213 for correctness, since the queue gets output in reverse
1214 order. */
1215 for (q = queued_reg_saves; q != NULL; q = q->next)
1216 if (REGNO (q->reg) == REGNO (reg))
1217 break;
1219 if (q == NULL)
1221 q = ggc_alloc (sizeof (*q));
1222 q->next = queued_reg_saves;
1223 queued_reg_saves = q;
1226 q->reg = reg;
1227 q->cfa_offset = offset;
1228 q->saved_reg = sreg;
1230 last_reg_save_label = label;
1233 /* Output all the entries in QUEUED_REG_SAVES. */
1235 static void
1236 flush_queued_reg_saves (void)
1238 struct queued_reg_save *q;
1240 for (q = queued_reg_saves; q; q = q->next)
1242 size_t i;
1243 unsigned int reg, sreg;
1245 for (i = 0; i < num_regs_saved_in_regs; i++)
1246 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1247 break;
1248 if (q->saved_reg && i == num_regs_saved_in_regs)
1250 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1251 num_regs_saved_in_regs++;
1253 if (i != num_regs_saved_in_regs)
1255 regs_saved_in_regs[i].orig_reg = q->reg;
1256 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1259 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1260 if (q->saved_reg)
1261 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1262 else
1263 sreg = INVALID_REGNUM;
1264 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1267 queued_reg_saves = NULL;
1268 last_reg_save_label = NULL;
1271 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1272 location for? Or, does it clobber a register which we've previously
1273 said that some other register is saved in, and for which we now
1274 have a new location for? */
1276 static bool
1277 clobbers_queued_reg_save (rtx insn)
1279 struct queued_reg_save *q;
1281 for (q = queued_reg_saves; q; q = q->next)
1283 size_t i;
1284 if (modified_in_p (q->reg, insn))
1285 return true;
1286 for (i = 0; i < num_regs_saved_in_regs; i++)
1287 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1288 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1289 return true;
1292 return false;
1295 /* Entry point for saving the first register into the second. */
1297 void
1298 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1300 size_t i;
1301 unsigned int regno, sregno;
1303 for (i = 0; i < num_regs_saved_in_regs; i++)
1304 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1305 break;
1306 if (i == num_regs_saved_in_regs)
1308 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1309 num_regs_saved_in_regs++;
1311 regs_saved_in_regs[i].orig_reg = reg;
1312 regs_saved_in_regs[i].saved_in_reg = sreg;
1314 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1315 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1316 reg_save (label, regno, sregno, 0);
1319 /* What register, if any, is currently saved in REG? */
1321 static rtx
1322 reg_saved_in (rtx reg)
1324 unsigned int regn = REGNO (reg);
1325 size_t i;
1326 struct queued_reg_save *q;
1328 for (q = queued_reg_saves; q; q = q->next)
1329 if (q->saved_reg && regn == REGNO (q->saved_reg))
1330 return q->reg;
1332 for (i = 0; i < num_regs_saved_in_regs; i++)
1333 if (regs_saved_in_regs[i].saved_in_reg
1334 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1335 return regs_saved_in_regs[i].orig_reg;
1337 return NULL_RTX;
1341 /* A temporary register holding an integral value used in adjusting SP
1342 or setting up the store_reg. The "offset" field holds the integer
1343 value, not an offset. */
1344 static dw_cfa_location cfa_temp;
1346 /* Record call frame debugging information for an expression EXPR,
1347 which either sets SP or FP (adjusting how we calculate the frame
1348 address) or saves a register to the stack or another register.
1349 LABEL indicates the address of EXPR.
1351 This function encodes a state machine mapping rtxes to actions on
1352 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1353 users need not read the source code.
1355 The High-Level Picture
1357 Changes in the register we use to calculate the CFA: Currently we
1358 assume that if you copy the CFA register into another register, we
1359 should take the other one as the new CFA register; this seems to
1360 work pretty well. If it's wrong for some target, it's simple
1361 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1363 Changes in the register we use for saving registers to the stack:
1364 This is usually SP, but not always. Again, we deduce that if you
1365 copy SP into another register (and SP is not the CFA register),
1366 then the new register is the one we will be using for register
1367 saves. This also seems to work.
1369 Register saves: There's not much guesswork about this one; if
1370 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1371 register save, and the register used to calculate the destination
1372 had better be the one we think we're using for this purpose.
1373 It's also assumed that a copy from a call-saved register to another
1374 register is saving that register if RTX_FRAME_RELATED_P is set on
1375 that instruction. If the copy is from a call-saved register to
1376 the *same* register, that means that the register is now the same
1377 value as in the caller.
1379 Except: If the register being saved is the CFA register, and the
1380 offset is nonzero, we are saving the CFA, so we assume we have to
1381 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1382 the intent is to save the value of SP from the previous frame.
1384 In addition, if a register has previously been saved to a different
1385 register,
1387 Invariants / Summaries of Rules
1389 cfa current rule for calculating the CFA. It usually
1390 consists of a register and an offset.
1391 cfa_store register used by prologue code to save things to the stack
1392 cfa_store.offset is the offset from the value of
1393 cfa_store.reg to the actual CFA
1394 cfa_temp register holding an integral value. cfa_temp.offset
1395 stores the value, which will be used to adjust the
1396 stack pointer. cfa_temp is also used like cfa_store,
1397 to track stores to the stack via fp or a temp reg.
1399 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1400 with cfa.reg as the first operand changes the cfa.reg and its
1401 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1402 cfa_temp.offset.
1404 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1405 expression yielding a constant. This sets cfa_temp.reg
1406 and cfa_temp.offset.
1408 Rule 5: Create a new register cfa_store used to save items to the
1409 stack.
1411 Rules 10-14: Save a register to the stack. Define offset as the
1412 difference of the original location and cfa_store's
1413 location (or cfa_temp's location if cfa_temp is used).
1415 The Rules
1417 "{a,b}" indicates a choice of a xor b.
1418 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1420 Rule 1:
1421 (set <reg1> <reg2>:cfa.reg)
1422 effects: cfa.reg = <reg1>
1423 cfa.offset unchanged
1424 cfa_temp.reg = <reg1>
1425 cfa_temp.offset = cfa.offset
1427 Rule 2:
1428 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1429 {<const_int>,<reg>:cfa_temp.reg}))
1430 effects: cfa.reg = sp if fp used
1431 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1432 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1433 if cfa_store.reg==sp
1435 Rule 3:
1436 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1437 effects: cfa.reg = fp
1438 cfa_offset += +/- <const_int>
1440 Rule 4:
1441 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1442 constraints: <reg1> != fp
1443 <reg1> != sp
1444 effects: cfa.reg = <reg1>
1445 cfa_temp.reg = <reg1>
1446 cfa_temp.offset = cfa.offset
1448 Rule 5:
1449 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1450 constraints: <reg1> != fp
1451 <reg1> != sp
1452 effects: cfa_store.reg = <reg1>
1453 cfa_store.offset = cfa.offset - cfa_temp.offset
1455 Rule 6:
1456 (set <reg> <const_int>)
1457 effects: cfa_temp.reg = <reg>
1458 cfa_temp.offset = <const_int>
1460 Rule 7:
1461 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1462 effects: cfa_temp.reg = <reg1>
1463 cfa_temp.offset |= <const_int>
1465 Rule 8:
1466 (set <reg> (high <exp>))
1467 effects: none
1469 Rule 9:
1470 (set <reg> (lo_sum <exp> <const_int>))
1471 effects: cfa_temp.reg = <reg>
1472 cfa_temp.offset = <const_int>
1474 Rule 10:
1475 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1476 effects: cfa_store.offset -= <const_int>
1477 cfa.offset = cfa_store.offset if cfa.reg == sp
1478 cfa.reg = sp
1479 cfa.base_offset = -cfa_store.offset
1481 Rule 11:
1482 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1483 effects: cfa_store.offset += -/+ mode_size(mem)
1484 cfa.offset = cfa_store.offset if cfa.reg == sp
1485 cfa.reg = sp
1486 cfa.base_offset = -cfa_store.offset
1488 Rule 12:
1489 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1491 <reg2>)
1492 effects: cfa.reg = <reg1>
1493 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1495 Rule 13:
1496 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1497 effects: cfa.reg = <reg1>
1498 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1500 Rule 14:
1501 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1502 effects: cfa.reg = <reg1>
1503 cfa.base_offset = -cfa_temp.offset
1504 cfa_temp.offset -= mode_size(mem)
1506 Rule 15:
1507 (set <reg> {unspec, unspec_volatile})
1508 effects: target-dependent */
1510 static void
1511 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1513 rtx src, dest;
1514 HOST_WIDE_INT offset;
1516 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1517 the PARALLEL independently. The first element is always processed if
1518 it is a SET. This is for backward compatibility. Other elements
1519 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1520 flag is set in them. */
1521 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1523 int par_index;
1524 int limit = XVECLEN (expr, 0);
1526 for (par_index = 0; par_index < limit; par_index++)
1527 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1528 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1529 || par_index == 0))
1530 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1532 return;
1535 gcc_assert (GET_CODE (expr) == SET);
1537 src = SET_SRC (expr);
1538 dest = SET_DEST (expr);
1540 if (REG_P (src))
1542 rtx rsi = reg_saved_in (src);
1543 if (rsi)
1544 src = rsi;
1547 switch (GET_CODE (dest))
1549 case REG:
1550 switch (GET_CODE (src))
1552 /* Setting FP from SP. */
1553 case REG:
1554 if (cfa.reg == (unsigned) REGNO (src))
1556 /* Rule 1 */
1557 /* Update the CFA rule wrt SP or FP. Make sure src is
1558 relative to the current CFA register.
1560 We used to require that dest be either SP or FP, but the
1561 ARM copies SP to a temporary register, and from there to
1562 FP. So we just rely on the backends to only set
1563 RTX_FRAME_RELATED_P on appropriate insns. */
1564 cfa.reg = REGNO (dest);
1565 cfa_temp.reg = cfa.reg;
1566 cfa_temp.offset = cfa.offset;
1568 else
1570 /* Saving a register in a register. */
1571 gcc_assert (!fixed_regs [REGNO (dest)]
1572 /* For the SPARC and its register window. */
1573 || (DWARF_FRAME_REGNUM (REGNO (src))
1574 == DWARF_FRAME_RETURN_COLUMN));
1575 queue_reg_save (label, src, dest, 0);
1577 break;
1579 case PLUS:
1580 case MINUS:
1581 case LO_SUM:
1582 if (dest == stack_pointer_rtx)
1584 /* Rule 2 */
1585 /* Adjusting SP. */
1586 switch (GET_CODE (XEXP (src, 1)))
1588 case CONST_INT:
1589 offset = INTVAL (XEXP (src, 1));
1590 break;
1591 case REG:
1592 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1593 == cfa_temp.reg);
1594 offset = cfa_temp.offset;
1595 break;
1596 default:
1597 gcc_unreachable ();
1600 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1602 /* Restoring SP from FP in the epilogue. */
1603 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1604 cfa.reg = STACK_POINTER_REGNUM;
1606 else if (GET_CODE (src) == LO_SUM)
1607 /* Assume we've set the source reg of the LO_SUM from sp. */
1609 else
1610 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1612 if (GET_CODE (src) != MINUS)
1613 offset = -offset;
1614 if (cfa.reg == STACK_POINTER_REGNUM)
1615 cfa.offset += offset;
1616 if (cfa_store.reg == STACK_POINTER_REGNUM)
1617 cfa_store.offset += offset;
1619 else if (dest == hard_frame_pointer_rtx)
1621 /* Rule 3 */
1622 /* Either setting the FP from an offset of the SP,
1623 or adjusting the FP */
1624 gcc_assert (frame_pointer_needed);
1626 gcc_assert (REG_P (XEXP (src, 0))
1627 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1628 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1629 offset = INTVAL (XEXP (src, 1));
1630 if (GET_CODE (src) != MINUS)
1631 offset = -offset;
1632 cfa.offset += offset;
1633 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1635 else
1637 gcc_assert (GET_CODE (src) != MINUS);
1639 /* Rule 4 */
1640 if (REG_P (XEXP (src, 0))
1641 && REGNO (XEXP (src, 0)) == cfa.reg
1642 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1644 /* Setting a temporary CFA register that will be copied
1645 into the FP later on. */
1646 offset = - INTVAL (XEXP (src, 1));
1647 cfa.offset += offset;
1648 cfa.reg = REGNO (dest);
1649 /* Or used to save regs to the stack. */
1650 cfa_temp.reg = cfa.reg;
1651 cfa_temp.offset = cfa.offset;
1654 /* Rule 5 */
1655 else if (REG_P (XEXP (src, 0))
1656 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1657 && XEXP (src, 1) == stack_pointer_rtx)
1659 /* Setting a scratch register that we will use instead
1660 of SP for saving registers to the stack. */
1661 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1662 cfa_store.reg = REGNO (dest);
1663 cfa_store.offset = cfa.offset - cfa_temp.offset;
1666 /* Rule 9 */
1667 else if (GET_CODE (src) == LO_SUM
1668 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1670 cfa_temp.reg = REGNO (dest);
1671 cfa_temp.offset = INTVAL (XEXP (src, 1));
1673 else
1674 gcc_unreachable ();
1676 break;
1678 /* Rule 6 */
1679 case CONST_INT:
1680 cfa_temp.reg = REGNO (dest);
1681 cfa_temp.offset = INTVAL (src);
1682 break;
1684 /* Rule 7 */
1685 case IOR:
1686 gcc_assert (REG_P (XEXP (src, 0))
1687 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1688 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1690 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1691 cfa_temp.reg = REGNO (dest);
1692 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1693 break;
1695 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1696 which will fill in all of the bits. */
1697 /* Rule 8 */
1698 case HIGH:
1699 break;
1701 /* Rule 15 */
1702 case UNSPEC:
1703 case UNSPEC_VOLATILE:
1704 gcc_assert (targetm.dwarf_handle_frame_unspec);
1705 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1706 return;
1708 default:
1709 gcc_unreachable ();
1712 def_cfa_1 (label, &cfa);
1713 break;
1715 case MEM:
1716 gcc_assert (REG_P (src));
1718 /* Saving a register to the stack. Make sure dest is relative to the
1719 CFA register. */
1720 switch (GET_CODE (XEXP (dest, 0)))
1722 /* Rule 10 */
1723 /* With a push. */
1724 case PRE_MODIFY:
1725 /* We can't handle variable size modifications. */
1726 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1727 == CONST_INT);
1728 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1730 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1731 && cfa_store.reg == STACK_POINTER_REGNUM);
1733 cfa_store.offset += offset;
1734 if (cfa.reg == STACK_POINTER_REGNUM)
1735 cfa.offset = cfa_store.offset;
1737 offset = -cfa_store.offset;
1738 break;
1740 /* Rule 11 */
1741 case PRE_INC:
1742 case PRE_DEC:
1743 offset = GET_MODE_SIZE (GET_MODE (dest));
1744 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1745 offset = -offset;
1747 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1748 && cfa_store.reg == STACK_POINTER_REGNUM);
1750 cfa_store.offset += offset;
1751 if (cfa.reg == STACK_POINTER_REGNUM)
1752 cfa.offset = cfa_store.offset;
1754 offset = -cfa_store.offset;
1755 break;
1757 /* Rule 12 */
1758 /* With an offset. */
1759 case PLUS:
1760 case MINUS:
1761 case LO_SUM:
1763 int regno;
1765 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1766 && REG_P (XEXP (XEXP (dest, 0), 0)));
1767 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1768 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1769 offset = -offset;
1771 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1773 if (cfa_store.reg == (unsigned) regno)
1774 offset -= cfa_store.offset;
1775 else
1777 gcc_assert (cfa_temp.reg == (unsigned) regno);
1778 offset -= cfa_temp.offset;
1781 break;
1783 /* Rule 13 */
1784 /* Without an offset. */
1785 case REG:
1787 int regno = REGNO (XEXP (dest, 0));
1789 if (cfa_store.reg == (unsigned) regno)
1790 offset = -cfa_store.offset;
1791 else
1793 gcc_assert (cfa_temp.reg == (unsigned) regno);
1794 offset = -cfa_temp.offset;
1797 break;
1799 /* Rule 14 */
1800 case POST_INC:
1801 gcc_assert (cfa_temp.reg
1802 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1803 offset = -cfa_temp.offset;
1804 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1805 break;
1807 default:
1808 gcc_unreachable ();
1811 if (REGNO (src) != STACK_POINTER_REGNUM
1812 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1813 && (unsigned) REGNO (src) == cfa.reg)
1815 /* We're storing the current CFA reg into the stack. */
1817 if (cfa.offset == 0)
1819 /* If the source register is exactly the CFA, assume
1820 we're saving SP like any other register; this happens
1821 on the ARM. */
1822 def_cfa_1 (label, &cfa);
1823 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1824 break;
1826 else
1828 /* Otherwise, we'll need to look in the stack to
1829 calculate the CFA. */
1830 rtx x = XEXP (dest, 0);
1832 if (!REG_P (x))
1833 x = XEXP (x, 0);
1834 gcc_assert (REG_P (x));
1836 cfa.reg = REGNO (x);
1837 cfa.base_offset = offset;
1838 cfa.indirect = 1;
1839 def_cfa_1 (label, &cfa);
1840 break;
1844 def_cfa_1 (label, &cfa);
1845 queue_reg_save (label, src, NULL_RTX, offset);
1846 break;
1848 default:
1849 gcc_unreachable ();
1853 /* Record call frame debugging information for INSN, which either
1854 sets SP or FP (adjusting how we calculate the frame address) or saves a
1855 register to the stack. If INSN is NULL_RTX, initialize our state.
1857 If AFTER_P is false, we're being called before the insn is emitted,
1858 otherwise after. Call instructions get invoked twice. */
1860 void
1861 dwarf2out_frame_debug (rtx insn, bool after_p)
1863 const char *label;
1864 rtx src;
1866 if (insn == NULL_RTX)
1868 size_t i;
1870 /* Flush any queued register saves. */
1871 flush_queued_reg_saves ();
1873 /* Set up state for generating call frame debug info. */
1874 lookup_cfa (&cfa);
1875 gcc_assert (cfa.reg
1876 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1878 cfa.reg = STACK_POINTER_REGNUM;
1879 cfa_store = cfa;
1880 cfa_temp.reg = -1;
1881 cfa_temp.offset = 0;
1883 for (i = 0; i < num_regs_saved_in_regs; i++)
1885 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1886 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1888 num_regs_saved_in_regs = 0;
1889 return;
1892 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1893 flush_queued_reg_saves ();
1895 if (! RTX_FRAME_RELATED_P (insn))
1897 if (!ACCUMULATE_OUTGOING_ARGS)
1898 dwarf2out_stack_adjust (insn, after_p);
1899 return;
1902 label = dwarf2out_cfi_label ();
1903 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1904 if (src)
1905 insn = XEXP (src, 0);
1906 else
1907 insn = PATTERN (insn);
1909 dwarf2out_frame_debug_expr (insn, label);
1912 #endif
1914 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1915 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1916 (enum dwarf_call_frame_info cfi);
1918 static enum dw_cfi_oprnd_type
1919 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1921 switch (cfi)
1923 case DW_CFA_nop:
1924 case DW_CFA_GNU_window_save:
1925 return dw_cfi_oprnd_unused;
1927 case DW_CFA_set_loc:
1928 case DW_CFA_advance_loc1:
1929 case DW_CFA_advance_loc2:
1930 case DW_CFA_advance_loc4:
1931 case DW_CFA_MIPS_advance_loc8:
1932 return dw_cfi_oprnd_addr;
1934 case DW_CFA_offset:
1935 case DW_CFA_offset_extended:
1936 case DW_CFA_def_cfa:
1937 case DW_CFA_offset_extended_sf:
1938 case DW_CFA_def_cfa_sf:
1939 case DW_CFA_restore_extended:
1940 case DW_CFA_undefined:
1941 case DW_CFA_same_value:
1942 case DW_CFA_def_cfa_register:
1943 case DW_CFA_register:
1944 return dw_cfi_oprnd_reg_num;
1946 case DW_CFA_def_cfa_offset:
1947 case DW_CFA_GNU_args_size:
1948 case DW_CFA_def_cfa_offset_sf:
1949 return dw_cfi_oprnd_offset;
1951 case DW_CFA_def_cfa_expression:
1952 case DW_CFA_expression:
1953 return dw_cfi_oprnd_loc;
1955 default:
1956 gcc_unreachable ();
1960 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1961 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1962 (enum dwarf_call_frame_info cfi);
1964 static enum dw_cfi_oprnd_type
1965 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1967 switch (cfi)
1969 case DW_CFA_def_cfa:
1970 case DW_CFA_def_cfa_sf:
1971 case DW_CFA_offset:
1972 case DW_CFA_offset_extended_sf:
1973 case DW_CFA_offset_extended:
1974 return dw_cfi_oprnd_offset;
1976 case DW_CFA_register:
1977 return dw_cfi_oprnd_reg_num;
1979 default:
1980 return dw_cfi_oprnd_unused;
1984 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1986 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1987 switch to the data section instead, and write out a synthetic label
1988 for collect2. */
1990 static void
1991 switch_to_eh_frame_section (void)
1993 tree label;
1995 #ifdef EH_FRAME_SECTION_NAME
1996 if (eh_frame_section == 0)
1998 int flags;
2000 if (EH_TABLES_CAN_BE_READ_ONLY)
2002 int fde_encoding;
2003 int per_encoding;
2004 int lsda_encoding;
2006 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2007 /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2009 /*global=*/1);
2010 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2011 /*global=*/0);
2012 flags = ((! flag_pic
2013 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2014 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2015 && (per_encoding & 0x70) != DW_EH_PE_absptr
2016 && (per_encoding & 0x70) != DW_EH_PE_aligned
2017 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2018 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2019 ? 0 : SECTION_WRITE);
2021 else
2022 flags = SECTION_WRITE;
2023 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2025 #endif
2027 if (eh_frame_section)
2028 switch_to_section (eh_frame_section);
2029 else
2031 /* We have no special eh_frame section. Put the information in
2032 the data section and emit special labels to guide collect2. */
2033 switch_to_section (data_section);
2034 label = get_file_function_name ("F");
2035 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2036 targetm.asm_out.globalize_label (asm_out_file,
2037 IDENTIFIER_POINTER (label));
2038 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2042 /* Output a Call Frame Information opcode and its operand(s). */
2044 static void
2045 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2047 unsigned long r;
2048 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2049 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2050 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2051 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2052 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2053 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2055 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2056 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2057 "DW_CFA_offset, column 0x%lx", r);
2058 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2060 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2062 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2063 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2064 "DW_CFA_restore, column 0x%lx", r);
2066 else
2068 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2069 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2071 switch (cfi->dw_cfi_opc)
2073 case DW_CFA_set_loc:
2074 if (for_eh)
2075 dw2_asm_output_encoded_addr_rtx (
2076 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2077 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2078 false, NULL);
2079 else
2080 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2081 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2082 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2083 break;
2085 case DW_CFA_advance_loc1:
2086 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2087 fde->dw_fde_current_label, NULL);
2088 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2089 break;
2091 case DW_CFA_advance_loc2:
2092 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2093 fde->dw_fde_current_label, NULL);
2094 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2095 break;
2097 case DW_CFA_advance_loc4:
2098 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2099 fde->dw_fde_current_label, NULL);
2100 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2101 break;
2103 case DW_CFA_MIPS_advance_loc8:
2104 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2105 fde->dw_fde_current_label, NULL);
2106 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2107 break;
2109 case DW_CFA_offset_extended:
2110 case DW_CFA_def_cfa:
2111 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2112 dw2_asm_output_data_uleb128 (r, NULL);
2113 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2114 break;
2116 case DW_CFA_offset_extended_sf:
2117 case DW_CFA_def_cfa_sf:
2118 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2119 dw2_asm_output_data_uleb128 (r, NULL);
2120 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2121 break;
2123 case DW_CFA_restore_extended:
2124 case DW_CFA_undefined:
2125 case DW_CFA_same_value:
2126 case DW_CFA_def_cfa_register:
2127 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2128 dw2_asm_output_data_uleb128 (r, NULL);
2129 break;
2131 case DW_CFA_register:
2132 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2133 dw2_asm_output_data_uleb128 (r, NULL);
2134 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2135 dw2_asm_output_data_uleb128 (r, NULL);
2136 break;
2138 case DW_CFA_def_cfa_offset:
2139 case DW_CFA_GNU_args_size:
2140 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2141 break;
2143 case DW_CFA_def_cfa_offset_sf:
2144 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2145 break;
2147 case DW_CFA_GNU_window_save:
2148 break;
2150 case DW_CFA_def_cfa_expression:
2151 case DW_CFA_expression:
2152 output_cfa_loc (cfi);
2153 break;
2155 case DW_CFA_GNU_negative_offset_extended:
2156 /* Obsoleted by DW_CFA_offset_extended_sf. */
2157 gcc_unreachable ();
2159 default:
2160 break;
2165 /* Output the call frame information used to record information
2166 that relates to calculating the frame pointer, and records the
2167 location of saved registers. */
2169 static void
2170 output_call_frame_info (int for_eh)
2172 unsigned int i;
2173 dw_fde_ref fde;
2174 dw_cfi_ref cfi;
2175 char l1[20], l2[20], section_start_label[20];
2176 bool any_lsda_needed = false;
2177 char augmentation[6];
2178 int augmentation_size;
2179 int fde_encoding = DW_EH_PE_absptr;
2180 int per_encoding = DW_EH_PE_absptr;
2181 int lsda_encoding = DW_EH_PE_absptr;
2182 int return_reg;
2184 /* Don't emit a CIE if there won't be any FDEs. */
2185 if (fde_table_in_use == 0)
2186 return;
2188 /* If we make FDEs linkonce, we may have to emit an empty label for
2189 an FDE that wouldn't otherwise be emitted. We want to avoid
2190 having an FDE kept around when the function it refers to is
2191 discarded. Example where this matters: a primary function
2192 template in C++ requires EH information, but an explicit
2193 specialization doesn't. */
2194 if (TARGET_USES_WEAK_UNWIND_INFO
2195 && ! flag_asynchronous_unwind_tables
2196 && for_eh)
2197 for (i = 0; i < fde_table_in_use; i++)
2198 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2199 && !fde_table[i].uses_eh_lsda
2200 && ! DECL_WEAK (fde_table[i].decl))
2201 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2202 for_eh, /* empty */ 1);
2204 /* If we don't have any functions we'll want to unwind out of, don't
2205 emit any EH unwind information. Note that if exceptions aren't
2206 enabled, we won't have collected nothrow information, and if we
2207 asked for asynchronous tables, we always want this info. */
2208 if (for_eh)
2210 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2212 for (i = 0; i < fde_table_in_use; i++)
2213 if (fde_table[i].uses_eh_lsda)
2214 any_eh_needed = any_lsda_needed = true;
2215 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2216 any_eh_needed = true;
2217 else if (! fde_table[i].nothrow
2218 && ! fde_table[i].all_throwers_are_sibcalls)
2219 any_eh_needed = true;
2221 if (! any_eh_needed)
2222 return;
2225 /* We're going to be generating comments, so turn on app. */
2226 if (flag_debug_asm)
2227 app_enable ();
2229 if (for_eh)
2230 switch_to_eh_frame_section ();
2231 else
2233 if (!debug_frame_section)
2234 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2235 SECTION_DEBUG, NULL);
2236 switch_to_section (debug_frame_section);
2239 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2240 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2242 /* Output the CIE. */
2243 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2244 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2245 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2246 dw2_asm_output_data (4, 0xffffffff,
2247 "Initial length escape value indicating 64-bit DWARF extension");
2248 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2249 "Length of Common Information Entry");
2250 ASM_OUTPUT_LABEL (asm_out_file, l1);
2252 /* Now that the CIE pointer is PC-relative for EH,
2253 use 0 to identify the CIE. */
2254 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2255 (for_eh ? 0 : DWARF_CIE_ID),
2256 "CIE Identifier Tag");
2258 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2260 augmentation[0] = 0;
2261 augmentation_size = 0;
2262 if (for_eh)
2264 char *p;
2266 /* Augmentation:
2267 z Indicates that a uleb128 is present to size the
2268 augmentation section.
2269 L Indicates the encoding (and thus presence) of
2270 an LSDA pointer in the FDE augmentation.
2271 R Indicates a non-default pointer encoding for
2272 FDE code pointers.
2273 P Indicates the presence of an encoding + language
2274 personality routine in the CIE augmentation. */
2276 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2277 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2278 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2280 p = augmentation + 1;
2281 if (eh_personality_libfunc)
2283 *p++ = 'P';
2284 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2286 if (any_lsda_needed)
2288 *p++ = 'L';
2289 augmentation_size += 1;
2291 if (fde_encoding != DW_EH_PE_absptr)
2293 *p++ = 'R';
2294 augmentation_size += 1;
2296 if (p > augmentation + 1)
2298 augmentation[0] = 'z';
2299 *p = '\0';
2302 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2303 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2305 int offset = ( 4 /* Length */
2306 + 4 /* CIE Id */
2307 + 1 /* CIE version */
2308 + strlen (augmentation) + 1 /* Augmentation */
2309 + size_of_uleb128 (1) /* Code alignment */
2310 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2311 + 1 /* RA column */
2312 + 1 /* Augmentation size */
2313 + 1 /* Personality encoding */ );
2314 int pad = -offset & (PTR_SIZE - 1);
2316 augmentation_size += pad;
2318 /* Augmentations should be small, so there's scarce need to
2319 iterate for a solution. Die if we exceed one uleb128 byte. */
2320 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2324 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2325 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2326 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2327 "CIE Data Alignment Factor");
2329 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2330 if (DW_CIE_VERSION == 1)
2331 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2332 else
2333 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2335 if (augmentation[0])
2337 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2338 if (eh_personality_libfunc)
2340 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2341 eh_data_format_name (per_encoding));
2342 dw2_asm_output_encoded_addr_rtx (per_encoding,
2343 eh_personality_libfunc,
2344 true, NULL);
2347 if (any_lsda_needed)
2348 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2349 eh_data_format_name (lsda_encoding));
2351 if (fde_encoding != DW_EH_PE_absptr)
2352 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2353 eh_data_format_name (fde_encoding));
2356 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2357 output_cfi (cfi, NULL, for_eh);
2359 /* Pad the CIE out to an address sized boundary. */
2360 ASM_OUTPUT_ALIGN (asm_out_file,
2361 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2362 ASM_OUTPUT_LABEL (asm_out_file, l2);
2364 /* Loop through all of the FDE's. */
2365 for (i = 0; i < fde_table_in_use; i++)
2367 fde = &fde_table[i];
2369 /* Don't emit EH unwind info for leaf functions that don't need it. */
2370 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2371 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2372 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2373 && !fde->uses_eh_lsda)
2374 continue;
2376 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2377 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2379 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2380 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2381 dw2_asm_output_data (4, 0xffffffff,
2382 "Initial length escape value indicating 64-bit DWARF extension");
2383 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2384 "FDE Length");
2385 ASM_OUTPUT_LABEL (asm_out_file, l1);
2387 if (for_eh)
2388 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2389 else
2390 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2391 debug_frame_section, "FDE CIE offset");
2393 if (for_eh)
2395 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2396 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2397 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2398 sym_ref,
2399 false,
2400 "FDE initial location");
2401 if (fde->dw_fde_switched_sections)
2403 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2404 fde->dw_fde_unlikely_section_label);
2405 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2406 fde->dw_fde_hot_section_label);
2407 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2408 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2409 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2410 "FDE initial location");
2411 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2412 fde->dw_fde_hot_section_end_label,
2413 fde->dw_fde_hot_section_label,
2414 "FDE address range");
2415 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2416 "FDE initial location");
2417 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2418 fde->dw_fde_unlikely_section_end_label,
2419 fde->dw_fde_unlikely_section_label,
2420 "FDE address range");
2422 else
2423 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2424 fde->dw_fde_end, fde->dw_fde_begin,
2425 "FDE address range");
2427 else
2429 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2430 "FDE initial location");
2431 if (fde->dw_fde_switched_sections)
2433 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2434 fde->dw_fde_hot_section_label,
2435 "FDE initial location");
2436 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2437 fde->dw_fde_hot_section_end_label,
2438 fde->dw_fde_hot_section_label,
2439 "FDE address range");
2440 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2441 fde->dw_fde_unlikely_section_label,
2442 "FDE initial location");
2443 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2444 fde->dw_fde_unlikely_section_end_label,
2445 fde->dw_fde_unlikely_section_label,
2446 "FDE address range");
2448 else
2449 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2450 fde->dw_fde_end, fde->dw_fde_begin,
2451 "FDE address range");
2454 if (augmentation[0])
2456 if (any_lsda_needed)
2458 int size = size_of_encoded_value (lsda_encoding);
2460 if (lsda_encoding == DW_EH_PE_aligned)
2462 int offset = ( 4 /* Length */
2463 + 4 /* CIE offset */
2464 + 2 * size_of_encoded_value (fde_encoding)
2465 + 1 /* Augmentation size */ );
2466 int pad = -offset & (PTR_SIZE - 1);
2468 size += pad;
2469 gcc_assert (size_of_uleb128 (size) == 1);
2472 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2474 if (fde->uses_eh_lsda)
2476 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2477 fde->funcdef_number);
2478 dw2_asm_output_encoded_addr_rtx (
2479 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2480 false, "Language Specific Data Area");
2482 else
2484 if (lsda_encoding == DW_EH_PE_aligned)
2485 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2486 dw2_asm_output_data
2487 (size_of_encoded_value (lsda_encoding), 0,
2488 "Language Specific Data Area (none)");
2491 else
2492 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2495 /* Loop through the Call Frame Instructions associated with
2496 this FDE. */
2497 fde->dw_fde_current_label = fde->dw_fde_begin;
2498 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2499 output_cfi (cfi, fde, for_eh);
2501 /* Pad the FDE out to an address sized boundary. */
2502 ASM_OUTPUT_ALIGN (asm_out_file,
2503 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2504 ASM_OUTPUT_LABEL (asm_out_file, l2);
2507 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2508 dw2_asm_output_data (4, 0, "End of Table");
2509 #ifdef MIPS_DEBUGGING_INFO
2510 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2511 get a value of 0. Putting .align 0 after the label fixes it. */
2512 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2513 #endif
2515 /* Turn off app to make assembly quicker. */
2516 if (flag_debug_asm)
2517 app_disable ();
2520 /* Output a marker (i.e. a label) for the beginning of a function, before
2521 the prologue. */
2523 void
2524 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2525 const char *file ATTRIBUTE_UNUSED)
2527 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2528 char * dup_label;
2529 dw_fde_ref fde;
2531 current_function_func_begin_label = NULL;
2533 #ifdef TARGET_UNWIND_INFO
2534 /* ??? current_function_func_begin_label is also used by except.c
2535 for call-site information. We must emit this label if it might
2536 be used. */
2537 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2538 && ! dwarf2out_do_frame ())
2539 return;
2540 #else
2541 if (! dwarf2out_do_frame ())
2542 return;
2543 #endif
2545 switch_to_section (function_section (current_function_decl));
2546 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2547 current_function_funcdef_no);
2548 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2549 current_function_funcdef_no);
2550 dup_label = xstrdup (label);
2551 current_function_func_begin_label = dup_label;
2553 #ifdef TARGET_UNWIND_INFO
2554 /* We can elide the fde allocation if we're not emitting debug info. */
2555 if (! dwarf2out_do_frame ())
2556 return;
2557 #endif
2559 /* Expand the fde table if necessary. */
2560 if (fde_table_in_use == fde_table_allocated)
2562 fde_table_allocated += FDE_TABLE_INCREMENT;
2563 fde_table = ggc_realloc (fde_table,
2564 fde_table_allocated * sizeof (dw_fde_node));
2565 memset (fde_table + fde_table_in_use, 0,
2566 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2569 /* Record the FDE associated with this function. */
2570 current_funcdef_fde = fde_table_in_use;
2572 /* Add the new FDE at the end of the fde_table. */
2573 fde = &fde_table[fde_table_in_use++];
2574 fde->decl = current_function_decl;
2575 fde->dw_fde_begin = dup_label;
2576 fde->dw_fde_current_label = dup_label;
2577 fde->dw_fde_hot_section_label = NULL;
2578 fde->dw_fde_hot_section_end_label = NULL;
2579 fde->dw_fde_unlikely_section_label = NULL;
2580 fde->dw_fde_unlikely_section_end_label = NULL;
2581 fde->dw_fde_switched_sections = false;
2582 fde->dw_fde_end = NULL;
2583 fde->dw_fde_cfi = NULL;
2584 fde->funcdef_number = current_function_funcdef_no;
2585 fde->nothrow = TREE_NOTHROW (current_function_decl);
2586 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2587 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2589 args_size = old_args_size = 0;
2591 /* We only want to output line number information for the genuine dwarf2
2592 prologue case, not the eh frame case. */
2593 #ifdef DWARF2_DEBUGGING_INFO
2594 if (file)
2595 dwarf2out_source_line (line, file);
2596 #endif
2599 /* Output a marker (i.e. a label) for the absolute end of the generated code
2600 for a function definition. This gets called *after* the epilogue code has
2601 been generated. */
2603 void
2604 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2605 const char *file ATTRIBUTE_UNUSED)
2607 dw_fde_ref fde;
2608 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2610 /* Output a label to mark the endpoint of the code generated for this
2611 function. */
2612 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2613 current_function_funcdef_no);
2614 ASM_OUTPUT_LABEL (asm_out_file, label);
2615 fde = &fde_table[fde_table_in_use - 1];
2616 fde->dw_fde_end = xstrdup (label);
2619 void
2620 dwarf2out_frame_init (void)
2622 /* Allocate the initial hunk of the fde_table. */
2623 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2624 fde_table_allocated = FDE_TABLE_INCREMENT;
2625 fde_table_in_use = 0;
2627 /* Generate the CFA instructions common to all FDE's. Do it now for the
2628 sake of lookup_cfa. */
2630 /* On entry, the Canonical Frame Address is at SP. */
2631 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2633 #ifdef DWARF2_UNWIND_INFO
2634 if (DWARF2_UNWIND_INFO)
2635 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2636 #endif
2639 void
2640 dwarf2out_frame_finish (void)
2642 /* Output call frame information. */
2643 if (DWARF2_FRAME_INFO)
2644 output_call_frame_info (0);
2646 #ifndef TARGET_UNWIND_INFO
2647 /* Output another copy for the unwinder. */
2648 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2649 output_call_frame_info (1);
2650 #endif
2652 #endif
2654 /* And now, the subset of the debugging information support code necessary
2655 for emitting location expressions. */
2657 /* Data about a single source file. */
2658 struct dwarf_file_data GTY(())
2660 const char * filename;
2661 int emitted_number;
2664 /* We need some way to distinguish DW_OP_addr with a direct symbol
2665 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2666 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2669 typedef struct dw_val_struct *dw_val_ref;
2670 typedef struct die_struct *dw_die_ref;
2671 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2672 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2674 /* Each DIE may have a series of attribute/value pairs. Values
2675 can take on several forms. The forms that are used in this
2676 implementation are listed below. */
2678 enum dw_val_class
2680 dw_val_class_addr,
2681 dw_val_class_offset,
2682 dw_val_class_loc,
2683 dw_val_class_loc_list,
2684 dw_val_class_range_list,
2685 dw_val_class_const,
2686 dw_val_class_unsigned_const,
2687 dw_val_class_long_long,
2688 dw_val_class_vec,
2689 dw_val_class_flag,
2690 dw_val_class_die_ref,
2691 dw_val_class_fde_ref,
2692 dw_val_class_lbl_id,
2693 dw_val_class_lineptr,
2694 dw_val_class_str,
2695 dw_val_class_macptr,
2696 dw_val_class_file
2699 /* Describe a double word constant value. */
2700 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2702 typedef struct dw_long_long_struct GTY(())
2704 unsigned long hi;
2705 unsigned long low;
2707 dw_long_long_const;
2709 /* Describe a floating point constant value, or a vector constant value. */
2711 typedef struct dw_vec_struct GTY(())
2713 unsigned char * GTY((length ("%h.length"))) array;
2714 unsigned length;
2715 unsigned elt_size;
2717 dw_vec_const;
2719 /* The dw_val_node describes an attribute's value, as it is
2720 represented internally. */
2722 typedef struct dw_val_struct GTY(())
2724 enum dw_val_class val_class;
2725 union dw_val_struct_union
2727 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2728 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2729 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2730 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2731 HOST_WIDE_INT GTY ((default)) val_int;
2732 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2733 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2734 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2735 struct dw_val_die_union
2737 dw_die_ref die;
2738 int external;
2739 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2740 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2741 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2742 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2743 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2744 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2746 GTY ((desc ("%1.val_class"))) v;
2748 dw_val_node;
2750 /* Locations in memory are described using a sequence of stack machine
2751 operations. */
2753 typedef struct dw_loc_descr_struct GTY(())
2755 dw_loc_descr_ref dw_loc_next;
2756 enum dwarf_location_atom dw_loc_opc;
2757 dw_val_node dw_loc_oprnd1;
2758 dw_val_node dw_loc_oprnd2;
2759 int dw_loc_addr;
2761 dw_loc_descr_node;
2763 /* Location lists are ranges + location descriptions for that range,
2764 so you can track variables that are in different places over
2765 their entire life. */
2766 typedef struct dw_loc_list_struct GTY(())
2768 dw_loc_list_ref dw_loc_next;
2769 const char *begin; /* Label for begin address of range */
2770 const char *end; /* Label for end address of range */
2771 char *ll_symbol; /* Label for beginning of location list.
2772 Only on head of list */
2773 const char *section; /* Section this loclist is relative to */
2774 dw_loc_descr_ref expr;
2775 } dw_loc_list_node;
2777 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2779 static const char *dwarf_stack_op_name (unsigned);
2780 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2781 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2782 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2783 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2784 static unsigned long size_of_locs (dw_loc_descr_ref);
2785 static void output_loc_operands (dw_loc_descr_ref);
2786 static void output_loc_sequence (dw_loc_descr_ref);
2788 /* Convert a DWARF stack opcode into its string name. */
2790 static const char *
2791 dwarf_stack_op_name (unsigned int op)
2793 switch (op)
2795 case DW_OP_addr:
2796 case INTERNAL_DW_OP_tls_addr:
2797 return "DW_OP_addr";
2798 case DW_OP_deref:
2799 return "DW_OP_deref";
2800 case DW_OP_const1u:
2801 return "DW_OP_const1u";
2802 case DW_OP_const1s:
2803 return "DW_OP_const1s";
2804 case DW_OP_const2u:
2805 return "DW_OP_const2u";
2806 case DW_OP_const2s:
2807 return "DW_OP_const2s";
2808 case DW_OP_const4u:
2809 return "DW_OP_const4u";
2810 case DW_OP_const4s:
2811 return "DW_OP_const4s";
2812 case DW_OP_const8u:
2813 return "DW_OP_const8u";
2814 case DW_OP_const8s:
2815 return "DW_OP_const8s";
2816 case DW_OP_constu:
2817 return "DW_OP_constu";
2818 case DW_OP_consts:
2819 return "DW_OP_consts";
2820 case DW_OP_dup:
2821 return "DW_OP_dup";
2822 case DW_OP_drop:
2823 return "DW_OP_drop";
2824 case DW_OP_over:
2825 return "DW_OP_over";
2826 case DW_OP_pick:
2827 return "DW_OP_pick";
2828 case DW_OP_swap:
2829 return "DW_OP_swap";
2830 case DW_OP_rot:
2831 return "DW_OP_rot";
2832 case DW_OP_xderef:
2833 return "DW_OP_xderef";
2834 case DW_OP_abs:
2835 return "DW_OP_abs";
2836 case DW_OP_and:
2837 return "DW_OP_and";
2838 case DW_OP_div:
2839 return "DW_OP_div";
2840 case DW_OP_minus:
2841 return "DW_OP_minus";
2842 case DW_OP_mod:
2843 return "DW_OP_mod";
2844 case DW_OP_mul:
2845 return "DW_OP_mul";
2846 case DW_OP_neg:
2847 return "DW_OP_neg";
2848 case DW_OP_not:
2849 return "DW_OP_not";
2850 case DW_OP_or:
2851 return "DW_OP_or";
2852 case DW_OP_plus:
2853 return "DW_OP_plus";
2854 case DW_OP_plus_uconst:
2855 return "DW_OP_plus_uconst";
2856 case DW_OP_shl:
2857 return "DW_OP_shl";
2858 case DW_OP_shr:
2859 return "DW_OP_shr";
2860 case DW_OP_shra:
2861 return "DW_OP_shra";
2862 case DW_OP_xor:
2863 return "DW_OP_xor";
2864 case DW_OP_bra:
2865 return "DW_OP_bra";
2866 case DW_OP_eq:
2867 return "DW_OP_eq";
2868 case DW_OP_ge:
2869 return "DW_OP_ge";
2870 case DW_OP_gt:
2871 return "DW_OP_gt";
2872 case DW_OP_le:
2873 return "DW_OP_le";
2874 case DW_OP_lt:
2875 return "DW_OP_lt";
2876 case DW_OP_ne:
2877 return "DW_OP_ne";
2878 case DW_OP_skip:
2879 return "DW_OP_skip";
2880 case DW_OP_lit0:
2881 return "DW_OP_lit0";
2882 case DW_OP_lit1:
2883 return "DW_OP_lit1";
2884 case DW_OP_lit2:
2885 return "DW_OP_lit2";
2886 case DW_OP_lit3:
2887 return "DW_OP_lit3";
2888 case DW_OP_lit4:
2889 return "DW_OP_lit4";
2890 case DW_OP_lit5:
2891 return "DW_OP_lit5";
2892 case DW_OP_lit6:
2893 return "DW_OP_lit6";
2894 case DW_OP_lit7:
2895 return "DW_OP_lit7";
2896 case DW_OP_lit8:
2897 return "DW_OP_lit8";
2898 case DW_OP_lit9:
2899 return "DW_OP_lit9";
2900 case DW_OP_lit10:
2901 return "DW_OP_lit10";
2902 case DW_OP_lit11:
2903 return "DW_OP_lit11";
2904 case DW_OP_lit12:
2905 return "DW_OP_lit12";
2906 case DW_OP_lit13:
2907 return "DW_OP_lit13";
2908 case DW_OP_lit14:
2909 return "DW_OP_lit14";
2910 case DW_OP_lit15:
2911 return "DW_OP_lit15";
2912 case DW_OP_lit16:
2913 return "DW_OP_lit16";
2914 case DW_OP_lit17:
2915 return "DW_OP_lit17";
2916 case DW_OP_lit18:
2917 return "DW_OP_lit18";
2918 case DW_OP_lit19:
2919 return "DW_OP_lit19";
2920 case DW_OP_lit20:
2921 return "DW_OP_lit20";
2922 case DW_OP_lit21:
2923 return "DW_OP_lit21";
2924 case DW_OP_lit22:
2925 return "DW_OP_lit22";
2926 case DW_OP_lit23:
2927 return "DW_OP_lit23";
2928 case DW_OP_lit24:
2929 return "DW_OP_lit24";
2930 case DW_OP_lit25:
2931 return "DW_OP_lit25";
2932 case DW_OP_lit26:
2933 return "DW_OP_lit26";
2934 case DW_OP_lit27:
2935 return "DW_OP_lit27";
2936 case DW_OP_lit28:
2937 return "DW_OP_lit28";
2938 case DW_OP_lit29:
2939 return "DW_OP_lit29";
2940 case DW_OP_lit30:
2941 return "DW_OP_lit30";
2942 case DW_OP_lit31:
2943 return "DW_OP_lit31";
2944 case DW_OP_reg0:
2945 return "DW_OP_reg0";
2946 case DW_OP_reg1:
2947 return "DW_OP_reg1";
2948 case DW_OP_reg2:
2949 return "DW_OP_reg2";
2950 case DW_OP_reg3:
2951 return "DW_OP_reg3";
2952 case DW_OP_reg4:
2953 return "DW_OP_reg4";
2954 case DW_OP_reg5:
2955 return "DW_OP_reg5";
2956 case DW_OP_reg6:
2957 return "DW_OP_reg6";
2958 case DW_OP_reg7:
2959 return "DW_OP_reg7";
2960 case DW_OP_reg8:
2961 return "DW_OP_reg8";
2962 case DW_OP_reg9:
2963 return "DW_OP_reg9";
2964 case DW_OP_reg10:
2965 return "DW_OP_reg10";
2966 case DW_OP_reg11:
2967 return "DW_OP_reg11";
2968 case DW_OP_reg12:
2969 return "DW_OP_reg12";
2970 case DW_OP_reg13:
2971 return "DW_OP_reg13";
2972 case DW_OP_reg14:
2973 return "DW_OP_reg14";
2974 case DW_OP_reg15:
2975 return "DW_OP_reg15";
2976 case DW_OP_reg16:
2977 return "DW_OP_reg16";
2978 case DW_OP_reg17:
2979 return "DW_OP_reg17";
2980 case DW_OP_reg18:
2981 return "DW_OP_reg18";
2982 case DW_OP_reg19:
2983 return "DW_OP_reg19";
2984 case DW_OP_reg20:
2985 return "DW_OP_reg20";
2986 case DW_OP_reg21:
2987 return "DW_OP_reg21";
2988 case DW_OP_reg22:
2989 return "DW_OP_reg22";
2990 case DW_OP_reg23:
2991 return "DW_OP_reg23";
2992 case DW_OP_reg24:
2993 return "DW_OP_reg24";
2994 case DW_OP_reg25:
2995 return "DW_OP_reg25";
2996 case DW_OP_reg26:
2997 return "DW_OP_reg26";
2998 case DW_OP_reg27:
2999 return "DW_OP_reg27";
3000 case DW_OP_reg28:
3001 return "DW_OP_reg28";
3002 case DW_OP_reg29:
3003 return "DW_OP_reg29";
3004 case DW_OP_reg30:
3005 return "DW_OP_reg30";
3006 case DW_OP_reg31:
3007 return "DW_OP_reg31";
3008 case DW_OP_breg0:
3009 return "DW_OP_breg0";
3010 case DW_OP_breg1:
3011 return "DW_OP_breg1";
3012 case DW_OP_breg2:
3013 return "DW_OP_breg2";
3014 case DW_OP_breg3:
3015 return "DW_OP_breg3";
3016 case DW_OP_breg4:
3017 return "DW_OP_breg4";
3018 case DW_OP_breg5:
3019 return "DW_OP_breg5";
3020 case DW_OP_breg6:
3021 return "DW_OP_breg6";
3022 case DW_OP_breg7:
3023 return "DW_OP_breg7";
3024 case DW_OP_breg8:
3025 return "DW_OP_breg8";
3026 case DW_OP_breg9:
3027 return "DW_OP_breg9";
3028 case DW_OP_breg10:
3029 return "DW_OP_breg10";
3030 case DW_OP_breg11:
3031 return "DW_OP_breg11";
3032 case DW_OP_breg12:
3033 return "DW_OP_breg12";
3034 case DW_OP_breg13:
3035 return "DW_OP_breg13";
3036 case DW_OP_breg14:
3037 return "DW_OP_breg14";
3038 case DW_OP_breg15:
3039 return "DW_OP_breg15";
3040 case DW_OP_breg16:
3041 return "DW_OP_breg16";
3042 case DW_OP_breg17:
3043 return "DW_OP_breg17";
3044 case DW_OP_breg18:
3045 return "DW_OP_breg18";
3046 case DW_OP_breg19:
3047 return "DW_OP_breg19";
3048 case DW_OP_breg20:
3049 return "DW_OP_breg20";
3050 case DW_OP_breg21:
3051 return "DW_OP_breg21";
3052 case DW_OP_breg22:
3053 return "DW_OP_breg22";
3054 case DW_OP_breg23:
3055 return "DW_OP_breg23";
3056 case DW_OP_breg24:
3057 return "DW_OP_breg24";
3058 case DW_OP_breg25:
3059 return "DW_OP_breg25";
3060 case DW_OP_breg26:
3061 return "DW_OP_breg26";
3062 case DW_OP_breg27:
3063 return "DW_OP_breg27";
3064 case DW_OP_breg28:
3065 return "DW_OP_breg28";
3066 case DW_OP_breg29:
3067 return "DW_OP_breg29";
3068 case DW_OP_breg30:
3069 return "DW_OP_breg30";
3070 case DW_OP_breg31:
3071 return "DW_OP_breg31";
3072 case DW_OP_regx:
3073 return "DW_OP_regx";
3074 case DW_OP_fbreg:
3075 return "DW_OP_fbreg";
3076 case DW_OP_bregx:
3077 return "DW_OP_bregx";
3078 case DW_OP_piece:
3079 return "DW_OP_piece";
3080 case DW_OP_deref_size:
3081 return "DW_OP_deref_size";
3082 case DW_OP_xderef_size:
3083 return "DW_OP_xderef_size";
3084 case DW_OP_nop:
3085 return "DW_OP_nop";
3086 case DW_OP_push_object_address:
3087 return "DW_OP_push_object_address";
3088 case DW_OP_call2:
3089 return "DW_OP_call2";
3090 case DW_OP_call4:
3091 return "DW_OP_call4";
3092 case DW_OP_call_ref:
3093 return "DW_OP_call_ref";
3094 case DW_OP_GNU_push_tls_address:
3095 return "DW_OP_GNU_push_tls_address";
3096 default:
3097 return "OP_<unknown>";
3101 /* Return a pointer to a newly allocated location description. Location
3102 descriptions are simple expression terms that can be strung
3103 together to form more complicated location (address) descriptions. */
3105 static inline dw_loc_descr_ref
3106 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3107 unsigned HOST_WIDE_INT oprnd2)
3109 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3111 descr->dw_loc_opc = op;
3112 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3113 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3114 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3115 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3117 return descr;
3120 /* Add a location description term to a location description expression. */
3122 static inline void
3123 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3125 dw_loc_descr_ref *d;
3127 /* Find the end of the chain. */
3128 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3131 *d = descr;
3134 /* Return the size of a location descriptor. */
3136 static unsigned long
3137 size_of_loc_descr (dw_loc_descr_ref loc)
3139 unsigned long size = 1;
3141 switch (loc->dw_loc_opc)
3143 case DW_OP_addr:
3144 case INTERNAL_DW_OP_tls_addr:
3145 size += DWARF2_ADDR_SIZE;
3146 break;
3147 case DW_OP_const1u:
3148 case DW_OP_const1s:
3149 size += 1;
3150 break;
3151 case DW_OP_const2u:
3152 case DW_OP_const2s:
3153 size += 2;
3154 break;
3155 case DW_OP_const4u:
3156 case DW_OP_const4s:
3157 size += 4;
3158 break;
3159 case DW_OP_const8u:
3160 case DW_OP_const8s:
3161 size += 8;
3162 break;
3163 case DW_OP_constu:
3164 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3165 break;
3166 case DW_OP_consts:
3167 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3168 break;
3169 case DW_OP_pick:
3170 size += 1;
3171 break;
3172 case DW_OP_plus_uconst:
3173 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3174 break;
3175 case DW_OP_skip:
3176 case DW_OP_bra:
3177 size += 2;
3178 break;
3179 case DW_OP_breg0:
3180 case DW_OP_breg1:
3181 case DW_OP_breg2:
3182 case DW_OP_breg3:
3183 case DW_OP_breg4:
3184 case DW_OP_breg5:
3185 case DW_OP_breg6:
3186 case DW_OP_breg7:
3187 case DW_OP_breg8:
3188 case DW_OP_breg9:
3189 case DW_OP_breg10:
3190 case DW_OP_breg11:
3191 case DW_OP_breg12:
3192 case DW_OP_breg13:
3193 case DW_OP_breg14:
3194 case DW_OP_breg15:
3195 case DW_OP_breg16:
3196 case DW_OP_breg17:
3197 case DW_OP_breg18:
3198 case DW_OP_breg19:
3199 case DW_OP_breg20:
3200 case DW_OP_breg21:
3201 case DW_OP_breg22:
3202 case DW_OP_breg23:
3203 case DW_OP_breg24:
3204 case DW_OP_breg25:
3205 case DW_OP_breg26:
3206 case DW_OP_breg27:
3207 case DW_OP_breg28:
3208 case DW_OP_breg29:
3209 case DW_OP_breg30:
3210 case DW_OP_breg31:
3211 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3212 break;
3213 case DW_OP_regx:
3214 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3215 break;
3216 case DW_OP_fbreg:
3217 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3218 break;
3219 case DW_OP_bregx:
3220 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3221 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3222 break;
3223 case DW_OP_piece:
3224 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3225 break;
3226 case DW_OP_deref_size:
3227 case DW_OP_xderef_size:
3228 size += 1;
3229 break;
3230 case DW_OP_call2:
3231 size += 2;
3232 break;
3233 case DW_OP_call4:
3234 size += 4;
3235 break;
3236 case DW_OP_call_ref:
3237 size += DWARF2_ADDR_SIZE;
3238 break;
3239 default:
3240 break;
3243 return size;
3246 /* Return the size of a series of location descriptors. */
3248 static unsigned long
3249 size_of_locs (dw_loc_descr_ref loc)
3251 dw_loc_descr_ref l;
3252 unsigned long size;
3254 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3255 field, to avoid writing to a PCH file. */
3256 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3258 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3259 break;
3260 size += size_of_loc_descr (l);
3262 if (! l)
3263 return size;
3265 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3267 l->dw_loc_addr = size;
3268 size += size_of_loc_descr (l);
3271 return size;
3274 /* Output location description stack opcode's operands (if any). */
3276 static void
3277 output_loc_operands (dw_loc_descr_ref loc)
3279 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3280 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3282 switch (loc->dw_loc_opc)
3284 #ifdef DWARF2_DEBUGGING_INFO
3285 case DW_OP_addr:
3286 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3287 break;
3288 case DW_OP_const2u:
3289 case DW_OP_const2s:
3290 dw2_asm_output_data (2, val1->v.val_int, NULL);
3291 break;
3292 case DW_OP_const4u:
3293 case DW_OP_const4s:
3294 dw2_asm_output_data (4, val1->v.val_int, NULL);
3295 break;
3296 case DW_OP_const8u:
3297 case DW_OP_const8s:
3298 gcc_assert (HOST_BITS_PER_LONG >= 64);
3299 dw2_asm_output_data (8, val1->v.val_int, NULL);
3300 break;
3301 case DW_OP_skip:
3302 case DW_OP_bra:
3304 int offset;
3306 gcc_assert (val1->val_class == dw_val_class_loc);
3307 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3309 dw2_asm_output_data (2, offset, NULL);
3311 break;
3312 #else
3313 case DW_OP_addr:
3314 case DW_OP_const2u:
3315 case DW_OP_const2s:
3316 case DW_OP_const4u:
3317 case DW_OP_const4s:
3318 case DW_OP_const8u:
3319 case DW_OP_const8s:
3320 case DW_OP_skip:
3321 case DW_OP_bra:
3322 /* We currently don't make any attempt to make sure these are
3323 aligned properly like we do for the main unwind info, so
3324 don't support emitting things larger than a byte if we're
3325 only doing unwinding. */
3326 gcc_unreachable ();
3327 #endif
3328 case DW_OP_const1u:
3329 case DW_OP_const1s:
3330 dw2_asm_output_data (1, val1->v.val_int, NULL);
3331 break;
3332 case DW_OP_constu:
3333 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3334 break;
3335 case DW_OP_consts:
3336 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3337 break;
3338 case DW_OP_pick:
3339 dw2_asm_output_data (1, val1->v.val_int, NULL);
3340 break;
3341 case DW_OP_plus_uconst:
3342 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3343 break;
3344 case DW_OP_breg0:
3345 case DW_OP_breg1:
3346 case DW_OP_breg2:
3347 case DW_OP_breg3:
3348 case DW_OP_breg4:
3349 case DW_OP_breg5:
3350 case DW_OP_breg6:
3351 case DW_OP_breg7:
3352 case DW_OP_breg8:
3353 case DW_OP_breg9:
3354 case DW_OP_breg10:
3355 case DW_OP_breg11:
3356 case DW_OP_breg12:
3357 case DW_OP_breg13:
3358 case DW_OP_breg14:
3359 case DW_OP_breg15:
3360 case DW_OP_breg16:
3361 case DW_OP_breg17:
3362 case DW_OP_breg18:
3363 case DW_OP_breg19:
3364 case DW_OP_breg20:
3365 case DW_OP_breg21:
3366 case DW_OP_breg22:
3367 case DW_OP_breg23:
3368 case DW_OP_breg24:
3369 case DW_OP_breg25:
3370 case DW_OP_breg26:
3371 case DW_OP_breg27:
3372 case DW_OP_breg28:
3373 case DW_OP_breg29:
3374 case DW_OP_breg30:
3375 case DW_OP_breg31:
3376 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3377 break;
3378 case DW_OP_regx:
3379 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3380 break;
3381 case DW_OP_fbreg:
3382 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3383 break;
3384 case DW_OP_bregx:
3385 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3386 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3387 break;
3388 case DW_OP_piece:
3389 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3390 break;
3391 case DW_OP_deref_size:
3392 case DW_OP_xderef_size:
3393 dw2_asm_output_data (1, val1->v.val_int, NULL);
3394 break;
3396 case INTERNAL_DW_OP_tls_addr:
3397 if (targetm.asm_out.output_dwarf_dtprel)
3399 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3400 DWARF2_ADDR_SIZE,
3401 val1->v.val_addr);
3402 fputc ('\n', asm_out_file);
3404 else
3405 gcc_unreachable ();
3406 break;
3408 default:
3409 /* Other codes have no operands. */
3410 break;
3414 /* Output a sequence of location operations. */
3416 static void
3417 output_loc_sequence (dw_loc_descr_ref loc)
3419 for (; loc != NULL; loc = loc->dw_loc_next)
3421 /* Output the opcode. */
3422 dw2_asm_output_data (1, loc->dw_loc_opc,
3423 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3425 /* Output the operand(s) (if any). */
3426 output_loc_operands (loc);
3430 /* This routine will generate the correct assembly data for a location
3431 description based on a cfi entry with a complex address. */
3433 static void
3434 output_cfa_loc (dw_cfi_ref cfi)
3436 dw_loc_descr_ref loc;
3437 unsigned long size;
3439 /* Output the size of the block. */
3440 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3441 size = size_of_locs (loc);
3442 dw2_asm_output_data_uleb128 (size, NULL);
3444 /* Now output the operations themselves. */
3445 output_loc_sequence (loc);
3448 /* This function builds a dwarf location descriptor sequence from a
3449 dw_cfa_location, adding the given OFFSET to the result of the
3450 expression. */
3452 static struct dw_loc_descr_struct *
3453 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3455 struct dw_loc_descr_struct *head, *tmp;
3457 offset += cfa->offset;
3459 if (cfa->indirect)
3461 if (cfa->base_offset)
3463 if (cfa->reg <= 31)
3464 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3465 else
3466 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3468 else if (cfa->reg <= 31)
3469 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3470 else
3471 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3473 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3474 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3475 add_loc_descr (&head, tmp);
3476 if (offset != 0)
3478 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3479 add_loc_descr (&head, tmp);
3482 else
3484 if (offset == 0)
3485 if (cfa->reg <= 31)
3486 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3487 else
3488 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3489 else if (cfa->reg <= 31)
3490 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3491 else
3492 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3495 return head;
3498 /* This function fills in aa dw_cfa_location structure from a dwarf location
3499 descriptor sequence. */
3501 static void
3502 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3504 struct dw_loc_descr_struct *ptr;
3505 cfa->offset = 0;
3506 cfa->base_offset = 0;
3507 cfa->indirect = 0;
3508 cfa->reg = -1;
3510 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3512 enum dwarf_location_atom op = ptr->dw_loc_opc;
3514 switch (op)
3516 case DW_OP_reg0:
3517 case DW_OP_reg1:
3518 case DW_OP_reg2:
3519 case DW_OP_reg3:
3520 case DW_OP_reg4:
3521 case DW_OP_reg5:
3522 case DW_OP_reg6:
3523 case DW_OP_reg7:
3524 case DW_OP_reg8:
3525 case DW_OP_reg9:
3526 case DW_OP_reg10:
3527 case DW_OP_reg11:
3528 case DW_OP_reg12:
3529 case DW_OP_reg13:
3530 case DW_OP_reg14:
3531 case DW_OP_reg15:
3532 case DW_OP_reg16:
3533 case DW_OP_reg17:
3534 case DW_OP_reg18:
3535 case DW_OP_reg19:
3536 case DW_OP_reg20:
3537 case DW_OP_reg21:
3538 case DW_OP_reg22:
3539 case DW_OP_reg23:
3540 case DW_OP_reg24:
3541 case DW_OP_reg25:
3542 case DW_OP_reg26:
3543 case DW_OP_reg27:
3544 case DW_OP_reg28:
3545 case DW_OP_reg29:
3546 case DW_OP_reg30:
3547 case DW_OP_reg31:
3548 cfa->reg = op - DW_OP_reg0;
3549 break;
3550 case DW_OP_regx:
3551 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3552 break;
3553 case DW_OP_breg0:
3554 case DW_OP_breg1:
3555 case DW_OP_breg2:
3556 case DW_OP_breg3:
3557 case DW_OP_breg4:
3558 case DW_OP_breg5:
3559 case DW_OP_breg6:
3560 case DW_OP_breg7:
3561 case DW_OP_breg8:
3562 case DW_OP_breg9:
3563 case DW_OP_breg10:
3564 case DW_OP_breg11:
3565 case DW_OP_breg12:
3566 case DW_OP_breg13:
3567 case DW_OP_breg14:
3568 case DW_OP_breg15:
3569 case DW_OP_breg16:
3570 case DW_OP_breg17:
3571 case DW_OP_breg18:
3572 case DW_OP_breg19:
3573 case DW_OP_breg20:
3574 case DW_OP_breg21:
3575 case DW_OP_breg22:
3576 case DW_OP_breg23:
3577 case DW_OP_breg24:
3578 case DW_OP_breg25:
3579 case DW_OP_breg26:
3580 case DW_OP_breg27:
3581 case DW_OP_breg28:
3582 case DW_OP_breg29:
3583 case DW_OP_breg30:
3584 case DW_OP_breg31:
3585 cfa->reg = op - DW_OP_breg0;
3586 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3587 break;
3588 case DW_OP_bregx:
3589 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3590 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3591 break;
3592 case DW_OP_deref:
3593 cfa->indirect = 1;
3594 break;
3595 case DW_OP_plus_uconst:
3596 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3597 break;
3598 default:
3599 internal_error ("DW_LOC_OP %s not implemented",
3600 dwarf_stack_op_name (ptr->dw_loc_opc));
3604 #endif /* .debug_frame support */
3606 /* And now, the support for symbolic debugging information. */
3607 #ifdef DWARF2_DEBUGGING_INFO
3609 /* .debug_str support. */
3610 static int output_indirect_string (void **, void *);
3612 static void dwarf2out_init (const char *);
3613 static void dwarf2out_finish (const char *);
3614 static void dwarf2out_define (unsigned int, const char *);
3615 static void dwarf2out_undef (unsigned int, const char *);
3616 static void dwarf2out_start_source_file (unsigned, const char *);
3617 static void dwarf2out_end_source_file (unsigned);
3618 static void dwarf2out_begin_block (unsigned, unsigned);
3619 static void dwarf2out_end_block (unsigned, unsigned);
3620 static bool dwarf2out_ignore_block (tree);
3621 static void dwarf2out_global_decl (tree);
3622 static void dwarf2out_type_decl (tree, int);
3623 static void dwarf2out_imported_module_or_decl (tree, tree);
3624 static void dwarf2out_abstract_function (tree);
3625 static void dwarf2out_var_location (rtx);
3626 static void dwarf2out_begin_function (tree);
3627 static void dwarf2out_switch_text_section (void);
3629 /* The debug hooks structure. */
3631 const struct gcc_debug_hooks dwarf2_debug_hooks =
3633 dwarf2out_init,
3634 dwarf2out_finish,
3635 dwarf2out_define,
3636 dwarf2out_undef,
3637 dwarf2out_start_source_file,
3638 dwarf2out_end_source_file,
3639 dwarf2out_begin_block,
3640 dwarf2out_end_block,
3641 dwarf2out_ignore_block,
3642 dwarf2out_source_line,
3643 dwarf2out_begin_prologue,
3644 debug_nothing_int_charstar, /* end_prologue */
3645 dwarf2out_end_epilogue,
3646 dwarf2out_begin_function,
3647 debug_nothing_int, /* end_function */
3648 dwarf2out_decl, /* function_decl */
3649 dwarf2out_global_decl,
3650 dwarf2out_type_decl, /* type_decl */
3651 dwarf2out_imported_module_or_decl,
3652 debug_nothing_tree, /* deferred_inline_function */
3653 /* The DWARF 2 backend tries to reduce debugging bloat by not
3654 emitting the abstract description of inline functions until
3655 something tries to reference them. */
3656 dwarf2out_abstract_function, /* outlining_inline_function */
3657 debug_nothing_rtx, /* label */
3658 debug_nothing_int, /* handle_pch */
3659 dwarf2out_var_location,
3660 dwarf2out_switch_text_section,
3661 1 /* start_end_main_source_file */
3663 #endif
3665 /* NOTE: In the comments in this file, many references are made to
3666 "Debugging Information Entries". This term is abbreviated as `DIE'
3667 throughout the remainder of this file. */
3669 /* An internal representation of the DWARF output is built, and then
3670 walked to generate the DWARF debugging info. The walk of the internal
3671 representation is done after the entire program has been compiled.
3672 The types below are used to describe the internal representation. */
3674 /* Various DIE's use offsets relative to the beginning of the
3675 .debug_info section to refer to each other. */
3677 typedef long int dw_offset;
3679 /* Define typedefs here to avoid circular dependencies. */
3681 typedef struct dw_attr_struct *dw_attr_ref;
3682 typedef struct dw_line_info_struct *dw_line_info_ref;
3683 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3684 typedef struct pubname_struct *pubname_ref;
3685 typedef struct dw_ranges_struct *dw_ranges_ref;
3687 /* Each entry in the line_info_table maintains the file and
3688 line number associated with the label generated for that
3689 entry. The label gives the PC value associated with
3690 the line number entry. */
3692 typedef struct dw_line_info_struct GTY(())
3694 unsigned long dw_file_num;
3695 unsigned long dw_line_num;
3697 dw_line_info_entry;
3699 /* Line information for functions in separate sections; each one gets its
3700 own sequence. */
3701 typedef struct dw_separate_line_info_struct GTY(())
3703 unsigned long dw_file_num;
3704 unsigned long dw_line_num;
3705 unsigned long function;
3707 dw_separate_line_info_entry;
3709 /* Each DIE attribute has a field specifying the attribute kind,
3710 a link to the next attribute in the chain, and an attribute value.
3711 Attributes are typically linked below the DIE they modify. */
3713 typedef struct dw_attr_struct GTY(())
3715 enum dwarf_attribute dw_attr;
3716 dw_val_node dw_attr_val;
3718 dw_attr_node;
3720 DEF_VEC_O(dw_attr_node);
3721 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3723 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3724 The children of each node form a circular list linked by
3725 die_sib. die_child points to the node *before* the "first" child node. */
3727 typedef struct die_struct GTY(())
3729 enum dwarf_tag die_tag;
3730 char *die_symbol;
3731 VEC(dw_attr_node,gc) * die_attr;
3732 dw_die_ref die_parent;
3733 dw_die_ref die_child;
3734 dw_die_ref die_sib;
3735 dw_die_ref die_definition; /* ref from a specification to its definition */
3736 dw_offset die_offset;
3737 unsigned long die_abbrev;
3738 int die_mark;
3739 /* Die is used and must not be pruned as unused. */
3740 int die_perennial_p;
3741 unsigned int decl_id;
3743 die_node;
3745 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3746 #define FOR_EACH_CHILD(die, c, expr) do { \
3747 c = die->die_child; \
3748 if (c) do { \
3749 c = c->die_sib; \
3750 expr; \
3751 } while (c != die->die_child); \
3752 } while (0)
3754 /* The pubname structure */
3756 typedef struct pubname_struct GTY(())
3758 dw_die_ref die;
3759 const char *name;
3761 pubname_entry;
3763 DEF_VEC_O(pubname_entry);
3764 DEF_VEC_ALLOC_O(pubname_entry, gc);
3766 struct dw_ranges_struct GTY(())
3768 int block_num;
3771 /* The limbo die list structure. */
3772 typedef struct limbo_die_struct GTY(())
3774 dw_die_ref die;
3775 tree created_for;
3776 struct limbo_die_struct *next;
3778 limbo_die_node;
3780 /* How to start an assembler comment. */
3781 #ifndef ASM_COMMENT_START
3782 #define ASM_COMMENT_START ";#"
3783 #endif
3785 /* Define a macro which returns nonzero for a TYPE_DECL which was
3786 implicitly generated for a tagged type.
3788 Note that unlike the gcc front end (which generates a NULL named
3789 TYPE_DECL node for each complete tagged type, each array type, and
3790 each function type node created) the g++ front end generates a
3791 _named_ TYPE_DECL node for each tagged type node created.
3792 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3793 generate a DW_TAG_typedef DIE for them. */
3795 #define TYPE_DECL_IS_STUB(decl) \
3796 (DECL_NAME (decl) == NULL_TREE \
3797 || (DECL_ARTIFICIAL (decl) \
3798 && is_tagged_type (TREE_TYPE (decl)) \
3799 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3800 /* This is necessary for stub decls that \
3801 appear in nested inline functions. */ \
3802 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3803 && (decl_ultimate_origin (decl) \
3804 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3806 /* Information concerning the compilation unit's programming
3807 language, and compiler version. */
3809 /* Fixed size portion of the DWARF compilation unit header. */
3810 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3811 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3813 /* Fixed size portion of public names info. */
3814 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3816 /* Fixed size portion of the address range info. */
3817 #define DWARF_ARANGES_HEADER_SIZE \
3818 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3819 DWARF2_ADDR_SIZE * 2) \
3820 - DWARF_INITIAL_LENGTH_SIZE)
3822 /* Size of padding portion in the address range info. It must be
3823 aligned to twice the pointer size. */
3824 #define DWARF_ARANGES_PAD_SIZE \
3825 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3826 DWARF2_ADDR_SIZE * 2) \
3827 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3829 /* Use assembler line directives if available. */
3830 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3831 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3832 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3833 #else
3834 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3835 #endif
3836 #endif
3838 /* Minimum line offset in a special line info. opcode.
3839 This value was chosen to give a reasonable range of values. */
3840 #define DWARF_LINE_BASE -10
3842 /* First special line opcode - leave room for the standard opcodes. */
3843 #define DWARF_LINE_OPCODE_BASE 10
3845 /* Range of line offsets in a special line info. opcode. */
3846 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3848 /* Flag that indicates the initial value of the is_stmt_start flag.
3849 In the present implementation, we do not mark any lines as
3850 the beginning of a source statement, because that information
3851 is not made available by the GCC front-end. */
3852 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3854 #ifdef DWARF2_DEBUGGING_INFO
3855 /* This location is used by calc_die_sizes() to keep track
3856 the offset of each DIE within the .debug_info section. */
3857 static unsigned long next_die_offset;
3858 #endif
3860 /* Record the root of the DIE's built for the current compilation unit. */
3861 static GTY(()) dw_die_ref comp_unit_die;
3863 /* A list of DIEs with a NULL parent waiting to be relocated. */
3864 static GTY(()) limbo_die_node *limbo_die_list;
3866 /* Filenames referenced by this compilation unit. */
3867 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3869 /* A hash table of references to DIE's that describe declarations.
3870 The key is a DECL_UID() which is a unique number identifying each decl. */
3871 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3873 /* Node of the variable location list. */
3874 struct var_loc_node GTY ((chain_next ("%h.next")))
3876 rtx GTY (()) var_loc_note;
3877 const char * GTY (()) label;
3878 const char * GTY (()) section_label;
3879 struct var_loc_node * GTY (()) next;
3882 /* Variable location list. */
3883 struct var_loc_list_def GTY (())
3885 struct var_loc_node * GTY (()) first;
3887 /* Do not mark the last element of the chained list because
3888 it is marked through the chain. */
3889 struct var_loc_node * GTY ((skip ("%h"))) last;
3891 /* DECL_UID of the variable decl. */
3892 unsigned int decl_id;
3894 typedef struct var_loc_list_def var_loc_list;
3897 /* Table of decl location linked lists. */
3898 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3900 /* A pointer to the base of a list of references to DIE's that
3901 are uniquely identified by their tag, presence/absence of
3902 children DIE's, and list of attribute/value pairs. */
3903 static GTY((length ("abbrev_die_table_allocated")))
3904 dw_die_ref *abbrev_die_table;
3906 /* Number of elements currently allocated for abbrev_die_table. */
3907 static GTY(()) unsigned abbrev_die_table_allocated;
3909 /* Number of elements in type_die_table currently in use. */
3910 static GTY(()) unsigned abbrev_die_table_in_use;
3912 /* Size (in elements) of increments by which we may expand the
3913 abbrev_die_table. */
3914 #define ABBREV_DIE_TABLE_INCREMENT 256
3916 /* A pointer to the base of a table that contains line information
3917 for each source code line in .text in the compilation unit. */
3918 static GTY((length ("line_info_table_allocated")))
3919 dw_line_info_ref line_info_table;
3921 /* Number of elements currently allocated for line_info_table. */
3922 static GTY(()) unsigned line_info_table_allocated;
3924 /* Number of elements in line_info_table currently in use. */
3925 static GTY(()) unsigned line_info_table_in_use;
3927 /* True if the compilation unit places functions in more than one section. */
3928 static GTY(()) bool have_multiple_function_sections = false;
3930 /* A pointer to the base of a table that contains line information
3931 for each source code line outside of .text in the compilation unit. */
3932 static GTY ((length ("separate_line_info_table_allocated")))
3933 dw_separate_line_info_ref separate_line_info_table;
3935 /* Number of elements currently allocated for separate_line_info_table. */
3936 static GTY(()) unsigned separate_line_info_table_allocated;
3938 /* Number of elements in separate_line_info_table currently in use. */
3939 static GTY(()) unsigned separate_line_info_table_in_use;
3941 /* Size (in elements) of increments by which we may expand the
3942 line_info_table. */
3943 #define LINE_INFO_TABLE_INCREMENT 1024
3945 /* A pointer to the base of a table that contains a list of publicly
3946 accessible names. */
3947 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3949 /* A pointer to the base of a table that contains a list of publicly
3950 accessible types. */
3951 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3953 /* Array of dies for which we should generate .debug_arange info. */
3954 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3956 /* Number of elements currently allocated for arange_table. */
3957 static GTY(()) unsigned arange_table_allocated;
3959 /* Number of elements in arange_table currently in use. */
3960 static GTY(()) unsigned arange_table_in_use;
3962 /* Size (in elements) of increments by which we may expand the
3963 arange_table. */
3964 #define ARANGE_TABLE_INCREMENT 64
3966 /* Array of dies for which we should generate .debug_ranges info. */
3967 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3969 /* Number of elements currently allocated for ranges_table. */
3970 static GTY(()) unsigned ranges_table_allocated;
3972 /* Number of elements in ranges_table currently in use. */
3973 static GTY(()) unsigned ranges_table_in_use;
3975 /* Size (in elements) of increments by which we may expand the
3976 ranges_table. */
3977 #define RANGES_TABLE_INCREMENT 64
3979 /* Whether we have location lists that need outputting */
3980 static GTY(()) bool have_location_lists;
3982 /* Unique label counter. */
3983 static GTY(()) unsigned int loclabel_num;
3985 #ifdef DWARF2_DEBUGGING_INFO
3986 /* Record whether the function being analyzed contains inlined functions. */
3987 static int current_function_has_inlines;
3988 #endif
3989 #if 0 && defined (MIPS_DEBUGGING_INFO)
3990 static int comp_unit_has_inlines;
3991 #endif
3993 /* The last file entry emitted by maybe_emit_file(). */
3994 static GTY(()) struct dwarf_file_data * last_emitted_file;
3996 /* Number of internal labels generated by gen_internal_sym(). */
3997 static GTY(()) int label_num;
3999 /* Cached result of previous call to lookup_filename. */
4000 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4002 #ifdef DWARF2_DEBUGGING_INFO
4004 /* Offset from the "steady-state frame pointer" to the frame base,
4005 within the current function. */
4006 static HOST_WIDE_INT frame_pointer_fb_offset;
4008 /* Forward declarations for functions defined in this file. */
4010 static int is_pseudo_reg (rtx);
4011 static tree type_main_variant (tree);
4012 static int is_tagged_type (tree);
4013 static const char *dwarf_tag_name (unsigned);
4014 static const char *dwarf_attr_name (unsigned);
4015 static const char *dwarf_form_name (unsigned);
4016 static tree decl_ultimate_origin (tree);
4017 static tree block_ultimate_origin (tree);
4018 static tree decl_class_context (tree);
4019 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4020 static inline enum dw_val_class AT_class (dw_attr_ref);
4021 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4022 static inline unsigned AT_flag (dw_attr_ref);
4023 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4024 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4025 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4026 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4027 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4028 unsigned long);
4029 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4030 unsigned int, unsigned char *);
4031 static hashval_t debug_str_do_hash (const void *);
4032 static int debug_str_eq (const void *, const void *);
4033 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4034 static inline const char *AT_string (dw_attr_ref);
4035 static int AT_string_form (dw_attr_ref);
4036 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4037 static void add_AT_specification (dw_die_ref, dw_die_ref);
4038 static inline dw_die_ref AT_ref (dw_attr_ref);
4039 static inline int AT_ref_external (dw_attr_ref);
4040 static inline void set_AT_ref_external (dw_attr_ref, int);
4041 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4042 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4043 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4044 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4045 dw_loc_list_ref);
4046 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4047 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4048 static inline rtx AT_addr (dw_attr_ref);
4049 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4050 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4051 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4053 unsigned HOST_WIDE_INT);
4054 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4055 unsigned long);
4056 static inline const char *AT_lbl (dw_attr_ref);
4057 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4058 static const char *get_AT_low_pc (dw_die_ref);
4059 static const char *get_AT_hi_pc (dw_die_ref);
4060 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4061 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4062 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4063 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4064 static bool is_c_family (void);
4065 static bool is_cxx (void);
4066 static bool is_java (void);
4067 static bool is_fortran (void);
4068 static bool is_ada (void);
4069 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4070 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4071 static void add_child_die (dw_die_ref, dw_die_ref);
4072 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4073 static dw_die_ref lookup_type_die (tree);
4074 static void equate_type_number_to_die (tree, dw_die_ref);
4075 static hashval_t decl_die_table_hash (const void *);
4076 static int decl_die_table_eq (const void *, const void *);
4077 static dw_die_ref lookup_decl_die (tree);
4078 static hashval_t decl_loc_table_hash (const void *);
4079 static int decl_loc_table_eq (const void *, const void *);
4080 static var_loc_list *lookup_decl_loc (tree);
4081 static void equate_decl_number_to_die (tree, dw_die_ref);
4082 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4083 static void print_spaces (FILE *);
4084 static void print_die (dw_die_ref, FILE *);
4085 static void print_dwarf_line_table (FILE *);
4086 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4087 static dw_die_ref pop_compile_unit (dw_die_ref);
4088 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4089 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4090 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4091 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4092 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4093 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4094 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4095 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4096 static void compute_section_prefix (dw_die_ref);
4097 static int is_type_die (dw_die_ref);
4098 static int is_comdat_die (dw_die_ref);
4099 static int is_symbol_die (dw_die_ref);
4100 static void assign_symbol_names (dw_die_ref);
4101 static void break_out_includes (dw_die_ref);
4102 static hashval_t htab_cu_hash (const void *);
4103 static int htab_cu_eq (const void *, const void *);
4104 static void htab_cu_del (void *);
4105 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4106 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4107 static void add_sibling_attributes (dw_die_ref);
4108 static void build_abbrev_table (dw_die_ref);
4109 static void output_location_lists (dw_die_ref);
4110 static int constant_size (long unsigned);
4111 static unsigned long size_of_die (dw_die_ref);
4112 static void calc_die_sizes (dw_die_ref);
4113 static void mark_dies (dw_die_ref);
4114 static void unmark_dies (dw_die_ref);
4115 static void unmark_all_dies (dw_die_ref);
4116 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4117 static unsigned long size_of_aranges (void);
4118 static enum dwarf_form value_format (dw_attr_ref);
4119 static void output_value_format (dw_attr_ref);
4120 static void output_abbrev_section (void);
4121 static void output_die_symbol (dw_die_ref);
4122 static void output_die (dw_die_ref);
4123 static void output_compilation_unit_header (void);
4124 static void output_comp_unit (dw_die_ref, int);
4125 static const char *dwarf2_name (tree, int);
4126 static void add_pubname (tree, dw_die_ref);
4127 static void add_pubtype (tree, dw_die_ref);
4128 static void output_pubnames (VEC (pubname_entry,gc) *);
4129 static void add_arange (tree, dw_die_ref);
4130 static void output_aranges (void);
4131 static unsigned int add_ranges (tree);
4132 static void output_ranges (void);
4133 static void output_line_info (void);
4134 static void output_file_names (void);
4135 static dw_die_ref base_type_die (tree);
4136 static tree root_type (tree);
4137 static int is_base_type (tree);
4138 static bool is_subrange_type (tree);
4139 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4140 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4141 static int type_is_enum (tree);
4142 static unsigned int dbx_reg_number (rtx);
4143 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4144 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4145 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4146 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4147 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4148 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4149 static int is_based_loc (rtx);
4150 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4151 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4152 static dw_loc_descr_ref loc_descriptor (rtx);
4153 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4154 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4155 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4156 static tree field_type (tree);
4157 static unsigned int simple_type_align_in_bits (tree);
4158 static unsigned int simple_decl_align_in_bits (tree);
4159 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4160 static HOST_WIDE_INT field_byte_offset (tree);
4161 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4162 dw_loc_descr_ref);
4163 static void add_data_member_location_attribute (dw_die_ref, tree);
4164 static void add_const_value_attribute (dw_die_ref, rtx);
4165 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4166 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4167 static void insert_float (rtx, unsigned char *);
4168 static rtx rtl_for_decl_location (tree);
4169 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4170 enum dwarf_attribute);
4171 static void tree_add_const_value_attribute (dw_die_ref, tree);
4172 static void add_name_attribute (dw_die_ref, const char *);
4173 static void add_comp_dir_attribute (dw_die_ref);
4174 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4175 static void add_subscript_info (dw_die_ref, tree);
4176 static void add_byte_size_attribute (dw_die_ref, tree);
4177 static void add_bit_offset_attribute (dw_die_ref, tree);
4178 static void add_bit_size_attribute (dw_die_ref, tree);
4179 static void add_prototyped_attribute (dw_die_ref, tree);
4180 static void add_abstract_origin_attribute (dw_die_ref, tree);
4181 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4182 static void add_src_coords_attributes (dw_die_ref, tree);
4183 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4184 static void push_decl_scope (tree);
4185 static void pop_decl_scope (void);
4186 static dw_die_ref scope_die_for (tree, dw_die_ref);
4187 static inline int local_scope_p (dw_die_ref);
4188 static inline int class_or_namespace_scope_p (dw_die_ref);
4189 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4190 static void add_calling_convention_attribute (dw_die_ref, tree);
4191 static const char *type_tag (tree);
4192 static tree member_declared_type (tree);
4193 #if 0
4194 static const char *decl_start_label (tree);
4195 #endif
4196 static void gen_array_type_die (tree, dw_die_ref);
4197 #if 0
4198 static void gen_entry_point_die (tree, dw_die_ref);
4199 #endif
4200 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4201 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4202 static void gen_inlined_union_type_die (tree, dw_die_ref);
4203 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4205 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4206 static void gen_formal_types_die (tree, dw_die_ref);
4207 static void gen_subprogram_die (tree, dw_die_ref);
4208 static void gen_variable_die (tree, dw_die_ref);
4209 static void gen_label_die (tree, dw_die_ref);
4210 static void gen_lexical_block_die (tree, dw_die_ref, int);
4211 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4212 static void gen_field_die (tree, dw_die_ref);
4213 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4214 static dw_die_ref gen_compile_unit_die (const char *);
4215 static void gen_inheritance_die (tree, tree, dw_die_ref);
4216 static void gen_member_die (tree, dw_die_ref);
4217 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4218 static void gen_subroutine_type_die (tree, dw_die_ref);
4219 static void gen_typedef_die (tree, dw_die_ref);
4220 static void gen_type_die (tree, dw_die_ref);
4221 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4222 static void gen_block_die (tree, dw_die_ref, int);
4223 static void decls_for_scope (tree, dw_die_ref, int);
4224 static int is_redundant_typedef (tree);
4225 static void gen_namespace_die (tree);
4226 static void gen_decl_die (tree, dw_die_ref);
4227 static dw_die_ref force_decl_die (tree);
4228 static dw_die_ref force_type_die (tree);
4229 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4230 static void declare_in_namespace (tree, dw_die_ref);
4231 static struct dwarf_file_data * lookup_filename (const char *);
4232 static void retry_incomplete_types (void);
4233 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4234 static void splice_child_die (dw_die_ref, dw_die_ref);
4235 static int file_info_cmp (const void *, const void *);
4236 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4237 const char *, const char *, unsigned);
4238 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4239 const char *, const char *,
4240 const char *);
4241 static void output_loc_list (dw_loc_list_ref);
4242 static char *gen_internal_sym (const char *);
4244 static void prune_unmark_dies (dw_die_ref);
4245 static void prune_unused_types_mark (dw_die_ref, int);
4246 static void prune_unused_types_walk (dw_die_ref);
4247 static void prune_unused_types_walk_attribs (dw_die_ref);
4248 static void prune_unused_types_prune (dw_die_ref);
4249 static void prune_unused_types (void);
4250 static int maybe_emit_file (struct dwarf_file_data *fd);
4252 /* Section names used to hold DWARF debugging information. */
4253 #ifndef DEBUG_INFO_SECTION
4254 #define DEBUG_INFO_SECTION ".debug_info"
4255 #endif
4256 #ifndef DEBUG_ABBREV_SECTION
4257 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4258 #endif
4259 #ifndef DEBUG_ARANGES_SECTION
4260 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4261 #endif
4262 #ifndef DEBUG_MACINFO_SECTION
4263 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4264 #endif
4265 #ifndef DEBUG_LINE_SECTION
4266 #define DEBUG_LINE_SECTION ".debug_line"
4267 #endif
4268 #ifndef DEBUG_LOC_SECTION
4269 #define DEBUG_LOC_SECTION ".debug_loc"
4270 #endif
4271 #ifndef DEBUG_PUBNAMES_SECTION
4272 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4273 #endif
4274 #ifndef DEBUG_STR_SECTION
4275 #define DEBUG_STR_SECTION ".debug_str"
4276 #endif
4277 #ifndef DEBUG_RANGES_SECTION
4278 #define DEBUG_RANGES_SECTION ".debug_ranges"
4279 #endif
4281 /* Standard ELF section names for compiled code and data. */
4282 #ifndef TEXT_SECTION_NAME
4283 #define TEXT_SECTION_NAME ".text"
4284 #endif
4286 /* Section flags for .debug_str section. */
4287 #define DEBUG_STR_SECTION_FLAGS \
4288 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4289 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4290 : SECTION_DEBUG)
4292 /* Labels we insert at beginning sections we can reference instead of
4293 the section names themselves. */
4295 #ifndef TEXT_SECTION_LABEL
4296 #define TEXT_SECTION_LABEL "Ltext"
4297 #endif
4298 #ifndef COLD_TEXT_SECTION_LABEL
4299 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4300 #endif
4301 #ifndef DEBUG_LINE_SECTION_LABEL
4302 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4303 #endif
4304 #ifndef DEBUG_INFO_SECTION_LABEL
4305 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4306 #endif
4307 #ifndef DEBUG_ABBREV_SECTION_LABEL
4308 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4309 #endif
4310 #ifndef DEBUG_LOC_SECTION_LABEL
4311 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4312 #endif
4313 #ifndef DEBUG_RANGES_SECTION_LABEL
4314 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4315 #endif
4316 #ifndef DEBUG_MACINFO_SECTION_LABEL
4317 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4318 #endif
4320 /* Definitions of defaults for formats and names of various special
4321 (artificial) labels which may be generated within this file (when the -g
4322 options is used and DWARF2_DEBUGGING_INFO is in effect.
4323 If necessary, these may be overridden from within the tm.h file, but
4324 typically, overriding these defaults is unnecessary. */
4326 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4327 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337 #ifndef TEXT_END_LABEL
4338 #define TEXT_END_LABEL "Letext"
4339 #endif
4340 #ifndef COLD_END_LABEL
4341 #define COLD_END_LABEL "Letext_cold"
4342 #endif
4343 #ifndef BLOCK_BEGIN_LABEL
4344 #define BLOCK_BEGIN_LABEL "LBB"
4345 #endif
4346 #ifndef BLOCK_END_LABEL
4347 #define BLOCK_END_LABEL "LBE"
4348 #endif
4349 #ifndef LINE_CODE_LABEL
4350 #define LINE_CODE_LABEL "LM"
4351 #endif
4352 #ifndef SEPARATE_LINE_CODE_LABEL
4353 #define SEPARATE_LINE_CODE_LABEL "LSM"
4354 #endif
4356 /* We allow a language front-end to designate a function that is to be
4357 called to "demangle" any name before it is put into a DIE. */
4359 static const char *(*demangle_name_func) (const char *);
4361 void
4362 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364 demangle_name_func = func;
4367 /* Test if rtl node points to a pseudo register. */
4369 static inline int
4370 is_pseudo_reg (rtx rtl)
4372 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4373 || (GET_CODE (rtl) == SUBREG
4374 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4377 /* Return a reference to a type, with its const and volatile qualifiers
4378 removed. */
4380 static inline tree
4381 type_main_variant (tree type)
4383 type = TYPE_MAIN_VARIANT (type);
4385 /* ??? There really should be only one main variant among any group of
4386 variants of a given type (and all of the MAIN_VARIANT values for all
4387 members of the group should point to that one type) but sometimes the C
4388 front-end messes this up for array types, so we work around that bug
4389 here. */
4390 if (TREE_CODE (type) == ARRAY_TYPE)
4391 while (type != TYPE_MAIN_VARIANT (type))
4392 type = TYPE_MAIN_VARIANT (type);
4394 return type;
4397 /* Return nonzero if the given type node represents a tagged type. */
4399 static inline int
4400 is_tagged_type (tree type)
4402 enum tree_code code = TREE_CODE (type);
4404 return (code == RECORD_TYPE || code == UNION_TYPE
4405 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4408 /* Convert a DIE tag into its string name. */
4410 static const char *
4411 dwarf_tag_name (unsigned int tag)
4413 switch (tag)
4415 case DW_TAG_padding:
4416 return "DW_TAG_padding";
4417 case DW_TAG_array_type:
4418 return "DW_TAG_array_type";
4419 case DW_TAG_class_type:
4420 return "DW_TAG_class_type";
4421 case DW_TAG_entry_point:
4422 return "DW_TAG_entry_point";
4423 case DW_TAG_enumeration_type:
4424 return "DW_TAG_enumeration_type";
4425 case DW_TAG_formal_parameter:
4426 return "DW_TAG_formal_parameter";
4427 case DW_TAG_imported_declaration:
4428 return "DW_TAG_imported_declaration";
4429 case DW_TAG_label:
4430 return "DW_TAG_label";
4431 case DW_TAG_lexical_block:
4432 return "DW_TAG_lexical_block";
4433 case DW_TAG_member:
4434 return "DW_TAG_member";
4435 case DW_TAG_pointer_type:
4436 return "DW_TAG_pointer_type";
4437 case DW_TAG_reference_type:
4438 return "DW_TAG_reference_type";
4439 case DW_TAG_compile_unit:
4440 return "DW_TAG_compile_unit";
4441 case DW_TAG_string_type:
4442 return "DW_TAG_string_type";
4443 case DW_TAG_structure_type:
4444 return "DW_TAG_structure_type";
4445 case DW_TAG_subroutine_type:
4446 return "DW_TAG_subroutine_type";
4447 case DW_TAG_typedef:
4448 return "DW_TAG_typedef";
4449 case DW_TAG_union_type:
4450 return "DW_TAG_union_type";
4451 case DW_TAG_unspecified_parameters:
4452 return "DW_TAG_unspecified_parameters";
4453 case DW_TAG_variant:
4454 return "DW_TAG_variant";
4455 case DW_TAG_common_block:
4456 return "DW_TAG_common_block";
4457 case DW_TAG_common_inclusion:
4458 return "DW_TAG_common_inclusion";
4459 case DW_TAG_inheritance:
4460 return "DW_TAG_inheritance";
4461 case DW_TAG_inlined_subroutine:
4462 return "DW_TAG_inlined_subroutine";
4463 case DW_TAG_module:
4464 return "DW_TAG_module";
4465 case DW_TAG_ptr_to_member_type:
4466 return "DW_TAG_ptr_to_member_type";
4467 case DW_TAG_set_type:
4468 return "DW_TAG_set_type";
4469 case DW_TAG_subrange_type:
4470 return "DW_TAG_subrange_type";
4471 case DW_TAG_with_stmt:
4472 return "DW_TAG_with_stmt";
4473 case DW_TAG_access_declaration:
4474 return "DW_TAG_access_declaration";
4475 case DW_TAG_base_type:
4476 return "DW_TAG_base_type";
4477 case DW_TAG_catch_block:
4478 return "DW_TAG_catch_block";
4479 case DW_TAG_const_type:
4480 return "DW_TAG_const_type";
4481 case DW_TAG_constant:
4482 return "DW_TAG_constant";
4483 case DW_TAG_enumerator:
4484 return "DW_TAG_enumerator";
4485 case DW_TAG_file_type:
4486 return "DW_TAG_file_type";
4487 case DW_TAG_friend:
4488 return "DW_TAG_friend";
4489 case DW_TAG_namelist:
4490 return "DW_TAG_namelist";
4491 case DW_TAG_namelist_item:
4492 return "DW_TAG_namelist_item";
4493 case DW_TAG_namespace:
4494 return "DW_TAG_namespace";
4495 case DW_TAG_packed_type:
4496 return "DW_TAG_packed_type";
4497 case DW_TAG_subprogram:
4498 return "DW_TAG_subprogram";
4499 case DW_TAG_template_type_param:
4500 return "DW_TAG_template_type_param";
4501 case DW_TAG_template_value_param:
4502 return "DW_TAG_template_value_param";
4503 case DW_TAG_thrown_type:
4504 return "DW_TAG_thrown_type";
4505 case DW_TAG_try_block:
4506 return "DW_TAG_try_block";
4507 case DW_TAG_variant_part:
4508 return "DW_TAG_variant_part";
4509 case DW_TAG_variable:
4510 return "DW_TAG_variable";
4511 case DW_TAG_volatile_type:
4512 return "DW_TAG_volatile_type";
4513 case DW_TAG_imported_module:
4514 return "DW_TAG_imported_module";
4515 case DW_TAG_MIPS_loop:
4516 return "DW_TAG_MIPS_loop";
4517 case DW_TAG_format_label:
4518 return "DW_TAG_format_label";
4519 case DW_TAG_function_template:
4520 return "DW_TAG_function_template";
4521 case DW_TAG_class_template:
4522 return "DW_TAG_class_template";
4523 case DW_TAG_GNU_BINCL:
4524 return "DW_TAG_GNU_BINCL";
4525 case DW_TAG_GNU_EINCL:
4526 return "DW_TAG_GNU_EINCL";
4527 default:
4528 return "DW_TAG_<unknown>";
4532 /* Convert a DWARF attribute code into its string name. */
4534 static const char *
4535 dwarf_attr_name (unsigned int attr)
4537 switch (attr)
4539 case DW_AT_sibling:
4540 return "DW_AT_sibling";
4541 case DW_AT_location:
4542 return "DW_AT_location";
4543 case DW_AT_name:
4544 return "DW_AT_name";
4545 case DW_AT_ordering:
4546 return "DW_AT_ordering";
4547 case DW_AT_subscr_data:
4548 return "DW_AT_subscr_data";
4549 case DW_AT_byte_size:
4550 return "DW_AT_byte_size";
4551 case DW_AT_bit_offset:
4552 return "DW_AT_bit_offset";
4553 case DW_AT_bit_size:
4554 return "DW_AT_bit_size";
4555 case DW_AT_element_list:
4556 return "DW_AT_element_list";
4557 case DW_AT_stmt_list:
4558 return "DW_AT_stmt_list";
4559 case DW_AT_low_pc:
4560 return "DW_AT_low_pc";
4561 case DW_AT_high_pc:
4562 return "DW_AT_high_pc";
4563 case DW_AT_language:
4564 return "DW_AT_language";
4565 case DW_AT_member:
4566 return "DW_AT_member";
4567 case DW_AT_discr:
4568 return "DW_AT_discr";
4569 case DW_AT_discr_value:
4570 return "DW_AT_discr_value";
4571 case DW_AT_visibility:
4572 return "DW_AT_visibility";
4573 case DW_AT_import:
4574 return "DW_AT_import";
4575 case DW_AT_string_length:
4576 return "DW_AT_string_length";
4577 case DW_AT_common_reference:
4578 return "DW_AT_common_reference";
4579 case DW_AT_comp_dir:
4580 return "DW_AT_comp_dir";
4581 case DW_AT_const_value:
4582 return "DW_AT_const_value";
4583 case DW_AT_containing_type:
4584 return "DW_AT_containing_type";
4585 case DW_AT_default_value:
4586 return "DW_AT_default_value";
4587 case DW_AT_inline:
4588 return "DW_AT_inline";
4589 case DW_AT_is_optional:
4590 return "DW_AT_is_optional";
4591 case DW_AT_lower_bound:
4592 return "DW_AT_lower_bound";
4593 case DW_AT_producer:
4594 return "DW_AT_producer";
4595 case DW_AT_prototyped:
4596 return "DW_AT_prototyped";
4597 case DW_AT_return_addr:
4598 return "DW_AT_return_addr";
4599 case DW_AT_start_scope:
4600 return "DW_AT_start_scope";
4601 case DW_AT_stride_size:
4602 return "DW_AT_stride_size";
4603 case DW_AT_upper_bound:
4604 return "DW_AT_upper_bound";
4605 case DW_AT_abstract_origin:
4606 return "DW_AT_abstract_origin";
4607 case DW_AT_accessibility:
4608 return "DW_AT_accessibility";
4609 case DW_AT_address_class:
4610 return "DW_AT_address_class";
4611 case DW_AT_artificial:
4612 return "DW_AT_artificial";
4613 case DW_AT_base_types:
4614 return "DW_AT_base_types";
4615 case DW_AT_calling_convention:
4616 return "DW_AT_calling_convention";
4617 case DW_AT_count:
4618 return "DW_AT_count";
4619 case DW_AT_data_member_location:
4620 return "DW_AT_data_member_location";
4621 case DW_AT_decl_column:
4622 return "DW_AT_decl_column";
4623 case DW_AT_decl_file:
4624 return "DW_AT_decl_file";
4625 case DW_AT_decl_line:
4626 return "DW_AT_decl_line";
4627 case DW_AT_declaration:
4628 return "DW_AT_declaration";
4629 case DW_AT_discr_list:
4630 return "DW_AT_discr_list";
4631 case DW_AT_encoding:
4632 return "DW_AT_encoding";
4633 case DW_AT_external:
4634 return "DW_AT_external";
4635 case DW_AT_frame_base:
4636 return "DW_AT_frame_base";
4637 case DW_AT_friend:
4638 return "DW_AT_friend";
4639 case DW_AT_identifier_case:
4640 return "DW_AT_identifier_case";
4641 case DW_AT_macro_info:
4642 return "DW_AT_macro_info";
4643 case DW_AT_namelist_items:
4644 return "DW_AT_namelist_items";
4645 case DW_AT_priority:
4646 return "DW_AT_priority";
4647 case DW_AT_segment:
4648 return "DW_AT_segment";
4649 case DW_AT_specification:
4650 return "DW_AT_specification";
4651 case DW_AT_static_link:
4652 return "DW_AT_static_link";
4653 case DW_AT_type:
4654 return "DW_AT_type";
4655 case DW_AT_use_location:
4656 return "DW_AT_use_location";
4657 case DW_AT_variable_parameter:
4658 return "DW_AT_variable_parameter";
4659 case DW_AT_virtuality:
4660 return "DW_AT_virtuality";
4661 case DW_AT_vtable_elem_location:
4662 return "DW_AT_vtable_elem_location";
4664 case DW_AT_allocated:
4665 return "DW_AT_allocated";
4666 case DW_AT_associated:
4667 return "DW_AT_associated";
4668 case DW_AT_data_location:
4669 return "DW_AT_data_location";
4670 case DW_AT_stride:
4671 return "DW_AT_stride";
4672 case DW_AT_entry_pc:
4673 return "DW_AT_entry_pc";
4674 case DW_AT_use_UTF8:
4675 return "DW_AT_use_UTF8";
4676 case DW_AT_extension:
4677 return "DW_AT_extension";
4678 case DW_AT_ranges:
4679 return "DW_AT_ranges";
4680 case DW_AT_trampoline:
4681 return "DW_AT_trampoline";
4682 case DW_AT_call_column:
4683 return "DW_AT_call_column";
4684 case DW_AT_call_file:
4685 return "DW_AT_call_file";
4686 case DW_AT_call_line:
4687 return "DW_AT_call_line";
4689 case DW_AT_MIPS_fde:
4690 return "DW_AT_MIPS_fde";
4691 case DW_AT_MIPS_loop_begin:
4692 return "DW_AT_MIPS_loop_begin";
4693 case DW_AT_MIPS_tail_loop_begin:
4694 return "DW_AT_MIPS_tail_loop_begin";
4695 case DW_AT_MIPS_epilog_begin:
4696 return "DW_AT_MIPS_epilog_begin";
4697 case DW_AT_MIPS_loop_unroll_factor:
4698 return "DW_AT_MIPS_loop_unroll_factor";
4699 case DW_AT_MIPS_software_pipeline_depth:
4700 return "DW_AT_MIPS_software_pipeline_depth";
4701 case DW_AT_MIPS_linkage_name:
4702 return "DW_AT_MIPS_linkage_name";
4703 case DW_AT_MIPS_stride:
4704 return "DW_AT_MIPS_stride";
4705 case DW_AT_MIPS_abstract_name:
4706 return "DW_AT_MIPS_abstract_name";
4707 case DW_AT_MIPS_clone_origin:
4708 return "DW_AT_MIPS_clone_origin";
4709 case DW_AT_MIPS_has_inlines:
4710 return "DW_AT_MIPS_has_inlines";
4712 case DW_AT_sf_names:
4713 return "DW_AT_sf_names";
4714 case DW_AT_src_info:
4715 return "DW_AT_src_info";
4716 case DW_AT_mac_info:
4717 return "DW_AT_mac_info";
4718 case DW_AT_src_coords:
4719 return "DW_AT_src_coords";
4720 case DW_AT_body_begin:
4721 return "DW_AT_body_begin";
4722 case DW_AT_body_end:
4723 return "DW_AT_body_end";
4724 case DW_AT_GNU_vector:
4725 return "DW_AT_GNU_vector";
4727 case DW_AT_VMS_rtnbeg_pd_address:
4728 return "DW_AT_VMS_rtnbeg_pd_address";
4730 default:
4731 return "DW_AT_<unknown>";
4735 /* Convert a DWARF value form code into its string name. */
4737 static const char *
4738 dwarf_form_name (unsigned int form)
4740 switch (form)
4742 case DW_FORM_addr:
4743 return "DW_FORM_addr";
4744 case DW_FORM_block2:
4745 return "DW_FORM_block2";
4746 case DW_FORM_block4:
4747 return "DW_FORM_block4";
4748 case DW_FORM_data2:
4749 return "DW_FORM_data2";
4750 case DW_FORM_data4:
4751 return "DW_FORM_data4";
4752 case DW_FORM_data8:
4753 return "DW_FORM_data8";
4754 case DW_FORM_string:
4755 return "DW_FORM_string";
4756 case DW_FORM_block:
4757 return "DW_FORM_block";
4758 case DW_FORM_block1:
4759 return "DW_FORM_block1";
4760 case DW_FORM_data1:
4761 return "DW_FORM_data1";
4762 case DW_FORM_flag:
4763 return "DW_FORM_flag";
4764 case DW_FORM_sdata:
4765 return "DW_FORM_sdata";
4766 case DW_FORM_strp:
4767 return "DW_FORM_strp";
4768 case DW_FORM_udata:
4769 return "DW_FORM_udata";
4770 case DW_FORM_ref_addr:
4771 return "DW_FORM_ref_addr";
4772 case DW_FORM_ref1:
4773 return "DW_FORM_ref1";
4774 case DW_FORM_ref2:
4775 return "DW_FORM_ref2";
4776 case DW_FORM_ref4:
4777 return "DW_FORM_ref4";
4778 case DW_FORM_ref8:
4779 return "DW_FORM_ref8";
4780 case DW_FORM_ref_udata:
4781 return "DW_FORM_ref_udata";
4782 case DW_FORM_indirect:
4783 return "DW_FORM_indirect";
4784 default:
4785 return "DW_FORM_<unknown>";
4789 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4790 instance of an inlined instance of a decl which is local to an inline
4791 function, so we have to trace all of the way back through the origin chain
4792 to find out what sort of node actually served as the original seed for the
4793 given block. */
4795 static tree
4796 decl_ultimate_origin (tree decl)
4798 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4799 return NULL_TREE;
4801 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4802 nodes in the function to point to themselves; ignore that if
4803 we're trying to output the abstract instance of this function. */
4804 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4805 return NULL_TREE;
4807 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4808 most distant ancestor, this should never happen. */
4809 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811 return DECL_ABSTRACT_ORIGIN (decl);
4814 /* Determine the "ultimate origin" of a block. The block may be an inlined
4815 instance of an inlined instance of a block which is local to an inline
4816 function, so we have to trace all of the way back through the origin chain
4817 to find out what sort of node actually served as the original seed for the
4818 given block. */
4820 static tree
4821 block_ultimate_origin (tree block)
4823 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4826 nodes in the function to point to themselves; ignore that if
4827 we're trying to output the abstract instance of this function. */
4828 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4829 return NULL_TREE;
4831 if (immediate_origin == NULL_TREE)
4832 return NULL_TREE;
4833 else
4835 tree ret_val;
4836 tree lookahead = immediate_origin;
4840 ret_val = lookahead;
4841 lookahead = (TREE_CODE (ret_val) == BLOCK
4842 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844 while (lookahead != NULL && lookahead != ret_val);
4846 /* The block's abstract origin chain may not be the *ultimate* origin of
4847 the block. It could lead to a DECL that has an abstract origin set.
4848 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4849 will give us if it has one). Note that DECL's abstract origins are
4850 supposed to be the most distant ancestor (or so decl_ultimate_origin
4851 claims), so we don't need to loop following the DECL origins. */
4852 if (DECL_P (ret_val))
4853 return DECL_ORIGIN (ret_val);
4855 return ret_val;
4859 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4860 of a virtual function may refer to a base class, so we check the 'this'
4861 parameter. */
4863 static tree
4864 decl_class_context (tree decl)
4866 tree context = NULL_TREE;
4868 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4869 context = DECL_CONTEXT (decl);
4870 else
4871 context = TYPE_MAIN_VARIANT
4872 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874 if (context && !TYPE_P (context))
4875 context = NULL_TREE;
4877 return context;
4880 /* Add an attribute/value pair to a DIE. */
4882 static inline void
4883 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885 /* Maybe this should be an assert? */
4886 if (die == NULL)
4887 return;
4889 if (die->die_attr == NULL)
4890 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4891 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4894 static inline enum dw_val_class
4895 AT_class (dw_attr_ref a)
4897 return a->dw_attr_val.val_class;
4900 /* Add a flag value attribute to a DIE. */
4902 static inline void
4903 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905 dw_attr_node attr;
4907 attr.dw_attr = attr_kind;
4908 attr.dw_attr_val.val_class = dw_val_class_flag;
4909 attr.dw_attr_val.v.val_flag = flag;
4910 add_dwarf_attr (die, &attr);
4913 static inline unsigned
4914 AT_flag (dw_attr_ref a)
4916 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4917 return a->dw_attr_val.v.val_flag;
4920 /* Add a signed integer attribute value to a DIE. */
4922 static inline void
4923 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925 dw_attr_node attr;
4927 attr.dw_attr = attr_kind;
4928 attr.dw_attr_val.val_class = dw_val_class_const;
4929 attr.dw_attr_val.v.val_int = int_val;
4930 add_dwarf_attr (die, &attr);
4933 static inline HOST_WIDE_INT
4934 AT_int (dw_attr_ref a)
4936 gcc_assert (a && AT_class (a) == dw_val_class_const);
4937 return a->dw_attr_val.v.val_int;
4940 /* Add an unsigned integer attribute value to a DIE. */
4942 static inline void
4943 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4944 unsigned HOST_WIDE_INT unsigned_val)
4946 dw_attr_node attr;
4948 attr.dw_attr = attr_kind;
4949 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4950 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4951 add_dwarf_attr (die, &attr);
4954 static inline unsigned HOST_WIDE_INT
4955 AT_unsigned (dw_attr_ref a)
4957 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4958 return a->dw_attr_val.v.val_unsigned;
4961 /* Add an unsigned double integer attribute value to a DIE. */
4963 static inline void
4964 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4965 long unsigned int val_hi, long unsigned int val_low)
4967 dw_attr_node attr;
4969 attr.dw_attr = attr_kind;
4970 attr.dw_attr_val.val_class = dw_val_class_long_long;
4971 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4972 attr.dw_attr_val.v.val_long_long.low = val_low;
4973 add_dwarf_attr (die, &attr);
4976 /* Add a floating point attribute value to a DIE and return it. */
4978 static inline void
4979 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4980 unsigned int length, unsigned int elt_size, unsigned char *array)
4982 dw_attr_node attr;
4984 attr.dw_attr = attr_kind;
4985 attr.dw_attr_val.val_class = dw_val_class_vec;
4986 attr.dw_attr_val.v.val_vec.length = length;
4987 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4988 attr.dw_attr_val.v.val_vec.array = array;
4989 add_dwarf_attr (die, &attr);
4992 /* Hash and equality functions for debug_str_hash. */
4994 static hashval_t
4995 debug_str_do_hash (const void *x)
4997 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5000 static int
5001 debug_str_eq (const void *x1, const void *x2)
5003 return strcmp ((((const struct indirect_string_node *)x1)->str),
5004 (const char *)x2) == 0;
5007 /* Add a string attribute value to a DIE. */
5009 static inline void
5010 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012 dw_attr_node attr;
5013 struct indirect_string_node *node;
5014 void **slot;
5016 if (! debug_str_hash)
5017 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5018 debug_str_eq, NULL);
5020 slot = htab_find_slot_with_hash (debug_str_hash, str,
5021 htab_hash_string (str), INSERT);
5022 if (*slot == NULL)
5023 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5024 node = (struct indirect_string_node *) *slot;
5025 node->str = ggc_strdup (str);
5026 node->refcount++;
5028 attr.dw_attr = attr_kind;
5029 attr.dw_attr_val.val_class = dw_val_class_str;
5030 attr.dw_attr_val.v.val_str = node;
5031 add_dwarf_attr (die, &attr);
5034 static inline const char *
5035 AT_string (dw_attr_ref a)
5037 gcc_assert (a && AT_class (a) == dw_val_class_str);
5038 return a->dw_attr_val.v.val_str->str;
5041 /* Find out whether a string should be output inline in DIE
5042 or out-of-line in .debug_str section. */
5044 static int
5045 AT_string_form (dw_attr_ref a)
5047 struct indirect_string_node *node;
5048 unsigned int len;
5049 char label[32];
5051 gcc_assert (a && AT_class (a) == dw_val_class_str);
5053 node = a->dw_attr_val.v.val_str;
5054 if (node->form)
5055 return node->form;
5057 len = strlen (node->str) + 1;
5059 /* If the string is shorter or equal to the size of the reference, it is
5060 always better to put it inline. */
5061 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5062 return node->form = DW_FORM_string;
5064 /* If we cannot expect the linker to merge strings in .debug_str
5065 section, only put it into .debug_str if it is worth even in this
5066 single module. */
5067 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5068 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5069 return node->form = DW_FORM_string;
5071 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5072 ++dw2_string_counter;
5073 node->label = xstrdup (label);
5075 return node->form = DW_FORM_strp;
5078 /* Add a DIE reference attribute value to a DIE. */
5080 static inline void
5081 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083 dw_attr_node attr;
5085 attr.dw_attr = attr_kind;
5086 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5087 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5088 attr.dw_attr_val.v.val_die_ref.external = 0;
5089 add_dwarf_attr (die, &attr);
5092 /* Add an AT_specification attribute to a DIE, and also make the back
5093 pointer from the specification to the definition. */
5095 static inline void
5096 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098 add_AT_die_ref (die, DW_AT_specification, targ_die);
5099 gcc_assert (!targ_die->die_definition);
5100 targ_die->die_definition = die;
5103 static inline dw_die_ref
5104 AT_ref (dw_attr_ref a)
5106 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5107 return a->dw_attr_val.v.val_die_ref.die;
5110 static inline int
5111 AT_ref_external (dw_attr_ref a)
5113 if (a && AT_class (a) == dw_val_class_die_ref)
5114 return a->dw_attr_val.v.val_die_ref.external;
5116 return 0;
5119 static inline void
5120 set_AT_ref_external (dw_attr_ref a, int i)
5122 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5123 a->dw_attr_val.v.val_die_ref.external = i;
5126 /* Add an FDE reference attribute value to a DIE. */
5128 static inline void
5129 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131 dw_attr_node attr;
5133 attr.dw_attr = attr_kind;
5134 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5135 attr.dw_attr_val.v.val_fde_index = targ_fde;
5136 add_dwarf_attr (die, &attr);
5139 /* Add a location description attribute value to a DIE. */
5141 static inline void
5142 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144 dw_attr_node attr;
5146 attr.dw_attr = attr_kind;
5147 attr.dw_attr_val.val_class = dw_val_class_loc;
5148 attr.dw_attr_val.v.val_loc = loc;
5149 add_dwarf_attr (die, &attr);
5152 static inline dw_loc_descr_ref
5153 AT_loc (dw_attr_ref a)
5155 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5156 return a->dw_attr_val.v.val_loc;
5159 static inline void
5160 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162 dw_attr_node attr;
5164 attr.dw_attr = attr_kind;
5165 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5166 attr.dw_attr_val.v.val_loc_list = loc_list;
5167 add_dwarf_attr (die, &attr);
5168 have_location_lists = true;
5171 static inline dw_loc_list_ref
5172 AT_loc_list (dw_attr_ref a)
5174 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5175 return a->dw_attr_val.v.val_loc_list;
5178 /* Add an address constant attribute value to a DIE. */
5180 static inline void
5181 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183 dw_attr_node attr;
5185 attr.dw_attr = attr_kind;
5186 attr.dw_attr_val.val_class = dw_val_class_addr;
5187 attr.dw_attr_val.v.val_addr = addr;
5188 add_dwarf_attr (die, &attr);
5191 /* Get the RTX from to an address DIE attribute. */
5193 static inline rtx
5194 AT_addr (dw_attr_ref a)
5196 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5197 return a->dw_attr_val.v.val_addr;
5200 /* Add a file attribute value to a DIE. */
5202 static inline void
5203 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5204 struct dwarf_file_data *fd)
5206 dw_attr_node attr;
5208 attr.dw_attr = attr_kind;
5209 attr.dw_attr_val.val_class = dw_val_class_file;
5210 attr.dw_attr_val.v.val_file = fd;
5211 add_dwarf_attr (die, &attr);
5214 /* Get the dwarf_file_data from a file DIE attribute. */
5216 static inline struct dwarf_file_data *
5217 AT_file (dw_attr_ref a)
5219 gcc_assert (a && AT_class (a) == dw_val_class_file);
5220 return a->dw_attr_val.v.val_file;
5223 /* Add a label identifier attribute value to a DIE. */
5225 static inline void
5226 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228 dw_attr_node attr;
5230 attr.dw_attr = attr_kind;
5231 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5232 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5233 add_dwarf_attr (die, &attr);
5236 /* Add a section offset attribute value to a DIE, an offset into the
5237 debug_line section. */
5239 static inline void
5240 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5241 const char *label)
5243 dw_attr_node attr;
5245 attr.dw_attr = attr_kind;
5246 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5247 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5248 add_dwarf_attr (die, &attr);
5251 /* Add a section offset attribute value to a DIE, an offset into the
5252 debug_macinfo section. */
5254 static inline void
5255 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5256 const char *label)
5258 dw_attr_node attr;
5260 attr.dw_attr = attr_kind;
5261 attr.dw_attr_val.val_class = dw_val_class_macptr;
5262 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5263 add_dwarf_attr (die, &attr);
5266 /* Add an offset attribute value to a DIE. */
5268 static inline void
5269 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5270 unsigned HOST_WIDE_INT offset)
5272 dw_attr_node attr;
5274 attr.dw_attr = attr_kind;
5275 attr.dw_attr_val.val_class = dw_val_class_offset;
5276 attr.dw_attr_val.v.val_offset = offset;
5277 add_dwarf_attr (die, &attr);
5280 /* Add an range_list attribute value to a DIE. */
5282 static void
5283 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5284 long unsigned int offset)
5286 dw_attr_node attr;
5288 attr.dw_attr = attr_kind;
5289 attr.dw_attr_val.val_class = dw_val_class_range_list;
5290 attr.dw_attr_val.v.val_offset = offset;
5291 add_dwarf_attr (die, &attr);
5294 static inline const char *
5295 AT_lbl (dw_attr_ref a)
5297 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5298 || AT_class (a) == dw_val_class_lineptr
5299 || AT_class (a) == dw_val_class_macptr));
5300 return a->dw_attr_val.v.val_lbl_id;
5303 /* Get the attribute of type attr_kind. */
5305 static dw_attr_ref
5306 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308 dw_attr_ref a;
5309 unsigned ix;
5310 dw_die_ref spec = NULL;
5312 if (! die)
5313 return NULL;
5315 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5316 if (a->dw_attr == attr_kind)
5317 return a;
5318 else if (a->dw_attr == DW_AT_specification
5319 || a->dw_attr == DW_AT_abstract_origin)
5320 spec = AT_ref (a);
5322 if (spec)
5323 return get_AT (spec, attr_kind);
5325 return NULL;
5328 /* Return the "low pc" attribute value, typically associated with a subprogram
5329 DIE. Return null if the "low pc" attribute is either not present, or if it
5330 cannot be represented as an assembler label identifier. */
5332 static inline const char *
5333 get_AT_low_pc (dw_die_ref die)
5335 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337 return a ? AT_lbl (a) : NULL;
5340 /* Return the "high pc" attribute value, typically associated with a subprogram
5341 DIE. Return null if the "high pc" attribute is either not present, or if it
5342 cannot be represented as an assembler label identifier. */
5344 static inline const char *
5345 get_AT_hi_pc (dw_die_ref die)
5347 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349 return a ? AT_lbl (a) : NULL;
5352 /* Return the value of the string attribute designated by ATTR_KIND, or
5353 NULL if it is not present. */
5355 static inline const char *
5356 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358 dw_attr_ref a = get_AT (die, attr_kind);
5360 return a ? AT_string (a) : NULL;
5363 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5364 if it is not present. */
5366 static inline int
5367 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369 dw_attr_ref a = get_AT (die, attr_kind);
5371 return a ? AT_flag (a) : 0;
5374 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5375 if it is not present. */
5377 static inline unsigned
5378 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380 dw_attr_ref a = get_AT (die, attr_kind);
5382 return a ? AT_unsigned (a) : 0;
5385 static inline dw_die_ref
5386 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 dw_attr_ref a = get_AT (die, attr_kind);
5390 return a ? AT_ref (a) : NULL;
5393 static inline struct dwarf_file_data *
5394 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396 dw_attr_ref a = get_AT (die, attr_kind);
5398 return a ? AT_file (a) : NULL;
5401 /* Return TRUE if the language is C or C++. */
5403 static inline bool
5404 is_c_family (void)
5406 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5409 || lang == DW_LANG_C99
5410 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5413 /* Return TRUE if the language is C++. */
5415 static inline bool
5416 is_cxx (void)
5418 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5423 /* Return TRUE if the language is Fortran. */
5425 static inline bool
5426 is_fortran (void)
5428 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430 return (lang == DW_LANG_Fortran77
5431 || lang == DW_LANG_Fortran90
5432 || lang == DW_LANG_Fortran95);
5435 /* Return TRUE if the language is Java. */
5437 static inline bool
5438 is_java (void)
5440 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442 return lang == DW_LANG_Java;
5445 /* Return TRUE if the language is Ada. */
5447 static inline bool
5448 is_ada (void)
5450 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5455 /* Remove the specified attribute if present. */
5457 static void
5458 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460 dw_attr_ref a;
5461 unsigned ix;
5463 if (! die)
5464 return;
5466 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5467 if (a->dw_attr == attr_kind)
5469 if (AT_class (a) == dw_val_class_str)
5470 if (a->dw_attr_val.v.val_str->refcount)
5471 a->dw_attr_val.v.val_str->refcount--;
5473 /* VEC_ordered_remove should help reduce the number of abbrevs
5474 that are needed. */
5475 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5476 return;
5480 /* Remove CHILD from its parent. PREV must have the property that
5481 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5483 static void
5484 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486 gcc_assert (child->die_parent == prev->die_parent);
5487 gcc_assert (prev->die_sib == child);
5488 if (prev == child)
5490 gcc_assert (child->die_parent->die_child == child);
5491 prev = NULL;
5493 else
5494 prev->die_sib = child->die_sib;
5495 if (child->die_parent->die_child == child)
5496 child->die_parent->die_child = prev;
5499 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5500 matches TAG. */
5502 static void
5503 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505 dw_die_ref c;
5507 c = die->die_child;
5508 if (c) do {
5509 dw_die_ref prev = c;
5510 c = c->die_sib;
5511 while (c->die_tag == tag)
5513 remove_child_with_prev (c, prev);
5514 /* Might have removed every child. */
5515 if (c == c->die_sib)
5516 return;
5517 c = c->die_sib;
5519 } while (c != die->die_child);
5522 /* Add a CHILD_DIE as the last child of DIE. */
5524 static void
5525 add_child_die (dw_die_ref die, dw_die_ref child_die)
5527 /* FIXME this should probably be an assert. */
5528 if (! die || ! child_die)
5529 return;
5530 gcc_assert (die != child_die);
5532 child_die->die_parent = die;
5533 if (die->die_child)
5535 child_die->die_sib = die->die_child->die_sib;
5536 die->die_child->die_sib = child_die;
5538 else
5539 child_die->die_sib = child_die;
5540 die->die_child = child_die;
5543 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5544 is the specification, to the end of PARENT's list of children.
5545 This is done by removing and re-adding it. */
5547 static void
5548 splice_child_die (dw_die_ref parent, dw_die_ref child)
5550 dw_die_ref p;
5552 /* We want the declaration DIE from inside the class, not the
5553 specification DIE at toplevel. */
5554 if (child->die_parent != parent)
5556 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558 if (tmp)
5559 child = tmp;
5562 gcc_assert (child->die_parent == parent
5563 || (child->die_parent
5564 == get_AT_ref (parent, DW_AT_specification)));
5566 for (p = child->die_parent->die_child; ; p = p->die_sib)
5567 if (p->die_sib == child)
5569 remove_child_with_prev (child, p);
5570 break;
5573 add_child_die (parent, child);
5576 /* Return a pointer to a newly created DIE node. */
5578 static inline dw_die_ref
5579 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583 die->die_tag = tag_value;
5585 if (parent_die != NULL)
5586 add_child_die (parent_die, die);
5587 else
5589 limbo_die_node *limbo_node;
5591 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5592 limbo_node->die = die;
5593 limbo_node->created_for = t;
5594 limbo_node->next = limbo_die_list;
5595 limbo_die_list = limbo_node;
5598 return die;
5601 /* Return the DIE associated with the given type specifier. */
5603 static inline dw_die_ref
5604 lookup_type_die (tree type)
5606 return TYPE_SYMTAB_DIE (type);
5609 /* Equate a DIE to a given type specifier. */
5611 static inline void
5612 equate_type_number_to_die (tree type, dw_die_ref type_die)
5614 TYPE_SYMTAB_DIE (type) = type_die;
5617 /* Returns a hash value for X (which really is a die_struct). */
5619 static hashval_t
5620 decl_die_table_hash (const void *x)
5622 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5625 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5627 static int
5628 decl_die_table_eq (const void *x, const void *y)
5630 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5633 /* Return the DIE associated with a given declaration. */
5635 static inline dw_die_ref
5636 lookup_decl_die (tree decl)
5638 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5641 /* Returns a hash value for X (which really is a var_loc_list). */
5643 static hashval_t
5644 decl_loc_table_hash (const void *x)
5646 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5649 /* Return nonzero if decl_id of var_loc_list X is the same as
5650 UID of decl *Y. */
5652 static int
5653 decl_loc_table_eq (const void *x, const void *y)
5655 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5658 /* Return the var_loc list associated with a given declaration. */
5660 static inline var_loc_list *
5661 lookup_decl_loc (tree decl)
5663 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5666 /* Equate a DIE to a particular declaration. */
5668 static void
5669 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671 unsigned int decl_id = DECL_UID (decl);
5672 void **slot;
5674 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5675 *slot = decl_die;
5676 decl_die->decl_id = decl_id;
5679 /* Add a variable location node to the linked list for DECL. */
5681 static void
5682 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684 unsigned int decl_id = DECL_UID (decl);
5685 var_loc_list *temp;
5686 void **slot;
5688 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5689 if (*slot == NULL)
5691 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5692 temp->decl_id = decl_id;
5693 *slot = temp;
5695 else
5696 temp = *slot;
5698 if (temp->last)
5700 /* If the current location is the same as the end of the list,
5701 we have nothing to do. */
5702 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5703 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 /* Add LOC to the end of list and update LAST. */
5706 temp->last->next = loc;
5707 temp->last = loc;
5710 /* Do not add empty location to the beginning of the list. */
5711 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713 temp->first = loc;
5714 temp->last = loc;
5718 /* Keep track of the number of spaces used to indent the
5719 output of the debugging routines that print the structure of
5720 the DIE internal representation. */
5721 static int print_indent;
5723 /* Indent the line the number of spaces given by print_indent. */
5725 static inline void
5726 print_spaces (FILE *outfile)
5728 fprintf (outfile, "%*s", print_indent, "");
5731 /* Print the information associated with a given DIE, and its children.
5732 This routine is a debugging aid only. */
5734 static void
5735 print_die (dw_die_ref die, FILE *outfile)
5737 dw_attr_ref a;
5738 dw_die_ref c;
5739 unsigned ix;
5741 print_spaces (outfile);
5742 fprintf (outfile, "DIE %4lu: %s\n",
5743 die->die_offset, dwarf_tag_name (die->die_tag));
5744 print_spaces (outfile);
5745 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5746 fprintf (outfile, " offset: %lu\n", die->die_offset);
5748 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750 print_spaces (outfile);
5751 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5753 switch (AT_class (a))
5755 case dw_val_class_addr:
5756 fprintf (outfile, "address");
5757 break;
5758 case dw_val_class_offset:
5759 fprintf (outfile, "offset");
5760 break;
5761 case dw_val_class_loc:
5762 fprintf (outfile, "location descriptor");
5763 break;
5764 case dw_val_class_loc_list:
5765 fprintf (outfile, "location list -> label:%s",
5766 AT_loc_list (a)->ll_symbol);
5767 break;
5768 case dw_val_class_range_list:
5769 fprintf (outfile, "range list");
5770 break;
5771 case dw_val_class_const:
5772 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5773 break;
5774 case dw_val_class_unsigned_const:
5775 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5776 break;
5777 case dw_val_class_long_long:
5778 fprintf (outfile, "constant (%lu,%lu)",
5779 a->dw_attr_val.v.val_long_long.hi,
5780 a->dw_attr_val.v.val_long_long.low);
5781 break;
5782 case dw_val_class_vec:
5783 fprintf (outfile, "floating-point or vector constant");
5784 break;
5785 case dw_val_class_flag:
5786 fprintf (outfile, "%u", AT_flag (a));
5787 break;
5788 case dw_val_class_die_ref:
5789 if (AT_ref (a) != NULL)
5791 if (AT_ref (a)->die_symbol)
5792 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5793 else
5794 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 else
5797 fprintf (outfile, "die -> <null>");
5798 break;
5799 case dw_val_class_lbl_id:
5800 case dw_val_class_lineptr:
5801 case dw_val_class_macptr:
5802 fprintf (outfile, "label: %s", AT_lbl (a));
5803 break;
5804 case dw_val_class_str:
5805 if (AT_string (a) != NULL)
5806 fprintf (outfile, "\"%s\"", AT_string (a));
5807 else
5808 fprintf (outfile, "<null>");
5809 break;
5810 case dw_val_class_file:
5811 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5812 AT_file (a)->emitted_number);
5813 break;
5814 default:
5815 break;
5818 fprintf (outfile, "\n");
5821 if (die->die_child != NULL)
5823 print_indent += 4;
5824 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5825 print_indent -= 4;
5827 if (print_indent == 0)
5828 fprintf (outfile, "\n");
5831 /* Print the contents of the source code line number correspondence table.
5832 This routine is a debugging aid only. */
5834 static void
5835 print_dwarf_line_table (FILE *outfile)
5837 unsigned i;
5838 dw_line_info_ref line_info;
5840 fprintf (outfile, "\n\nDWARF source line information\n");
5841 for (i = 1; i < line_info_table_in_use; i++)
5843 line_info = &line_info_table[i];
5844 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5845 line_info->dw_file_num,
5846 line_info->dw_line_num);
5849 fprintf (outfile, "\n\n");
5852 /* Print the information collected for a given DIE. */
5854 void
5855 debug_dwarf_die (dw_die_ref die)
5857 print_die (die, stderr);
5860 /* Print all DWARF information collected for the compilation unit.
5861 This routine is a debugging aid only. */
5863 void
5864 debug_dwarf (void)
5866 print_indent = 0;
5867 print_die (comp_unit_die, stderr);
5868 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5869 print_dwarf_line_table (stderr);
5872 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5873 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5874 DIE that marks the start of the DIEs for this include file. */
5876 static dw_die_ref
5877 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5880 dw_die_ref new_unit = gen_compile_unit_die (filename);
5882 new_unit->die_sib = old_unit;
5883 return new_unit;
5886 /* Close an include-file CU and reopen the enclosing one. */
5888 static dw_die_ref
5889 pop_compile_unit (dw_die_ref old_unit)
5891 dw_die_ref new_unit = old_unit->die_sib;
5893 old_unit->die_sib = NULL;
5894 return new_unit;
5897 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5898 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900 /* Calculate the checksum of a location expression. */
5902 static inline void
5903 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905 CHECKSUM (loc->dw_loc_opc);
5906 CHECKSUM (loc->dw_loc_oprnd1);
5907 CHECKSUM (loc->dw_loc_oprnd2);
5910 /* Calculate the checksum of an attribute. */
5912 static void
5913 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915 dw_loc_descr_ref loc;
5916 rtx r;
5918 CHECKSUM (at->dw_attr);
5920 /* We don't care that this was compiled with a different compiler
5921 snapshot; if the output is the same, that's what matters. */
5922 if (at->dw_attr == DW_AT_producer)
5923 return;
5925 switch (AT_class (at))
5927 case dw_val_class_const:
5928 CHECKSUM (at->dw_attr_val.v.val_int);
5929 break;
5930 case dw_val_class_unsigned_const:
5931 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5932 break;
5933 case dw_val_class_long_long:
5934 CHECKSUM (at->dw_attr_val.v.val_long_long);
5935 break;
5936 case dw_val_class_vec:
5937 CHECKSUM (at->dw_attr_val.v.val_vec);
5938 break;
5939 case dw_val_class_flag:
5940 CHECKSUM (at->dw_attr_val.v.val_flag);
5941 break;
5942 case dw_val_class_str:
5943 CHECKSUM_STRING (AT_string (at));
5944 break;
5946 case dw_val_class_addr:
5947 r = AT_addr (at);
5948 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5949 CHECKSUM_STRING (XSTR (r, 0));
5950 break;
5952 case dw_val_class_offset:
5953 CHECKSUM (at->dw_attr_val.v.val_offset);
5954 break;
5956 case dw_val_class_loc:
5957 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5958 loc_checksum (loc, ctx);
5959 break;
5961 case dw_val_class_die_ref:
5962 die_checksum (AT_ref (at), ctx, mark);
5963 break;
5965 case dw_val_class_fde_ref:
5966 case dw_val_class_lbl_id:
5967 case dw_val_class_lineptr:
5968 case dw_val_class_macptr:
5969 break;
5971 case dw_val_class_file:
5972 CHECKSUM_STRING (AT_file (at)->filename);
5973 break;
5975 default:
5976 break;
5980 /* Calculate the checksum of a DIE. */
5982 static void
5983 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985 dw_die_ref c;
5986 dw_attr_ref a;
5987 unsigned ix;
5989 /* To avoid infinite recursion. */
5990 if (die->die_mark)
5992 CHECKSUM (die->die_mark);
5993 return;
5995 die->die_mark = ++(*mark);
5997 CHECKSUM (die->die_tag);
5999 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6000 attr_checksum (a, ctx, mark);
6002 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6005 #undef CHECKSUM
6006 #undef CHECKSUM_STRING
6008 /* Do the location expressions look same? */
6009 static inline int
6010 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012 return loc1->dw_loc_opc == loc2->dw_loc_opc
6013 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6014 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6017 /* Do the values look the same? */
6018 static int
6019 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021 dw_loc_descr_ref loc1, loc2;
6022 rtx r1, r2;
6024 if (v1->val_class != v2->val_class)
6025 return 0;
6027 switch (v1->val_class)
6029 case dw_val_class_const:
6030 return v1->v.val_int == v2->v.val_int;
6031 case dw_val_class_unsigned_const:
6032 return v1->v.val_unsigned == v2->v.val_unsigned;
6033 case dw_val_class_long_long:
6034 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6035 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6036 case dw_val_class_vec:
6037 if (v1->v.val_vec.length != v2->v.val_vec.length
6038 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6039 return 0;
6040 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6041 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6042 return 0;
6043 return 1;
6044 case dw_val_class_flag:
6045 return v1->v.val_flag == v2->v.val_flag;
6046 case dw_val_class_str:
6047 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049 case dw_val_class_addr:
6050 r1 = v1->v.val_addr;
6051 r2 = v2->v.val_addr;
6052 if (GET_CODE (r1) != GET_CODE (r2))
6053 return 0;
6054 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6055 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057 case dw_val_class_offset:
6058 return v1->v.val_offset == v2->v.val_offset;
6060 case dw_val_class_loc:
6061 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6062 loc1 && loc2;
6063 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6064 if (!same_loc_p (loc1, loc2, mark))
6065 return 0;
6066 return !loc1 && !loc2;
6068 case dw_val_class_die_ref:
6069 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071 case dw_val_class_fde_ref:
6072 case dw_val_class_lbl_id:
6073 case dw_val_class_lineptr:
6074 case dw_val_class_macptr:
6075 return 1;
6077 case dw_val_class_file:
6078 return v1->v.val_file == v2->v.val_file;
6080 default:
6081 return 1;
6085 /* Do the attributes look the same? */
6087 static int
6088 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090 if (at1->dw_attr != at2->dw_attr)
6091 return 0;
6093 /* We don't care that this was compiled with a different compiler
6094 snapshot; if the output is the same, that's what matters. */
6095 if (at1->dw_attr == DW_AT_producer)
6096 return 1;
6098 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6101 /* Do the dies look the same? */
6103 static int
6104 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106 dw_die_ref c1, c2;
6107 dw_attr_ref a1;
6108 unsigned ix;
6110 /* To avoid infinite recursion. */
6111 if (die1->die_mark)
6112 return die1->die_mark == die2->die_mark;
6113 die1->die_mark = die2->die_mark = ++(*mark);
6115 if (die1->die_tag != die2->die_tag)
6116 return 0;
6118 if (VEC_length (dw_attr_node, die1->die_attr)
6119 != VEC_length (dw_attr_node, die2->die_attr))
6120 return 0;
6122 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6123 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6124 return 0;
6126 c1 = die1->die_child;
6127 c2 = die2->die_child;
6128 if (! c1)
6130 if (c2)
6131 return 0;
6133 else
6134 for (;;)
6136 if (!same_die_p (c1, c2, mark))
6137 return 0;
6138 c1 = c1->die_sib;
6139 c2 = c2->die_sib;
6140 if (c1 == die1->die_child)
6142 if (c2 == die2->die_child)
6143 break;
6144 else
6145 return 0;
6149 return 1;
6152 /* Do the dies look the same? Wrapper around same_die_p. */
6154 static int
6155 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157 int mark = 0;
6158 int ret = same_die_p (die1, die2, &mark);
6160 unmark_all_dies (die1);
6161 unmark_all_dies (die2);
6163 return ret;
6166 /* The prefix to attach to symbols on DIEs in the current comdat debug
6167 info section. */
6168 static char *comdat_symbol_id;
6170 /* The index of the current symbol within the current comdat CU. */
6171 static unsigned int comdat_symbol_number;
6173 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6174 children, and set comdat_symbol_id accordingly. */
6176 static void
6177 compute_section_prefix (dw_die_ref unit_die)
6179 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6180 const char *base = die_name ? lbasename (die_name) : "anonymous";
6181 char *name = alloca (strlen (base) + 64);
6182 char *p;
6183 int i, mark;
6184 unsigned char checksum[16];
6185 struct md5_ctx ctx;
6187 /* Compute the checksum of the DIE, then append part of it as hex digits to
6188 the name filename of the unit. */
6190 md5_init_ctx (&ctx);
6191 mark = 0;
6192 die_checksum (unit_die, &ctx, &mark);
6193 unmark_all_dies (unit_die);
6194 md5_finish_ctx (&ctx, checksum);
6196 sprintf (name, "%s.", base);
6197 clean_symbol_name (name);
6199 p = name + strlen (name);
6200 for (i = 0; i < 4; i++)
6202 sprintf (p, "%.2x", checksum[i]);
6203 p += 2;
6206 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6207 comdat_symbol_number = 0;
6210 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6212 static int
6213 is_type_die (dw_die_ref die)
6215 switch (die->die_tag)
6217 case DW_TAG_array_type:
6218 case DW_TAG_class_type:
6219 case DW_TAG_enumeration_type:
6220 case DW_TAG_pointer_type:
6221 case DW_TAG_reference_type:
6222 case DW_TAG_string_type:
6223 case DW_TAG_structure_type:
6224 case DW_TAG_subroutine_type:
6225 case DW_TAG_union_type:
6226 case DW_TAG_ptr_to_member_type:
6227 case DW_TAG_set_type:
6228 case DW_TAG_subrange_type:
6229 case DW_TAG_base_type:
6230 case DW_TAG_const_type:
6231 case DW_TAG_file_type:
6232 case DW_TAG_packed_type:
6233 case DW_TAG_volatile_type:
6234 case DW_TAG_typedef:
6235 return 1;
6236 default:
6237 return 0;
6241 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6242 Basically, we want to choose the bits that are likely to be shared between
6243 compilations (types) and leave out the bits that are specific to individual
6244 compilations (functions). */
6246 static int
6247 is_comdat_die (dw_die_ref c)
6249 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6250 we do for stabs. The advantage is a greater likelihood of sharing between
6251 objects that don't include headers in the same order (and therefore would
6252 put the base types in a different comdat). jason 8/28/00 */
6254 if (c->die_tag == DW_TAG_base_type)
6255 return 0;
6257 if (c->die_tag == DW_TAG_pointer_type
6258 || c->die_tag == DW_TAG_reference_type
6259 || c->die_tag == DW_TAG_const_type
6260 || c->die_tag == DW_TAG_volatile_type)
6262 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264 return t ? is_comdat_die (t) : 0;
6267 return is_type_die (c);
6270 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6271 compilation unit. */
6273 static int
6274 is_symbol_die (dw_die_ref c)
6276 return (is_type_die (c)
6277 || (get_AT (c, DW_AT_declaration)
6278 && !get_AT (c, DW_AT_specification))
6279 || c->die_tag == DW_TAG_namespace);
6282 static char *
6283 gen_internal_sym (const char *prefix)
6285 char buf[256];
6287 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6288 return xstrdup (buf);
6291 /* Assign symbols to all worthy DIEs under DIE. */
6293 static void
6294 assign_symbol_names (dw_die_ref die)
6296 dw_die_ref c;
6298 if (is_symbol_die (die))
6300 if (comdat_symbol_id)
6302 char *p = alloca (strlen (comdat_symbol_id) + 64);
6304 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6305 comdat_symbol_id, comdat_symbol_number++);
6306 die->die_symbol = xstrdup (p);
6308 else
6309 die->die_symbol = gen_internal_sym ("LDIE");
6312 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6315 struct cu_hash_table_entry
6317 dw_die_ref cu;
6318 unsigned min_comdat_num, max_comdat_num;
6319 struct cu_hash_table_entry *next;
6322 /* Routines to manipulate hash table of CUs. */
6323 static hashval_t
6324 htab_cu_hash (const void *of)
6326 const struct cu_hash_table_entry *entry = of;
6328 return htab_hash_string (entry->cu->die_symbol);
6331 static int
6332 htab_cu_eq (const void *of1, const void *of2)
6334 const struct cu_hash_table_entry *entry1 = of1;
6335 const struct die_struct *entry2 = of2;
6337 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6340 static void
6341 htab_cu_del (void *what)
6343 struct cu_hash_table_entry *next, *entry = what;
6345 while (entry)
6347 next = entry->next;
6348 free (entry);
6349 entry = next;
6353 /* Check whether we have already seen this CU and set up SYM_NUM
6354 accordingly. */
6355 static int
6356 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358 struct cu_hash_table_entry dummy;
6359 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361 dummy.max_comdat_num = 0;
6363 slot = (struct cu_hash_table_entry **)
6364 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6365 INSERT);
6366 entry = *slot;
6368 for (; entry; last = entry, entry = entry->next)
6370 if (same_die_p_wrap (cu, entry->cu))
6371 break;
6374 if (entry)
6376 *sym_num = entry->min_comdat_num;
6377 return 1;
6380 entry = XCNEW (struct cu_hash_table_entry);
6381 entry->cu = cu;
6382 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6383 entry->next = *slot;
6384 *slot = entry;
6386 return 0;
6389 /* Record SYM_NUM to record of CU in HTABLE. */
6390 static void
6391 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393 struct cu_hash_table_entry **slot, *entry;
6395 slot = (struct cu_hash_table_entry **)
6396 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6397 NO_INSERT);
6398 entry = *slot;
6400 entry->max_comdat_num = sym_num;
6403 /* Traverse the DIE (which is always comp_unit_die), and set up
6404 additional compilation units for each of the include files we see
6405 bracketed by BINCL/EINCL. */
6407 static void
6408 break_out_includes (dw_die_ref die)
6410 dw_die_ref c;
6411 dw_die_ref unit = NULL;
6412 limbo_die_node *node, **pnode;
6413 htab_t cu_hash_table;
6415 c = die->die_child;
6416 if (c) do {
6417 dw_die_ref prev = c;
6418 c = c->die_sib;
6419 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6420 || (unit && is_comdat_die (c)))
6422 dw_die_ref next = c->die_sib;
6424 /* This DIE is for a secondary CU; remove it from the main one. */
6425 remove_child_with_prev (c, prev);
6427 if (c->die_tag == DW_TAG_GNU_BINCL)
6428 unit = push_new_compile_unit (unit, c);
6429 else if (c->die_tag == DW_TAG_GNU_EINCL)
6430 unit = pop_compile_unit (unit);
6431 else
6432 add_child_die (unit, c);
6433 c = next;
6434 if (c == die->die_child)
6435 break;
6437 } while (c != die->die_child);
6439 #if 0
6440 /* We can only use this in debugging, since the frontend doesn't check
6441 to make sure that we leave every include file we enter. */
6442 gcc_assert (!unit);
6443 #endif
6445 assign_symbol_names (die);
6446 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6447 for (node = limbo_die_list, pnode = &limbo_die_list;
6448 node;
6449 node = node->next)
6451 int is_dupl;
6453 compute_section_prefix (node->die);
6454 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6455 &comdat_symbol_number);
6456 assign_symbol_names (node->die);
6457 if (is_dupl)
6458 *pnode = node->next;
6459 else
6461 pnode = &node->next;
6462 record_comdat_symbol_number (node->die, cu_hash_table,
6463 comdat_symbol_number);
6466 htab_delete (cu_hash_table);
6469 /* Traverse the DIE and add a sibling attribute if it may have the
6470 effect of speeding up access to siblings. To save some space,
6471 avoid generating sibling attributes for DIE's without children. */
6473 static void
6474 add_sibling_attributes (dw_die_ref die)
6476 dw_die_ref c;
6478 if (! die->die_child)
6479 return;
6481 if (die->die_parent && die != die->die_parent->die_child)
6482 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6487 /* Output all location lists for the DIE and its children. */
6489 static void
6490 output_location_lists (dw_die_ref die)
6492 dw_die_ref c;
6493 dw_attr_ref a;
6494 unsigned ix;
6496 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6497 if (AT_class (a) == dw_val_class_loc_list)
6498 output_loc_list (AT_loc_list (a));
6500 FOR_EACH_CHILD (die, c, output_location_lists (c));
6503 /* The format of each DIE (and its attribute value pairs) is encoded in an
6504 abbreviation table. This routine builds the abbreviation table and assigns
6505 a unique abbreviation id for each abbreviation entry. The children of each
6506 die are visited recursively. */
6508 static void
6509 build_abbrev_table (dw_die_ref die)
6511 unsigned long abbrev_id;
6512 unsigned int n_alloc;
6513 dw_die_ref c;
6514 dw_attr_ref a;
6515 unsigned ix;
6517 /* Scan the DIE references, and mark as external any that refer to
6518 DIEs from other CUs (i.e. those which are not marked). */
6519 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6520 if (AT_class (a) == dw_val_class_die_ref
6521 && AT_ref (a)->die_mark == 0)
6523 gcc_assert (AT_ref (a)->die_symbol);
6525 set_AT_ref_external (a, 1);
6528 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6531 dw_attr_ref die_a, abbrev_a;
6532 unsigned ix;
6533 bool ok = true;
6535 if (abbrev->die_tag != die->die_tag)
6536 continue;
6537 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6538 continue;
6540 if (VEC_length (dw_attr_node, abbrev->die_attr)
6541 != VEC_length (dw_attr_node, die->die_attr))
6542 continue;
6544 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6547 if ((abbrev_a->dw_attr != die_a->dw_attr)
6548 || (value_format (abbrev_a) != value_format (die_a)))
6550 ok = false;
6551 break;
6554 if (ok)
6555 break;
6558 if (abbrev_id >= abbrev_die_table_in_use)
6560 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6563 abbrev_die_table = ggc_realloc (abbrev_die_table,
6564 sizeof (dw_die_ref) * n_alloc);
6566 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6567 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6568 abbrev_die_table_allocated = n_alloc;
6571 ++abbrev_die_table_in_use;
6572 abbrev_die_table[abbrev_id] = die;
6575 die->die_abbrev = abbrev_id;
6576 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6579 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6581 static int
6582 constant_size (long unsigned int value)
6584 int log;
6586 if (value == 0)
6587 log = 0;
6588 else
6589 log = floor_log2 (value);
6591 log = log / 8;
6592 log = 1 << (floor_log2 (log) + 1);
6594 return log;
6597 /* Return the size of a DIE as it is represented in the
6598 .debug_info section. */
6600 static unsigned long
6601 size_of_die (dw_die_ref die)
6603 unsigned long size = 0;
6604 dw_attr_ref a;
6605 unsigned ix;
6607 size += size_of_uleb128 (die->die_abbrev);
6608 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610 switch (AT_class (a))
6612 case dw_val_class_addr:
6613 size += DWARF2_ADDR_SIZE;
6614 break;
6615 case dw_val_class_offset:
6616 size += DWARF_OFFSET_SIZE;
6617 break;
6618 case dw_val_class_loc:
6620 unsigned long lsize = size_of_locs (AT_loc (a));
6622 /* Block length. */
6623 size += constant_size (lsize);
6624 size += lsize;
6626 break;
6627 case dw_val_class_loc_list:
6628 size += DWARF_OFFSET_SIZE;
6629 break;
6630 case dw_val_class_range_list:
6631 size += DWARF_OFFSET_SIZE;
6632 break;
6633 case dw_val_class_const:
6634 size += size_of_sleb128 (AT_int (a));
6635 break;
6636 case dw_val_class_unsigned_const:
6637 size += constant_size (AT_unsigned (a));
6638 break;
6639 case dw_val_class_long_long:
6640 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6641 break;
6642 case dw_val_class_vec:
6643 size += 1 + (a->dw_attr_val.v.val_vec.length
6644 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6645 break;
6646 case dw_val_class_flag:
6647 size += 1;
6648 break;
6649 case dw_val_class_die_ref:
6650 if (AT_ref_external (a))
6651 size += DWARF2_ADDR_SIZE;
6652 else
6653 size += DWARF_OFFSET_SIZE;
6654 break;
6655 case dw_val_class_fde_ref:
6656 size += DWARF_OFFSET_SIZE;
6657 break;
6658 case dw_val_class_lbl_id:
6659 size += DWARF2_ADDR_SIZE;
6660 break;
6661 case dw_val_class_lineptr:
6662 case dw_val_class_macptr:
6663 size += DWARF_OFFSET_SIZE;
6664 break;
6665 case dw_val_class_str:
6666 if (AT_string_form (a) == DW_FORM_strp)
6667 size += DWARF_OFFSET_SIZE;
6668 else
6669 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6670 break;
6671 case dw_val_class_file:
6672 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6673 break;
6674 default:
6675 gcc_unreachable ();
6679 return size;
6682 /* Size the debugging information associated with a given DIE. Visits the
6683 DIE's children recursively. Updates the global variable next_die_offset, on
6684 each time through. Uses the current value of next_die_offset to update the
6685 die_offset field in each DIE. */
6687 static void
6688 calc_die_sizes (dw_die_ref die)
6690 dw_die_ref c;
6692 die->die_offset = next_die_offset;
6693 next_die_offset += size_of_die (die);
6695 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697 if (die->die_child != NULL)
6698 /* Count the null byte used to terminate sibling lists. */
6699 next_die_offset += 1;
6702 /* Set the marks for a die and its children. We do this so
6703 that we know whether or not a reference needs to use FORM_ref_addr; only
6704 DIEs in the same CU will be marked. We used to clear out the offset
6705 and use that as the flag, but ran into ordering problems. */
6707 static void
6708 mark_dies (dw_die_ref die)
6710 dw_die_ref c;
6712 gcc_assert (!die->die_mark);
6714 die->die_mark = 1;
6715 FOR_EACH_CHILD (die, c, mark_dies (c));
6718 /* Clear the marks for a die and its children. */
6720 static void
6721 unmark_dies (dw_die_ref die)
6723 dw_die_ref c;
6725 gcc_assert (die->die_mark);
6727 die->die_mark = 0;
6728 FOR_EACH_CHILD (die, c, unmark_dies (c));
6731 /* Clear the marks for a die, its children and referred dies. */
6733 static void
6734 unmark_all_dies (dw_die_ref die)
6736 dw_die_ref c;
6737 dw_attr_ref a;
6738 unsigned ix;
6740 if (!die->die_mark)
6741 return;
6742 die->die_mark = 0;
6744 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6747 if (AT_class (a) == dw_val_class_die_ref)
6748 unmark_all_dies (AT_ref (a));
6751 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6752 generated for the compilation unit. */
6754 static unsigned long
6755 size_of_pubnames (VEC (pubname_entry, gc) * names)
6757 unsigned long size;
6758 unsigned i;
6759 pubname_ref p;
6761 size = DWARF_PUBNAMES_HEADER_SIZE;
6762 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6763 if (names != pubtype_table
6764 || p->die->die_offset != 0
6765 || !flag_eliminate_unused_debug_types)
6766 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6772 /* Return the size of the information in the .debug_aranges section. */
6774 static unsigned long
6775 size_of_aranges (void)
6777 unsigned long size;
6779 size = DWARF_ARANGES_HEADER_SIZE;
6781 /* Count the address/length pair for this compilation unit. */
6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6785 /* Count the two zero words used to terminated the address range table. */
6786 size += 2 * DWARF2_ADDR_SIZE;
6787 return size;
6790 /* Select the encoding of an attribute value. */
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a)
6795 switch (a->dw_attr_val.val_class)
6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
6799 case dw_val_class_range_list:
6800 case dw_val_class_offset:
6801 case dw_val_class_loc_list:
6802 switch (DWARF_OFFSET_SIZE)
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6811 case dw_val_class_loc:
6812 switch (constant_size (size_of_locs (AT_loc (a))))
6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
6818 default:
6819 gcc_unreachable ();
6821 case dw_val_class_const:
6822 return DW_FORM_sdata;
6823 case dw_val_class_unsigned_const:
6824 switch (constant_size (AT_unsigned (a)))
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
6835 gcc_unreachable ();
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
6839 case dw_val_class_vec:
6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
6854 return DW_FORM_data;
6855 case dw_val_class_str:
6856 return AT_string_form (a);
6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6870 default:
6871 gcc_unreachable ();
6875 /* Output the encoding of an attribute value. */
6877 static void
6878 output_value_format (dw_attr_ref a)
6880 enum dwarf_form form = value_format (a);
6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
6888 static void
6889 output_abbrev_section (void)
6891 unsigned long abbrev_id;
6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896 unsigned ix;
6897 dw_attr_ref a_attr;
6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
6913 output_value_format (a_attr);
6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL);
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6926 static inline void
6927 output_die_symbol (dw_die_ref die)
6929 char *sym = die->die_symbol;
6931 if (sym == 0)
6932 return;
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
6938 targetm.asm_out.globalize_label (asm_out_file, sym);
6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
6957 if (gensym)
6958 retlist->ll_symbol = gen_internal_sym ("LLST");
6960 return retlist;
6963 /* Add a location description expression to a location list. */
6965 static inline void
6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
6970 dw_loc_list_ref *d;
6972 /* Find the end of the chain. */
6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6976 /* Add a new location list node to the list. */
6977 *d = new_loc_list (descr, begin, end, section, 0);
6980 static void
6981 dwarf2out_switch_text_section (void)
6983 dw_fde_ref fde;
6985 gcc_assert (cfun);
6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993 have_multiple_function_sections = true;
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
7000 /* Output the location list given to us. */
7002 static void
7003 output_loc_list (dw_loc_list_ref list_head)
7005 dw_loc_list_ref curr = list_head;
7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7012 unsigned long size;
7013 if (!have_multiple_function_sections)
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7022 else
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7031 size = size_of_locs (curr->expr);
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size <= 0xffff);
7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7037 output_loc_sequence (curr->expr);
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7051 static void
7052 output_die (dw_die_ref die)
7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
7057 unsigned ix;
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7069 const char *name = dwarf_attr_name (a->dw_attr);
7071 switch (AT_class (a))
7073 case dw_val_class_addr:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 break;
7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7082 case dw_val_class_range_list:
7084 char *p = strchr (ranges_section_label, '\0');
7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 debug_ranges_section, "%s", name);
7090 *p = '\0';
7092 break;
7094 case dw_val_class_loc:
7095 size = size_of_locs (AT_loc (a));
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
7100 output_loc_sequence (AT_loc (a));
7101 break;
7103 case dw_val_class_const:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 break;
7110 case dw_val_class_unsigned_const:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
7113 break;
7115 case dw_val_class_long_long:
7117 unsigned HOST_WIDE_INT first, second;
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 "%s", name);
7123 if (WORDS_BIG_ENDIAN)
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7128 else
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 first, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 second, NULL);
7139 break;
7141 case dw_val_class_vec:
7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 unsigned int i;
7146 unsigned char *p;
7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7151 elt_size /= 2;
7152 len *= 2;
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
7159 break;
7162 case dw_val_class_flag:
7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 break;
7166 case dw_val_class_loc_list:
7168 char *sym = AT_loc_list (a)->ll_symbol;
7170 gcc_assert (sym);
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
7174 break;
7176 case dw_val_class_die_ref:
7177 if (AT_ref_external (a))
7179 char *sym = AT_ref (a)->die_symbol;
7181 gcc_assert (sym);
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
7185 else
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7191 break;
7193 case dw_val_class_fde_ref:
7195 char l1[20];
7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
7202 break;
7204 case dw_val_class_lbl_id:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 break;
7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
7216 break;
7218 case dw_val_class_str:
7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
7222 debug_str_section,
7223 "%s: \"%s\"", name, AT_string (a));
7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 break;
7228 case dw_val_class_file:
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7237 default:
7238 gcc_unreachable ();
7242 FOR_EACH_CHILD (die, c, output_die (c));
7244 /* Add null byte to terminate sibling list. */
7245 if (die->die_child != NULL)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7253 static void
7254 output_compilation_unit_header (void)
7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 debug_abbrev_section,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7269 /* Output the compilation unit DIE and its children. */
7271 static void
7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7274 const char *secname;
7275 char *oldsym, *tmp;
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7286 mark_dies (die);
7288 build_abbrev_table (die);
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7294 oldsym = die->die_symbol;
7295 if (oldsym)
7297 tmp = alloca (strlen (oldsym) + 24);
7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300 secname = tmp;
7301 die->die_symbol = NULL;
7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7304 else
7305 switch_to_section (debug_info_section);
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7309 output_die (die);
7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
7313 if (oldsym)
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7322 static const char *
7323 dwarf2_name (tree decl, int scope)
7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7330 static void
7331 add_pubname (tree decl, dw_die_ref die)
7333 pubname_entry e;
7335 if (! TREE_PUBLIC (decl))
7336 return;
7338 e.die = die;
7339 e.name = xstrdup (dwarf2_name (decl, 1));
7340 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7343 /* Add a new entry to .debug_pubtypes if appropriate. */
7345 static void
7346 add_pubtype (tree decl, dw_die_ref die)
7348 pubname_entry e;
7350 e.name = NULL;
7351 if ((TREE_PUBLIC (decl)
7352 || die->die_parent == comp_unit_die)
7353 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7355 e.die = die;
7356 if (TYPE_P (decl))
7358 if (TYPE_NAME (decl))
7360 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7361 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7362 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7363 && DECL_NAME (TYPE_NAME (decl)))
7364 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7365 else
7366 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7369 else
7370 e.name = xstrdup (dwarf2_name (decl, 1));
7372 /* If we don't have a name for the type, there's no point in adding
7373 it to the table. */
7374 if (e.name && e.name[0] != '\0')
7375 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7379 /* Output the public names table used to speed up access to externally
7380 visible names; or the public types table used to find type definitions. */
7382 static void
7383 output_pubnames (VEC (pubname_entry, gc) * names)
7385 unsigned i;
7386 unsigned long pubnames_length = size_of_pubnames (names);
7387 pubname_ref pub;
7389 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7390 dw2_asm_output_data (4, 0xffffffff,
7391 "Initial length escape value indicating 64-bit DWARF extension");
7392 if (names == pubname_table)
7393 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7394 "Length of Public Names Info");
7395 else
7396 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7397 "Length of Public Type Names Info");
7398 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7399 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7400 debug_info_section,
7401 "Offset of Compilation Unit Info");
7402 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7403 "Compilation Unit Length");
7405 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7407 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7408 if (names == pubname_table)
7409 gcc_assert (pub->die->die_mark);
7411 if (names != pubtype_table
7412 || pub->die->die_offset != 0
7413 || !flag_eliminate_unused_debug_types)
7415 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7416 "DIE offset");
7418 dw2_asm_output_nstring (pub->name, -1, "external name");
7422 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7425 /* Add a new entry to .debug_aranges if appropriate. */
7427 static void
7428 add_arange (tree decl, dw_die_ref die)
7430 if (! DECL_SECTION_NAME (decl))
7431 return;
7433 if (arange_table_in_use == arange_table_allocated)
7435 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7436 arange_table = ggc_realloc (arange_table,
7437 (arange_table_allocated
7438 * sizeof (dw_die_ref)));
7439 memset (arange_table + arange_table_in_use, 0,
7440 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7443 arange_table[arange_table_in_use++] = die;
7446 /* Output the information that goes into the .debug_aranges table.
7447 Namely, define the beginning and ending address range of the
7448 text section generated for this compilation unit. */
7450 static void
7451 output_aranges (void)
7453 unsigned i;
7454 unsigned long aranges_length = size_of_aranges ();
7456 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7457 dw2_asm_output_data (4, 0xffffffff,
7458 "Initial length escape value indicating 64-bit DWARF extension");
7459 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7460 "Length of Address Ranges Info");
7461 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7462 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7463 debug_info_section,
7464 "Offset of Compilation Unit Info");
7465 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7466 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7468 /* We need to align to twice the pointer size here. */
7469 if (DWARF_ARANGES_PAD_SIZE)
7471 /* Pad using a 2 byte words so that padding is correct for any
7472 pointer size. */
7473 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7474 2 * DWARF2_ADDR_SIZE);
7475 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7476 dw2_asm_output_data (2, 0, NULL);
7479 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7480 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7481 text_section_label, "Length");
7482 if (flag_reorder_blocks_and_partition)
7484 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7485 "Address");
7486 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7487 cold_text_section_label, "Length");
7490 for (i = 0; i < arange_table_in_use; i++)
7492 dw_die_ref die = arange_table[i];
7494 /* We shouldn't see aranges for DIEs outside of the main CU. */
7495 gcc_assert (die->die_mark);
7497 if (die->die_tag == DW_TAG_subprogram)
7499 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7500 "Address");
7501 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7502 get_AT_low_pc (die), "Length");
7504 else
7506 /* A static variable; extract the symbol from DW_AT_location.
7507 Note that this code isn't currently hit, as we only emit
7508 aranges for functions (jason 9/23/99). */
7509 dw_attr_ref a = get_AT (die, DW_AT_location);
7510 dw_loc_descr_ref loc;
7512 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7514 loc = AT_loc (a);
7515 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7517 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7518 loc->dw_loc_oprnd1.v.val_addr, "Address");
7519 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7520 get_AT_unsigned (die, DW_AT_byte_size),
7521 "Length");
7525 /* Output the terminator words. */
7526 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7527 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7530 /* Add a new entry to .debug_ranges. Return the offset at which it
7531 was placed. */
7533 static unsigned int
7534 add_ranges (tree block)
7536 unsigned int in_use = ranges_table_in_use;
7538 if (in_use == ranges_table_allocated)
7540 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7541 ranges_table
7542 = ggc_realloc (ranges_table, (ranges_table_allocated
7543 * sizeof (struct dw_ranges_struct)));
7544 memset (ranges_table + ranges_table_in_use, 0,
7545 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7548 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7549 ranges_table_in_use = in_use + 1;
7551 return in_use * 2 * DWARF2_ADDR_SIZE;
7554 static void
7555 output_ranges (void)
7557 unsigned i;
7558 static const char *const start_fmt = "Offset 0x%x";
7559 const char *fmt = start_fmt;
7561 for (i = 0; i < ranges_table_in_use; i++)
7563 int block_num = ranges_table[i].block_num;
7565 if (block_num)
7567 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7568 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7570 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7571 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7573 /* If all code is in the text section, then the compilation
7574 unit base address defaults to DW_AT_low_pc, which is the
7575 base of the text section. */
7576 if (!have_multiple_function_sections)
7578 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7579 text_section_label,
7580 fmt, i * 2 * DWARF2_ADDR_SIZE);
7581 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7582 text_section_label, NULL);
7585 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7586 compilation unit base address to zero, which allows us to
7587 use absolute addresses, and not worry about whether the
7588 target supports cross-section arithmetic. */
7589 else
7591 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7592 fmt, i * 2 * DWARF2_ADDR_SIZE);
7593 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7596 fmt = NULL;
7598 else
7600 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7601 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7602 fmt = start_fmt;
7607 /* Data structure containing information about input files. */
7608 struct file_info
7610 const char *path; /* Complete file name. */
7611 const char *fname; /* File name part. */
7612 int length; /* Length of entire string. */
7613 struct dwarf_file_data * file_idx; /* Index in input file table. */
7614 int dir_idx; /* Index in directory table. */
7617 /* Data structure containing information about directories with source
7618 files. */
7619 struct dir_info
7621 const char *path; /* Path including directory name. */
7622 int length; /* Path length. */
7623 int prefix; /* Index of directory entry which is a prefix. */
7624 int count; /* Number of files in this directory. */
7625 int dir_idx; /* Index of directory used as base. */
7628 /* Callback function for file_info comparison. We sort by looking at
7629 the directories in the path. */
7631 static int
7632 file_info_cmp (const void *p1, const void *p2)
7634 const struct file_info *s1 = p1;
7635 const struct file_info *s2 = p2;
7636 unsigned char *cp1;
7637 unsigned char *cp2;
7639 /* Take care of file names without directories. We need to make sure that
7640 we return consistent values to qsort since some will get confused if
7641 we return the same value when identical operands are passed in opposite
7642 orders. So if neither has a directory, return 0 and otherwise return
7643 1 or -1 depending on which one has the directory. */
7644 if ((s1->path == s1->fname || s2->path == s2->fname))
7645 return (s2->path == s2->fname) - (s1->path == s1->fname);
7647 cp1 = (unsigned char *) s1->path;
7648 cp2 = (unsigned char *) s2->path;
7650 while (1)
7652 ++cp1;
7653 ++cp2;
7654 /* Reached the end of the first path? If so, handle like above. */
7655 if ((cp1 == (unsigned char *) s1->fname)
7656 || (cp2 == (unsigned char *) s2->fname))
7657 return ((cp2 == (unsigned char *) s2->fname)
7658 - (cp1 == (unsigned char *) s1->fname));
7660 /* Character of current path component the same? */
7661 else if (*cp1 != *cp2)
7662 return *cp1 - *cp2;
7666 struct file_name_acquire_data
7668 struct file_info *files;
7669 int used_files;
7670 int max_files;
7673 /* Traversal function for the hash table. */
7675 static int
7676 file_name_acquire (void ** slot, void *data)
7678 struct file_name_acquire_data *fnad = data;
7679 struct dwarf_file_data *d = *slot;
7680 struct file_info *fi;
7681 const char *f;
7683 gcc_assert (fnad->max_files >= d->emitted_number);
7685 if (! d->emitted_number)
7686 return 1;
7688 gcc_assert (fnad->max_files != fnad->used_files);
7690 fi = fnad->files + fnad->used_files++;
7692 /* Skip all leading "./". */
7693 f = d->filename;
7694 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7695 f += 2;
7697 /* Create a new array entry. */
7698 fi->path = f;
7699 fi->length = strlen (f);
7700 fi->file_idx = d;
7702 /* Search for the file name part. */
7703 f = strrchr (f, DIR_SEPARATOR);
7704 #if defined (DIR_SEPARATOR_2)
7706 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7708 if (g != NULL)
7710 if (f == NULL || f < g)
7711 f = g;
7714 #endif
7716 fi->fname = f == NULL ? fi->path : f + 1;
7717 return 1;
7720 /* Output the directory table and the file name table. We try to minimize
7721 the total amount of memory needed. A heuristic is used to avoid large
7722 slowdowns with many input files. */
7724 static void
7725 output_file_names (void)
7727 struct file_name_acquire_data fnad;
7728 int numfiles;
7729 struct file_info *files;
7730 struct dir_info *dirs;
7731 int *saved;
7732 int *savehere;
7733 int *backmap;
7734 int ndirs;
7735 int idx_offset;
7736 int i;
7737 int idx;
7739 if (!last_emitted_file)
7741 dw2_asm_output_data (1, 0, "End directory table");
7742 dw2_asm_output_data (1, 0, "End file name table");
7743 return;
7746 numfiles = last_emitted_file->emitted_number;
7748 /* Allocate the various arrays we need. */
7749 files = alloca (numfiles * sizeof (struct file_info));
7750 dirs = alloca (numfiles * sizeof (struct dir_info));
7752 fnad.files = files;
7753 fnad.used_files = 0;
7754 fnad.max_files = numfiles;
7755 htab_traverse (file_table, file_name_acquire, &fnad);
7756 gcc_assert (fnad.used_files == fnad.max_files);
7758 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7760 /* Find all the different directories used. */
7761 dirs[0].path = files[0].path;
7762 dirs[0].length = files[0].fname - files[0].path;
7763 dirs[0].prefix = -1;
7764 dirs[0].count = 1;
7765 dirs[0].dir_idx = 0;
7766 files[0].dir_idx = 0;
7767 ndirs = 1;
7769 for (i = 1; i < numfiles; i++)
7770 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7771 && memcmp (dirs[ndirs - 1].path, files[i].path,
7772 dirs[ndirs - 1].length) == 0)
7774 /* Same directory as last entry. */
7775 files[i].dir_idx = ndirs - 1;
7776 ++dirs[ndirs - 1].count;
7778 else
7780 int j;
7782 /* This is a new directory. */
7783 dirs[ndirs].path = files[i].path;
7784 dirs[ndirs].length = files[i].fname - files[i].path;
7785 dirs[ndirs].count = 1;
7786 dirs[ndirs].dir_idx = ndirs;
7787 files[i].dir_idx = ndirs;
7789 /* Search for a prefix. */
7790 dirs[ndirs].prefix = -1;
7791 for (j = 0; j < ndirs; j++)
7792 if (dirs[j].length < dirs[ndirs].length
7793 && dirs[j].length > 1
7794 && (dirs[ndirs].prefix == -1
7795 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7796 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7797 dirs[ndirs].prefix = j;
7799 ++ndirs;
7802 /* Now to the actual work. We have to find a subset of the directories which
7803 allow expressing the file name using references to the directory table
7804 with the least amount of characters. We do not do an exhaustive search
7805 where we would have to check out every combination of every single
7806 possible prefix. Instead we use a heuristic which provides nearly optimal
7807 results in most cases and never is much off. */
7808 saved = alloca (ndirs * sizeof (int));
7809 savehere = alloca (ndirs * sizeof (int));
7811 memset (saved, '\0', ndirs * sizeof (saved[0]));
7812 for (i = 0; i < ndirs; i++)
7814 int j;
7815 int total;
7817 /* We can always save some space for the current directory. But this
7818 does not mean it will be enough to justify adding the directory. */
7819 savehere[i] = dirs[i].length;
7820 total = (savehere[i] - saved[i]) * dirs[i].count;
7822 for (j = i + 1; j < ndirs; j++)
7824 savehere[j] = 0;
7825 if (saved[j] < dirs[i].length)
7827 /* Determine whether the dirs[i] path is a prefix of the
7828 dirs[j] path. */
7829 int k;
7831 k = dirs[j].prefix;
7832 while (k != -1 && k != (int) i)
7833 k = dirs[k].prefix;
7835 if (k == (int) i)
7837 /* Yes it is. We can possibly save some memory by
7838 writing the filenames in dirs[j] relative to
7839 dirs[i]. */
7840 savehere[j] = dirs[i].length;
7841 total += (savehere[j] - saved[j]) * dirs[j].count;
7846 /* Check whether we can save enough to justify adding the dirs[i]
7847 directory. */
7848 if (total > dirs[i].length + 1)
7850 /* It's worthwhile adding. */
7851 for (j = i; j < ndirs; j++)
7852 if (savehere[j] > 0)
7854 /* Remember how much we saved for this directory so far. */
7855 saved[j] = savehere[j];
7857 /* Remember the prefix directory. */
7858 dirs[j].dir_idx = i;
7863 /* Emit the directory name table. */
7864 idx = 1;
7865 idx_offset = dirs[0].length > 0 ? 1 : 0;
7866 for (i = 1 - idx_offset; i < ndirs; i++)
7867 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7868 "Directory Entry: 0x%x", i + idx_offset);
7870 dw2_asm_output_data (1, 0, "End directory table");
7872 /* We have to emit them in the order of emitted_number since that's
7873 used in the debug info generation. To do this efficiently we
7874 generate a back-mapping of the indices first. */
7875 backmap = alloca (numfiles * sizeof (int));
7876 for (i = 0; i < numfiles; i++)
7877 backmap[files[i].file_idx->emitted_number - 1] = i;
7879 /* Now write all the file names. */
7880 for (i = 0; i < numfiles; i++)
7882 int file_idx = backmap[i];
7883 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7885 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7886 "File Entry: 0x%x", (unsigned) i + 1);
7888 /* Include directory index. */
7889 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7891 /* Modification time. */
7892 dw2_asm_output_data_uleb128 (0, NULL);
7894 /* File length in bytes. */
7895 dw2_asm_output_data_uleb128 (0, NULL);
7898 dw2_asm_output_data (1, 0, "End file name table");
7902 /* Output the source line number correspondence information. This
7903 information goes into the .debug_line section. */
7905 static void
7906 output_line_info (void)
7908 char l1[20], l2[20], p1[20], p2[20];
7909 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7910 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7911 unsigned opc;
7912 unsigned n_op_args;
7913 unsigned long lt_index;
7914 unsigned long current_line;
7915 long line_offset;
7916 long line_delta;
7917 unsigned long current_file;
7918 unsigned long function;
7920 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7921 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7922 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7923 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7925 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7926 dw2_asm_output_data (4, 0xffffffff,
7927 "Initial length escape value indicating 64-bit DWARF extension");
7928 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7929 "Length of Source Line Info");
7930 ASM_OUTPUT_LABEL (asm_out_file, l1);
7932 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7933 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7934 ASM_OUTPUT_LABEL (asm_out_file, p1);
7936 /* Define the architecture-dependent minimum instruction length (in
7937 bytes). In this implementation of DWARF, this field is used for
7938 information purposes only. Since GCC generates assembly language,
7939 we have no a priori knowledge of how many instruction bytes are
7940 generated for each source line, and therefore can use only the
7941 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7942 commands. Accordingly, we fix this as `1', which is "correct
7943 enough" for all architectures, and don't let the target override. */
7944 dw2_asm_output_data (1, 1,
7945 "Minimum Instruction Length");
7947 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7948 "Default is_stmt_start flag");
7949 dw2_asm_output_data (1, DWARF_LINE_BASE,
7950 "Line Base Value (Special Opcodes)");
7951 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7952 "Line Range Value (Special Opcodes)");
7953 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7954 "Special Opcode Base");
7956 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7958 switch (opc)
7960 case DW_LNS_advance_pc:
7961 case DW_LNS_advance_line:
7962 case DW_LNS_set_file:
7963 case DW_LNS_set_column:
7964 case DW_LNS_fixed_advance_pc:
7965 n_op_args = 1;
7966 break;
7967 default:
7968 n_op_args = 0;
7969 break;
7972 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7973 opc, n_op_args);
7976 /* Write out the information about the files we use. */
7977 output_file_names ();
7978 ASM_OUTPUT_LABEL (asm_out_file, p2);
7980 /* We used to set the address register to the first location in the text
7981 section here, but that didn't accomplish anything since we already
7982 have a line note for the opening brace of the first function. */
7984 /* Generate the line number to PC correspondence table, encoded as
7985 a series of state machine operations. */
7986 current_file = 1;
7987 current_line = 1;
7989 if (cfun && in_cold_section_p)
7990 strcpy (prev_line_label, cfun->cold_section_label);
7991 else
7992 strcpy (prev_line_label, text_section_label);
7993 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7995 dw_line_info_ref line_info = &line_info_table[lt_index];
7997 #if 0
7998 /* Disable this optimization for now; GDB wants to see two line notes
7999 at the beginning of a function so it can find the end of the
8000 prologue. */
8002 /* Don't emit anything for redundant notes. Just updating the
8003 address doesn't accomplish anything, because we already assume
8004 that anything after the last address is this line. */
8005 if (line_info->dw_line_num == current_line
8006 && line_info->dw_file_num == current_file)
8007 continue;
8008 #endif
8010 /* Emit debug info for the address of the current line.
8012 Unfortunately, we have little choice here currently, and must always
8013 use the most general form. GCC does not know the address delta
8014 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8015 attributes which will give an upper bound on the address range. We
8016 could perhaps use length attributes to determine when it is safe to
8017 use DW_LNS_fixed_advance_pc. */
8019 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8020 if (0)
8022 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8023 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8024 "DW_LNS_fixed_advance_pc");
8025 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8027 else
8029 /* This can handle any delta. This takes
8030 4+DWARF2_ADDR_SIZE bytes. */
8031 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8032 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8033 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8034 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8037 strcpy (prev_line_label, line_label);
8039 /* Emit debug info for the source file of the current line, if
8040 different from the previous line. */
8041 if (line_info->dw_file_num != current_file)
8043 current_file = line_info->dw_file_num;
8044 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8045 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8048 /* Emit debug info for the current line number, choosing the encoding
8049 that uses the least amount of space. */
8050 if (line_info->dw_line_num != current_line)
8052 line_offset = line_info->dw_line_num - current_line;
8053 line_delta = line_offset - DWARF_LINE_BASE;
8054 current_line = line_info->dw_line_num;
8055 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8056 /* This can handle deltas from -10 to 234, using the current
8057 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8058 takes 1 byte. */
8059 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8060 "line %lu", current_line);
8061 else
8063 /* This can handle any delta. This takes at least 4 bytes,
8064 depending on the value being encoded. */
8065 dw2_asm_output_data (1, DW_LNS_advance_line,
8066 "advance to line %lu", current_line);
8067 dw2_asm_output_data_sleb128 (line_offset, NULL);
8068 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8071 else
8072 /* We still need to start a new row, so output a copy insn. */
8073 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8076 /* Emit debug info for the address of the end of the function. */
8077 if (0)
8079 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8080 "DW_LNS_fixed_advance_pc");
8081 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8083 else
8085 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8086 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8087 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8088 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8091 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8092 dw2_asm_output_data_uleb128 (1, NULL);
8093 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8095 function = 0;
8096 current_file = 1;
8097 current_line = 1;
8098 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8100 dw_separate_line_info_ref line_info
8101 = &separate_line_info_table[lt_index];
8103 #if 0
8104 /* Don't emit anything for redundant notes. */
8105 if (line_info->dw_line_num == current_line
8106 && line_info->dw_file_num == current_file
8107 && line_info->function == function)
8108 goto cont;
8109 #endif
8111 /* Emit debug info for the address of the current line. If this is
8112 a new function, or the first line of a function, then we need
8113 to handle it differently. */
8114 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8115 lt_index);
8116 if (function != line_info->function)
8118 function = line_info->function;
8120 /* Set the address register to the first line in the function. */
8121 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8122 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8123 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8124 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8126 else
8128 /* ??? See the DW_LNS_advance_pc comment above. */
8129 if (0)
8131 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8132 "DW_LNS_fixed_advance_pc");
8133 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8135 else
8137 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8138 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8139 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8140 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8144 strcpy (prev_line_label, line_label);
8146 /* Emit debug info for the source file of the current line, if
8147 different from the previous line. */
8148 if (line_info->dw_file_num != current_file)
8150 current_file = line_info->dw_file_num;
8151 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8152 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8155 /* Emit debug info for the current line number, choosing the encoding
8156 that uses the least amount of space. */
8157 if (line_info->dw_line_num != current_line)
8159 line_offset = line_info->dw_line_num - current_line;
8160 line_delta = line_offset - DWARF_LINE_BASE;
8161 current_line = line_info->dw_line_num;
8162 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8163 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8164 "line %lu", current_line);
8165 else
8167 dw2_asm_output_data (1, DW_LNS_advance_line,
8168 "advance to line %lu", current_line);
8169 dw2_asm_output_data_sleb128 (line_offset, NULL);
8170 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8173 else
8174 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8176 #if 0
8177 cont:
8178 #endif
8180 lt_index++;
8182 /* If we're done with a function, end its sequence. */
8183 if (lt_index == separate_line_info_table_in_use
8184 || separate_line_info_table[lt_index].function != function)
8186 current_file = 1;
8187 current_line = 1;
8189 /* Emit debug info for the address of the end of the function. */
8190 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8191 if (0)
8193 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8194 "DW_LNS_fixed_advance_pc");
8195 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8197 else
8199 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8200 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8201 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8202 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8205 /* Output the marker for the end of this sequence. */
8206 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8207 dw2_asm_output_data_uleb128 (1, NULL);
8208 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8212 /* Output the marker for the end of the line number info. */
8213 ASM_OUTPUT_LABEL (asm_out_file, l2);
8216 /* Given a pointer to a tree node for some base type, return a pointer to
8217 a DIE that describes the given type.
8219 This routine must only be called for GCC type nodes that correspond to
8220 Dwarf base (fundamental) types. */
8222 static dw_die_ref
8223 base_type_die (tree type)
8225 dw_die_ref base_type_result;
8226 enum dwarf_type encoding;
8228 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8229 return 0;
8231 switch (TREE_CODE (type))
8233 case INTEGER_TYPE:
8234 if (TYPE_STRING_FLAG (type))
8236 if (TYPE_UNSIGNED (type))
8237 encoding = DW_ATE_unsigned_char;
8238 else
8239 encoding = DW_ATE_signed_char;
8241 else if (TYPE_UNSIGNED (type))
8242 encoding = DW_ATE_unsigned;
8243 else
8244 encoding = DW_ATE_signed;
8245 break;
8247 case REAL_TYPE:
8248 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8249 encoding = DW_ATE_decimal_float;
8250 else
8251 encoding = DW_ATE_float;
8252 break;
8254 /* Dwarf2 doesn't know anything about complex ints, so use
8255 a user defined type for it. */
8256 case COMPLEX_TYPE:
8257 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8258 encoding = DW_ATE_complex_float;
8259 else
8260 encoding = DW_ATE_lo_user;
8261 break;
8263 case BOOLEAN_TYPE:
8264 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8265 encoding = DW_ATE_boolean;
8266 break;
8268 default:
8269 /* No other TREE_CODEs are Dwarf fundamental types. */
8270 gcc_unreachable ();
8273 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8275 /* This probably indicates a bug. */
8276 if (! TYPE_NAME (type))
8277 add_name_attribute (base_type_result, "__unknown__");
8279 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8280 int_size_in_bytes (type));
8281 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8283 return base_type_result;
8286 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8287 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8288 a given type is generally the same as the given type, except that if the
8289 given type is a pointer or reference type, then the root type of the given
8290 type is the root type of the "basis" type for the pointer or reference
8291 type. (This definition of the "root" type is recursive.) Also, the root
8292 type of a `const' qualified type or a `volatile' qualified type is the
8293 root type of the given type without the qualifiers. */
8295 static tree
8296 root_type (tree type)
8298 if (TREE_CODE (type) == ERROR_MARK)
8299 return error_mark_node;
8301 switch (TREE_CODE (type))
8303 case ERROR_MARK:
8304 return error_mark_node;
8306 case POINTER_TYPE:
8307 case REFERENCE_TYPE:
8308 return type_main_variant (root_type (TREE_TYPE (type)));
8310 default:
8311 return type_main_variant (type);
8315 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8316 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8318 static inline int
8319 is_base_type (tree type)
8321 switch (TREE_CODE (type))
8323 case ERROR_MARK:
8324 case VOID_TYPE:
8325 case INTEGER_TYPE:
8326 case REAL_TYPE:
8327 case COMPLEX_TYPE:
8328 case BOOLEAN_TYPE:
8329 return 1;
8331 case ARRAY_TYPE:
8332 case RECORD_TYPE:
8333 case UNION_TYPE:
8334 case QUAL_UNION_TYPE:
8335 case ENUMERAL_TYPE:
8336 case FUNCTION_TYPE:
8337 case METHOD_TYPE:
8338 case POINTER_TYPE:
8339 case REFERENCE_TYPE:
8340 case OFFSET_TYPE:
8341 case LANG_TYPE:
8342 case VECTOR_TYPE:
8343 return 0;
8345 default:
8346 gcc_unreachable ();
8349 return 0;
8352 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8353 node, return the size in bits for the type if it is a constant, or else
8354 return the alignment for the type if the type's size is not constant, or
8355 else return BITS_PER_WORD if the type actually turns out to be an
8356 ERROR_MARK node. */
8358 static inline unsigned HOST_WIDE_INT
8359 simple_type_size_in_bits (tree type)
8361 if (TREE_CODE (type) == ERROR_MARK)
8362 return BITS_PER_WORD;
8363 else if (TYPE_SIZE (type) == NULL_TREE)
8364 return 0;
8365 else if (host_integerp (TYPE_SIZE (type), 1))
8366 return tree_low_cst (TYPE_SIZE (type), 1);
8367 else
8368 return TYPE_ALIGN (type);
8371 /* Return true if the debug information for the given type should be
8372 emitted as a subrange type. */
8374 static inline bool
8375 is_subrange_type (tree type)
8377 tree subtype = TREE_TYPE (type);
8379 /* Subrange types are identified by the fact that they are integer
8380 types, and that they have a subtype which is either an integer type
8381 or an enumeral type. */
8383 if (TREE_CODE (type) != INTEGER_TYPE
8384 || subtype == NULL_TREE)
8385 return false;
8387 if (TREE_CODE (subtype) != INTEGER_TYPE
8388 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8389 return false;
8391 if (TREE_CODE (type) == TREE_CODE (subtype)
8392 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8393 && TYPE_MIN_VALUE (type) != NULL
8394 && TYPE_MIN_VALUE (subtype) != NULL
8395 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8396 && TYPE_MAX_VALUE (type) != NULL
8397 && TYPE_MAX_VALUE (subtype) != NULL
8398 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8400 /* The type and its subtype have the same representation. If in
8401 addition the two types also have the same name, then the given
8402 type is not a subrange type, but rather a plain base type. */
8403 /* FIXME: brobecker/2004-03-22:
8404 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8405 therefore be sufficient to check the TYPE_SIZE node pointers
8406 rather than checking the actual size. Unfortunately, we have
8407 found some cases, such as in the Ada "integer" type, where
8408 this is not the case. Until this problem is solved, we need to
8409 keep checking the actual size. */
8410 tree type_name = TYPE_NAME (type);
8411 tree subtype_name = TYPE_NAME (subtype);
8413 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8414 type_name = DECL_NAME (type_name);
8416 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8417 subtype_name = DECL_NAME (subtype_name);
8419 if (type_name == subtype_name)
8420 return false;
8423 return true;
8426 /* Given a pointer to a tree node for a subrange type, return a pointer
8427 to a DIE that describes the given type. */
8429 static dw_die_ref
8430 subrange_type_die (tree type, dw_die_ref context_die)
8432 dw_die_ref subrange_die;
8433 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8435 if (context_die == NULL)
8436 context_die = comp_unit_die;
8438 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8440 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8442 /* The size of the subrange type and its base type do not match,
8443 so we need to generate a size attribute for the subrange type. */
8444 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8447 if (TYPE_MIN_VALUE (type) != NULL)
8448 add_bound_info (subrange_die, DW_AT_lower_bound,
8449 TYPE_MIN_VALUE (type));
8450 if (TYPE_MAX_VALUE (type) != NULL)
8451 add_bound_info (subrange_die, DW_AT_upper_bound,
8452 TYPE_MAX_VALUE (type));
8454 return subrange_die;
8457 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8458 entry that chains various modifiers in front of the given type. */
8460 static dw_die_ref
8461 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8462 dw_die_ref context_die)
8464 enum tree_code code = TREE_CODE (type);
8465 dw_die_ref mod_type_die;
8466 dw_die_ref sub_die = NULL;
8467 tree item_type = NULL;
8468 tree qualified_type;
8469 tree name;
8471 if (code == ERROR_MARK)
8472 return NULL;
8474 /* See if we already have the appropriately qualified variant of
8475 this type. */
8476 qualified_type
8477 = get_qualified_type (type,
8478 ((is_const_type ? TYPE_QUAL_CONST : 0)
8479 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8481 /* If we do, then we can just use its DIE, if it exists. */
8482 if (qualified_type)
8484 mod_type_die = lookup_type_die (qualified_type);
8485 if (mod_type_die)
8486 return mod_type_die;
8489 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8491 /* Handle C typedef types. */
8492 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8494 tree dtype = TREE_TYPE (name);
8496 if (qualified_type == dtype)
8498 /* For a named type, use the typedef. */
8499 gen_type_die (qualified_type, context_die);
8500 return lookup_type_die (qualified_type);
8502 else if (DECL_ORIGINAL_TYPE (name)
8503 && (is_const_type < TYPE_READONLY (dtype)
8504 || is_volatile_type < TYPE_VOLATILE (dtype)))
8505 /* cv-unqualified version of named type. Just use the unnamed
8506 type to which it refers. */
8507 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8508 is_const_type, is_volatile_type,
8509 context_die);
8510 /* Else cv-qualified version of named type; fall through. */
8513 if (is_const_type)
8515 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8516 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8518 else if (is_volatile_type)
8520 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8521 sub_die = modified_type_die (type, 0, 0, context_die);
8523 else if (code == POINTER_TYPE)
8525 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8526 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8527 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8528 item_type = TREE_TYPE (type);
8530 else if (code == REFERENCE_TYPE)
8532 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8533 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8534 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8535 item_type = TREE_TYPE (type);
8537 else if (is_subrange_type (type))
8539 mod_type_die = subrange_type_die (type, context_die);
8540 item_type = TREE_TYPE (type);
8542 else if (is_base_type (type))
8543 mod_type_die = base_type_die (type);
8544 else
8546 gen_type_die (type, context_die);
8548 /* We have to get the type_main_variant here (and pass that to the
8549 `lookup_type_die' routine) because the ..._TYPE node we have
8550 might simply be a *copy* of some original type node (where the
8551 copy was created to help us keep track of typedef names) and
8552 that copy might have a different TYPE_UID from the original
8553 ..._TYPE node. */
8554 if (TREE_CODE (type) != VECTOR_TYPE)
8555 return lookup_type_die (type_main_variant (type));
8556 else
8557 /* Vectors have the debugging information in the type,
8558 not the main variant. */
8559 return lookup_type_die (type);
8562 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8563 don't output a DW_TAG_typedef, since there isn't one in the
8564 user's program; just attach a DW_AT_name to the type. */
8565 if (name
8566 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8568 if (TREE_CODE (name) == TYPE_DECL)
8569 /* Could just call add_name_and_src_coords_attributes here,
8570 but since this is a builtin type it doesn't have any
8571 useful source coordinates anyway. */
8572 name = DECL_NAME (name);
8573 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8576 if (qualified_type)
8577 equate_type_number_to_die (qualified_type, mod_type_die);
8579 if (item_type)
8580 /* We must do this after the equate_type_number_to_die call, in case
8581 this is a recursive type. This ensures that the modified_type_die
8582 recursion will terminate even if the type is recursive. Recursive
8583 types are possible in Ada. */
8584 sub_die = modified_type_die (item_type,
8585 TYPE_READONLY (item_type),
8586 TYPE_VOLATILE (item_type),
8587 context_die);
8589 if (sub_die != NULL)
8590 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8592 return mod_type_die;
8595 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8596 an enumerated type. */
8598 static inline int
8599 type_is_enum (tree type)
8601 return TREE_CODE (type) == ENUMERAL_TYPE;
8604 /* Return the DBX register number described by a given RTL node. */
8606 static unsigned int
8607 dbx_reg_number (rtx rtl)
8609 unsigned regno = REGNO (rtl);
8611 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8613 #ifdef LEAF_REG_REMAP
8615 int leaf_reg;
8617 leaf_reg = LEAF_REG_REMAP (regno);
8618 if (leaf_reg != -1)
8619 regno = (unsigned) leaf_reg;
8621 #endif
8623 return DBX_REGISTER_NUMBER (regno);
8626 /* Optionally add a DW_OP_piece term to a location description expression.
8627 DW_OP_piece is only added if the location description expression already
8628 doesn't end with DW_OP_piece. */
8630 static void
8631 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8633 dw_loc_descr_ref loc;
8635 if (*list_head != NULL)
8637 /* Find the end of the chain. */
8638 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8641 if (loc->dw_loc_opc != DW_OP_piece)
8642 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8646 /* Return a location descriptor that designates a machine register or
8647 zero if there is none. */
8649 static dw_loc_descr_ref
8650 reg_loc_descriptor (rtx rtl)
8652 rtx regs;
8654 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8655 return 0;
8657 regs = targetm.dwarf_register_span (rtl);
8659 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8660 return multiple_reg_loc_descriptor (rtl, regs);
8661 else
8662 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8665 /* Return a location descriptor that designates a machine register for
8666 a given hard register number. */
8668 static dw_loc_descr_ref
8669 one_reg_loc_descriptor (unsigned int regno)
8671 if (regno <= 31)
8672 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8673 else
8674 return new_loc_descr (DW_OP_regx, regno, 0);
8677 /* Given an RTL of a register, return a location descriptor that
8678 designates a value that spans more than one register. */
8680 static dw_loc_descr_ref
8681 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8683 int nregs, size, i;
8684 unsigned reg;
8685 dw_loc_descr_ref loc_result = NULL;
8687 reg = REGNO (rtl);
8688 #ifdef LEAF_REG_REMAP
8690 int leaf_reg;
8692 leaf_reg = LEAF_REG_REMAP (reg);
8693 if (leaf_reg != -1)
8694 reg = (unsigned) leaf_reg;
8696 #endif
8697 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8698 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8700 /* Simple, contiguous registers. */
8701 if (regs == NULL_RTX)
8703 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8705 loc_result = NULL;
8706 while (nregs--)
8708 dw_loc_descr_ref t;
8710 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8711 add_loc_descr (&loc_result, t);
8712 add_loc_descr_op_piece (&loc_result, size);
8713 ++reg;
8715 return loc_result;
8718 /* Now onto stupid register sets in non contiguous locations. */
8720 gcc_assert (GET_CODE (regs) == PARALLEL);
8722 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8723 loc_result = NULL;
8725 for (i = 0; i < XVECLEN (regs, 0); ++i)
8727 dw_loc_descr_ref t;
8729 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8730 add_loc_descr (&loc_result, t);
8731 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8732 add_loc_descr_op_piece (&loc_result, size);
8734 return loc_result;
8737 /* Return a location descriptor that designates a constant. */
8739 static dw_loc_descr_ref
8740 int_loc_descriptor (HOST_WIDE_INT i)
8742 enum dwarf_location_atom op;
8744 /* Pick the smallest representation of a constant, rather than just
8745 defaulting to the LEB encoding. */
8746 if (i >= 0)
8748 if (i <= 31)
8749 op = DW_OP_lit0 + i;
8750 else if (i <= 0xff)
8751 op = DW_OP_const1u;
8752 else if (i <= 0xffff)
8753 op = DW_OP_const2u;
8754 else if (HOST_BITS_PER_WIDE_INT == 32
8755 || i <= 0xffffffff)
8756 op = DW_OP_const4u;
8757 else
8758 op = DW_OP_constu;
8760 else
8762 if (i >= -0x80)
8763 op = DW_OP_const1s;
8764 else if (i >= -0x8000)
8765 op = DW_OP_const2s;
8766 else if (HOST_BITS_PER_WIDE_INT == 32
8767 || i >= -0x80000000)
8768 op = DW_OP_const4s;
8769 else
8770 op = DW_OP_consts;
8773 return new_loc_descr (op, i, 0);
8776 /* Return a location descriptor that designates a base+offset location. */
8778 static dw_loc_descr_ref
8779 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8781 unsigned int regno;
8783 /* We only use "frame base" when we're sure we're talking about the
8784 post-prologue local stack frame. We do this by *not* running
8785 register elimination until this point, and recognizing the special
8786 argument pointer and soft frame pointer rtx's. */
8787 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8789 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8791 if (elim != reg)
8793 if (GET_CODE (elim) == PLUS)
8795 offset += INTVAL (XEXP (elim, 1));
8796 elim = XEXP (elim, 0);
8798 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8799 : stack_pointer_rtx));
8800 offset += frame_pointer_fb_offset;
8802 return new_loc_descr (DW_OP_fbreg, offset, 0);
8806 regno = dbx_reg_number (reg);
8807 if (regno <= 31)
8808 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8809 else
8810 return new_loc_descr (DW_OP_bregx, regno, offset);
8813 /* Return true if this RTL expression describes a base+offset calculation. */
8815 static inline int
8816 is_based_loc (rtx rtl)
8818 return (GET_CODE (rtl) == PLUS
8819 && ((REG_P (XEXP (rtl, 0))
8820 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8821 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8824 /* The following routine converts the RTL for a variable or parameter
8825 (resident in memory) into an equivalent Dwarf representation of a
8826 mechanism for getting the address of that same variable onto the top of a
8827 hypothetical "address evaluation" stack.
8829 When creating memory location descriptors, we are effectively transforming
8830 the RTL for a memory-resident object into its Dwarf postfix expression
8831 equivalent. This routine recursively descends an RTL tree, turning
8832 it into Dwarf postfix code as it goes.
8834 MODE is the mode of the memory reference, needed to handle some
8835 autoincrement addressing modes.
8837 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8838 location list for RTL.
8840 Return 0 if we can't represent the location. */
8842 static dw_loc_descr_ref
8843 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8845 dw_loc_descr_ref mem_loc_result = NULL;
8846 enum dwarf_location_atom op;
8848 /* Note that for a dynamically sized array, the location we will generate a
8849 description of here will be the lowest numbered location which is
8850 actually within the array. That's *not* necessarily the same as the
8851 zeroth element of the array. */
8853 rtl = targetm.delegitimize_address (rtl);
8855 switch (GET_CODE (rtl))
8857 case POST_INC:
8858 case POST_DEC:
8859 case POST_MODIFY:
8860 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8861 just fall into the SUBREG code. */
8863 /* ... fall through ... */
8865 case SUBREG:
8866 /* The case of a subreg may arise when we have a local (register)
8867 variable or a formal (register) parameter which doesn't quite fill
8868 up an entire register. For now, just assume that it is
8869 legitimate to make the Dwarf info refer to the whole register which
8870 contains the given subreg. */
8871 rtl = XEXP (rtl, 0);
8873 /* ... fall through ... */
8875 case REG:
8876 /* Whenever a register number forms a part of the description of the
8877 method for calculating the (dynamic) address of a memory resident
8878 object, DWARF rules require the register number be referred to as
8879 a "base register". This distinction is not based in any way upon
8880 what category of register the hardware believes the given register
8881 belongs to. This is strictly DWARF terminology we're dealing with
8882 here. Note that in cases where the location of a memory-resident
8883 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8884 OP_CONST (0)) the actual DWARF location descriptor that we generate
8885 may just be OP_BASEREG (basereg). This may look deceptively like
8886 the object in question was allocated to a register (rather than in
8887 memory) so DWARF consumers need to be aware of the subtle
8888 distinction between OP_REG and OP_BASEREG. */
8889 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8890 mem_loc_result = based_loc_descr (rtl, 0);
8891 break;
8893 case MEM:
8894 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8895 if (mem_loc_result != 0)
8896 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8897 break;
8899 case LO_SUM:
8900 rtl = XEXP (rtl, 1);
8902 /* ... fall through ... */
8904 case LABEL_REF:
8905 /* Some ports can transform a symbol ref into a label ref, because
8906 the symbol ref is too far away and has to be dumped into a constant
8907 pool. */
8908 case CONST:
8909 case SYMBOL_REF:
8910 /* Alternatively, the symbol in the constant pool might be referenced
8911 by a different symbol. */
8912 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8914 bool marked;
8915 rtx tmp = get_pool_constant_mark (rtl, &marked);
8917 if (GET_CODE (tmp) == SYMBOL_REF)
8919 rtl = tmp;
8920 if (CONSTANT_POOL_ADDRESS_P (tmp))
8921 get_pool_constant_mark (tmp, &marked);
8922 else
8923 marked = true;
8926 /* If all references to this pool constant were optimized away,
8927 it was not output and thus we can't represent it.
8928 FIXME: might try to use DW_OP_const_value here, though
8929 DW_OP_piece complicates it. */
8930 if (!marked)
8931 return 0;
8934 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8935 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8936 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8937 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8938 break;
8940 case PRE_MODIFY:
8941 /* Extract the PLUS expression nested inside and fall into
8942 PLUS code below. */
8943 rtl = XEXP (rtl, 1);
8944 goto plus;
8946 case PRE_INC:
8947 case PRE_DEC:
8948 /* Turn these into a PLUS expression and fall into the PLUS code
8949 below. */
8950 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8951 GEN_INT (GET_CODE (rtl) == PRE_INC
8952 ? GET_MODE_UNIT_SIZE (mode)
8953 : -GET_MODE_UNIT_SIZE (mode)));
8955 /* ... fall through ... */
8957 case PLUS:
8958 plus:
8959 if (is_based_loc (rtl))
8960 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8961 INTVAL (XEXP (rtl, 1)));
8962 else
8964 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8965 if (mem_loc_result == 0)
8966 break;
8968 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8969 && INTVAL (XEXP (rtl, 1)) >= 0)
8970 add_loc_descr (&mem_loc_result,
8971 new_loc_descr (DW_OP_plus_uconst,
8972 INTVAL (XEXP (rtl, 1)), 0));
8973 else
8975 add_loc_descr (&mem_loc_result,
8976 mem_loc_descriptor (XEXP (rtl, 1), mode));
8977 add_loc_descr (&mem_loc_result,
8978 new_loc_descr (DW_OP_plus, 0, 0));
8981 break;
8983 /* If a pseudo-reg is optimized away, it is possible for it to
8984 be replaced with a MEM containing a multiply or shift. */
8985 case MULT:
8986 op = DW_OP_mul;
8987 goto do_binop;
8989 case ASHIFT:
8990 op = DW_OP_shl;
8991 goto do_binop;
8993 case ASHIFTRT:
8994 op = DW_OP_shra;
8995 goto do_binop;
8997 case LSHIFTRT:
8998 op = DW_OP_shr;
8999 goto do_binop;
9001 do_binop:
9003 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
9004 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
9006 if (op0 == 0 || op1 == 0)
9007 break;
9009 mem_loc_result = op0;
9010 add_loc_descr (&mem_loc_result, op1);
9011 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9012 break;
9015 case CONST_INT:
9016 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9017 break;
9019 default:
9020 gcc_unreachable ();
9023 return mem_loc_result;
9026 /* Return a descriptor that describes the concatenation of two locations.
9027 This is typically a complex variable. */
9029 static dw_loc_descr_ref
9030 concat_loc_descriptor (rtx x0, rtx x1)
9032 dw_loc_descr_ref cc_loc_result = NULL;
9033 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9034 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9036 if (x0_ref == 0 || x1_ref == 0)
9037 return 0;
9039 cc_loc_result = x0_ref;
9040 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9042 add_loc_descr (&cc_loc_result, x1_ref);
9043 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9045 return cc_loc_result;
9048 /* Output a proper Dwarf location descriptor for a variable or parameter
9049 which is either allocated in a register or in a memory location. For a
9050 register, we just generate an OP_REG and the register number. For a
9051 memory location we provide a Dwarf postfix expression describing how to
9052 generate the (dynamic) address of the object onto the address stack.
9054 If we don't know how to describe it, return 0. */
9056 static dw_loc_descr_ref
9057 loc_descriptor (rtx rtl)
9059 dw_loc_descr_ref loc_result = NULL;
9061 switch (GET_CODE (rtl))
9063 case SUBREG:
9064 /* The case of a subreg may arise when we have a local (register)
9065 variable or a formal (register) parameter which doesn't quite fill
9066 up an entire register. For now, just assume that it is
9067 legitimate to make the Dwarf info refer to the whole register which
9068 contains the given subreg. */
9069 rtl = SUBREG_REG (rtl);
9071 /* ... fall through ... */
9073 case REG:
9074 loc_result = reg_loc_descriptor (rtl);
9075 break;
9077 case MEM:
9078 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9079 break;
9081 case CONCAT:
9082 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9083 break;
9085 case VAR_LOCATION:
9086 /* Single part. */
9087 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9089 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9090 break;
9093 rtl = XEXP (rtl, 1);
9094 /* FALLTHRU */
9096 case PARALLEL:
9098 rtvec par_elems = XVEC (rtl, 0);
9099 int num_elem = GET_NUM_ELEM (par_elems);
9100 enum machine_mode mode;
9101 int i;
9103 /* Create the first one, so we have something to add to. */
9104 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9105 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9106 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9107 for (i = 1; i < num_elem; i++)
9109 dw_loc_descr_ref temp;
9111 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9112 add_loc_descr (&loc_result, temp);
9113 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9114 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9117 break;
9119 default:
9120 gcc_unreachable ();
9123 return loc_result;
9126 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9127 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9128 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9129 top-level invocation, and we require the address of LOC; is 0 if we require
9130 the value of LOC. */
9132 static dw_loc_descr_ref
9133 loc_descriptor_from_tree_1 (tree loc, int want_address)
9135 dw_loc_descr_ref ret, ret1;
9136 int have_address = 0;
9137 enum dwarf_location_atom op;
9139 /* ??? Most of the time we do not take proper care for sign/zero
9140 extending the values properly. Hopefully this won't be a real
9141 problem... */
9143 switch (TREE_CODE (loc))
9145 case ERROR_MARK:
9146 return 0;
9148 case PLACEHOLDER_EXPR:
9149 /* This case involves extracting fields from an object to determine the
9150 position of other fields. We don't try to encode this here. The
9151 only user of this is Ada, which encodes the needed information using
9152 the names of types. */
9153 return 0;
9155 case CALL_EXPR:
9156 return 0;
9158 case PREINCREMENT_EXPR:
9159 case PREDECREMENT_EXPR:
9160 case POSTINCREMENT_EXPR:
9161 case POSTDECREMENT_EXPR:
9162 /* There are no opcodes for these operations. */
9163 return 0;
9165 case ADDR_EXPR:
9166 /* If we already want an address, there's nothing we can do. */
9167 if (want_address)
9168 return 0;
9170 /* Otherwise, process the argument and look for the address. */
9171 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9173 case VAR_DECL:
9174 if (DECL_THREAD_LOCAL_P (loc))
9176 rtx rtl;
9178 /* If this is not defined, we have no way to emit the data. */
9179 if (!targetm.asm_out.output_dwarf_dtprel)
9180 return 0;
9182 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9183 look up addresses of objects in the current module. */
9184 if (DECL_EXTERNAL (loc))
9185 return 0;
9187 rtl = rtl_for_decl_location (loc);
9188 if (rtl == NULL_RTX)
9189 return 0;
9191 if (!MEM_P (rtl))
9192 return 0;
9193 rtl = XEXP (rtl, 0);
9194 if (! CONSTANT_P (rtl))
9195 return 0;
9197 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9198 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9199 ret->dw_loc_oprnd1.v.val_addr = rtl;
9201 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9202 add_loc_descr (&ret, ret1);
9204 have_address = 1;
9205 break;
9207 /* FALLTHRU */
9209 case PARM_DECL:
9210 if (DECL_HAS_VALUE_EXPR_P (loc))
9211 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9212 want_address);
9213 /* FALLTHRU */
9215 case RESULT_DECL:
9216 case FUNCTION_DECL:
9218 rtx rtl = rtl_for_decl_location (loc);
9220 if (rtl == NULL_RTX)
9221 return 0;
9222 else if (GET_CODE (rtl) == CONST_INT)
9224 HOST_WIDE_INT val = INTVAL (rtl);
9225 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9226 val &= GET_MODE_MASK (DECL_MODE (loc));
9227 ret = int_loc_descriptor (val);
9229 else if (GET_CODE (rtl) == CONST_STRING)
9230 return 0;
9231 else if (CONSTANT_P (rtl))
9233 ret = new_loc_descr (DW_OP_addr, 0, 0);
9234 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9235 ret->dw_loc_oprnd1.v.val_addr = rtl;
9237 else
9239 enum machine_mode mode;
9241 /* Certain constructs can only be represented at top-level. */
9242 if (want_address == 2)
9243 return loc_descriptor (rtl);
9245 mode = GET_MODE (rtl);
9246 if (MEM_P (rtl))
9248 rtl = XEXP (rtl, 0);
9249 have_address = 1;
9251 ret = mem_loc_descriptor (rtl, mode);
9254 break;
9256 case INDIRECT_REF:
9257 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9258 have_address = 1;
9259 break;
9261 case COMPOUND_EXPR:
9262 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9264 case NOP_EXPR:
9265 case CONVERT_EXPR:
9266 case NON_LVALUE_EXPR:
9267 case VIEW_CONVERT_EXPR:
9268 case SAVE_EXPR:
9269 case MODIFY_EXPR:
9270 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9272 case COMPONENT_REF:
9273 case BIT_FIELD_REF:
9274 case ARRAY_REF:
9275 case ARRAY_RANGE_REF:
9277 tree obj, offset;
9278 HOST_WIDE_INT bitsize, bitpos, bytepos;
9279 enum machine_mode mode;
9280 int volatilep;
9281 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9283 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9284 &unsignedp, &volatilep, false);
9286 if (obj == loc)
9287 return 0;
9289 ret = loc_descriptor_from_tree_1 (obj, 1);
9290 if (ret == 0
9291 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9292 return 0;
9294 if (offset != NULL_TREE)
9296 /* Variable offset. */
9297 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9298 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9301 bytepos = bitpos / BITS_PER_UNIT;
9302 if (bytepos > 0)
9303 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9304 else if (bytepos < 0)
9306 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9307 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9310 have_address = 1;
9311 break;
9314 case INTEGER_CST:
9315 if (host_integerp (loc, 0))
9316 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9317 else
9318 return 0;
9319 break;
9321 case CONSTRUCTOR:
9323 /* Get an RTL for this, if something has been emitted. */
9324 rtx rtl = lookup_constant_def (loc);
9325 enum machine_mode mode;
9327 if (!rtl || !MEM_P (rtl))
9328 return 0;
9329 mode = GET_MODE (rtl);
9330 rtl = XEXP (rtl, 0);
9331 ret = mem_loc_descriptor (rtl, mode);
9332 have_address = 1;
9333 break;
9336 case TRUTH_AND_EXPR:
9337 case TRUTH_ANDIF_EXPR:
9338 case BIT_AND_EXPR:
9339 op = DW_OP_and;
9340 goto do_binop;
9342 case TRUTH_XOR_EXPR:
9343 case BIT_XOR_EXPR:
9344 op = DW_OP_xor;
9345 goto do_binop;
9347 case TRUTH_OR_EXPR:
9348 case TRUTH_ORIF_EXPR:
9349 case BIT_IOR_EXPR:
9350 op = DW_OP_or;
9351 goto do_binop;
9353 case FLOOR_DIV_EXPR:
9354 case CEIL_DIV_EXPR:
9355 case ROUND_DIV_EXPR:
9356 case TRUNC_DIV_EXPR:
9357 op = DW_OP_div;
9358 goto do_binop;
9360 case MINUS_EXPR:
9361 op = DW_OP_minus;
9362 goto do_binop;
9364 case FLOOR_MOD_EXPR:
9365 case CEIL_MOD_EXPR:
9366 case ROUND_MOD_EXPR:
9367 case TRUNC_MOD_EXPR:
9368 op = DW_OP_mod;
9369 goto do_binop;
9371 case MULT_EXPR:
9372 op = DW_OP_mul;
9373 goto do_binop;
9375 case LSHIFT_EXPR:
9376 op = DW_OP_shl;
9377 goto do_binop;
9379 case RSHIFT_EXPR:
9380 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9381 goto do_binop;
9383 case PLUS_EXPR:
9384 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9385 && host_integerp (TREE_OPERAND (loc, 1), 0))
9387 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9388 if (ret == 0)
9389 return 0;
9391 add_loc_descr (&ret,
9392 new_loc_descr (DW_OP_plus_uconst,
9393 tree_low_cst (TREE_OPERAND (loc, 1),
9395 0));
9396 break;
9399 op = DW_OP_plus;
9400 goto do_binop;
9402 case LE_EXPR:
9403 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9404 return 0;
9406 op = DW_OP_le;
9407 goto do_binop;
9409 case GE_EXPR:
9410 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9411 return 0;
9413 op = DW_OP_ge;
9414 goto do_binop;
9416 case LT_EXPR:
9417 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9418 return 0;
9420 op = DW_OP_lt;
9421 goto do_binop;
9423 case GT_EXPR:
9424 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9425 return 0;
9427 op = DW_OP_gt;
9428 goto do_binop;
9430 case EQ_EXPR:
9431 op = DW_OP_eq;
9432 goto do_binop;
9434 case NE_EXPR:
9435 op = DW_OP_ne;
9436 goto do_binop;
9438 do_binop:
9439 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9440 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9441 if (ret == 0 || ret1 == 0)
9442 return 0;
9444 add_loc_descr (&ret, ret1);
9445 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9446 break;
9448 case TRUTH_NOT_EXPR:
9449 case BIT_NOT_EXPR:
9450 op = DW_OP_not;
9451 goto do_unop;
9453 case ABS_EXPR:
9454 op = DW_OP_abs;
9455 goto do_unop;
9457 case NEGATE_EXPR:
9458 op = DW_OP_neg;
9459 goto do_unop;
9461 do_unop:
9462 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9463 if (ret == 0)
9464 return 0;
9466 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9467 break;
9469 case MIN_EXPR:
9470 case MAX_EXPR:
9472 const enum tree_code code =
9473 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9475 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9476 build2 (code, integer_type_node,
9477 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9478 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9481 /* ... fall through ... */
9483 case COND_EXPR:
9485 dw_loc_descr_ref lhs
9486 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9487 dw_loc_descr_ref rhs
9488 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9489 dw_loc_descr_ref bra_node, jump_node, tmp;
9491 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9492 if (ret == 0 || lhs == 0 || rhs == 0)
9493 return 0;
9495 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9496 add_loc_descr (&ret, bra_node);
9498 add_loc_descr (&ret, rhs);
9499 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9500 add_loc_descr (&ret, jump_node);
9502 add_loc_descr (&ret, lhs);
9503 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9504 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9506 /* ??? Need a node to point the skip at. Use a nop. */
9507 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9508 add_loc_descr (&ret, tmp);
9509 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9510 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9512 break;
9514 case FIX_TRUNC_EXPR:
9515 return 0;
9517 default:
9518 /* Leave front-end specific codes as simply unknown. This comes
9519 up, for instance, with the C STMT_EXPR. */
9520 if ((unsigned int) TREE_CODE (loc)
9521 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9522 return 0;
9524 #ifdef ENABLE_CHECKING
9525 /* Otherwise this is a generic code; we should just lists all of
9526 these explicitly. We forgot one. */
9527 gcc_unreachable ();
9528 #else
9529 /* In a release build, we want to degrade gracefully: better to
9530 generate incomplete debugging information than to crash. */
9531 return NULL;
9532 #endif
9535 /* Show if we can't fill the request for an address. */
9536 if (want_address && !have_address)
9537 return 0;
9539 /* If we've got an address and don't want one, dereference. */
9540 if (!want_address && have_address && ret)
9542 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9544 if (size > DWARF2_ADDR_SIZE || size == -1)
9545 return 0;
9546 else if (size == DWARF2_ADDR_SIZE)
9547 op = DW_OP_deref;
9548 else
9549 op = DW_OP_deref_size;
9551 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9554 return ret;
9557 static inline dw_loc_descr_ref
9558 loc_descriptor_from_tree (tree loc)
9560 return loc_descriptor_from_tree_1 (loc, 2);
9563 /* Given a value, round it up to the lowest multiple of `boundary'
9564 which is not less than the value itself. */
9566 static inline HOST_WIDE_INT
9567 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9569 return (((value + boundary - 1) / boundary) * boundary);
9572 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9573 pointer to the declared type for the relevant field variable, or return
9574 `integer_type_node' if the given node turns out to be an
9575 ERROR_MARK node. */
9577 static inline tree
9578 field_type (tree decl)
9580 tree type;
9582 if (TREE_CODE (decl) == ERROR_MARK)
9583 return integer_type_node;
9585 type = DECL_BIT_FIELD_TYPE (decl);
9586 if (type == NULL_TREE)
9587 type = TREE_TYPE (decl);
9589 return type;
9592 /* Given a pointer to a tree node, return the alignment in bits for
9593 it, or else return BITS_PER_WORD if the node actually turns out to
9594 be an ERROR_MARK node. */
9596 static inline unsigned
9597 simple_type_align_in_bits (tree type)
9599 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9602 static inline unsigned
9603 simple_decl_align_in_bits (tree decl)
9605 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9608 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9609 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9610 or return 0 if we are unable to determine what that offset is, either
9611 because the argument turns out to be a pointer to an ERROR_MARK node, or
9612 because the offset is actually variable. (We can't handle the latter case
9613 just yet). */
9615 static HOST_WIDE_INT
9616 field_byte_offset (tree decl)
9618 unsigned int type_align_in_bits;
9619 unsigned int decl_align_in_bits;
9620 unsigned HOST_WIDE_INT type_size_in_bits;
9621 HOST_WIDE_INT object_offset_in_bits;
9622 tree type;
9623 tree field_size_tree;
9624 HOST_WIDE_INT bitpos_int;
9625 HOST_WIDE_INT deepest_bitpos;
9626 unsigned HOST_WIDE_INT field_size_in_bits;
9628 if (TREE_CODE (decl) == ERROR_MARK)
9629 return 0;
9631 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9633 type = field_type (decl);
9634 field_size_tree = DECL_SIZE (decl);
9636 /* The size could be unspecified if there was an error, or for
9637 a flexible array member. */
9638 if (! field_size_tree)
9639 field_size_tree = bitsize_zero_node;
9641 /* We cannot yet cope with fields whose positions are variable, so
9642 for now, when we see such things, we simply return 0. Someday, we may
9643 be able to handle such cases, but it will be damn difficult. */
9644 if (! host_integerp (bit_position (decl), 0))
9645 return 0;
9647 bitpos_int = int_bit_position (decl);
9649 /* If we don't know the size of the field, pretend it's a full word. */
9650 if (host_integerp (field_size_tree, 1))
9651 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9652 else
9653 field_size_in_bits = BITS_PER_WORD;
9655 type_size_in_bits = simple_type_size_in_bits (type);
9656 type_align_in_bits = simple_type_align_in_bits (type);
9657 decl_align_in_bits = simple_decl_align_in_bits (decl);
9659 /* The GCC front-end doesn't make any attempt to keep track of the starting
9660 bit offset (relative to the start of the containing structure type) of the
9661 hypothetical "containing object" for a bit-field. Thus, when computing
9662 the byte offset value for the start of the "containing object" of a
9663 bit-field, we must deduce this information on our own. This can be rather
9664 tricky to do in some cases. For example, handling the following structure
9665 type definition when compiling for an i386/i486 target (which only aligns
9666 long long's to 32-bit boundaries) can be very tricky:
9668 struct S { int field1; long long field2:31; };
9670 Fortunately, there is a simple rule-of-thumb which can be used in such
9671 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9672 structure shown above. It decides to do this based upon one simple rule
9673 for bit-field allocation. GCC allocates each "containing object" for each
9674 bit-field at the first (i.e. lowest addressed) legitimate alignment
9675 boundary (based upon the required minimum alignment for the declared type
9676 of the field) which it can possibly use, subject to the condition that
9677 there is still enough available space remaining in the containing object
9678 (when allocated at the selected point) to fully accommodate all of the
9679 bits of the bit-field itself.
9681 This simple rule makes it obvious why GCC allocates 8 bytes for each
9682 object of the structure type shown above. When looking for a place to
9683 allocate the "containing object" for `field2', the compiler simply tries
9684 to allocate a 64-bit "containing object" at each successive 32-bit
9685 boundary (starting at zero) until it finds a place to allocate that 64-
9686 bit field such that at least 31 contiguous (and previously unallocated)
9687 bits remain within that selected 64 bit field. (As it turns out, for the
9688 example above, the compiler finds it is OK to allocate the "containing
9689 object" 64-bit field at bit-offset zero within the structure type.)
9691 Here we attempt to work backwards from the limited set of facts we're
9692 given, and we try to deduce from those facts, where GCC must have believed
9693 that the containing object started (within the structure type). The value
9694 we deduce is then used (by the callers of this routine) to generate
9695 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9696 and, in the case of DW_AT_location, regular fields as well). */
9698 /* Figure out the bit-distance from the start of the structure to the
9699 "deepest" bit of the bit-field. */
9700 deepest_bitpos = bitpos_int + field_size_in_bits;
9702 /* This is the tricky part. Use some fancy footwork to deduce where the
9703 lowest addressed bit of the containing object must be. */
9704 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9706 /* Round up to type_align by default. This works best for bitfields. */
9707 object_offset_in_bits += type_align_in_bits - 1;
9708 object_offset_in_bits /= type_align_in_bits;
9709 object_offset_in_bits *= type_align_in_bits;
9711 if (object_offset_in_bits > bitpos_int)
9713 /* Sigh, the decl must be packed. */
9714 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9716 /* Round up to decl_align instead. */
9717 object_offset_in_bits += decl_align_in_bits - 1;
9718 object_offset_in_bits /= decl_align_in_bits;
9719 object_offset_in_bits *= decl_align_in_bits;
9722 return object_offset_in_bits / BITS_PER_UNIT;
9725 /* The following routines define various Dwarf attributes and any data
9726 associated with them. */
9728 /* Add a location description attribute value to a DIE.
9730 This emits location attributes suitable for whole variables and
9731 whole parameters. Note that the location attributes for struct fields are
9732 generated by the routine `data_member_location_attribute' below. */
9734 static inline void
9735 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9736 dw_loc_descr_ref descr)
9738 if (descr != 0)
9739 add_AT_loc (die, attr_kind, descr);
9742 /* Attach the specialized form of location attribute used for data members of
9743 struct and union types. In the special case of a FIELD_DECL node which
9744 represents a bit-field, the "offset" part of this special location
9745 descriptor must indicate the distance in bytes from the lowest-addressed
9746 byte of the containing struct or union type to the lowest-addressed byte of
9747 the "containing object" for the bit-field. (See the `field_byte_offset'
9748 function above).
9750 For any given bit-field, the "containing object" is a hypothetical object
9751 (of some integral or enum type) within which the given bit-field lives. The
9752 type of this hypothetical "containing object" is always the same as the
9753 declared type of the individual bit-field itself (for GCC anyway... the
9754 DWARF spec doesn't actually mandate this). Note that it is the size (in
9755 bytes) of the hypothetical "containing object" which will be given in the
9756 DW_AT_byte_size attribute for this bit-field. (See the
9757 `byte_size_attribute' function below.) It is also used when calculating the
9758 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9759 function below.) */
9761 static void
9762 add_data_member_location_attribute (dw_die_ref die, tree decl)
9764 HOST_WIDE_INT offset;
9765 dw_loc_descr_ref loc_descr = 0;
9767 if (TREE_CODE (decl) == TREE_BINFO)
9769 /* We're working on the TAG_inheritance for a base class. */
9770 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9772 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9773 aren't at a fixed offset from all (sub)objects of the same
9774 type. We need to extract the appropriate offset from our
9775 vtable. The following dwarf expression means
9777 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9779 This is specific to the V3 ABI, of course. */
9781 dw_loc_descr_ref tmp;
9783 /* Make a copy of the object address. */
9784 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9785 add_loc_descr (&loc_descr, tmp);
9787 /* Extract the vtable address. */
9788 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9789 add_loc_descr (&loc_descr, tmp);
9791 /* Calculate the address of the offset. */
9792 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9793 gcc_assert (offset < 0);
9795 tmp = int_loc_descriptor (-offset);
9796 add_loc_descr (&loc_descr, tmp);
9797 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9798 add_loc_descr (&loc_descr, tmp);
9800 /* Extract the offset. */
9801 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9802 add_loc_descr (&loc_descr, tmp);
9804 /* Add it to the object address. */
9805 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9806 add_loc_descr (&loc_descr, tmp);
9808 else
9809 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9811 else
9812 offset = field_byte_offset (decl);
9814 if (! loc_descr)
9816 enum dwarf_location_atom op;
9818 /* The DWARF2 standard says that we should assume that the structure
9819 address is already on the stack, so we can specify a structure field
9820 address by using DW_OP_plus_uconst. */
9822 #ifdef MIPS_DEBUGGING_INFO
9823 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9824 operator correctly. It works only if we leave the offset on the
9825 stack. */
9826 op = DW_OP_constu;
9827 #else
9828 op = DW_OP_plus_uconst;
9829 #endif
9831 loc_descr = new_loc_descr (op, offset, 0);
9834 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9837 /* Writes integer values to dw_vec_const array. */
9839 static void
9840 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9842 while (size != 0)
9844 *dest++ = val & 0xff;
9845 val >>= 8;
9846 --size;
9850 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9852 static HOST_WIDE_INT
9853 extract_int (const unsigned char *src, unsigned int size)
9855 HOST_WIDE_INT val = 0;
9857 src += size;
9858 while (size != 0)
9860 val <<= 8;
9861 val |= *--src & 0xff;
9862 --size;
9864 return val;
9867 /* Writes floating point values to dw_vec_const array. */
9869 static void
9870 insert_float (rtx rtl, unsigned char *array)
9872 REAL_VALUE_TYPE rv;
9873 long val[4];
9874 int i;
9876 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9877 real_to_target (val, &rv, GET_MODE (rtl));
9879 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9880 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9882 insert_int (val[i], 4, array);
9883 array += 4;
9887 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9888 does not have a "location" either in memory or in a register. These
9889 things can arise in GNU C when a constant is passed as an actual parameter
9890 to an inlined function. They can also arise in C++ where declared
9891 constants do not necessarily get memory "homes". */
9893 static void
9894 add_const_value_attribute (dw_die_ref die, rtx rtl)
9896 switch (GET_CODE (rtl))
9898 case CONST_INT:
9900 HOST_WIDE_INT val = INTVAL (rtl);
9902 if (val < 0)
9903 add_AT_int (die, DW_AT_const_value, val);
9904 else
9905 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9907 break;
9909 case CONST_DOUBLE:
9910 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9911 floating-point constant. A CONST_DOUBLE is used whenever the
9912 constant requires more than one word in order to be adequately
9913 represented. We output CONST_DOUBLEs as blocks. */
9915 enum machine_mode mode = GET_MODE (rtl);
9917 if (SCALAR_FLOAT_MODE_P (mode))
9919 unsigned int length = GET_MODE_SIZE (mode);
9920 unsigned char *array = ggc_alloc (length);
9922 insert_float (rtl, array);
9923 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9925 else
9927 /* ??? We really should be using HOST_WIDE_INT throughout. */
9928 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9930 add_AT_long_long (die, DW_AT_const_value,
9931 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9934 break;
9936 case CONST_VECTOR:
9938 enum machine_mode mode = GET_MODE (rtl);
9939 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9940 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9941 unsigned char *array = ggc_alloc (length * elt_size);
9942 unsigned int i;
9943 unsigned char *p;
9945 switch (GET_MODE_CLASS (mode))
9947 case MODE_VECTOR_INT:
9948 for (i = 0, p = array; i < length; i++, p += elt_size)
9950 rtx elt = CONST_VECTOR_ELT (rtl, i);
9951 HOST_WIDE_INT lo, hi;
9953 switch (GET_CODE (elt))
9955 case CONST_INT:
9956 lo = INTVAL (elt);
9957 hi = -(lo < 0);
9958 break;
9960 case CONST_DOUBLE:
9961 lo = CONST_DOUBLE_LOW (elt);
9962 hi = CONST_DOUBLE_HIGH (elt);
9963 break;
9965 default:
9966 gcc_unreachable ();
9969 if (elt_size <= sizeof (HOST_WIDE_INT))
9970 insert_int (lo, elt_size, p);
9971 else
9973 unsigned char *p0 = p;
9974 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9976 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9977 if (WORDS_BIG_ENDIAN)
9979 p0 = p1;
9980 p1 = p;
9982 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9983 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9986 break;
9988 case MODE_VECTOR_FLOAT:
9989 for (i = 0, p = array; i < length; i++, p += elt_size)
9991 rtx elt = CONST_VECTOR_ELT (rtl, i);
9992 insert_float (elt, p);
9994 break;
9996 default:
9997 gcc_unreachable ();
10000 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10002 break;
10004 case CONST_STRING:
10005 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10006 break;
10008 case SYMBOL_REF:
10009 case LABEL_REF:
10010 case CONST:
10011 add_AT_addr (die, DW_AT_const_value, rtl);
10012 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10013 break;
10015 case PLUS:
10016 /* In cases where an inlined instance of an inline function is passed
10017 the address of an `auto' variable (which is local to the caller) we
10018 can get a situation where the DECL_RTL of the artificial local
10019 variable (for the inlining) which acts as a stand-in for the
10020 corresponding formal parameter (of the inline function) will look
10021 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10022 exactly a compile-time constant expression, but it isn't the address
10023 of the (artificial) local variable either. Rather, it represents the
10024 *value* which the artificial local variable always has during its
10025 lifetime. We currently have no way to represent such quasi-constant
10026 values in Dwarf, so for now we just punt and generate nothing. */
10027 break;
10029 default:
10030 /* No other kinds of rtx should be possible here. */
10031 gcc_unreachable ();
10036 /* Determine whether the evaluation of EXPR references any variables
10037 or functions which aren't otherwise used (and therefore may not be
10038 output). */
10039 static tree
10040 reference_to_unused (tree * tp, int * walk_subtrees,
10041 void * data ATTRIBUTE_UNUSED)
10043 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10044 *walk_subtrees = 0;
10046 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10047 && ! TREE_ASM_WRITTEN (*tp))
10048 return *tp;
10049 else
10050 return NULL_TREE;
10053 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10054 for use in a later add_const_value_attribute call. */
10056 static rtx
10057 rtl_for_decl_init (tree init, tree type)
10059 rtx rtl = NULL_RTX;
10061 /* If a variable is initialized with a string constant without embedded
10062 zeros, build CONST_STRING. */
10063 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10065 tree enttype = TREE_TYPE (type);
10066 tree domain = TYPE_DOMAIN (type);
10067 enum machine_mode mode = TYPE_MODE (enttype);
10069 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10070 && domain
10071 && integer_zerop (TYPE_MIN_VALUE (domain))
10072 && compare_tree_int (TYPE_MAX_VALUE (domain),
10073 TREE_STRING_LENGTH (init) - 1) == 0
10074 && ((size_t) TREE_STRING_LENGTH (init)
10075 == strlen (TREE_STRING_POINTER (init)) + 1))
10076 rtl = gen_rtx_CONST_STRING (VOIDmode,
10077 ggc_strdup (TREE_STRING_POINTER (init)));
10079 /* Other aggregates, and complex values, could be represented using
10080 CONCAT: FIXME! */
10081 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10083 /* Vectors only work if their mode is supported by the target.
10084 FIXME: generic vectors ought to work too. */
10085 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10087 /* If the initializer is something that we know will expand into an
10088 immediate RTL constant, expand it now. We must be careful not to
10089 reference variables which won't be output. */
10090 else if (initializer_constant_valid_p (init, type)
10091 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10093 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10095 /* If expand_expr returns a MEM, it wasn't immediate. */
10096 gcc_assert (!rtl || !MEM_P (rtl));
10099 return rtl;
10102 /* Generate RTL for the variable DECL to represent its location. */
10104 static rtx
10105 rtl_for_decl_location (tree decl)
10107 rtx rtl;
10109 /* Here we have to decide where we are going to say the parameter "lives"
10110 (as far as the debugger is concerned). We only have a couple of
10111 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10113 DECL_RTL normally indicates where the parameter lives during most of the
10114 activation of the function. If optimization is enabled however, this
10115 could be either NULL or else a pseudo-reg. Both of those cases indicate
10116 that the parameter doesn't really live anywhere (as far as the code
10117 generation parts of GCC are concerned) during most of the function's
10118 activation. That will happen (for example) if the parameter is never
10119 referenced within the function.
10121 We could just generate a location descriptor here for all non-NULL
10122 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10123 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10124 where DECL_RTL is NULL or is a pseudo-reg.
10126 Note however that we can only get away with using DECL_INCOMING_RTL as
10127 a backup substitute for DECL_RTL in certain limited cases. In cases
10128 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10129 we can be sure that the parameter was passed using the same type as it is
10130 declared to have within the function, and that its DECL_INCOMING_RTL
10131 points us to a place where a value of that type is passed.
10133 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10134 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10135 because in these cases DECL_INCOMING_RTL points us to a value of some
10136 type which is *different* from the type of the parameter itself. Thus,
10137 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10138 such cases, the debugger would end up (for example) trying to fetch a
10139 `float' from a place which actually contains the first part of a
10140 `double'. That would lead to really incorrect and confusing
10141 output at debug-time.
10143 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10144 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10145 are a couple of exceptions however. On little-endian machines we can
10146 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10147 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10148 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10149 when (on a little-endian machine) a non-prototyped function has a
10150 parameter declared to be of type `short' or `char'. In such cases,
10151 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10152 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10153 passed `int' value. If the debugger then uses that address to fetch
10154 a `short' or a `char' (on a little-endian machine) the result will be
10155 the correct data, so we allow for such exceptional cases below.
10157 Note that our goal here is to describe the place where the given formal
10158 parameter lives during most of the function's activation (i.e. between the
10159 end of the prologue and the start of the epilogue). We'll do that as best
10160 as we can. Note however that if the given formal parameter is modified
10161 sometime during the execution of the function, then a stack backtrace (at
10162 debug-time) will show the function as having been called with the *new*
10163 value rather than the value which was originally passed in. This happens
10164 rarely enough that it is not a major problem, but it *is* a problem, and
10165 I'd like to fix it.
10167 A future version of dwarf2out.c may generate two additional attributes for
10168 any given DW_TAG_formal_parameter DIE which will describe the "passed
10169 type" and the "passed location" for the given formal parameter in addition
10170 to the attributes we now generate to indicate the "declared type" and the
10171 "active location" for each parameter. This additional set of attributes
10172 could be used by debuggers for stack backtraces. Separately, note that
10173 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10174 This happens (for example) for inlined-instances of inline function formal
10175 parameters which are never referenced. This really shouldn't be
10176 happening. All PARM_DECL nodes should get valid non-NULL
10177 DECL_INCOMING_RTL values. FIXME. */
10179 /* Use DECL_RTL as the "location" unless we find something better. */
10180 rtl = DECL_RTL_IF_SET (decl);
10182 /* When generating abstract instances, ignore everything except
10183 constants, symbols living in memory, and symbols living in
10184 fixed registers. */
10185 if (! reload_completed)
10187 if (rtl
10188 && (CONSTANT_P (rtl)
10189 || (MEM_P (rtl)
10190 && CONSTANT_P (XEXP (rtl, 0)))
10191 || (REG_P (rtl)
10192 && TREE_CODE (decl) == VAR_DECL
10193 && TREE_STATIC (decl))))
10195 rtl = targetm.delegitimize_address (rtl);
10196 return rtl;
10198 rtl = NULL_RTX;
10200 else if (TREE_CODE (decl) == PARM_DECL)
10202 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10204 tree declared_type = TREE_TYPE (decl);
10205 tree passed_type = DECL_ARG_TYPE (decl);
10206 enum machine_mode dmode = TYPE_MODE (declared_type);
10207 enum machine_mode pmode = TYPE_MODE (passed_type);
10209 /* This decl represents a formal parameter which was optimized out.
10210 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10211 all cases where (rtl == NULL_RTX) just below. */
10212 if (dmode == pmode)
10213 rtl = DECL_INCOMING_RTL (decl);
10214 else if (SCALAR_INT_MODE_P (dmode)
10215 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10216 && DECL_INCOMING_RTL (decl))
10218 rtx inc = DECL_INCOMING_RTL (decl);
10219 if (REG_P (inc))
10220 rtl = inc;
10221 else if (MEM_P (inc))
10223 if (BYTES_BIG_ENDIAN)
10224 rtl = adjust_address_nv (inc, dmode,
10225 GET_MODE_SIZE (pmode)
10226 - GET_MODE_SIZE (dmode));
10227 else
10228 rtl = inc;
10233 /* If the parm was passed in registers, but lives on the stack, then
10234 make a big endian correction if the mode of the type of the
10235 parameter is not the same as the mode of the rtl. */
10236 /* ??? This is the same series of checks that are made in dbxout.c before
10237 we reach the big endian correction code there. It isn't clear if all
10238 of these checks are necessary here, but keeping them all is the safe
10239 thing to do. */
10240 else if (MEM_P (rtl)
10241 && XEXP (rtl, 0) != const0_rtx
10242 && ! CONSTANT_P (XEXP (rtl, 0))
10243 /* Not passed in memory. */
10244 && !MEM_P (DECL_INCOMING_RTL (decl))
10245 /* Not passed by invisible reference. */
10246 && (!REG_P (XEXP (rtl, 0))
10247 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10248 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10249 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10250 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10251 #endif
10253 /* Big endian correction check. */
10254 && BYTES_BIG_ENDIAN
10255 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10256 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10257 < UNITS_PER_WORD))
10259 int offset = (UNITS_PER_WORD
10260 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10262 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10263 plus_constant (XEXP (rtl, 0), offset));
10266 else if (TREE_CODE (decl) == VAR_DECL
10267 && rtl
10268 && MEM_P (rtl)
10269 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10270 && BYTES_BIG_ENDIAN)
10272 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10273 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10275 /* If a variable is declared "register" yet is smaller than
10276 a register, then if we store the variable to memory, it
10277 looks like we're storing a register-sized value, when in
10278 fact we are not. We need to adjust the offset of the
10279 storage location to reflect the actual value's bytes,
10280 else gdb will not be able to display it. */
10281 if (rsize > dsize)
10282 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10283 plus_constant (XEXP (rtl, 0), rsize-dsize));
10286 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10287 and will have been substituted directly into all expressions that use it.
10288 C does not have such a concept, but C++ and other languages do. */
10289 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10290 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10292 if (rtl)
10293 rtl = targetm.delegitimize_address (rtl);
10295 /* If we don't look past the constant pool, we risk emitting a
10296 reference to a constant pool entry that isn't referenced from
10297 code, and thus is not emitted. */
10298 if (rtl)
10299 rtl = avoid_constant_pool_reference (rtl);
10301 return rtl;
10304 /* We need to figure out what section we should use as the base for the
10305 address ranges where a given location is valid.
10306 1. If this particular DECL has a section associated with it, use that.
10307 2. If this function has a section associated with it, use that.
10308 3. Otherwise, use the text section.
10309 XXX: If you split a variable across multiple sections, we won't notice. */
10311 static const char *
10312 secname_for_decl (tree decl)
10314 const char *secname;
10316 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10318 tree sectree = DECL_SECTION_NAME (decl);
10319 secname = TREE_STRING_POINTER (sectree);
10321 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10323 tree sectree = DECL_SECTION_NAME (current_function_decl);
10324 secname = TREE_STRING_POINTER (sectree);
10326 else if (cfun && in_cold_section_p)
10327 secname = cfun->cold_section_label;
10328 else
10329 secname = text_section_label;
10331 return secname;
10334 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10335 data attribute for a variable or a parameter. We generate the
10336 DW_AT_const_value attribute only in those cases where the given variable
10337 or parameter does not have a true "location" either in memory or in a
10338 register. This can happen (for example) when a constant is passed as an
10339 actual argument in a call to an inline function. (It's possible that
10340 these things can crop up in other ways also.) Note that one type of
10341 constant value which can be passed into an inlined function is a constant
10342 pointer. This can happen for example if an actual argument in an inlined
10343 function call evaluates to a compile-time constant address. */
10345 static void
10346 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10347 enum dwarf_attribute attr)
10349 rtx rtl;
10350 dw_loc_descr_ref descr;
10351 var_loc_list *loc_list;
10352 struct var_loc_node *node;
10353 if (TREE_CODE (decl) == ERROR_MARK)
10354 return;
10356 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10357 || TREE_CODE (decl) == RESULT_DECL);
10359 /* See if we possibly have multiple locations for this variable. */
10360 loc_list = lookup_decl_loc (decl);
10362 /* If it truly has multiple locations, the first and last node will
10363 differ. */
10364 if (loc_list && loc_list->first != loc_list->last)
10366 const char *endname, *secname;
10367 dw_loc_list_ref list;
10368 rtx varloc;
10370 /* Now that we know what section we are using for a base,
10371 actually construct the list of locations.
10372 The first location information is what is passed to the
10373 function that creates the location list, and the remaining
10374 locations just get added on to that list.
10375 Note that we only know the start address for a location
10376 (IE location changes), so to build the range, we use
10377 the range [current location start, next location start].
10378 This means we have to special case the last node, and generate
10379 a range of [last location start, end of function label]. */
10381 node = loc_list->first;
10382 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10383 secname = secname_for_decl (decl);
10385 list = new_loc_list (loc_descriptor (varloc),
10386 node->label, node->next->label, secname, 1);
10387 node = node->next;
10389 for (; node->next; node = node->next)
10390 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10392 /* The variable has a location between NODE->LABEL and
10393 NODE->NEXT->LABEL. */
10394 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10395 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10396 node->label, node->next->label, secname);
10399 /* If the variable has a location at the last label
10400 it keeps its location until the end of function. */
10401 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10403 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10405 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10406 if (!current_function_decl)
10407 endname = text_end_label;
10408 else
10410 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10411 current_function_funcdef_no);
10412 endname = ggc_strdup (label_id);
10414 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10415 node->label, endname, secname);
10418 /* Finally, add the location list to the DIE, and we are done. */
10419 add_AT_loc_list (die, attr, list);
10420 return;
10423 /* Try to get some constant RTL for this decl, and use that as the value of
10424 the location. */
10426 rtl = rtl_for_decl_location (decl);
10427 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10429 add_const_value_attribute (die, rtl);
10430 return;
10433 /* If we have tried to generate the location otherwise, and it
10434 didn't work out (we wouldn't be here if we did), and we have a one entry
10435 location list, try generating a location from that. */
10436 if (loc_list && loc_list->first)
10438 node = loc_list->first;
10439 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10440 if (descr)
10442 add_AT_location_description (die, attr, descr);
10443 return;
10447 /* We couldn't get any rtl, so try directly generating the location
10448 description from the tree. */
10449 descr = loc_descriptor_from_tree (decl);
10450 if (descr)
10452 add_AT_location_description (die, attr, descr);
10453 return;
10455 /* None of that worked, so it must not really have a location;
10456 try adding a constant value attribute from the DECL_INITIAL. */
10457 tree_add_const_value_attribute (die, decl);
10460 /* If we don't have a copy of this variable in memory for some reason (such
10461 as a C++ member constant that doesn't have an out-of-line definition),
10462 we should tell the debugger about the constant value. */
10464 static void
10465 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10467 tree init = DECL_INITIAL (decl);
10468 tree type = TREE_TYPE (decl);
10469 rtx rtl;
10471 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10472 /* OK */;
10473 else
10474 return;
10476 rtl = rtl_for_decl_init (init, type);
10477 if (rtl)
10478 add_const_value_attribute (var_die, rtl);
10481 /* Convert the CFI instructions for the current function into a
10482 location list. This is used for DW_AT_frame_base when we targeting
10483 a dwarf2 consumer that does not support the dwarf3
10484 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10485 expressions. */
10487 static dw_loc_list_ref
10488 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10490 dw_fde_ref fde;
10491 dw_loc_list_ref list, *list_tail;
10492 dw_cfi_ref cfi;
10493 dw_cfa_location last_cfa, next_cfa;
10494 const char *start_label, *last_label, *section;
10496 fde = &fde_table[fde_table_in_use - 1];
10498 section = secname_for_decl (current_function_decl);
10499 list_tail = &list;
10500 list = NULL;
10502 next_cfa.reg = INVALID_REGNUM;
10503 next_cfa.offset = 0;
10504 next_cfa.indirect = 0;
10505 next_cfa.base_offset = 0;
10507 start_label = fde->dw_fde_begin;
10509 /* ??? Bald assumption that the CIE opcode list does not contain
10510 advance opcodes. */
10511 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10512 lookup_cfa_1 (cfi, &next_cfa);
10514 last_cfa = next_cfa;
10515 last_label = start_label;
10517 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10518 switch (cfi->dw_cfi_opc)
10520 case DW_CFA_set_loc:
10521 case DW_CFA_advance_loc1:
10522 case DW_CFA_advance_loc2:
10523 case DW_CFA_advance_loc4:
10524 if (!cfa_equal_p (&last_cfa, &next_cfa))
10526 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10527 start_label, last_label, section,
10528 list == NULL);
10530 list_tail = &(*list_tail)->dw_loc_next;
10531 last_cfa = next_cfa;
10532 start_label = last_label;
10534 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10535 break;
10537 case DW_CFA_advance_loc:
10538 /* The encoding is complex enough that we should never emit this. */
10539 case DW_CFA_remember_state:
10540 case DW_CFA_restore_state:
10541 /* We don't handle these two in this function. It would be possible
10542 if it were to be required. */
10543 gcc_unreachable ();
10545 default:
10546 lookup_cfa_1 (cfi, &next_cfa);
10547 break;
10550 if (!cfa_equal_p (&last_cfa, &next_cfa))
10552 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10553 start_label, last_label, section,
10554 list == NULL);
10555 list_tail = &(*list_tail)->dw_loc_next;
10556 start_label = last_label;
10558 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10559 start_label, fde->dw_fde_end, section,
10560 list == NULL);
10562 return list;
10565 /* Compute a displacement from the "steady-state frame pointer" to the
10566 frame base (often the same as the CFA), and store it in
10567 frame_pointer_fb_offset. OFFSET is added to the displacement
10568 before the latter is negated. */
10570 static void
10571 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10573 rtx reg, elim;
10575 #ifdef FRAME_POINTER_CFA_OFFSET
10576 reg = frame_pointer_rtx;
10577 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10578 #else
10579 reg = arg_pointer_rtx;
10580 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10581 #endif
10583 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10584 if (GET_CODE (elim) == PLUS)
10586 offset += INTVAL (XEXP (elim, 1));
10587 elim = XEXP (elim, 0);
10589 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10590 : stack_pointer_rtx));
10592 frame_pointer_fb_offset = -offset;
10595 /* Generate a DW_AT_name attribute given some string value to be included as
10596 the value of the attribute. */
10598 static void
10599 add_name_attribute (dw_die_ref die, const char *name_string)
10601 if (name_string != NULL && *name_string != 0)
10603 if (demangle_name_func)
10604 name_string = (*demangle_name_func) (name_string);
10606 add_AT_string (die, DW_AT_name, name_string);
10610 /* Generate a DW_AT_comp_dir attribute for DIE. */
10612 static void
10613 add_comp_dir_attribute (dw_die_ref die)
10615 const char *wd = get_src_pwd ();
10616 if (wd != NULL)
10617 add_AT_string (die, DW_AT_comp_dir, wd);
10620 /* Given a tree node describing an array bound (either lower or upper) output
10621 a representation for that bound. */
10623 static void
10624 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10626 switch (TREE_CODE (bound))
10628 case ERROR_MARK:
10629 return;
10631 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10632 case INTEGER_CST:
10633 if (! host_integerp (bound, 0)
10634 || (bound_attr == DW_AT_lower_bound
10635 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10636 || (is_fortran () && integer_onep (bound)))))
10637 /* Use the default. */
10639 else
10640 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10641 break;
10643 case CONVERT_EXPR:
10644 case NOP_EXPR:
10645 case NON_LVALUE_EXPR:
10646 case VIEW_CONVERT_EXPR:
10647 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10648 break;
10650 case SAVE_EXPR:
10651 break;
10653 case VAR_DECL:
10654 case PARM_DECL:
10655 case RESULT_DECL:
10657 dw_die_ref decl_die = lookup_decl_die (bound);
10659 /* ??? Can this happen, or should the variable have been bound
10660 first? Probably it can, since I imagine that we try to create
10661 the types of parameters in the order in which they exist in
10662 the list, and won't have created a forward reference to a
10663 later parameter. */
10664 if (decl_die != NULL)
10665 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10666 break;
10669 default:
10671 /* Otherwise try to create a stack operation procedure to
10672 evaluate the value of the array bound. */
10674 dw_die_ref ctx, decl_die;
10675 dw_loc_descr_ref loc;
10677 loc = loc_descriptor_from_tree (bound);
10678 if (loc == NULL)
10679 break;
10681 if (current_function_decl == 0)
10682 ctx = comp_unit_die;
10683 else
10684 ctx = lookup_decl_die (current_function_decl);
10686 decl_die = new_die (DW_TAG_variable, ctx, bound);
10687 add_AT_flag (decl_die, DW_AT_artificial, 1);
10688 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10689 add_AT_loc (decl_die, DW_AT_location, loc);
10691 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10692 break;
10697 /* Note that the block of subscript information for an array type also
10698 includes information about the element type of type given array type. */
10700 static void
10701 add_subscript_info (dw_die_ref type_die, tree type)
10703 #ifndef MIPS_DEBUGGING_INFO
10704 unsigned dimension_number;
10705 #endif
10706 tree lower, upper;
10707 dw_die_ref subrange_die;
10709 /* The GNU compilers represent multidimensional array types as sequences of
10710 one dimensional array types whose element types are themselves array
10711 types. Here we squish that down, so that each multidimensional array
10712 type gets only one array_type DIE in the Dwarf debugging info. The draft
10713 Dwarf specification say that we are allowed to do this kind of
10714 compression in C (because there is no difference between an array or
10715 arrays and a multidimensional array in C) but for other source languages
10716 (e.g. Ada) we probably shouldn't do this. */
10718 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10719 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10720 We work around this by disabling this feature. See also
10721 gen_array_type_die. */
10722 #ifndef MIPS_DEBUGGING_INFO
10723 for (dimension_number = 0;
10724 TREE_CODE (type) == ARRAY_TYPE;
10725 type = TREE_TYPE (type), dimension_number++)
10726 #endif
10728 tree domain = TYPE_DOMAIN (type);
10730 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10731 and (in GNU C only) variable bounds. Handle all three forms
10732 here. */
10733 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10734 if (domain)
10736 /* We have an array type with specified bounds. */
10737 lower = TYPE_MIN_VALUE (domain);
10738 upper = TYPE_MAX_VALUE (domain);
10740 /* Define the index type. */
10741 if (TREE_TYPE (domain))
10743 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10744 TREE_TYPE field. We can't emit debug info for this
10745 because it is an unnamed integral type. */
10746 if (TREE_CODE (domain) == INTEGER_TYPE
10747 && TYPE_NAME (domain) == NULL_TREE
10748 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10749 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10751 else
10752 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10753 type_die);
10756 /* ??? If upper is NULL, the array has unspecified length,
10757 but it does have a lower bound. This happens with Fortran
10758 dimension arr(N:*)
10759 Since the debugger is definitely going to need to know N
10760 to produce useful results, go ahead and output the lower
10761 bound solo, and hope the debugger can cope. */
10763 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10764 if (upper)
10765 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10768 /* Otherwise we have an array type with an unspecified length. The
10769 DWARF-2 spec does not say how to handle this; let's just leave out the
10770 bounds. */
10774 static void
10775 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10777 unsigned size;
10779 switch (TREE_CODE (tree_node))
10781 case ERROR_MARK:
10782 size = 0;
10783 break;
10784 case ENUMERAL_TYPE:
10785 case RECORD_TYPE:
10786 case UNION_TYPE:
10787 case QUAL_UNION_TYPE:
10788 size = int_size_in_bytes (tree_node);
10789 break;
10790 case FIELD_DECL:
10791 /* For a data member of a struct or union, the DW_AT_byte_size is
10792 generally given as the number of bytes normally allocated for an
10793 object of the *declared* type of the member itself. This is true
10794 even for bit-fields. */
10795 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10796 break;
10797 default:
10798 gcc_unreachable ();
10801 /* Note that `size' might be -1 when we get to this point. If it is, that
10802 indicates that the byte size of the entity in question is variable. We
10803 have no good way of expressing this fact in Dwarf at the present time,
10804 so just let the -1 pass on through. */
10805 add_AT_unsigned (die, DW_AT_byte_size, size);
10808 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10809 which specifies the distance in bits from the highest order bit of the
10810 "containing object" for the bit-field to the highest order bit of the
10811 bit-field itself.
10813 For any given bit-field, the "containing object" is a hypothetical object
10814 (of some integral or enum type) within which the given bit-field lives. The
10815 type of this hypothetical "containing object" is always the same as the
10816 declared type of the individual bit-field itself. The determination of the
10817 exact location of the "containing object" for a bit-field is rather
10818 complicated. It's handled by the `field_byte_offset' function (above).
10820 Note that it is the size (in bytes) of the hypothetical "containing object"
10821 which will be given in the DW_AT_byte_size attribute for this bit-field.
10822 (See `byte_size_attribute' above). */
10824 static inline void
10825 add_bit_offset_attribute (dw_die_ref die, tree decl)
10827 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10828 tree type = DECL_BIT_FIELD_TYPE (decl);
10829 HOST_WIDE_INT bitpos_int;
10830 HOST_WIDE_INT highest_order_object_bit_offset;
10831 HOST_WIDE_INT highest_order_field_bit_offset;
10832 HOST_WIDE_INT unsigned bit_offset;
10834 /* Must be a field and a bit field. */
10835 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10837 /* We can't yet handle bit-fields whose offsets are variable, so if we
10838 encounter such things, just return without generating any attribute
10839 whatsoever. Likewise for variable or too large size. */
10840 if (! host_integerp (bit_position (decl), 0)
10841 || ! host_integerp (DECL_SIZE (decl), 1))
10842 return;
10844 bitpos_int = int_bit_position (decl);
10846 /* Note that the bit offset is always the distance (in bits) from the
10847 highest-order bit of the "containing object" to the highest-order bit of
10848 the bit-field itself. Since the "high-order end" of any object or field
10849 is different on big-endian and little-endian machines, the computation
10850 below must take account of these differences. */
10851 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10852 highest_order_field_bit_offset = bitpos_int;
10854 if (! BYTES_BIG_ENDIAN)
10856 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10857 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10860 bit_offset
10861 = (! BYTES_BIG_ENDIAN
10862 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10863 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10865 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10868 /* For a FIELD_DECL node which represents a bit field, output an attribute
10869 which specifies the length in bits of the given field. */
10871 static inline void
10872 add_bit_size_attribute (dw_die_ref die, tree decl)
10874 /* Must be a field and a bit field. */
10875 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10876 && DECL_BIT_FIELD_TYPE (decl));
10878 if (host_integerp (DECL_SIZE (decl), 1))
10879 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10882 /* If the compiled language is ANSI C, then add a 'prototyped'
10883 attribute, if arg types are given for the parameters of a function. */
10885 static inline void
10886 add_prototyped_attribute (dw_die_ref die, tree func_type)
10888 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10889 && TYPE_ARG_TYPES (func_type) != NULL)
10890 add_AT_flag (die, DW_AT_prototyped, 1);
10893 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10894 by looking in either the type declaration or object declaration
10895 equate table. */
10897 static inline void
10898 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10900 dw_die_ref origin_die = NULL;
10902 if (TREE_CODE (origin) != FUNCTION_DECL)
10904 /* We may have gotten separated from the block for the inlined
10905 function, if we're in an exception handler or some such; make
10906 sure that the abstract function has been written out.
10908 Doing this for nested functions is wrong, however; functions are
10909 distinct units, and our context might not even be inline. */
10910 tree fn = origin;
10912 if (TYPE_P (fn))
10913 fn = TYPE_STUB_DECL (fn);
10915 fn = decl_function_context (fn);
10916 if (fn)
10917 dwarf2out_abstract_function (fn);
10920 if (DECL_P (origin))
10921 origin_die = lookup_decl_die (origin);
10922 else if (TYPE_P (origin))
10923 origin_die = lookup_type_die (origin);
10925 /* XXX: Functions that are never lowered don't always have correct block
10926 trees (in the case of java, they simply have no block tree, in some other
10927 languages). For these functions, there is nothing we can really do to
10928 output correct debug info for inlined functions in all cases. Rather
10929 than die, we'll just produce deficient debug info now, in that we will
10930 have variables without a proper abstract origin. In the future, when all
10931 functions are lowered, we should re-add a gcc_assert (origin_die)
10932 here. */
10934 if (origin_die)
10935 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10938 /* We do not currently support the pure_virtual attribute. */
10940 static inline void
10941 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10943 if (DECL_VINDEX (func_decl))
10945 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10947 if (host_integerp (DECL_VINDEX (func_decl), 0))
10948 add_AT_loc (die, DW_AT_vtable_elem_location,
10949 new_loc_descr (DW_OP_constu,
10950 tree_low_cst (DECL_VINDEX (func_decl), 0),
10951 0));
10953 /* GNU extension: Record what type this method came from originally. */
10954 if (debug_info_level > DINFO_LEVEL_TERSE)
10955 add_AT_die_ref (die, DW_AT_containing_type,
10956 lookup_type_die (DECL_CONTEXT (func_decl)));
10960 /* Add source coordinate attributes for the given decl. */
10962 static void
10963 add_src_coords_attributes (dw_die_ref die, tree decl)
10965 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10967 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10968 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10971 /* Add a DW_AT_name attribute and source coordinate attribute for the
10972 given decl, but only if it actually has a name. */
10974 static void
10975 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10977 tree decl_name;
10979 decl_name = DECL_NAME (decl);
10980 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10982 add_name_attribute (die, dwarf2_name (decl, 0));
10983 if (! DECL_ARTIFICIAL (decl))
10984 add_src_coords_attributes (die, decl);
10986 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10987 && TREE_PUBLIC (decl)
10988 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10989 && !DECL_ABSTRACT (decl)
10990 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10991 add_AT_string (die, DW_AT_MIPS_linkage_name,
10992 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10995 #ifdef VMS_DEBUGGING_INFO
10996 /* Get the function's name, as described by its RTL. This may be different
10997 from the DECL_NAME name used in the source file. */
10998 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11000 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11001 XEXP (DECL_RTL (decl), 0));
11002 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11004 #endif
11007 /* Push a new declaration scope. */
11009 static void
11010 push_decl_scope (tree scope)
11012 VEC_safe_push (tree, gc, decl_scope_table, scope);
11015 /* Pop a declaration scope. */
11017 static inline void
11018 pop_decl_scope (void)
11020 VEC_pop (tree, decl_scope_table);
11023 /* Return the DIE for the scope that immediately contains this type.
11024 Non-named types get global scope. Named types nested in other
11025 types get their containing scope if it's open, or global scope
11026 otherwise. All other types (i.e. function-local named types) get
11027 the current active scope. */
11029 static dw_die_ref
11030 scope_die_for (tree t, dw_die_ref context_die)
11032 dw_die_ref scope_die = NULL;
11033 tree containing_scope;
11034 int i;
11036 /* Non-types always go in the current scope. */
11037 gcc_assert (TYPE_P (t));
11039 containing_scope = TYPE_CONTEXT (t);
11041 /* Use the containing namespace if it was passed in (for a declaration). */
11042 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11044 if (context_die == lookup_decl_die (containing_scope))
11045 /* OK */;
11046 else
11047 containing_scope = NULL_TREE;
11050 /* Ignore function type "scopes" from the C frontend. They mean that
11051 a tagged type is local to a parmlist of a function declarator, but
11052 that isn't useful to DWARF. */
11053 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11054 containing_scope = NULL_TREE;
11056 if (containing_scope == NULL_TREE)
11057 scope_die = comp_unit_die;
11058 else if (TYPE_P (containing_scope))
11060 /* For types, we can just look up the appropriate DIE. But
11061 first we check to see if we're in the middle of emitting it
11062 so we know where the new DIE should go. */
11063 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11064 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11065 break;
11067 if (i < 0)
11069 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11070 || TREE_ASM_WRITTEN (containing_scope));
11072 /* If none of the current dies are suitable, we get file scope. */
11073 scope_die = comp_unit_die;
11075 else
11076 scope_die = lookup_type_die (containing_scope);
11078 else
11079 scope_die = context_die;
11081 return scope_die;
11084 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11086 static inline int
11087 local_scope_p (dw_die_ref context_die)
11089 for (; context_die; context_die = context_die->die_parent)
11090 if (context_die->die_tag == DW_TAG_inlined_subroutine
11091 || context_die->die_tag == DW_TAG_subprogram)
11092 return 1;
11094 return 0;
11097 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11098 whether or not to treat a DIE in this context as a declaration. */
11100 static inline int
11101 class_or_namespace_scope_p (dw_die_ref context_die)
11103 return (context_die
11104 && (context_die->die_tag == DW_TAG_structure_type
11105 || context_die->die_tag == DW_TAG_union_type
11106 || context_die->die_tag == DW_TAG_namespace));
11109 /* Many forms of DIEs require a "type description" attribute. This
11110 routine locates the proper "type descriptor" die for the type given
11111 by 'type', and adds a DW_AT_type attribute below the given die. */
11113 static void
11114 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11115 int decl_volatile, dw_die_ref context_die)
11117 enum tree_code code = TREE_CODE (type);
11118 dw_die_ref type_die = NULL;
11120 /* ??? If this type is an unnamed subrange type of an integral or
11121 floating-point type, use the inner type. This is because we have no
11122 support for unnamed types in base_type_die. This can happen if this is
11123 an Ada subrange type. Correct solution is emit a subrange type die. */
11124 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11125 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11126 type = TREE_TYPE (type), code = TREE_CODE (type);
11128 if (code == ERROR_MARK
11129 /* Handle a special case. For functions whose return type is void, we
11130 generate *no* type attribute. (Note that no object may have type
11131 `void', so this only applies to function return types). */
11132 || code == VOID_TYPE)
11133 return;
11135 type_die = modified_type_die (type,
11136 decl_const || TYPE_READONLY (type),
11137 decl_volatile || TYPE_VOLATILE (type),
11138 context_die);
11140 if (type_die != NULL)
11141 add_AT_die_ref (object_die, DW_AT_type, type_die);
11144 /* Given an object die, add the calling convention attribute for the
11145 function call type. */
11146 static void
11147 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11149 enum dwarf_calling_convention value = DW_CC_normal;
11151 value = targetm.dwarf_calling_convention (type);
11153 /* Only add the attribute if the backend requests it, and
11154 is not DW_CC_normal. */
11155 if (value && (value != DW_CC_normal))
11156 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11159 /* Given a tree pointer to a struct, class, union, or enum type node, return
11160 a pointer to the (string) tag name for the given type, or zero if the type
11161 was declared without a tag. */
11163 static const char *
11164 type_tag (tree type)
11166 const char *name = 0;
11168 if (TYPE_NAME (type) != 0)
11170 tree t = 0;
11172 /* Find the IDENTIFIER_NODE for the type name. */
11173 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11174 t = TYPE_NAME (type);
11176 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11177 a TYPE_DECL node, regardless of whether or not a `typedef' was
11178 involved. */
11179 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11180 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11181 t = DECL_NAME (TYPE_NAME (type));
11183 /* Now get the name as a string, or invent one. */
11184 if (t != 0)
11185 name = IDENTIFIER_POINTER (t);
11188 return (name == 0 || *name == '\0') ? 0 : name;
11191 /* Return the type associated with a data member, make a special check
11192 for bit field types. */
11194 static inline tree
11195 member_declared_type (tree member)
11197 return (DECL_BIT_FIELD_TYPE (member)
11198 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11201 /* Get the decl's label, as described by its RTL. This may be different
11202 from the DECL_NAME name used in the source file. */
11204 #if 0
11205 static const char *
11206 decl_start_label (tree decl)
11208 rtx x;
11209 const char *fnname;
11211 x = DECL_RTL (decl);
11212 gcc_assert (MEM_P (x));
11214 x = XEXP (x, 0);
11215 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11217 fnname = XSTR (x, 0);
11218 return fnname;
11220 #endif
11222 /* These routines generate the internal representation of the DIE's for
11223 the compilation unit. Debugging information is collected by walking
11224 the declaration trees passed in from dwarf2out_decl(). */
11226 static void
11227 gen_array_type_die (tree type, dw_die_ref context_die)
11229 dw_die_ref scope_die = scope_die_for (type, context_die);
11230 dw_die_ref array_die;
11231 tree element_type;
11233 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11234 the inner array type comes before the outer array type. Thus we must
11235 call gen_type_die before we call new_die. See below also. */
11236 #ifdef MIPS_DEBUGGING_INFO
11237 gen_type_die (TREE_TYPE (type), context_die);
11238 #endif
11240 array_die = new_die (DW_TAG_array_type, scope_die, type);
11241 add_name_attribute (array_die, type_tag (type));
11242 equate_type_number_to_die (type, array_die);
11244 if (TREE_CODE (type) == VECTOR_TYPE)
11246 /* The frontend feeds us a representation for the vector as a struct
11247 containing an array. Pull out the array type. */
11248 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11249 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11252 #if 0
11253 /* We default the array ordering. SDB will probably do
11254 the right things even if DW_AT_ordering is not present. It's not even
11255 an issue until we start to get into multidimensional arrays anyway. If
11256 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11257 then we'll have to put the DW_AT_ordering attribute back in. (But if
11258 and when we find out that we need to put these in, we will only do so
11259 for multidimensional arrays. */
11260 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11261 #endif
11263 #ifdef MIPS_DEBUGGING_INFO
11264 /* The SGI compilers handle arrays of unknown bound by setting
11265 AT_declaration and not emitting any subrange DIEs. */
11266 if (! TYPE_DOMAIN (type))
11267 add_AT_flag (array_die, DW_AT_declaration, 1);
11268 else
11269 #endif
11270 add_subscript_info (array_die, type);
11272 /* Add representation of the type of the elements of this array type. */
11273 element_type = TREE_TYPE (type);
11275 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11276 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11277 We work around this by disabling this feature. See also
11278 add_subscript_info. */
11279 #ifndef MIPS_DEBUGGING_INFO
11280 while (TREE_CODE (element_type) == ARRAY_TYPE)
11281 element_type = TREE_TYPE (element_type);
11283 gen_type_die (element_type, context_die);
11284 #endif
11286 add_type_attribute (array_die, element_type, 0, 0, context_die);
11288 if (get_AT (array_die, DW_AT_name))
11289 add_pubtype (type, array_die);
11292 #if 0
11293 static void
11294 gen_entry_point_die (tree decl, dw_die_ref context_die)
11296 tree origin = decl_ultimate_origin (decl);
11297 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11299 if (origin != NULL)
11300 add_abstract_origin_attribute (decl_die, origin);
11301 else
11303 add_name_and_src_coords_attributes (decl_die, decl);
11304 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11305 0, 0, context_die);
11308 if (DECL_ABSTRACT (decl))
11309 equate_decl_number_to_die (decl, decl_die);
11310 else
11311 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11313 #endif
11315 /* Walk through the list of incomplete types again, trying once more to
11316 emit full debugging info for them. */
11318 static void
11319 retry_incomplete_types (void)
11321 int i;
11323 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11324 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11327 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11329 static void
11330 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11332 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11334 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11335 be incomplete and such types are not marked. */
11336 add_abstract_origin_attribute (type_die, type);
11339 /* Generate a DIE to represent an inlined instance of a structure type. */
11341 static void
11342 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11344 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11346 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11347 be incomplete and such types are not marked. */
11348 add_abstract_origin_attribute (type_die, type);
11351 /* Generate a DIE to represent an inlined instance of a union type. */
11353 static void
11354 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11356 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11358 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11359 be incomplete and such types are not marked. */
11360 add_abstract_origin_attribute (type_die, type);
11363 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11364 include all of the information about the enumeration values also. Each
11365 enumerated type name/value is listed as a child of the enumerated type
11366 DIE. */
11368 static dw_die_ref
11369 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11371 dw_die_ref type_die = lookup_type_die (type);
11373 if (type_die == NULL)
11375 type_die = new_die (DW_TAG_enumeration_type,
11376 scope_die_for (type, context_die), type);
11377 equate_type_number_to_die (type, type_die);
11378 add_name_attribute (type_die, type_tag (type));
11380 else if (! TYPE_SIZE (type))
11381 return type_die;
11382 else
11383 remove_AT (type_die, DW_AT_declaration);
11385 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11386 given enum type is incomplete, do not generate the DW_AT_byte_size
11387 attribute or the DW_AT_element_list attribute. */
11388 if (TYPE_SIZE (type))
11390 tree link;
11392 TREE_ASM_WRITTEN (type) = 1;
11393 add_byte_size_attribute (type_die, type);
11394 if (TYPE_STUB_DECL (type) != NULL_TREE)
11395 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11397 /* If the first reference to this type was as the return type of an
11398 inline function, then it may not have a parent. Fix this now. */
11399 if (type_die->die_parent == NULL)
11400 add_child_die (scope_die_for (type, context_die), type_die);
11402 for (link = TYPE_VALUES (type);
11403 link != NULL; link = TREE_CHAIN (link))
11405 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11406 tree value = TREE_VALUE (link);
11408 add_name_attribute (enum_die,
11409 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11411 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11412 /* DWARF2 does not provide a way of indicating whether or
11413 not enumeration constants are signed or unsigned. GDB
11414 always assumes the values are signed, so we output all
11415 values as if they were signed. That means that
11416 enumeration constants with very large unsigned values
11417 will appear to have negative values in the debugger. */
11418 add_AT_int (enum_die, DW_AT_const_value,
11419 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11422 else
11423 add_AT_flag (type_die, DW_AT_declaration, 1);
11425 if (get_AT (type_die, DW_AT_name))
11426 add_pubtype (type, type_die);
11428 return type_die;
11431 /* Generate a DIE to represent either a real live formal parameter decl or to
11432 represent just the type of some formal parameter position in some function
11433 type.
11435 Note that this routine is a bit unusual because its argument may be a
11436 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11437 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11438 node. If it's the former then this function is being called to output a
11439 DIE to represent a formal parameter object (or some inlining thereof). If
11440 it's the latter, then this function is only being called to output a
11441 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11442 argument type of some subprogram type. */
11444 static dw_die_ref
11445 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11447 dw_die_ref parm_die
11448 = new_die (DW_TAG_formal_parameter, context_die, node);
11449 tree origin;
11451 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11453 case tcc_declaration:
11454 origin = decl_ultimate_origin (node);
11455 if (origin != NULL)
11456 add_abstract_origin_attribute (parm_die, origin);
11457 else
11459 add_name_and_src_coords_attributes (parm_die, node);
11460 add_type_attribute (parm_die, TREE_TYPE (node),
11461 TREE_READONLY (node),
11462 TREE_THIS_VOLATILE (node),
11463 context_die);
11464 if (DECL_ARTIFICIAL (node))
11465 add_AT_flag (parm_die, DW_AT_artificial, 1);
11468 equate_decl_number_to_die (node, parm_die);
11469 if (! DECL_ABSTRACT (node))
11470 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11472 break;
11474 case tcc_type:
11475 /* We were called with some kind of a ..._TYPE node. */
11476 add_type_attribute (parm_die, node, 0, 0, context_die);
11477 break;
11479 default:
11480 gcc_unreachable ();
11483 return parm_die;
11486 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11487 at the end of an (ANSI prototyped) formal parameters list. */
11489 static void
11490 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11492 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11495 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11496 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11497 parameters as specified in some function type specification (except for
11498 those which appear as part of a function *definition*). */
11500 static void
11501 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11503 tree link;
11504 tree formal_type = NULL;
11505 tree first_parm_type;
11506 tree arg;
11508 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11510 arg = DECL_ARGUMENTS (function_or_method_type);
11511 function_or_method_type = TREE_TYPE (function_or_method_type);
11513 else
11514 arg = NULL_TREE;
11516 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11518 /* Make our first pass over the list of formal parameter types and output a
11519 DW_TAG_formal_parameter DIE for each one. */
11520 for (link = first_parm_type; link; )
11522 dw_die_ref parm_die;
11524 formal_type = TREE_VALUE (link);
11525 if (formal_type == void_type_node)
11526 break;
11528 /* Output a (nameless) DIE to represent the formal parameter itself. */
11529 parm_die = gen_formal_parameter_die (formal_type, context_die);
11530 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11531 && link == first_parm_type)
11532 || (arg && DECL_ARTIFICIAL (arg)))
11533 add_AT_flag (parm_die, DW_AT_artificial, 1);
11535 link = TREE_CHAIN (link);
11536 if (arg)
11537 arg = TREE_CHAIN (arg);
11540 /* If this function type has an ellipsis, add a
11541 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11542 if (formal_type != void_type_node)
11543 gen_unspecified_parameters_die (function_or_method_type, context_die);
11545 /* Make our second (and final) pass over the list of formal parameter types
11546 and output DIEs to represent those types (as necessary). */
11547 for (link = TYPE_ARG_TYPES (function_or_method_type);
11548 link && TREE_VALUE (link);
11549 link = TREE_CHAIN (link))
11550 gen_type_die (TREE_VALUE (link), context_die);
11553 /* We want to generate the DIE for TYPE so that we can generate the
11554 die for MEMBER, which has been defined; we will need to refer back
11555 to the member declaration nested within TYPE. If we're trying to
11556 generate minimal debug info for TYPE, processing TYPE won't do the
11557 trick; we need to attach the member declaration by hand. */
11559 static void
11560 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11562 gen_type_die (type, context_die);
11564 /* If we're trying to avoid duplicate debug info, we may not have
11565 emitted the member decl for this function. Emit it now. */
11566 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11567 && ! lookup_decl_die (member))
11569 dw_die_ref type_die;
11570 gcc_assert (!decl_ultimate_origin (member));
11572 push_decl_scope (type);
11573 type_die = lookup_type_die (type);
11574 if (TREE_CODE (member) == FUNCTION_DECL)
11575 gen_subprogram_die (member, type_die);
11576 else if (TREE_CODE (member) == FIELD_DECL)
11578 /* Ignore the nameless fields that are used to skip bits but handle
11579 C++ anonymous unions and structs. */
11580 if (DECL_NAME (member) != NULL_TREE
11581 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11582 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11584 gen_type_die (member_declared_type (member), type_die);
11585 gen_field_die (member, type_die);
11588 else
11589 gen_variable_die (member, type_die);
11591 pop_decl_scope ();
11595 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11596 may later generate inlined and/or out-of-line instances of. */
11598 static void
11599 dwarf2out_abstract_function (tree decl)
11601 dw_die_ref old_die;
11602 tree save_fn;
11603 struct function *save_cfun;
11604 tree context;
11605 int was_abstract = DECL_ABSTRACT (decl);
11607 /* Make sure we have the actual abstract inline, not a clone. */
11608 decl = DECL_ORIGIN (decl);
11610 old_die = lookup_decl_die (decl);
11611 if (old_die && get_AT (old_die, DW_AT_inline))
11612 /* We've already generated the abstract instance. */
11613 return;
11615 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11616 we don't get confused by DECL_ABSTRACT. */
11617 if (debug_info_level > DINFO_LEVEL_TERSE)
11619 context = decl_class_context (decl);
11620 if (context)
11621 gen_type_die_for_member
11622 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11625 /* Pretend we've just finished compiling this function. */
11626 save_fn = current_function_decl;
11627 save_cfun = cfun;
11628 current_function_decl = decl;
11629 cfun = DECL_STRUCT_FUNCTION (decl);
11631 set_decl_abstract_flags (decl, 1);
11632 dwarf2out_decl (decl);
11633 if (! was_abstract)
11634 set_decl_abstract_flags (decl, 0);
11636 current_function_decl = save_fn;
11637 cfun = save_cfun;
11640 /* Helper function of premark_used_types() which gets called through
11641 htab_traverse_resize().
11643 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11644 marked as unused by prune_unused_types. */
11645 static int
11646 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11648 tree type;
11649 dw_die_ref die;
11651 type = *slot;
11652 die = lookup_type_die (type);
11653 if (die != NULL)
11654 die->die_perennial_p = 1;
11655 return 1;
11658 /* Mark all members of used_types_hash as perennial. */
11659 static void
11660 premark_used_types (void)
11662 if (cfun && cfun->used_types_hash)
11663 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11666 /* Generate a DIE to represent a declared function (either file-scope or
11667 block-local). */
11669 static void
11670 gen_subprogram_die (tree decl, dw_die_ref context_die)
11672 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11673 tree origin = decl_ultimate_origin (decl);
11674 dw_die_ref subr_die;
11675 tree fn_arg_types;
11676 tree outer_scope;
11677 dw_die_ref old_die = lookup_decl_die (decl);
11678 int declaration = (current_function_decl != decl
11679 || class_or_namespace_scope_p (context_die));
11681 premark_used_types ();
11683 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11684 started to generate the abstract instance of an inline, decided to output
11685 its containing class, and proceeded to emit the declaration of the inline
11686 from the member list for the class. If so, DECLARATION takes priority;
11687 we'll get back to the abstract instance when done with the class. */
11689 /* The class-scope declaration DIE must be the primary DIE. */
11690 if (origin && declaration && class_or_namespace_scope_p (context_die))
11692 origin = NULL;
11693 gcc_assert (!old_die);
11696 /* Now that the C++ front end lazily declares artificial member fns, we
11697 might need to retrofit the declaration into its class. */
11698 if (!declaration && !origin && !old_die
11699 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11700 && !class_or_namespace_scope_p (context_die)
11701 && debug_info_level > DINFO_LEVEL_TERSE)
11702 old_die = force_decl_die (decl);
11704 if (origin != NULL)
11706 gcc_assert (!declaration || local_scope_p (context_die));
11708 /* Fixup die_parent for the abstract instance of a nested
11709 inline function. */
11710 if (old_die && old_die->die_parent == NULL)
11711 add_child_die (context_die, old_die);
11713 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11714 add_abstract_origin_attribute (subr_die, origin);
11716 else if (old_die)
11718 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11719 struct dwarf_file_data * file_index = lookup_filename (s.file);
11721 if (!get_AT_flag (old_die, DW_AT_declaration)
11722 /* We can have a normal definition following an inline one in the
11723 case of redefinition of GNU C extern inlines.
11724 It seems reasonable to use AT_specification in this case. */
11725 && !get_AT (old_die, DW_AT_inline))
11727 /* Detect and ignore this case, where we are trying to output
11728 something we have already output. */
11729 return;
11732 /* If the definition comes from the same place as the declaration,
11733 maybe use the old DIE. We always want the DIE for this function
11734 that has the *_pc attributes to be under comp_unit_die so the
11735 debugger can find it. We also need to do this for abstract
11736 instances of inlines, since the spec requires the out-of-line copy
11737 to have the same parent. For local class methods, this doesn't
11738 apply; we just use the old DIE. */
11739 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11740 && (DECL_ARTIFICIAL (decl)
11741 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11742 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11743 == (unsigned) s.line))))
11745 subr_die = old_die;
11747 /* Clear out the declaration attribute and the formal parameters.
11748 Do not remove all children, because it is possible that this
11749 declaration die was forced using force_decl_die(). In such
11750 cases die that forced declaration die (e.g. TAG_imported_module)
11751 is one of the children that we do not want to remove. */
11752 remove_AT (subr_die, DW_AT_declaration);
11753 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11755 else
11757 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11758 add_AT_specification (subr_die, old_die);
11759 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11760 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11761 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11762 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11765 else
11767 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11769 if (TREE_PUBLIC (decl))
11770 add_AT_flag (subr_die, DW_AT_external, 1);
11772 add_name_and_src_coords_attributes (subr_die, decl);
11773 if (debug_info_level > DINFO_LEVEL_TERSE)
11775 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11776 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11777 0, 0, context_die);
11780 add_pure_or_virtual_attribute (subr_die, decl);
11781 if (DECL_ARTIFICIAL (decl))
11782 add_AT_flag (subr_die, DW_AT_artificial, 1);
11784 if (TREE_PROTECTED (decl))
11785 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11786 else if (TREE_PRIVATE (decl))
11787 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11790 if (declaration)
11792 if (!old_die || !get_AT (old_die, DW_AT_inline))
11794 add_AT_flag (subr_die, DW_AT_declaration, 1);
11796 /* The first time we see a member function, it is in the context of
11797 the class to which it belongs. We make sure of this by emitting
11798 the class first. The next time is the definition, which is
11799 handled above. The two may come from the same source text.
11801 Note that force_decl_die() forces function declaration die. It is
11802 later reused to represent definition. */
11803 equate_decl_number_to_die (decl, subr_die);
11806 else if (DECL_ABSTRACT (decl))
11808 if (DECL_DECLARED_INLINE_P (decl))
11810 if (cgraph_function_possibly_inlined_p (decl))
11811 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11812 else
11813 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11815 else
11817 if (cgraph_function_possibly_inlined_p (decl))
11818 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11819 else
11820 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11823 equate_decl_number_to_die (decl, subr_die);
11825 else if (!DECL_EXTERNAL (decl))
11827 HOST_WIDE_INT cfa_fb_offset;
11829 if (!old_die || !get_AT (old_die, DW_AT_inline))
11830 equate_decl_number_to_die (decl, subr_die);
11832 if (!flag_reorder_blocks_and_partition)
11834 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11835 current_function_funcdef_no);
11836 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11837 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11838 current_function_funcdef_no);
11839 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11841 add_pubname (decl, subr_die);
11842 add_arange (decl, subr_die);
11844 else
11845 { /* Do nothing for now; maybe need to duplicate die, one for
11846 hot section and ond for cold section, then use the hot/cold
11847 section begin/end labels to generate the aranges... */
11849 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11850 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11851 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11852 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11854 add_pubname (decl, subr_die);
11855 add_arange (decl, subr_die);
11856 add_arange (decl, subr_die);
11860 #ifdef MIPS_DEBUGGING_INFO
11861 /* Add a reference to the FDE for this routine. */
11862 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11863 #endif
11865 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11867 /* We define the "frame base" as the function's CFA. This is more
11868 convenient for several reasons: (1) It's stable across the prologue
11869 and epilogue, which makes it better than just a frame pointer,
11870 (2) With dwarf3, there exists a one-byte encoding that allows us
11871 to reference the .debug_frame data by proxy, but failing that,
11872 (3) We can at least reuse the code inspection and interpretation
11873 code that determines the CFA position at various points in the
11874 function. */
11875 /* ??? Use some command-line or configury switch to enable the use
11876 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11877 consumers that understand it; fall back to "pure" dwarf2 and
11878 convert the CFA data into a location list. */
11880 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11881 if (list->dw_loc_next)
11882 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11883 else
11884 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11887 /* Compute a displacement from the "steady-state frame pointer" to
11888 the CFA. The former is what all stack slots and argument slots
11889 will reference in the rtl; the later is what we've told the
11890 debugger about. We'll need to adjust all frame_base references
11891 by this displacement. */
11892 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11894 if (cfun->static_chain_decl)
11895 add_AT_location_description (subr_die, DW_AT_static_link,
11896 loc_descriptor_from_tree (cfun->static_chain_decl));
11899 /* Now output descriptions of the arguments for this function. This gets
11900 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11901 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11902 `...' at the end of the formal parameter list. In order to find out if
11903 there was a trailing ellipsis or not, we must instead look at the type
11904 associated with the FUNCTION_DECL. This will be a node of type
11905 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11906 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11907 an ellipsis at the end. */
11909 /* In the case where we are describing a mere function declaration, all we
11910 need to do here (and all we *can* do here) is to describe the *types* of
11911 its formal parameters. */
11912 if (debug_info_level <= DINFO_LEVEL_TERSE)
11914 else if (declaration)
11915 gen_formal_types_die (decl, subr_die);
11916 else
11918 /* Generate DIEs to represent all known formal parameters. */
11919 tree arg_decls = DECL_ARGUMENTS (decl);
11920 tree parm;
11922 /* When generating DIEs, generate the unspecified_parameters DIE
11923 instead if we come across the arg "__builtin_va_alist" */
11924 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11925 if (TREE_CODE (parm) == PARM_DECL)
11927 if (DECL_NAME (parm)
11928 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11929 "__builtin_va_alist"))
11930 gen_unspecified_parameters_die (parm, subr_die);
11931 else
11932 gen_decl_die (parm, subr_die);
11935 /* Decide whether we need an unspecified_parameters DIE at the end.
11936 There are 2 more cases to do this for: 1) the ansi ... declaration -
11937 this is detectable when the end of the arg list is not a
11938 void_type_node 2) an unprototyped function declaration (not a
11939 definition). This just means that we have no info about the
11940 parameters at all. */
11941 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11942 if (fn_arg_types != NULL)
11944 /* This is the prototyped case, check for.... */
11945 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11946 gen_unspecified_parameters_die (decl, subr_die);
11948 else if (DECL_INITIAL (decl) == NULL_TREE)
11949 gen_unspecified_parameters_die (decl, subr_die);
11952 /* Output Dwarf info for all of the stuff within the body of the function
11953 (if it has one - it may be just a declaration). */
11954 outer_scope = DECL_INITIAL (decl);
11956 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11957 a function. This BLOCK actually represents the outermost binding contour
11958 for the function, i.e. the contour in which the function's formal
11959 parameters and labels get declared. Curiously, it appears that the front
11960 end doesn't actually put the PARM_DECL nodes for the current function onto
11961 the BLOCK_VARS list for this outer scope, but are strung off of the
11962 DECL_ARGUMENTS list for the function instead.
11964 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11965 the LABEL_DECL nodes for the function however, and we output DWARF info
11966 for those in decls_for_scope. Just within the `outer_scope' there will be
11967 a BLOCK node representing the function's outermost pair of curly braces,
11968 and any blocks used for the base and member initializers of a C++
11969 constructor function. */
11970 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11972 /* Emit a DW_TAG_variable DIE for a named return value. */
11973 if (DECL_NAME (DECL_RESULT (decl)))
11974 gen_decl_die (DECL_RESULT (decl), subr_die);
11976 current_function_has_inlines = 0;
11977 decls_for_scope (outer_scope, subr_die, 0);
11979 #if 0 && defined (MIPS_DEBUGGING_INFO)
11980 if (current_function_has_inlines)
11982 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11983 if (! comp_unit_has_inlines)
11985 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11986 comp_unit_has_inlines = 1;
11989 #endif
11991 /* Add the calling convention attribute if requested. */
11992 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11996 /* Generate a DIE to represent a declared data object. */
11998 static void
11999 gen_variable_die (tree decl, dw_die_ref context_die)
12001 tree origin = decl_ultimate_origin (decl);
12002 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12004 dw_die_ref old_die = lookup_decl_die (decl);
12005 int declaration = (DECL_EXTERNAL (decl)
12006 /* If DECL is COMDAT and has not actually been
12007 emitted, we cannot take its address; there
12008 might end up being no definition anywhere in
12009 the program. For example, consider the C++
12010 test case:
12012 template <class T>
12013 struct S { static const int i = 7; };
12015 template <class T>
12016 const int S<T>::i;
12018 int f() { return S<int>::i; }
12020 Here, S<int>::i is not DECL_EXTERNAL, but no
12021 definition is required, so the compiler will
12022 not emit a definition. */
12023 || (TREE_CODE (decl) == VAR_DECL
12024 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12025 || class_or_namespace_scope_p (context_die));
12027 if (origin != NULL)
12028 add_abstract_origin_attribute (var_die, origin);
12030 /* Loop unrolling can create multiple blocks that refer to the same
12031 static variable, so we must test for the DW_AT_declaration flag.
12033 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12034 copy decls and set the DECL_ABSTRACT flag on them instead of
12035 sharing them.
12037 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12039 ??? The declare_in_namespace support causes us to get two DIEs for one
12040 variable, both of which are declarations. We want to avoid considering
12041 one to be a specification, so we must test that this DIE is not a
12042 declaration. */
12043 else if (old_die && TREE_STATIC (decl) && ! declaration
12044 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12046 /* This is a definition of a C++ class level static. */
12047 add_AT_specification (var_die, old_die);
12048 if (DECL_NAME (decl))
12050 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12051 struct dwarf_file_data * file_index = lookup_filename (s.file);
12053 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12054 add_AT_file (var_die, DW_AT_decl_file, file_index);
12056 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12057 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12060 else
12062 add_name_and_src_coords_attributes (var_die, decl);
12063 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12064 TREE_THIS_VOLATILE (decl), context_die);
12066 if (TREE_PUBLIC (decl))
12067 add_AT_flag (var_die, DW_AT_external, 1);
12069 if (DECL_ARTIFICIAL (decl))
12070 add_AT_flag (var_die, DW_AT_artificial, 1);
12072 if (TREE_PROTECTED (decl))
12073 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12074 else if (TREE_PRIVATE (decl))
12075 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12078 if (declaration)
12079 add_AT_flag (var_die, DW_AT_declaration, 1);
12081 if (DECL_ABSTRACT (decl) || declaration)
12082 equate_decl_number_to_die (decl, var_die);
12084 if (! declaration && ! DECL_ABSTRACT (decl))
12086 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12087 add_pubname (decl, var_die);
12089 else
12090 tree_add_const_value_attribute (var_die, decl);
12093 /* Generate a DIE to represent a label identifier. */
12095 static void
12096 gen_label_die (tree decl, dw_die_ref context_die)
12098 tree origin = decl_ultimate_origin (decl);
12099 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12100 rtx insn;
12101 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12103 if (origin != NULL)
12104 add_abstract_origin_attribute (lbl_die, origin);
12105 else
12106 add_name_and_src_coords_attributes (lbl_die, decl);
12108 if (DECL_ABSTRACT (decl))
12109 equate_decl_number_to_die (decl, lbl_die);
12110 else
12112 insn = DECL_RTL_IF_SET (decl);
12114 /* Deleted labels are programmer specified labels which have been
12115 eliminated because of various optimizations. We still emit them
12116 here so that it is possible to put breakpoints on them. */
12117 if (insn
12118 && (LABEL_P (insn)
12119 || ((NOTE_P (insn)
12120 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12122 /* When optimization is enabled (via -O) some parts of the compiler
12123 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12124 represent source-level labels which were explicitly declared by
12125 the user. This really shouldn't be happening though, so catch
12126 it if it ever does happen. */
12127 gcc_assert (!INSN_DELETED_P (insn));
12129 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12130 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12135 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12136 attributes to the DIE for a block STMT, to describe where the inlined
12137 function was called from. This is similar to add_src_coords_attributes. */
12139 static inline void
12140 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12142 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12144 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12145 add_AT_unsigned (die, DW_AT_call_line, s.line);
12148 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12149 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12151 static inline void
12152 add_high_low_attributes (tree stmt, dw_die_ref die)
12154 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12156 if (BLOCK_FRAGMENT_CHAIN (stmt))
12158 tree chain;
12160 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12162 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12165 add_ranges (chain);
12166 chain = BLOCK_FRAGMENT_CHAIN (chain);
12168 while (chain);
12169 add_ranges (NULL);
12171 else
12173 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12174 BLOCK_NUMBER (stmt));
12175 add_AT_lbl_id (die, DW_AT_low_pc, label);
12176 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12177 BLOCK_NUMBER (stmt));
12178 add_AT_lbl_id (die, DW_AT_high_pc, label);
12182 /* Generate a DIE for a lexical block. */
12184 static void
12185 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12187 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12189 if (! BLOCK_ABSTRACT (stmt))
12190 add_high_low_attributes (stmt, stmt_die);
12192 decls_for_scope (stmt, stmt_die, depth);
12195 /* Generate a DIE for an inlined subprogram. */
12197 static void
12198 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12200 tree decl = block_ultimate_origin (stmt);
12202 /* Emit info for the abstract instance first, if we haven't yet. We
12203 must emit this even if the block is abstract, otherwise when we
12204 emit the block below (or elsewhere), we may end up trying to emit
12205 a die whose origin die hasn't been emitted, and crashing. */
12206 dwarf2out_abstract_function (decl);
12208 if (! BLOCK_ABSTRACT (stmt))
12210 dw_die_ref subr_die
12211 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12213 add_abstract_origin_attribute (subr_die, decl);
12214 add_high_low_attributes (stmt, subr_die);
12215 add_call_src_coords_attributes (stmt, subr_die);
12217 decls_for_scope (stmt, subr_die, depth);
12218 current_function_has_inlines = 1;
12220 else
12221 /* We may get here if we're the outer block of function A that was
12222 inlined into function B that was inlined into function C. When
12223 generating debugging info for C, dwarf2out_abstract_function(B)
12224 would mark all inlined blocks as abstract, including this one.
12225 So, we wouldn't (and shouldn't) expect labels to be generated
12226 for this one. Instead, just emit debugging info for
12227 declarations within the block. This is particularly important
12228 in the case of initializers of arguments passed from B to us:
12229 if they're statement expressions containing declarations, we
12230 wouldn't generate dies for their abstract variables, and then,
12231 when generating dies for the real variables, we'd die (pun
12232 intended :-) */
12233 gen_lexical_block_die (stmt, context_die, depth);
12236 /* Generate a DIE for a field in a record, or structure. */
12238 static void
12239 gen_field_die (tree decl, dw_die_ref context_die)
12241 dw_die_ref decl_die;
12243 if (TREE_TYPE (decl) == error_mark_node)
12244 return;
12246 decl_die = new_die (DW_TAG_member, context_die, decl);
12247 add_name_and_src_coords_attributes (decl_die, decl);
12248 add_type_attribute (decl_die, member_declared_type (decl),
12249 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12250 context_die);
12252 if (DECL_BIT_FIELD_TYPE (decl))
12254 add_byte_size_attribute (decl_die, decl);
12255 add_bit_size_attribute (decl_die, decl);
12256 add_bit_offset_attribute (decl_die, decl);
12259 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12260 add_data_member_location_attribute (decl_die, decl);
12262 if (DECL_ARTIFICIAL (decl))
12263 add_AT_flag (decl_die, DW_AT_artificial, 1);
12265 if (TREE_PROTECTED (decl))
12266 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12267 else if (TREE_PRIVATE (decl))
12268 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12270 /* Equate decl number to die, so that we can look up this decl later on. */
12271 equate_decl_number_to_die (decl, decl_die);
12274 #if 0
12275 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12276 Use modified_type_die instead.
12277 We keep this code here just in case these types of DIEs may be needed to
12278 represent certain things in other languages (e.g. Pascal) someday. */
12280 static void
12281 gen_pointer_type_die (tree type, dw_die_ref context_die)
12283 dw_die_ref ptr_die
12284 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12286 equate_type_number_to_die (type, ptr_die);
12287 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12288 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12291 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12292 Use modified_type_die instead.
12293 We keep this code here just in case these types of DIEs may be needed to
12294 represent certain things in other languages (e.g. Pascal) someday. */
12296 static void
12297 gen_reference_type_die (tree type, dw_die_ref context_die)
12299 dw_die_ref ref_die
12300 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12302 equate_type_number_to_die (type, ref_die);
12303 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12304 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12306 #endif
12308 /* Generate a DIE for a pointer to a member type. */
12310 static void
12311 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12313 dw_die_ref ptr_die
12314 = new_die (DW_TAG_ptr_to_member_type,
12315 scope_die_for (type, context_die), type);
12317 equate_type_number_to_die (type, ptr_die);
12318 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12319 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12320 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12323 /* Generate the DIE for the compilation unit. */
12325 static dw_die_ref
12326 gen_compile_unit_die (const char *filename)
12328 dw_die_ref die;
12329 char producer[250];
12330 const char *language_string = lang_hooks.name;
12331 int language;
12333 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12335 if (filename)
12337 add_name_attribute (die, filename);
12338 /* Don't add cwd for <built-in>. */
12339 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12340 add_comp_dir_attribute (die);
12343 sprintf (producer, "%s %s", language_string, version_string);
12345 #ifdef MIPS_DEBUGGING_INFO
12346 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12347 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12348 not appear in the producer string, the debugger reaches the conclusion
12349 that the object file is stripped and has no debugging information.
12350 To get the MIPS/SGI debugger to believe that there is debugging
12351 information in the object file, we add a -g to the producer string. */
12352 if (debug_info_level > DINFO_LEVEL_TERSE)
12353 strcat (producer, " -g");
12354 #endif
12356 add_AT_string (die, DW_AT_producer, producer);
12358 if (strcmp (language_string, "GNU C++") == 0)
12359 language = DW_LANG_C_plus_plus;
12360 else if (strcmp (language_string, "GNU Ada") == 0)
12361 language = DW_LANG_Ada95;
12362 else if (strcmp (language_string, "GNU F77") == 0)
12363 language = DW_LANG_Fortran77;
12364 else if (strcmp (language_string, "GNU F95") == 0)
12365 language = DW_LANG_Fortran95;
12366 else if (strcmp (language_string, "GNU Pascal") == 0)
12367 language = DW_LANG_Pascal83;
12368 else if (strcmp (language_string, "GNU Java") == 0)
12369 language = DW_LANG_Java;
12370 else if (strcmp (language_string, "GNU Objective-C") == 0)
12371 language = DW_LANG_ObjC;
12372 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12373 language = DW_LANG_ObjC_plus_plus;
12374 else
12375 language = DW_LANG_C89;
12377 add_AT_unsigned (die, DW_AT_language, language);
12378 return die;
12381 /* Generate the DIE for a base class. */
12383 static void
12384 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12386 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12388 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12389 add_data_member_location_attribute (die, binfo);
12391 if (BINFO_VIRTUAL_P (binfo))
12392 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12394 if (access == access_public_node)
12395 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12396 else if (access == access_protected_node)
12397 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12400 /* Generate a DIE for a class member. */
12402 static void
12403 gen_member_die (tree type, dw_die_ref context_die)
12405 tree member;
12406 tree binfo = TYPE_BINFO (type);
12407 dw_die_ref child;
12409 /* If this is not an incomplete type, output descriptions of each of its
12410 members. Note that as we output the DIEs necessary to represent the
12411 members of this record or union type, we will also be trying to output
12412 DIEs to represent the *types* of those members. However the `type'
12413 function (above) will specifically avoid generating type DIEs for member
12414 types *within* the list of member DIEs for this (containing) type except
12415 for those types (of members) which are explicitly marked as also being
12416 members of this (containing) type themselves. The g++ front- end can
12417 force any given type to be treated as a member of some other (containing)
12418 type by setting the TYPE_CONTEXT of the given (member) type to point to
12419 the TREE node representing the appropriate (containing) type. */
12421 /* First output info about the base classes. */
12422 if (binfo)
12424 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12425 int i;
12426 tree base;
12428 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12429 gen_inheritance_die (base,
12430 (accesses ? VEC_index (tree, accesses, i)
12431 : access_public_node), context_die);
12434 /* Now output info about the data members and type members. */
12435 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12437 /* If we thought we were generating minimal debug info for TYPE
12438 and then changed our minds, some of the member declarations
12439 may have already been defined. Don't define them again, but
12440 do put them in the right order. */
12442 child = lookup_decl_die (member);
12443 if (child)
12444 splice_child_die (context_die, child);
12445 else
12446 gen_decl_die (member, context_die);
12449 /* Now output info about the function members (if any). */
12450 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12452 /* Don't include clones in the member list. */
12453 if (DECL_ABSTRACT_ORIGIN (member))
12454 continue;
12456 child = lookup_decl_die (member);
12457 if (child)
12458 splice_child_die (context_die, child);
12459 else
12460 gen_decl_die (member, context_die);
12464 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12465 is set, we pretend that the type was never defined, so we only get the
12466 member DIEs needed by later specification DIEs. */
12468 static void
12469 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12471 dw_die_ref type_die = lookup_type_die (type);
12472 dw_die_ref scope_die = 0;
12473 int nested = 0;
12474 int complete = (TYPE_SIZE (type)
12475 && (! TYPE_STUB_DECL (type)
12476 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12477 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12479 if (type_die && ! complete)
12480 return;
12482 if (TYPE_CONTEXT (type) != NULL_TREE
12483 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12484 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12485 nested = 1;
12487 scope_die = scope_die_for (type, context_die);
12489 if (! type_die || (nested && scope_die == comp_unit_die))
12490 /* First occurrence of type or toplevel definition of nested class. */
12492 dw_die_ref old_die = type_die;
12494 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12495 ? DW_TAG_structure_type : DW_TAG_union_type,
12496 scope_die, type);
12497 equate_type_number_to_die (type, type_die);
12498 if (old_die)
12499 add_AT_specification (type_die, old_die);
12500 else
12501 add_name_attribute (type_die, type_tag (type));
12503 else
12504 remove_AT (type_die, DW_AT_declaration);
12506 /* If this type has been completed, then give it a byte_size attribute and
12507 then give a list of members. */
12508 if (complete && !ns_decl)
12510 /* Prevent infinite recursion in cases where the type of some member of
12511 this type is expressed in terms of this type itself. */
12512 TREE_ASM_WRITTEN (type) = 1;
12513 add_byte_size_attribute (type_die, type);
12514 if (TYPE_STUB_DECL (type) != NULL_TREE)
12515 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12517 /* If the first reference to this type was as the return type of an
12518 inline function, then it may not have a parent. Fix this now. */
12519 if (type_die->die_parent == NULL)
12520 add_child_die (scope_die, type_die);
12522 push_decl_scope (type);
12523 gen_member_die (type, type_die);
12524 pop_decl_scope ();
12526 /* GNU extension: Record what type our vtable lives in. */
12527 if (TYPE_VFIELD (type))
12529 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12531 gen_type_die (vtype, context_die);
12532 add_AT_die_ref (type_die, DW_AT_containing_type,
12533 lookup_type_die (vtype));
12536 else
12538 add_AT_flag (type_die, DW_AT_declaration, 1);
12540 /* We don't need to do this for function-local types. */
12541 if (TYPE_STUB_DECL (type)
12542 && ! decl_function_context (TYPE_STUB_DECL (type)))
12543 VEC_safe_push (tree, gc, incomplete_types, type);
12546 if (get_AT (type_die, DW_AT_name))
12547 add_pubtype (type, type_die);
12550 /* Generate a DIE for a subroutine _type_. */
12552 static void
12553 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12555 tree return_type = TREE_TYPE (type);
12556 dw_die_ref subr_die
12557 = new_die (DW_TAG_subroutine_type,
12558 scope_die_for (type, context_die), type);
12560 equate_type_number_to_die (type, subr_die);
12561 add_prototyped_attribute (subr_die, type);
12562 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12563 gen_formal_types_die (type, subr_die);
12565 if (get_AT (subr_die, DW_AT_name))
12566 add_pubtype (type, subr_die);
12569 /* Generate a DIE for a type definition. */
12571 static void
12572 gen_typedef_die (tree decl, dw_die_ref context_die)
12574 dw_die_ref type_die;
12575 tree origin;
12577 if (TREE_ASM_WRITTEN (decl))
12578 return;
12580 TREE_ASM_WRITTEN (decl) = 1;
12581 type_die = new_die (DW_TAG_typedef, context_die, decl);
12582 origin = decl_ultimate_origin (decl);
12583 if (origin != NULL)
12584 add_abstract_origin_attribute (type_die, origin);
12585 else
12587 tree type;
12589 add_name_and_src_coords_attributes (type_die, decl);
12590 if (DECL_ORIGINAL_TYPE (decl))
12592 type = DECL_ORIGINAL_TYPE (decl);
12594 gcc_assert (type != TREE_TYPE (decl));
12595 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12597 else
12598 type = TREE_TYPE (decl);
12600 add_type_attribute (type_die, type, TREE_READONLY (decl),
12601 TREE_THIS_VOLATILE (decl), context_die);
12604 if (DECL_ABSTRACT (decl))
12605 equate_decl_number_to_die (decl, type_die);
12607 if (get_AT (type_die, DW_AT_name))
12608 add_pubtype (decl, type_die);
12611 /* Generate a type description DIE. */
12613 static void
12614 gen_type_die (tree type, dw_die_ref context_die)
12616 int need_pop;
12618 if (type == NULL_TREE || type == error_mark_node)
12619 return;
12621 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12622 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12624 if (TREE_ASM_WRITTEN (type))
12625 return;
12627 /* Prevent broken recursion; we can't hand off to the same type. */
12628 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12630 TREE_ASM_WRITTEN (type) = 1;
12631 gen_decl_die (TYPE_NAME (type), context_die);
12632 return;
12635 /* We are going to output a DIE to represent the unqualified version
12636 of this type (i.e. without any const or volatile qualifiers) so
12637 get the main variant (i.e. the unqualified version) of this type
12638 now. (Vectors are special because the debugging info is in the
12639 cloned type itself). */
12640 if (TREE_CODE (type) != VECTOR_TYPE)
12641 type = type_main_variant (type);
12643 if (TREE_ASM_WRITTEN (type))
12644 return;
12646 switch (TREE_CODE (type))
12648 case ERROR_MARK:
12649 break;
12651 case POINTER_TYPE:
12652 case REFERENCE_TYPE:
12653 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12654 ensures that the gen_type_die recursion will terminate even if the
12655 type is recursive. Recursive types are possible in Ada. */
12656 /* ??? We could perhaps do this for all types before the switch
12657 statement. */
12658 TREE_ASM_WRITTEN (type) = 1;
12660 /* For these types, all that is required is that we output a DIE (or a
12661 set of DIEs) to represent the "basis" type. */
12662 gen_type_die (TREE_TYPE (type), context_die);
12663 break;
12665 case OFFSET_TYPE:
12666 /* This code is used for C++ pointer-to-data-member types.
12667 Output a description of the relevant class type. */
12668 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12670 /* Output a description of the type of the object pointed to. */
12671 gen_type_die (TREE_TYPE (type), context_die);
12673 /* Now output a DIE to represent this pointer-to-data-member type
12674 itself. */
12675 gen_ptr_to_mbr_type_die (type, context_die);
12676 break;
12678 case FUNCTION_TYPE:
12679 /* Force out return type (in case it wasn't forced out already). */
12680 gen_type_die (TREE_TYPE (type), context_die);
12681 gen_subroutine_type_die (type, context_die);
12682 break;
12684 case METHOD_TYPE:
12685 /* Force out return type (in case it wasn't forced out already). */
12686 gen_type_die (TREE_TYPE (type), context_die);
12687 gen_subroutine_type_die (type, context_die);
12688 break;
12690 case ARRAY_TYPE:
12691 gen_array_type_die (type, context_die);
12692 break;
12694 case VECTOR_TYPE:
12695 gen_array_type_die (type, context_die);
12696 break;
12698 case ENUMERAL_TYPE:
12699 case RECORD_TYPE:
12700 case UNION_TYPE:
12701 case QUAL_UNION_TYPE:
12702 /* If this is a nested type whose containing class hasn't been written
12703 out yet, writing it out will cover this one, too. This does not apply
12704 to instantiations of member class templates; they need to be added to
12705 the containing class as they are generated. FIXME: This hurts the
12706 idea of combining type decls from multiple TUs, since we can't predict
12707 what set of template instantiations we'll get. */
12708 if (TYPE_CONTEXT (type)
12709 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12710 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12712 gen_type_die (TYPE_CONTEXT (type), context_die);
12714 if (TREE_ASM_WRITTEN (type))
12715 return;
12717 /* If that failed, attach ourselves to the stub. */
12718 push_decl_scope (TYPE_CONTEXT (type));
12719 context_die = lookup_type_die (TYPE_CONTEXT (type));
12720 need_pop = 1;
12722 else
12724 declare_in_namespace (type, context_die);
12725 need_pop = 0;
12728 if (TREE_CODE (type) == ENUMERAL_TYPE)
12729 gen_enumeration_type_die (type, context_die);
12730 else
12731 gen_struct_or_union_type_die (type, context_die);
12733 if (need_pop)
12734 pop_decl_scope ();
12736 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12737 it up if it is ever completed. gen_*_type_die will set it for us
12738 when appropriate. */
12739 return;
12741 case VOID_TYPE:
12742 case INTEGER_TYPE:
12743 case REAL_TYPE:
12744 case COMPLEX_TYPE:
12745 case BOOLEAN_TYPE:
12746 /* No DIEs needed for fundamental types. */
12747 break;
12749 case LANG_TYPE:
12750 /* No Dwarf representation currently defined. */
12751 break;
12753 default:
12754 gcc_unreachable ();
12757 TREE_ASM_WRITTEN (type) = 1;
12760 /* Generate a DIE for a tagged type instantiation. */
12762 static void
12763 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12765 if (type == NULL_TREE || type == error_mark_node)
12766 return;
12768 /* We are going to output a DIE to represent the unqualified version of
12769 this type (i.e. without any const or volatile qualifiers) so make sure
12770 that we have the main variant (i.e. the unqualified version) of this
12771 type now. */
12772 gcc_assert (type == type_main_variant (type));
12774 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12775 an instance of an unresolved type. */
12777 switch (TREE_CODE (type))
12779 case ERROR_MARK:
12780 break;
12782 case ENUMERAL_TYPE:
12783 gen_inlined_enumeration_type_die (type, context_die);
12784 break;
12786 case RECORD_TYPE:
12787 gen_inlined_structure_type_die (type, context_die);
12788 break;
12790 case UNION_TYPE:
12791 case QUAL_UNION_TYPE:
12792 gen_inlined_union_type_die (type, context_die);
12793 break;
12795 default:
12796 gcc_unreachable ();
12800 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12801 things which are local to the given block. */
12803 static void
12804 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12806 int must_output_die = 0;
12807 tree origin;
12808 tree decl;
12809 enum tree_code origin_code;
12811 /* Ignore blocks that are NULL. */
12812 if (stmt == NULL_TREE)
12813 return;
12815 /* If the block is one fragment of a non-contiguous block, do not
12816 process the variables, since they will have been done by the
12817 origin block. Do process subblocks. */
12818 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12820 tree sub;
12822 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12823 gen_block_die (sub, context_die, depth + 1);
12825 return;
12828 /* Determine the "ultimate origin" of this block. This block may be an
12829 inlined instance of an inlined instance of inline function, so we have
12830 to trace all of the way back through the origin chain to find out what
12831 sort of node actually served as the original seed for the creation of
12832 the current block. */
12833 origin = block_ultimate_origin (stmt);
12834 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12836 /* Determine if we need to output any Dwarf DIEs at all to represent this
12837 block. */
12838 if (origin_code == FUNCTION_DECL)
12839 /* The outer scopes for inlinings *must* always be represented. We
12840 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12841 must_output_die = 1;
12842 else
12844 /* In the case where the current block represents an inlining of the
12845 "body block" of an inline function, we must *NOT* output any DIE for
12846 this block because we have already output a DIE to represent the whole
12847 inlined function scope and the "body block" of any function doesn't
12848 really represent a different scope according to ANSI C rules. So we
12849 check here to make sure that this block does not represent a "body
12850 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12851 if (! is_body_block (origin ? origin : stmt))
12853 /* Determine if this block directly contains any "significant"
12854 local declarations which we will need to output DIEs for. */
12855 if (debug_info_level > DINFO_LEVEL_TERSE)
12856 /* We are not in terse mode so *any* local declaration counts
12857 as being a "significant" one. */
12858 must_output_die = (BLOCK_VARS (stmt) != NULL
12859 && (TREE_USED (stmt)
12860 || TREE_ASM_WRITTEN (stmt)
12861 || BLOCK_ABSTRACT (stmt)));
12862 else
12863 /* We are in terse mode, so only local (nested) function
12864 definitions count as "significant" local declarations. */
12865 for (decl = BLOCK_VARS (stmt);
12866 decl != NULL; decl = TREE_CHAIN (decl))
12867 if (TREE_CODE (decl) == FUNCTION_DECL
12868 && DECL_INITIAL (decl))
12870 must_output_die = 1;
12871 break;
12876 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12877 DIE for any block which contains no significant local declarations at
12878 all. Rather, in such cases we just call `decls_for_scope' so that any
12879 needed Dwarf info for any sub-blocks will get properly generated. Note
12880 that in terse mode, our definition of what constitutes a "significant"
12881 local declaration gets restricted to include only inlined function
12882 instances and local (nested) function definitions. */
12883 if (must_output_die)
12885 if (origin_code == FUNCTION_DECL)
12886 gen_inlined_subroutine_die (stmt, context_die, depth);
12887 else
12888 gen_lexical_block_die (stmt, context_die, depth);
12890 else
12891 decls_for_scope (stmt, context_die, depth);
12894 /* Generate all of the decls declared within a given scope and (recursively)
12895 all of its sub-blocks. */
12897 static void
12898 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12900 tree decl;
12901 tree subblocks;
12903 /* Ignore NULL blocks. */
12904 if (stmt == NULL_TREE)
12905 return;
12907 if (TREE_USED (stmt))
12909 /* Output the DIEs to represent all of the data objects and typedefs
12910 declared directly within this block but not within any nested
12911 sub-blocks. Also, nested function and tag DIEs have been
12912 generated with a parent of NULL; fix that up now. */
12913 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12915 dw_die_ref die;
12917 if (TREE_CODE (decl) == FUNCTION_DECL)
12918 die = lookup_decl_die (decl);
12919 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12920 die = lookup_type_die (TREE_TYPE (decl));
12921 else
12922 die = NULL;
12924 if (die != NULL && die->die_parent == NULL)
12925 add_child_die (context_die, die);
12926 /* Do not produce debug information for static variables since
12927 these might be optimized out. We are called for these later
12928 in cgraph_varpool_analyze_pending_decls. */
12929 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12931 else
12932 gen_decl_die (decl, context_die);
12936 /* If we're at -g1, we're not interested in subblocks. */
12937 if (debug_info_level <= DINFO_LEVEL_TERSE)
12938 return;
12940 /* Output the DIEs to represent all sub-blocks (and the items declared
12941 therein) of this block. */
12942 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12943 subblocks != NULL;
12944 subblocks = BLOCK_CHAIN (subblocks))
12945 gen_block_die (subblocks, context_die, depth + 1);
12948 /* Is this a typedef we can avoid emitting? */
12950 static inline int
12951 is_redundant_typedef (tree decl)
12953 if (TYPE_DECL_IS_STUB (decl))
12954 return 1;
12956 if (DECL_ARTIFICIAL (decl)
12957 && DECL_CONTEXT (decl)
12958 && is_tagged_type (DECL_CONTEXT (decl))
12959 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12960 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12961 /* Also ignore the artificial member typedef for the class name. */
12962 return 1;
12964 return 0;
12967 /* Returns the DIE for decl. A DIE will always be returned. */
12969 static dw_die_ref
12970 force_decl_die (tree decl)
12972 dw_die_ref decl_die;
12973 unsigned saved_external_flag;
12974 tree save_fn = NULL_TREE;
12975 decl_die = lookup_decl_die (decl);
12976 if (!decl_die)
12978 dw_die_ref context_die;
12979 tree decl_context = DECL_CONTEXT (decl);
12980 if (decl_context)
12982 /* Find die that represents this context. */
12983 if (TYPE_P (decl_context))
12984 context_die = force_type_die (decl_context);
12985 else
12986 context_die = force_decl_die (decl_context);
12988 else
12989 context_die = comp_unit_die;
12991 decl_die = lookup_decl_die (decl);
12992 if (decl_die)
12993 return decl_die;
12995 switch (TREE_CODE (decl))
12997 case FUNCTION_DECL:
12998 /* Clear current_function_decl, so that gen_subprogram_die thinks
12999 that this is a declaration. At this point, we just want to force
13000 declaration die. */
13001 save_fn = current_function_decl;
13002 current_function_decl = NULL_TREE;
13003 gen_subprogram_die (decl, context_die);
13004 current_function_decl = save_fn;
13005 break;
13007 case VAR_DECL:
13008 /* Set external flag to force declaration die. Restore it after
13009 gen_decl_die() call. */
13010 saved_external_flag = DECL_EXTERNAL (decl);
13011 DECL_EXTERNAL (decl) = 1;
13012 gen_decl_die (decl, context_die);
13013 DECL_EXTERNAL (decl) = saved_external_flag;
13014 break;
13016 case NAMESPACE_DECL:
13017 dwarf2out_decl (decl);
13018 break;
13020 default:
13021 gcc_unreachable ();
13024 /* We should be able to find the DIE now. */
13025 if (!decl_die)
13026 decl_die = lookup_decl_die (decl);
13027 gcc_assert (decl_die);
13030 return decl_die;
13033 /* Returns the DIE for TYPE. A DIE is always returned. */
13035 static dw_die_ref
13036 force_type_die (tree type)
13038 dw_die_ref type_die;
13040 type_die = lookup_type_die (type);
13041 if (!type_die)
13043 dw_die_ref context_die;
13044 if (TYPE_CONTEXT (type))
13046 if (TYPE_P (TYPE_CONTEXT (type)))
13047 context_die = force_type_die (TYPE_CONTEXT (type));
13048 else
13049 context_die = force_decl_die (TYPE_CONTEXT (type));
13051 else
13052 context_die = comp_unit_die;
13054 type_die = lookup_type_die (type);
13055 if (type_die)
13056 return type_die;
13057 gen_type_die (type, context_die);
13058 type_die = lookup_type_die (type);
13059 gcc_assert (type_die);
13061 return type_die;
13064 /* Force out any required namespaces to be able to output DECL,
13065 and return the new context_die for it, if it's changed. */
13067 static dw_die_ref
13068 setup_namespace_context (tree thing, dw_die_ref context_die)
13070 tree context = (DECL_P (thing)
13071 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13072 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13073 /* Force out the namespace. */
13074 context_die = force_decl_die (context);
13076 return context_die;
13079 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13080 type) within its namespace, if appropriate.
13082 For compatibility with older debuggers, namespace DIEs only contain
13083 declarations; all definitions are emitted at CU scope. */
13085 static void
13086 declare_in_namespace (tree thing, dw_die_ref context_die)
13088 dw_die_ref ns_context;
13090 if (debug_info_level <= DINFO_LEVEL_TERSE)
13091 return;
13093 /* If this decl is from an inlined function, then don't try to emit it in its
13094 namespace, as we will get confused. It would have already been emitted
13095 when the abstract instance of the inline function was emitted anyways. */
13096 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13097 return;
13099 ns_context = setup_namespace_context (thing, context_die);
13101 if (ns_context != context_die)
13103 if (DECL_P (thing))
13104 gen_decl_die (thing, ns_context);
13105 else
13106 gen_type_die (thing, ns_context);
13110 /* Generate a DIE for a namespace or namespace alias. */
13112 static void
13113 gen_namespace_die (tree decl)
13115 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13117 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13118 they are an alias of. */
13119 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13121 /* Output a real namespace. */
13122 dw_die_ref namespace_die
13123 = new_die (DW_TAG_namespace, context_die, decl);
13124 add_name_and_src_coords_attributes (namespace_die, decl);
13125 equate_decl_number_to_die (decl, namespace_die);
13127 else
13129 /* Output a namespace alias. */
13131 /* Force out the namespace we are an alias of, if necessary. */
13132 dw_die_ref origin_die
13133 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13135 /* Now create the namespace alias DIE. */
13136 dw_die_ref namespace_die
13137 = new_die (DW_TAG_imported_declaration, context_die, decl);
13138 add_name_and_src_coords_attributes (namespace_die, decl);
13139 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13140 equate_decl_number_to_die (decl, namespace_die);
13144 /* Generate Dwarf debug information for a decl described by DECL. */
13146 static void
13147 gen_decl_die (tree decl, dw_die_ref context_die)
13149 tree origin;
13151 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13152 return;
13154 switch (TREE_CODE (decl))
13156 case ERROR_MARK:
13157 break;
13159 case CONST_DECL:
13160 /* The individual enumerators of an enum type get output when we output
13161 the Dwarf representation of the relevant enum type itself. */
13162 break;
13164 case FUNCTION_DECL:
13165 /* Don't output any DIEs to represent mere function declarations,
13166 unless they are class members or explicit block externs. */
13167 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13168 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13169 break;
13171 #if 0
13172 /* FIXME */
13173 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13174 on local redeclarations of global functions. That seems broken. */
13175 if (current_function_decl != decl)
13176 /* This is only a declaration. */;
13177 #endif
13179 /* If we're emitting a clone, emit info for the abstract instance. */
13180 if (DECL_ORIGIN (decl) != decl)
13181 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13183 /* If we're emitting an out-of-line copy of an inline function,
13184 emit info for the abstract instance and set up to refer to it. */
13185 else if (cgraph_function_possibly_inlined_p (decl)
13186 && ! DECL_ABSTRACT (decl)
13187 && ! class_or_namespace_scope_p (context_die)
13188 /* dwarf2out_abstract_function won't emit a die if this is just
13189 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13190 that case, because that works only if we have a die. */
13191 && DECL_INITIAL (decl) != NULL_TREE)
13193 dwarf2out_abstract_function (decl);
13194 set_decl_origin_self (decl);
13197 /* Otherwise we're emitting the primary DIE for this decl. */
13198 else if (debug_info_level > DINFO_LEVEL_TERSE)
13200 /* Before we describe the FUNCTION_DECL itself, make sure that we
13201 have described its return type. */
13202 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13204 /* And its virtual context. */
13205 if (DECL_VINDEX (decl) != NULL_TREE)
13206 gen_type_die (DECL_CONTEXT (decl), context_die);
13208 /* And its containing type. */
13209 origin = decl_class_context (decl);
13210 if (origin != NULL_TREE)
13211 gen_type_die_for_member (origin, decl, context_die);
13213 /* And its containing namespace. */
13214 declare_in_namespace (decl, context_die);
13217 /* Now output a DIE to represent the function itself. */
13218 gen_subprogram_die (decl, context_die);
13219 break;
13221 case TYPE_DECL:
13222 /* If we are in terse mode, don't generate any DIEs to represent any
13223 actual typedefs. */
13224 if (debug_info_level <= DINFO_LEVEL_TERSE)
13225 break;
13227 /* In the special case of a TYPE_DECL node representing the declaration
13228 of some type tag, if the given TYPE_DECL is marked as having been
13229 instantiated from some other (original) TYPE_DECL node (e.g. one which
13230 was generated within the original definition of an inline function) we
13231 have to generate a special (abbreviated) DW_TAG_structure_type,
13232 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13233 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13235 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13236 break;
13239 if (is_redundant_typedef (decl))
13240 gen_type_die (TREE_TYPE (decl), context_die);
13241 else
13242 /* Output a DIE to represent the typedef itself. */
13243 gen_typedef_die (decl, context_die);
13244 break;
13246 case LABEL_DECL:
13247 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13248 gen_label_die (decl, context_die);
13249 break;
13251 case VAR_DECL:
13252 case RESULT_DECL:
13253 /* If we are in terse mode, don't generate any DIEs to represent any
13254 variable declarations or definitions. */
13255 if (debug_info_level <= DINFO_LEVEL_TERSE)
13256 break;
13258 /* Output any DIEs that are needed to specify the type of this data
13259 object. */
13260 gen_type_die (TREE_TYPE (decl), context_die);
13262 /* And its containing type. */
13263 origin = decl_class_context (decl);
13264 if (origin != NULL_TREE)
13265 gen_type_die_for_member (origin, decl, context_die);
13267 /* And its containing namespace. */
13268 declare_in_namespace (decl, context_die);
13270 /* Now output the DIE to represent the data object itself. This gets
13271 complicated because of the possibility that the VAR_DECL really
13272 represents an inlined instance of a formal parameter for an inline
13273 function. */
13274 origin = decl_ultimate_origin (decl);
13275 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13276 gen_formal_parameter_die (decl, context_die);
13277 else
13278 gen_variable_die (decl, context_die);
13279 break;
13281 case FIELD_DECL:
13282 /* Ignore the nameless fields that are used to skip bits but handle C++
13283 anonymous unions and structs. */
13284 if (DECL_NAME (decl) != NULL_TREE
13285 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13286 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13288 gen_type_die (member_declared_type (decl), context_die);
13289 gen_field_die (decl, context_die);
13291 break;
13293 case PARM_DECL:
13294 gen_type_die (TREE_TYPE (decl), context_die);
13295 gen_formal_parameter_die (decl, context_die);
13296 break;
13298 case NAMESPACE_DECL:
13299 gen_namespace_die (decl);
13300 break;
13302 default:
13303 /* Probably some frontend-internal decl. Assume we don't care. */
13304 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13305 break;
13309 /* Output debug information for global decl DECL. Called from toplev.c after
13310 compilation proper has finished. */
13312 static void
13313 dwarf2out_global_decl (tree decl)
13315 /* Output DWARF2 information for file-scope tentative data object
13316 declarations, file-scope (extern) function declarations (which had no
13317 corresponding body) and file-scope tagged type declarations and
13318 definitions which have not yet been forced out. */
13319 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13320 dwarf2out_decl (decl);
13323 /* Output debug information for type decl DECL. Called from toplev.c
13324 and from language front ends (to record built-in types). */
13325 static void
13326 dwarf2out_type_decl (tree decl, int local)
13328 if (!local)
13329 dwarf2out_decl (decl);
13332 /* Output debug information for imported module or decl. */
13334 static void
13335 dwarf2out_imported_module_or_decl (tree decl, tree context)
13337 dw_die_ref imported_die, at_import_die;
13338 dw_die_ref scope_die;
13339 expanded_location xloc;
13341 if (debug_info_level <= DINFO_LEVEL_TERSE)
13342 return;
13344 gcc_assert (decl);
13346 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13347 We need decl DIE for reference and scope die. First, get DIE for the decl
13348 itself. */
13350 /* Get the scope die for decl context. Use comp_unit_die for global module
13351 or decl. If die is not found for non globals, force new die. */
13352 if (!context)
13353 scope_die = comp_unit_die;
13354 else if (TYPE_P (context))
13355 scope_die = force_type_die (context);
13356 else
13357 scope_die = force_decl_die (context);
13359 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13360 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13361 at_import_die = force_type_die (TREE_TYPE (decl));
13362 else
13364 at_import_die = lookup_decl_die (decl);
13365 if (!at_import_die)
13367 /* If we're trying to avoid duplicate debug info, we may not have
13368 emitted the member decl for this field. Emit it now. */
13369 if (TREE_CODE (decl) == FIELD_DECL)
13371 tree type = DECL_CONTEXT (decl);
13372 dw_die_ref type_context_die;
13374 if (TYPE_CONTEXT (type))
13375 if (TYPE_P (TYPE_CONTEXT (type)))
13376 type_context_die = force_type_die (TYPE_CONTEXT (type));
13377 else
13378 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13379 else
13380 type_context_die = comp_unit_die;
13381 gen_type_die_for_member (type, decl, type_context_die);
13383 at_import_die = force_decl_die (decl);
13387 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13388 if (TREE_CODE (decl) == NAMESPACE_DECL)
13389 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13390 else
13391 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13393 xloc = expand_location (input_location);
13394 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13395 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13396 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13399 /* Write the debugging output for DECL. */
13401 void
13402 dwarf2out_decl (tree decl)
13404 dw_die_ref context_die = comp_unit_die;
13406 switch (TREE_CODE (decl))
13408 case ERROR_MARK:
13409 return;
13411 case FUNCTION_DECL:
13412 /* What we would really like to do here is to filter out all mere
13413 file-scope declarations of file-scope functions which are never
13414 referenced later within this translation unit (and keep all of ones
13415 that *are* referenced later on) but we aren't clairvoyant, so we have
13416 no idea which functions will be referenced in the future (i.e. later
13417 on within the current translation unit). So here we just ignore all
13418 file-scope function declarations which are not also definitions. If
13419 and when the debugger needs to know something about these functions,
13420 it will have to hunt around and find the DWARF information associated
13421 with the definition of the function.
13423 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13424 nodes represent definitions and which ones represent mere
13425 declarations. We have to check DECL_INITIAL instead. That's because
13426 the C front-end supports some weird semantics for "extern inline"
13427 function definitions. These can get inlined within the current
13428 translation unit (and thus, we need to generate Dwarf info for their
13429 abstract instances so that the Dwarf info for the concrete inlined
13430 instances can have something to refer to) but the compiler never
13431 generates any out-of-lines instances of such things (despite the fact
13432 that they *are* definitions).
13434 The important point is that the C front-end marks these "extern
13435 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13436 them anyway. Note that the C++ front-end also plays some similar games
13437 for inline function definitions appearing within include files which
13438 also contain `#pragma interface' pragmas. */
13439 if (DECL_INITIAL (decl) == NULL_TREE)
13440 return;
13442 /* If we're a nested function, initially use a parent of NULL; if we're
13443 a plain function, this will be fixed up in decls_for_scope. If
13444 we're a method, it will be ignored, since we already have a DIE. */
13445 if (decl_function_context (decl)
13446 /* But if we're in terse mode, we don't care about scope. */
13447 && debug_info_level > DINFO_LEVEL_TERSE)
13448 context_die = NULL;
13449 break;
13451 case VAR_DECL:
13452 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13453 declaration and if the declaration was never even referenced from
13454 within this entire compilation unit. We suppress these DIEs in
13455 order to save space in the .debug section (by eliminating entries
13456 which are probably useless). Note that we must not suppress
13457 block-local extern declarations (whether used or not) because that
13458 would screw-up the debugger's name lookup mechanism and cause it to
13459 miss things which really ought to be in scope at a given point. */
13460 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13461 return;
13463 /* For local statics lookup proper context die. */
13464 if (TREE_STATIC (decl) && decl_function_context (decl))
13465 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13467 /* If we are in terse mode, don't generate any DIEs to represent any
13468 variable declarations or definitions. */
13469 if (debug_info_level <= DINFO_LEVEL_TERSE)
13470 return;
13471 break;
13473 case NAMESPACE_DECL:
13474 if (debug_info_level <= DINFO_LEVEL_TERSE)
13475 return;
13476 if (lookup_decl_die (decl) != NULL)
13477 return;
13478 break;
13480 case TYPE_DECL:
13481 /* Don't emit stubs for types unless they are needed by other DIEs. */
13482 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13483 return;
13485 /* Don't bother trying to generate any DIEs to represent any of the
13486 normal built-in types for the language we are compiling. */
13487 if (DECL_IS_BUILTIN (decl))
13489 /* OK, we need to generate one for `bool' so GDB knows what type
13490 comparisons have. */
13491 if (is_cxx ()
13492 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13493 && ! DECL_IGNORED_P (decl))
13494 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13496 return;
13499 /* If we are in terse mode, don't generate any DIEs for types. */
13500 if (debug_info_level <= DINFO_LEVEL_TERSE)
13501 return;
13503 /* If we're a function-scope tag, initially use a parent of NULL;
13504 this will be fixed up in decls_for_scope. */
13505 if (decl_function_context (decl))
13506 context_die = NULL;
13508 break;
13510 default:
13511 return;
13514 gen_decl_die (decl, context_die);
13517 /* Output a marker (i.e. a label) for the beginning of the generated code for
13518 a lexical block. */
13520 static void
13521 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13522 unsigned int blocknum)
13524 switch_to_section (current_function_section ());
13525 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13528 /* Output a marker (i.e. a label) for the end of the generated code for a
13529 lexical block. */
13531 static void
13532 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13534 switch_to_section (current_function_section ());
13535 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13538 /* Returns nonzero if it is appropriate not to emit any debugging
13539 information for BLOCK, because it doesn't contain any instructions.
13541 Don't allow this for blocks with nested functions or local classes
13542 as we would end up with orphans, and in the presence of scheduling
13543 we may end up calling them anyway. */
13545 static bool
13546 dwarf2out_ignore_block (tree block)
13548 tree decl;
13550 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13551 if (TREE_CODE (decl) == FUNCTION_DECL
13552 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13553 return 0;
13555 return 1;
13558 /* Hash table routines for file_hash. */
13560 static int
13561 file_table_eq (const void *p1_p, const void *p2_p)
13563 const struct dwarf_file_data * p1 = p1_p;
13564 const char * p2 = p2_p;
13565 return strcmp (p1->filename, p2) == 0;
13568 static hashval_t
13569 file_table_hash (const void *p_p)
13571 const struct dwarf_file_data * p = p_p;
13572 return htab_hash_string (p->filename);
13575 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13576 dwarf2out.c) and return its "index". The index of each (known) filename is
13577 just a unique number which is associated with only that one filename. We
13578 need such numbers for the sake of generating labels (in the .debug_sfnames
13579 section) and references to those files numbers (in the .debug_srcinfo
13580 and.debug_macinfo sections). If the filename given as an argument is not
13581 found in our current list, add it to the list and assign it the next
13582 available unique index number. In order to speed up searches, we remember
13583 the index of the filename was looked up last. This handles the majority of
13584 all searches. */
13586 static struct dwarf_file_data *
13587 lookup_filename (const char *file_name)
13589 void ** slot;
13590 struct dwarf_file_data * created;
13592 /* Check to see if the file name that was searched on the previous
13593 call matches this file name. If so, return the index. */
13594 if (file_table_last_lookup
13595 && (file_name == file_table_last_lookup->filename
13596 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13597 return file_table_last_lookup;
13599 /* Didn't match the previous lookup, search the table. */
13600 slot = htab_find_slot_with_hash (file_table, file_name,
13601 htab_hash_string (file_name), INSERT);
13602 if (*slot)
13603 return *slot;
13605 created = ggc_alloc (sizeof (struct dwarf_file_data));
13606 created->filename = file_name;
13607 created->emitted_number = 0;
13608 *slot = created;
13609 return created;
13612 /* If the assembler will construct the file table, then translate the compiler
13613 internal file table number into the assembler file table number, and emit
13614 a .file directive if we haven't already emitted one yet. The file table
13615 numbers are different because we prune debug info for unused variables and
13616 types, which may include filenames. */
13618 static int
13619 maybe_emit_file (struct dwarf_file_data * fd)
13621 if (! fd->emitted_number)
13623 if (last_emitted_file)
13624 fd->emitted_number = last_emitted_file->emitted_number + 1;
13625 else
13626 fd->emitted_number = 1;
13627 last_emitted_file = fd;
13629 if (DWARF2_ASM_LINE_DEBUG_INFO)
13631 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13632 output_quoted_string (asm_out_file, fd->filename);
13633 fputc ('\n', asm_out_file);
13637 return fd->emitted_number;
13640 /* Called by the final INSN scan whenever we see a var location. We
13641 use it to drop labels in the right places, and throw the location in
13642 our lookup table. */
13644 static void
13645 dwarf2out_var_location (rtx loc_note)
13647 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13648 struct var_loc_node *newloc;
13649 rtx prev_insn;
13650 static rtx last_insn;
13651 static const char *last_label;
13652 tree decl;
13654 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13655 return;
13656 prev_insn = PREV_INSN (loc_note);
13658 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13659 /* If the insn we processed last time is the previous insn
13660 and it is also a var location note, use the label we emitted
13661 last time. */
13662 if (last_insn != NULL_RTX
13663 && last_insn == prev_insn
13664 && NOTE_P (prev_insn)
13665 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13667 newloc->label = last_label;
13669 else
13671 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13672 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13673 loclabel_num++;
13674 newloc->label = ggc_strdup (loclabel);
13676 newloc->var_loc_note = loc_note;
13677 newloc->next = NULL;
13679 if (cfun && in_cold_section_p)
13680 newloc->section_label = cfun->cold_section_label;
13681 else
13682 newloc->section_label = text_section_label;
13684 last_insn = loc_note;
13685 last_label = newloc->label;
13686 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13687 add_var_loc_to_decl (decl, newloc);
13690 /* We need to reset the locations at the beginning of each
13691 function. We can't do this in the end_function hook, because the
13692 declarations that use the locations won't have been output when
13693 that hook is called. Also compute have_multiple_function_sections here. */
13695 static void
13696 dwarf2out_begin_function (tree fun)
13698 htab_empty (decl_loc_table);
13700 if (function_section (fun) != text_section)
13701 have_multiple_function_sections = true;
13704 /* Output a label to mark the beginning of a source code line entry
13705 and record information relating to this source line, in
13706 'line_info_table' for later output of the .debug_line section. */
13708 static void
13709 dwarf2out_source_line (unsigned int line, const char *filename)
13711 if (debug_info_level >= DINFO_LEVEL_NORMAL
13712 && line != 0)
13714 int file_num = maybe_emit_file (lookup_filename (filename));
13716 switch_to_section (current_function_section ());
13718 /* If requested, emit something human-readable. */
13719 if (flag_debug_asm)
13720 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13721 filename, line);
13723 if (DWARF2_ASM_LINE_DEBUG_INFO)
13725 /* Emit the .loc directive understood by GNU as. */
13726 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13728 /* Indicate that line number info exists. */
13729 line_info_table_in_use++;
13731 else if (function_section (current_function_decl) != text_section)
13733 dw_separate_line_info_ref line_info;
13734 targetm.asm_out.internal_label (asm_out_file,
13735 SEPARATE_LINE_CODE_LABEL,
13736 separate_line_info_table_in_use);
13738 /* Expand the line info table if necessary. */
13739 if (separate_line_info_table_in_use
13740 == separate_line_info_table_allocated)
13742 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13743 separate_line_info_table
13744 = ggc_realloc (separate_line_info_table,
13745 separate_line_info_table_allocated
13746 * sizeof (dw_separate_line_info_entry));
13747 memset (separate_line_info_table
13748 + separate_line_info_table_in_use,
13750 (LINE_INFO_TABLE_INCREMENT
13751 * sizeof (dw_separate_line_info_entry)));
13754 /* Add the new entry at the end of the line_info_table. */
13755 line_info
13756 = &separate_line_info_table[separate_line_info_table_in_use++];
13757 line_info->dw_file_num = file_num;
13758 line_info->dw_line_num = line;
13759 line_info->function = current_function_funcdef_no;
13761 else
13763 dw_line_info_ref line_info;
13765 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13766 line_info_table_in_use);
13768 /* Expand the line info table if necessary. */
13769 if (line_info_table_in_use == line_info_table_allocated)
13771 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13772 line_info_table
13773 = ggc_realloc (line_info_table,
13774 (line_info_table_allocated
13775 * sizeof (dw_line_info_entry)));
13776 memset (line_info_table + line_info_table_in_use, 0,
13777 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13780 /* Add the new entry at the end of the line_info_table. */
13781 line_info = &line_info_table[line_info_table_in_use++];
13782 line_info->dw_file_num = file_num;
13783 line_info->dw_line_num = line;
13788 /* Record the beginning of a new source file. */
13790 static void
13791 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13793 if (flag_eliminate_dwarf2_dups)
13795 /* Record the beginning of the file for break_out_includes. */
13796 dw_die_ref bincl_die;
13798 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13799 add_AT_string (bincl_die, DW_AT_name, filename);
13802 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13804 int file_num = maybe_emit_file (lookup_filename (filename));
13806 switch_to_section (debug_macinfo_section);
13807 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13808 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13809 lineno);
13811 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13815 /* Record the end of a source file. */
13817 static void
13818 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13820 if (flag_eliminate_dwarf2_dups)
13821 /* Record the end of the file for break_out_includes. */
13822 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13824 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13826 switch_to_section (debug_macinfo_section);
13827 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13831 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13832 the tail part of the directive line, i.e. the part which is past the
13833 initial whitespace, #, whitespace, directive-name, whitespace part. */
13835 static void
13836 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13837 const char *buffer ATTRIBUTE_UNUSED)
13839 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13841 switch_to_section (debug_macinfo_section);
13842 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13843 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13844 dw2_asm_output_nstring (buffer, -1, "The macro");
13848 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13849 the tail part of the directive line, i.e. the part which is past the
13850 initial whitespace, #, whitespace, directive-name, whitespace part. */
13852 static void
13853 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13854 const char *buffer ATTRIBUTE_UNUSED)
13856 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13858 switch_to_section (debug_macinfo_section);
13859 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13860 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13861 dw2_asm_output_nstring (buffer, -1, "The macro");
13865 /* Set up for Dwarf output at the start of compilation. */
13867 static void
13868 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13870 /* Allocate the file_table. */
13871 file_table = htab_create_ggc (50, file_table_hash,
13872 file_table_eq, NULL);
13874 /* Allocate the decl_die_table. */
13875 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13876 decl_die_table_eq, NULL);
13878 /* Allocate the decl_loc_table. */
13879 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13880 decl_loc_table_eq, NULL);
13882 /* Allocate the initial hunk of the decl_scope_table. */
13883 decl_scope_table = VEC_alloc (tree, gc, 256);
13885 /* Allocate the initial hunk of the abbrev_die_table. */
13886 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13887 * sizeof (dw_die_ref));
13888 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13889 /* Zero-th entry is allocated, but unused. */
13890 abbrev_die_table_in_use = 1;
13892 /* Allocate the initial hunk of the line_info_table. */
13893 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13894 * sizeof (dw_line_info_entry));
13895 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13897 /* Zero-th entry is allocated, but unused. */
13898 line_info_table_in_use = 1;
13900 /* Allocate the pubtypes and pubnames vectors. */
13901 pubname_table = VEC_alloc (pubname_entry, gc, 32);
13902 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
13904 /* Generate the initial DIE for the .debug section. Note that the (string)
13905 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13906 will (typically) be a relative pathname and that this pathname should be
13907 taken as being relative to the directory from which the compiler was
13908 invoked when the given (base) source file was compiled. We will fill
13909 in this value in dwarf2out_finish. */
13910 comp_unit_die = gen_compile_unit_die (NULL);
13912 incomplete_types = VEC_alloc (tree, gc, 64);
13914 used_rtx_array = VEC_alloc (rtx, gc, 32);
13916 debug_info_section = get_section (DEBUG_INFO_SECTION,
13917 SECTION_DEBUG, NULL);
13918 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13919 SECTION_DEBUG, NULL);
13920 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13921 SECTION_DEBUG, NULL);
13922 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13923 SECTION_DEBUG, NULL);
13924 debug_line_section = get_section (DEBUG_LINE_SECTION,
13925 SECTION_DEBUG, NULL);
13926 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13927 SECTION_DEBUG, NULL);
13928 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13929 SECTION_DEBUG, NULL);
13930 #ifdef DEBUG_PUBTYPES_SECTION
13931 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
13932 SECTION_DEBUG, NULL);
13933 #endif
13934 debug_str_section = get_section (DEBUG_STR_SECTION,
13935 DEBUG_STR_SECTION_FLAGS, NULL);
13936 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13937 SECTION_DEBUG, NULL);
13938 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13939 SECTION_DEBUG, NULL);
13941 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13942 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13943 DEBUG_ABBREV_SECTION_LABEL, 0);
13944 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13945 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13946 COLD_TEXT_SECTION_LABEL, 0);
13947 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13949 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13950 DEBUG_INFO_SECTION_LABEL, 0);
13951 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13952 DEBUG_LINE_SECTION_LABEL, 0);
13953 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13954 DEBUG_RANGES_SECTION_LABEL, 0);
13955 switch_to_section (debug_abbrev_section);
13956 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13957 switch_to_section (debug_info_section);
13958 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13959 switch_to_section (debug_line_section);
13960 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13962 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13964 switch_to_section (debug_macinfo_section);
13965 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13966 DEBUG_MACINFO_SECTION_LABEL, 0);
13967 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13970 switch_to_section (text_section);
13971 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13972 if (flag_reorder_blocks_and_partition)
13974 switch_to_section (unlikely_text_section ());
13975 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13979 /* A helper function for dwarf2out_finish called through
13980 ht_forall. Emit one queued .debug_str string. */
13982 static int
13983 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13985 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13987 if (node->form == DW_FORM_strp)
13989 switch_to_section (debug_str_section);
13990 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13991 assemble_string (node->str, strlen (node->str) + 1);
13994 return 1;
13997 #if ENABLE_ASSERT_CHECKING
13998 /* Verify that all marks are clear. */
14000 static void
14001 verify_marks_clear (dw_die_ref die)
14003 dw_die_ref c;
14005 gcc_assert (! die->die_mark);
14006 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14008 #endif /* ENABLE_ASSERT_CHECKING */
14010 /* Clear the marks for a die and its children.
14011 Be cool if the mark isn't set. */
14013 static void
14014 prune_unmark_dies (dw_die_ref die)
14016 dw_die_ref c;
14018 if (die->die_mark)
14019 die->die_mark = 0;
14020 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14023 /* Given DIE that we're marking as used, find any other dies
14024 it references as attributes and mark them as used. */
14026 static void
14027 prune_unused_types_walk_attribs (dw_die_ref die)
14029 dw_attr_ref a;
14030 unsigned ix;
14032 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14034 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14036 /* A reference to another DIE.
14037 Make sure that it will get emitted. */
14038 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14040 /* Set the string's refcount to 0 so that prune_unused_types_mark
14041 accounts properly for it. */
14042 if (AT_class (a) == dw_val_class_str)
14043 a->dw_attr_val.v.val_str->refcount = 0;
14048 /* Mark DIE as being used. If DOKIDS is true, then walk down
14049 to DIE's children. */
14051 static void
14052 prune_unused_types_mark (dw_die_ref die, int dokids)
14054 dw_die_ref c;
14056 if (die->die_mark == 0)
14058 /* We haven't done this node yet. Mark it as used. */
14059 die->die_mark = 1;
14061 /* We also have to mark its parents as used.
14062 (But we don't want to mark our parents' kids due to this.) */
14063 if (die->die_parent)
14064 prune_unused_types_mark (die->die_parent, 0);
14066 /* Mark any referenced nodes. */
14067 prune_unused_types_walk_attribs (die);
14069 /* If this node is a specification,
14070 also mark the definition, if it exists. */
14071 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14072 prune_unused_types_mark (die->die_definition, 1);
14075 if (dokids && die->die_mark != 2)
14077 /* We need to walk the children, but haven't done so yet.
14078 Remember that we've walked the kids. */
14079 die->die_mark = 2;
14081 /* If this is an array type, we need to make sure our
14082 kids get marked, even if they're types. */
14083 if (die->die_tag == DW_TAG_array_type)
14084 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14085 else
14086 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14091 /* Walk the tree DIE and mark types that we actually use. */
14093 static void
14094 prune_unused_types_walk (dw_die_ref die)
14096 dw_die_ref c;
14098 /* Don't do anything if this node is already marked. */
14099 if (die->die_mark)
14100 return;
14102 switch (die->die_tag)
14104 case DW_TAG_const_type:
14105 case DW_TAG_packed_type:
14106 case DW_TAG_pointer_type:
14107 case DW_TAG_reference_type:
14108 case DW_TAG_volatile_type:
14109 case DW_TAG_typedef:
14110 case DW_TAG_array_type:
14111 case DW_TAG_structure_type:
14112 case DW_TAG_union_type:
14113 case DW_TAG_class_type:
14114 case DW_TAG_friend:
14115 case DW_TAG_variant_part:
14116 case DW_TAG_enumeration_type:
14117 case DW_TAG_subroutine_type:
14118 case DW_TAG_string_type:
14119 case DW_TAG_set_type:
14120 case DW_TAG_subrange_type:
14121 case DW_TAG_ptr_to_member_type:
14122 case DW_TAG_file_type:
14123 if (die->die_perennial_p)
14124 break;
14126 /* It's a type node --- don't mark it. */
14127 return;
14129 default:
14130 /* Mark everything else. */
14131 break;
14134 die->die_mark = 1;
14136 /* Now, mark any dies referenced from here. */
14137 prune_unused_types_walk_attribs (die);
14139 /* Mark children. */
14140 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14143 /* Increment the string counts on strings referred to from DIE's
14144 attributes. */
14146 static void
14147 prune_unused_types_update_strings (dw_die_ref die)
14149 dw_attr_ref a;
14150 unsigned ix;
14152 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14153 if (AT_class (a) == dw_val_class_str)
14155 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14156 s->refcount++;
14157 /* Avoid unnecessarily putting strings that are used less than
14158 twice in the hash table. */
14159 if (s->refcount
14160 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14162 void ** slot;
14163 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14164 htab_hash_string (s->str),
14165 INSERT);
14166 gcc_assert (*slot == NULL);
14167 *slot = s;
14172 /* Remove from the tree DIE any dies that aren't marked. */
14174 static void
14175 prune_unused_types_prune (dw_die_ref die)
14177 dw_die_ref c;
14179 gcc_assert (die->die_mark);
14180 prune_unused_types_update_strings (die);
14182 if (! die->die_child)
14183 return;
14185 c = die->die_child;
14186 do {
14187 dw_die_ref prev = c;
14188 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14189 if (c == die->die_child)
14191 /* No marked children between 'prev' and the end of the list. */
14192 if (prev == c)
14193 /* No marked children at all. */
14194 die->die_child = NULL;
14195 else
14197 prev->die_sib = c->die_sib;
14198 die->die_child = prev;
14200 return;
14203 if (c != prev->die_sib)
14204 prev->die_sib = c;
14205 prune_unused_types_prune (c);
14206 } while (c != die->die_child);
14210 /* Remove dies representing declarations that we never use. */
14212 static void
14213 prune_unused_types (void)
14215 unsigned int i;
14216 limbo_die_node *node;
14217 pubname_ref pub;
14219 #if ENABLE_ASSERT_CHECKING
14220 /* All the marks should already be clear. */
14221 verify_marks_clear (comp_unit_die);
14222 for (node = limbo_die_list; node; node = node->next)
14223 verify_marks_clear (node->die);
14224 #endif /* ENABLE_ASSERT_CHECKING */
14226 /* Set the mark on nodes that are actually used. */
14227 prune_unused_types_walk (comp_unit_die);
14228 for (node = limbo_die_list; node; node = node->next)
14229 prune_unused_types_walk (node->die);
14231 /* Also set the mark on nodes referenced from the
14232 pubname_table or arange_table. */
14233 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14234 prune_unused_types_mark (pub->die, 1);
14235 for (i = 0; i < arange_table_in_use; i++)
14236 prune_unused_types_mark (arange_table[i], 1);
14238 /* Get rid of nodes that aren't marked; and update the string counts. */
14239 if (debug_str_hash)
14240 htab_empty (debug_str_hash);
14241 prune_unused_types_prune (comp_unit_die);
14242 for (node = limbo_die_list; node; node = node->next)
14243 prune_unused_types_prune (node->die);
14245 /* Leave the marks clear. */
14246 prune_unmark_dies (comp_unit_die);
14247 for (node = limbo_die_list; node; node = node->next)
14248 prune_unmark_dies (node->die);
14251 /* Set the parameter to true if there are any relative pathnames in
14252 the file table. */
14253 static int
14254 file_table_relative_p (void ** slot, void *param)
14256 bool *p = param;
14257 struct dwarf_file_data *d = *slot;
14258 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14260 *p = true;
14261 return 0;
14263 return 1;
14266 /* Output stuff that dwarf requires at the end of every file,
14267 and generate the DWARF-2 debugging info. */
14269 static void
14270 dwarf2out_finish (const char *filename)
14272 limbo_die_node *node, *next_node;
14273 dw_die_ref die = 0;
14275 /* Add the name for the main input file now. We delayed this from
14276 dwarf2out_init to avoid complications with PCH. */
14277 add_name_attribute (comp_unit_die, filename);
14278 if (!IS_ABSOLUTE_PATH (filename))
14279 add_comp_dir_attribute (comp_unit_die);
14280 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14282 bool p = false;
14283 htab_traverse (file_table, file_table_relative_p, &p);
14284 if (p)
14285 add_comp_dir_attribute (comp_unit_die);
14288 /* Traverse the limbo die list, and add parent/child links. The only
14289 dies without parents that should be here are concrete instances of
14290 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14291 For concrete instances, we can get the parent die from the abstract
14292 instance. */
14293 for (node = limbo_die_list; node; node = next_node)
14295 next_node = node->next;
14296 die = node->die;
14298 if (die->die_parent == NULL)
14300 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14302 if (origin)
14303 add_child_die (origin->die_parent, die);
14304 else if (die == comp_unit_die)
14306 else if (errorcount > 0 || sorrycount > 0)
14307 /* It's OK to be confused by errors in the input. */
14308 add_child_die (comp_unit_die, die);
14309 else
14311 /* In certain situations, the lexical block containing a
14312 nested function can be optimized away, which results
14313 in the nested function die being orphaned. Likewise
14314 with the return type of that nested function. Force
14315 this to be a child of the containing function.
14317 It may happen that even the containing function got fully
14318 inlined and optimized out. In that case we are lost and
14319 assign the empty child. This should not be big issue as
14320 the function is likely unreachable too. */
14321 tree context = NULL_TREE;
14323 gcc_assert (node->created_for);
14325 if (DECL_P (node->created_for))
14326 context = DECL_CONTEXT (node->created_for);
14327 else if (TYPE_P (node->created_for))
14328 context = TYPE_CONTEXT (node->created_for);
14330 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14332 origin = lookup_decl_die (context);
14333 if (origin)
14334 add_child_die (origin, die);
14335 else
14336 add_child_die (comp_unit_die, die);
14341 limbo_die_list = NULL;
14343 /* Walk through the list of incomplete types again, trying once more to
14344 emit full debugging info for them. */
14345 retry_incomplete_types ();
14347 if (flag_eliminate_unused_debug_types)
14348 prune_unused_types ();
14350 /* Generate separate CUs for each of the include files we've seen.
14351 They will go into limbo_die_list. */
14352 if (flag_eliminate_dwarf2_dups)
14353 break_out_includes (comp_unit_die);
14355 /* Traverse the DIE's and add add sibling attributes to those DIE's
14356 that have children. */
14357 add_sibling_attributes (comp_unit_die);
14358 for (node = limbo_die_list; node; node = node->next)
14359 add_sibling_attributes (node->die);
14361 /* Output a terminator label for the .text section. */
14362 switch_to_section (text_section);
14363 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14364 if (flag_reorder_blocks_and_partition)
14366 switch_to_section (unlikely_text_section ());
14367 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14370 /* We can only use the low/high_pc attributes if all of the code was
14371 in .text. */
14372 if (!have_multiple_function_sections)
14374 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14375 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14378 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14379 "base address". Use zero so that these addresses become absolute. */
14380 else if (have_location_lists || ranges_table_in_use)
14381 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14383 /* Output location list section if necessary. */
14384 if (have_location_lists)
14386 /* Output the location lists info. */
14387 switch_to_section (debug_loc_section);
14388 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14389 DEBUG_LOC_SECTION_LABEL, 0);
14390 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14391 output_location_lists (die);
14394 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14395 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14396 debug_line_section_label);
14398 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14399 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14401 /* Output all of the compilation units. We put the main one last so that
14402 the offsets are available to output_pubnames. */
14403 for (node = limbo_die_list; node; node = node->next)
14404 output_comp_unit (node->die, 0);
14406 output_comp_unit (comp_unit_die, 0);
14408 /* Output the abbreviation table. */
14409 switch_to_section (debug_abbrev_section);
14410 output_abbrev_section ();
14412 /* Output public names table if necessary. */
14413 if (!VEC_empty (pubname_entry, pubname_table))
14415 switch_to_section (debug_pubnames_section);
14416 output_pubnames (pubname_table);
14419 #ifdef DEBUG_PUBTYPES_SECTION
14420 /* Output public types table if necessary. */
14421 if (!VEC_empty (pubname_entry, pubtype_table))
14423 switch_to_section (debug_pubtypes_section);
14424 output_pubnames (pubtype_table);
14426 #endif
14428 /* Output the address range information. We only put functions in the arange
14429 table, so don't write it out if we don't have any. */
14430 if (fde_table_in_use)
14432 switch_to_section (debug_aranges_section);
14433 output_aranges ();
14436 /* Output ranges section if necessary. */
14437 if (ranges_table_in_use)
14439 switch_to_section (debug_ranges_section);
14440 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14441 output_ranges ();
14444 /* Output the source line correspondence table. We must do this
14445 even if there is no line information. Otherwise, on an empty
14446 translation unit, we will generate a present, but empty,
14447 .debug_info section. IRIX 6.5 `nm' will then complain when
14448 examining the file. This is done late so that any filenames
14449 used by the debug_info section are marked as 'used'. */
14450 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14452 switch_to_section (debug_line_section);
14453 output_line_info ();
14456 /* Have to end the macro section. */
14457 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14459 switch_to_section (debug_macinfo_section);
14460 dw2_asm_output_data (1, 0, "End compilation unit");
14463 /* If we emitted any DW_FORM_strp form attribute, output the string
14464 table too. */
14465 if (debug_str_hash)
14466 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14468 #else
14470 /* This should never be used, but its address is needed for comparisons. */
14471 const struct gcc_debug_hooks dwarf2_debug_hooks;
14473 #endif /* DWARF2_DEBUGGING_INFO */
14475 #include "gt-dwarf2out.h"