Daily bump.
[official-gcc.git] / gcc / combine.c
blob7f75f9d6c4d9e34034982ca63a7bf4dd0b160eee
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
126 /* Sometimes combine tries to replace the right hand side of an insn
127 with the value of a REG_EQUAL note. This is the insn that has been
128 so modified, or null if none. */
130 static rtx replaced_rhs_insn;
132 /* When REPLACED_RHS_INSN is nonnull, this is a copy of the new right
133 hand side. */
135 static rtx replaced_rhs_value;
137 /* Vector mapping INSN_UIDs to cuids.
138 The cuids are like uids but increase monotonically always.
139 Combine always uses cuids so that it can compare them.
140 But actually renumbering the uids, which we used to do,
141 proves to be a bad idea because it makes it hard to compare
142 the dumps produced by earlier passes with those from later passes. */
144 static int *uid_cuid;
145 static int max_uid_cuid;
147 /* Get the cuid of an insn. */
149 #define INSN_CUID(INSN) \
150 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
152 /* Maximum register number, which is the size of the tables below. */
154 static unsigned int combine_max_regno;
156 struct reg_stat {
157 /* Record last point of death of (hard or pseudo) register n. */
158 rtx last_death;
160 /* Record last point of modification of (hard or pseudo) register n. */
161 rtx last_set;
163 /* The next group of fields allows the recording of the last value assigned
164 to (hard or pseudo) register n. We use this information to see if an
165 operation being processed is redundant given a prior operation performed
166 on the register. For example, an `and' with a constant is redundant if
167 all the zero bits are already known to be turned off.
169 We use an approach similar to that used by cse, but change it in the
170 following ways:
172 (1) We do not want to reinitialize at each label.
173 (2) It is useful, but not critical, to know the actual value assigned
174 to a register. Often just its form is helpful.
176 Therefore, we maintain the following fields:
178 last_set_value the last value assigned
179 last_set_label records the value of label_tick when the
180 register was assigned
181 last_set_table_tick records the value of label_tick when a
182 value using the register is assigned
183 last_set_invalid set to nonzero when it is not valid
184 to use the value of this register in some
185 register's value
187 To understand the usage of these tables, it is important to understand
188 the distinction between the value in last_set_value being valid and
189 the register being validly contained in some other expression in the
190 table.
192 (The next two parameters are out of date).
194 reg_stat[i].last_set_value is valid if it is nonzero, and either
195 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
197 Register I may validly appear in any expression returned for the value
198 of another register if reg_n_sets[i] is 1. It may also appear in the
199 value for register J if reg_stat[j].last_set_invalid is zero, or
200 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
202 If an expression is found in the table containing a register which may
203 not validly appear in an expression, the register is replaced by
204 something that won't match, (clobber (const_int 0)). */
206 /* Record last value assigned to (hard or pseudo) register n. */
208 rtx last_set_value;
210 /* Record the value of label_tick when an expression involving register n
211 is placed in last_set_value. */
213 int last_set_table_tick;
215 /* Record the value of label_tick when the value for register n is placed in
216 last_set_value. */
218 int last_set_label;
220 /* These fields are maintained in parallel with last_set_value and are
221 used to store the mode in which the register was last set, the bits
222 that were known to be zero when it was last set, and the number of
223 sign bits copies it was known to have when it was last set. */
225 unsigned HOST_WIDE_INT last_set_nonzero_bits;
226 char last_set_sign_bit_copies;
227 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
229 /* Set nonzero if references to register n in expressions should not be
230 used. last_set_invalid is set nonzero when this register is being
231 assigned to and last_set_table_tick == label_tick. */
233 char last_set_invalid;
235 /* Some registers that are set more than once and used in more than one
236 basic block are nevertheless always set in similar ways. For example,
237 a QImode register may be loaded from memory in two places on a machine
238 where byte loads zero extend.
240 We record in the following fields if a register has some leading bits
241 that are always equal to the sign bit, and what we know about the
242 nonzero bits of a register, specifically which bits are known to be
243 zero.
245 If an entry is zero, it means that we don't know anything special. */
247 unsigned char sign_bit_copies;
249 unsigned HOST_WIDE_INT nonzero_bits;
251 /* Record the value of the label_tick when the last truncation
252 happened. The field truncated_to_mode is only valid if
253 truncation_label == label_tick. */
255 int truncation_label;
257 /* Record the last truncation seen for this register. If truncation
258 is not a nop to this mode we might be able to save an explicit
259 truncation if we know that value already contains a truncated
260 value. */
262 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
265 static struct reg_stat *reg_stat;
267 /* Record the cuid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the cuid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_cuid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx subst_insn;
285 /* This is the lowest CUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this CUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_cuid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx added_links_insn;
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
308 /* A bitmap indicating which blocks had registers go dead at entry.
309 After combine, we'll need to re-do global life analysis with
310 those blocks as starting points. */
311 static sbitmap refresh_blocks;
313 /* The following array records the insn_rtx_cost for every insn
314 in the instruction stream. */
316 static int *uid_insn_cost;
318 /* Length of the currently allocated uid_insn_cost array. */
320 static int last_insn_cost;
322 /* Incremented for each label. */
324 static int label_tick;
326 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
327 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
329 static enum machine_mode nonzero_bits_mode;
331 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
332 be safely used. It is zero while computing them and after combine has
333 completed. This former test prevents propagating values based on
334 previously set values, which can be incorrect if a variable is modified
335 in a loop. */
337 static int nonzero_sign_valid;
340 /* Record one modification to rtl structure
341 to be undone by storing old_contents into *where. */
343 struct undo
345 struct undo *next;
346 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
347 union { rtx r; int i; enum machine_mode m; } old_contents;
348 union { rtx *r; int *i; } where;
351 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
352 num_undo says how many are currently recorded.
354 other_insn is nonzero if we have modified some other insn in the process
355 of working on subst_insn. It must be verified too. */
357 struct undobuf
359 struct undo *undos;
360 struct undo *frees;
361 rtx other_insn;
364 static struct undobuf undobuf;
366 /* Number of times the pseudo being substituted for
367 was found and replaced. */
369 static int n_occurrences;
371 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
372 enum machine_mode,
373 unsigned HOST_WIDE_INT,
374 unsigned HOST_WIDE_INT *);
375 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
376 enum machine_mode,
377 unsigned int, unsigned int *);
378 static void do_SUBST (rtx *, rtx);
379 static void do_SUBST_INT (int *, int);
380 static void init_reg_last (void);
381 static void setup_incoming_promotions (void);
382 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
383 static int cant_combine_insn_p (rtx);
384 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
385 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
386 static int contains_muldiv (rtx);
387 static rtx try_combine (rtx, rtx, rtx, int *);
388 static void undo_all (void);
389 static void undo_commit (void);
390 static rtx *find_split_point (rtx *, rtx);
391 static rtx subst (rtx, rtx, rtx, int, int);
392 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
393 static rtx simplify_if_then_else (rtx);
394 static rtx simplify_set (rtx);
395 static rtx simplify_logical (rtx);
396 static rtx expand_compound_operation (rtx);
397 static rtx expand_field_assignment (rtx);
398 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
399 rtx, unsigned HOST_WIDE_INT, int, int, int);
400 static rtx extract_left_shift (rtx, int);
401 static rtx make_compound_operation (rtx, enum rtx_code);
402 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx canon_reg_for_combine (rtx, rtx);
405 static rtx force_to_mode (rtx, enum machine_mode,
406 unsigned HOST_WIDE_INT, int);
407 static rtx if_then_else_cond (rtx, rtx *, rtx *);
408 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
409 static int rtx_equal_for_field_assignment_p (rtx, rtx);
410 static rtx make_field_assignment (rtx);
411 static rtx apply_distributive_law (rtx);
412 static rtx distribute_and_simplify_rtx (rtx, int);
413 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
414 unsigned HOST_WIDE_INT);
415 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
416 unsigned HOST_WIDE_INT);
417 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
418 HOST_WIDE_INT, enum machine_mode, int *);
419 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
420 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
421 int);
422 static int recog_for_combine (rtx *, rtx, rtx *);
423 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
424 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
425 static void update_table_tick (rtx);
426 static void record_value_for_reg (rtx, rtx, rtx);
427 static void check_conversions (rtx, rtx);
428 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
429 static void record_dead_and_set_regs (rtx);
430 static int get_last_value_validate (rtx *, rtx, int, int);
431 static rtx get_last_value (rtx);
432 static int use_crosses_set_p (rtx, int);
433 static void reg_dead_at_p_1 (rtx, rtx, void *);
434 static int reg_dead_at_p (rtx, rtx);
435 static void move_deaths (rtx, rtx, int, rtx, rtx *);
436 static int reg_bitfield_target_p (rtx, rtx);
437 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
438 static void distribute_links (rtx);
439 static void mark_used_regs_combine (rtx);
440 static int insn_cuid (rtx);
441 static void record_promoted_value (rtx, rtx);
442 static int unmentioned_reg_p_1 (rtx *, void *);
443 static bool unmentioned_reg_p (rtx, rtx);
444 static void record_truncated_value (rtx);
445 static bool reg_truncated_to_mode (enum machine_mode, rtx);
446 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
449 /* It is not safe to use ordinary gen_lowpart in combine.
450 See comments in gen_lowpart_for_combine. */
451 #undef RTL_HOOKS_GEN_LOWPART
452 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
454 /* Our implementation of gen_lowpart never emits a new pseudo. */
455 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
456 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
458 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
459 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
461 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
462 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
464 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
465 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
467 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
470 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
471 insn. The substitution can be undone by undo_all. If INTO is already
472 set to NEWVAL, do not record this change. Because computing NEWVAL might
473 also call SUBST, we have to compute it before we put anything into
474 the undo table. */
476 static void
477 do_SUBST (rtx *into, rtx newval)
479 struct undo *buf;
480 rtx oldval = *into;
482 if (oldval == newval)
483 return;
485 /* We'd like to catch as many invalid transformations here as
486 possible. Unfortunately, there are way too many mode changes
487 that are perfectly valid, so we'd waste too much effort for
488 little gain doing the checks here. Focus on catching invalid
489 transformations involving integer constants. */
490 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
491 && GET_CODE (newval) == CONST_INT)
493 /* Sanity check that we're replacing oldval with a CONST_INT
494 that is a valid sign-extension for the original mode. */
495 gcc_assert (INTVAL (newval)
496 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
498 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
499 CONST_INT is not valid, because after the replacement, the
500 original mode would be gone. Unfortunately, we can't tell
501 when do_SUBST is called to replace the operand thereof, so we
502 perform this test on oldval instead, checking whether an
503 invalid replacement took place before we got here. */
504 gcc_assert (!(GET_CODE (oldval) == SUBREG
505 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
506 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
507 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
510 if (undobuf.frees)
511 buf = undobuf.frees, undobuf.frees = buf->next;
512 else
513 buf = XNEW (struct undo);
515 buf->kind = UNDO_RTX;
516 buf->where.r = into;
517 buf->old_contents.r = oldval;
518 *into = newval;
520 buf->next = undobuf.undos, undobuf.undos = buf;
523 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
525 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
526 for the value of a HOST_WIDE_INT value (including CONST_INT) is
527 not safe. */
529 static void
530 do_SUBST_INT (int *into, int newval)
532 struct undo *buf;
533 int oldval = *into;
535 if (oldval == newval)
536 return;
538 if (undobuf.frees)
539 buf = undobuf.frees, undobuf.frees = buf->next;
540 else
541 buf = XNEW (struct undo);
543 buf->kind = UNDO_INT;
544 buf->where.i = into;
545 buf->old_contents.i = oldval;
546 *into = newval;
548 buf->next = undobuf.undos, undobuf.undos = buf;
551 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
553 /* Similar to SUBST, but just substitute the mode. This is used when
554 changing the mode of a pseudo-register, so that any other
555 references to the entry in the regno_reg_rtx array will change as
556 well. */
558 static void
559 do_SUBST_MODE (rtx *into, enum machine_mode newval)
561 struct undo *buf;
562 enum machine_mode oldval = GET_MODE (*into);
564 if (oldval == newval)
565 return;
567 if (undobuf.frees)
568 buf = undobuf.frees, undobuf.frees = buf->next;
569 else
570 buf = XNEW (struct undo);
572 buf->kind = UNDO_MODE;
573 buf->where.r = into;
574 buf->old_contents.m = oldval;
575 PUT_MODE (*into, newval);
577 buf->next = undobuf.undos, undobuf.undos = buf;
580 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
582 /* Subroutine of try_combine. Determine whether the combine replacement
583 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
584 that the original instruction sequence I1, I2 and I3. Note that I1
585 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
586 costs of all instructions can be estimated, and the replacements are
587 more expensive than the original sequence. */
589 static bool
590 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
592 int i1_cost, i2_cost, i3_cost;
593 int new_i2_cost, new_i3_cost;
594 int old_cost, new_cost;
596 /* Lookup the original insn_rtx_costs. */
597 i2_cost = INSN_UID (i2) <= last_insn_cost
598 ? uid_insn_cost[INSN_UID (i2)] : 0;
599 i3_cost = INSN_UID (i3) <= last_insn_cost
600 ? uid_insn_cost[INSN_UID (i3)] : 0;
602 if (i1)
604 i1_cost = INSN_UID (i1) <= last_insn_cost
605 ? uid_insn_cost[INSN_UID (i1)] : 0;
606 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
607 ? i1_cost + i2_cost + i3_cost : 0;
609 else
611 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
612 i1_cost = 0;
615 /* Calculate the replacement insn_rtx_costs. */
616 new_i3_cost = insn_rtx_cost (newpat);
617 if (newi2pat)
619 new_i2_cost = insn_rtx_cost (newi2pat);
620 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
621 ? new_i2_cost + new_i3_cost : 0;
623 else
625 new_cost = new_i3_cost;
626 new_i2_cost = 0;
629 if (undobuf.other_insn)
631 int old_other_cost, new_other_cost;
633 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
634 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
635 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
636 if (old_other_cost > 0 && new_other_cost > 0)
638 old_cost += old_other_cost;
639 new_cost += new_other_cost;
641 else
642 old_cost = 0;
645 /* Disallow this recombination if both new_cost and old_cost are
646 greater than zero, and new_cost is greater than old cost. */
647 if (old_cost > 0
648 && new_cost > old_cost)
650 if (dump_file)
652 if (i1)
654 fprintf (dump_file,
655 "rejecting combination of insns %d, %d and %d\n",
656 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
657 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
658 i1_cost, i2_cost, i3_cost, old_cost);
660 else
662 fprintf (dump_file,
663 "rejecting combination of insns %d and %d\n",
664 INSN_UID (i2), INSN_UID (i3));
665 fprintf (dump_file, "original costs %d + %d = %d\n",
666 i2_cost, i3_cost, old_cost);
669 if (newi2pat)
671 fprintf (dump_file, "replacement costs %d + %d = %d\n",
672 new_i2_cost, new_i3_cost, new_cost);
674 else
675 fprintf (dump_file, "replacement cost %d\n", new_cost);
678 return false;
681 /* Update the uid_insn_cost array with the replacement costs. */
682 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
683 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
684 if (i1)
685 uid_insn_cost[INSN_UID (i1)] = 0;
687 return true;
690 /* Main entry point for combiner. F is the first insn of the function.
691 NREGS is the first unused pseudo-reg number.
693 Return nonzero if the combiner has turned an indirect jump
694 instruction into a direct jump. */
695 static int
696 combine_instructions (rtx f, unsigned int nregs)
698 rtx insn, next;
699 #ifdef HAVE_cc0
700 rtx prev;
701 #endif
702 int i;
703 unsigned int j = 0;
704 rtx links, nextlinks;
705 sbitmap_iterator sbi;
707 int new_direct_jump_p = 0;
709 combine_attempts = 0;
710 combine_merges = 0;
711 combine_extras = 0;
712 combine_successes = 0;
714 combine_max_regno = nregs;
716 rtl_hooks = combine_rtl_hooks;
718 reg_stat = XCNEWVEC (struct reg_stat, nregs);
720 init_recog_no_volatile ();
722 /* Compute maximum uid value so uid_cuid can be allocated. */
724 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
725 if (INSN_UID (insn) > i)
726 i = INSN_UID (insn);
728 uid_cuid = XNEWVEC (int, i + 1);
729 max_uid_cuid = i;
731 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
733 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
734 problems when, for example, we have j <<= 1 in a loop. */
736 nonzero_sign_valid = 0;
738 /* Compute the mapping from uids to cuids.
739 Cuids are numbers assigned to insns, like uids,
740 except that cuids increase monotonically through the code.
742 Scan all SETs and see if we can deduce anything about what
743 bits are known to be zero for some registers and how many copies
744 of the sign bit are known to exist for those registers.
746 Also set any known values so that we can use it while searching
747 for what bits are known to be set. */
749 label_tick = 1;
751 setup_incoming_promotions ();
753 refresh_blocks = sbitmap_alloc (last_basic_block);
754 sbitmap_zero (refresh_blocks);
756 /* Allocate array of current insn_rtx_costs. */
757 uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
758 last_insn_cost = max_uid_cuid;
760 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
762 uid_cuid[INSN_UID (insn)] = ++i;
763 subst_low_cuid = i;
764 subst_insn = insn;
766 if (INSN_P (insn))
768 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
769 NULL);
770 record_dead_and_set_regs (insn);
772 #ifdef AUTO_INC_DEC
773 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
774 if (REG_NOTE_KIND (links) == REG_INC)
775 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
776 NULL);
777 #endif
779 /* Record the current insn_rtx_cost of this instruction. */
780 if (NONJUMP_INSN_P (insn))
781 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
782 if (dump_file)
783 fprintf(dump_file, "insn_cost %d: %d\n",
784 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
787 if (LABEL_P (insn))
788 label_tick++;
791 nonzero_sign_valid = 1;
793 /* Now scan all the insns in forward order. */
795 label_tick = 1;
796 last_call_cuid = 0;
797 mem_last_set = 0;
798 init_reg_last ();
799 setup_incoming_promotions ();
801 FOR_EACH_BB (this_basic_block)
803 for (insn = BB_HEAD (this_basic_block);
804 insn != NEXT_INSN (BB_END (this_basic_block));
805 insn = next ? next : NEXT_INSN (insn))
807 next = 0;
809 if (LABEL_P (insn))
810 label_tick++;
812 else if (INSN_P (insn))
814 /* See if we know about function return values before this
815 insn based upon SUBREG flags. */
816 check_conversions (insn, PATTERN (insn));
818 /* Try this insn with each insn it links back to. */
820 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
821 if ((next = try_combine (insn, XEXP (links, 0),
822 NULL_RTX, &new_direct_jump_p)) != 0)
823 goto retry;
825 /* Try each sequence of three linked insns ending with this one. */
827 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
829 rtx link = XEXP (links, 0);
831 /* If the linked insn has been replaced by a note, then there
832 is no point in pursuing this chain any further. */
833 if (NOTE_P (link))
834 continue;
836 for (nextlinks = LOG_LINKS (link);
837 nextlinks;
838 nextlinks = XEXP (nextlinks, 1))
839 if ((next = try_combine (insn, link,
840 XEXP (nextlinks, 0),
841 &new_direct_jump_p)) != 0)
842 goto retry;
845 #ifdef HAVE_cc0
846 /* Try to combine a jump insn that uses CC0
847 with a preceding insn that sets CC0, and maybe with its
848 logical predecessor as well.
849 This is how we make decrement-and-branch insns.
850 We need this special code because data flow connections
851 via CC0 do not get entered in LOG_LINKS. */
853 if (JUMP_P (insn)
854 && (prev = prev_nonnote_insn (insn)) != 0
855 && NONJUMP_INSN_P (prev)
856 && sets_cc0_p (PATTERN (prev)))
858 if ((next = try_combine (insn, prev,
859 NULL_RTX, &new_direct_jump_p)) != 0)
860 goto retry;
862 for (nextlinks = LOG_LINKS (prev); nextlinks;
863 nextlinks = XEXP (nextlinks, 1))
864 if ((next = try_combine (insn, prev,
865 XEXP (nextlinks, 0),
866 &new_direct_jump_p)) != 0)
867 goto retry;
870 /* Do the same for an insn that explicitly references CC0. */
871 if (NONJUMP_INSN_P (insn)
872 && (prev = prev_nonnote_insn (insn)) != 0
873 && NONJUMP_INSN_P (prev)
874 && sets_cc0_p (PATTERN (prev))
875 && GET_CODE (PATTERN (insn)) == SET
876 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
878 if ((next = try_combine (insn, prev,
879 NULL_RTX, &new_direct_jump_p)) != 0)
880 goto retry;
882 for (nextlinks = LOG_LINKS (prev); nextlinks;
883 nextlinks = XEXP (nextlinks, 1))
884 if ((next = try_combine (insn, prev,
885 XEXP (nextlinks, 0),
886 &new_direct_jump_p)) != 0)
887 goto retry;
890 /* Finally, see if any of the insns that this insn links to
891 explicitly references CC0. If so, try this insn, that insn,
892 and its predecessor if it sets CC0. */
893 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
894 if (NONJUMP_INSN_P (XEXP (links, 0))
895 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
896 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
897 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
898 && NONJUMP_INSN_P (prev)
899 && sets_cc0_p (PATTERN (prev))
900 && (next = try_combine (insn, XEXP (links, 0),
901 prev, &new_direct_jump_p)) != 0)
902 goto retry;
903 #endif
905 /* Try combining an insn with two different insns whose results it
906 uses. */
907 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
908 for (nextlinks = XEXP (links, 1); nextlinks;
909 nextlinks = XEXP (nextlinks, 1))
910 if ((next = try_combine (insn, XEXP (links, 0),
911 XEXP (nextlinks, 0),
912 &new_direct_jump_p)) != 0)
913 goto retry;
915 /* Try this insn with each REG_EQUAL note it links back to. */
916 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
918 rtx set, note;
919 rtx temp = XEXP (links, 0);
920 if ((set = single_set (temp)) != 0
921 && (note = find_reg_equal_equiv_note (temp)) != 0
922 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
923 /* Avoid using a register that may already been marked
924 dead by an earlier instruction. */
925 && ! unmentioned_reg_p (note, SET_SRC (set))
926 && (GET_MODE (note) == VOIDmode
927 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
928 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
930 /* Temporarily replace the set's source with the
931 contents of the REG_EQUAL note. The insn will
932 be deleted or recognized by try_combine. */
933 rtx orig = SET_SRC (set);
934 SET_SRC (set) = note;
935 replaced_rhs_insn = temp;
936 replaced_rhs_value = copy_rtx (note);
937 next = try_combine (insn, temp, NULL_RTX,
938 &new_direct_jump_p);
939 replaced_rhs_insn = NULL;
940 if (next)
941 goto retry;
942 SET_SRC (set) = orig;
946 if (!NOTE_P (insn))
947 record_dead_and_set_regs (insn);
949 retry:
954 clear_bb_flags ();
956 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
957 BASIC_BLOCK (j)->flags |= BB_DIRTY;
958 new_direct_jump_p |= purge_all_dead_edges ();
959 delete_noop_moves ();
961 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
962 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
963 | PROP_KILL_DEAD_CODE);
965 /* Clean up. */
966 sbitmap_free (refresh_blocks);
967 free (uid_insn_cost);
968 free (reg_stat);
969 free (uid_cuid);
972 struct undo *undo, *next;
973 for (undo = undobuf.frees; undo; undo = next)
975 next = undo->next;
976 free (undo);
978 undobuf.frees = 0;
981 total_attempts += combine_attempts;
982 total_merges += combine_merges;
983 total_extras += combine_extras;
984 total_successes += combine_successes;
986 nonzero_sign_valid = 0;
987 rtl_hooks = general_rtl_hooks;
989 /* Make recognizer allow volatile MEMs again. */
990 init_recog ();
992 return new_direct_jump_p;
995 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
997 static void
998 init_reg_last (void)
1000 unsigned int i;
1001 for (i = 0; i < combine_max_regno; i++)
1002 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
1005 /* Set up any promoted values for incoming argument registers. */
1007 static void
1008 setup_incoming_promotions (void)
1010 unsigned int regno;
1011 rtx reg;
1012 enum machine_mode mode;
1013 int unsignedp;
1014 rtx first = get_insns ();
1016 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1018 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1019 /* Check whether this register can hold an incoming pointer
1020 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1021 numbers, so translate if necessary due to register windows. */
1022 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
1023 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
1025 record_value_for_reg
1026 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
1027 : SIGN_EXTEND),
1028 GET_MODE (reg),
1029 gen_rtx_CLOBBER (mode, const0_rtx)));
1034 /* Called via note_stores. If X is a pseudo that is narrower than
1035 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1037 If we are setting only a portion of X and we can't figure out what
1038 portion, assume all bits will be used since we don't know what will
1039 be happening.
1041 Similarly, set how many bits of X are known to be copies of the sign bit
1042 at all locations in the function. This is the smallest number implied
1043 by any set of X. */
1045 static void
1046 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1047 void *data ATTRIBUTE_UNUSED)
1049 unsigned int num;
1051 if (REG_P (x)
1052 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1053 /* If this register is undefined at the start of the file, we can't
1054 say what its contents were. */
1055 && ! REGNO_REG_SET_P
1056 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1057 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1059 if (set == 0 || GET_CODE (set) == CLOBBER)
1061 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1062 reg_stat[REGNO (x)].sign_bit_copies = 1;
1063 return;
1066 /* If this is a complex assignment, see if we can convert it into a
1067 simple assignment. */
1068 set = expand_field_assignment (set);
1070 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1071 set what we know about X. */
1073 if (SET_DEST (set) == x
1074 || (GET_CODE (SET_DEST (set)) == SUBREG
1075 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1076 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1077 && SUBREG_REG (SET_DEST (set)) == x))
1079 rtx src = SET_SRC (set);
1081 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1082 /* If X is narrower than a word and SRC is a non-negative
1083 constant that would appear negative in the mode of X,
1084 sign-extend it for use in reg_stat[].nonzero_bits because some
1085 machines (maybe most) will actually do the sign-extension
1086 and this is the conservative approach.
1088 ??? For 2.5, try to tighten up the MD files in this regard
1089 instead of this kludge. */
1091 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1092 && GET_CODE (src) == CONST_INT
1093 && INTVAL (src) > 0
1094 && 0 != (INTVAL (src)
1095 & ((HOST_WIDE_INT) 1
1096 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1097 src = GEN_INT (INTVAL (src)
1098 | ((HOST_WIDE_INT) (-1)
1099 << GET_MODE_BITSIZE (GET_MODE (x))));
1100 #endif
1102 /* Don't call nonzero_bits if it cannot change anything. */
1103 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1104 reg_stat[REGNO (x)].nonzero_bits
1105 |= nonzero_bits (src, nonzero_bits_mode);
1106 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1107 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1108 || reg_stat[REGNO (x)].sign_bit_copies > num)
1109 reg_stat[REGNO (x)].sign_bit_copies = num;
1111 else
1113 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1114 reg_stat[REGNO (x)].sign_bit_copies = 1;
1119 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1120 insns that were previously combined into I3 or that will be combined
1121 into the merger of INSN and I3.
1123 Return 0 if the combination is not allowed for any reason.
1125 If the combination is allowed, *PDEST will be set to the single
1126 destination of INSN and *PSRC to the single source, and this function
1127 will return 1. */
1129 static int
1130 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1131 rtx *pdest, rtx *psrc)
1133 int i;
1134 rtx set = 0, src, dest;
1135 rtx p;
1136 #ifdef AUTO_INC_DEC
1137 rtx link;
1138 #endif
1139 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1140 && next_active_insn (succ) == i3)
1141 : next_active_insn (insn) == i3);
1143 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1144 or a PARALLEL consisting of such a SET and CLOBBERs.
1146 If INSN has CLOBBER parallel parts, ignore them for our processing.
1147 By definition, these happen during the execution of the insn. When it
1148 is merged with another insn, all bets are off. If they are, in fact,
1149 needed and aren't also supplied in I3, they may be added by
1150 recog_for_combine. Otherwise, it won't match.
1152 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1153 note.
1155 Get the source and destination of INSN. If more than one, can't
1156 combine. */
1158 if (GET_CODE (PATTERN (insn)) == SET)
1159 set = PATTERN (insn);
1160 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1161 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1163 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1165 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1166 rtx note;
1168 switch (GET_CODE (elt))
1170 /* This is important to combine floating point insns
1171 for the SH4 port. */
1172 case USE:
1173 /* Combining an isolated USE doesn't make sense.
1174 We depend here on combinable_i3pat to reject them. */
1175 /* The code below this loop only verifies that the inputs of
1176 the SET in INSN do not change. We call reg_set_between_p
1177 to verify that the REG in the USE does not change between
1178 I3 and INSN.
1179 If the USE in INSN was for a pseudo register, the matching
1180 insn pattern will likely match any register; combining this
1181 with any other USE would only be safe if we knew that the
1182 used registers have identical values, or if there was
1183 something to tell them apart, e.g. different modes. For
1184 now, we forgo such complicated tests and simply disallow
1185 combining of USES of pseudo registers with any other USE. */
1186 if (REG_P (XEXP (elt, 0))
1187 && GET_CODE (PATTERN (i3)) == PARALLEL)
1189 rtx i3pat = PATTERN (i3);
1190 int i = XVECLEN (i3pat, 0) - 1;
1191 unsigned int regno = REGNO (XEXP (elt, 0));
1195 rtx i3elt = XVECEXP (i3pat, 0, i);
1197 if (GET_CODE (i3elt) == USE
1198 && REG_P (XEXP (i3elt, 0))
1199 && (REGNO (XEXP (i3elt, 0)) == regno
1200 ? reg_set_between_p (XEXP (elt, 0),
1201 PREV_INSN (insn), i3)
1202 : regno >= FIRST_PSEUDO_REGISTER))
1203 return 0;
1205 while (--i >= 0);
1207 break;
1209 /* We can ignore CLOBBERs. */
1210 case CLOBBER:
1211 break;
1213 case SET:
1214 /* Ignore SETs whose result isn't used but not those that
1215 have side-effects. */
1216 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1217 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1218 || INTVAL (XEXP (note, 0)) <= 0)
1219 && ! side_effects_p (elt))
1220 break;
1222 /* If we have already found a SET, this is a second one and
1223 so we cannot combine with this insn. */
1224 if (set)
1225 return 0;
1227 set = elt;
1228 break;
1230 default:
1231 /* Anything else means we can't combine. */
1232 return 0;
1236 if (set == 0
1237 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1238 so don't do anything with it. */
1239 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1240 return 0;
1242 else
1243 return 0;
1245 if (set == 0)
1246 return 0;
1248 set = expand_field_assignment (set);
1249 src = SET_SRC (set), dest = SET_DEST (set);
1251 /* Don't eliminate a store in the stack pointer. */
1252 if (dest == stack_pointer_rtx
1253 /* Don't combine with an insn that sets a register to itself if it has
1254 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1255 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1256 /* Can't merge an ASM_OPERANDS. */
1257 || GET_CODE (src) == ASM_OPERANDS
1258 /* Can't merge a function call. */
1259 || GET_CODE (src) == CALL
1260 /* Don't eliminate a function call argument. */
1261 || (CALL_P (i3)
1262 && (find_reg_fusage (i3, USE, dest)
1263 || (REG_P (dest)
1264 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1265 && global_regs[REGNO (dest)])))
1266 /* Don't substitute into an incremented register. */
1267 || FIND_REG_INC_NOTE (i3, dest)
1268 || (succ && FIND_REG_INC_NOTE (succ, dest))
1269 /* Don't substitute into a non-local goto, this confuses CFG. */
1270 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1271 #if 0
1272 /* Don't combine the end of a libcall into anything. */
1273 /* ??? This gives worse code, and appears to be unnecessary, since no
1274 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1275 use REG_RETVAL notes for noconflict blocks, but other code here
1276 makes sure that those insns don't disappear. */
1277 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1278 #endif
1279 /* Make sure that DEST is not used after SUCC but before I3. */
1280 || (succ && ! all_adjacent
1281 && reg_used_between_p (dest, succ, i3))
1282 /* Make sure that the value that is to be substituted for the register
1283 does not use any registers whose values alter in between. However,
1284 If the insns are adjacent, a use can't cross a set even though we
1285 think it might (this can happen for a sequence of insns each setting
1286 the same destination; last_set of that register might point to
1287 a NOTE). If INSN has a REG_EQUIV note, the register is always
1288 equivalent to the memory so the substitution is valid even if there
1289 are intervening stores. Also, don't move a volatile asm or
1290 UNSPEC_VOLATILE across any other insns. */
1291 || (! all_adjacent
1292 && (((!MEM_P (src)
1293 || ! find_reg_note (insn, REG_EQUIV, src))
1294 && use_crosses_set_p (src, INSN_CUID (insn)))
1295 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1296 || GET_CODE (src) == UNSPEC_VOLATILE))
1297 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1298 better register allocation by not doing the combine. */
1299 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1300 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1301 /* Don't combine across a CALL_INSN, because that would possibly
1302 change whether the life span of some REGs crosses calls or not,
1303 and it is a pain to update that information.
1304 Exception: if source is a constant, moving it later can't hurt.
1305 Accept that special case, because it helps -fforce-addr a lot. */
1306 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1307 return 0;
1309 /* DEST must either be a REG or CC0. */
1310 if (REG_P (dest))
1312 /* If register alignment is being enforced for multi-word items in all
1313 cases except for parameters, it is possible to have a register copy
1314 insn referencing a hard register that is not allowed to contain the
1315 mode being copied and which would not be valid as an operand of most
1316 insns. Eliminate this problem by not combining with such an insn.
1318 Also, on some machines we don't want to extend the life of a hard
1319 register. */
1321 if (REG_P (src)
1322 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1323 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1324 /* Don't extend the life of a hard register unless it is
1325 user variable (if we have few registers) or it can't
1326 fit into the desired register (meaning something special
1327 is going on).
1328 Also avoid substituting a return register into I3, because
1329 reload can't handle a conflict with constraints of other
1330 inputs. */
1331 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1332 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1333 return 0;
1335 else if (GET_CODE (dest) != CC0)
1336 return 0;
1339 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1340 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1341 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1343 /* Don't substitute for a register intended as a clobberable
1344 operand. */
1345 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1346 if (rtx_equal_p (reg, dest))
1347 return 0;
1349 /* If the clobber represents an earlyclobber operand, we must not
1350 substitute an expression containing the clobbered register.
1351 As we do not analyze the constraint strings here, we have to
1352 make the conservative assumption. However, if the register is
1353 a fixed hard reg, the clobber cannot represent any operand;
1354 we leave it up to the machine description to either accept or
1355 reject use-and-clobber patterns. */
1356 if (!REG_P (reg)
1357 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1358 || !fixed_regs[REGNO (reg)])
1359 if (reg_overlap_mentioned_p (reg, src))
1360 return 0;
1363 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1364 or not), reject, unless nothing volatile comes between it and I3 */
1366 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1368 /* Make sure succ doesn't contain a volatile reference. */
1369 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1370 return 0;
1372 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1373 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1374 return 0;
1377 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1378 to be an explicit register variable, and was chosen for a reason. */
1380 if (GET_CODE (src) == ASM_OPERANDS
1381 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1382 return 0;
1384 /* If there are any volatile insns between INSN and I3, reject, because
1385 they might affect machine state. */
1387 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1388 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1389 return 0;
1391 /* If INSN contains an autoincrement or autodecrement, make sure that
1392 register is not used between there and I3, and not already used in
1393 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1394 Also insist that I3 not be a jump; if it were one
1395 and the incremented register were spilled, we would lose. */
1397 #ifdef AUTO_INC_DEC
1398 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1399 if (REG_NOTE_KIND (link) == REG_INC
1400 && (JUMP_P (i3)
1401 || reg_used_between_p (XEXP (link, 0), insn, i3)
1402 || (pred != NULL_RTX
1403 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1404 || (succ != NULL_RTX
1405 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1406 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1407 return 0;
1408 #endif
1410 #ifdef HAVE_cc0
1411 /* Don't combine an insn that follows a CC0-setting insn.
1412 An insn that uses CC0 must not be separated from the one that sets it.
1413 We do, however, allow I2 to follow a CC0-setting insn if that insn
1414 is passed as I1; in that case it will be deleted also.
1415 We also allow combining in this case if all the insns are adjacent
1416 because that would leave the two CC0 insns adjacent as well.
1417 It would be more logical to test whether CC0 occurs inside I1 or I2,
1418 but that would be much slower, and this ought to be equivalent. */
1420 p = prev_nonnote_insn (insn);
1421 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1422 && ! all_adjacent)
1423 return 0;
1424 #endif
1426 /* If we get here, we have passed all the tests and the combination is
1427 to be allowed. */
1429 *pdest = dest;
1430 *psrc = src;
1432 return 1;
1435 /* LOC is the location within I3 that contains its pattern or the component
1436 of a PARALLEL of the pattern. We validate that it is valid for combining.
1438 One problem is if I3 modifies its output, as opposed to replacing it
1439 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1440 so would produce an insn that is not equivalent to the original insns.
1442 Consider:
1444 (set (reg:DI 101) (reg:DI 100))
1445 (set (subreg:SI (reg:DI 101) 0) <foo>)
1447 This is NOT equivalent to:
1449 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1450 (set (reg:DI 101) (reg:DI 100))])
1452 Not only does this modify 100 (in which case it might still be valid
1453 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1455 We can also run into a problem if I2 sets a register that I1
1456 uses and I1 gets directly substituted into I3 (not via I2). In that
1457 case, we would be getting the wrong value of I2DEST into I3, so we
1458 must reject the combination. This case occurs when I2 and I1 both
1459 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1460 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1461 of a SET must prevent combination from occurring.
1463 Before doing the above check, we first try to expand a field assignment
1464 into a set of logical operations.
1466 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1467 we place a register that is both set and used within I3. If more than one
1468 such register is detected, we fail.
1470 Return 1 if the combination is valid, zero otherwise. */
1472 static int
1473 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1474 int i1_not_in_src, rtx *pi3dest_killed)
1476 rtx x = *loc;
1478 if (GET_CODE (x) == SET)
1480 rtx set = x ;
1481 rtx dest = SET_DEST (set);
1482 rtx src = SET_SRC (set);
1483 rtx inner_dest = dest;
1484 rtx subdest;
1486 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1487 || GET_CODE (inner_dest) == SUBREG
1488 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1489 inner_dest = XEXP (inner_dest, 0);
1491 /* Check for the case where I3 modifies its output, as discussed
1492 above. We don't want to prevent pseudos from being combined
1493 into the address of a MEM, so only prevent the combination if
1494 i1 or i2 set the same MEM. */
1495 if ((inner_dest != dest &&
1496 (!MEM_P (inner_dest)
1497 || rtx_equal_p (i2dest, inner_dest)
1498 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1499 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1500 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1502 /* This is the same test done in can_combine_p except we can't test
1503 all_adjacent; we don't have to, since this instruction will stay
1504 in place, thus we are not considering increasing the lifetime of
1505 INNER_DEST.
1507 Also, if this insn sets a function argument, combining it with
1508 something that might need a spill could clobber a previous
1509 function argument; the all_adjacent test in can_combine_p also
1510 checks this; here, we do a more specific test for this case. */
1512 || (REG_P (inner_dest)
1513 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1514 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1515 GET_MODE (inner_dest))))
1516 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1517 return 0;
1519 /* If DEST is used in I3, it is being killed in this insn, so
1520 record that for later. We have to consider paradoxical
1521 subregs here, since they kill the whole register, but we
1522 ignore partial subregs, STRICT_LOW_PART, etc.
1523 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1524 STACK_POINTER_REGNUM, since these are always considered to be
1525 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1526 subdest = dest;
1527 if (GET_CODE (subdest) == SUBREG
1528 && (GET_MODE_SIZE (GET_MODE (subdest))
1529 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1530 subdest = SUBREG_REG (subdest);
1531 if (pi3dest_killed
1532 && REG_P (subdest)
1533 && reg_referenced_p (subdest, PATTERN (i3))
1534 && REGNO (subdest) != FRAME_POINTER_REGNUM
1535 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1536 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1537 #endif
1538 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1539 && (REGNO (subdest) != ARG_POINTER_REGNUM
1540 || ! fixed_regs [REGNO (subdest)])
1541 #endif
1542 && REGNO (subdest) != STACK_POINTER_REGNUM)
1544 if (*pi3dest_killed)
1545 return 0;
1547 *pi3dest_killed = subdest;
1551 else if (GET_CODE (x) == PARALLEL)
1553 int i;
1555 for (i = 0; i < XVECLEN (x, 0); i++)
1556 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1557 i1_not_in_src, pi3dest_killed))
1558 return 0;
1561 return 1;
1564 /* Return 1 if X is an arithmetic expression that contains a multiplication
1565 and division. We don't count multiplications by powers of two here. */
1567 static int
1568 contains_muldiv (rtx x)
1570 switch (GET_CODE (x))
1572 case MOD: case DIV: case UMOD: case UDIV:
1573 return 1;
1575 case MULT:
1576 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1577 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1578 default:
1579 if (BINARY_P (x))
1580 return contains_muldiv (XEXP (x, 0))
1581 || contains_muldiv (XEXP (x, 1));
1583 if (UNARY_P (x))
1584 return contains_muldiv (XEXP (x, 0));
1586 return 0;
1590 /* Determine whether INSN can be used in a combination. Return nonzero if
1591 not. This is used in try_combine to detect early some cases where we
1592 can't perform combinations. */
1594 static int
1595 cant_combine_insn_p (rtx insn)
1597 rtx set;
1598 rtx src, dest;
1600 /* If this isn't really an insn, we can't do anything.
1601 This can occur when flow deletes an insn that it has merged into an
1602 auto-increment address. */
1603 if (! INSN_P (insn))
1604 return 1;
1606 /* Never combine loads and stores involving hard regs that are likely
1607 to be spilled. The register allocator can usually handle such
1608 reg-reg moves by tying. If we allow the combiner to make
1609 substitutions of likely-spilled regs, reload might die.
1610 As an exception, we allow combinations involving fixed regs; these are
1611 not available to the register allocator so there's no risk involved. */
1613 set = single_set (insn);
1614 if (! set)
1615 return 0;
1616 src = SET_SRC (set);
1617 dest = SET_DEST (set);
1618 if (GET_CODE (src) == SUBREG)
1619 src = SUBREG_REG (src);
1620 if (GET_CODE (dest) == SUBREG)
1621 dest = SUBREG_REG (dest);
1622 if (REG_P (src) && REG_P (dest)
1623 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1624 && ! fixed_regs[REGNO (src)]
1625 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1626 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1627 && ! fixed_regs[REGNO (dest)]
1628 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1629 return 1;
1631 return 0;
1634 struct likely_spilled_retval_info
1636 unsigned regno, nregs;
1637 unsigned mask;
1640 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1641 hard registers that are known to be written to / clobbered in full. */
1642 static void
1643 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1645 struct likely_spilled_retval_info *info = data;
1646 unsigned regno, nregs;
1647 unsigned new_mask;
1649 if (!REG_P (XEXP (set, 0)))
1650 return;
1651 regno = REGNO (x);
1652 if (regno >= info->regno + info->nregs)
1653 return;
1654 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1655 if (regno + nregs <= info->regno)
1656 return;
1657 new_mask = (2U << (nregs - 1)) - 1;
1658 if (regno < info->regno)
1659 new_mask >>= info->regno - regno;
1660 else
1661 new_mask <<= regno - info->regno;
1662 info->mask &= ~new_mask;
1665 /* Return nonzero iff part of the return value is live during INSN, and
1666 it is likely spilled. This can happen when more than one insn is needed
1667 to copy the return value, e.g. when we consider to combine into the
1668 second copy insn for a complex value. */
1670 static int
1671 likely_spilled_retval_p (rtx insn)
1673 rtx use = BB_END (this_basic_block);
1674 rtx reg, p;
1675 unsigned regno, nregs;
1676 /* We assume here that no machine mode needs more than
1677 32 hard registers when the value overlaps with a register
1678 for which FUNCTION_VALUE_REGNO_P is true. */
1679 unsigned mask;
1680 struct likely_spilled_retval_info info;
1682 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1683 return 0;
1684 reg = XEXP (PATTERN (use), 0);
1685 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1686 return 0;
1687 regno = REGNO (reg);
1688 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1689 if (nregs == 1)
1690 return 0;
1691 mask = (2U << (nregs - 1)) - 1;
1693 /* Disregard parts of the return value that are set later. */
1694 info.regno = regno;
1695 info.nregs = nregs;
1696 info.mask = mask;
1697 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1698 if (INSN_P (p))
1699 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
1700 mask = info.mask;
1702 /* Check if any of the (probably) live return value registers is
1703 likely spilled. */
1704 nregs --;
1707 if ((mask & 1 << nregs)
1708 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1709 return 1;
1710 } while (nregs--);
1711 return 0;
1714 /* Adjust INSN after we made a change to its destination.
1716 Changing the destination can invalidate notes that say something about
1717 the results of the insn and a LOG_LINK pointing to the insn. */
1719 static void
1720 adjust_for_new_dest (rtx insn)
1722 rtx *loc;
1724 /* For notes, be conservative and simply remove them. */
1725 loc = &REG_NOTES (insn);
1726 while (*loc)
1728 enum reg_note kind = REG_NOTE_KIND (*loc);
1729 if (kind == REG_EQUAL || kind == REG_EQUIV)
1730 *loc = XEXP (*loc, 1);
1731 else
1732 loc = &XEXP (*loc, 1);
1735 /* The new insn will have a destination that was previously the destination
1736 of an insn just above it. Call distribute_links to make a LOG_LINK from
1737 the next use of that destination. */
1738 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1741 /* Return TRUE if combine can reuse reg X in mode MODE.
1742 ADDED_SETS is nonzero if the original set is still required. */
1743 static bool
1744 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1746 unsigned int regno;
1748 if (!REG_P(x))
1749 return false;
1751 regno = REGNO (x);
1752 /* Allow hard registers if the new mode is legal, and occupies no more
1753 registers than the old mode. */
1754 if (regno < FIRST_PSEUDO_REGISTER)
1755 return (HARD_REGNO_MODE_OK (regno, mode)
1756 && (hard_regno_nregs[regno][GET_MODE (x)]
1757 >= hard_regno_nregs[regno][mode]));
1759 /* Or a pseudo that is only used once. */
1760 return (REG_N_SETS (regno) == 1 && !added_sets
1761 && !REG_USERVAR_P (x));
1765 /* Check whether X, the destination of a set, refers to part of
1766 the register specified by REG. */
1768 static bool
1769 reg_subword_p (rtx x, rtx reg)
1771 /* Check that reg is an integer mode register. */
1772 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1773 return false;
1775 if (GET_CODE (x) == STRICT_LOW_PART
1776 || GET_CODE (x) == ZERO_EXTRACT)
1777 x = XEXP (x, 0);
1779 return GET_CODE (x) == SUBREG
1780 && SUBREG_REG (x) == reg
1781 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1785 /* Try to combine the insns I1 and I2 into I3.
1786 Here I1 and I2 appear earlier than I3.
1787 I1 can be zero; then we combine just I2 into I3.
1789 If we are combining three insns and the resulting insn is not recognized,
1790 try splitting it into two insns. If that happens, I2 and I3 are retained
1791 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1792 are pseudo-deleted.
1794 Return 0 if the combination does not work. Then nothing is changed.
1795 If we did the combination, return the insn at which combine should
1796 resume scanning.
1798 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1799 new direct jump instruction. */
1801 static rtx
1802 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1804 /* New patterns for I3 and I2, respectively. */
1805 rtx newpat, newi2pat = 0;
1806 rtvec newpat_vec_with_clobbers = 0;
1807 int substed_i2 = 0, substed_i1 = 0;
1808 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1809 int added_sets_1, added_sets_2;
1810 /* Total number of SETs to put into I3. */
1811 int total_sets;
1812 /* Nonzero if I2's body now appears in I3. */
1813 int i2_is_used;
1814 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1815 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1816 /* Contains I3 if the destination of I3 is used in its source, which means
1817 that the old life of I3 is being killed. If that usage is placed into
1818 I2 and not in I3, a REG_DEAD note must be made. */
1819 rtx i3dest_killed = 0;
1820 /* SET_DEST and SET_SRC of I2 and I1. */
1821 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1822 /* PATTERN (I2), or a copy of it in certain cases. */
1823 rtx i2pat;
1824 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1825 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1826 int i2dest_killed = 0, i1dest_killed = 0;
1827 int i1_feeds_i3 = 0;
1828 /* Notes that must be added to REG_NOTES in I3 and I2. */
1829 rtx new_i3_notes, new_i2_notes;
1830 /* Notes that we substituted I3 into I2 instead of the normal case. */
1831 int i3_subst_into_i2 = 0;
1832 /* Notes that I1, I2 or I3 is a MULT operation. */
1833 int have_mult = 0;
1834 int swap_i2i3 = 0;
1836 int maxreg;
1837 rtx temp;
1838 rtx link;
1839 int i;
1841 /* Exit early if one of the insns involved can't be used for
1842 combinations. */
1843 if (cant_combine_insn_p (i3)
1844 || cant_combine_insn_p (i2)
1845 || (i1 && cant_combine_insn_p (i1))
1846 || likely_spilled_retval_p (i3)
1847 /* We also can't do anything if I3 has a
1848 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1849 libcall. */
1850 #if 0
1851 /* ??? This gives worse code, and appears to be unnecessary, since no
1852 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1853 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1854 #endif
1856 return 0;
1858 combine_attempts++;
1859 undobuf.other_insn = 0;
1861 /* Reset the hard register usage information. */
1862 CLEAR_HARD_REG_SET (newpat_used_regs);
1864 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1865 code below, set I1 to be the earlier of the two insns. */
1866 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1867 temp = i1, i1 = i2, i2 = temp;
1869 added_links_insn = 0;
1871 /* First check for one important special-case that the code below will
1872 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1873 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1874 we may be able to replace that destination with the destination of I3.
1875 This occurs in the common code where we compute both a quotient and
1876 remainder into a structure, in which case we want to do the computation
1877 directly into the structure to avoid register-register copies.
1879 Note that this case handles both multiple sets in I2 and also
1880 cases where I2 has a number of CLOBBER or PARALLELs.
1882 We make very conservative checks below and only try to handle the
1883 most common cases of this. For example, we only handle the case
1884 where I2 and I3 are adjacent to avoid making difficult register
1885 usage tests. */
1887 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1888 && REG_P (SET_SRC (PATTERN (i3)))
1889 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1890 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1891 && GET_CODE (PATTERN (i2)) == PARALLEL
1892 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1893 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1894 below would need to check what is inside (and reg_overlap_mentioned_p
1895 doesn't support those codes anyway). Don't allow those destinations;
1896 the resulting insn isn't likely to be recognized anyway. */
1897 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1898 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1899 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1900 SET_DEST (PATTERN (i3)))
1901 && next_real_insn (i2) == i3)
1903 rtx p2 = PATTERN (i2);
1905 /* Make sure that the destination of I3,
1906 which we are going to substitute into one output of I2,
1907 is not used within another output of I2. We must avoid making this:
1908 (parallel [(set (mem (reg 69)) ...)
1909 (set (reg 69) ...)])
1910 which is not well-defined as to order of actions.
1911 (Besides, reload can't handle output reloads for this.)
1913 The problem can also happen if the dest of I3 is a memory ref,
1914 if another dest in I2 is an indirect memory ref. */
1915 for (i = 0; i < XVECLEN (p2, 0); i++)
1916 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1917 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1918 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1919 SET_DEST (XVECEXP (p2, 0, i))))
1920 break;
1922 if (i == XVECLEN (p2, 0))
1923 for (i = 0; i < XVECLEN (p2, 0); i++)
1924 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1925 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1926 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1928 combine_merges++;
1930 subst_insn = i3;
1931 subst_low_cuid = INSN_CUID (i2);
1933 added_sets_2 = added_sets_1 = 0;
1934 i2dest = SET_SRC (PATTERN (i3));
1935 i2dest_killed = dead_or_set_p (i2, i2dest);
1937 /* Replace the dest in I2 with our dest and make the resulting
1938 insn the new pattern for I3. Then skip to where we
1939 validate the pattern. Everything was set up above. */
1940 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1941 SET_DEST (PATTERN (i3)));
1943 newpat = p2;
1944 i3_subst_into_i2 = 1;
1945 goto validate_replacement;
1949 /* If I2 is setting a pseudo to a constant and I3 is setting some
1950 sub-part of it to another constant, merge them by making a new
1951 constant. */
1952 if (i1 == 0
1953 && (temp = single_set (i2)) != 0
1954 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1955 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1956 && GET_CODE (PATTERN (i3)) == SET
1957 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1958 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1959 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1961 rtx dest = SET_DEST (PATTERN (i3));
1962 int offset = -1;
1963 int width = 0;
1965 if (GET_CODE (dest) == ZERO_EXTRACT)
1967 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1968 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1970 width = INTVAL (XEXP (dest, 1));
1971 offset = INTVAL (XEXP (dest, 2));
1972 dest = XEXP (dest, 0);
1973 if (BITS_BIG_ENDIAN)
1974 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
1977 else
1979 if (GET_CODE (dest) == STRICT_LOW_PART)
1980 dest = XEXP (dest, 0);
1981 width = GET_MODE_BITSIZE (GET_MODE (dest));
1982 offset = 0;
1985 if (offset >= 0)
1987 /* If this is the low part, we're done. */
1988 if (subreg_lowpart_p (dest))
1990 /* Handle the case where inner is twice the size of outer. */
1991 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1992 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1993 offset += GET_MODE_BITSIZE (GET_MODE (dest));
1994 /* Otherwise give up for now. */
1995 else
1996 offset = -1;
1999 if (offset >= 0)
2001 HOST_WIDE_INT mhi, ohi, ihi;
2002 HOST_WIDE_INT mlo, olo, ilo;
2003 rtx inner = SET_SRC (PATTERN (i3));
2004 rtx outer = SET_SRC (temp);
2006 if (GET_CODE (outer) == CONST_INT)
2008 olo = INTVAL (outer);
2009 ohi = olo < 0 ? -1 : 0;
2011 else
2013 olo = CONST_DOUBLE_LOW (outer);
2014 ohi = CONST_DOUBLE_HIGH (outer);
2017 if (GET_CODE (inner) == CONST_INT)
2019 ilo = INTVAL (inner);
2020 ihi = ilo < 0 ? -1 : 0;
2022 else
2024 ilo = CONST_DOUBLE_LOW (inner);
2025 ihi = CONST_DOUBLE_HIGH (inner);
2028 if (width < HOST_BITS_PER_WIDE_INT)
2030 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2031 mhi = 0;
2033 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2035 mhi = ((unsigned HOST_WIDE_INT) 1
2036 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2037 mlo = -1;
2039 else
2041 mlo = -1;
2042 mhi = -1;
2045 ilo &= mlo;
2046 ihi &= mhi;
2048 if (offset >= HOST_BITS_PER_WIDE_INT)
2050 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2051 mlo = 0;
2052 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2053 ilo = 0;
2055 else if (offset > 0)
2057 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2058 >> (HOST_BITS_PER_WIDE_INT - offset));
2059 mlo = mlo << offset;
2060 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2061 >> (HOST_BITS_PER_WIDE_INT - offset));
2062 ilo = ilo << offset;
2065 olo = (olo & ~mlo) | ilo;
2066 ohi = (ohi & ~mhi) | ihi;
2068 combine_merges++;
2069 subst_insn = i3;
2070 subst_low_cuid = INSN_CUID (i2);
2071 added_sets_2 = added_sets_1 = 0;
2072 i2dest = SET_DEST (temp);
2073 i2dest_killed = dead_or_set_p (i2, i2dest);
2075 SUBST (SET_SRC (temp),
2076 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2078 newpat = PATTERN (i2);
2079 goto validate_replacement;
2083 #ifndef HAVE_cc0
2084 /* If we have no I1 and I2 looks like:
2085 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2086 (set Y OP)])
2087 make up a dummy I1 that is
2088 (set Y OP)
2089 and change I2 to be
2090 (set (reg:CC X) (compare:CC Y (const_int 0)))
2092 (We can ignore any trailing CLOBBERs.)
2094 This undoes a previous combination and allows us to match a branch-and-
2095 decrement insn. */
2097 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2098 && XVECLEN (PATTERN (i2), 0) >= 2
2099 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2100 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2101 == MODE_CC)
2102 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2103 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2104 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2105 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2106 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2107 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2109 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2110 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2111 break;
2113 if (i == 1)
2115 /* We make I1 with the same INSN_UID as I2. This gives it
2116 the same INSN_CUID for value tracking. Our fake I1 will
2117 never appear in the insn stream so giving it the same INSN_UID
2118 as I2 will not cause a problem. */
2120 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2121 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2122 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2123 NULL_RTX);
2125 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2126 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2127 SET_DEST (PATTERN (i1)));
2130 #endif
2132 /* Verify that I2 and I1 are valid for combining. */
2133 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2134 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2136 undo_all ();
2137 return 0;
2140 /* Record whether I2DEST is used in I2SRC and similarly for the other
2141 cases. Knowing this will help in register status updating below. */
2142 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2143 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2144 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2145 i2dest_killed = dead_or_set_p (i2, i2dest);
2146 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2148 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2149 in I2SRC. */
2150 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2152 /* Ensure that I3's pattern can be the destination of combines. */
2153 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2154 i1 && i2dest_in_i1src && i1_feeds_i3,
2155 &i3dest_killed))
2157 undo_all ();
2158 return 0;
2161 /* See if any of the insns is a MULT operation. Unless one is, we will
2162 reject a combination that is, since it must be slower. Be conservative
2163 here. */
2164 if (GET_CODE (i2src) == MULT
2165 || (i1 != 0 && GET_CODE (i1src) == MULT)
2166 || (GET_CODE (PATTERN (i3)) == SET
2167 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2168 have_mult = 1;
2170 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2171 We used to do this EXCEPT in one case: I3 has a post-inc in an
2172 output operand. However, that exception can give rise to insns like
2173 mov r3,(r3)+
2174 which is a famous insn on the PDP-11 where the value of r3 used as the
2175 source was model-dependent. Avoid this sort of thing. */
2177 #if 0
2178 if (!(GET_CODE (PATTERN (i3)) == SET
2179 && REG_P (SET_SRC (PATTERN (i3)))
2180 && MEM_P (SET_DEST (PATTERN (i3)))
2181 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2182 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2183 /* It's not the exception. */
2184 #endif
2185 #ifdef AUTO_INC_DEC
2186 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2187 if (REG_NOTE_KIND (link) == REG_INC
2188 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2189 || (i1 != 0
2190 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2192 undo_all ();
2193 return 0;
2195 #endif
2197 /* See if the SETs in I1 or I2 need to be kept around in the merged
2198 instruction: whenever the value set there is still needed past I3.
2199 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2201 For the SET in I1, we have two cases: If I1 and I2 independently
2202 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2203 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2204 in I1 needs to be kept around unless I1DEST dies or is set in either
2205 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2206 I1DEST. If so, we know I1 feeds into I2. */
2208 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2210 added_sets_1
2211 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2212 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2214 /* If the set in I2 needs to be kept around, we must make a copy of
2215 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2216 PATTERN (I2), we are only substituting for the original I1DEST, not into
2217 an already-substituted copy. This also prevents making self-referential
2218 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2219 I2DEST. */
2221 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2222 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2223 : PATTERN (i2));
2225 if (added_sets_2)
2226 i2pat = copy_rtx (i2pat);
2228 combine_merges++;
2230 /* Substitute in the latest insn for the regs set by the earlier ones. */
2232 maxreg = max_reg_num ();
2234 subst_insn = i3;
2236 #ifndef HAVE_cc0
2237 /* Many machines that don't use CC0 have insns that can both perform an
2238 arithmetic operation and set the condition code. These operations will
2239 be represented as a PARALLEL with the first element of the vector
2240 being a COMPARE of an arithmetic operation with the constant zero.
2241 The second element of the vector will set some pseudo to the result
2242 of the same arithmetic operation. If we simplify the COMPARE, we won't
2243 match such a pattern and so will generate an extra insn. Here we test
2244 for this case, where both the comparison and the operation result are
2245 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2246 I2SRC. Later we will make the PARALLEL that contains I2. */
2248 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2249 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2250 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2251 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2253 #ifdef SELECT_CC_MODE
2254 rtx *cc_use;
2255 enum machine_mode compare_mode;
2256 #endif
2258 newpat = PATTERN (i3);
2259 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2261 i2_is_used = 1;
2263 #ifdef SELECT_CC_MODE
2264 /* See if a COMPARE with the operand we substituted in should be done
2265 with the mode that is currently being used. If not, do the same
2266 processing we do in `subst' for a SET; namely, if the destination
2267 is used only once, try to replace it with a register of the proper
2268 mode and also replace the COMPARE. */
2269 if (undobuf.other_insn == 0
2270 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2271 &undobuf.other_insn))
2272 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2273 i2src, const0_rtx))
2274 != GET_MODE (SET_DEST (newpat))))
2276 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2277 compare_mode))
2279 unsigned int regno = REGNO (SET_DEST (newpat));
2280 rtx new_dest;
2282 if (regno < FIRST_PSEUDO_REGISTER)
2283 new_dest = gen_rtx_REG (compare_mode, regno);
2284 else
2286 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2287 new_dest = regno_reg_rtx[regno];
2290 SUBST (SET_DEST (newpat), new_dest);
2291 SUBST (XEXP (*cc_use, 0), new_dest);
2292 SUBST (SET_SRC (newpat),
2293 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2295 else
2296 undobuf.other_insn = 0;
2298 #endif
2300 else
2301 #endif
2303 /* It is possible that the source of I2 or I1 may be performing
2304 an unneeded operation, such as a ZERO_EXTEND of something
2305 that is known to have the high part zero. Handle that case
2306 by letting subst look at the innermost one of them.
2308 Another way to do this would be to have a function that tries
2309 to simplify a single insn instead of merging two or more
2310 insns. We don't do this because of the potential of infinite
2311 loops and because of the potential extra memory required.
2312 However, doing it the way we are is a bit of a kludge and
2313 doesn't catch all cases.
2315 But only do this if -fexpensive-optimizations since it slows
2316 things down and doesn't usually win.
2318 This is not done in the COMPARE case above because the
2319 unmodified I2PAT is used in the PARALLEL and so a pattern
2320 with a modified I2SRC would not match. */
2322 if (flag_expensive_optimizations)
2324 /* Pass pc_rtx so no substitutions are done, just
2325 simplifications. */
2326 if (i1)
2328 subst_low_cuid = INSN_CUID (i1);
2329 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2331 else
2333 subst_low_cuid = INSN_CUID (i2);
2334 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2338 n_occurrences = 0; /* `subst' counts here */
2340 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2341 need to make a unique copy of I2SRC each time we substitute it
2342 to avoid self-referential rtl. */
2344 subst_low_cuid = INSN_CUID (i2);
2345 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2346 ! i1_feeds_i3 && i1dest_in_i1src);
2347 substed_i2 = 1;
2349 /* Record whether i2's body now appears within i3's body. */
2350 i2_is_used = n_occurrences;
2353 /* If we already got a failure, don't try to do more. Otherwise,
2354 try to substitute in I1 if we have it. */
2356 if (i1 && GET_CODE (newpat) != CLOBBER)
2358 /* Before we can do this substitution, we must redo the test done
2359 above (see detailed comments there) that ensures that I1DEST
2360 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2362 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2363 0, (rtx*) 0))
2365 undo_all ();
2366 return 0;
2369 n_occurrences = 0;
2370 subst_low_cuid = INSN_CUID (i1);
2371 newpat = subst (newpat, i1dest, i1src, 0, 0);
2372 substed_i1 = 1;
2375 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2376 to count all the ways that I2SRC and I1SRC can be used. */
2377 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2378 && i2_is_used + added_sets_2 > 1)
2379 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2380 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2381 > 1))
2382 /* Fail if we tried to make a new register. */
2383 || max_reg_num () != maxreg
2384 /* Fail if we couldn't do something and have a CLOBBER. */
2385 || GET_CODE (newpat) == CLOBBER
2386 /* Fail if this new pattern is a MULT and we didn't have one before
2387 at the outer level. */
2388 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2389 && ! have_mult))
2391 undo_all ();
2392 return 0;
2395 /* If the actions of the earlier insns must be kept
2396 in addition to substituting them into the latest one,
2397 we must make a new PARALLEL for the latest insn
2398 to hold additional the SETs. */
2400 if (added_sets_1 || added_sets_2)
2402 combine_extras++;
2404 if (GET_CODE (newpat) == PARALLEL)
2406 rtvec old = XVEC (newpat, 0);
2407 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2408 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2409 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2410 sizeof (old->elem[0]) * old->num_elem);
2412 else
2414 rtx old = newpat;
2415 total_sets = 1 + added_sets_1 + added_sets_2;
2416 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2417 XVECEXP (newpat, 0, 0) = old;
2420 if (added_sets_1)
2421 XVECEXP (newpat, 0, --total_sets)
2422 = (GET_CODE (PATTERN (i1)) == PARALLEL
2423 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2425 if (added_sets_2)
2427 /* If there is no I1, use I2's body as is. We used to also not do
2428 the subst call below if I2 was substituted into I3,
2429 but that could lose a simplification. */
2430 if (i1 == 0)
2431 XVECEXP (newpat, 0, --total_sets) = i2pat;
2432 else
2433 /* See comment where i2pat is assigned. */
2434 XVECEXP (newpat, 0, --total_sets)
2435 = subst (i2pat, i1dest, i1src, 0, 0);
2439 /* We come here when we are replacing a destination in I2 with the
2440 destination of I3. */
2441 validate_replacement:
2443 /* Note which hard regs this insn has as inputs. */
2444 mark_used_regs_combine (newpat);
2446 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2447 consider splitting this pattern, we might need these clobbers. */
2448 if (i1 && GET_CODE (newpat) == PARALLEL
2449 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2451 int len = XVECLEN (newpat, 0);
2453 newpat_vec_with_clobbers = rtvec_alloc (len);
2454 for (i = 0; i < len; i++)
2455 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2458 /* Is the result of combination a valid instruction? */
2459 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2461 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2462 the second SET's destination is a register that is unused and isn't
2463 marked as an instruction that might trap in an EH region. In that case,
2464 we just need the first SET. This can occur when simplifying a divmod
2465 insn. We *must* test for this case here because the code below that
2466 splits two independent SETs doesn't handle this case correctly when it
2467 updates the register status.
2469 It's pointless doing this if we originally had two sets, one from
2470 i3, and one from i2. Combining then splitting the parallel results
2471 in the original i2 again plus an invalid insn (which we delete).
2472 The net effect is only to move instructions around, which makes
2473 debug info less accurate.
2475 Also check the case where the first SET's destination is unused.
2476 That would not cause incorrect code, but does cause an unneeded
2477 insn to remain. */
2479 if (insn_code_number < 0
2480 && !(added_sets_2 && i1 == 0)
2481 && GET_CODE (newpat) == PARALLEL
2482 && XVECLEN (newpat, 0) == 2
2483 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2484 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2485 && asm_noperands (newpat) < 0)
2487 rtx set0 = XVECEXP (newpat, 0, 0);
2488 rtx set1 = XVECEXP (newpat, 0, 1);
2489 rtx note;
2491 if (((REG_P (SET_DEST (set1))
2492 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2493 || (GET_CODE (SET_DEST (set1)) == SUBREG
2494 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2495 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2496 || INTVAL (XEXP (note, 0)) <= 0)
2497 && ! side_effects_p (SET_SRC (set1)))
2499 newpat = set0;
2500 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2503 else if (((REG_P (SET_DEST (set0))
2504 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2505 || (GET_CODE (SET_DEST (set0)) == SUBREG
2506 && find_reg_note (i3, REG_UNUSED,
2507 SUBREG_REG (SET_DEST (set0)))))
2508 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2509 || INTVAL (XEXP (note, 0)) <= 0)
2510 && ! side_effects_p (SET_SRC (set0)))
2512 newpat = set1;
2513 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2515 if (insn_code_number >= 0)
2517 /* If we will be able to accept this, we have made a
2518 change to the destination of I3. This requires us to
2519 do a few adjustments. */
2521 PATTERN (i3) = newpat;
2522 adjust_for_new_dest (i3);
2527 /* If we were combining three insns and the result is a simple SET
2528 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2529 insns. There are two ways to do this. It can be split using a
2530 machine-specific method (like when you have an addition of a large
2531 constant) or by combine in the function find_split_point. */
2533 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2534 && asm_noperands (newpat) < 0)
2536 rtx m_split, *split;
2538 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2539 use I2DEST as a scratch register will help. In the latter case,
2540 convert I2DEST to the mode of the source of NEWPAT if we can. */
2542 m_split = split_insns (newpat, i3);
2544 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2545 inputs of NEWPAT. */
2547 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2548 possible to try that as a scratch reg. This would require adding
2549 more code to make it work though. */
2551 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2553 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2555 /* First try to split using the original register as a
2556 scratch register. */
2557 m_split = split_insns (gen_rtx_PARALLEL
2558 (VOIDmode,
2559 gen_rtvec (2, newpat,
2560 gen_rtx_CLOBBER (VOIDmode,
2561 i2dest))),
2562 i3);
2564 /* If that didn't work, try changing the mode of I2DEST if
2565 we can. */
2566 if (m_split == 0
2567 && new_mode != GET_MODE (i2dest)
2568 && new_mode != VOIDmode
2569 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2571 enum machine_mode old_mode = GET_MODE (i2dest);
2572 rtx ni2dest;
2574 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2575 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2576 else
2578 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2579 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2582 m_split = split_insns (gen_rtx_PARALLEL
2583 (VOIDmode,
2584 gen_rtvec (2, newpat,
2585 gen_rtx_CLOBBER (VOIDmode,
2586 ni2dest))),
2587 i3);
2589 if (m_split == 0
2590 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2592 struct undo *buf;
2594 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2595 buf = undobuf.undos;
2596 undobuf.undos = buf->next;
2597 buf->next = undobuf.frees;
2598 undobuf.frees = buf;
2603 /* If recog_for_combine has discarded clobbers, try to use them
2604 again for the split. */
2605 if (m_split == 0 && newpat_vec_with_clobbers)
2606 m_split
2607 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2608 newpat_vec_with_clobbers), i3);
2610 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2612 m_split = PATTERN (m_split);
2613 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2614 if (insn_code_number >= 0)
2615 newpat = m_split;
2617 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2618 && (next_real_insn (i2) == i3
2619 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2621 rtx i2set, i3set;
2622 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2623 newi2pat = PATTERN (m_split);
2625 i3set = single_set (NEXT_INSN (m_split));
2626 i2set = single_set (m_split);
2628 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2630 /* If I2 or I3 has multiple SETs, we won't know how to track
2631 register status, so don't use these insns. If I2's destination
2632 is used between I2 and I3, we also can't use these insns. */
2634 if (i2_code_number >= 0 && i2set && i3set
2635 && (next_real_insn (i2) == i3
2636 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2637 insn_code_number = recog_for_combine (&newi3pat, i3,
2638 &new_i3_notes);
2639 if (insn_code_number >= 0)
2640 newpat = newi3pat;
2642 /* It is possible that both insns now set the destination of I3.
2643 If so, we must show an extra use of it. */
2645 if (insn_code_number >= 0)
2647 rtx new_i3_dest = SET_DEST (i3set);
2648 rtx new_i2_dest = SET_DEST (i2set);
2650 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2651 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2652 || GET_CODE (new_i3_dest) == SUBREG)
2653 new_i3_dest = XEXP (new_i3_dest, 0);
2655 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2656 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2657 || GET_CODE (new_i2_dest) == SUBREG)
2658 new_i2_dest = XEXP (new_i2_dest, 0);
2660 if (REG_P (new_i3_dest)
2661 && REG_P (new_i2_dest)
2662 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2663 REG_N_SETS (REGNO (new_i2_dest))++;
2667 /* If we can split it and use I2DEST, go ahead and see if that
2668 helps things be recognized. Verify that none of the registers
2669 are set between I2 and I3. */
2670 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2671 #ifdef HAVE_cc0
2672 && REG_P (i2dest)
2673 #endif
2674 /* We need I2DEST in the proper mode. If it is a hard register
2675 or the only use of a pseudo, we can change its mode.
2676 Make sure we don't change a hard register to have a mode that
2677 isn't valid for it, or change the number of registers. */
2678 && (GET_MODE (*split) == GET_MODE (i2dest)
2679 || GET_MODE (*split) == VOIDmode
2680 || can_change_dest_mode (i2dest, added_sets_2,
2681 GET_MODE (*split)))
2682 && (next_real_insn (i2) == i3
2683 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2684 /* We can't overwrite I2DEST if its value is still used by
2685 NEWPAT. */
2686 && ! reg_referenced_p (i2dest, newpat))
2688 rtx newdest = i2dest;
2689 enum rtx_code split_code = GET_CODE (*split);
2690 enum machine_mode split_mode = GET_MODE (*split);
2691 bool subst_done = false;
2692 newi2pat = NULL_RTX;
2694 /* Get NEWDEST as a register in the proper mode. We have already
2695 validated that we can do this. */
2696 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2698 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2699 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2700 else
2702 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2703 newdest = regno_reg_rtx[REGNO (i2dest)];
2707 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2708 an ASHIFT. This can occur if it was inside a PLUS and hence
2709 appeared to be a memory address. This is a kludge. */
2710 if (split_code == MULT
2711 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2712 && INTVAL (XEXP (*split, 1)) > 0
2713 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2715 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2716 XEXP (*split, 0), GEN_INT (i)));
2717 /* Update split_code because we may not have a multiply
2718 anymore. */
2719 split_code = GET_CODE (*split);
2722 #ifdef INSN_SCHEDULING
2723 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2724 be written as a ZERO_EXTEND. */
2725 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2727 #ifdef LOAD_EXTEND_OP
2728 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2729 what it really is. */
2730 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2731 == SIGN_EXTEND)
2732 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2733 SUBREG_REG (*split)));
2734 else
2735 #endif
2736 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2737 SUBREG_REG (*split)));
2739 #endif
2741 /* Attempt to split binary operators using arithmetic identities. */
2742 if (BINARY_P (SET_SRC (newpat))
2743 && split_mode == GET_MODE (SET_SRC (newpat))
2744 && ! side_effects_p (SET_SRC (newpat)))
2746 rtx setsrc = SET_SRC (newpat);
2747 enum machine_mode mode = GET_MODE (setsrc);
2748 enum rtx_code code = GET_CODE (setsrc);
2749 rtx src_op0 = XEXP (setsrc, 0);
2750 rtx src_op1 = XEXP (setsrc, 1);
2752 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2753 if (rtx_equal_p (src_op0, src_op1))
2755 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2756 SUBST (XEXP (setsrc, 0), newdest);
2757 SUBST (XEXP (setsrc, 1), newdest);
2758 subst_done = true;
2760 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2761 else if ((code == PLUS || code == MULT)
2762 && GET_CODE (src_op0) == code
2763 && GET_CODE (XEXP (src_op0, 0)) == code
2764 && (INTEGRAL_MODE_P (mode)
2765 || (FLOAT_MODE_P (mode)
2766 && flag_unsafe_math_optimizations)))
2768 rtx p = XEXP (XEXP (src_op0, 0), 0);
2769 rtx q = XEXP (XEXP (src_op0, 0), 1);
2770 rtx r = XEXP (src_op0, 1);
2771 rtx s = src_op1;
2773 /* Split both "((X op Y) op X) op Y" and
2774 "((X op Y) op Y) op X" as "T op T" where T is
2775 "X op Y". */
2776 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2777 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2779 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2780 XEXP (src_op0, 0));
2781 SUBST (XEXP (setsrc, 0), newdest);
2782 SUBST (XEXP (setsrc, 1), newdest);
2783 subst_done = true;
2785 /* Split "((X op X) op Y) op Y)" as "T op T" where
2786 T is "X op Y". */
2787 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2789 rtx tmp = simplify_gen_binary (code, mode, p, r);
2790 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2791 SUBST (XEXP (setsrc, 0), newdest);
2792 SUBST (XEXP (setsrc, 1), newdest);
2793 subst_done = true;
2798 if (!subst_done)
2800 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2801 SUBST (*split, newdest);
2804 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2806 /* recog_for_combine might have added CLOBBERs to newi2pat.
2807 Make sure NEWPAT does not depend on the clobbered regs. */
2808 if (GET_CODE (newi2pat) == PARALLEL)
2809 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2810 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2812 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2813 if (reg_overlap_mentioned_p (reg, newpat))
2815 undo_all ();
2816 return 0;
2820 /* If the split point was a MULT and we didn't have one before,
2821 don't use one now. */
2822 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2823 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2827 /* Check for a case where we loaded from memory in a narrow mode and
2828 then sign extended it, but we need both registers. In that case,
2829 we have a PARALLEL with both loads from the same memory location.
2830 We can split this into a load from memory followed by a register-register
2831 copy. This saves at least one insn, more if register allocation can
2832 eliminate the copy.
2834 We cannot do this if the destination of the first assignment is a
2835 condition code register or cc0. We eliminate this case by making sure
2836 the SET_DEST and SET_SRC have the same mode.
2838 We cannot do this if the destination of the second assignment is
2839 a register that we have already assumed is zero-extended. Similarly
2840 for a SUBREG of such a register. */
2842 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2843 && GET_CODE (newpat) == PARALLEL
2844 && XVECLEN (newpat, 0) == 2
2845 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2846 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2847 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2848 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2849 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2850 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2851 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2852 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2853 INSN_CUID (i2))
2854 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2855 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2856 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2857 (REG_P (temp)
2858 && reg_stat[REGNO (temp)].nonzero_bits != 0
2859 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2860 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2861 && (reg_stat[REGNO (temp)].nonzero_bits
2862 != GET_MODE_MASK (word_mode))))
2863 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2864 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2865 (REG_P (temp)
2866 && reg_stat[REGNO (temp)].nonzero_bits != 0
2867 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2868 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2869 && (reg_stat[REGNO (temp)].nonzero_bits
2870 != GET_MODE_MASK (word_mode)))))
2871 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2872 SET_SRC (XVECEXP (newpat, 0, 1)))
2873 && ! find_reg_note (i3, REG_UNUSED,
2874 SET_DEST (XVECEXP (newpat, 0, 0))))
2876 rtx ni2dest;
2878 newi2pat = XVECEXP (newpat, 0, 0);
2879 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2880 newpat = XVECEXP (newpat, 0, 1);
2881 SUBST (SET_SRC (newpat),
2882 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2883 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2885 if (i2_code_number >= 0)
2886 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2888 if (insn_code_number >= 0)
2889 swap_i2i3 = 1;
2892 /* Similarly, check for a case where we have a PARALLEL of two independent
2893 SETs but we started with three insns. In this case, we can do the sets
2894 as two separate insns. This case occurs when some SET allows two
2895 other insns to combine, but the destination of that SET is still live. */
2897 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2898 && GET_CODE (newpat) == PARALLEL
2899 && XVECLEN (newpat, 0) == 2
2900 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2901 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2902 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2903 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2904 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2905 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2906 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2907 INSN_CUID (i2))
2908 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2909 XVECEXP (newpat, 0, 0))
2910 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2911 XVECEXP (newpat, 0, 1))
2912 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2913 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
2914 #ifdef HAVE_cc0
2915 /* We cannot split the parallel into two sets if both sets
2916 reference cc0. */
2917 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
2918 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
2919 #endif
2922 /* Normally, it doesn't matter which of the two is done first,
2923 but it does if one references cc0. In that case, it has to
2924 be first. */
2925 #ifdef HAVE_cc0
2926 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2928 newi2pat = XVECEXP (newpat, 0, 0);
2929 newpat = XVECEXP (newpat, 0, 1);
2931 else
2932 #endif
2934 newi2pat = XVECEXP (newpat, 0, 1);
2935 newpat = XVECEXP (newpat, 0, 0);
2938 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2940 if (i2_code_number >= 0)
2941 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2944 /* If it still isn't recognized, fail and change things back the way they
2945 were. */
2946 if ((insn_code_number < 0
2947 /* Is the result a reasonable ASM_OPERANDS? */
2948 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2950 undo_all ();
2951 return 0;
2954 /* If we had to change another insn, make sure it is valid also. */
2955 if (undobuf.other_insn)
2957 rtx other_pat = PATTERN (undobuf.other_insn);
2958 rtx new_other_notes;
2959 rtx note, next;
2961 CLEAR_HARD_REG_SET (newpat_used_regs);
2963 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2964 &new_other_notes);
2966 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2968 undo_all ();
2969 return 0;
2972 PATTERN (undobuf.other_insn) = other_pat;
2974 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2975 are still valid. Then add any non-duplicate notes added by
2976 recog_for_combine. */
2977 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2979 next = XEXP (note, 1);
2981 if (REG_NOTE_KIND (note) == REG_UNUSED
2982 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2984 if (REG_P (XEXP (note, 0)))
2985 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2987 remove_note (undobuf.other_insn, note);
2991 for (note = new_other_notes; note; note = XEXP (note, 1))
2992 if (REG_P (XEXP (note, 0)))
2993 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2995 distribute_notes (new_other_notes, undobuf.other_insn,
2996 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2998 #ifdef HAVE_cc0
2999 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3000 they are adjacent to each other or not. */
3002 rtx p = prev_nonnote_insn (i3);
3003 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3004 && sets_cc0_p (newi2pat))
3006 undo_all ();
3007 return 0;
3010 #endif
3012 /* Only allow this combination if insn_rtx_costs reports that the
3013 replacement instructions are cheaper than the originals. */
3014 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
3016 undo_all ();
3017 return 0;
3020 /* We now know that we can do this combination. Merge the insns and
3021 update the status of registers and LOG_LINKS. */
3023 if (swap_i2i3)
3025 rtx insn;
3026 rtx link;
3027 rtx ni2dest;
3029 /* I3 now uses what used to be its destination and which is now
3030 I2's destination. This requires us to do a few adjustments. */
3031 PATTERN (i3) = newpat;
3032 adjust_for_new_dest (i3);
3034 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3035 so we still will.
3037 However, some later insn might be using I2's dest and have
3038 a LOG_LINK pointing at I3. We must remove this link.
3039 The simplest way to remove the link is to point it at I1,
3040 which we know will be a NOTE. */
3042 /* newi2pat is usually a SET here; however, recog_for_combine might
3043 have added some clobbers. */
3044 if (GET_CODE (newi2pat) == PARALLEL)
3045 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3046 else
3047 ni2dest = SET_DEST (newi2pat);
3049 for (insn = NEXT_INSN (i3);
3050 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3051 || insn != BB_HEAD (this_basic_block->next_bb));
3052 insn = NEXT_INSN (insn))
3054 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3056 for (link = LOG_LINKS (insn); link;
3057 link = XEXP (link, 1))
3058 if (XEXP (link, 0) == i3)
3059 XEXP (link, 0) = i1;
3061 break;
3067 rtx i3notes, i2notes, i1notes = 0;
3068 rtx i3links, i2links, i1links = 0;
3069 rtx midnotes = 0;
3070 unsigned int regno;
3071 /* Compute which registers we expect to eliminate. newi2pat may be setting
3072 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3073 same as i3dest, in which case newi2pat may be setting i1dest. */
3074 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3075 || i2dest_in_i2src || i2dest_in_i1src
3076 || !i2dest_killed
3077 ? 0 : i2dest);
3078 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3079 || (newi2pat && reg_set_p (i1dest, newi2pat))
3080 || !i1dest_killed
3081 ? 0 : i1dest);
3083 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3084 clear them. */
3085 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3086 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3087 if (i1)
3088 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3090 /* Ensure that we do not have something that should not be shared but
3091 occurs multiple times in the new insns. Check this by first
3092 resetting all the `used' flags and then copying anything is shared. */
3094 reset_used_flags (i3notes);
3095 reset_used_flags (i2notes);
3096 reset_used_flags (i1notes);
3097 reset_used_flags (newpat);
3098 reset_used_flags (newi2pat);
3099 if (undobuf.other_insn)
3100 reset_used_flags (PATTERN (undobuf.other_insn));
3102 i3notes = copy_rtx_if_shared (i3notes);
3103 i2notes = copy_rtx_if_shared (i2notes);
3104 i1notes = copy_rtx_if_shared (i1notes);
3105 newpat = copy_rtx_if_shared (newpat);
3106 newi2pat = copy_rtx_if_shared (newi2pat);
3107 if (undobuf.other_insn)
3108 reset_used_flags (PATTERN (undobuf.other_insn));
3110 INSN_CODE (i3) = insn_code_number;
3111 PATTERN (i3) = newpat;
3113 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3115 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3117 reset_used_flags (call_usage);
3118 call_usage = copy_rtx (call_usage);
3120 if (substed_i2)
3121 replace_rtx (call_usage, i2dest, i2src);
3123 if (substed_i1)
3124 replace_rtx (call_usage, i1dest, i1src);
3126 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3129 if (undobuf.other_insn)
3130 INSN_CODE (undobuf.other_insn) = other_code_number;
3132 /* We had one special case above where I2 had more than one set and
3133 we replaced a destination of one of those sets with the destination
3134 of I3. In that case, we have to update LOG_LINKS of insns later
3135 in this basic block. Note that this (expensive) case is rare.
3137 Also, in this case, we must pretend that all REG_NOTEs for I2
3138 actually came from I3, so that REG_UNUSED notes from I2 will be
3139 properly handled. */
3141 if (i3_subst_into_i2)
3143 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3144 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3145 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3146 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3147 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3148 && ! find_reg_note (i2, REG_UNUSED,
3149 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3150 for (temp = NEXT_INSN (i2);
3151 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3152 || BB_HEAD (this_basic_block) != temp);
3153 temp = NEXT_INSN (temp))
3154 if (temp != i3 && INSN_P (temp))
3155 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3156 if (XEXP (link, 0) == i2)
3157 XEXP (link, 0) = i3;
3159 if (i3notes)
3161 rtx link = i3notes;
3162 while (XEXP (link, 1))
3163 link = XEXP (link, 1);
3164 XEXP (link, 1) = i2notes;
3166 else
3167 i3notes = i2notes;
3168 i2notes = 0;
3171 LOG_LINKS (i3) = 0;
3172 REG_NOTES (i3) = 0;
3173 LOG_LINKS (i2) = 0;
3174 REG_NOTES (i2) = 0;
3176 if (newi2pat)
3178 INSN_CODE (i2) = i2_code_number;
3179 PATTERN (i2) = newi2pat;
3181 else
3182 SET_INSN_DELETED (i2);
3184 if (i1)
3186 LOG_LINKS (i1) = 0;
3187 REG_NOTES (i1) = 0;
3188 SET_INSN_DELETED (i1);
3191 /* Get death notes for everything that is now used in either I3 or
3192 I2 and used to die in a previous insn. If we built two new
3193 patterns, move from I1 to I2 then I2 to I3 so that we get the
3194 proper movement on registers that I2 modifies. */
3196 if (newi2pat)
3198 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3199 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3201 else
3202 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3203 i3, &midnotes);
3205 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3206 if (i3notes)
3207 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3208 elim_i2, elim_i1);
3209 if (i2notes)
3210 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3211 elim_i2, elim_i1);
3212 if (i1notes)
3213 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3214 elim_i2, elim_i1);
3215 if (midnotes)
3216 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3217 elim_i2, elim_i1);
3219 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3220 know these are REG_UNUSED and want them to go to the desired insn,
3221 so we always pass it as i3. We have not counted the notes in
3222 reg_n_deaths yet, so we need to do so now. */
3224 if (newi2pat && new_i2_notes)
3226 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3227 if (REG_P (XEXP (temp, 0)))
3228 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3230 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3233 if (new_i3_notes)
3235 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3236 if (REG_P (XEXP (temp, 0)))
3237 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3239 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3242 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3243 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3244 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3245 in that case, it might delete I2. Similarly for I2 and I1.
3246 Show an additional death due to the REG_DEAD note we make here. If
3247 we discard it in distribute_notes, we will decrement it again. */
3249 if (i3dest_killed)
3251 if (REG_P (i3dest_killed))
3252 REG_N_DEATHS (REGNO (i3dest_killed))++;
3254 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3255 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3256 NULL_RTX),
3257 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3258 else
3259 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3260 NULL_RTX),
3261 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3262 elim_i2, elim_i1);
3265 if (i2dest_in_i2src)
3267 if (REG_P (i2dest))
3268 REG_N_DEATHS (REGNO (i2dest))++;
3270 if (newi2pat && reg_set_p (i2dest, newi2pat))
3271 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3272 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3273 else
3274 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3275 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3276 NULL_RTX, NULL_RTX);
3279 if (i1dest_in_i1src)
3281 if (REG_P (i1dest))
3282 REG_N_DEATHS (REGNO (i1dest))++;
3284 if (newi2pat && reg_set_p (i1dest, newi2pat))
3285 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3286 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3287 else
3288 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3289 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3290 NULL_RTX, NULL_RTX);
3293 distribute_links (i3links);
3294 distribute_links (i2links);
3295 distribute_links (i1links);
3297 if (REG_P (i2dest))
3299 rtx link;
3300 rtx i2_insn = 0, i2_val = 0, set;
3302 /* The insn that used to set this register doesn't exist, and
3303 this life of the register may not exist either. See if one of
3304 I3's links points to an insn that sets I2DEST. If it does,
3305 that is now the last known value for I2DEST. If we don't update
3306 this and I2 set the register to a value that depended on its old
3307 contents, we will get confused. If this insn is used, thing
3308 will be set correctly in combine_instructions. */
3310 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3311 if ((set = single_set (XEXP (link, 0))) != 0
3312 && rtx_equal_p (i2dest, SET_DEST (set)))
3313 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3315 record_value_for_reg (i2dest, i2_insn, i2_val);
3317 /* If the reg formerly set in I2 died only once and that was in I3,
3318 zero its use count so it won't make `reload' do any work. */
3319 if (! added_sets_2
3320 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3321 && ! i2dest_in_i2src)
3323 regno = REGNO (i2dest);
3324 REG_N_SETS (regno)--;
3328 if (i1 && REG_P (i1dest))
3330 rtx link;
3331 rtx i1_insn = 0, i1_val = 0, set;
3333 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3334 if ((set = single_set (XEXP (link, 0))) != 0
3335 && rtx_equal_p (i1dest, SET_DEST (set)))
3336 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3338 record_value_for_reg (i1dest, i1_insn, i1_val);
3340 regno = REGNO (i1dest);
3341 if (! added_sets_1 && ! i1dest_in_i1src)
3342 REG_N_SETS (regno)--;
3345 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3346 been made to this insn. The order of
3347 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3348 can affect nonzero_bits of newpat */
3349 if (newi2pat)
3350 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3351 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3353 /* Set new_direct_jump_p if a new return or simple jump instruction
3354 has been created.
3356 If I3 is now an unconditional jump, ensure that it has a
3357 BARRIER following it since it may have initially been a
3358 conditional jump. It may also be the last nonnote insn. */
3360 if (returnjump_p (i3) || any_uncondjump_p (i3))
3362 *new_direct_jump_p = 1;
3363 mark_jump_label (PATTERN (i3), i3, 0);
3365 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3366 || !BARRIER_P (temp))
3367 emit_barrier_after (i3);
3370 if (undobuf.other_insn != NULL_RTX
3371 && (returnjump_p (undobuf.other_insn)
3372 || any_uncondjump_p (undobuf.other_insn)))
3374 *new_direct_jump_p = 1;
3376 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3377 || !BARRIER_P (temp))
3378 emit_barrier_after (undobuf.other_insn);
3381 /* An NOOP jump does not need barrier, but it does need cleaning up
3382 of CFG. */
3383 if (GET_CODE (newpat) == SET
3384 && SET_SRC (newpat) == pc_rtx
3385 && SET_DEST (newpat) == pc_rtx)
3386 *new_direct_jump_p = 1;
3389 combine_successes++;
3390 undo_commit ();
3392 if (added_links_insn
3393 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3394 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3395 return added_links_insn;
3396 else
3397 return newi2pat ? i2 : i3;
3400 /* Undo all the modifications recorded in undobuf. */
3402 static void
3403 undo_all (void)
3405 struct undo *undo, *next;
3407 for (undo = undobuf.undos; undo; undo = next)
3409 next = undo->next;
3410 switch (undo->kind)
3412 case UNDO_RTX:
3413 *undo->where.r = undo->old_contents.r;
3414 break;
3415 case UNDO_INT:
3416 *undo->where.i = undo->old_contents.i;
3417 break;
3418 case UNDO_MODE:
3419 PUT_MODE (*undo->where.r, undo->old_contents.m);
3420 break;
3421 default:
3422 gcc_unreachable ();
3425 undo->next = undobuf.frees;
3426 undobuf.frees = undo;
3429 undobuf.undos = 0;
3432 /* We've committed to accepting the changes we made. Move all
3433 of the undos to the free list. */
3435 static void
3436 undo_commit (void)
3438 struct undo *undo, *next;
3440 for (undo = undobuf.undos; undo; undo = next)
3442 next = undo->next;
3443 undo->next = undobuf.frees;
3444 undobuf.frees = undo;
3446 undobuf.undos = 0;
3449 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3450 where we have an arithmetic expression and return that point. LOC will
3451 be inside INSN.
3453 try_combine will call this function to see if an insn can be split into
3454 two insns. */
3456 static rtx *
3457 find_split_point (rtx *loc, rtx insn)
3459 rtx x = *loc;
3460 enum rtx_code code = GET_CODE (x);
3461 rtx *split;
3462 unsigned HOST_WIDE_INT len = 0;
3463 HOST_WIDE_INT pos = 0;
3464 int unsignedp = 0;
3465 rtx inner = NULL_RTX;
3467 /* First special-case some codes. */
3468 switch (code)
3470 case SUBREG:
3471 #ifdef INSN_SCHEDULING
3472 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3473 point. */
3474 if (MEM_P (SUBREG_REG (x)))
3475 return loc;
3476 #endif
3477 return find_split_point (&SUBREG_REG (x), insn);
3479 case MEM:
3480 #ifdef HAVE_lo_sum
3481 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3482 using LO_SUM and HIGH. */
3483 if (GET_CODE (XEXP (x, 0)) == CONST
3484 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3486 SUBST (XEXP (x, 0),
3487 gen_rtx_LO_SUM (Pmode,
3488 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3489 XEXP (x, 0)));
3490 return &XEXP (XEXP (x, 0), 0);
3492 #endif
3494 /* If we have a PLUS whose second operand is a constant and the
3495 address is not valid, perhaps will can split it up using
3496 the machine-specific way to split large constants. We use
3497 the first pseudo-reg (one of the virtual regs) as a placeholder;
3498 it will not remain in the result. */
3499 if (GET_CODE (XEXP (x, 0)) == PLUS
3500 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3501 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3503 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3504 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3505 subst_insn);
3507 /* This should have produced two insns, each of which sets our
3508 placeholder. If the source of the second is a valid address,
3509 we can make put both sources together and make a split point
3510 in the middle. */
3512 if (seq
3513 && NEXT_INSN (seq) != NULL_RTX
3514 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3515 && NONJUMP_INSN_P (seq)
3516 && GET_CODE (PATTERN (seq)) == SET
3517 && SET_DEST (PATTERN (seq)) == reg
3518 && ! reg_mentioned_p (reg,
3519 SET_SRC (PATTERN (seq)))
3520 && NONJUMP_INSN_P (NEXT_INSN (seq))
3521 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3522 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3523 && memory_address_p (GET_MODE (x),
3524 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3526 rtx src1 = SET_SRC (PATTERN (seq));
3527 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3529 /* Replace the placeholder in SRC2 with SRC1. If we can
3530 find where in SRC2 it was placed, that can become our
3531 split point and we can replace this address with SRC2.
3532 Just try two obvious places. */
3534 src2 = replace_rtx (src2, reg, src1);
3535 split = 0;
3536 if (XEXP (src2, 0) == src1)
3537 split = &XEXP (src2, 0);
3538 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3539 && XEXP (XEXP (src2, 0), 0) == src1)
3540 split = &XEXP (XEXP (src2, 0), 0);
3542 if (split)
3544 SUBST (XEXP (x, 0), src2);
3545 return split;
3549 /* If that didn't work, perhaps the first operand is complex and
3550 needs to be computed separately, so make a split point there.
3551 This will occur on machines that just support REG + CONST
3552 and have a constant moved through some previous computation. */
3554 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3555 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3556 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3557 return &XEXP (XEXP (x, 0), 0);
3559 break;
3561 case SET:
3562 #ifdef HAVE_cc0
3563 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3564 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3565 we need to put the operand into a register. So split at that
3566 point. */
3568 if (SET_DEST (x) == cc0_rtx
3569 && GET_CODE (SET_SRC (x)) != COMPARE
3570 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3571 && !OBJECT_P (SET_SRC (x))
3572 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3573 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3574 return &SET_SRC (x);
3575 #endif
3577 /* See if we can split SET_SRC as it stands. */
3578 split = find_split_point (&SET_SRC (x), insn);
3579 if (split && split != &SET_SRC (x))
3580 return split;
3582 /* See if we can split SET_DEST as it stands. */
3583 split = find_split_point (&SET_DEST (x), insn);
3584 if (split && split != &SET_DEST (x))
3585 return split;
3587 /* See if this is a bitfield assignment with everything constant. If
3588 so, this is an IOR of an AND, so split it into that. */
3589 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3590 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3591 <= HOST_BITS_PER_WIDE_INT)
3592 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3593 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3594 && GET_CODE (SET_SRC (x)) == CONST_INT
3595 && ((INTVAL (XEXP (SET_DEST (x), 1))
3596 + INTVAL (XEXP (SET_DEST (x), 2)))
3597 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3598 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3600 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3601 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3602 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3603 rtx dest = XEXP (SET_DEST (x), 0);
3604 enum machine_mode mode = GET_MODE (dest);
3605 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3606 rtx or_mask;
3608 if (BITS_BIG_ENDIAN)
3609 pos = GET_MODE_BITSIZE (mode) - len - pos;
3611 or_mask = gen_int_mode (src << pos, mode);
3612 if (src == mask)
3613 SUBST (SET_SRC (x),
3614 simplify_gen_binary (IOR, mode, dest, or_mask));
3615 else
3617 rtx negmask = gen_int_mode (~(mask << pos), mode);
3618 SUBST (SET_SRC (x),
3619 simplify_gen_binary (IOR, mode,
3620 simplify_gen_binary (AND, mode,
3621 dest, negmask),
3622 or_mask));
3625 SUBST (SET_DEST (x), dest);
3627 split = find_split_point (&SET_SRC (x), insn);
3628 if (split && split != &SET_SRC (x))
3629 return split;
3632 /* Otherwise, see if this is an operation that we can split into two.
3633 If so, try to split that. */
3634 code = GET_CODE (SET_SRC (x));
3636 switch (code)
3638 case AND:
3639 /* If we are AND'ing with a large constant that is only a single
3640 bit and the result is only being used in a context where we
3641 need to know if it is zero or nonzero, replace it with a bit
3642 extraction. This will avoid the large constant, which might
3643 have taken more than one insn to make. If the constant were
3644 not a valid argument to the AND but took only one insn to make,
3645 this is no worse, but if it took more than one insn, it will
3646 be better. */
3648 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3649 && REG_P (XEXP (SET_SRC (x), 0))
3650 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3651 && REG_P (SET_DEST (x))
3652 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3653 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3654 && XEXP (*split, 0) == SET_DEST (x)
3655 && XEXP (*split, 1) == const0_rtx)
3657 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3658 XEXP (SET_SRC (x), 0),
3659 pos, NULL_RTX, 1, 1, 0, 0);
3660 if (extraction != 0)
3662 SUBST (SET_SRC (x), extraction);
3663 return find_split_point (loc, insn);
3666 break;
3668 case NE:
3669 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3670 is known to be on, this can be converted into a NEG of a shift. */
3671 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3672 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3673 && 1 <= (pos = exact_log2
3674 (nonzero_bits (XEXP (SET_SRC (x), 0),
3675 GET_MODE (XEXP (SET_SRC (x), 0))))))
3677 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3679 SUBST (SET_SRC (x),
3680 gen_rtx_NEG (mode,
3681 gen_rtx_LSHIFTRT (mode,
3682 XEXP (SET_SRC (x), 0),
3683 GEN_INT (pos))));
3685 split = find_split_point (&SET_SRC (x), insn);
3686 if (split && split != &SET_SRC (x))
3687 return split;
3689 break;
3691 case SIGN_EXTEND:
3692 inner = XEXP (SET_SRC (x), 0);
3694 /* We can't optimize if either mode is a partial integer
3695 mode as we don't know how many bits are significant
3696 in those modes. */
3697 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3698 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3699 break;
3701 pos = 0;
3702 len = GET_MODE_BITSIZE (GET_MODE (inner));
3703 unsignedp = 0;
3704 break;
3706 case SIGN_EXTRACT:
3707 case ZERO_EXTRACT:
3708 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3709 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3711 inner = XEXP (SET_SRC (x), 0);
3712 len = INTVAL (XEXP (SET_SRC (x), 1));
3713 pos = INTVAL (XEXP (SET_SRC (x), 2));
3715 if (BITS_BIG_ENDIAN)
3716 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3717 unsignedp = (code == ZERO_EXTRACT);
3719 break;
3721 default:
3722 break;
3725 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3727 enum machine_mode mode = GET_MODE (SET_SRC (x));
3729 /* For unsigned, we have a choice of a shift followed by an
3730 AND or two shifts. Use two shifts for field sizes where the
3731 constant might be too large. We assume here that we can
3732 always at least get 8-bit constants in an AND insn, which is
3733 true for every current RISC. */
3735 if (unsignedp && len <= 8)
3737 SUBST (SET_SRC (x),
3738 gen_rtx_AND (mode,
3739 gen_rtx_LSHIFTRT
3740 (mode, gen_lowpart (mode, inner),
3741 GEN_INT (pos)),
3742 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3744 split = find_split_point (&SET_SRC (x), insn);
3745 if (split && split != &SET_SRC (x))
3746 return split;
3748 else
3750 SUBST (SET_SRC (x),
3751 gen_rtx_fmt_ee
3752 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3753 gen_rtx_ASHIFT (mode,
3754 gen_lowpart (mode, inner),
3755 GEN_INT (GET_MODE_BITSIZE (mode)
3756 - len - pos)),
3757 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3759 split = find_split_point (&SET_SRC (x), insn);
3760 if (split && split != &SET_SRC (x))
3761 return split;
3765 /* See if this is a simple operation with a constant as the second
3766 operand. It might be that this constant is out of range and hence
3767 could be used as a split point. */
3768 if (BINARY_P (SET_SRC (x))
3769 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3770 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3771 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3772 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3773 return &XEXP (SET_SRC (x), 1);
3775 /* Finally, see if this is a simple operation with its first operand
3776 not in a register. The operation might require this operand in a
3777 register, so return it as a split point. We can always do this
3778 because if the first operand were another operation, we would have
3779 already found it as a split point. */
3780 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3781 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3782 return &XEXP (SET_SRC (x), 0);
3784 return 0;
3786 case AND:
3787 case IOR:
3788 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3789 it is better to write this as (not (ior A B)) so we can split it.
3790 Similarly for IOR. */
3791 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3793 SUBST (*loc,
3794 gen_rtx_NOT (GET_MODE (x),
3795 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3796 GET_MODE (x),
3797 XEXP (XEXP (x, 0), 0),
3798 XEXP (XEXP (x, 1), 0))));
3799 return find_split_point (loc, insn);
3802 /* Many RISC machines have a large set of logical insns. If the
3803 second operand is a NOT, put it first so we will try to split the
3804 other operand first. */
3805 if (GET_CODE (XEXP (x, 1)) == NOT)
3807 rtx tem = XEXP (x, 0);
3808 SUBST (XEXP (x, 0), XEXP (x, 1));
3809 SUBST (XEXP (x, 1), tem);
3811 break;
3813 default:
3814 break;
3817 /* Otherwise, select our actions depending on our rtx class. */
3818 switch (GET_RTX_CLASS (code))
3820 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3821 case RTX_TERNARY:
3822 split = find_split_point (&XEXP (x, 2), insn);
3823 if (split)
3824 return split;
3825 /* ... fall through ... */
3826 case RTX_BIN_ARITH:
3827 case RTX_COMM_ARITH:
3828 case RTX_COMPARE:
3829 case RTX_COMM_COMPARE:
3830 split = find_split_point (&XEXP (x, 1), insn);
3831 if (split)
3832 return split;
3833 /* ... fall through ... */
3834 case RTX_UNARY:
3835 /* Some machines have (and (shift ...) ...) insns. If X is not
3836 an AND, but XEXP (X, 0) is, use it as our split point. */
3837 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3838 return &XEXP (x, 0);
3840 split = find_split_point (&XEXP (x, 0), insn);
3841 if (split)
3842 return split;
3843 return loc;
3845 default:
3846 /* Otherwise, we don't have a split point. */
3847 return 0;
3851 /* Throughout X, replace FROM with TO, and return the result.
3852 The result is TO if X is FROM;
3853 otherwise the result is X, but its contents may have been modified.
3854 If they were modified, a record was made in undobuf so that
3855 undo_all will (among other things) return X to its original state.
3857 If the number of changes necessary is too much to record to undo,
3858 the excess changes are not made, so the result is invalid.
3859 The changes already made can still be undone.
3860 undobuf.num_undo is incremented for such changes, so by testing that
3861 the caller can tell whether the result is valid.
3863 `n_occurrences' is incremented each time FROM is replaced.
3865 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3867 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3868 by copying if `n_occurrences' is nonzero. */
3870 static rtx
3871 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3873 enum rtx_code code = GET_CODE (x);
3874 enum machine_mode op0_mode = VOIDmode;
3875 const char *fmt;
3876 int len, i;
3877 rtx new;
3879 /* Two expressions are equal if they are identical copies of a shared
3880 RTX or if they are both registers with the same register number
3881 and mode. */
3883 #define COMBINE_RTX_EQUAL_P(X,Y) \
3884 ((X) == (Y) \
3885 || (REG_P (X) && REG_P (Y) \
3886 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3888 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3890 n_occurrences++;
3891 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3894 /* If X and FROM are the same register but different modes, they will
3895 not have been seen as equal above. However, flow.c will make a
3896 LOG_LINKS entry for that case. If we do nothing, we will try to
3897 rerecognize our original insn and, when it succeeds, we will
3898 delete the feeding insn, which is incorrect.
3900 So force this insn not to match in this (rare) case. */
3901 if (! in_dest && code == REG && REG_P (from)
3902 && REGNO (x) == REGNO (from))
3903 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3905 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3906 of which may contain things that can be combined. */
3907 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3908 return x;
3910 /* It is possible to have a subexpression appear twice in the insn.
3911 Suppose that FROM is a register that appears within TO.
3912 Then, after that subexpression has been scanned once by `subst',
3913 the second time it is scanned, TO may be found. If we were
3914 to scan TO here, we would find FROM within it and create a
3915 self-referent rtl structure which is completely wrong. */
3916 if (COMBINE_RTX_EQUAL_P (x, to))
3917 return to;
3919 /* Parallel asm_operands need special attention because all of the
3920 inputs are shared across the arms. Furthermore, unsharing the
3921 rtl results in recognition failures. Failure to handle this case
3922 specially can result in circular rtl.
3924 Solve this by doing a normal pass across the first entry of the
3925 parallel, and only processing the SET_DESTs of the subsequent
3926 entries. Ug. */
3928 if (code == PARALLEL
3929 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3930 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3932 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3934 /* If this substitution failed, this whole thing fails. */
3935 if (GET_CODE (new) == CLOBBER
3936 && XEXP (new, 0) == const0_rtx)
3937 return new;
3939 SUBST (XVECEXP (x, 0, 0), new);
3941 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3943 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3945 if (!REG_P (dest)
3946 && GET_CODE (dest) != CC0
3947 && GET_CODE (dest) != PC)
3949 new = subst (dest, from, to, 0, unique_copy);
3951 /* If this substitution failed, this whole thing fails. */
3952 if (GET_CODE (new) == CLOBBER
3953 && XEXP (new, 0) == const0_rtx)
3954 return new;
3956 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3960 else
3962 len = GET_RTX_LENGTH (code);
3963 fmt = GET_RTX_FORMAT (code);
3965 /* We don't need to process a SET_DEST that is a register, CC0,
3966 or PC, so set up to skip this common case. All other cases
3967 where we want to suppress replacing something inside a
3968 SET_SRC are handled via the IN_DEST operand. */
3969 if (code == SET
3970 && (REG_P (SET_DEST (x))
3971 || GET_CODE (SET_DEST (x)) == CC0
3972 || GET_CODE (SET_DEST (x)) == PC))
3973 fmt = "ie";
3975 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3976 constant. */
3977 if (fmt[0] == 'e')
3978 op0_mode = GET_MODE (XEXP (x, 0));
3980 for (i = 0; i < len; i++)
3982 if (fmt[i] == 'E')
3984 int j;
3985 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3987 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3989 new = (unique_copy && n_occurrences
3990 ? copy_rtx (to) : to);
3991 n_occurrences++;
3993 else
3995 new = subst (XVECEXP (x, i, j), from, to, 0,
3996 unique_copy);
3998 /* If this substitution failed, this whole thing
3999 fails. */
4000 if (GET_CODE (new) == CLOBBER
4001 && XEXP (new, 0) == const0_rtx)
4002 return new;
4005 SUBST (XVECEXP (x, i, j), new);
4008 else if (fmt[i] == 'e')
4010 /* If this is a register being set, ignore it. */
4011 new = XEXP (x, i);
4012 if (in_dest
4013 && i == 0
4014 && (((code == SUBREG || code == ZERO_EXTRACT)
4015 && REG_P (new))
4016 || code == STRICT_LOW_PART))
4019 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4021 /* In general, don't install a subreg involving two
4022 modes not tieable. It can worsen register
4023 allocation, and can even make invalid reload
4024 insns, since the reg inside may need to be copied
4025 from in the outside mode, and that may be invalid
4026 if it is an fp reg copied in integer mode.
4028 We allow two exceptions to this: It is valid if
4029 it is inside another SUBREG and the mode of that
4030 SUBREG and the mode of the inside of TO is
4031 tieable and it is valid if X is a SET that copies
4032 FROM to CC0. */
4034 if (GET_CODE (to) == SUBREG
4035 && ! MODES_TIEABLE_P (GET_MODE (to),
4036 GET_MODE (SUBREG_REG (to)))
4037 && ! (code == SUBREG
4038 && MODES_TIEABLE_P (GET_MODE (x),
4039 GET_MODE (SUBREG_REG (to))))
4040 #ifdef HAVE_cc0
4041 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4042 #endif
4044 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4046 #ifdef CANNOT_CHANGE_MODE_CLASS
4047 if (code == SUBREG
4048 && REG_P (to)
4049 && REGNO (to) < FIRST_PSEUDO_REGISTER
4050 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4051 GET_MODE (to),
4052 GET_MODE (x)))
4053 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4054 #endif
4056 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4057 n_occurrences++;
4059 else
4060 /* If we are in a SET_DEST, suppress most cases unless we
4061 have gone inside a MEM, in which case we want to
4062 simplify the address. We assume here that things that
4063 are actually part of the destination have their inner
4064 parts in the first expression. This is true for SUBREG,
4065 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4066 things aside from REG and MEM that should appear in a
4067 SET_DEST. */
4068 new = subst (XEXP (x, i), from, to,
4069 (((in_dest
4070 && (code == SUBREG || code == STRICT_LOW_PART
4071 || code == ZERO_EXTRACT))
4072 || code == SET)
4073 && i == 0), unique_copy);
4075 /* If we found that we will have to reject this combination,
4076 indicate that by returning the CLOBBER ourselves, rather than
4077 an expression containing it. This will speed things up as
4078 well as prevent accidents where two CLOBBERs are considered
4079 to be equal, thus producing an incorrect simplification. */
4081 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4082 return new;
4084 if (GET_CODE (x) == SUBREG
4085 && (GET_CODE (new) == CONST_INT
4086 || GET_CODE (new) == CONST_DOUBLE))
4088 enum machine_mode mode = GET_MODE (x);
4090 x = simplify_subreg (GET_MODE (x), new,
4091 GET_MODE (SUBREG_REG (x)),
4092 SUBREG_BYTE (x));
4093 if (! x)
4094 x = gen_rtx_CLOBBER (mode, const0_rtx);
4096 else if (GET_CODE (new) == CONST_INT
4097 && GET_CODE (x) == ZERO_EXTEND)
4099 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4100 new, GET_MODE (XEXP (x, 0)));
4101 gcc_assert (x);
4103 else
4104 SUBST (XEXP (x, i), new);
4109 /* Try to simplify X. If the simplification changed the code, it is likely
4110 that further simplification will help, so loop, but limit the number
4111 of repetitions that will be performed. */
4113 for (i = 0; i < 4; i++)
4115 /* If X is sufficiently simple, don't bother trying to do anything
4116 with it. */
4117 if (code != CONST_INT && code != REG && code != CLOBBER)
4118 x = combine_simplify_rtx (x, op0_mode, in_dest);
4120 if (GET_CODE (x) == code)
4121 break;
4123 code = GET_CODE (x);
4125 /* We no longer know the original mode of operand 0 since we
4126 have changed the form of X) */
4127 op0_mode = VOIDmode;
4130 return x;
4133 /* Simplify X, a piece of RTL. We just operate on the expression at the
4134 outer level; call `subst' to simplify recursively. Return the new
4135 expression.
4137 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4138 if we are inside a SET_DEST. */
4140 static rtx
4141 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4143 enum rtx_code code = GET_CODE (x);
4144 enum machine_mode mode = GET_MODE (x);
4145 rtx temp;
4146 int i;
4148 /* If this is a commutative operation, put a constant last and a complex
4149 expression first. We don't need to do this for comparisons here. */
4150 if (COMMUTATIVE_ARITH_P (x)
4151 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4153 temp = XEXP (x, 0);
4154 SUBST (XEXP (x, 0), XEXP (x, 1));
4155 SUBST (XEXP (x, 1), temp);
4158 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4159 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4160 things. Check for cases where both arms are testing the same
4161 condition.
4163 Don't do anything if all operands are very simple. */
4165 if ((BINARY_P (x)
4166 && ((!OBJECT_P (XEXP (x, 0))
4167 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4168 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4169 || (!OBJECT_P (XEXP (x, 1))
4170 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4171 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4172 || (UNARY_P (x)
4173 && (!OBJECT_P (XEXP (x, 0))
4174 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4175 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4177 rtx cond, true_rtx, false_rtx;
4179 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4180 if (cond != 0
4181 /* If everything is a comparison, what we have is highly unlikely
4182 to be simpler, so don't use it. */
4183 && ! (COMPARISON_P (x)
4184 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4186 rtx cop1 = const0_rtx;
4187 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4189 if (cond_code == NE && COMPARISON_P (cond))
4190 return x;
4192 /* Simplify the alternative arms; this may collapse the true and
4193 false arms to store-flag values. Be careful to use copy_rtx
4194 here since true_rtx or false_rtx might share RTL with x as a
4195 result of the if_then_else_cond call above. */
4196 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4197 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4199 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4200 is unlikely to be simpler. */
4201 if (general_operand (true_rtx, VOIDmode)
4202 && general_operand (false_rtx, VOIDmode))
4204 enum rtx_code reversed;
4206 /* Restarting if we generate a store-flag expression will cause
4207 us to loop. Just drop through in this case. */
4209 /* If the result values are STORE_FLAG_VALUE and zero, we can
4210 just make the comparison operation. */
4211 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4212 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4213 cond, cop1);
4214 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4215 && ((reversed = reversed_comparison_code_parts
4216 (cond_code, cond, cop1, NULL))
4217 != UNKNOWN))
4218 x = simplify_gen_relational (reversed, mode, VOIDmode,
4219 cond, cop1);
4221 /* Likewise, we can make the negate of a comparison operation
4222 if the result values are - STORE_FLAG_VALUE and zero. */
4223 else if (GET_CODE (true_rtx) == CONST_INT
4224 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4225 && false_rtx == const0_rtx)
4226 x = simplify_gen_unary (NEG, mode,
4227 simplify_gen_relational (cond_code,
4228 mode, VOIDmode,
4229 cond, cop1),
4230 mode);
4231 else if (GET_CODE (false_rtx) == CONST_INT
4232 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4233 && true_rtx == const0_rtx
4234 && ((reversed = reversed_comparison_code_parts
4235 (cond_code, cond, cop1, NULL))
4236 != UNKNOWN))
4237 x = simplify_gen_unary (NEG, mode,
4238 simplify_gen_relational (reversed,
4239 mode, VOIDmode,
4240 cond, cop1),
4241 mode);
4242 else
4243 return gen_rtx_IF_THEN_ELSE (mode,
4244 simplify_gen_relational (cond_code,
4245 mode,
4246 VOIDmode,
4247 cond,
4248 cop1),
4249 true_rtx, false_rtx);
4251 code = GET_CODE (x);
4252 op0_mode = VOIDmode;
4257 /* Try to fold this expression in case we have constants that weren't
4258 present before. */
4259 temp = 0;
4260 switch (GET_RTX_CLASS (code))
4262 case RTX_UNARY:
4263 if (op0_mode == VOIDmode)
4264 op0_mode = GET_MODE (XEXP (x, 0));
4265 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4266 break;
4267 case RTX_COMPARE:
4268 case RTX_COMM_COMPARE:
4270 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4271 if (cmp_mode == VOIDmode)
4273 cmp_mode = GET_MODE (XEXP (x, 1));
4274 if (cmp_mode == VOIDmode)
4275 cmp_mode = op0_mode;
4277 temp = simplify_relational_operation (code, mode, cmp_mode,
4278 XEXP (x, 0), XEXP (x, 1));
4280 break;
4281 case RTX_COMM_ARITH:
4282 case RTX_BIN_ARITH:
4283 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4284 break;
4285 case RTX_BITFIELD_OPS:
4286 case RTX_TERNARY:
4287 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4288 XEXP (x, 1), XEXP (x, 2));
4289 break;
4290 default:
4291 break;
4294 if (temp)
4296 x = temp;
4297 code = GET_CODE (temp);
4298 op0_mode = VOIDmode;
4299 mode = GET_MODE (temp);
4302 /* First see if we can apply the inverse distributive law. */
4303 if (code == PLUS || code == MINUS
4304 || code == AND || code == IOR || code == XOR)
4306 x = apply_distributive_law (x);
4307 code = GET_CODE (x);
4308 op0_mode = VOIDmode;
4311 /* If CODE is an associative operation not otherwise handled, see if we
4312 can associate some operands. This can win if they are constants or
4313 if they are logically related (i.e. (a & b) & a). */
4314 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4315 || code == AND || code == IOR || code == XOR
4316 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4317 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4318 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4320 if (GET_CODE (XEXP (x, 0)) == code)
4322 rtx other = XEXP (XEXP (x, 0), 0);
4323 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4324 rtx inner_op1 = XEXP (x, 1);
4325 rtx inner;
4327 /* Make sure we pass the constant operand if any as the second
4328 one if this is a commutative operation. */
4329 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4331 rtx tem = inner_op0;
4332 inner_op0 = inner_op1;
4333 inner_op1 = tem;
4335 inner = simplify_binary_operation (code == MINUS ? PLUS
4336 : code == DIV ? MULT
4337 : code,
4338 mode, inner_op0, inner_op1);
4340 /* For commutative operations, try the other pair if that one
4341 didn't simplify. */
4342 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4344 other = XEXP (XEXP (x, 0), 1);
4345 inner = simplify_binary_operation (code, mode,
4346 XEXP (XEXP (x, 0), 0),
4347 XEXP (x, 1));
4350 if (inner)
4351 return simplify_gen_binary (code, mode, other, inner);
4355 /* A little bit of algebraic simplification here. */
4356 switch (code)
4358 case MEM:
4359 /* Ensure that our address has any ASHIFTs converted to MULT in case
4360 address-recognizing predicates are called later. */
4361 temp = make_compound_operation (XEXP (x, 0), MEM);
4362 SUBST (XEXP (x, 0), temp);
4363 break;
4365 case SUBREG:
4366 if (op0_mode == VOIDmode)
4367 op0_mode = GET_MODE (SUBREG_REG (x));
4369 /* See if this can be moved to simplify_subreg. */
4370 if (CONSTANT_P (SUBREG_REG (x))
4371 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4372 /* Don't call gen_lowpart if the inner mode
4373 is VOIDmode and we cannot simplify it, as SUBREG without
4374 inner mode is invalid. */
4375 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4376 || gen_lowpart_common (mode, SUBREG_REG (x))))
4377 return gen_lowpart (mode, SUBREG_REG (x));
4379 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4380 break;
4382 rtx temp;
4383 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4384 SUBREG_BYTE (x));
4385 if (temp)
4386 return temp;
4389 /* Don't change the mode of the MEM if that would change the meaning
4390 of the address. */
4391 if (MEM_P (SUBREG_REG (x))
4392 && (MEM_VOLATILE_P (SUBREG_REG (x))
4393 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4394 return gen_rtx_CLOBBER (mode, const0_rtx);
4396 /* Note that we cannot do any narrowing for non-constants since
4397 we might have been counting on using the fact that some bits were
4398 zero. We now do this in the SET. */
4400 break;
4402 case NEG:
4403 temp = expand_compound_operation (XEXP (x, 0));
4405 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4406 replaced by (lshiftrt X C). This will convert
4407 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4409 if (GET_CODE (temp) == ASHIFTRT
4410 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4411 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4412 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4413 INTVAL (XEXP (temp, 1)));
4415 /* If X has only a single bit that might be nonzero, say, bit I, convert
4416 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4417 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4418 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4419 or a SUBREG of one since we'd be making the expression more
4420 complex if it was just a register. */
4422 if (!REG_P (temp)
4423 && ! (GET_CODE (temp) == SUBREG
4424 && REG_P (SUBREG_REG (temp)))
4425 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4427 rtx temp1 = simplify_shift_const
4428 (NULL_RTX, ASHIFTRT, mode,
4429 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4430 GET_MODE_BITSIZE (mode) - 1 - i),
4431 GET_MODE_BITSIZE (mode) - 1 - i);
4433 /* If all we did was surround TEMP with the two shifts, we
4434 haven't improved anything, so don't use it. Otherwise,
4435 we are better off with TEMP1. */
4436 if (GET_CODE (temp1) != ASHIFTRT
4437 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4438 || XEXP (XEXP (temp1, 0), 0) != temp)
4439 return temp1;
4441 break;
4443 case TRUNCATE:
4444 /* We can't handle truncation to a partial integer mode here
4445 because we don't know the real bitsize of the partial
4446 integer mode. */
4447 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4448 break;
4450 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4451 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4452 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4453 SUBST (XEXP (x, 0),
4454 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4455 GET_MODE_MASK (mode), 0));
4457 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4458 whose value is a comparison can be replaced with a subreg if
4459 STORE_FLAG_VALUE permits. */
4460 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4461 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4462 && (temp = get_last_value (XEXP (x, 0)))
4463 && COMPARISON_P (temp))
4464 return gen_lowpart (mode, XEXP (x, 0));
4465 break;
4467 #ifdef HAVE_cc0
4468 case COMPARE:
4469 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4470 using cc0, in which case we want to leave it as a COMPARE
4471 so we can distinguish it from a register-register-copy. */
4472 if (XEXP (x, 1) == const0_rtx)
4473 return XEXP (x, 0);
4475 /* x - 0 is the same as x unless x's mode has signed zeros and
4476 allows rounding towards -infinity. Under those conditions,
4477 0 - 0 is -0. */
4478 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4479 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4480 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4481 return XEXP (x, 0);
4482 break;
4483 #endif
4485 case CONST:
4486 /* (const (const X)) can become (const X). Do it this way rather than
4487 returning the inner CONST since CONST can be shared with a
4488 REG_EQUAL note. */
4489 if (GET_CODE (XEXP (x, 0)) == CONST)
4490 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4491 break;
4493 #ifdef HAVE_lo_sum
4494 case LO_SUM:
4495 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4496 can add in an offset. find_split_point will split this address up
4497 again if it doesn't match. */
4498 if (GET_CODE (XEXP (x, 0)) == HIGH
4499 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4500 return XEXP (x, 1);
4501 break;
4502 #endif
4504 case PLUS:
4505 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4506 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4507 bit-field and can be replaced by either a sign_extend or a
4508 sign_extract. The `and' may be a zero_extend and the two
4509 <c>, -<c> constants may be reversed. */
4510 if (GET_CODE (XEXP (x, 0)) == XOR
4511 && GET_CODE (XEXP (x, 1)) == CONST_INT
4512 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4513 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4514 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4515 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4516 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4517 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4518 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4519 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4520 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4521 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4522 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4523 == (unsigned int) i + 1))))
4524 return simplify_shift_const
4525 (NULL_RTX, ASHIFTRT, mode,
4526 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4527 XEXP (XEXP (XEXP (x, 0), 0), 0),
4528 GET_MODE_BITSIZE (mode) - (i + 1)),
4529 GET_MODE_BITSIZE (mode) - (i + 1));
4531 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4532 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4533 the bitsize of the mode - 1. This allows simplification of
4534 "a = (b & 8) == 0;" */
4535 if (XEXP (x, 1) == constm1_rtx
4536 && !REG_P (XEXP (x, 0))
4537 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4538 && REG_P (SUBREG_REG (XEXP (x, 0))))
4539 && nonzero_bits (XEXP (x, 0), mode) == 1)
4540 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4541 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4542 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4543 GET_MODE_BITSIZE (mode) - 1),
4544 GET_MODE_BITSIZE (mode) - 1);
4546 /* If we are adding two things that have no bits in common, convert
4547 the addition into an IOR. This will often be further simplified,
4548 for example in cases like ((a & 1) + (a & 2)), which can
4549 become a & 3. */
4551 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4552 && (nonzero_bits (XEXP (x, 0), mode)
4553 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4555 /* Try to simplify the expression further. */
4556 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4557 temp = combine_simplify_rtx (tor, mode, in_dest);
4559 /* If we could, great. If not, do not go ahead with the IOR
4560 replacement, since PLUS appears in many special purpose
4561 address arithmetic instructions. */
4562 if (GET_CODE (temp) != CLOBBER && temp != tor)
4563 return temp;
4565 break;
4567 case MINUS:
4568 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4569 (and <foo> (const_int pow2-1)) */
4570 if (GET_CODE (XEXP (x, 1)) == AND
4571 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4572 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4573 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4574 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4575 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4576 break;
4578 case MULT:
4579 /* If we have (mult (plus A B) C), apply the distributive law and then
4580 the inverse distributive law to see if things simplify. This
4581 occurs mostly in addresses, often when unrolling loops. */
4583 if (GET_CODE (XEXP (x, 0)) == PLUS)
4585 rtx result = distribute_and_simplify_rtx (x, 0);
4586 if (result)
4587 return result;
4590 /* Try simplify a*(b/c) as (a*b)/c. */
4591 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4592 && GET_CODE (XEXP (x, 0)) == DIV)
4594 rtx tem = simplify_binary_operation (MULT, mode,
4595 XEXP (XEXP (x, 0), 0),
4596 XEXP (x, 1));
4597 if (tem)
4598 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4600 break;
4602 case UDIV:
4603 /* If this is a divide by a power of two, treat it as a shift if
4604 its first operand is a shift. */
4605 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4606 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4607 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4608 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4609 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4610 || GET_CODE (XEXP (x, 0)) == ROTATE
4611 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4612 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4613 break;
4615 case EQ: case NE:
4616 case GT: case GTU: case GE: case GEU:
4617 case LT: case LTU: case LE: case LEU:
4618 case UNEQ: case LTGT:
4619 case UNGT: case UNGE:
4620 case UNLT: case UNLE:
4621 case UNORDERED: case ORDERED:
4622 /* If the first operand is a condition code, we can't do anything
4623 with it. */
4624 if (GET_CODE (XEXP (x, 0)) == COMPARE
4625 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4626 && ! CC0_P (XEXP (x, 0))))
4628 rtx op0 = XEXP (x, 0);
4629 rtx op1 = XEXP (x, 1);
4630 enum rtx_code new_code;
4632 if (GET_CODE (op0) == COMPARE)
4633 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4635 /* Simplify our comparison, if possible. */
4636 new_code = simplify_comparison (code, &op0, &op1);
4638 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4639 if only the low-order bit is possibly nonzero in X (such as when
4640 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4641 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4642 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4643 (plus X 1).
4645 Remove any ZERO_EXTRACT we made when thinking this was a
4646 comparison. It may now be simpler to use, e.g., an AND. If a
4647 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4648 the call to make_compound_operation in the SET case. */
4650 if (STORE_FLAG_VALUE == 1
4651 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4652 && op1 == const0_rtx
4653 && mode == GET_MODE (op0)
4654 && nonzero_bits (op0, mode) == 1)
4655 return gen_lowpart (mode,
4656 expand_compound_operation (op0));
4658 else if (STORE_FLAG_VALUE == 1
4659 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4660 && op1 == const0_rtx
4661 && mode == GET_MODE (op0)
4662 && (num_sign_bit_copies (op0, mode)
4663 == GET_MODE_BITSIZE (mode)))
4665 op0 = expand_compound_operation (op0);
4666 return simplify_gen_unary (NEG, mode,
4667 gen_lowpart (mode, op0),
4668 mode);
4671 else if (STORE_FLAG_VALUE == 1
4672 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4673 && op1 == const0_rtx
4674 && mode == GET_MODE (op0)
4675 && nonzero_bits (op0, mode) == 1)
4677 op0 = expand_compound_operation (op0);
4678 return simplify_gen_binary (XOR, mode,
4679 gen_lowpart (mode, op0),
4680 const1_rtx);
4683 else if (STORE_FLAG_VALUE == 1
4684 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4685 && op1 == const0_rtx
4686 && mode == GET_MODE (op0)
4687 && (num_sign_bit_copies (op0, mode)
4688 == GET_MODE_BITSIZE (mode)))
4690 op0 = expand_compound_operation (op0);
4691 return plus_constant (gen_lowpart (mode, op0), 1);
4694 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4695 those above. */
4696 if (STORE_FLAG_VALUE == -1
4697 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4698 && op1 == const0_rtx
4699 && (num_sign_bit_copies (op0, mode)
4700 == GET_MODE_BITSIZE (mode)))
4701 return gen_lowpart (mode,
4702 expand_compound_operation (op0));
4704 else if (STORE_FLAG_VALUE == -1
4705 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4706 && op1 == const0_rtx
4707 && mode == GET_MODE (op0)
4708 && nonzero_bits (op0, mode) == 1)
4710 op0 = expand_compound_operation (op0);
4711 return simplify_gen_unary (NEG, mode,
4712 gen_lowpart (mode, op0),
4713 mode);
4716 else if (STORE_FLAG_VALUE == -1
4717 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4718 && op1 == const0_rtx
4719 && mode == GET_MODE (op0)
4720 && (num_sign_bit_copies (op0, mode)
4721 == GET_MODE_BITSIZE (mode)))
4723 op0 = expand_compound_operation (op0);
4724 return simplify_gen_unary (NOT, mode,
4725 gen_lowpart (mode, op0),
4726 mode);
4729 /* If X is 0/1, (eq X 0) is X-1. */
4730 else if (STORE_FLAG_VALUE == -1
4731 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4732 && op1 == const0_rtx
4733 && mode == GET_MODE (op0)
4734 && nonzero_bits (op0, mode) == 1)
4736 op0 = expand_compound_operation (op0);
4737 return plus_constant (gen_lowpart (mode, op0), -1);
4740 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4741 one bit that might be nonzero, we can convert (ne x 0) to
4742 (ashift x c) where C puts the bit in the sign bit. Remove any
4743 AND with STORE_FLAG_VALUE when we are done, since we are only
4744 going to test the sign bit. */
4745 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4746 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4747 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4748 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4749 && op1 == const0_rtx
4750 && mode == GET_MODE (op0)
4751 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4753 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4754 expand_compound_operation (op0),
4755 GET_MODE_BITSIZE (mode) - 1 - i);
4756 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4757 return XEXP (x, 0);
4758 else
4759 return x;
4762 /* If the code changed, return a whole new comparison. */
4763 if (new_code != code)
4764 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4766 /* Otherwise, keep this operation, but maybe change its operands.
4767 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4768 SUBST (XEXP (x, 0), op0);
4769 SUBST (XEXP (x, 1), op1);
4771 break;
4773 case IF_THEN_ELSE:
4774 return simplify_if_then_else (x);
4776 case ZERO_EXTRACT:
4777 case SIGN_EXTRACT:
4778 case ZERO_EXTEND:
4779 case SIGN_EXTEND:
4780 /* If we are processing SET_DEST, we are done. */
4781 if (in_dest)
4782 return x;
4784 return expand_compound_operation (x);
4786 case SET:
4787 return simplify_set (x);
4789 case AND:
4790 case IOR:
4791 return simplify_logical (x);
4793 case ASHIFT:
4794 case LSHIFTRT:
4795 case ASHIFTRT:
4796 case ROTATE:
4797 case ROTATERT:
4798 /* If this is a shift by a constant amount, simplify it. */
4799 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4800 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4801 INTVAL (XEXP (x, 1)));
4803 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4804 SUBST (XEXP (x, 1),
4805 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4806 ((HOST_WIDE_INT) 1
4807 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4808 - 1,
4809 0));
4810 break;
4812 default:
4813 break;
4816 return x;
4819 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4821 static rtx
4822 simplify_if_then_else (rtx x)
4824 enum machine_mode mode = GET_MODE (x);
4825 rtx cond = XEXP (x, 0);
4826 rtx true_rtx = XEXP (x, 1);
4827 rtx false_rtx = XEXP (x, 2);
4828 enum rtx_code true_code = GET_CODE (cond);
4829 int comparison_p = COMPARISON_P (cond);
4830 rtx temp;
4831 int i;
4832 enum rtx_code false_code;
4833 rtx reversed;
4835 /* Simplify storing of the truth value. */
4836 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4837 return simplify_gen_relational (true_code, mode, VOIDmode,
4838 XEXP (cond, 0), XEXP (cond, 1));
4840 /* Also when the truth value has to be reversed. */
4841 if (comparison_p
4842 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4843 && (reversed = reversed_comparison (cond, mode)))
4844 return reversed;
4846 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4847 in it is being compared against certain values. Get the true and false
4848 comparisons and see if that says anything about the value of each arm. */
4850 if (comparison_p
4851 && ((false_code = reversed_comparison_code (cond, NULL))
4852 != UNKNOWN)
4853 && REG_P (XEXP (cond, 0)))
4855 HOST_WIDE_INT nzb;
4856 rtx from = XEXP (cond, 0);
4857 rtx true_val = XEXP (cond, 1);
4858 rtx false_val = true_val;
4859 int swapped = 0;
4861 /* If FALSE_CODE is EQ, swap the codes and arms. */
4863 if (false_code == EQ)
4865 swapped = 1, true_code = EQ, false_code = NE;
4866 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4869 /* If we are comparing against zero and the expression being tested has
4870 only a single bit that might be nonzero, that is its value when it is
4871 not equal to zero. Similarly if it is known to be -1 or 0. */
4873 if (true_code == EQ && true_val == const0_rtx
4874 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4875 false_code = EQ, false_val = GEN_INT (nzb);
4876 else if (true_code == EQ && true_val == const0_rtx
4877 && (num_sign_bit_copies (from, GET_MODE (from))
4878 == GET_MODE_BITSIZE (GET_MODE (from))))
4879 false_code = EQ, false_val = constm1_rtx;
4881 /* Now simplify an arm if we know the value of the register in the
4882 branch and it is used in the arm. Be careful due to the potential
4883 of locally-shared RTL. */
4885 if (reg_mentioned_p (from, true_rtx))
4886 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4887 from, true_val),
4888 pc_rtx, pc_rtx, 0, 0);
4889 if (reg_mentioned_p (from, false_rtx))
4890 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4891 from, false_val),
4892 pc_rtx, pc_rtx, 0, 0);
4894 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4895 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4897 true_rtx = XEXP (x, 1);
4898 false_rtx = XEXP (x, 2);
4899 true_code = GET_CODE (cond);
4902 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4903 reversed, do so to avoid needing two sets of patterns for
4904 subtract-and-branch insns. Similarly if we have a constant in the true
4905 arm, the false arm is the same as the first operand of the comparison, or
4906 the false arm is more complicated than the true arm. */
4908 if (comparison_p
4909 && reversed_comparison_code (cond, NULL) != UNKNOWN
4910 && (true_rtx == pc_rtx
4911 || (CONSTANT_P (true_rtx)
4912 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4913 || true_rtx == const0_rtx
4914 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4915 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4916 && !OBJECT_P (false_rtx))
4917 || reg_mentioned_p (true_rtx, false_rtx)
4918 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4920 true_code = reversed_comparison_code (cond, NULL);
4921 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4922 SUBST (XEXP (x, 1), false_rtx);
4923 SUBST (XEXP (x, 2), true_rtx);
4925 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4926 cond = XEXP (x, 0);
4928 /* It is possible that the conditional has been simplified out. */
4929 true_code = GET_CODE (cond);
4930 comparison_p = COMPARISON_P (cond);
4933 /* If the two arms are identical, we don't need the comparison. */
4935 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4936 return true_rtx;
4938 /* Convert a == b ? b : a to "a". */
4939 if (true_code == EQ && ! side_effects_p (cond)
4940 && !HONOR_NANS (mode)
4941 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4942 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4943 return false_rtx;
4944 else if (true_code == NE && ! side_effects_p (cond)
4945 && !HONOR_NANS (mode)
4946 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4947 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4948 return true_rtx;
4950 /* Look for cases where we have (abs x) or (neg (abs X)). */
4952 if (GET_MODE_CLASS (mode) == MODE_INT
4953 && GET_CODE (false_rtx) == NEG
4954 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4955 && comparison_p
4956 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4957 && ! side_effects_p (true_rtx))
4958 switch (true_code)
4960 case GT:
4961 case GE:
4962 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4963 case LT:
4964 case LE:
4965 return
4966 simplify_gen_unary (NEG, mode,
4967 simplify_gen_unary (ABS, mode, true_rtx, mode),
4968 mode);
4969 default:
4970 break;
4973 /* Look for MIN or MAX. */
4975 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4976 && comparison_p
4977 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4978 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4979 && ! side_effects_p (cond))
4980 switch (true_code)
4982 case GE:
4983 case GT:
4984 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4985 case LE:
4986 case LT:
4987 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4988 case GEU:
4989 case GTU:
4990 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4991 case LEU:
4992 case LTU:
4993 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4994 default:
4995 break;
4998 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4999 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5000 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5001 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5002 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5003 neither 1 or -1, but it isn't worth checking for. */
5005 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5006 && comparison_p
5007 && GET_MODE_CLASS (mode) == MODE_INT
5008 && ! side_effects_p (x))
5010 rtx t = make_compound_operation (true_rtx, SET);
5011 rtx f = make_compound_operation (false_rtx, SET);
5012 rtx cond_op0 = XEXP (cond, 0);
5013 rtx cond_op1 = XEXP (cond, 1);
5014 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5015 enum machine_mode m = mode;
5016 rtx z = 0, c1 = NULL_RTX;
5018 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5019 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5020 || GET_CODE (t) == ASHIFT
5021 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5022 && rtx_equal_p (XEXP (t, 0), f))
5023 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5025 /* If an identity-zero op is commutative, check whether there
5026 would be a match if we swapped the operands. */
5027 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5028 || GET_CODE (t) == XOR)
5029 && rtx_equal_p (XEXP (t, 1), f))
5030 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5031 else if (GET_CODE (t) == SIGN_EXTEND
5032 && (GET_CODE (XEXP (t, 0)) == PLUS
5033 || GET_CODE (XEXP (t, 0)) == MINUS
5034 || GET_CODE (XEXP (t, 0)) == IOR
5035 || GET_CODE (XEXP (t, 0)) == XOR
5036 || GET_CODE (XEXP (t, 0)) == ASHIFT
5037 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5038 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5039 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5040 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5041 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5042 && (num_sign_bit_copies (f, GET_MODE (f))
5043 > (unsigned int)
5044 (GET_MODE_BITSIZE (mode)
5045 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5047 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5048 extend_op = SIGN_EXTEND;
5049 m = GET_MODE (XEXP (t, 0));
5051 else if (GET_CODE (t) == SIGN_EXTEND
5052 && (GET_CODE (XEXP (t, 0)) == PLUS
5053 || GET_CODE (XEXP (t, 0)) == IOR
5054 || GET_CODE (XEXP (t, 0)) == XOR)
5055 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5056 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5057 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5058 && (num_sign_bit_copies (f, GET_MODE (f))
5059 > (unsigned int)
5060 (GET_MODE_BITSIZE (mode)
5061 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5063 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5064 extend_op = SIGN_EXTEND;
5065 m = GET_MODE (XEXP (t, 0));
5067 else if (GET_CODE (t) == ZERO_EXTEND
5068 && (GET_CODE (XEXP (t, 0)) == PLUS
5069 || GET_CODE (XEXP (t, 0)) == MINUS
5070 || GET_CODE (XEXP (t, 0)) == IOR
5071 || GET_CODE (XEXP (t, 0)) == XOR
5072 || GET_CODE (XEXP (t, 0)) == ASHIFT
5073 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5074 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5075 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5076 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5077 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5078 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5079 && ((nonzero_bits (f, GET_MODE (f))
5080 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5081 == 0))
5083 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5084 extend_op = ZERO_EXTEND;
5085 m = GET_MODE (XEXP (t, 0));
5087 else if (GET_CODE (t) == ZERO_EXTEND
5088 && (GET_CODE (XEXP (t, 0)) == PLUS
5089 || GET_CODE (XEXP (t, 0)) == IOR
5090 || GET_CODE (XEXP (t, 0)) == XOR)
5091 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5092 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5093 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5094 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5095 && ((nonzero_bits (f, GET_MODE (f))
5096 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5097 == 0))
5099 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5100 extend_op = ZERO_EXTEND;
5101 m = GET_MODE (XEXP (t, 0));
5104 if (z)
5106 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5107 cond_op0, cond_op1),
5108 pc_rtx, pc_rtx, 0, 0);
5109 temp = simplify_gen_binary (MULT, m, temp,
5110 simplify_gen_binary (MULT, m, c1,
5111 const_true_rtx));
5112 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5113 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5115 if (extend_op != UNKNOWN)
5116 temp = simplify_gen_unary (extend_op, mode, temp, m);
5118 return temp;
5122 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5123 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5124 negation of a single bit, we can convert this operation to a shift. We
5125 can actually do this more generally, but it doesn't seem worth it. */
5127 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5128 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5129 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5130 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5131 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5132 == GET_MODE_BITSIZE (mode))
5133 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5134 return
5135 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5136 gen_lowpart (mode, XEXP (cond, 0)), i);
5138 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5139 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5140 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5141 && GET_MODE (XEXP (cond, 0)) == mode
5142 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5143 == nonzero_bits (XEXP (cond, 0), mode)
5144 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5145 return XEXP (cond, 0);
5147 return x;
5150 /* Simplify X, a SET expression. Return the new expression. */
5152 static rtx
5153 simplify_set (rtx x)
5155 rtx src = SET_SRC (x);
5156 rtx dest = SET_DEST (x);
5157 enum machine_mode mode
5158 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5159 rtx other_insn;
5160 rtx *cc_use;
5162 /* (set (pc) (return)) gets written as (return). */
5163 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5164 return src;
5166 /* Now that we know for sure which bits of SRC we are using, see if we can
5167 simplify the expression for the object knowing that we only need the
5168 low-order bits. */
5170 if (GET_MODE_CLASS (mode) == MODE_INT
5171 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5173 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5174 SUBST (SET_SRC (x), src);
5177 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5178 the comparison result and try to simplify it unless we already have used
5179 undobuf.other_insn. */
5180 if ((GET_MODE_CLASS (mode) == MODE_CC
5181 || GET_CODE (src) == COMPARE
5182 || CC0_P (dest))
5183 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5184 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5185 && COMPARISON_P (*cc_use)
5186 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5188 enum rtx_code old_code = GET_CODE (*cc_use);
5189 enum rtx_code new_code;
5190 rtx op0, op1, tmp;
5191 int other_changed = 0;
5192 enum machine_mode compare_mode = GET_MODE (dest);
5194 if (GET_CODE (src) == COMPARE)
5195 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5196 else
5197 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5199 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5200 op0, op1);
5201 if (!tmp)
5202 new_code = old_code;
5203 else if (!CONSTANT_P (tmp))
5205 new_code = GET_CODE (tmp);
5206 op0 = XEXP (tmp, 0);
5207 op1 = XEXP (tmp, 1);
5209 else
5211 rtx pat = PATTERN (other_insn);
5212 undobuf.other_insn = other_insn;
5213 SUBST (*cc_use, tmp);
5215 /* Attempt to simplify CC user. */
5216 if (GET_CODE (pat) == SET)
5218 rtx new = simplify_rtx (SET_SRC (pat));
5219 if (new != NULL_RTX)
5220 SUBST (SET_SRC (pat), new);
5223 /* Convert X into a no-op move. */
5224 SUBST (SET_DEST (x), pc_rtx);
5225 SUBST (SET_SRC (x), pc_rtx);
5226 return x;
5229 /* Simplify our comparison, if possible. */
5230 new_code = simplify_comparison (new_code, &op0, &op1);
5232 #ifdef SELECT_CC_MODE
5233 /* If this machine has CC modes other than CCmode, check to see if we
5234 need to use a different CC mode here. */
5235 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5236 compare_mode = GET_MODE (op0);
5237 else
5238 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5240 #ifndef HAVE_cc0
5241 /* If the mode changed, we have to change SET_DEST, the mode in the
5242 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5243 a hard register, just build new versions with the proper mode. If it
5244 is a pseudo, we lose unless it is only time we set the pseudo, in
5245 which case we can safely change its mode. */
5246 if (compare_mode != GET_MODE (dest))
5248 if (can_change_dest_mode (dest, 0, compare_mode))
5250 unsigned int regno = REGNO (dest);
5251 rtx new_dest;
5253 if (regno < FIRST_PSEUDO_REGISTER)
5254 new_dest = gen_rtx_REG (compare_mode, regno);
5255 else
5257 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5258 new_dest = regno_reg_rtx[regno];
5261 SUBST (SET_DEST (x), new_dest);
5262 SUBST (XEXP (*cc_use, 0), new_dest);
5263 other_changed = 1;
5265 dest = new_dest;
5268 #endif /* cc0 */
5269 #endif /* SELECT_CC_MODE */
5271 /* If the code changed, we have to build a new comparison in
5272 undobuf.other_insn. */
5273 if (new_code != old_code)
5275 int other_changed_previously = other_changed;
5276 unsigned HOST_WIDE_INT mask;
5278 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5279 dest, const0_rtx));
5280 other_changed = 1;
5282 /* If the only change we made was to change an EQ into an NE or
5283 vice versa, OP0 has only one bit that might be nonzero, and OP1
5284 is zero, check if changing the user of the condition code will
5285 produce a valid insn. If it won't, we can keep the original code
5286 in that insn by surrounding our operation with an XOR. */
5288 if (((old_code == NE && new_code == EQ)
5289 || (old_code == EQ && new_code == NE))
5290 && ! other_changed_previously && op1 == const0_rtx
5291 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5292 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5294 rtx pat = PATTERN (other_insn), note = 0;
5296 if ((recog_for_combine (&pat, other_insn, &note) < 0
5297 && ! check_asm_operands (pat)))
5299 PUT_CODE (*cc_use, old_code);
5300 other_changed = 0;
5302 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5303 op0, GEN_INT (mask));
5308 if (other_changed)
5309 undobuf.other_insn = other_insn;
5311 #ifdef HAVE_cc0
5312 /* If we are now comparing against zero, change our source if
5313 needed. If we do not use cc0, we always have a COMPARE. */
5314 if (op1 == const0_rtx && dest == cc0_rtx)
5316 SUBST (SET_SRC (x), op0);
5317 src = op0;
5319 else
5320 #endif
5322 /* Otherwise, if we didn't previously have a COMPARE in the
5323 correct mode, we need one. */
5324 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5326 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5327 src = SET_SRC (x);
5329 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5331 SUBST(SET_SRC (x), op0);
5332 src = SET_SRC (x);
5334 else
5336 /* Otherwise, update the COMPARE if needed. */
5337 SUBST (XEXP (src, 0), op0);
5338 SUBST (XEXP (src, 1), op1);
5341 else
5343 /* Get SET_SRC in a form where we have placed back any
5344 compound expressions. Then do the checks below. */
5345 src = make_compound_operation (src, SET);
5346 SUBST (SET_SRC (x), src);
5349 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5350 and X being a REG or (subreg (reg)), we may be able to convert this to
5351 (set (subreg:m2 x) (op)).
5353 We can always do this if M1 is narrower than M2 because that means that
5354 we only care about the low bits of the result.
5356 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5357 perform a narrower operation than requested since the high-order bits will
5358 be undefined. On machine where it is defined, this transformation is safe
5359 as long as M1 and M2 have the same number of words. */
5361 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5362 && !OBJECT_P (SUBREG_REG (src))
5363 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5364 / UNITS_PER_WORD)
5365 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5366 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5367 #ifndef WORD_REGISTER_OPERATIONS
5368 && (GET_MODE_SIZE (GET_MODE (src))
5369 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5370 #endif
5371 #ifdef CANNOT_CHANGE_MODE_CLASS
5372 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5373 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5374 GET_MODE (SUBREG_REG (src)),
5375 GET_MODE (src)))
5376 #endif
5377 && (REG_P (dest)
5378 || (GET_CODE (dest) == SUBREG
5379 && REG_P (SUBREG_REG (dest)))))
5381 SUBST (SET_DEST (x),
5382 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5383 dest));
5384 SUBST (SET_SRC (x), SUBREG_REG (src));
5386 src = SET_SRC (x), dest = SET_DEST (x);
5389 #ifdef HAVE_cc0
5390 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5391 in SRC. */
5392 if (dest == cc0_rtx
5393 && GET_CODE (src) == SUBREG
5394 && subreg_lowpart_p (src)
5395 && (GET_MODE_BITSIZE (GET_MODE (src))
5396 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5398 rtx inner = SUBREG_REG (src);
5399 enum machine_mode inner_mode = GET_MODE (inner);
5401 /* Here we make sure that we don't have a sign bit on. */
5402 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5403 && (nonzero_bits (inner, inner_mode)
5404 < ((unsigned HOST_WIDE_INT) 1
5405 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5407 SUBST (SET_SRC (x), inner);
5408 src = SET_SRC (x);
5411 #endif
5413 #ifdef LOAD_EXTEND_OP
5414 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5415 would require a paradoxical subreg. Replace the subreg with a
5416 zero_extend to avoid the reload that would otherwise be required. */
5418 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5419 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5420 && SUBREG_BYTE (src) == 0
5421 && (GET_MODE_SIZE (GET_MODE (src))
5422 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5423 && MEM_P (SUBREG_REG (src)))
5425 SUBST (SET_SRC (x),
5426 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5427 GET_MODE (src), SUBREG_REG (src)));
5429 src = SET_SRC (x);
5431 #endif
5433 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5434 are comparing an item known to be 0 or -1 against 0, use a logical
5435 operation instead. Check for one of the arms being an IOR of the other
5436 arm with some value. We compute three terms to be IOR'ed together. In
5437 practice, at most two will be nonzero. Then we do the IOR's. */
5439 if (GET_CODE (dest) != PC
5440 && GET_CODE (src) == IF_THEN_ELSE
5441 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5442 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5443 && XEXP (XEXP (src, 0), 1) == const0_rtx
5444 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5445 #ifdef HAVE_conditional_move
5446 && ! can_conditionally_move_p (GET_MODE (src))
5447 #endif
5448 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5449 GET_MODE (XEXP (XEXP (src, 0), 0)))
5450 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5451 && ! side_effects_p (src))
5453 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5454 ? XEXP (src, 1) : XEXP (src, 2));
5455 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5456 ? XEXP (src, 2) : XEXP (src, 1));
5457 rtx term1 = const0_rtx, term2, term3;
5459 if (GET_CODE (true_rtx) == IOR
5460 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5461 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5462 else if (GET_CODE (true_rtx) == IOR
5463 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5464 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5465 else if (GET_CODE (false_rtx) == IOR
5466 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5467 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5468 else if (GET_CODE (false_rtx) == IOR
5469 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5470 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5472 term2 = simplify_gen_binary (AND, GET_MODE (src),
5473 XEXP (XEXP (src, 0), 0), true_rtx);
5474 term3 = simplify_gen_binary (AND, GET_MODE (src),
5475 simplify_gen_unary (NOT, GET_MODE (src),
5476 XEXP (XEXP (src, 0), 0),
5477 GET_MODE (src)),
5478 false_rtx);
5480 SUBST (SET_SRC (x),
5481 simplify_gen_binary (IOR, GET_MODE (src),
5482 simplify_gen_binary (IOR, GET_MODE (src),
5483 term1, term2),
5484 term3));
5486 src = SET_SRC (x);
5489 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5490 whole thing fail. */
5491 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5492 return src;
5493 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5494 return dest;
5495 else
5496 /* Convert this into a field assignment operation, if possible. */
5497 return make_field_assignment (x);
5500 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5501 result. */
5503 static rtx
5504 simplify_logical (rtx x)
5506 enum machine_mode mode = GET_MODE (x);
5507 rtx op0 = XEXP (x, 0);
5508 rtx op1 = XEXP (x, 1);
5510 switch (GET_CODE (x))
5512 case AND:
5513 /* We can call simplify_and_const_int only if we don't lose
5514 any (sign) bits when converting INTVAL (op1) to
5515 "unsigned HOST_WIDE_INT". */
5516 if (GET_CODE (op1) == CONST_INT
5517 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5518 || INTVAL (op1) > 0))
5520 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5521 if (GET_CODE (x) != AND)
5522 return x;
5524 op0 = XEXP (x, 0);
5525 op1 = XEXP (x, 1);
5528 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5529 apply the distributive law and then the inverse distributive
5530 law to see if things simplify. */
5531 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5533 rtx result = distribute_and_simplify_rtx (x, 0);
5534 if (result)
5535 return result;
5537 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5539 rtx result = distribute_and_simplify_rtx (x, 1);
5540 if (result)
5541 return result;
5543 break;
5545 case IOR:
5546 /* If we have (ior (and A B) C), apply the distributive law and then
5547 the inverse distributive law to see if things simplify. */
5549 if (GET_CODE (op0) == AND)
5551 rtx result = distribute_and_simplify_rtx (x, 0);
5552 if (result)
5553 return result;
5556 if (GET_CODE (op1) == AND)
5558 rtx result = distribute_and_simplify_rtx (x, 1);
5559 if (result)
5560 return result;
5562 break;
5564 default:
5565 gcc_unreachable ();
5568 return x;
5571 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5572 operations" because they can be replaced with two more basic operations.
5573 ZERO_EXTEND is also considered "compound" because it can be replaced with
5574 an AND operation, which is simpler, though only one operation.
5576 The function expand_compound_operation is called with an rtx expression
5577 and will convert it to the appropriate shifts and AND operations,
5578 simplifying at each stage.
5580 The function make_compound_operation is called to convert an expression
5581 consisting of shifts and ANDs into the equivalent compound expression.
5582 It is the inverse of this function, loosely speaking. */
5584 static rtx
5585 expand_compound_operation (rtx x)
5587 unsigned HOST_WIDE_INT pos = 0, len;
5588 int unsignedp = 0;
5589 unsigned int modewidth;
5590 rtx tem;
5592 switch (GET_CODE (x))
5594 case ZERO_EXTEND:
5595 unsignedp = 1;
5596 case SIGN_EXTEND:
5597 /* We can't necessarily use a const_int for a multiword mode;
5598 it depends on implicitly extending the value.
5599 Since we don't know the right way to extend it,
5600 we can't tell whether the implicit way is right.
5602 Even for a mode that is no wider than a const_int,
5603 we can't win, because we need to sign extend one of its bits through
5604 the rest of it, and we don't know which bit. */
5605 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5606 return x;
5608 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5609 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5610 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5611 reloaded. If not for that, MEM's would very rarely be safe.
5613 Reject MODEs bigger than a word, because we might not be able
5614 to reference a two-register group starting with an arbitrary register
5615 (and currently gen_lowpart might crash for a SUBREG). */
5617 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5618 return x;
5620 /* Reject MODEs that aren't scalar integers because turning vector
5621 or complex modes into shifts causes problems. */
5623 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5624 return x;
5626 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5627 /* If the inner object has VOIDmode (the only way this can happen
5628 is if it is an ASM_OPERANDS), we can't do anything since we don't
5629 know how much masking to do. */
5630 if (len == 0)
5631 return x;
5633 break;
5635 case ZERO_EXTRACT:
5636 unsignedp = 1;
5638 /* ... fall through ... */
5640 case SIGN_EXTRACT:
5641 /* If the operand is a CLOBBER, just return it. */
5642 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5643 return XEXP (x, 0);
5645 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5646 || GET_CODE (XEXP (x, 2)) != CONST_INT
5647 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5648 return x;
5650 /* Reject MODEs that aren't scalar integers because turning vector
5651 or complex modes into shifts causes problems. */
5653 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5654 return x;
5656 len = INTVAL (XEXP (x, 1));
5657 pos = INTVAL (XEXP (x, 2));
5659 /* This should stay within the object being extracted, fail otherwise. */
5660 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5661 return x;
5663 if (BITS_BIG_ENDIAN)
5664 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5666 break;
5668 default:
5669 return x;
5671 /* Convert sign extension to zero extension, if we know that the high
5672 bit is not set, as this is easier to optimize. It will be converted
5673 back to cheaper alternative in make_extraction. */
5674 if (GET_CODE (x) == SIGN_EXTEND
5675 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5676 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5677 & ~(((unsigned HOST_WIDE_INT)
5678 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5679 >> 1))
5680 == 0)))
5682 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5683 rtx temp2 = expand_compound_operation (temp);
5685 /* Make sure this is a profitable operation. */
5686 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5687 return temp2;
5688 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5689 return temp;
5690 else
5691 return x;
5694 /* We can optimize some special cases of ZERO_EXTEND. */
5695 if (GET_CODE (x) == ZERO_EXTEND)
5697 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5698 know that the last value didn't have any inappropriate bits
5699 set. */
5700 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5701 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5702 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5703 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5704 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5705 return XEXP (XEXP (x, 0), 0);
5707 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5708 if (GET_CODE (XEXP (x, 0)) == SUBREG
5709 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5710 && subreg_lowpart_p (XEXP (x, 0))
5711 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5712 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5713 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5714 return SUBREG_REG (XEXP (x, 0));
5716 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5717 is a comparison and STORE_FLAG_VALUE permits. This is like
5718 the first case, but it works even when GET_MODE (x) is larger
5719 than HOST_WIDE_INT. */
5720 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5721 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5722 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5723 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5724 <= HOST_BITS_PER_WIDE_INT)
5725 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5726 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5727 return XEXP (XEXP (x, 0), 0);
5729 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5730 if (GET_CODE (XEXP (x, 0)) == SUBREG
5731 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5732 && subreg_lowpart_p (XEXP (x, 0))
5733 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5734 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5735 <= HOST_BITS_PER_WIDE_INT)
5736 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5737 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5738 return SUBREG_REG (XEXP (x, 0));
5742 /* If we reach here, we want to return a pair of shifts. The inner
5743 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5744 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5745 logical depending on the value of UNSIGNEDP.
5747 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5748 converted into an AND of a shift.
5750 We must check for the case where the left shift would have a negative
5751 count. This can happen in a case like (x >> 31) & 255 on machines
5752 that can't shift by a constant. On those machines, we would first
5753 combine the shift with the AND to produce a variable-position
5754 extraction. Then the constant of 31 would be substituted in to produce
5755 a such a position. */
5757 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5758 if (modewidth + len >= pos)
5760 enum machine_mode mode = GET_MODE (x);
5761 tem = gen_lowpart (mode, XEXP (x, 0));
5762 if (!tem || GET_CODE (tem) == CLOBBER)
5763 return x;
5764 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5765 tem, modewidth - pos - len);
5766 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5767 mode, tem, modewidth - len);
5769 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5770 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5771 simplify_shift_const (NULL_RTX, LSHIFTRT,
5772 GET_MODE (x),
5773 XEXP (x, 0), pos),
5774 ((HOST_WIDE_INT) 1 << len) - 1);
5775 else
5776 /* Any other cases we can't handle. */
5777 return x;
5779 /* If we couldn't do this for some reason, return the original
5780 expression. */
5781 if (GET_CODE (tem) == CLOBBER)
5782 return x;
5784 return tem;
5787 /* X is a SET which contains an assignment of one object into
5788 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5789 or certain SUBREGS). If possible, convert it into a series of
5790 logical operations.
5792 We half-heartedly support variable positions, but do not at all
5793 support variable lengths. */
5795 static rtx
5796 expand_field_assignment (rtx x)
5798 rtx inner;
5799 rtx pos; /* Always counts from low bit. */
5800 int len;
5801 rtx mask, cleared, masked;
5802 enum machine_mode compute_mode;
5804 /* Loop until we find something we can't simplify. */
5805 while (1)
5807 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5808 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5810 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5811 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5812 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5814 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5815 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5817 inner = XEXP (SET_DEST (x), 0);
5818 len = INTVAL (XEXP (SET_DEST (x), 1));
5819 pos = XEXP (SET_DEST (x), 2);
5821 /* A constant position should stay within the width of INNER. */
5822 if (GET_CODE (pos) == CONST_INT
5823 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5824 break;
5826 if (BITS_BIG_ENDIAN)
5828 if (GET_CODE (pos) == CONST_INT)
5829 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5830 - INTVAL (pos));
5831 else if (GET_CODE (pos) == MINUS
5832 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5833 && (INTVAL (XEXP (pos, 1))
5834 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5835 /* If position is ADJUST - X, new position is X. */
5836 pos = XEXP (pos, 0);
5837 else
5838 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5839 GEN_INT (GET_MODE_BITSIZE (
5840 GET_MODE (inner))
5841 - len),
5842 pos);
5846 /* A SUBREG between two modes that occupy the same numbers of words
5847 can be done by moving the SUBREG to the source. */
5848 else if (GET_CODE (SET_DEST (x)) == SUBREG
5849 /* We need SUBREGs to compute nonzero_bits properly. */
5850 && nonzero_sign_valid
5851 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5852 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5853 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5854 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5856 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5857 gen_lowpart
5858 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5859 SET_SRC (x)));
5860 continue;
5862 else
5863 break;
5865 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5866 inner = SUBREG_REG (inner);
5868 compute_mode = GET_MODE (inner);
5870 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5871 if (! SCALAR_INT_MODE_P (compute_mode))
5873 enum machine_mode imode;
5875 /* Don't do anything for vector or complex integral types. */
5876 if (! FLOAT_MODE_P (compute_mode))
5877 break;
5879 /* Try to find an integral mode to pun with. */
5880 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5881 if (imode == BLKmode)
5882 break;
5884 compute_mode = imode;
5885 inner = gen_lowpart (imode, inner);
5888 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5889 if (len >= HOST_BITS_PER_WIDE_INT)
5890 break;
5892 /* Now compute the equivalent expression. Make a copy of INNER
5893 for the SET_DEST in case it is a MEM into which we will substitute;
5894 we don't want shared RTL in that case. */
5895 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5896 cleared = simplify_gen_binary (AND, compute_mode,
5897 simplify_gen_unary (NOT, compute_mode,
5898 simplify_gen_binary (ASHIFT,
5899 compute_mode,
5900 mask, pos),
5901 compute_mode),
5902 inner);
5903 masked = simplify_gen_binary (ASHIFT, compute_mode,
5904 simplify_gen_binary (
5905 AND, compute_mode,
5906 gen_lowpart (compute_mode, SET_SRC (x)),
5907 mask),
5908 pos);
5910 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5911 simplify_gen_binary (IOR, compute_mode,
5912 cleared, masked));
5915 return x;
5918 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5919 it is an RTX that represents a variable starting position; otherwise,
5920 POS is the (constant) starting bit position (counted from the LSB).
5922 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5923 signed reference.
5925 IN_DEST is nonzero if this is a reference in the destination of a
5926 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5927 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5928 be used.
5930 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5931 ZERO_EXTRACT should be built even for bits starting at bit 0.
5933 MODE is the desired mode of the result (if IN_DEST == 0).
5935 The result is an RTX for the extraction or NULL_RTX if the target
5936 can't handle it. */
5938 static rtx
5939 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5940 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5941 int in_dest, int in_compare)
5943 /* This mode describes the size of the storage area
5944 to fetch the overall value from. Within that, we
5945 ignore the POS lowest bits, etc. */
5946 enum machine_mode is_mode = GET_MODE (inner);
5947 enum machine_mode inner_mode;
5948 enum machine_mode wanted_inner_mode;
5949 enum machine_mode wanted_inner_reg_mode = word_mode;
5950 enum machine_mode pos_mode = word_mode;
5951 enum machine_mode extraction_mode = word_mode;
5952 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5953 rtx new = 0;
5954 rtx orig_pos_rtx = pos_rtx;
5955 HOST_WIDE_INT orig_pos;
5957 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5959 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5960 consider just the QI as the memory to extract from.
5961 The subreg adds or removes high bits; its mode is
5962 irrelevant to the meaning of this extraction,
5963 since POS and LEN count from the lsb. */
5964 if (MEM_P (SUBREG_REG (inner)))
5965 is_mode = GET_MODE (SUBREG_REG (inner));
5966 inner = SUBREG_REG (inner);
5968 else if (GET_CODE (inner) == ASHIFT
5969 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5970 && pos_rtx == 0 && pos == 0
5971 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5973 /* We're extracting the least significant bits of an rtx
5974 (ashift X (const_int C)), where LEN > C. Extract the
5975 least significant (LEN - C) bits of X, giving an rtx
5976 whose mode is MODE, then shift it left C times. */
5977 new = make_extraction (mode, XEXP (inner, 0),
5978 0, 0, len - INTVAL (XEXP (inner, 1)),
5979 unsignedp, in_dest, in_compare);
5980 if (new != 0)
5981 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5984 inner_mode = GET_MODE (inner);
5986 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5987 pos = INTVAL (pos_rtx), pos_rtx = 0;
5989 /* See if this can be done without an extraction. We never can if the
5990 width of the field is not the same as that of some integer mode. For
5991 registers, we can only avoid the extraction if the position is at the
5992 low-order bit and this is either not in the destination or we have the
5993 appropriate STRICT_LOW_PART operation available.
5995 For MEM, we can avoid an extract if the field starts on an appropriate
5996 boundary and we can change the mode of the memory reference. */
5998 if (tmode != BLKmode
5999 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6000 && !MEM_P (inner)
6001 && (inner_mode == tmode
6002 || !REG_P (inner)
6003 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6004 GET_MODE_BITSIZE (inner_mode))
6005 || reg_truncated_to_mode (tmode, inner))
6006 && (! in_dest
6007 || (REG_P (inner)
6008 && have_insn_for (STRICT_LOW_PART, tmode))))
6009 || (MEM_P (inner) && pos_rtx == 0
6010 && (pos
6011 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6012 : BITS_PER_UNIT)) == 0
6013 /* We can't do this if we are widening INNER_MODE (it
6014 may not be aligned, for one thing). */
6015 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6016 && (inner_mode == tmode
6017 || (! mode_dependent_address_p (XEXP (inner, 0))
6018 && ! MEM_VOLATILE_P (inner))))))
6020 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6021 field. If the original and current mode are the same, we need not
6022 adjust the offset. Otherwise, we do if bytes big endian.
6024 If INNER is not a MEM, get a piece consisting of just the field
6025 of interest (in this case POS % BITS_PER_WORD must be 0). */
6027 if (MEM_P (inner))
6029 HOST_WIDE_INT offset;
6031 /* POS counts from lsb, but make OFFSET count in memory order. */
6032 if (BYTES_BIG_ENDIAN)
6033 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6034 else
6035 offset = pos / BITS_PER_UNIT;
6037 new = adjust_address_nv (inner, tmode, offset);
6039 else if (REG_P (inner))
6041 if (tmode != inner_mode)
6043 /* We can't call gen_lowpart in a DEST since we
6044 always want a SUBREG (see below) and it would sometimes
6045 return a new hard register. */
6046 if (pos || in_dest)
6048 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6050 if (WORDS_BIG_ENDIAN
6051 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6052 final_word = ((GET_MODE_SIZE (inner_mode)
6053 - GET_MODE_SIZE (tmode))
6054 / UNITS_PER_WORD) - final_word;
6056 final_word *= UNITS_PER_WORD;
6057 if (BYTES_BIG_ENDIAN &&
6058 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6059 final_word += (GET_MODE_SIZE (inner_mode)
6060 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6062 /* Avoid creating invalid subregs, for example when
6063 simplifying (x>>32)&255. */
6064 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6065 return NULL_RTX;
6067 new = gen_rtx_SUBREG (tmode, inner, final_word);
6069 else
6070 new = gen_lowpart (tmode, inner);
6072 else
6073 new = inner;
6075 else
6076 new = force_to_mode (inner, tmode,
6077 len >= HOST_BITS_PER_WIDE_INT
6078 ? ~(unsigned HOST_WIDE_INT) 0
6079 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6082 /* If this extraction is going into the destination of a SET,
6083 make a STRICT_LOW_PART unless we made a MEM. */
6085 if (in_dest)
6086 return (MEM_P (new) ? new
6087 : (GET_CODE (new) != SUBREG
6088 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6089 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6091 if (mode == tmode)
6092 return new;
6094 if (GET_CODE (new) == CONST_INT)
6095 return gen_int_mode (INTVAL (new), mode);
6097 /* If we know that no extraneous bits are set, and that the high
6098 bit is not set, convert the extraction to the cheaper of
6099 sign and zero extension, that are equivalent in these cases. */
6100 if (flag_expensive_optimizations
6101 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6102 && ((nonzero_bits (new, tmode)
6103 & ~(((unsigned HOST_WIDE_INT)
6104 GET_MODE_MASK (tmode))
6105 >> 1))
6106 == 0)))
6108 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6109 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6111 /* Prefer ZERO_EXTENSION, since it gives more information to
6112 backends. */
6113 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6114 return temp;
6115 return temp1;
6118 /* Otherwise, sign- or zero-extend unless we already are in the
6119 proper mode. */
6121 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6122 mode, new));
6125 /* Unless this is a COMPARE or we have a funny memory reference,
6126 don't do anything with zero-extending field extracts starting at
6127 the low-order bit since they are simple AND operations. */
6128 if (pos_rtx == 0 && pos == 0 && ! in_dest
6129 && ! in_compare && unsignedp)
6130 return 0;
6132 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6133 if the position is not a constant and the length is not 1. In all
6134 other cases, we would only be going outside our object in cases when
6135 an original shift would have been undefined. */
6136 if (MEM_P (inner)
6137 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6138 || (pos_rtx != 0 && len != 1)))
6139 return 0;
6141 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6142 and the mode for the result. */
6143 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6145 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6146 pos_mode = mode_for_extraction (EP_insv, 2);
6147 extraction_mode = mode_for_extraction (EP_insv, 3);
6150 if (! in_dest && unsignedp
6151 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6153 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6154 pos_mode = mode_for_extraction (EP_extzv, 3);
6155 extraction_mode = mode_for_extraction (EP_extzv, 0);
6158 if (! in_dest && ! unsignedp
6159 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6161 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6162 pos_mode = mode_for_extraction (EP_extv, 3);
6163 extraction_mode = mode_for_extraction (EP_extv, 0);
6166 /* Never narrow an object, since that might not be safe. */
6168 if (mode != VOIDmode
6169 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6170 extraction_mode = mode;
6172 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6173 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6174 pos_mode = GET_MODE (pos_rtx);
6176 /* If this is not from memory, the desired mode is the preferred mode
6177 for an extraction pattern's first input operand, or word_mode if there
6178 is none. */
6179 if (!MEM_P (inner))
6180 wanted_inner_mode = wanted_inner_reg_mode;
6181 else
6183 /* Be careful not to go beyond the extracted object and maintain the
6184 natural alignment of the memory. */
6185 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6186 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6187 > GET_MODE_BITSIZE (wanted_inner_mode))
6189 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6190 gcc_assert (wanted_inner_mode != VOIDmode);
6193 /* If we have to change the mode of memory and cannot, the desired mode
6194 is EXTRACTION_MODE. */
6195 if (inner_mode != wanted_inner_mode
6196 && (mode_dependent_address_p (XEXP (inner, 0))
6197 || MEM_VOLATILE_P (inner)
6198 || pos_rtx))
6199 wanted_inner_mode = extraction_mode;
6202 orig_pos = pos;
6204 if (BITS_BIG_ENDIAN)
6206 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6207 BITS_BIG_ENDIAN style. If position is constant, compute new
6208 position. Otherwise, build subtraction.
6209 Note that POS is relative to the mode of the original argument.
6210 If it's a MEM we need to recompute POS relative to that.
6211 However, if we're extracting from (or inserting into) a register,
6212 we want to recompute POS relative to wanted_inner_mode. */
6213 int width = (MEM_P (inner)
6214 ? GET_MODE_BITSIZE (is_mode)
6215 : GET_MODE_BITSIZE (wanted_inner_mode));
6217 if (pos_rtx == 0)
6218 pos = width - len - pos;
6219 else
6220 pos_rtx
6221 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6222 /* POS may be less than 0 now, but we check for that below.
6223 Note that it can only be less than 0 if !MEM_P (inner). */
6226 /* If INNER has a wider mode, and this is a constant extraction, try to
6227 make it smaller and adjust the byte to point to the byte containing
6228 the value. */
6229 if (wanted_inner_mode != VOIDmode
6230 && inner_mode != wanted_inner_mode
6231 && ! pos_rtx
6232 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6233 && MEM_P (inner)
6234 && ! mode_dependent_address_p (XEXP (inner, 0))
6235 && ! MEM_VOLATILE_P (inner))
6237 int offset = 0;
6239 /* The computations below will be correct if the machine is big
6240 endian in both bits and bytes or little endian in bits and bytes.
6241 If it is mixed, we must adjust. */
6243 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6244 adjust OFFSET to compensate. */
6245 if (BYTES_BIG_ENDIAN
6246 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6247 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6249 /* We can now move to the desired byte. */
6250 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6251 * GET_MODE_SIZE (wanted_inner_mode);
6252 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6254 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6255 && is_mode != wanted_inner_mode)
6256 offset = (GET_MODE_SIZE (is_mode)
6257 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6259 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6262 /* If INNER is not memory, we can always get it into the proper mode. If we
6263 are changing its mode, POS must be a constant and smaller than the size
6264 of the new mode. */
6265 else if (!MEM_P (inner))
6267 if (GET_MODE (inner) != wanted_inner_mode
6268 && (pos_rtx != 0
6269 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6270 return 0;
6272 if (orig_pos < 0)
6273 return 0;
6275 inner = force_to_mode (inner, wanted_inner_mode,
6276 pos_rtx
6277 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6278 ? ~(unsigned HOST_WIDE_INT) 0
6279 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6280 << orig_pos),
6284 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6285 have to zero extend. Otherwise, we can just use a SUBREG. */
6286 if (pos_rtx != 0
6287 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6289 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6291 /* If we know that no extraneous bits are set, and that the high
6292 bit is not set, convert extraction to cheaper one - either
6293 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6294 cases. */
6295 if (flag_expensive_optimizations
6296 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6297 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6298 & ~(((unsigned HOST_WIDE_INT)
6299 GET_MODE_MASK (GET_MODE (pos_rtx)))
6300 >> 1))
6301 == 0)))
6303 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6305 /* Prefer ZERO_EXTENSION, since it gives more information to
6306 backends. */
6307 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6308 temp = temp1;
6310 pos_rtx = temp;
6312 else if (pos_rtx != 0
6313 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6314 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6316 /* Make POS_RTX unless we already have it and it is correct. If we don't
6317 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6318 be a CONST_INT. */
6319 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6320 pos_rtx = orig_pos_rtx;
6322 else if (pos_rtx == 0)
6323 pos_rtx = GEN_INT (pos);
6325 /* Make the required operation. See if we can use existing rtx. */
6326 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6327 extraction_mode, inner, GEN_INT (len), pos_rtx);
6328 if (! in_dest)
6329 new = gen_lowpart (mode, new);
6331 return new;
6334 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6335 with any other operations in X. Return X without that shift if so. */
6337 static rtx
6338 extract_left_shift (rtx x, int count)
6340 enum rtx_code code = GET_CODE (x);
6341 enum machine_mode mode = GET_MODE (x);
6342 rtx tem;
6344 switch (code)
6346 case ASHIFT:
6347 /* This is the shift itself. If it is wide enough, we will return
6348 either the value being shifted if the shift count is equal to
6349 COUNT or a shift for the difference. */
6350 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6351 && INTVAL (XEXP (x, 1)) >= count)
6352 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6353 INTVAL (XEXP (x, 1)) - count);
6354 break;
6356 case NEG: case NOT:
6357 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6358 return simplify_gen_unary (code, mode, tem, mode);
6360 break;
6362 case PLUS: case IOR: case XOR: case AND:
6363 /* If we can safely shift this constant and we find the inner shift,
6364 make a new operation. */
6365 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6366 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6367 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6368 return simplify_gen_binary (code, mode, tem,
6369 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6371 break;
6373 default:
6374 break;
6377 return 0;
6380 /* Look at the expression rooted at X. Look for expressions
6381 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6382 Form these expressions.
6384 Return the new rtx, usually just X.
6386 Also, for machines like the VAX that don't have logical shift insns,
6387 try to convert logical to arithmetic shift operations in cases where
6388 they are equivalent. This undoes the canonicalizations to logical
6389 shifts done elsewhere.
6391 We try, as much as possible, to re-use rtl expressions to save memory.
6393 IN_CODE says what kind of expression we are processing. Normally, it is
6394 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6395 being kludges), it is MEM. When processing the arguments of a comparison
6396 or a COMPARE against zero, it is COMPARE. */
6398 static rtx
6399 make_compound_operation (rtx x, enum rtx_code in_code)
6401 enum rtx_code code = GET_CODE (x);
6402 enum machine_mode mode = GET_MODE (x);
6403 int mode_width = GET_MODE_BITSIZE (mode);
6404 rtx rhs, lhs;
6405 enum rtx_code next_code;
6406 int i;
6407 rtx new = 0;
6408 rtx tem;
6409 const char *fmt;
6411 /* Select the code to be used in recursive calls. Once we are inside an
6412 address, we stay there. If we have a comparison, set to COMPARE,
6413 but once inside, go back to our default of SET. */
6415 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6416 : ((code == COMPARE || COMPARISON_P (x))
6417 && XEXP (x, 1) == const0_rtx) ? COMPARE
6418 : in_code == COMPARE ? SET : in_code);
6420 /* Process depending on the code of this operation. If NEW is set
6421 nonzero, it will be returned. */
6423 switch (code)
6425 case ASHIFT:
6426 /* Convert shifts by constants into multiplications if inside
6427 an address. */
6428 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6429 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6430 && INTVAL (XEXP (x, 1)) >= 0)
6432 new = make_compound_operation (XEXP (x, 0), next_code);
6433 new = gen_rtx_MULT (mode, new,
6434 GEN_INT ((HOST_WIDE_INT) 1
6435 << INTVAL (XEXP (x, 1))));
6437 break;
6439 case AND:
6440 /* If the second operand is not a constant, we can't do anything
6441 with it. */
6442 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6443 break;
6445 /* If the constant is a power of two minus one and the first operand
6446 is a logical right shift, make an extraction. */
6447 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6448 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6450 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6451 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6452 0, in_code == COMPARE);
6455 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6456 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6457 && subreg_lowpart_p (XEXP (x, 0))
6458 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6459 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6461 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6462 next_code);
6463 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6464 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6465 0, in_code == COMPARE);
6467 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6468 else if ((GET_CODE (XEXP (x, 0)) == XOR
6469 || GET_CODE (XEXP (x, 0)) == IOR)
6470 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6471 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6472 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6474 /* Apply the distributive law, and then try to make extractions. */
6475 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6476 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6477 XEXP (x, 1)),
6478 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6479 XEXP (x, 1)));
6480 new = make_compound_operation (new, in_code);
6483 /* If we are have (and (rotate X C) M) and C is larger than the number
6484 of bits in M, this is an extraction. */
6486 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6487 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6488 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6489 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6491 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6492 new = make_extraction (mode, new,
6493 (GET_MODE_BITSIZE (mode)
6494 - INTVAL (XEXP (XEXP (x, 0), 1))),
6495 NULL_RTX, i, 1, 0, in_code == COMPARE);
6498 /* On machines without logical shifts, if the operand of the AND is
6499 a logical shift and our mask turns off all the propagated sign
6500 bits, we can replace the logical shift with an arithmetic shift. */
6501 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6502 && !have_insn_for (LSHIFTRT, mode)
6503 && have_insn_for (ASHIFTRT, mode)
6504 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6505 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6506 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6507 && mode_width <= HOST_BITS_PER_WIDE_INT)
6509 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6511 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6512 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6513 SUBST (XEXP (x, 0),
6514 gen_rtx_ASHIFTRT (mode,
6515 make_compound_operation
6516 (XEXP (XEXP (x, 0), 0), next_code),
6517 XEXP (XEXP (x, 0), 1)));
6520 /* If the constant is one less than a power of two, this might be
6521 representable by an extraction even if no shift is present.
6522 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6523 we are in a COMPARE. */
6524 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6525 new = make_extraction (mode,
6526 make_compound_operation (XEXP (x, 0),
6527 next_code),
6528 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6530 /* If we are in a comparison and this is an AND with a power of two,
6531 convert this into the appropriate bit extract. */
6532 else if (in_code == COMPARE
6533 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6534 new = make_extraction (mode,
6535 make_compound_operation (XEXP (x, 0),
6536 next_code),
6537 i, NULL_RTX, 1, 1, 0, 1);
6539 break;
6541 case LSHIFTRT:
6542 /* If the sign bit is known to be zero, replace this with an
6543 arithmetic shift. */
6544 if (have_insn_for (ASHIFTRT, mode)
6545 && ! have_insn_for (LSHIFTRT, mode)
6546 && mode_width <= HOST_BITS_PER_WIDE_INT
6547 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6549 new = gen_rtx_ASHIFTRT (mode,
6550 make_compound_operation (XEXP (x, 0),
6551 next_code),
6552 XEXP (x, 1));
6553 break;
6556 /* ... fall through ... */
6558 case ASHIFTRT:
6559 lhs = XEXP (x, 0);
6560 rhs = XEXP (x, 1);
6562 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6563 this is a SIGN_EXTRACT. */
6564 if (GET_CODE (rhs) == CONST_INT
6565 && GET_CODE (lhs) == ASHIFT
6566 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6567 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6569 new = make_compound_operation (XEXP (lhs, 0), next_code);
6570 new = make_extraction (mode, new,
6571 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6572 NULL_RTX, mode_width - INTVAL (rhs),
6573 code == LSHIFTRT, 0, in_code == COMPARE);
6574 break;
6577 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6578 If so, try to merge the shifts into a SIGN_EXTEND. We could
6579 also do this for some cases of SIGN_EXTRACT, but it doesn't
6580 seem worth the effort; the case checked for occurs on Alpha. */
6582 if (!OBJECT_P (lhs)
6583 && ! (GET_CODE (lhs) == SUBREG
6584 && (OBJECT_P (SUBREG_REG (lhs))))
6585 && GET_CODE (rhs) == CONST_INT
6586 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6587 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6588 new = make_extraction (mode, make_compound_operation (new, next_code),
6589 0, NULL_RTX, mode_width - INTVAL (rhs),
6590 code == LSHIFTRT, 0, in_code == COMPARE);
6592 break;
6594 case SUBREG:
6595 /* Call ourselves recursively on the inner expression. If we are
6596 narrowing the object and it has a different RTL code from
6597 what it originally did, do this SUBREG as a force_to_mode. */
6599 tem = make_compound_operation (SUBREG_REG (x), in_code);
6602 rtx simplified;
6603 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6604 SUBREG_BYTE (x));
6606 if (simplified)
6607 tem = simplified;
6609 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6610 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6611 && subreg_lowpart_p (x))
6613 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6616 /* If we have something other than a SUBREG, we might have
6617 done an expansion, so rerun ourselves. */
6618 if (GET_CODE (newer) != SUBREG)
6619 newer = make_compound_operation (newer, in_code);
6621 return newer;
6624 if (simplified)
6625 return tem;
6627 break;
6629 default:
6630 break;
6633 if (new)
6635 x = gen_lowpart (mode, new);
6636 code = GET_CODE (x);
6639 /* Now recursively process each operand of this operation. */
6640 fmt = GET_RTX_FORMAT (code);
6641 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6642 if (fmt[i] == 'e')
6644 new = make_compound_operation (XEXP (x, i), next_code);
6645 SUBST (XEXP (x, i), new);
6648 /* If this is a commutative operation, the changes to the operands
6649 may have made it noncanonical. */
6650 if (COMMUTATIVE_ARITH_P (x)
6651 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6653 tem = XEXP (x, 0);
6654 SUBST (XEXP (x, 0), XEXP (x, 1));
6655 SUBST (XEXP (x, 1), tem);
6658 return x;
6661 /* Given M see if it is a value that would select a field of bits
6662 within an item, but not the entire word. Return -1 if not.
6663 Otherwise, return the starting position of the field, where 0 is the
6664 low-order bit.
6666 *PLEN is set to the length of the field. */
6668 static int
6669 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6671 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6672 int pos = exact_log2 (m & -m);
6673 int len = 0;
6675 if (pos >= 0)
6676 /* Now shift off the low-order zero bits and see if we have a
6677 power of two minus 1. */
6678 len = exact_log2 ((m >> pos) + 1);
6680 if (len <= 0)
6681 pos = -1;
6683 *plen = len;
6684 return pos;
6687 /* If X refers to a register that equals REG in value, replace these
6688 references with REG. */
6689 static rtx
6690 canon_reg_for_combine (rtx x, rtx reg)
6692 rtx op0, op1, op2;
6693 const char *fmt;
6694 int i;
6695 bool copied;
6697 enum rtx_code code = GET_CODE (x);
6698 switch (GET_RTX_CLASS (code))
6700 case RTX_UNARY:
6701 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6702 if (op0 != XEXP (x, 0))
6703 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6704 GET_MODE (reg));
6705 break;
6707 case RTX_BIN_ARITH:
6708 case RTX_COMM_ARITH:
6709 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6710 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6711 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6712 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6713 break;
6715 case RTX_COMPARE:
6716 case RTX_COMM_COMPARE:
6717 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6718 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6719 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6720 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6721 GET_MODE (op0), op0, op1);
6722 break;
6724 case RTX_TERNARY:
6725 case RTX_BITFIELD_OPS:
6726 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6727 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6728 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6729 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6730 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6731 GET_MODE (op0), op0, op1, op2);
6733 case RTX_OBJ:
6734 if (REG_P (x))
6736 if (rtx_equal_p (get_last_value (reg), x)
6737 || rtx_equal_p (reg, get_last_value (x)))
6738 return reg;
6739 else
6740 break;
6743 /* fall through */
6745 default:
6746 fmt = GET_RTX_FORMAT (code);
6747 copied = false;
6748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6749 if (fmt[i] == 'e')
6751 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6752 if (op != XEXP (x, i))
6754 if (!copied)
6756 copied = true;
6757 x = copy_rtx (x);
6759 XEXP (x, i) = op;
6762 else if (fmt[i] == 'E')
6764 int j;
6765 for (j = 0; j < XVECLEN (x, i); j++)
6767 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6768 if (op != XVECEXP (x, i, j))
6770 if (!copied)
6772 copied = true;
6773 x = copy_rtx (x);
6775 XVECEXP (x, i, j) = op;
6780 break;
6783 return x;
6786 /* Return X converted to MODE. If the value is already truncated to
6787 MODE we can just return a subreg even though in the general case we
6788 would need an explicit truncation. */
6790 static rtx
6791 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6793 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6794 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6795 GET_MODE_BITSIZE (GET_MODE (x)))
6796 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6797 return gen_lowpart (mode, x);
6798 else
6799 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
6802 /* See if X can be simplified knowing that we will only refer to it in
6803 MODE and will only refer to those bits that are nonzero in MASK.
6804 If other bits are being computed or if masking operations are done
6805 that select a superset of the bits in MASK, they can sometimes be
6806 ignored.
6808 Return a possibly simplified expression, but always convert X to
6809 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6811 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6812 are all off in X. This is used when X will be complemented, by either
6813 NOT, NEG, or XOR. */
6815 static rtx
6816 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6817 int just_select)
6819 enum rtx_code code = GET_CODE (x);
6820 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6821 enum machine_mode op_mode;
6822 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6823 rtx op0, op1, temp;
6825 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6826 code below will do the wrong thing since the mode of such an
6827 expression is VOIDmode.
6829 Also do nothing if X is a CLOBBER; this can happen if X was
6830 the return value from a call to gen_lowpart. */
6831 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6832 return x;
6834 /* We want to perform the operation is its present mode unless we know
6835 that the operation is valid in MODE, in which case we do the operation
6836 in MODE. */
6837 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6838 && have_insn_for (code, mode))
6839 ? mode : GET_MODE (x));
6841 /* It is not valid to do a right-shift in a narrower mode
6842 than the one it came in with. */
6843 if ((code == LSHIFTRT || code == ASHIFTRT)
6844 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6845 op_mode = GET_MODE (x);
6847 /* Truncate MASK to fit OP_MODE. */
6848 if (op_mode)
6849 mask &= GET_MODE_MASK (op_mode);
6851 /* When we have an arithmetic operation, or a shift whose count we
6852 do not know, we need to assume that all bits up to the highest-order
6853 bit in MASK will be needed. This is how we form such a mask. */
6854 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6855 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6856 else
6857 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6858 - 1);
6860 /* Determine what bits of X are guaranteed to be (non)zero. */
6861 nonzero = nonzero_bits (x, mode);
6863 /* If none of the bits in X are needed, return a zero. */
6864 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
6865 x = const0_rtx;
6867 /* If X is a CONST_INT, return a new one. Do this here since the
6868 test below will fail. */
6869 if (GET_CODE (x) == CONST_INT)
6871 if (SCALAR_INT_MODE_P (mode))
6872 return gen_int_mode (INTVAL (x) & mask, mode);
6873 else
6875 x = GEN_INT (INTVAL (x) & mask);
6876 return gen_lowpart_common (mode, x);
6880 /* If X is narrower than MODE and we want all the bits in X's mode, just
6881 get X in the proper mode. */
6882 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6883 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6884 return gen_lowpart (mode, x);
6886 switch (code)
6888 case CLOBBER:
6889 /* If X is a (clobber (const_int)), return it since we know we are
6890 generating something that won't match. */
6891 return x;
6893 case SIGN_EXTEND:
6894 case ZERO_EXTEND:
6895 case ZERO_EXTRACT:
6896 case SIGN_EXTRACT:
6897 x = expand_compound_operation (x);
6898 if (GET_CODE (x) != code)
6899 return force_to_mode (x, mode, mask, next_select);
6900 break;
6902 case SUBREG:
6903 if (subreg_lowpart_p (x)
6904 /* We can ignore the effect of this SUBREG if it narrows the mode or
6905 if the constant masks to zero all the bits the mode doesn't
6906 have. */
6907 && ((GET_MODE_SIZE (GET_MODE (x))
6908 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6909 || (0 == (mask
6910 & GET_MODE_MASK (GET_MODE (x))
6911 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6912 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6913 break;
6915 case AND:
6916 /* If this is an AND with a constant, convert it into an AND
6917 whose constant is the AND of that constant with MASK. If it
6918 remains an AND of MASK, delete it since it is redundant. */
6920 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6922 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6923 mask & INTVAL (XEXP (x, 1)));
6925 /* If X is still an AND, see if it is an AND with a mask that
6926 is just some low-order bits. If so, and it is MASK, we don't
6927 need it. */
6929 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6930 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6931 == mask))
6932 x = XEXP (x, 0);
6934 /* If it remains an AND, try making another AND with the bits
6935 in the mode mask that aren't in MASK turned on. If the
6936 constant in the AND is wide enough, this might make a
6937 cheaper constant. */
6939 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6940 && GET_MODE_MASK (GET_MODE (x)) != mask
6941 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6943 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6944 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6945 int width = GET_MODE_BITSIZE (GET_MODE (x));
6946 rtx y;
6948 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6949 number, sign extend it. */
6950 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6951 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6952 cval |= (HOST_WIDE_INT) -1 << width;
6954 y = simplify_gen_binary (AND, GET_MODE (x),
6955 XEXP (x, 0), GEN_INT (cval));
6956 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6957 x = y;
6960 break;
6963 goto binop;
6965 case PLUS:
6966 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6967 low-order bits (as in an alignment operation) and FOO is already
6968 aligned to that boundary, mask C1 to that boundary as well.
6969 This may eliminate that PLUS and, later, the AND. */
6972 unsigned int width = GET_MODE_BITSIZE (mode);
6973 unsigned HOST_WIDE_INT smask = mask;
6975 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6976 number, sign extend it. */
6978 if (width < HOST_BITS_PER_WIDE_INT
6979 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6980 smask |= (HOST_WIDE_INT) -1 << width;
6982 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6983 && exact_log2 (- smask) >= 0
6984 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6985 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6986 return force_to_mode (plus_constant (XEXP (x, 0),
6987 (INTVAL (XEXP (x, 1)) & smask)),
6988 mode, smask, next_select);
6991 /* ... fall through ... */
6993 case MULT:
6994 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6995 most significant bit in MASK since carries from those bits will
6996 affect the bits we are interested in. */
6997 mask = fuller_mask;
6998 goto binop;
7000 case MINUS:
7001 /* If X is (minus C Y) where C's least set bit is larger than any bit
7002 in the mask, then we may replace with (neg Y). */
7003 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7004 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7005 & -INTVAL (XEXP (x, 0))))
7006 > mask))
7008 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7009 GET_MODE (x));
7010 return force_to_mode (x, mode, mask, next_select);
7013 /* Similarly, if C contains every bit in the fuller_mask, then we may
7014 replace with (not Y). */
7015 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7016 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7017 == INTVAL (XEXP (x, 0))))
7019 x = simplify_gen_unary (NOT, GET_MODE (x),
7020 XEXP (x, 1), GET_MODE (x));
7021 return force_to_mode (x, mode, mask, next_select);
7024 mask = fuller_mask;
7025 goto binop;
7027 case IOR:
7028 case XOR:
7029 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7030 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7031 operation which may be a bitfield extraction. Ensure that the
7032 constant we form is not wider than the mode of X. */
7034 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7035 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7036 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7037 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7038 && GET_CODE (XEXP (x, 1)) == CONST_INT
7039 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7040 + floor_log2 (INTVAL (XEXP (x, 1))))
7041 < GET_MODE_BITSIZE (GET_MODE (x)))
7042 && (INTVAL (XEXP (x, 1))
7043 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7045 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7046 << INTVAL (XEXP (XEXP (x, 0), 1)));
7047 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7048 XEXP (XEXP (x, 0), 0), temp);
7049 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7050 XEXP (XEXP (x, 0), 1));
7051 return force_to_mode (x, mode, mask, next_select);
7054 binop:
7055 /* For most binary operations, just propagate into the operation and
7056 change the mode if we have an operation of that mode. */
7058 op0 = gen_lowpart_or_truncate (op_mode,
7059 force_to_mode (XEXP (x, 0), mode, mask,
7060 next_select));
7061 op1 = gen_lowpart_or_truncate (op_mode,
7062 force_to_mode (XEXP (x, 1), mode, mask,
7063 next_select));
7065 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7066 x = simplify_gen_binary (code, op_mode, op0, op1);
7067 break;
7069 case ASHIFT:
7070 /* For left shifts, do the same, but just for the first operand.
7071 However, we cannot do anything with shifts where we cannot
7072 guarantee that the counts are smaller than the size of the mode
7073 because such a count will have a different meaning in a
7074 wider mode. */
7076 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7077 && INTVAL (XEXP (x, 1)) >= 0
7078 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7079 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7080 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7081 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7082 break;
7084 /* If the shift count is a constant and we can do arithmetic in
7085 the mode of the shift, refine which bits we need. Otherwise, use the
7086 conservative form of the mask. */
7087 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7088 && INTVAL (XEXP (x, 1)) >= 0
7089 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7090 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7091 mask >>= INTVAL (XEXP (x, 1));
7092 else
7093 mask = fuller_mask;
7095 op0 = gen_lowpart_or_truncate (op_mode,
7096 force_to_mode (XEXP (x, 0), op_mode,
7097 mask, next_select));
7099 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7100 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7101 break;
7103 case LSHIFTRT:
7104 /* Here we can only do something if the shift count is a constant,
7105 this shift constant is valid for the host, and we can do arithmetic
7106 in OP_MODE. */
7108 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7109 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7110 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7112 rtx inner = XEXP (x, 0);
7113 unsigned HOST_WIDE_INT inner_mask;
7115 /* Select the mask of the bits we need for the shift operand. */
7116 inner_mask = mask << INTVAL (XEXP (x, 1));
7118 /* We can only change the mode of the shift if we can do arithmetic
7119 in the mode of the shift and INNER_MASK is no wider than the
7120 width of X's mode. */
7121 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7122 op_mode = GET_MODE (x);
7124 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7126 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7127 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7130 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7131 shift and AND produces only copies of the sign bit (C2 is one less
7132 than a power of two), we can do this with just a shift. */
7134 if (GET_CODE (x) == LSHIFTRT
7135 && GET_CODE (XEXP (x, 1)) == CONST_INT
7136 /* The shift puts one of the sign bit copies in the least significant
7137 bit. */
7138 && ((INTVAL (XEXP (x, 1))
7139 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7140 >= GET_MODE_BITSIZE (GET_MODE (x)))
7141 && exact_log2 (mask + 1) >= 0
7142 /* Number of bits left after the shift must be more than the mask
7143 needs. */
7144 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7145 <= GET_MODE_BITSIZE (GET_MODE (x)))
7146 /* Must be more sign bit copies than the mask needs. */
7147 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7148 >= exact_log2 (mask + 1)))
7149 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7150 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7151 - exact_log2 (mask + 1)));
7153 goto shiftrt;
7155 case ASHIFTRT:
7156 /* If we are just looking for the sign bit, we don't need this shift at
7157 all, even if it has a variable count. */
7158 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7159 && (mask == ((unsigned HOST_WIDE_INT) 1
7160 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7161 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7163 /* If this is a shift by a constant, get a mask that contains those bits
7164 that are not copies of the sign bit. We then have two cases: If
7165 MASK only includes those bits, this can be a logical shift, which may
7166 allow simplifications. If MASK is a single-bit field not within
7167 those bits, we are requesting a copy of the sign bit and hence can
7168 shift the sign bit to the appropriate location. */
7170 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7171 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7173 int i;
7175 /* If the considered data is wider than HOST_WIDE_INT, we can't
7176 represent a mask for all its bits in a single scalar.
7177 But we only care about the lower bits, so calculate these. */
7179 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7181 nonzero = ~(HOST_WIDE_INT) 0;
7183 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7184 is the number of bits a full-width mask would have set.
7185 We need only shift if these are fewer than nonzero can
7186 hold. If not, we must keep all bits set in nonzero. */
7188 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7189 < HOST_BITS_PER_WIDE_INT)
7190 nonzero >>= INTVAL (XEXP (x, 1))
7191 + HOST_BITS_PER_WIDE_INT
7192 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7194 else
7196 nonzero = GET_MODE_MASK (GET_MODE (x));
7197 nonzero >>= INTVAL (XEXP (x, 1));
7200 if ((mask & ~nonzero) == 0)
7202 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7203 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7204 if (GET_CODE (x) != ASHIFTRT)
7205 return force_to_mode (x, mode, mask, next_select);
7208 else if ((i = exact_log2 (mask)) >= 0)
7210 x = simplify_shift_const
7211 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7212 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7214 if (GET_CODE (x) != ASHIFTRT)
7215 return force_to_mode (x, mode, mask, next_select);
7219 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7220 even if the shift count isn't a constant. */
7221 if (mask == 1)
7222 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7223 XEXP (x, 0), XEXP (x, 1));
7225 shiftrt:
7227 /* If this is a zero- or sign-extension operation that just affects bits
7228 we don't care about, remove it. Be sure the call above returned
7229 something that is still a shift. */
7231 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7232 && GET_CODE (XEXP (x, 1)) == CONST_INT
7233 && INTVAL (XEXP (x, 1)) >= 0
7234 && (INTVAL (XEXP (x, 1))
7235 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7236 && GET_CODE (XEXP (x, 0)) == ASHIFT
7237 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7238 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7239 next_select);
7241 break;
7243 case ROTATE:
7244 case ROTATERT:
7245 /* If the shift count is constant and we can do computations
7246 in the mode of X, compute where the bits we care about are.
7247 Otherwise, we can't do anything. Don't change the mode of
7248 the shift or propagate MODE into the shift, though. */
7249 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7250 && INTVAL (XEXP (x, 1)) >= 0)
7252 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7253 GET_MODE (x), GEN_INT (mask),
7254 XEXP (x, 1));
7255 if (temp && GET_CODE (temp) == CONST_INT)
7256 SUBST (XEXP (x, 0),
7257 force_to_mode (XEXP (x, 0), GET_MODE (x),
7258 INTVAL (temp), next_select));
7260 break;
7262 case NEG:
7263 /* If we just want the low-order bit, the NEG isn't needed since it
7264 won't change the low-order bit. */
7265 if (mask == 1)
7266 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7268 /* We need any bits less significant than the most significant bit in
7269 MASK since carries from those bits will affect the bits we are
7270 interested in. */
7271 mask = fuller_mask;
7272 goto unop;
7274 case NOT:
7275 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7276 same as the XOR case above. Ensure that the constant we form is not
7277 wider than the mode of X. */
7279 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7280 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7281 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7282 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7283 < GET_MODE_BITSIZE (GET_MODE (x)))
7284 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7286 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7287 GET_MODE (x));
7288 temp = simplify_gen_binary (XOR, GET_MODE (x),
7289 XEXP (XEXP (x, 0), 0), temp);
7290 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7291 temp, XEXP (XEXP (x, 0), 1));
7293 return force_to_mode (x, mode, mask, next_select);
7296 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7297 use the full mask inside the NOT. */
7298 mask = fuller_mask;
7300 unop:
7301 op0 = gen_lowpart_or_truncate (op_mode,
7302 force_to_mode (XEXP (x, 0), mode, mask,
7303 next_select));
7304 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7305 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7306 break;
7308 case NE:
7309 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7310 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7311 which is equal to STORE_FLAG_VALUE. */
7312 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7313 && GET_MODE (XEXP (x, 0)) == mode
7314 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7315 && (nonzero_bits (XEXP (x, 0), mode)
7316 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7317 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7319 break;
7321 case IF_THEN_ELSE:
7322 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7323 written in a narrower mode. We play it safe and do not do so. */
7325 SUBST (XEXP (x, 1),
7326 gen_lowpart_or_truncate (GET_MODE (x),
7327 force_to_mode (XEXP (x, 1), mode,
7328 mask, next_select)));
7329 SUBST (XEXP (x, 2),
7330 gen_lowpart_or_truncate (GET_MODE (x),
7331 force_to_mode (XEXP (x, 2), mode,
7332 mask, next_select)));
7333 break;
7335 default:
7336 break;
7339 /* Ensure we return a value of the proper mode. */
7340 return gen_lowpart_or_truncate (mode, x);
7343 /* Return nonzero if X is an expression that has one of two values depending on
7344 whether some other value is zero or nonzero. In that case, we return the
7345 value that is being tested, *PTRUE is set to the value if the rtx being
7346 returned has a nonzero value, and *PFALSE is set to the other alternative.
7348 If we return zero, we set *PTRUE and *PFALSE to X. */
7350 static rtx
7351 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7353 enum machine_mode mode = GET_MODE (x);
7354 enum rtx_code code = GET_CODE (x);
7355 rtx cond0, cond1, true0, true1, false0, false1;
7356 unsigned HOST_WIDE_INT nz;
7358 /* If we are comparing a value against zero, we are done. */
7359 if ((code == NE || code == EQ)
7360 && XEXP (x, 1) == const0_rtx)
7362 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7363 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7364 return XEXP (x, 0);
7367 /* If this is a unary operation whose operand has one of two values, apply
7368 our opcode to compute those values. */
7369 else if (UNARY_P (x)
7370 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7372 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7373 *pfalse = simplify_gen_unary (code, mode, false0,
7374 GET_MODE (XEXP (x, 0)));
7375 return cond0;
7378 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7379 make can't possibly match and would suppress other optimizations. */
7380 else if (code == COMPARE)
7383 /* If this is a binary operation, see if either side has only one of two
7384 values. If either one does or if both do and they are conditional on
7385 the same value, compute the new true and false values. */
7386 else if (BINARY_P (x))
7388 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7389 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7391 if ((cond0 != 0 || cond1 != 0)
7392 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7394 /* If if_then_else_cond returned zero, then true/false are the
7395 same rtl. We must copy one of them to prevent invalid rtl
7396 sharing. */
7397 if (cond0 == 0)
7398 true0 = copy_rtx (true0);
7399 else if (cond1 == 0)
7400 true1 = copy_rtx (true1);
7402 if (COMPARISON_P (x))
7404 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7405 true0, true1);
7406 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7407 false0, false1);
7409 else
7411 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7412 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7415 return cond0 ? cond0 : cond1;
7418 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7419 operands is zero when the other is nonzero, and vice-versa,
7420 and STORE_FLAG_VALUE is 1 or -1. */
7422 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7423 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7424 || code == UMAX)
7425 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7427 rtx op0 = XEXP (XEXP (x, 0), 1);
7428 rtx op1 = XEXP (XEXP (x, 1), 1);
7430 cond0 = XEXP (XEXP (x, 0), 0);
7431 cond1 = XEXP (XEXP (x, 1), 0);
7433 if (COMPARISON_P (cond0)
7434 && COMPARISON_P (cond1)
7435 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7436 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7437 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7438 || ((swap_condition (GET_CODE (cond0))
7439 == reversed_comparison_code (cond1, NULL))
7440 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7441 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7442 && ! side_effects_p (x))
7444 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7445 *pfalse = simplify_gen_binary (MULT, mode,
7446 (code == MINUS
7447 ? simplify_gen_unary (NEG, mode,
7448 op1, mode)
7449 : op1),
7450 const_true_rtx);
7451 return cond0;
7455 /* Similarly for MULT, AND and UMIN, except that for these the result
7456 is always zero. */
7457 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7458 && (code == MULT || code == AND || code == UMIN)
7459 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7461 cond0 = XEXP (XEXP (x, 0), 0);
7462 cond1 = XEXP (XEXP (x, 1), 0);
7464 if (COMPARISON_P (cond0)
7465 && COMPARISON_P (cond1)
7466 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7467 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7468 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7469 || ((swap_condition (GET_CODE (cond0))
7470 == reversed_comparison_code (cond1, NULL))
7471 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7472 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7473 && ! side_effects_p (x))
7475 *ptrue = *pfalse = const0_rtx;
7476 return cond0;
7481 else if (code == IF_THEN_ELSE)
7483 /* If we have IF_THEN_ELSE already, extract the condition and
7484 canonicalize it if it is NE or EQ. */
7485 cond0 = XEXP (x, 0);
7486 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7487 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7488 return XEXP (cond0, 0);
7489 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7491 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7492 return XEXP (cond0, 0);
7494 else
7495 return cond0;
7498 /* If X is a SUBREG, we can narrow both the true and false values
7499 if the inner expression, if there is a condition. */
7500 else if (code == SUBREG
7501 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7502 &true0, &false0)))
7504 true0 = simplify_gen_subreg (mode, true0,
7505 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7506 false0 = simplify_gen_subreg (mode, false0,
7507 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7508 if (true0 && false0)
7510 *ptrue = true0;
7511 *pfalse = false0;
7512 return cond0;
7516 /* If X is a constant, this isn't special and will cause confusions
7517 if we treat it as such. Likewise if it is equivalent to a constant. */
7518 else if (CONSTANT_P (x)
7519 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7522 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7523 will be least confusing to the rest of the compiler. */
7524 else if (mode == BImode)
7526 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7527 return x;
7530 /* If X is known to be either 0 or -1, those are the true and
7531 false values when testing X. */
7532 else if (x == constm1_rtx || x == const0_rtx
7533 || (mode != VOIDmode
7534 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7536 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7537 return x;
7540 /* Likewise for 0 or a single bit. */
7541 else if (SCALAR_INT_MODE_P (mode)
7542 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7543 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7545 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7546 return x;
7549 /* Otherwise fail; show no condition with true and false values the same. */
7550 *ptrue = *pfalse = x;
7551 return 0;
7554 /* Return the value of expression X given the fact that condition COND
7555 is known to be true when applied to REG as its first operand and VAL
7556 as its second. X is known to not be shared and so can be modified in
7557 place.
7559 We only handle the simplest cases, and specifically those cases that
7560 arise with IF_THEN_ELSE expressions. */
7562 static rtx
7563 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7565 enum rtx_code code = GET_CODE (x);
7566 rtx temp;
7567 const char *fmt;
7568 int i, j;
7570 if (side_effects_p (x))
7571 return x;
7573 /* If either operand of the condition is a floating point value,
7574 then we have to avoid collapsing an EQ comparison. */
7575 if (cond == EQ
7576 && rtx_equal_p (x, reg)
7577 && ! FLOAT_MODE_P (GET_MODE (x))
7578 && ! FLOAT_MODE_P (GET_MODE (val)))
7579 return val;
7581 if (cond == UNEQ && rtx_equal_p (x, reg))
7582 return val;
7584 /* If X is (abs REG) and we know something about REG's relationship
7585 with zero, we may be able to simplify this. */
7587 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7588 switch (cond)
7590 case GE: case GT: case EQ:
7591 return XEXP (x, 0);
7592 case LT: case LE:
7593 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7594 XEXP (x, 0),
7595 GET_MODE (XEXP (x, 0)));
7596 default:
7597 break;
7600 /* The only other cases we handle are MIN, MAX, and comparisons if the
7601 operands are the same as REG and VAL. */
7603 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7605 if (rtx_equal_p (XEXP (x, 0), val))
7606 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7608 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7610 if (COMPARISON_P (x))
7612 if (comparison_dominates_p (cond, code))
7613 return const_true_rtx;
7615 code = reversed_comparison_code (x, NULL);
7616 if (code != UNKNOWN
7617 && comparison_dominates_p (cond, code))
7618 return const0_rtx;
7619 else
7620 return x;
7622 else if (code == SMAX || code == SMIN
7623 || code == UMIN || code == UMAX)
7625 int unsignedp = (code == UMIN || code == UMAX);
7627 /* Do not reverse the condition when it is NE or EQ.
7628 This is because we cannot conclude anything about
7629 the value of 'SMAX (x, y)' when x is not equal to y,
7630 but we can when x equals y. */
7631 if ((code == SMAX || code == UMAX)
7632 && ! (cond == EQ || cond == NE))
7633 cond = reverse_condition (cond);
7635 switch (cond)
7637 case GE: case GT:
7638 return unsignedp ? x : XEXP (x, 1);
7639 case LE: case LT:
7640 return unsignedp ? x : XEXP (x, 0);
7641 case GEU: case GTU:
7642 return unsignedp ? XEXP (x, 1) : x;
7643 case LEU: case LTU:
7644 return unsignedp ? XEXP (x, 0) : x;
7645 default:
7646 break;
7651 else if (code == SUBREG)
7653 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7654 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7656 if (SUBREG_REG (x) != r)
7658 /* We must simplify subreg here, before we lose track of the
7659 original inner_mode. */
7660 new = simplify_subreg (GET_MODE (x), r,
7661 inner_mode, SUBREG_BYTE (x));
7662 if (new)
7663 return new;
7664 else
7665 SUBST (SUBREG_REG (x), r);
7668 return x;
7670 /* We don't have to handle SIGN_EXTEND here, because even in the
7671 case of replacing something with a modeless CONST_INT, a
7672 CONST_INT is already (supposed to be) a valid sign extension for
7673 its narrower mode, which implies it's already properly
7674 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7675 story is different. */
7676 else if (code == ZERO_EXTEND)
7678 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7679 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7681 if (XEXP (x, 0) != r)
7683 /* We must simplify the zero_extend here, before we lose
7684 track of the original inner_mode. */
7685 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7686 r, inner_mode);
7687 if (new)
7688 return new;
7689 else
7690 SUBST (XEXP (x, 0), r);
7693 return x;
7696 fmt = GET_RTX_FORMAT (code);
7697 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7699 if (fmt[i] == 'e')
7700 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7701 else if (fmt[i] == 'E')
7702 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7703 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7704 cond, reg, val));
7707 return x;
7710 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7711 assignment as a field assignment. */
7713 static int
7714 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7716 if (x == y || rtx_equal_p (x, y))
7717 return 1;
7719 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7720 return 0;
7722 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7723 Note that all SUBREGs of MEM are paradoxical; otherwise they
7724 would have been rewritten. */
7725 if (MEM_P (x) && GET_CODE (y) == SUBREG
7726 && MEM_P (SUBREG_REG (y))
7727 && rtx_equal_p (SUBREG_REG (y),
7728 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7729 return 1;
7731 if (MEM_P (y) && GET_CODE (x) == SUBREG
7732 && MEM_P (SUBREG_REG (x))
7733 && rtx_equal_p (SUBREG_REG (x),
7734 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7735 return 1;
7737 /* We used to see if get_last_value of X and Y were the same but that's
7738 not correct. In one direction, we'll cause the assignment to have
7739 the wrong destination and in the case, we'll import a register into this
7740 insn that might have already have been dead. So fail if none of the
7741 above cases are true. */
7742 return 0;
7745 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7746 Return that assignment if so.
7748 We only handle the most common cases. */
7750 static rtx
7751 make_field_assignment (rtx x)
7753 rtx dest = SET_DEST (x);
7754 rtx src = SET_SRC (x);
7755 rtx assign;
7756 rtx rhs, lhs;
7757 HOST_WIDE_INT c1;
7758 HOST_WIDE_INT pos;
7759 unsigned HOST_WIDE_INT len;
7760 rtx other;
7761 enum machine_mode mode;
7763 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7764 a clear of a one-bit field. We will have changed it to
7765 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7766 for a SUBREG. */
7768 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7769 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7770 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7771 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7773 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7774 1, 1, 1, 0);
7775 if (assign != 0)
7776 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7777 return x;
7780 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7781 && subreg_lowpart_p (XEXP (src, 0))
7782 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7783 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7784 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7785 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7786 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7787 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7789 assign = make_extraction (VOIDmode, dest, 0,
7790 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7791 1, 1, 1, 0);
7792 if (assign != 0)
7793 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7794 return x;
7797 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7798 one-bit field. */
7799 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7800 && XEXP (XEXP (src, 0), 0) == const1_rtx
7801 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7803 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7804 1, 1, 1, 0);
7805 if (assign != 0)
7806 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7807 return x;
7810 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7811 SRC is an AND with all bits of that field set, then we can discard
7812 the AND. */
7813 if (GET_CODE (dest) == ZERO_EXTRACT
7814 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7815 && GET_CODE (src) == AND
7816 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7818 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7819 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7820 unsigned HOST_WIDE_INT ze_mask;
7822 if (width >= HOST_BITS_PER_WIDE_INT)
7823 ze_mask = -1;
7824 else
7825 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7827 /* Complete overlap. We can remove the source AND. */
7828 if ((and_mask & ze_mask) == ze_mask)
7829 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7831 /* Partial overlap. We can reduce the source AND. */
7832 if ((and_mask & ze_mask) != and_mask)
7834 mode = GET_MODE (src);
7835 src = gen_rtx_AND (mode, XEXP (src, 0),
7836 gen_int_mode (and_mask & ze_mask, mode));
7837 return gen_rtx_SET (VOIDmode, dest, src);
7841 /* The other case we handle is assignments into a constant-position
7842 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7843 a mask that has all one bits except for a group of zero bits and
7844 OTHER is known to have zeros where C1 has ones, this is such an
7845 assignment. Compute the position and length from C1. Shift OTHER
7846 to the appropriate position, force it to the required mode, and
7847 make the extraction. Check for the AND in both operands. */
7849 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7850 return x;
7852 rhs = expand_compound_operation (XEXP (src, 0));
7853 lhs = expand_compound_operation (XEXP (src, 1));
7855 if (GET_CODE (rhs) == AND
7856 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7857 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7858 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7859 else if (GET_CODE (lhs) == AND
7860 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7861 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7862 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7863 else
7864 return x;
7866 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7867 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7868 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7869 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7870 return x;
7872 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7873 if (assign == 0)
7874 return x;
7876 /* The mode to use for the source is the mode of the assignment, or of
7877 what is inside a possible STRICT_LOW_PART. */
7878 mode = (GET_CODE (assign) == STRICT_LOW_PART
7879 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7881 /* Shift OTHER right POS places and make it the source, restricting it
7882 to the proper length and mode. */
7884 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7885 GET_MODE (src),
7886 other, pos),
7887 dest);
7888 src = force_to_mode (src, mode,
7889 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7890 ? ~(unsigned HOST_WIDE_INT) 0
7891 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7894 /* If SRC is masked by an AND that does not make a difference in
7895 the value being stored, strip it. */
7896 if (GET_CODE (assign) == ZERO_EXTRACT
7897 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7898 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7899 && GET_CODE (src) == AND
7900 && GET_CODE (XEXP (src, 1)) == CONST_INT
7901 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7902 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7903 src = XEXP (src, 0);
7905 return gen_rtx_SET (VOIDmode, assign, src);
7908 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7909 if so. */
7911 static rtx
7912 apply_distributive_law (rtx x)
7914 enum rtx_code code = GET_CODE (x);
7915 enum rtx_code inner_code;
7916 rtx lhs, rhs, other;
7917 rtx tem;
7919 /* Distributivity is not true for floating point as it can change the
7920 value. So we don't do it unless -funsafe-math-optimizations. */
7921 if (FLOAT_MODE_P (GET_MODE (x))
7922 && ! flag_unsafe_math_optimizations)
7923 return x;
7925 /* The outer operation can only be one of the following: */
7926 if (code != IOR && code != AND && code != XOR
7927 && code != PLUS && code != MINUS)
7928 return x;
7930 lhs = XEXP (x, 0);
7931 rhs = XEXP (x, 1);
7933 /* If either operand is a primitive we can't do anything, so get out
7934 fast. */
7935 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7936 return x;
7938 lhs = expand_compound_operation (lhs);
7939 rhs = expand_compound_operation (rhs);
7940 inner_code = GET_CODE (lhs);
7941 if (inner_code != GET_CODE (rhs))
7942 return x;
7944 /* See if the inner and outer operations distribute. */
7945 switch (inner_code)
7947 case LSHIFTRT:
7948 case ASHIFTRT:
7949 case AND:
7950 case IOR:
7951 /* These all distribute except over PLUS. */
7952 if (code == PLUS || code == MINUS)
7953 return x;
7954 break;
7956 case MULT:
7957 if (code != PLUS && code != MINUS)
7958 return x;
7959 break;
7961 case ASHIFT:
7962 /* This is also a multiply, so it distributes over everything. */
7963 break;
7965 case SUBREG:
7966 /* Non-paradoxical SUBREGs distributes over all operations,
7967 provided the inner modes and byte offsets are the same, this
7968 is an extraction of a low-order part, we don't convert an fp
7969 operation to int or vice versa, this is not a vector mode,
7970 and we would not be converting a single-word operation into a
7971 multi-word operation. The latter test is not required, but
7972 it prevents generating unneeded multi-word operations. Some
7973 of the previous tests are redundant given the latter test,
7974 but are retained because they are required for correctness.
7976 We produce the result slightly differently in this case. */
7978 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7979 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7980 || ! subreg_lowpart_p (lhs)
7981 || (GET_MODE_CLASS (GET_MODE (lhs))
7982 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7983 || (GET_MODE_SIZE (GET_MODE (lhs))
7984 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7985 || VECTOR_MODE_P (GET_MODE (lhs))
7986 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
7987 /* Result might need to be truncated. Don't change mode if
7988 explicit truncation is needed. */
7989 || !TRULY_NOOP_TRUNCATION
7990 (GET_MODE_BITSIZE (GET_MODE (x)),
7991 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
7992 return x;
7994 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7995 SUBREG_REG (lhs), SUBREG_REG (rhs));
7996 return gen_lowpart (GET_MODE (x), tem);
7998 default:
7999 return x;
8002 /* Set LHS and RHS to the inner operands (A and B in the example
8003 above) and set OTHER to the common operand (C in the example).
8004 There is only one way to do this unless the inner operation is
8005 commutative. */
8006 if (COMMUTATIVE_ARITH_P (lhs)
8007 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8008 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8009 else if (COMMUTATIVE_ARITH_P (lhs)
8010 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8011 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8012 else if (COMMUTATIVE_ARITH_P (lhs)
8013 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8014 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8015 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8016 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8017 else
8018 return x;
8020 /* Form the new inner operation, seeing if it simplifies first. */
8021 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8023 /* There is one exception to the general way of distributing:
8024 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8025 if (code == XOR && inner_code == IOR)
8027 inner_code = AND;
8028 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8031 /* We may be able to continuing distributing the result, so call
8032 ourselves recursively on the inner operation before forming the
8033 outer operation, which we return. */
8034 return simplify_gen_binary (inner_code, GET_MODE (x),
8035 apply_distributive_law (tem), other);
8038 /* See if X is of the form (* (+ A B) C), and if so convert to
8039 (+ (* A C) (* B C)) and try to simplify.
8041 Most of the time, this results in no change. However, if some of
8042 the operands are the same or inverses of each other, simplifications
8043 will result.
8045 For example, (and (ior A B) (not B)) can occur as the result of
8046 expanding a bit field assignment. When we apply the distributive
8047 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8048 which then simplifies to (and (A (not B))).
8050 Note that no checks happen on the validity of applying the inverse
8051 distributive law. This is pointless since we can do it in the
8052 few places where this routine is called.
8054 N is the index of the term that is decomposed (the arithmetic operation,
8055 i.e. (+ A B) in the first example above). !N is the index of the term that
8056 is distributed, i.e. of C in the first example above. */
8057 static rtx
8058 distribute_and_simplify_rtx (rtx x, int n)
8060 enum machine_mode mode;
8061 enum rtx_code outer_code, inner_code;
8062 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8064 decomposed = XEXP (x, n);
8065 if (!ARITHMETIC_P (decomposed))
8066 return NULL_RTX;
8068 mode = GET_MODE (x);
8069 outer_code = GET_CODE (x);
8070 distributed = XEXP (x, !n);
8072 inner_code = GET_CODE (decomposed);
8073 inner_op0 = XEXP (decomposed, 0);
8074 inner_op1 = XEXP (decomposed, 1);
8076 /* Special case (and (xor B C) (not A)), which is equivalent to
8077 (xor (ior A B) (ior A C)) */
8078 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8080 distributed = XEXP (distributed, 0);
8081 outer_code = IOR;
8084 if (n == 0)
8086 /* Distribute the second term. */
8087 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8088 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8090 else
8092 /* Distribute the first term. */
8093 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8094 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8097 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8098 new_op0, new_op1));
8099 if (GET_CODE (tmp) != outer_code
8100 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8101 return tmp;
8103 return NULL_RTX;
8106 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8107 in MODE. Return an equivalent form, if different from (and VAROP
8108 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8110 static rtx
8111 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8112 unsigned HOST_WIDE_INT constop)
8114 unsigned HOST_WIDE_INT nonzero;
8115 unsigned HOST_WIDE_INT orig_constop;
8116 rtx orig_varop;
8117 int i;
8119 orig_varop = varop;
8120 orig_constop = constop;
8121 if (GET_CODE (varop) == CLOBBER)
8122 return NULL_RTX;
8124 /* Simplify VAROP knowing that we will be only looking at some of the
8125 bits in it.
8127 Note by passing in CONSTOP, we guarantee that the bits not set in
8128 CONSTOP are not significant and will never be examined. We must
8129 ensure that is the case by explicitly masking out those bits
8130 before returning. */
8131 varop = force_to_mode (varop, mode, constop, 0);
8133 /* If VAROP is a CLOBBER, we will fail so return it. */
8134 if (GET_CODE (varop) == CLOBBER)
8135 return varop;
8137 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8138 to VAROP and return the new constant. */
8139 if (GET_CODE (varop) == CONST_INT)
8140 return gen_int_mode (INTVAL (varop) & constop, mode);
8142 /* See what bits may be nonzero in VAROP. Unlike the general case of
8143 a call to nonzero_bits, here we don't care about bits outside
8144 MODE. */
8146 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8148 /* Turn off all bits in the constant that are known to already be zero.
8149 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8150 which is tested below. */
8152 constop &= nonzero;
8154 /* If we don't have any bits left, return zero. */
8155 if (constop == 0)
8156 return const0_rtx;
8158 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8159 a power of two, we can replace this with an ASHIFT. */
8160 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8161 && (i = exact_log2 (constop)) >= 0)
8162 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8164 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8165 or XOR, then try to apply the distributive law. This may eliminate
8166 operations if either branch can be simplified because of the AND.
8167 It may also make some cases more complex, but those cases probably
8168 won't match a pattern either with or without this. */
8170 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8171 return
8172 gen_lowpart
8173 (mode,
8174 apply_distributive_law
8175 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8176 simplify_and_const_int (NULL_RTX,
8177 GET_MODE (varop),
8178 XEXP (varop, 0),
8179 constop),
8180 simplify_and_const_int (NULL_RTX,
8181 GET_MODE (varop),
8182 XEXP (varop, 1),
8183 constop))));
8185 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8186 the AND and see if one of the operands simplifies to zero. If so, we
8187 may eliminate it. */
8189 if (GET_CODE (varop) == PLUS
8190 && exact_log2 (constop + 1) >= 0)
8192 rtx o0, o1;
8194 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8195 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8196 if (o0 == const0_rtx)
8197 return o1;
8198 if (o1 == const0_rtx)
8199 return o0;
8202 /* Make a SUBREG if necessary. If we can't make it, fail. */
8203 varop = gen_lowpart (mode, varop);
8204 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8205 return NULL_RTX;
8207 /* If we are only masking insignificant bits, return VAROP. */
8208 if (constop == nonzero)
8209 return varop;
8211 if (varop == orig_varop && constop == orig_constop)
8212 return NULL_RTX;
8214 /* Otherwise, return an AND. */
8215 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8219 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8220 in MODE.
8222 Return an equivalent form, if different from X. Otherwise, return X. If
8223 X is zero, we are to always construct the equivalent form. */
8225 static rtx
8226 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8227 unsigned HOST_WIDE_INT constop)
8229 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8230 if (tem)
8231 return tem;
8233 if (!x)
8234 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8235 gen_int_mode (constop, mode));
8236 if (GET_MODE (x) != mode)
8237 x = gen_lowpart (mode, x);
8238 return x;
8241 /* Given a REG, X, compute which bits in X can be nonzero.
8242 We don't care about bits outside of those defined in MODE.
8244 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8245 a shift, AND, or zero_extract, we can do better. */
8247 static rtx
8248 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8249 rtx known_x ATTRIBUTE_UNUSED,
8250 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8251 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8252 unsigned HOST_WIDE_INT *nonzero)
8254 rtx tem;
8256 /* If X is a register whose nonzero bits value is current, use it.
8257 Otherwise, if X is a register whose value we can find, use that
8258 value. Otherwise, use the previously-computed global nonzero bits
8259 for this register. */
8261 if (reg_stat[REGNO (x)].last_set_value != 0
8262 && (reg_stat[REGNO (x)].last_set_mode == mode
8263 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8264 && GET_MODE_CLASS (mode) == MODE_INT))
8265 && (reg_stat[REGNO (x)].last_set_label == label_tick
8266 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8267 && REG_N_SETS (REGNO (x)) == 1
8268 && ! REGNO_REG_SET_P
8269 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8270 REGNO (x))))
8271 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8273 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8274 return NULL;
8277 tem = get_last_value (x);
8279 if (tem)
8281 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8282 /* If X is narrower than MODE and TEM is a non-negative
8283 constant that would appear negative in the mode of X,
8284 sign-extend it for use in reg_nonzero_bits because some
8285 machines (maybe most) will actually do the sign-extension
8286 and this is the conservative approach.
8288 ??? For 2.5, try to tighten up the MD files in this regard
8289 instead of this kludge. */
8291 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8292 && GET_CODE (tem) == CONST_INT
8293 && INTVAL (tem) > 0
8294 && 0 != (INTVAL (tem)
8295 & ((HOST_WIDE_INT) 1
8296 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8297 tem = GEN_INT (INTVAL (tem)
8298 | ((HOST_WIDE_INT) (-1)
8299 << GET_MODE_BITSIZE (GET_MODE (x))));
8300 #endif
8301 return tem;
8303 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8305 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8307 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8308 /* We don't know anything about the upper bits. */
8309 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8310 *nonzero &= mask;
8313 return NULL;
8316 /* Return the number of bits at the high-order end of X that are known to
8317 be equal to the sign bit. X will be used in mode MODE; if MODE is
8318 VOIDmode, X will be used in its own mode. The returned value will always
8319 be between 1 and the number of bits in MODE. */
8321 static rtx
8322 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8323 rtx known_x ATTRIBUTE_UNUSED,
8324 enum machine_mode known_mode
8325 ATTRIBUTE_UNUSED,
8326 unsigned int known_ret ATTRIBUTE_UNUSED,
8327 unsigned int *result)
8329 rtx tem;
8331 if (reg_stat[REGNO (x)].last_set_value != 0
8332 && reg_stat[REGNO (x)].last_set_mode == mode
8333 && (reg_stat[REGNO (x)].last_set_label == label_tick
8334 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8335 && REG_N_SETS (REGNO (x)) == 1
8336 && ! REGNO_REG_SET_P
8337 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8338 REGNO (x))))
8339 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8341 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8342 return NULL;
8345 tem = get_last_value (x);
8346 if (tem != 0)
8347 return tem;
8349 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8350 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8351 *result = reg_stat[REGNO (x)].sign_bit_copies;
8353 return NULL;
8356 /* Return the number of "extended" bits there are in X, when interpreted
8357 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8358 unsigned quantities, this is the number of high-order zero bits.
8359 For signed quantities, this is the number of copies of the sign bit
8360 minus 1. In both case, this function returns the number of "spare"
8361 bits. For example, if two quantities for which this function returns
8362 at least 1 are added, the addition is known not to overflow.
8364 This function will always return 0 unless called during combine, which
8365 implies that it must be called from a define_split. */
8367 unsigned int
8368 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8370 if (nonzero_sign_valid == 0)
8371 return 0;
8373 return (unsignedp
8374 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8375 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8376 - floor_log2 (nonzero_bits (x, mode)))
8377 : 0)
8378 : num_sign_bit_copies (x, mode) - 1);
8381 /* This function is called from `simplify_shift_const' to merge two
8382 outer operations. Specifically, we have already found that we need
8383 to perform operation *POP0 with constant *PCONST0 at the outermost
8384 position. We would now like to also perform OP1 with constant CONST1
8385 (with *POP0 being done last).
8387 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8388 the resulting operation. *PCOMP_P is set to 1 if we would need to
8389 complement the innermost operand, otherwise it is unchanged.
8391 MODE is the mode in which the operation will be done. No bits outside
8392 the width of this mode matter. It is assumed that the width of this mode
8393 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8395 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8396 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8397 result is simply *PCONST0.
8399 If the resulting operation cannot be expressed as one operation, we
8400 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8402 static int
8403 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8405 enum rtx_code op0 = *pop0;
8406 HOST_WIDE_INT const0 = *pconst0;
8408 const0 &= GET_MODE_MASK (mode);
8409 const1 &= GET_MODE_MASK (mode);
8411 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8412 if (op0 == AND)
8413 const1 &= const0;
8415 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8416 if OP0 is SET. */
8418 if (op1 == UNKNOWN || op0 == SET)
8419 return 1;
8421 else if (op0 == UNKNOWN)
8422 op0 = op1, const0 = const1;
8424 else if (op0 == op1)
8426 switch (op0)
8428 case AND:
8429 const0 &= const1;
8430 break;
8431 case IOR:
8432 const0 |= const1;
8433 break;
8434 case XOR:
8435 const0 ^= const1;
8436 break;
8437 case PLUS:
8438 const0 += const1;
8439 break;
8440 case NEG:
8441 op0 = UNKNOWN;
8442 break;
8443 default:
8444 break;
8448 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8449 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8450 return 0;
8452 /* If the two constants aren't the same, we can't do anything. The
8453 remaining six cases can all be done. */
8454 else if (const0 != const1)
8455 return 0;
8457 else
8458 switch (op0)
8460 case IOR:
8461 if (op1 == AND)
8462 /* (a & b) | b == b */
8463 op0 = SET;
8464 else /* op1 == XOR */
8465 /* (a ^ b) | b == a | b */
8467 break;
8469 case XOR:
8470 if (op1 == AND)
8471 /* (a & b) ^ b == (~a) & b */
8472 op0 = AND, *pcomp_p = 1;
8473 else /* op1 == IOR */
8474 /* (a | b) ^ b == a & ~b */
8475 op0 = AND, const0 = ~const0;
8476 break;
8478 case AND:
8479 if (op1 == IOR)
8480 /* (a | b) & b == b */
8481 op0 = SET;
8482 else /* op1 == XOR */
8483 /* (a ^ b) & b) == (~a) & b */
8484 *pcomp_p = 1;
8485 break;
8486 default:
8487 break;
8490 /* Check for NO-OP cases. */
8491 const0 &= GET_MODE_MASK (mode);
8492 if (const0 == 0
8493 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8494 op0 = UNKNOWN;
8495 else if (const0 == 0 && op0 == AND)
8496 op0 = SET;
8497 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8498 && op0 == AND)
8499 op0 = UNKNOWN;
8501 /* ??? Slightly redundant with the above mask, but not entirely.
8502 Moving this above means we'd have to sign-extend the mode mask
8503 for the final test. */
8504 const0 = trunc_int_for_mode (const0, mode);
8506 *pop0 = op0;
8507 *pconst0 = const0;
8509 return 1;
8512 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8513 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8514 simplify it. Otherwise, return a simplified value.
8516 The shift is normally computed in the widest mode we find in VAROP, as
8517 long as it isn't a different number of words than RESULT_MODE. Exceptions
8518 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8520 static rtx
8521 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8522 rtx varop, int orig_count)
8524 enum rtx_code orig_code = code;
8525 rtx orig_varop = varop;
8526 int count;
8527 enum machine_mode mode = result_mode;
8528 enum machine_mode shift_mode, tmode;
8529 unsigned int mode_words
8530 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8531 /* We form (outer_op (code varop count) (outer_const)). */
8532 enum rtx_code outer_op = UNKNOWN;
8533 HOST_WIDE_INT outer_const = 0;
8534 int complement_p = 0;
8535 rtx new, x;
8537 /* Make sure and truncate the "natural" shift on the way in. We don't
8538 want to do this inside the loop as it makes it more difficult to
8539 combine shifts. */
8540 if (SHIFT_COUNT_TRUNCATED)
8541 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8543 /* If we were given an invalid count, don't do anything except exactly
8544 what was requested. */
8546 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8547 return NULL_RTX;
8549 count = orig_count;
8551 /* Unless one of the branches of the `if' in this loop does a `continue',
8552 we will `break' the loop after the `if'. */
8554 while (count != 0)
8556 /* If we have an operand of (clobber (const_int 0)), fail. */
8557 if (GET_CODE (varop) == CLOBBER)
8558 return NULL_RTX;
8560 /* If we discovered we had to complement VAROP, leave. Making a NOT
8561 here would cause an infinite loop. */
8562 if (complement_p)
8563 break;
8565 /* Convert ROTATERT to ROTATE. */
8566 if (code == ROTATERT)
8568 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8569 code = ROTATE;
8570 if (VECTOR_MODE_P (result_mode))
8571 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8572 else
8573 count = bitsize - count;
8576 /* We need to determine what mode we will do the shift in. If the
8577 shift is a right shift or a ROTATE, we must always do it in the mode
8578 it was originally done in. Otherwise, we can do it in MODE, the
8579 widest mode encountered. */
8580 shift_mode
8581 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8582 ? result_mode : mode);
8584 /* Handle cases where the count is greater than the size of the mode
8585 minus 1. For ASHIFT, use the size minus one as the count (this can
8586 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8587 take the count modulo the size. For other shifts, the result is
8588 zero.
8590 Since these shifts are being produced by the compiler by combining
8591 multiple operations, each of which are defined, we know what the
8592 result is supposed to be. */
8594 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8596 if (code == ASHIFTRT)
8597 count = GET_MODE_BITSIZE (shift_mode) - 1;
8598 else if (code == ROTATE || code == ROTATERT)
8599 count %= GET_MODE_BITSIZE (shift_mode);
8600 else
8602 /* We can't simply return zero because there may be an
8603 outer op. */
8604 varop = const0_rtx;
8605 count = 0;
8606 break;
8610 /* An arithmetic right shift of a quantity known to be -1 or 0
8611 is a no-op. */
8612 if (code == ASHIFTRT
8613 && (num_sign_bit_copies (varop, shift_mode)
8614 == GET_MODE_BITSIZE (shift_mode)))
8616 count = 0;
8617 break;
8620 /* If we are doing an arithmetic right shift and discarding all but
8621 the sign bit copies, this is equivalent to doing a shift by the
8622 bitsize minus one. Convert it into that shift because it will often
8623 allow other simplifications. */
8625 if (code == ASHIFTRT
8626 && (count + num_sign_bit_copies (varop, shift_mode)
8627 >= GET_MODE_BITSIZE (shift_mode)))
8628 count = GET_MODE_BITSIZE (shift_mode) - 1;
8630 /* We simplify the tests below and elsewhere by converting
8631 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8632 `make_compound_operation' will convert it to an ASHIFTRT for
8633 those machines (such as VAX) that don't have an LSHIFTRT. */
8634 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8635 && code == ASHIFTRT
8636 && ((nonzero_bits (varop, shift_mode)
8637 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8638 == 0))
8639 code = LSHIFTRT;
8641 if (((code == LSHIFTRT
8642 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8643 && !(nonzero_bits (varop, shift_mode) >> count))
8644 || (code == ASHIFT
8645 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8646 && !((nonzero_bits (varop, shift_mode) << count)
8647 & GET_MODE_MASK (shift_mode))))
8648 && !side_effects_p (varop))
8649 varop = const0_rtx;
8651 switch (GET_CODE (varop))
8653 case SIGN_EXTEND:
8654 case ZERO_EXTEND:
8655 case SIGN_EXTRACT:
8656 case ZERO_EXTRACT:
8657 new = expand_compound_operation (varop);
8658 if (new != varop)
8660 varop = new;
8661 continue;
8663 break;
8665 case MEM:
8666 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8667 minus the width of a smaller mode, we can do this with a
8668 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8669 if ((code == ASHIFTRT || code == LSHIFTRT)
8670 && ! mode_dependent_address_p (XEXP (varop, 0))
8671 && ! MEM_VOLATILE_P (varop)
8672 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8673 MODE_INT, 1)) != BLKmode)
8675 new = adjust_address_nv (varop, tmode,
8676 BYTES_BIG_ENDIAN ? 0
8677 : count / BITS_PER_UNIT);
8679 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8680 : ZERO_EXTEND, mode, new);
8681 count = 0;
8682 continue;
8684 break;
8686 case SUBREG:
8687 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8688 the same number of words as what we've seen so far. Then store
8689 the widest mode in MODE. */
8690 if (subreg_lowpart_p (varop)
8691 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8692 > GET_MODE_SIZE (GET_MODE (varop)))
8693 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8694 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8695 == mode_words)
8697 varop = SUBREG_REG (varop);
8698 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8699 mode = GET_MODE (varop);
8700 continue;
8702 break;
8704 case MULT:
8705 /* Some machines use MULT instead of ASHIFT because MULT
8706 is cheaper. But it is still better on those machines to
8707 merge two shifts into one. */
8708 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8709 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8711 varop
8712 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8713 XEXP (varop, 0),
8714 GEN_INT (exact_log2 (
8715 INTVAL (XEXP (varop, 1)))));
8716 continue;
8718 break;
8720 case UDIV:
8721 /* Similar, for when divides are cheaper. */
8722 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8723 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8725 varop
8726 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8727 XEXP (varop, 0),
8728 GEN_INT (exact_log2 (
8729 INTVAL (XEXP (varop, 1)))));
8730 continue;
8732 break;
8734 case ASHIFTRT:
8735 /* If we are extracting just the sign bit of an arithmetic
8736 right shift, that shift is not needed. However, the sign
8737 bit of a wider mode may be different from what would be
8738 interpreted as the sign bit in a narrower mode, so, if
8739 the result is narrower, don't discard the shift. */
8740 if (code == LSHIFTRT
8741 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8742 && (GET_MODE_BITSIZE (result_mode)
8743 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8745 varop = XEXP (varop, 0);
8746 continue;
8749 /* ... fall through ... */
8751 case LSHIFTRT:
8752 case ASHIFT:
8753 case ROTATE:
8754 /* Here we have two nested shifts. The result is usually the
8755 AND of a new shift with a mask. We compute the result below. */
8756 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8757 && INTVAL (XEXP (varop, 1)) >= 0
8758 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8759 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8760 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8761 && !VECTOR_MODE_P (result_mode))
8763 enum rtx_code first_code = GET_CODE (varop);
8764 unsigned int first_count = INTVAL (XEXP (varop, 1));
8765 unsigned HOST_WIDE_INT mask;
8766 rtx mask_rtx;
8768 /* We have one common special case. We can't do any merging if
8769 the inner code is an ASHIFTRT of a smaller mode. However, if
8770 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8771 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8772 we can convert it to
8773 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8774 This simplifies certain SIGN_EXTEND operations. */
8775 if (code == ASHIFT && first_code == ASHIFTRT
8776 && count == (GET_MODE_BITSIZE (result_mode)
8777 - GET_MODE_BITSIZE (GET_MODE (varop))))
8779 /* C3 has the low-order C1 bits zero. */
8781 mask = (GET_MODE_MASK (mode)
8782 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8784 varop = simplify_and_const_int (NULL_RTX, result_mode,
8785 XEXP (varop, 0), mask);
8786 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8787 varop, count);
8788 count = first_count;
8789 code = ASHIFTRT;
8790 continue;
8793 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8794 than C1 high-order bits equal to the sign bit, we can convert
8795 this to either an ASHIFT or an ASHIFTRT depending on the
8796 two counts.
8798 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8800 if (code == ASHIFTRT && first_code == ASHIFT
8801 && GET_MODE (varop) == shift_mode
8802 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8803 > first_count))
8805 varop = XEXP (varop, 0);
8806 count -= first_count;
8807 if (count < 0)
8809 count = -count;
8810 code = ASHIFT;
8813 continue;
8816 /* There are some cases we can't do. If CODE is ASHIFTRT,
8817 we can only do this if FIRST_CODE is also ASHIFTRT.
8819 We can't do the case when CODE is ROTATE and FIRST_CODE is
8820 ASHIFTRT.
8822 If the mode of this shift is not the mode of the outer shift,
8823 we can't do this if either shift is a right shift or ROTATE.
8825 Finally, we can't do any of these if the mode is too wide
8826 unless the codes are the same.
8828 Handle the case where the shift codes are the same
8829 first. */
8831 if (code == first_code)
8833 if (GET_MODE (varop) != result_mode
8834 && (code == ASHIFTRT || code == LSHIFTRT
8835 || code == ROTATE))
8836 break;
8838 count += first_count;
8839 varop = XEXP (varop, 0);
8840 continue;
8843 if (code == ASHIFTRT
8844 || (code == ROTATE && first_code == ASHIFTRT)
8845 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8846 || (GET_MODE (varop) != result_mode
8847 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8848 || first_code == ROTATE
8849 || code == ROTATE)))
8850 break;
8852 /* To compute the mask to apply after the shift, shift the
8853 nonzero bits of the inner shift the same way the
8854 outer shift will. */
8856 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8858 mask_rtx
8859 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8860 GEN_INT (count));
8862 /* Give up if we can't compute an outer operation to use. */
8863 if (mask_rtx == 0
8864 || GET_CODE (mask_rtx) != CONST_INT
8865 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8866 INTVAL (mask_rtx),
8867 result_mode, &complement_p))
8868 break;
8870 /* If the shifts are in the same direction, we add the
8871 counts. Otherwise, we subtract them. */
8872 if ((code == ASHIFTRT || code == LSHIFTRT)
8873 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8874 count += first_count;
8875 else
8876 count -= first_count;
8878 /* If COUNT is positive, the new shift is usually CODE,
8879 except for the two exceptions below, in which case it is
8880 FIRST_CODE. If the count is negative, FIRST_CODE should
8881 always be used */
8882 if (count > 0
8883 && ((first_code == ROTATE && code == ASHIFT)
8884 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8885 code = first_code;
8886 else if (count < 0)
8887 code = first_code, count = -count;
8889 varop = XEXP (varop, 0);
8890 continue;
8893 /* If we have (A << B << C) for any shift, we can convert this to
8894 (A << C << B). This wins if A is a constant. Only try this if
8895 B is not a constant. */
8897 else if (GET_CODE (varop) == code
8898 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8899 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8901 rtx new = simplify_const_binary_operation (code, mode,
8902 XEXP (varop, 0),
8903 GEN_INT (count));
8904 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8905 count = 0;
8906 continue;
8908 break;
8910 case NOT:
8911 /* Make this fit the case below. */
8912 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8913 GEN_INT (GET_MODE_MASK (mode)));
8914 continue;
8916 case IOR:
8917 case AND:
8918 case XOR:
8919 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8920 with C the size of VAROP - 1 and the shift is logical if
8921 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8922 we have an (le X 0) operation. If we have an arithmetic shift
8923 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8924 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8926 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8927 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8928 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8929 && (code == LSHIFTRT || code == ASHIFTRT)
8930 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8931 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8933 count = 0;
8934 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8935 const0_rtx);
8937 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8938 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8940 continue;
8943 /* If we have (shift (logical)), move the logical to the outside
8944 to allow it to possibly combine with another logical and the
8945 shift to combine with another shift. This also canonicalizes to
8946 what a ZERO_EXTRACT looks like. Also, some machines have
8947 (and (shift)) insns. */
8949 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8950 /* We can't do this if we have (ashiftrt (xor)) and the
8951 constant has its sign bit set in shift_mode. */
8952 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8953 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8954 shift_mode))
8955 && (new = simplify_const_binary_operation (code, result_mode,
8956 XEXP (varop, 1),
8957 GEN_INT (count))) != 0
8958 && GET_CODE (new) == CONST_INT
8959 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8960 INTVAL (new), result_mode, &complement_p))
8962 varop = XEXP (varop, 0);
8963 continue;
8966 /* If we can't do that, try to simplify the shift in each arm of the
8967 logical expression, make a new logical expression, and apply
8968 the inverse distributive law. This also can't be done
8969 for some (ashiftrt (xor)). */
8970 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8971 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8972 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8973 shift_mode)))
8975 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8976 XEXP (varop, 0), count);
8977 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8978 XEXP (varop, 1), count);
8980 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8981 lhs, rhs);
8982 varop = apply_distributive_law (varop);
8984 count = 0;
8985 continue;
8987 break;
8989 case EQ:
8990 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8991 says that the sign bit can be tested, FOO has mode MODE, C is
8992 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8993 that may be nonzero. */
8994 if (code == LSHIFTRT
8995 && XEXP (varop, 1) == const0_rtx
8996 && GET_MODE (XEXP (varop, 0)) == result_mode
8997 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8998 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8999 && STORE_FLAG_VALUE == -1
9000 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9001 && merge_outer_ops (&outer_op, &outer_const, XOR,
9002 (HOST_WIDE_INT) 1, result_mode,
9003 &complement_p))
9005 varop = XEXP (varop, 0);
9006 count = 0;
9007 continue;
9009 break;
9011 case NEG:
9012 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9013 than the number of bits in the mode is equivalent to A. */
9014 if (code == LSHIFTRT
9015 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9016 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9018 varop = XEXP (varop, 0);
9019 count = 0;
9020 continue;
9023 /* NEG commutes with ASHIFT since it is multiplication. Move the
9024 NEG outside to allow shifts to combine. */
9025 if (code == ASHIFT
9026 && merge_outer_ops (&outer_op, &outer_const, NEG,
9027 (HOST_WIDE_INT) 0, result_mode,
9028 &complement_p))
9030 varop = XEXP (varop, 0);
9031 continue;
9033 break;
9035 case PLUS:
9036 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9037 is one less than the number of bits in the mode is
9038 equivalent to (xor A 1). */
9039 if (code == LSHIFTRT
9040 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9041 && XEXP (varop, 1) == constm1_rtx
9042 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9043 && merge_outer_ops (&outer_op, &outer_const, XOR,
9044 (HOST_WIDE_INT) 1, result_mode,
9045 &complement_p))
9047 count = 0;
9048 varop = XEXP (varop, 0);
9049 continue;
9052 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9053 that might be nonzero in BAR are those being shifted out and those
9054 bits are known zero in FOO, we can replace the PLUS with FOO.
9055 Similarly in the other operand order. This code occurs when
9056 we are computing the size of a variable-size array. */
9058 if ((code == ASHIFTRT || code == LSHIFTRT)
9059 && count < HOST_BITS_PER_WIDE_INT
9060 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9061 && (nonzero_bits (XEXP (varop, 1), result_mode)
9062 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9064 varop = XEXP (varop, 0);
9065 continue;
9067 else if ((code == ASHIFTRT || code == LSHIFTRT)
9068 && count < HOST_BITS_PER_WIDE_INT
9069 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9070 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9071 >> count)
9072 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9073 & nonzero_bits (XEXP (varop, 1),
9074 result_mode)))
9076 varop = XEXP (varop, 1);
9077 continue;
9080 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9081 if (code == ASHIFT
9082 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9083 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9084 XEXP (varop, 1),
9085 GEN_INT (count))) != 0
9086 && GET_CODE (new) == CONST_INT
9087 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9088 INTVAL (new), result_mode, &complement_p))
9090 varop = XEXP (varop, 0);
9091 continue;
9094 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9095 signbit', and attempt to change the PLUS to an XOR and move it to
9096 the outer operation as is done above in the AND/IOR/XOR case
9097 leg for shift(logical). See details in logical handling above
9098 for reasoning in doing so. */
9099 if (code == LSHIFTRT
9100 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9101 && mode_signbit_p (result_mode, XEXP (varop, 1))
9102 && (new = simplify_const_binary_operation (code, result_mode,
9103 XEXP (varop, 1),
9104 GEN_INT (count))) != 0
9105 && GET_CODE (new) == CONST_INT
9106 && merge_outer_ops (&outer_op, &outer_const, XOR,
9107 INTVAL (new), result_mode, &complement_p))
9109 varop = XEXP (varop, 0);
9110 continue;
9113 break;
9115 case MINUS:
9116 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9117 with C the size of VAROP - 1 and the shift is logical if
9118 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9119 we have a (gt X 0) operation. If the shift is arithmetic with
9120 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9121 we have a (neg (gt X 0)) operation. */
9123 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9124 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9125 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9126 && (code == LSHIFTRT || code == ASHIFTRT)
9127 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9128 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9129 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9131 count = 0;
9132 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9133 const0_rtx);
9135 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9136 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9138 continue;
9140 break;
9142 case TRUNCATE:
9143 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9144 if the truncate does not affect the value. */
9145 if (code == LSHIFTRT
9146 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9147 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9148 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9149 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9150 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9152 rtx varop_inner = XEXP (varop, 0);
9154 varop_inner
9155 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9156 XEXP (varop_inner, 0),
9157 GEN_INT
9158 (count + INTVAL (XEXP (varop_inner, 1))));
9159 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9160 count = 0;
9161 continue;
9163 break;
9165 default:
9166 break;
9169 break;
9172 /* We need to determine what mode to do the shift in. If the shift is
9173 a right shift or ROTATE, we must always do it in the mode it was
9174 originally done in. Otherwise, we can do it in MODE, the widest mode
9175 encountered. The code we care about is that of the shift that will
9176 actually be done, not the shift that was originally requested. */
9177 shift_mode
9178 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9179 ? result_mode : mode);
9181 /* We have now finished analyzing the shift. The result should be
9182 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9183 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9184 to the result of the shift. OUTER_CONST is the relevant constant,
9185 but we must turn off all bits turned off in the shift. */
9187 if (outer_op == UNKNOWN
9188 && orig_code == code && orig_count == count
9189 && varop == orig_varop
9190 && shift_mode == GET_MODE (varop))
9191 return NULL_RTX;
9193 /* Make a SUBREG if necessary. If we can't make it, fail. */
9194 varop = gen_lowpart (shift_mode, varop);
9195 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9196 return NULL_RTX;
9198 /* If we have an outer operation and we just made a shift, it is
9199 possible that we could have simplified the shift were it not
9200 for the outer operation. So try to do the simplification
9201 recursively. */
9203 if (outer_op != UNKNOWN)
9204 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9205 else
9206 x = NULL_RTX;
9208 if (x == NULL_RTX)
9209 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9211 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9212 turn off all the bits that the shift would have turned off. */
9213 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9214 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9215 GET_MODE_MASK (result_mode) >> orig_count);
9217 /* Do the remainder of the processing in RESULT_MODE. */
9218 x = gen_lowpart_or_truncate (result_mode, x);
9220 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9221 operation. */
9222 if (complement_p)
9223 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9225 if (outer_op != UNKNOWN)
9227 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9228 outer_const = trunc_int_for_mode (outer_const, result_mode);
9230 if (outer_op == AND)
9231 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9232 else if (outer_op == SET)
9234 /* This means that we have determined that the result is
9235 equivalent to a constant. This should be rare. */
9236 if (!side_effects_p (x))
9237 x = GEN_INT (outer_const);
9239 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9240 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9241 else
9242 x = simplify_gen_binary (outer_op, result_mode, x,
9243 GEN_INT (outer_const));
9246 return x;
9249 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9250 The result of the shift is RESULT_MODE. If we cannot simplify it,
9251 return X or, if it is NULL, synthesize the expression with
9252 simplify_gen_binary. Otherwise, return a simplified value.
9254 The shift is normally computed in the widest mode we find in VAROP, as
9255 long as it isn't a different number of words than RESULT_MODE. Exceptions
9256 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9258 static rtx
9259 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9260 rtx varop, int count)
9262 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9263 if (tem)
9264 return tem;
9266 if (!x)
9267 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9268 if (GET_MODE (x) != result_mode)
9269 x = gen_lowpart (result_mode, x);
9270 return x;
9274 /* Like recog, but we receive the address of a pointer to a new pattern.
9275 We try to match the rtx that the pointer points to.
9276 If that fails, we may try to modify or replace the pattern,
9277 storing the replacement into the same pointer object.
9279 Modifications include deletion or addition of CLOBBERs.
9281 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9282 the CLOBBERs are placed.
9284 The value is the final insn code from the pattern ultimately matched,
9285 or -1. */
9287 static int
9288 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9290 rtx pat = *pnewpat;
9291 int insn_code_number;
9292 int num_clobbers_to_add = 0;
9293 int i;
9294 rtx notes = 0;
9295 rtx old_notes, old_pat;
9297 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9298 we use to indicate that something didn't match. If we find such a
9299 thing, force rejection. */
9300 if (GET_CODE (pat) == PARALLEL)
9301 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9302 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9303 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9304 return -1;
9306 old_pat = PATTERN (insn);
9307 old_notes = REG_NOTES (insn);
9308 PATTERN (insn) = pat;
9309 REG_NOTES (insn) = 0;
9311 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9313 /* If it isn't, there is the possibility that we previously had an insn
9314 that clobbered some register as a side effect, but the combined
9315 insn doesn't need to do that. So try once more without the clobbers
9316 unless this represents an ASM insn. */
9318 if (insn_code_number < 0 && ! check_asm_operands (pat)
9319 && GET_CODE (pat) == PARALLEL)
9321 int pos;
9323 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9324 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9326 if (i != pos)
9327 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9328 pos++;
9331 SUBST_INT (XVECLEN (pat, 0), pos);
9333 if (pos == 1)
9334 pat = XVECEXP (pat, 0, 0);
9336 PATTERN (insn) = pat;
9337 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9339 PATTERN (insn) = old_pat;
9340 REG_NOTES (insn) = old_notes;
9342 /* Recognize all noop sets, these will be killed by followup pass. */
9343 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9344 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9346 /* If we had any clobbers to add, make a new pattern than contains
9347 them. Then check to make sure that all of them are dead. */
9348 if (num_clobbers_to_add)
9350 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9351 rtvec_alloc (GET_CODE (pat) == PARALLEL
9352 ? (XVECLEN (pat, 0)
9353 + num_clobbers_to_add)
9354 : num_clobbers_to_add + 1));
9356 if (GET_CODE (pat) == PARALLEL)
9357 for (i = 0; i < XVECLEN (pat, 0); i++)
9358 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9359 else
9360 XVECEXP (newpat, 0, 0) = pat;
9362 add_clobbers (newpat, insn_code_number);
9364 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9365 i < XVECLEN (newpat, 0); i++)
9367 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9368 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9369 return -1;
9370 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9371 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9373 pat = newpat;
9376 *pnewpat = pat;
9377 *pnotes = notes;
9379 return insn_code_number;
9382 /* Like gen_lowpart_general but for use by combine. In combine it
9383 is not possible to create any new pseudoregs. However, it is
9384 safe to create invalid memory addresses, because combine will
9385 try to recognize them and all they will do is make the combine
9386 attempt fail.
9388 If for some reason this cannot do its job, an rtx
9389 (clobber (const_int 0)) is returned.
9390 An insn containing that will not be recognized. */
9392 static rtx
9393 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9395 enum machine_mode imode = GET_MODE (x);
9396 unsigned int osize = GET_MODE_SIZE (omode);
9397 unsigned int isize = GET_MODE_SIZE (imode);
9398 rtx result;
9400 if (omode == imode)
9401 return x;
9403 /* Return identity if this is a CONST or symbolic reference. */
9404 if (omode == Pmode
9405 && (GET_CODE (x) == CONST
9406 || GET_CODE (x) == SYMBOL_REF
9407 || GET_CODE (x) == LABEL_REF))
9408 return x;
9410 /* We can only support MODE being wider than a word if X is a
9411 constant integer or has a mode the same size. */
9412 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9413 && ! ((imode == VOIDmode
9414 && (GET_CODE (x) == CONST_INT
9415 || GET_CODE (x) == CONST_DOUBLE))
9416 || isize == osize))
9417 goto fail;
9419 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9420 won't know what to do. So we will strip off the SUBREG here and
9421 process normally. */
9422 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9424 x = SUBREG_REG (x);
9426 /* For use in case we fall down into the address adjustments
9427 further below, we need to adjust the known mode and size of
9428 x; imode and isize, since we just adjusted x. */
9429 imode = GET_MODE (x);
9431 if (imode == omode)
9432 return x;
9434 isize = GET_MODE_SIZE (imode);
9437 result = gen_lowpart_common (omode, x);
9439 #ifdef CANNOT_CHANGE_MODE_CLASS
9440 if (result != 0 && GET_CODE (result) == SUBREG)
9441 record_subregs_of_mode (result);
9442 #endif
9444 if (result)
9445 return result;
9447 if (MEM_P (x))
9449 int offset = 0;
9451 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9452 address. */
9453 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9454 goto fail;
9456 /* If we want to refer to something bigger than the original memref,
9457 generate a paradoxical subreg instead. That will force a reload
9458 of the original memref X. */
9459 if (isize < osize)
9460 return gen_rtx_SUBREG (omode, x, 0);
9462 if (WORDS_BIG_ENDIAN)
9463 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9465 /* Adjust the address so that the address-after-the-data is
9466 unchanged. */
9467 if (BYTES_BIG_ENDIAN)
9468 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9470 return adjust_address_nv (x, omode, offset);
9473 /* If X is a comparison operator, rewrite it in a new mode. This
9474 probably won't match, but may allow further simplifications. */
9475 else if (COMPARISON_P (x))
9476 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9478 /* If we couldn't simplify X any other way, just enclose it in a
9479 SUBREG. Normally, this SUBREG won't match, but some patterns may
9480 include an explicit SUBREG or we may simplify it further in combine. */
9481 else
9483 int offset = 0;
9484 rtx res;
9486 offset = subreg_lowpart_offset (omode, imode);
9487 if (imode == VOIDmode)
9489 imode = int_mode_for_mode (omode);
9490 x = gen_lowpart_common (imode, x);
9491 if (x == NULL)
9492 goto fail;
9494 res = simplify_gen_subreg (omode, x, imode, offset);
9495 if (res)
9496 return res;
9499 fail:
9500 return gen_rtx_CLOBBER (imode, const0_rtx);
9503 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9504 comparison code that will be tested.
9506 The result is a possibly different comparison code to use. *POP0 and
9507 *POP1 may be updated.
9509 It is possible that we might detect that a comparison is either always
9510 true or always false. However, we do not perform general constant
9511 folding in combine, so this knowledge isn't useful. Such tautologies
9512 should have been detected earlier. Hence we ignore all such cases. */
9514 static enum rtx_code
9515 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9517 rtx op0 = *pop0;
9518 rtx op1 = *pop1;
9519 rtx tem, tem1;
9520 int i;
9521 enum machine_mode mode, tmode;
9523 /* Try a few ways of applying the same transformation to both operands. */
9524 while (1)
9526 #ifndef WORD_REGISTER_OPERATIONS
9527 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9528 so check specially. */
9529 if (code != GTU && code != GEU && code != LTU && code != LEU
9530 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9531 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9532 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9533 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9534 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9535 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9536 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9537 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9538 && XEXP (op0, 1) == XEXP (op1, 1)
9539 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9540 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9541 && (INTVAL (XEXP (op0, 1))
9542 == (GET_MODE_BITSIZE (GET_MODE (op0))
9543 - (GET_MODE_BITSIZE
9544 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9546 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9547 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9549 #endif
9551 /* If both operands are the same constant shift, see if we can ignore the
9552 shift. We can if the shift is a rotate or if the bits shifted out of
9553 this shift are known to be zero for both inputs and if the type of
9554 comparison is compatible with the shift. */
9555 if (GET_CODE (op0) == GET_CODE (op1)
9556 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9557 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9558 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9559 && (code != GT && code != LT && code != GE && code != LE))
9560 || (GET_CODE (op0) == ASHIFTRT
9561 && (code != GTU && code != LTU
9562 && code != GEU && code != LEU)))
9563 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9564 && INTVAL (XEXP (op0, 1)) >= 0
9565 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9566 && XEXP (op0, 1) == XEXP (op1, 1))
9568 enum machine_mode mode = GET_MODE (op0);
9569 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9570 int shift_count = INTVAL (XEXP (op0, 1));
9572 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9573 mask &= (mask >> shift_count) << shift_count;
9574 else if (GET_CODE (op0) == ASHIFT)
9575 mask = (mask & (mask << shift_count)) >> shift_count;
9577 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9578 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9579 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9580 else
9581 break;
9584 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9585 SUBREGs are of the same mode, and, in both cases, the AND would
9586 be redundant if the comparison was done in the narrower mode,
9587 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9588 and the operand's possibly nonzero bits are 0xffffff01; in that case
9589 if we only care about QImode, we don't need the AND). This case
9590 occurs if the output mode of an scc insn is not SImode and
9591 STORE_FLAG_VALUE == 1 (e.g., the 386).
9593 Similarly, check for a case where the AND's are ZERO_EXTEND
9594 operations from some narrower mode even though a SUBREG is not
9595 present. */
9597 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9598 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9599 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9601 rtx inner_op0 = XEXP (op0, 0);
9602 rtx inner_op1 = XEXP (op1, 0);
9603 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9604 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9605 int changed = 0;
9607 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9608 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9609 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9610 && (GET_MODE (SUBREG_REG (inner_op0))
9611 == GET_MODE (SUBREG_REG (inner_op1)))
9612 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9613 <= HOST_BITS_PER_WIDE_INT)
9614 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9615 GET_MODE (SUBREG_REG (inner_op0)))))
9616 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9617 GET_MODE (SUBREG_REG (inner_op1))))))
9619 op0 = SUBREG_REG (inner_op0);
9620 op1 = SUBREG_REG (inner_op1);
9622 /* The resulting comparison is always unsigned since we masked
9623 off the original sign bit. */
9624 code = unsigned_condition (code);
9626 changed = 1;
9629 else if (c0 == c1)
9630 for (tmode = GET_CLASS_NARROWEST_MODE
9631 (GET_MODE_CLASS (GET_MODE (op0)));
9632 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9633 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9635 op0 = gen_lowpart (tmode, inner_op0);
9636 op1 = gen_lowpart (tmode, inner_op1);
9637 code = unsigned_condition (code);
9638 changed = 1;
9639 break;
9642 if (! changed)
9643 break;
9646 /* If both operands are NOT, we can strip off the outer operation
9647 and adjust the comparison code for swapped operands; similarly for
9648 NEG, except that this must be an equality comparison. */
9649 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9650 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9651 && (code == EQ || code == NE)))
9652 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9654 else
9655 break;
9658 /* If the first operand is a constant, swap the operands and adjust the
9659 comparison code appropriately, but don't do this if the second operand
9660 is already a constant integer. */
9661 if (swap_commutative_operands_p (op0, op1))
9663 tem = op0, op0 = op1, op1 = tem;
9664 code = swap_condition (code);
9667 /* We now enter a loop during which we will try to simplify the comparison.
9668 For the most part, we only are concerned with comparisons with zero,
9669 but some things may really be comparisons with zero but not start
9670 out looking that way. */
9672 while (GET_CODE (op1) == CONST_INT)
9674 enum machine_mode mode = GET_MODE (op0);
9675 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9676 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9677 int equality_comparison_p;
9678 int sign_bit_comparison_p;
9679 int unsigned_comparison_p;
9680 HOST_WIDE_INT const_op;
9682 /* We only want to handle integral modes. This catches VOIDmode,
9683 CCmode, and the floating-point modes. An exception is that we
9684 can handle VOIDmode if OP0 is a COMPARE or a comparison
9685 operation. */
9687 if (GET_MODE_CLASS (mode) != MODE_INT
9688 && ! (mode == VOIDmode
9689 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9690 break;
9692 /* Get the constant we are comparing against and turn off all bits
9693 not on in our mode. */
9694 const_op = INTVAL (op1);
9695 if (mode != VOIDmode)
9696 const_op = trunc_int_for_mode (const_op, mode);
9697 op1 = GEN_INT (const_op);
9699 /* If we are comparing against a constant power of two and the value
9700 being compared can only have that single bit nonzero (e.g., it was
9701 `and'ed with that bit), we can replace this with a comparison
9702 with zero. */
9703 if (const_op
9704 && (code == EQ || code == NE || code == GE || code == GEU
9705 || code == LT || code == LTU)
9706 && mode_width <= HOST_BITS_PER_WIDE_INT
9707 && exact_log2 (const_op) >= 0
9708 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9710 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9711 op1 = const0_rtx, const_op = 0;
9714 /* Similarly, if we are comparing a value known to be either -1 or
9715 0 with -1, change it to the opposite comparison against zero. */
9717 if (const_op == -1
9718 && (code == EQ || code == NE || code == GT || code == LE
9719 || code == GEU || code == LTU)
9720 && num_sign_bit_copies (op0, mode) == mode_width)
9722 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9723 op1 = const0_rtx, const_op = 0;
9726 /* Do some canonicalizations based on the comparison code. We prefer
9727 comparisons against zero and then prefer equality comparisons.
9728 If we can reduce the size of a constant, we will do that too. */
9730 switch (code)
9732 case LT:
9733 /* < C is equivalent to <= (C - 1) */
9734 if (const_op > 0)
9736 const_op -= 1;
9737 op1 = GEN_INT (const_op);
9738 code = LE;
9739 /* ... fall through to LE case below. */
9741 else
9742 break;
9744 case LE:
9745 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9746 if (const_op < 0)
9748 const_op += 1;
9749 op1 = GEN_INT (const_op);
9750 code = LT;
9753 /* If we are doing a <= 0 comparison on a value known to have
9754 a zero sign bit, we can replace this with == 0. */
9755 else if (const_op == 0
9756 && mode_width <= HOST_BITS_PER_WIDE_INT
9757 && (nonzero_bits (op0, mode)
9758 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9759 code = EQ;
9760 break;
9762 case GE:
9763 /* >= C is equivalent to > (C - 1). */
9764 if (const_op > 0)
9766 const_op -= 1;
9767 op1 = GEN_INT (const_op);
9768 code = GT;
9769 /* ... fall through to GT below. */
9771 else
9772 break;
9774 case GT:
9775 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9776 if (const_op < 0)
9778 const_op += 1;
9779 op1 = GEN_INT (const_op);
9780 code = GE;
9783 /* If we are doing a > 0 comparison on a value known to have
9784 a zero sign bit, we can replace this with != 0. */
9785 else if (const_op == 0
9786 && mode_width <= HOST_BITS_PER_WIDE_INT
9787 && (nonzero_bits (op0, mode)
9788 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9789 code = NE;
9790 break;
9792 case LTU:
9793 /* < C is equivalent to <= (C - 1). */
9794 if (const_op > 0)
9796 const_op -= 1;
9797 op1 = GEN_INT (const_op);
9798 code = LEU;
9799 /* ... fall through ... */
9802 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9803 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9804 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9806 const_op = 0, op1 = const0_rtx;
9807 code = GE;
9808 break;
9810 else
9811 break;
9813 case LEU:
9814 /* unsigned <= 0 is equivalent to == 0 */
9815 if (const_op == 0)
9816 code = EQ;
9818 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9819 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9820 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9822 const_op = 0, op1 = const0_rtx;
9823 code = GE;
9825 break;
9827 case GEU:
9828 /* >= C is equivalent to > (C - 1). */
9829 if (const_op > 1)
9831 const_op -= 1;
9832 op1 = GEN_INT (const_op);
9833 code = GTU;
9834 /* ... fall through ... */
9837 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9838 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9839 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9841 const_op = 0, op1 = const0_rtx;
9842 code = LT;
9843 break;
9845 else
9846 break;
9848 case GTU:
9849 /* unsigned > 0 is equivalent to != 0 */
9850 if (const_op == 0)
9851 code = NE;
9853 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9854 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9855 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9857 const_op = 0, op1 = const0_rtx;
9858 code = LT;
9860 break;
9862 default:
9863 break;
9866 /* Compute some predicates to simplify code below. */
9868 equality_comparison_p = (code == EQ || code == NE);
9869 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9870 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9871 || code == GEU);
9873 /* If this is a sign bit comparison and we can do arithmetic in
9874 MODE, say that we will only be needing the sign bit of OP0. */
9875 if (sign_bit_comparison_p
9876 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9877 op0 = force_to_mode (op0, mode,
9878 ((HOST_WIDE_INT) 1
9879 << (GET_MODE_BITSIZE (mode) - 1)),
9882 /* Now try cases based on the opcode of OP0. If none of the cases
9883 does a "continue", we exit this loop immediately after the
9884 switch. */
9886 switch (GET_CODE (op0))
9888 case ZERO_EXTRACT:
9889 /* If we are extracting a single bit from a variable position in
9890 a constant that has only a single bit set and are comparing it
9891 with zero, we can convert this into an equality comparison
9892 between the position and the location of the single bit. */
9893 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9894 have already reduced the shift count modulo the word size. */
9895 if (!SHIFT_COUNT_TRUNCATED
9896 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9897 && XEXP (op0, 1) == const1_rtx
9898 && equality_comparison_p && const_op == 0
9899 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9901 if (BITS_BIG_ENDIAN)
9903 enum machine_mode new_mode
9904 = mode_for_extraction (EP_extzv, 1);
9905 if (new_mode == MAX_MACHINE_MODE)
9906 i = BITS_PER_WORD - 1 - i;
9907 else
9909 mode = new_mode;
9910 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9914 op0 = XEXP (op0, 2);
9915 op1 = GEN_INT (i);
9916 const_op = i;
9918 /* Result is nonzero iff shift count is equal to I. */
9919 code = reverse_condition (code);
9920 continue;
9923 /* ... fall through ... */
9925 case SIGN_EXTRACT:
9926 tem = expand_compound_operation (op0);
9927 if (tem != op0)
9929 op0 = tem;
9930 continue;
9932 break;
9934 case NOT:
9935 /* If testing for equality, we can take the NOT of the constant. */
9936 if (equality_comparison_p
9937 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9939 op0 = XEXP (op0, 0);
9940 op1 = tem;
9941 continue;
9944 /* If just looking at the sign bit, reverse the sense of the
9945 comparison. */
9946 if (sign_bit_comparison_p)
9948 op0 = XEXP (op0, 0);
9949 code = (code == GE ? LT : GE);
9950 continue;
9952 break;
9954 case NEG:
9955 /* If testing for equality, we can take the NEG of the constant. */
9956 if (equality_comparison_p
9957 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9959 op0 = XEXP (op0, 0);
9960 op1 = tem;
9961 continue;
9964 /* The remaining cases only apply to comparisons with zero. */
9965 if (const_op != 0)
9966 break;
9968 /* When X is ABS or is known positive,
9969 (neg X) is < 0 if and only if X != 0. */
9971 if (sign_bit_comparison_p
9972 && (GET_CODE (XEXP (op0, 0)) == ABS
9973 || (mode_width <= HOST_BITS_PER_WIDE_INT
9974 && (nonzero_bits (XEXP (op0, 0), mode)
9975 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9977 op0 = XEXP (op0, 0);
9978 code = (code == LT ? NE : EQ);
9979 continue;
9982 /* If we have NEG of something whose two high-order bits are the
9983 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9984 if (num_sign_bit_copies (op0, mode) >= 2)
9986 op0 = XEXP (op0, 0);
9987 code = swap_condition (code);
9988 continue;
9990 break;
9992 case ROTATE:
9993 /* If we are testing equality and our count is a constant, we
9994 can perform the inverse operation on our RHS. */
9995 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9996 && (tem = simplify_binary_operation (ROTATERT, mode,
9997 op1, XEXP (op0, 1))) != 0)
9999 op0 = XEXP (op0, 0);
10000 op1 = tem;
10001 continue;
10004 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10005 a particular bit. Convert it to an AND of a constant of that
10006 bit. This will be converted into a ZERO_EXTRACT. */
10007 if (const_op == 0 && sign_bit_comparison_p
10008 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10009 && mode_width <= HOST_BITS_PER_WIDE_INT)
10011 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10012 ((HOST_WIDE_INT) 1
10013 << (mode_width - 1
10014 - INTVAL (XEXP (op0, 1)))));
10015 code = (code == LT ? NE : EQ);
10016 continue;
10019 /* Fall through. */
10021 case ABS:
10022 /* ABS is ignorable inside an equality comparison with zero. */
10023 if (const_op == 0 && equality_comparison_p)
10025 op0 = XEXP (op0, 0);
10026 continue;
10028 break;
10030 case SIGN_EXTEND:
10031 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10032 (compare FOO CONST) if CONST fits in FOO's mode and we
10033 are either testing inequality or have an unsigned
10034 comparison with ZERO_EXTEND or a signed comparison with
10035 SIGN_EXTEND. But don't do it if we don't have a compare
10036 insn of the given mode, since we'd have to revert it
10037 later on, and then we wouldn't know whether to sign- or
10038 zero-extend. */
10039 mode = GET_MODE (XEXP (op0, 0));
10040 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10041 && ! unsigned_comparison_p
10042 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10043 && ((unsigned HOST_WIDE_INT) const_op
10044 < (((unsigned HOST_WIDE_INT) 1
10045 << (GET_MODE_BITSIZE (mode) - 1))))
10046 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10048 op0 = XEXP (op0, 0);
10049 continue;
10051 break;
10053 case SUBREG:
10054 /* Check for the case where we are comparing A - C1 with C2, that is
10056 (subreg:MODE (plus (A) (-C1))) op (C2)
10058 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10059 comparison in the wider mode. One of the following two conditions
10060 must be true in order for this to be valid:
10062 1. The mode extension results in the same bit pattern being added
10063 on both sides and the comparison is equality or unsigned. As
10064 C2 has been truncated to fit in MODE, the pattern can only be
10065 all 0s or all 1s.
10067 2. The mode extension results in the sign bit being copied on
10068 each side.
10070 The difficulty here is that we have predicates for A but not for
10071 (A - C1) so we need to check that C1 is within proper bounds so
10072 as to perturbate A as little as possible. */
10074 if (mode_width <= HOST_BITS_PER_WIDE_INT
10075 && subreg_lowpart_p (op0)
10076 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10077 && GET_CODE (SUBREG_REG (op0)) == PLUS
10078 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10080 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10081 rtx a = XEXP (SUBREG_REG (op0), 0);
10082 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10084 if ((c1 > 0
10085 && (unsigned HOST_WIDE_INT) c1
10086 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10087 && (equality_comparison_p || unsigned_comparison_p)
10088 /* (A - C1) zero-extends if it is positive and sign-extends
10089 if it is negative, C2 both zero- and sign-extends. */
10090 && ((0 == (nonzero_bits (a, inner_mode)
10091 & ~GET_MODE_MASK (mode))
10092 && const_op >= 0)
10093 /* (A - C1) sign-extends if it is positive and 1-extends
10094 if it is negative, C2 both sign- and 1-extends. */
10095 || (num_sign_bit_copies (a, inner_mode)
10096 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10097 - mode_width)
10098 && const_op < 0)))
10099 || ((unsigned HOST_WIDE_INT) c1
10100 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10101 /* (A - C1) always sign-extends, like C2. */
10102 && num_sign_bit_copies (a, inner_mode)
10103 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10104 - (mode_width - 1))))
10106 op0 = SUBREG_REG (op0);
10107 continue;
10111 /* If the inner mode is narrower and we are extracting the low part,
10112 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10113 if (subreg_lowpart_p (op0)
10114 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10115 /* Fall through */ ;
10116 else
10117 break;
10119 /* ... fall through ... */
10121 case ZERO_EXTEND:
10122 mode = GET_MODE (XEXP (op0, 0));
10123 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10124 && (unsigned_comparison_p || equality_comparison_p)
10125 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10126 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10127 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10129 op0 = XEXP (op0, 0);
10130 continue;
10132 break;
10134 case PLUS:
10135 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10136 this for equality comparisons due to pathological cases involving
10137 overflows. */
10138 if (equality_comparison_p
10139 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10140 op1, XEXP (op0, 1))))
10142 op0 = XEXP (op0, 0);
10143 op1 = tem;
10144 continue;
10147 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10148 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10149 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10151 op0 = XEXP (XEXP (op0, 0), 0);
10152 code = (code == LT ? EQ : NE);
10153 continue;
10155 break;
10157 case MINUS:
10158 /* We used to optimize signed comparisons against zero, but that
10159 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10160 arrive here as equality comparisons, or (GEU, LTU) are
10161 optimized away. No need to special-case them. */
10163 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10164 (eq B (minus A C)), whichever simplifies. We can only do
10165 this for equality comparisons due to pathological cases involving
10166 overflows. */
10167 if (equality_comparison_p
10168 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10169 XEXP (op0, 1), op1)))
10171 op0 = XEXP (op0, 0);
10172 op1 = tem;
10173 continue;
10176 if (equality_comparison_p
10177 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10178 XEXP (op0, 0), op1)))
10180 op0 = XEXP (op0, 1);
10181 op1 = tem;
10182 continue;
10185 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10186 of bits in X minus 1, is one iff X > 0. */
10187 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10188 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10189 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10190 == mode_width - 1
10191 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10193 op0 = XEXP (op0, 1);
10194 code = (code == GE ? LE : GT);
10195 continue;
10197 break;
10199 case XOR:
10200 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10201 if C is zero or B is a constant. */
10202 if (equality_comparison_p
10203 && 0 != (tem = simplify_binary_operation (XOR, mode,
10204 XEXP (op0, 1), op1)))
10206 op0 = XEXP (op0, 0);
10207 op1 = tem;
10208 continue;
10210 break;
10212 case EQ: case NE:
10213 case UNEQ: case LTGT:
10214 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10215 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10216 case UNORDERED: case ORDERED:
10217 /* We can't do anything if OP0 is a condition code value, rather
10218 than an actual data value. */
10219 if (const_op != 0
10220 || CC0_P (XEXP (op0, 0))
10221 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10222 break;
10224 /* Get the two operands being compared. */
10225 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10226 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10227 else
10228 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10230 /* Check for the cases where we simply want the result of the
10231 earlier test or the opposite of that result. */
10232 if (code == NE || code == EQ
10233 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10234 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10235 && (STORE_FLAG_VALUE
10236 & (((HOST_WIDE_INT) 1
10237 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10238 && (code == LT || code == GE)))
10240 enum rtx_code new_code;
10241 if (code == LT || code == NE)
10242 new_code = GET_CODE (op0);
10243 else
10244 new_code = reversed_comparison_code (op0, NULL);
10246 if (new_code != UNKNOWN)
10248 code = new_code;
10249 op0 = tem;
10250 op1 = tem1;
10251 continue;
10254 break;
10256 case IOR:
10257 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10258 iff X <= 0. */
10259 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10260 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10261 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10263 op0 = XEXP (op0, 1);
10264 code = (code == GE ? GT : LE);
10265 continue;
10267 break;
10269 case AND:
10270 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10271 will be converted to a ZERO_EXTRACT later. */
10272 if (const_op == 0 && equality_comparison_p
10273 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10274 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10276 op0 = simplify_and_const_int
10277 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10278 XEXP (op0, 1),
10279 XEXP (XEXP (op0, 0), 1)),
10280 (HOST_WIDE_INT) 1);
10281 continue;
10284 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10285 zero and X is a comparison and C1 and C2 describe only bits set
10286 in STORE_FLAG_VALUE, we can compare with X. */
10287 if (const_op == 0 && equality_comparison_p
10288 && mode_width <= HOST_BITS_PER_WIDE_INT
10289 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10290 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10291 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10292 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10293 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10295 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10296 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10297 if ((~STORE_FLAG_VALUE & mask) == 0
10298 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10299 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10300 && COMPARISON_P (tem))))
10302 op0 = XEXP (XEXP (op0, 0), 0);
10303 continue;
10307 /* If we are doing an equality comparison of an AND of a bit equal
10308 to the sign bit, replace this with a LT or GE comparison of
10309 the underlying value. */
10310 if (equality_comparison_p
10311 && const_op == 0
10312 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10313 && mode_width <= HOST_BITS_PER_WIDE_INT
10314 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10315 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10317 op0 = XEXP (op0, 0);
10318 code = (code == EQ ? GE : LT);
10319 continue;
10322 /* If this AND operation is really a ZERO_EXTEND from a narrower
10323 mode, the constant fits within that mode, and this is either an
10324 equality or unsigned comparison, try to do this comparison in
10325 the narrower mode.
10327 Note that in:
10329 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10330 -> (ne:DI (reg:SI 4) (const_int 0))
10332 unless TRULY_NOOP_TRUNCATION allows it or the register is
10333 known to hold a value of the required mode the
10334 transformation is invalid. */
10335 if ((equality_comparison_p || unsigned_comparison_p)
10336 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10337 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10338 & GET_MODE_MASK (mode))
10339 + 1)) >= 0
10340 && const_op >> i == 0
10341 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10342 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10343 GET_MODE_BITSIZE (GET_MODE (op0)))
10344 || (REG_P (XEXP (op0, 0))
10345 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10347 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10348 continue;
10351 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10352 fits in both M1 and M2 and the SUBREG is either paradoxical
10353 or represents the low part, permute the SUBREG and the AND
10354 and try again. */
10355 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10357 unsigned HOST_WIDE_INT c1;
10358 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10359 /* Require an integral mode, to avoid creating something like
10360 (AND:SF ...). */
10361 if (SCALAR_INT_MODE_P (tmode)
10362 /* It is unsafe to commute the AND into the SUBREG if the
10363 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10364 not defined. As originally written the upper bits
10365 have a defined value due to the AND operation.
10366 However, if we commute the AND inside the SUBREG then
10367 they no longer have defined values and the meaning of
10368 the code has been changed. */
10369 && (0
10370 #ifdef WORD_REGISTER_OPERATIONS
10371 || (mode_width > GET_MODE_BITSIZE (tmode)
10372 && mode_width <= BITS_PER_WORD)
10373 #endif
10374 || (mode_width <= GET_MODE_BITSIZE (tmode)
10375 && subreg_lowpart_p (XEXP (op0, 0))))
10376 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10377 && mode_width <= HOST_BITS_PER_WIDE_INT
10378 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10379 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10380 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10381 && c1 != mask
10382 && c1 != GET_MODE_MASK (tmode))
10384 op0 = simplify_gen_binary (AND, tmode,
10385 SUBREG_REG (XEXP (op0, 0)),
10386 gen_int_mode (c1, tmode));
10387 op0 = gen_lowpart (mode, op0);
10388 continue;
10392 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10393 if (const_op == 0 && equality_comparison_p
10394 && XEXP (op0, 1) == const1_rtx
10395 && GET_CODE (XEXP (op0, 0)) == NOT)
10397 op0 = simplify_and_const_int
10398 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10399 code = (code == NE ? EQ : NE);
10400 continue;
10403 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10404 (eq (and (lshiftrt X) 1) 0).
10405 Also handle the case where (not X) is expressed using xor. */
10406 if (const_op == 0 && equality_comparison_p
10407 && XEXP (op0, 1) == const1_rtx
10408 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10410 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10411 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10413 if (GET_CODE (shift_op) == NOT
10414 || (GET_CODE (shift_op) == XOR
10415 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10416 && GET_CODE (shift_count) == CONST_INT
10417 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10418 && (INTVAL (XEXP (shift_op, 1))
10419 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10421 op0 = simplify_and_const_int
10422 (NULL_RTX, mode,
10423 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10424 (HOST_WIDE_INT) 1);
10425 code = (code == NE ? EQ : NE);
10426 continue;
10429 break;
10431 case ASHIFT:
10432 /* If we have (compare (ashift FOO N) (const_int C)) and
10433 the high order N bits of FOO (N+1 if an inequality comparison)
10434 are known to be zero, we can do this by comparing FOO with C
10435 shifted right N bits so long as the low-order N bits of C are
10436 zero. */
10437 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10438 && INTVAL (XEXP (op0, 1)) >= 0
10439 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10440 < HOST_BITS_PER_WIDE_INT)
10441 && ((const_op
10442 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10443 && mode_width <= HOST_BITS_PER_WIDE_INT
10444 && (nonzero_bits (XEXP (op0, 0), mode)
10445 & ~(mask >> (INTVAL (XEXP (op0, 1))
10446 + ! equality_comparison_p))) == 0)
10448 /* We must perform a logical shift, not an arithmetic one,
10449 as we want the top N bits of C to be zero. */
10450 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10452 temp >>= INTVAL (XEXP (op0, 1));
10453 op1 = gen_int_mode (temp, mode);
10454 op0 = XEXP (op0, 0);
10455 continue;
10458 /* If we are doing a sign bit comparison, it means we are testing
10459 a particular bit. Convert it to the appropriate AND. */
10460 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10461 && mode_width <= HOST_BITS_PER_WIDE_INT)
10463 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10464 ((HOST_WIDE_INT) 1
10465 << (mode_width - 1
10466 - INTVAL (XEXP (op0, 1)))));
10467 code = (code == LT ? NE : EQ);
10468 continue;
10471 /* If this an equality comparison with zero and we are shifting
10472 the low bit to the sign bit, we can convert this to an AND of the
10473 low-order bit. */
10474 if (const_op == 0 && equality_comparison_p
10475 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10477 == mode_width - 1)
10479 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10480 (HOST_WIDE_INT) 1);
10481 continue;
10483 break;
10485 case ASHIFTRT:
10486 /* If this is an equality comparison with zero, we can do this
10487 as a logical shift, which might be much simpler. */
10488 if (equality_comparison_p && const_op == 0
10489 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10491 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10492 XEXP (op0, 0),
10493 INTVAL (XEXP (op0, 1)));
10494 continue;
10497 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10498 do the comparison in a narrower mode. */
10499 if (! unsigned_comparison_p
10500 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10501 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10502 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10503 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10504 MODE_INT, 1)) != BLKmode
10505 && (((unsigned HOST_WIDE_INT) const_op
10506 + (GET_MODE_MASK (tmode) >> 1) + 1)
10507 <= GET_MODE_MASK (tmode)))
10509 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10510 continue;
10513 /* Likewise if OP0 is a PLUS of a sign extension with a
10514 constant, which is usually represented with the PLUS
10515 between the shifts. */
10516 if (! unsigned_comparison_p
10517 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10518 && GET_CODE (XEXP (op0, 0)) == PLUS
10519 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10520 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10521 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10522 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10523 MODE_INT, 1)) != BLKmode
10524 && (((unsigned HOST_WIDE_INT) const_op
10525 + (GET_MODE_MASK (tmode) >> 1) + 1)
10526 <= GET_MODE_MASK (tmode)))
10528 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10529 rtx add_const = XEXP (XEXP (op0, 0), 1);
10530 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10531 add_const, XEXP (op0, 1));
10533 op0 = simplify_gen_binary (PLUS, tmode,
10534 gen_lowpart (tmode, inner),
10535 new_const);
10536 continue;
10539 /* ... fall through ... */
10540 case LSHIFTRT:
10541 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10542 the low order N bits of FOO are known to be zero, we can do this
10543 by comparing FOO with C shifted left N bits so long as no
10544 overflow occurs. */
10545 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10546 && INTVAL (XEXP (op0, 1)) >= 0
10547 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10548 && mode_width <= HOST_BITS_PER_WIDE_INT
10549 && (nonzero_bits (XEXP (op0, 0), mode)
10550 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10551 && (((unsigned HOST_WIDE_INT) const_op
10552 + (GET_CODE (op0) != LSHIFTRT
10553 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10554 + 1)
10555 : 0))
10556 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10558 /* If the shift was logical, then we must make the condition
10559 unsigned. */
10560 if (GET_CODE (op0) == LSHIFTRT)
10561 code = unsigned_condition (code);
10563 const_op <<= INTVAL (XEXP (op0, 1));
10564 op1 = GEN_INT (const_op);
10565 op0 = XEXP (op0, 0);
10566 continue;
10569 /* If we are using this shift to extract just the sign bit, we
10570 can replace this with an LT or GE comparison. */
10571 if (const_op == 0
10572 && (equality_comparison_p || sign_bit_comparison_p)
10573 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10574 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10575 == mode_width - 1)
10577 op0 = XEXP (op0, 0);
10578 code = (code == NE || code == GT ? LT : GE);
10579 continue;
10581 break;
10583 default:
10584 break;
10587 break;
10590 /* Now make any compound operations involved in this comparison. Then,
10591 check for an outmost SUBREG on OP0 that is not doing anything or is
10592 paradoxical. The latter transformation must only be performed when
10593 it is known that the "extra" bits will be the same in op0 and op1 or
10594 that they don't matter. There are three cases to consider:
10596 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10597 care bits and we can assume they have any convenient value. So
10598 making the transformation is safe.
10600 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10601 In this case the upper bits of op0 are undefined. We should not make
10602 the simplification in that case as we do not know the contents of
10603 those bits.
10605 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10606 UNKNOWN. In that case we know those bits are zeros or ones. We must
10607 also be sure that they are the same as the upper bits of op1.
10609 We can never remove a SUBREG for a non-equality comparison because
10610 the sign bit is in a different place in the underlying object. */
10612 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10613 op1 = make_compound_operation (op1, SET);
10615 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10616 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10617 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10618 && (code == NE || code == EQ))
10620 if (GET_MODE_SIZE (GET_MODE (op0))
10621 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10623 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10624 implemented. */
10625 if (REG_P (SUBREG_REG (op0)))
10627 op0 = SUBREG_REG (op0);
10628 op1 = gen_lowpart (GET_MODE (op0), op1);
10631 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10632 <= HOST_BITS_PER_WIDE_INT)
10633 && (nonzero_bits (SUBREG_REG (op0),
10634 GET_MODE (SUBREG_REG (op0)))
10635 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10637 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10639 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10640 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10641 op0 = SUBREG_REG (op0), op1 = tem;
10645 /* We now do the opposite procedure: Some machines don't have compare
10646 insns in all modes. If OP0's mode is an integer mode smaller than a
10647 word and we can't do a compare in that mode, see if there is a larger
10648 mode for which we can do the compare. There are a number of cases in
10649 which we can use the wider mode. */
10651 mode = GET_MODE (op0);
10652 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10653 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10654 && ! have_insn_for (COMPARE, mode))
10655 for (tmode = GET_MODE_WIDER_MODE (mode);
10656 (tmode != VOIDmode
10657 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10658 tmode = GET_MODE_WIDER_MODE (tmode))
10659 if (have_insn_for (COMPARE, tmode))
10661 int zero_extended;
10663 /* If the only nonzero bits in OP0 and OP1 are those in the
10664 narrower mode and this is an equality or unsigned comparison,
10665 we can use the wider mode. Similarly for sign-extended
10666 values, in which case it is true for all comparisons. */
10667 zero_extended = ((code == EQ || code == NE
10668 || code == GEU || code == GTU
10669 || code == LEU || code == LTU)
10670 && (nonzero_bits (op0, tmode)
10671 & ~GET_MODE_MASK (mode)) == 0
10672 && ((GET_CODE (op1) == CONST_INT
10673 || (nonzero_bits (op1, tmode)
10674 & ~GET_MODE_MASK (mode)) == 0)));
10676 if (zero_extended
10677 || ((num_sign_bit_copies (op0, tmode)
10678 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10679 - GET_MODE_BITSIZE (mode)))
10680 && (num_sign_bit_copies (op1, tmode)
10681 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10682 - GET_MODE_BITSIZE (mode)))))
10684 /* If OP0 is an AND and we don't have an AND in MODE either,
10685 make a new AND in the proper mode. */
10686 if (GET_CODE (op0) == AND
10687 && !have_insn_for (AND, mode))
10688 op0 = simplify_gen_binary (AND, tmode,
10689 gen_lowpart (tmode,
10690 XEXP (op0, 0)),
10691 gen_lowpart (tmode,
10692 XEXP (op0, 1)));
10694 op0 = gen_lowpart (tmode, op0);
10695 if (zero_extended && GET_CODE (op1) == CONST_INT)
10696 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10697 op1 = gen_lowpart (tmode, op1);
10698 break;
10701 /* If this is a test for negative, we can make an explicit
10702 test of the sign bit. */
10704 if (op1 == const0_rtx && (code == LT || code == GE)
10705 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10707 op0 = simplify_gen_binary (AND, tmode,
10708 gen_lowpart (tmode, op0),
10709 GEN_INT ((HOST_WIDE_INT) 1
10710 << (GET_MODE_BITSIZE (mode)
10711 - 1)));
10712 code = (code == LT) ? NE : EQ;
10713 break;
10717 #ifdef CANONICALIZE_COMPARISON
10718 /* If this machine only supports a subset of valid comparisons, see if we
10719 can convert an unsupported one into a supported one. */
10720 CANONICALIZE_COMPARISON (code, op0, op1);
10721 #endif
10723 *pop0 = op0;
10724 *pop1 = op1;
10726 return code;
10729 /* Utility function for record_value_for_reg. Count number of
10730 rtxs in X. */
10731 static int
10732 count_rtxs (rtx x)
10734 enum rtx_code code = GET_CODE (x);
10735 const char *fmt;
10736 int i, ret = 1;
10738 if (GET_RTX_CLASS (code) == '2'
10739 || GET_RTX_CLASS (code) == 'c')
10741 rtx x0 = XEXP (x, 0);
10742 rtx x1 = XEXP (x, 1);
10744 if (x0 == x1)
10745 return 1 + 2 * count_rtxs (x0);
10747 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10748 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10749 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10750 return 2 + 2 * count_rtxs (x0)
10751 + count_rtxs (x == XEXP (x1, 0)
10752 ? XEXP (x1, 1) : XEXP (x1, 0));
10754 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10755 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10756 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10757 return 2 + 2 * count_rtxs (x1)
10758 + count_rtxs (x == XEXP (x0, 0)
10759 ? XEXP (x0, 1) : XEXP (x0, 0));
10762 fmt = GET_RTX_FORMAT (code);
10763 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10764 if (fmt[i] == 'e')
10765 ret += count_rtxs (XEXP (x, i));
10767 return ret;
10770 /* Utility function for following routine. Called when X is part of a value
10771 being stored into last_set_value. Sets last_set_table_tick
10772 for each register mentioned. Similar to mention_regs in cse.c */
10774 static void
10775 update_table_tick (rtx x)
10777 enum rtx_code code = GET_CODE (x);
10778 const char *fmt = GET_RTX_FORMAT (code);
10779 int i;
10781 if (code == REG)
10783 unsigned int regno = REGNO (x);
10784 unsigned int endregno
10785 = regno + (regno < FIRST_PSEUDO_REGISTER
10786 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10787 unsigned int r;
10789 for (r = regno; r < endregno; r++)
10790 reg_stat[r].last_set_table_tick = label_tick;
10792 return;
10795 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10796 /* Note that we can't have an "E" in values stored; see
10797 get_last_value_validate. */
10798 if (fmt[i] == 'e')
10800 /* Check for identical subexpressions. If x contains
10801 identical subexpression we only have to traverse one of
10802 them. */
10803 if (i == 0 && ARITHMETIC_P (x))
10805 /* Note that at this point x1 has already been
10806 processed. */
10807 rtx x0 = XEXP (x, 0);
10808 rtx x1 = XEXP (x, 1);
10810 /* If x0 and x1 are identical then there is no need to
10811 process x0. */
10812 if (x0 == x1)
10813 break;
10815 /* If x0 is identical to a subexpression of x1 then while
10816 processing x1, x0 has already been processed. Thus we
10817 are done with x. */
10818 if (ARITHMETIC_P (x1)
10819 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10820 break;
10822 /* If x1 is identical to a subexpression of x0 then we
10823 still have to process the rest of x0. */
10824 if (ARITHMETIC_P (x0)
10825 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10827 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10828 break;
10832 update_table_tick (XEXP (x, i));
10836 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10837 are saying that the register is clobbered and we no longer know its
10838 value. If INSN is zero, don't update reg_stat[].last_set; this is
10839 only permitted with VALUE also zero and is used to invalidate the
10840 register. */
10842 static void
10843 record_value_for_reg (rtx reg, rtx insn, rtx value)
10845 unsigned int regno = REGNO (reg);
10846 unsigned int endregno
10847 = regno + (regno < FIRST_PSEUDO_REGISTER
10848 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10849 unsigned int i;
10851 /* If VALUE contains REG and we have a previous value for REG, substitute
10852 the previous value. */
10853 if (value && insn && reg_overlap_mentioned_p (reg, value))
10855 rtx tem;
10857 /* Set things up so get_last_value is allowed to see anything set up to
10858 our insn. */
10859 subst_low_cuid = INSN_CUID (insn);
10860 tem = get_last_value (reg);
10862 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10863 it isn't going to be useful and will take a lot of time to process,
10864 so just use the CLOBBER. */
10866 if (tem)
10868 if (ARITHMETIC_P (tem)
10869 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10870 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10871 tem = XEXP (tem, 0);
10872 else if (count_occurrences (value, reg, 1) >= 2)
10874 /* If there are two or more occurrences of REG in VALUE,
10875 prevent the value from growing too much. */
10876 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10877 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10880 value = replace_rtx (copy_rtx (value), reg, tem);
10884 /* For each register modified, show we don't know its value, that
10885 we don't know about its bitwise content, that its value has been
10886 updated, and that we don't know the location of the death of the
10887 register. */
10888 for (i = regno; i < endregno; i++)
10890 if (insn)
10891 reg_stat[i].last_set = insn;
10893 reg_stat[i].last_set_value = 0;
10894 reg_stat[i].last_set_mode = 0;
10895 reg_stat[i].last_set_nonzero_bits = 0;
10896 reg_stat[i].last_set_sign_bit_copies = 0;
10897 reg_stat[i].last_death = 0;
10898 reg_stat[i].truncated_to_mode = 0;
10901 /* Mark registers that are being referenced in this value. */
10902 if (value)
10903 update_table_tick (value);
10905 /* Now update the status of each register being set.
10906 If someone is using this register in this block, set this register
10907 to invalid since we will get confused between the two lives in this
10908 basic block. This makes using this register always invalid. In cse, we
10909 scan the table to invalidate all entries using this register, but this
10910 is too much work for us. */
10912 for (i = regno; i < endregno; i++)
10914 reg_stat[i].last_set_label = label_tick;
10915 if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
10916 reg_stat[i].last_set_invalid = 1;
10917 else
10918 reg_stat[i].last_set_invalid = 0;
10921 /* The value being assigned might refer to X (like in "x++;"). In that
10922 case, we must replace it with (clobber (const_int 0)) to prevent
10923 infinite loops. */
10924 if (value && ! get_last_value_validate (&value, insn,
10925 reg_stat[regno].last_set_label, 0))
10927 value = copy_rtx (value);
10928 if (! get_last_value_validate (&value, insn,
10929 reg_stat[regno].last_set_label, 1))
10930 value = 0;
10933 /* For the main register being modified, update the value, the mode, the
10934 nonzero bits, and the number of sign bit copies. */
10936 reg_stat[regno].last_set_value = value;
10938 if (value)
10940 enum machine_mode mode = GET_MODE (reg);
10941 subst_low_cuid = INSN_CUID (insn);
10942 reg_stat[regno].last_set_mode = mode;
10943 if (GET_MODE_CLASS (mode) == MODE_INT
10944 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10945 mode = nonzero_bits_mode;
10946 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10947 reg_stat[regno].last_set_sign_bit_copies
10948 = num_sign_bit_copies (value, GET_MODE (reg));
10952 /* Called via note_stores from record_dead_and_set_regs to handle one
10953 SET or CLOBBER in an insn. DATA is the instruction in which the
10954 set is occurring. */
10956 static void
10957 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10959 rtx record_dead_insn = (rtx) data;
10961 if (GET_CODE (dest) == SUBREG)
10962 dest = SUBREG_REG (dest);
10964 if (!record_dead_insn)
10966 if (REG_P (dest))
10967 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
10968 return;
10971 if (REG_P (dest))
10973 /* If we are setting the whole register, we know its value. Otherwise
10974 show that we don't know the value. We can handle SUBREG in
10975 some cases. */
10976 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10977 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10978 else if (GET_CODE (setter) == SET
10979 && GET_CODE (SET_DEST (setter)) == SUBREG
10980 && SUBREG_REG (SET_DEST (setter)) == dest
10981 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10982 && subreg_lowpart_p (SET_DEST (setter)))
10983 record_value_for_reg (dest, record_dead_insn,
10984 gen_lowpart (GET_MODE (dest),
10985 SET_SRC (setter)));
10986 else
10987 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10989 else if (MEM_P (dest)
10990 /* Ignore pushes, they clobber nothing. */
10991 && ! push_operand (dest, GET_MODE (dest)))
10992 mem_last_set = INSN_CUID (record_dead_insn);
10995 /* Update the records of when each REG was most recently set or killed
10996 for the things done by INSN. This is the last thing done in processing
10997 INSN in the combiner loop.
10999 We update reg_stat[], in particular fields last_set, last_set_value,
11000 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11001 last_death, and also the similar information mem_last_set (which insn
11002 most recently modified memory) and last_call_cuid (which insn was the
11003 most recent subroutine call). */
11005 static void
11006 record_dead_and_set_regs (rtx insn)
11008 rtx link;
11009 unsigned int i;
11011 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11013 if (REG_NOTE_KIND (link) == REG_DEAD
11014 && REG_P (XEXP (link, 0)))
11016 unsigned int regno = REGNO (XEXP (link, 0));
11017 unsigned int endregno
11018 = regno + (regno < FIRST_PSEUDO_REGISTER
11019 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11020 : 1);
11022 for (i = regno; i < endregno; i++)
11023 reg_stat[i].last_death = insn;
11025 else if (REG_NOTE_KIND (link) == REG_INC)
11026 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11029 if (CALL_P (insn))
11031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11032 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11034 reg_stat[i].last_set_value = 0;
11035 reg_stat[i].last_set_mode = 0;
11036 reg_stat[i].last_set_nonzero_bits = 0;
11037 reg_stat[i].last_set_sign_bit_copies = 0;
11038 reg_stat[i].last_death = 0;
11039 reg_stat[i].truncated_to_mode = 0;
11042 last_call_cuid = mem_last_set = INSN_CUID (insn);
11044 /* We can't combine into a call pattern. Remember, though, that
11045 the return value register is set at this CUID. We could
11046 still replace a register with the return value from the
11047 wrong subroutine call! */
11048 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11050 else
11051 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11054 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11055 register present in the SUBREG, so for each such SUBREG go back and
11056 adjust nonzero and sign bit information of the registers that are
11057 known to have some zero/sign bits set.
11059 This is needed because when combine blows the SUBREGs away, the
11060 information on zero/sign bits is lost and further combines can be
11061 missed because of that. */
11063 static void
11064 record_promoted_value (rtx insn, rtx subreg)
11066 rtx links, set;
11067 unsigned int regno = REGNO (SUBREG_REG (subreg));
11068 enum machine_mode mode = GET_MODE (subreg);
11070 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11071 return;
11073 for (links = LOG_LINKS (insn); links;)
11075 insn = XEXP (links, 0);
11076 set = single_set (insn);
11078 if (! set || !REG_P (SET_DEST (set))
11079 || REGNO (SET_DEST (set)) != regno
11080 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11082 links = XEXP (links, 1);
11083 continue;
11086 if (reg_stat[regno].last_set == insn)
11088 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11089 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11092 if (REG_P (SET_SRC (set)))
11094 regno = REGNO (SET_SRC (set));
11095 links = LOG_LINKS (insn);
11097 else
11098 break;
11102 /* Check if X, a register, is known to contain a value already
11103 truncated to MODE. In this case we can use a subreg to refer to
11104 the truncated value even though in the generic case we would need
11105 an explicit truncation. */
11107 static bool
11108 reg_truncated_to_mode (enum machine_mode mode, rtx x)
11110 enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11112 if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11113 return false;
11114 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11115 return true;
11116 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11117 GET_MODE_BITSIZE (truncated)))
11118 return true;
11119 return false;
11122 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11123 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11124 a truncate into a subreg using this information. */
11126 static void
11127 record_truncated_value (rtx x)
11129 enum machine_mode truncated_mode;
11131 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11133 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11134 truncated_mode = GET_MODE (x);
11136 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11137 return;
11139 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11140 GET_MODE_BITSIZE (original_mode)))
11141 return;
11143 x = SUBREG_REG (x);
11145 /* ??? For hard-regs we now record everything. We might be able to
11146 optimize this using last_set_mode. */
11147 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11148 truncated_mode = GET_MODE (x);
11149 else
11150 return;
11152 if (reg_stat[REGNO (x)].truncated_to_mode == 0
11153 || reg_stat[REGNO (x)].truncation_label < label_tick
11154 || (GET_MODE_SIZE (truncated_mode)
11155 < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11157 reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11158 reg_stat[REGNO (x)].truncation_label = label_tick;
11162 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11163 found, note what it implies to the registers used in it. */
11165 static void
11166 check_conversions (rtx insn, rtx x)
11168 if (GET_CODE (x) == SUBREG || REG_P (x))
11170 if (GET_CODE (x) == SUBREG
11171 && SUBREG_PROMOTED_VAR_P (x)
11172 && REG_P (SUBREG_REG (x)))
11173 record_promoted_value (insn, x);
11175 record_truncated_value (x);
11177 else
11179 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11180 int i, j;
11182 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11183 switch (format[i])
11185 case 'e':
11186 check_conversions (insn, XEXP (x, i));
11187 break;
11188 case 'V':
11189 case 'E':
11190 if (XVEC (x, i) != 0)
11191 for (j = 0; j < XVECLEN (x, i); j++)
11192 check_conversions (insn, XVECEXP (x, i, j));
11193 break;
11198 /* Utility routine for the following function. Verify that all the registers
11199 mentioned in *LOC are valid when *LOC was part of a value set when
11200 label_tick == TICK. Return 0 if some are not.
11202 If REPLACE is nonzero, replace the invalid reference with
11203 (clobber (const_int 0)) and return 1. This replacement is useful because
11204 we often can get useful information about the form of a value (e.g., if
11205 it was produced by a shift that always produces -1 or 0) even though
11206 we don't know exactly what registers it was produced from. */
11208 static int
11209 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11211 rtx x = *loc;
11212 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11213 int len = GET_RTX_LENGTH (GET_CODE (x));
11214 int i;
11216 if (REG_P (x))
11218 unsigned int regno = REGNO (x);
11219 unsigned int endregno
11220 = regno + (regno < FIRST_PSEUDO_REGISTER
11221 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11222 unsigned int j;
11224 for (j = regno; j < endregno; j++)
11225 if (reg_stat[j].last_set_invalid
11226 /* If this is a pseudo-register that was only set once and not
11227 live at the beginning of the function, it is always valid. */
11228 || (! (regno >= FIRST_PSEUDO_REGISTER
11229 && REG_N_SETS (regno) == 1
11230 && (! REGNO_REG_SET_P
11231 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11232 regno)))
11233 && reg_stat[j].last_set_label > tick))
11235 if (replace)
11236 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11237 return replace;
11240 return 1;
11242 /* If this is a memory reference, make sure that there were
11243 no stores after it that might have clobbered the value. We don't
11244 have alias info, so we assume any store invalidates it. */
11245 else if (MEM_P (x) && !MEM_READONLY_P (x)
11246 && INSN_CUID (insn) <= mem_last_set)
11248 if (replace)
11249 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11250 return replace;
11253 for (i = 0; i < len; i++)
11255 if (fmt[i] == 'e')
11257 /* Check for identical subexpressions. If x contains
11258 identical subexpression we only have to traverse one of
11259 them. */
11260 if (i == 1 && ARITHMETIC_P (x))
11262 /* Note that at this point x0 has already been checked
11263 and found valid. */
11264 rtx x0 = XEXP (x, 0);
11265 rtx x1 = XEXP (x, 1);
11267 /* If x0 and x1 are identical then x is also valid. */
11268 if (x0 == x1)
11269 return 1;
11271 /* If x1 is identical to a subexpression of x0 then
11272 while checking x0, x1 has already been checked. Thus
11273 it is valid and so as x. */
11274 if (ARITHMETIC_P (x0)
11275 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11276 return 1;
11278 /* If x0 is identical to a subexpression of x1 then x is
11279 valid iff the rest of x1 is valid. */
11280 if (ARITHMETIC_P (x1)
11281 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11282 return
11283 get_last_value_validate (&XEXP (x1,
11284 x0 == XEXP (x1, 0) ? 1 : 0),
11285 insn, tick, replace);
11288 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11289 replace) == 0)
11290 return 0;
11292 /* Don't bother with these. They shouldn't occur anyway. */
11293 else if (fmt[i] == 'E')
11294 return 0;
11297 /* If we haven't found a reason for it to be invalid, it is valid. */
11298 return 1;
11301 /* Get the last value assigned to X, if known. Some registers
11302 in the value may be replaced with (clobber (const_int 0)) if their value
11303 is known longer known reliably. */
11305 static rtx
11306 get_last_value (rtx x)
11308 unsigned int regno;
11309 rtx value;
11311 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11312 then convert it to the desired mode. If this is a paradoxical SUBREG,
11313 we cannot predict what values the "extra" bits might have. */
11314 if (GET_CODE (x) == SUBREG
11315 && subreg_lowpart_p (x)
11316 && (GET_MODE_SIZE (GET_MODE (x))
11317 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11318 && (value = get_last_value (SUBREG_REG (x))) != 0)
11319 return gen_lowpart (GET_MODE (x), value);
11321 if (!REG_P (x))
11322 return 0;
11324 regno = REGNO (x);
11325 value = reg_stat[regno].last_set_value;
11327 /* If we don't have a value, or if it isn't for this basic block and
11328 it's either a hard register, set more than once, or it's a live
11329 at the beginning of the function, return 0.
11331 Because if it's not live at the beginning of the function then the reg
11332 is always set before being used (is never used without being set).
11333 And, if it's set only once, and it's always set before use, then all
11334 uses must have the same last value, even if it's not from this basic
11335 block. */
11337 if (value == 0
11338 || (reg_stat[regno].last_set_label != label_tick
11339 && (regno < FIRST_PSEUDO_REGISTER
11340 || REG_N_SETS (regno) != 1
11341 || (REGNO_REG_SET_P
11342 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11343 regno)))))
11344 return 0;
11346 /* If the value was set in a later insn than the ones we are processing,
11347 we can't use it even if the register was only set once. */
11348 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11349 return 0;
11351 /* If the value has all its registers valid, return it. */
11352 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11353 reg_stat[regno].last_set_label, 0))
11354 return value;
11356 /* Otherwise, make a copy and replace any invalid register with
11357 (clobber (const_int 0)). If that fails for some reason, return 0. */
11359 value = copy_rtx (value);
11360 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11361 reg_stat[regno].last_set_label, 1))
11362 return value;
11364 return 0;
11367 /* Return nonzero if expression X refers to a REG or to memory
11368 that is set in an instruction more recent than FROM_CUID. */
11370 static int
11371 use_crosses_set_p (rtx x, int from_cuid)
11373 const char *fmt;
11374 int i;
11375 enum rtx_code code = GET_CODE (x);
11377 if (code == REG)
11379 unsigned int regno = REGNO (x);
11380 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11381 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11383 #ifdef PUSH_ROUNDING
11384 /* Don't allow uses of the stack pointer to be moved,
11385 because we don't know whether the move crosses a push insn. */
11386 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11387 return 1;
11388 #endif
11389 for (; regno < endreg; regno++)
11390 if (reg_stat[regno].last_set
11391 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11392 return 1;
11393 return 0;
11396 if (code == MEM && mem_last_set > from_cuid)
11397 return 1;
11399 fmt = GET_RTX_FORMAT (code);
11401 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11403 if (fmt[i] == 'E')
11405 int j;
11406 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11407 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11408 return 1;
11410 else if (fmt[i] == 'e'
11411 && use_crosses_set_p (XEXP (x, i), from_cuid))
11412 return 1;
11414 return 0;
11417 /* Define three variables used for communication between the following
11418 routines. */
11420 static unsigned int reg_dead_regno, reg_dead_endregno;
11421 static int reg_dead_flag;
11423 /* Function called via note_stores from reg_dead_at_p.
11425 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11426 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11428 static void
11429 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11431 unsigned int regno, endregno;
11433 if (!REG_P (dest))
11434 return;
11436 regno = REGNO (dest);
11437 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11438 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11440 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11441 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11444 /* Return nonzero if REG is known to be dead at INSN.
11446 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11447 referencing REG, it is dead. If we hit a SET referencing REG, it is
11448 live. Otherwise, see if it is live or dead at the start of the basic
11449 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11450 must be assumed to be always live. */
11452 static int
11453 reg_dead_at_p (rtx reg, rtx insn)
11455 basic_block block;
11456 unsigned int i;
11458 /* Set variables for reg_dead_at_p_1. */
11459 reg_dead_regno = REGNO (reg);
11460 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11461 ? hard_regno_nregs[reg_dead_regno]
11462 [GET_MODE (reg)]
11463 : 1);
11465 reg_dead_flag = 0;
11467 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11468 we allow the machine description to decide whether use-and-clobber
11469 patterns are OK. */
11470 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11472 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11473 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11474 return 0;
11477 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11478 beginning of function. */
11479 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11480 insn = prev_nonnote_insn (insn))
11482 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11483 if (reg_dead_flag)
11484 return reg_dead_flag == 1 ? 1 : 0;
11486 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11487 return 1;
11490 /* Get the basic block that we were in. */
11491 if (insn == 0)
11492 block = ENTRY_BLOCK_PTR->next_bb;
11493 else
11495 FOR_EACH_BB (block)
11496 if (insn == BB_HEAD (block))
11497 break;
11499 if (block == EXIT_BLOCK_PTR)
11500 return 0;
11503 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11504 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11505 return 0;
11507 return 1;
11510 /* Note hard registers in X that are used. This code is similar to
11511 that in flow.c, but much simpler since we don't care about pseudos. */
11513 static void
11514 mark_used_regs_combine (rtx x)
11516 RTX_CODE code = GET_CODE (x);
11517 unsigned int regno;
11518 int i;
11520 switch (code)
11522 case LABEL_REF:
11523 case SYMBOL_REF:
11524 case CONST_INT:
11525 case CONST:
11526 case CONST_DOUBLE:
11527 case CONST_VECTOR:
11528 case PC:
11529 case ADDR_VEC:
11530 case ADDR_DIFF_VEC:
11531 case ASM_INPUT:
11532 #ifdef HAVE_cc0
11533 /* CC0 must die in the insn after it is set, so we don't need to take
11534 special note of it here. */
11535 case CC0:
11536 #endif
11537 return;
11539 case CLOBBER:
11540 /* If we are clobbering a MEM, mark any hard registers inside the
11541 address as used. */
11542 if (MEM_P (XEXP (x, 0)))
11543 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11544 return;
11546 case REG:
11547 regno = REGNO (x);
11548 /* A hard reg in a wide mode may really be multiple registers.
11549 If so, mark all of them just like the first. */
11550 if (regno < FIRST_PSEUDO_REGISTER)
11552 unsigned int endregno, r;
11554 /* None of this applies to the stack, frame or arg pointers. */
11555 if (regno == STACK_POINTER_REGNUM
11556 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11557 || regno == HARD_FRAME_POINTER_REGNUM
11558 #endif
11559 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11560 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11561 #endif
11562 || regno == FRAME_POINTER_REGNUM)
11563 return;
11565 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11566 for (r = regno; r < endregno; r++)
11567 SET_HARD_REG_BIT (newpat_used_regs, r);
11569 return;
11571 case SET:
11573 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11574 the address. */
11575 rtx testreg = SET_DEST (x);
11577 while (GET_CODE (testreg) == SUBREG
11578 || GET_CODE (testreg) == ZERO_EXTRACT
11579 || GET_CODE (testreg) == STRICT_LOW_PART)
11580 testreg = XEXP (testreg, 0);
11582 if (MEM_P (testreg))
11583 mark_used_regs_combine (XEXP (testreg, 0));
11585 mark_used_regs_combine (SET_SRC (x));
11587 return;
11589 default:
11590 break;
11593 /* Recursively scan the operands of this expression. */
11596 const char *fmt = GET_RTX_FORMAT (code);
11598 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11600 if (fmt[i] == 'e')
11601 mark_used_regs_combine (XEXP (x, i));
11602 else if (fmt[i] == 'E')
11604 int j;
11606 for (j = 0; j < XVECLEN (x, i); j++)
11607 mark_used_regs_combine (XVECEXP (x, i, j));
11613 /* Remove register number REGNO from the dead registers list of INSN.
11615 Return the note used to record the death, if there was one. */
11618 remove_death (unsigned int regno, rtx insn)
11620 rtx note = find_regno_note (insn, REG_DEAD, regno);
11622 if (note)
11624 REG_N_DEATHS (regno)--;
11625 remove_note (insn, note);
11628 return note;
11631 /* For each register (hardware or pseudo) used within expression X, if its
11632 death is in an instruction with cuid between FROM_CUID (inclusive) and
11633 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11634 list headed by PNOTES.
11636 That said, don't move registers killed by maybe_kill_insn.
11638 This is done when X is being merged by combination into TO_INSN. These
11639 notes will then be distributed as needed. */
11641 static void
11642 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11643 rtx *pnotes)
11645 const char *fmt;
11646 int len, i;
11647 enum rtx_code code = GET_CODE (x);
11649 if (code == REG)
11651 unsigned int regno = REGNO (x);
11652 rtx where_dead = reg_stat[regno].last_death;
11653 rtx before_dead, after_dead;
11655 /* Don't move the register if it gets killed in between from and to. */
11656 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11657 && ! reg_referenced_p (x, maybe_kill_insn))
11658 return;
11660 /* WHERE_DEAD could be a USE insn made by combine, so first we
11661 make sure that we have insns with valid INSN_CUID values. */
11662 before_dead = where_dead;
11663 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11664 before_dead = PREV_INSN (before_dead);
11666 after_dead = where_dead;
11667 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11668 after_dead = NEXT_INSN (after_dead);
11670 if (before_dead && after_dead
11671 && INSN_CUID (before_dead) >= from_cuid
11672 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11673 || (where_dead != after_dead
11674 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11676 rtx note = remove_death (regno, where_dead);
11678 /* It is possible for the call above to return 0. This can occur
11679 when last_death points to I2 or I1 that we combined with.
11680 In that case make a new note.
11682 We must also check for the case where X is a hard register
11683 and NOTE is a death note for a range of hard registers
11684 including X. In that case, we must put REG_DEAD notes for
11685 the remaining registers in place of NOTE. */
11687 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11688 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11689 > GET_MODE_SIZE (GET_MODE (x))))
11691 unsigned int deadregno = REGNO (XEXP (note, 0));
11692 unsigned int deadend
11693 = (deadregno + hard_regno_nregs[deadregno]
11694 [GET_MODE (XEXP (note, 0))]);
11695 unsigned int ourend
11696 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11697 unsigned int i;
11699 for (i = deadregno; i < deadend; i++)
11700 if (i < regno || i >= ourend)
11701 REG_NOTES (where_dead)
11702 = gen_rtx_EXPR_LIST (REG_DEAD,
11703 regno_reg_rtx[i],
11704 REG_NOTES (where_dead));
11707 /* If we didn't find any note, or if we found a REG_DEAD note that
11708 covers only part of the given reg, and we have a multi-reg hard
11709 register, then to be safe we must check for REG_DEAD notes
11710 for each register other than the first. They could have
11711 their own REG_DEAD notes lying around. */
11712 else if ((note == 0
11713 || (note != 0
11714 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11715 < GET_MODE_SIZE (GET_MODE (x)))))
11716 && regno < FIRST_PSEUDO_REGISTER
11717 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11719 unsigned int ourend
11720 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11721 unsigned int i, offset;
11722 rtx oldnotes = 0;
11724 if (note)
11725 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11726 else
11727 offset = 1;
11729 for (i = regno + offset; i < ourend; i++)
11730 move_deaths (regno_reg_rtx[i],
11731 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11734 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11736 XEXP (note, 1) = *pnotes;
11737 *pnotes = note;
11739 else
11740 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11742 REG_N_DEATHS (regno)++;
11745 return;
11748 else if (GET_CODE (x) == SET)
11750 rtx dest = SET_DEST (x);
11752 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11754 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11755 that accesses one word of a multi-word item, some
11756 piece of everything register in the expression is used by
11757 this insn, so remove any old death. */
11758 /* ??? So why do we test for equality of the sizes? */
11760 if (GET_CODE (dest) == ZERO_EXTRACT
11761 || GET_CODE (dest) == STRICT_LOW_PART
11762 || (GET_CODE (dest) == SUBREG
11763 && (((GET_MODE_SIZE (GET_MODE (dest))
11764 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11765 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11766 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11768 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11769 return;
11772 /* If this is some other SUBREG, we know it replaces the entire
11773 value, so use that as the destination. */
11774 if (GET_CODE (dest) == SUBREG)
11775 dest = SUBREG_REG (dest);
11777 /* If this is a MEM, adjust deaths of anything used in the address.
11778 For a REG (the only other possibility), the entire value is
11779 being replaced so the old value is not used in this insn. */
11781 if (MEM_P (dest))
11782 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11783 to_insn, pnotes);
11784 return;
11787 else if (GET_CODE (x) == CLOBBER)
11788 return;
11790 len = GET_RTX_LENGTH (code);
11791 fmt = GET_RTX_FORMAT (code);
11793 for (i = 0; i < len; i++)
11795 if (fmt[i] == 'E')
11797 int j;
11798 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11799 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11800 to_insn, pnotes);
11802 else if (fmt[i] == 'e')
11803 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11807 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11808 pattern of an insn. X must be a REG. */
11810 static int
11811 reg_bitfield_target_p (rtx x, rtx body)
11813 int i;
11815 if (GET_CODE (body) == SET)
11817 rtx dest = SET_DEST (body);
11818 rtx target;
11819 unsigned int regno, tregno, endregno, endtregno;
11821 if (GET_CODE (dest) == ZERO_EXTRACT)
11822 target = XEXP (dest, 0);
11823 else if (GET_CODE (dest) == STRICT_LOW_PART)
11824 target = SUBREG_REG (XEXP (dest, 0));
11825 else
11826 return 0;
11828 if (GET_CODE (target) == SUBREG)
11829 target = SUBREG_REG (target);
11831 if (!REG_P (target))
11832 return 0;
11834 tregno = REGNO (target), regno = REGNO (x);
11835 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11836 return target == x;
11838 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11839 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11841 return endregno > tregno && regno < endtregno;
11844 else if (GET_CODE (body) == PARALLEL)
11845 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11846 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11847 return 1;
11849 return 0;
11852 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11853 as appropriate. I3 and I2 are the insns resulting from the combination
11854 insns including FROM (I2 may be zero).
11856 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11857 not need REG_DEAD notes because they are being substituted for. This
11858 saves searching in the most common cases.
11860 Each note in the list is either ignored or placed on some insns, depending
11861 on the type of note. */
11863 static void
11864 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11865 rtx elim_i1)
11867 rtx note, next_note;
11868 rtx tem;
11870 for (note = notes; note; note = next_note)
11872 rtx place = 0, place2 = 0;
11874 next_note = XEXP (note, 1);
11875 switch (REG_NOTE_KIND (note))
11877 case REG_BR_PROB:
11878 case REG_BR_PRED:
11879 /* Doesn't matter much where we put this, as long as it's somewhere.
11880 It is preferable to keep these notes on branches, which is most
11881 likely to be i3. */
11882 place = i3;
11883 break;
11885 case REG_VALUE_PROFILE:
11886 /* Just get rid of this note, as it is unused later anyway. */
11887 break;
11889 case REG_NON_LOCAL_GOTO:
11890 if (JUMP_P (i3))
11891 place = i3;
11892 else
11894 gcc_assert (i2 && JUMP_P (i2));
11895 place = i2;
11897 break;
11899 case REG_EH_REGION:
11900 /* These notes must remain with the call or trapping instruction. */
11901 if (CALL_P (i3))
11902 place = i3;
11903 else if (i2 && CALL_P (i2))
11904 place = i2;
11905 else
11907 gcc_assert (flag_non_call_exceptions);
11908 if (may_trap_p (i3))
11909 place = i3;
11910 else if (i2 && may_trap_p (i2))
11911 place = i2;
11912 /* ??? Otherwise assume we've combined things such that we
11913 can now prove that the instructions can't trap. Drop the
11914 note in this case. */
11916 break;
11918 case REG_NORETURN:
11919 case REG_SETJMP:
11920 /* These notes must remain with the call. It should not be
11921 possible for both I2 and I3 to be a call. */
11922 if (CALL_P (i3))
11923 place = i3;
11924 else
11926 gcc_assert (i2 && CALL_P (i2));
11927 place = i2;
11929 break;
11931 case REG_UNUSED:
11932 /* Any clobbers for i3 may still exist, and so we must process
11933 REG_UNUSED notes from that insn.
11935 Any clobbers from i2 or i1 can only exist if they were added by
11936 recog_for_combine. In that case, recog_for_combine created the
11937 necessary REG_UNUSED notes. Trying to keep any original
11938 REG_UNUSED notes from these insns can cause incorrect output
11939 if it is for the same register as the original i3 dest.
11940 In that case, we will notice that the register is set in i3,
11941 and then add a REG_UNUSED note for the destination of i3, which
11942 is wrong. However, it is possible to have REG_UNUSED notes from
11943 i2 or i1 for register which were both used and clobbered, so
11944 we keep notes from i2 or i1 if they will turn into REG_DEAD
11945 notes. */
11947 /* If this register is set or clobbered in I3, put the note there
11948 unless there is one already. */
11949 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11951 if (from_insn != i3)
11952 break;
11954 if (! (REG_P (XEXP (note, 0))
11955 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11956 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11957 place = i3;
11959 /* Otherwise, if this register is used by I3, then this register
11960 now dies here, so we must put a REG_DEAD note here unless there
11961 is one already. */
11962 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11963 && ! (REG_P (XEXP (note, 0))
11964 ? find_regno_note (i3, REG_DEAD,
11965 REGNO (XEXP (note, 0)))
11966 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11968 PUT_REG_NOTE_KIND (note, REG_DEAD);
11969 place = i3;
11971 break;
11973 case REG_EQUAL:
11974 case REG_EQUIV:
11975 case REG_NOALIAS:
11976 /* These notes say something about results of an insn. We can
11977 only support them if they used to be on I3 in which case they
11978 remain on I3. Otherwise they are ignored.
11980 If the note refers to an expression that is not a constant, we
11981 must also ignore the note since we cannot tell whether the
11982 equivalence is still true. It might be possible to do
11983 slightly better than this (we only have a problem if I2DEST
11984 or I1DEST is present in the expression), but it doesn't
11985 seem worth the trouble. */
11987 if (from_insn == i3
11988 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11989 place = i3;
11990 break;
11992 case REG_INC:
11993 case REG_NO_CONFLICT:
11994 /* These notes say something about how a register is used. They must
11995 be present on any use of the register in I2 or I3. */
11996 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11997 place = i3;
11999 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12001 if (place)
12002 place2 = i2;
12003 else
12004 place = i2;
12006 break;
12008 case REG_LABEL:
12009 /* This can show up in several ways -- either directly in the
12010 pattern, or hidden off in the constant pool with (or without?)
12011 a REG_EQUAL note. */
12012 /* ??? Ignore the without-reg_equal-note problem for now. */
12013 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12014 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12015 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12016 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12017 place = i3;
12019 if (i2
12020 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12021 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12022 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12023 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12025 if (place)
12026 place2 = i2;
12027 else
12028 place = i2;
12031 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12032 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12033 if (place && JUMP_P (place))
12035 rtx label = JUMP_LABEL (place);
12037 if (!label)
12038 JUMP_LABEL (place) = XEXP (note, 0);
12039 else
12041 gcc_assert (label == XEXP (note, 0));
12042 if (LABEL_P (label))
12043 LABEL_NUSES (label)--;
12045 place = 0;
12047 if (place2 && JUMP_P (place2))
12049 rtx label = JUMP_LABEL (place2);
12051 if (!label)
12052 JUMP_LABEL (place2) = XEXP (note, 0);
12053 else
12055 gcc_assert (label == XEXP (note, 0));
12056 if (LABEL_P (label))
12057 LABEL_NUSES (label)--;
12059 place2 = 0;
12061 break;
12063 case REG_NONNEG:
12064 /* This note says something about the value of a register prior
12065 to the execution of an insn. It is too much trouble to see
12066 if the note is still correct in all situations. It is better
12067 to simply delete it. */
12068 break;
12070 case REG_RETVAL:
12071 /* If the insn previously containing this note still exists,
12072 put it back where it was. Otherwise move it to the previous
12073 insn. Adjust the corresponding REG_LIBCALL note. */
12074 if (!NOTE_P (from_insn))
12075 place = from_insn;
12076 else
12078 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12079 place = prev_real_insn (from_insn);
12080 if (tem && place)
12081 XEXP (tem, 0) = place;
12082 /* If we're deleting the last remaining instruction of a
12083 libcall sequence, don't add the notes. */
12084 else if (XEXP (note, 0) == from_insn)
12085 tem = place = 0;
12086 /* Don't add the dangling REG_RETVAL note. */
12087 else if (! tem)
12088 place = 0;
12090 break;
12092 case REG_LIBCALL:
12093 /* This is handled similarly to REG_RETVAL. */
12094 if (!NOTE_P (from_insn))
12095 place = from_insn;
12096 else
12098 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12099 place = next_real_insn (from_insn);
12100 if (tem && place)
12101 XEXP (tem, 0) = place;
12102 /* If we're deleting the last remaining instruction of a
12103 libcall sequence, don't add the notes. */
12104 else if (XEXP (note, 0) == from_insn)
12105 tem = place = 0;
12106 /* Don't add the dangling REG_LIBCALL note. */
12107 else if (! tem)
12108 place = 0;
12110 break;
12112 case REG_DEAD:
12113 /* If we replaced the right hand side of FROM_INSN with a
12114 REG_EQUAL note, the original use of the dying register
12115 will not have been combined into I3 and I2. In such cases,
12116 FROM_INSN is guaranteed to be the first of the combined
12117 instructions, so we simply need to search back before
12118 FROM_INSN for the previous use or set of this register,
12119 then alter the notes there appropriately.
12121 If the register is used as an input in I3, it dies there.
12122 Similarly for I2, if it is nonzero and adjacent to I3.
12124 If the register is not used as an input in either I3 or I2
12125 and it is not one of the registers we were supposed to eliminate,
12126 there are two possibilities. We might have a non-adjacent I2
12127 or we might have somehow eliminated an additional register
12128 from a computation. For example, we might have had A & B where
12129 we discover that B will always be zero. In this case we will
12130 eliminate the reference to A.
12132 In both cases, we must search to see if we can find a previous
12133 use of A and put the death note there. */
12135 if (from_insn
12136 && from_insn == replaced_rhs_insn
12137 && !reg_overlap_mentioned_p (XEXP (note, 0), replaced_rhs_value))
12138 tem = from_insn;
12139 else
12141 if (from_insn
12142 && CALL_P (from_insn)
12143 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12144 place = from_insn;
12145 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12146 place = i3;
12147 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12148 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12149 place = i2;
12150 else if (rtx_equal_p (XEXP (note, 0), elim_i2)
12151 || rtx_equal_p (XEXP (note, 0), elim_i1))
12152 break;
12153 tem = i3;
12156 if (place == 0)
12158 basic_block bb = this_basic_block;
12160 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12162 if (! INSN_P (tem))
12164 if (tem == BB_HEAD (bb))
12165 break;
12166 continue;
12169 /* If TEM is a (reaching) definition of the use to which the
12170 note was attached, see if that is all TEM is doing. If so,
12171 delete TEM. Otherwise, make this into a REG_UNUSED note
12172 instead. Don't delete sets to global register vars. */
12173 if ((!from_insn
12174 || INSN_CUID (tem) < INSN_CUID (from_insn))
12175 && (REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12176 || !global_regs[REGNO (XEXP (note, 0))])
12177 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12179 rtx set = single_set (tem);
12180 rtx inner_dest = 0;
12181 #ifdef HAVE_cc0
12182 rtx cc0_setter = NULL_RTX;
12183 #endif
12185 if (set != 0)
12186 for (inner_dest = SET_DEST (set);
12187 (GET_CODE (inner_dest) == STRICT_LOW_PART
12188 || GET_CODE (inner_dest) == SUBREG
12189 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12190 inner_dest = XEXP (inner_dest, 0))
12193 /* Verify that it was the set, and not a clobber that
12194 modified the register.
12196 CC0 targets must be careful to maintain setter/user
12197 pairs. If we cannot delete the setter due to side
12198 effects, mark the user with an UNUSED note instead
12199 of deleting it. */
12201 if (set != 0 && ! side_effects_p (SET_SRC (set))
12202 && rtx_equal_p (XEXP (note, 0), inner_dest)
12203 #ifdef HAVE_cc0
12204 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12205 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12206 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12207 #endif
12210 /* Move the notes and links of TEM elsewhere.
12211 This might delete other dead insns recursively.
12212 First set the pattern to something that won't use
12213 any register. */
12214 rtx old_notes = REG_NOTES (tem);
12216 PATTERN (tem) = pc_rtx;
12217 REG_NOTES (tem) = NULL;
12219 distribute_notes (old_notes, tem, tem, NULL_RTX,
12220 NULL_RTX, NULL_RTX);
12221 distribute_links (LOG_LINKS (tem));
12223 SET_INSN_DELETED (tem);
12225 #ifdef HAVE_cc0
12226 /* Delete the setter too. */
12227 if (cc0_setter)
12229 PATTERN (cc0_setter) = pc_rtx;
12230 old_notes = REG_NOTES (cc0_setter);
12231 REG_NOTES (cc0_setter) = NULL;
12233 distribute_notes (old_notes, cc0_setter,
12234 cc0_setter, NULL_RTX,
12235 NULL_RTX, NULL_RTX);
12236 distribute_links (LOG_LINKS (cc0_setter));
12238 SET_INSN_DELETED (cc0_setter);
12240 #endif
12242 else
12244 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12246 /* If there isn't already a REG_UNUSED note, put one
12247 here. Do not place a REG_DEAD note, even if
12248 the register is also used here; that would not
12249 match the algorithm used in lifetime analysis
12250 and can cause the consistency check in the
12251 scheduler to fail. */
12252 if (! find_regno_note (tem, REG_UNUSED,
12253 REGNO (XEXP (note, 0))))
12254 place = tem;
12255 break;
12258 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12259 || (CALL_P (tem)
12260 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12262 place = tem;
12264 /* If we are doing a 3->2 combination, and we have a
12265 register which formerly died in i3 and was not used
12266 by i2, which now no longer dies in i3 and is used in
12267 i2 but does not die in i2, and place is between i2
12268 and i3, then we may need to move a link from place to
12269 i2. */
12270 if (i2 && INSN_UID (place) <= max_uid_cuid
12271 && INSN_CUID (place) > INSN_CUID (i2)
12272 && from_insn
12273 && INSN_CUID (from_insn) > INSN_CUID (i2)
12274 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12276 rtx links = LOG_LINKS (place);
12277 LOG_LINKS (place) = 0;
12278 distribute_links (links);
12280 break;
12283 if (tem == BB_HEAD (bb))
12284 break;
12287 /* We haven't found an insn for the death note and it
12288 is still a REG_DEAD note, but we have hit the beginning
12289 of the block. If the existing life info says the reg
12290 was dead, there's nothing left to do. Otherwise, we'll
12291 need to do a global life update after combine. */
12292 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12293 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12294 REGNO (XEXP (note, 0))))
12295 SET_BIT (refresh_blocks, this_basic_block->index);
12298 /* If the register is set or already dead at PLACE, we needn't do
12299 anything with this note if it is still a REG_DEAD note.
12300 We check here if it is set at all, not if is it totally replaced,
12301 which is what `dead_or_set_p' checks, so also check for it being
12302 set partially. */
12304 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12306 unsigned int regno = REGNO (XEXP (note, 0));
12308 /* Similarly, if the instruction on which we want to place
12309 the note is a noop, we'll need do a global live update
12310 after we remove them in delete_noop_moves. */
12311 if (noop_move_p (place))
12312 SET_BIT (refresh_blocks, this_basic_block->index);
12314 if (dead_or_set_p (place, XEXP (note, 0))
12315 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12317 /* Unless the register previously died in PLACE, clear
12318 last_death. [I no longer understand why this is
12319 being done.] */
12320 if (reg_stat[regno].last_death != place)
12321 reg_stat[regno].last_death = 0;
12322 place = 0;
12324 else
12325 reg_stat[regno].last_death = place;
12327 /* If this is a death note for a hard reg that is occupying
12328 multiple registers, ensure that we are still using all
12329 parts of the object. If we find a piece of the object
12330 that is unused, we must arrange for an appropriate REG_DEAD
12331 note to be added for it. However, we can't just emit a USE
12332 and tag the note to it, since the register might actually
12333 be dead; so we recourse, and the recursive call then finds
12334 the previous insn that used this register. */
12336 if (place && regno < FIRST_PSEUDO_REGISTER
12337 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12339 unsigned int endregno
12340 = regno + hard_regno_nregs[regno]
12341 [GET_MODE (XEXP (note, 0))];
12342 int all_used = 1;
12343 unsigned int i;
12345 for (i = regno; i < endregno; i++)
12346 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12347 && ! find_regno_fusage (place, USE, i))
12348 || dead_or_set_regno_p (place, i))
12349 all_used = 0;
12351 if (! all_used)
12353 /* Put only REG_DEAD notes for pieces that are
12354 not already dead or set. */
12356 for (i = regno; i < endregno;
12357 i += hard_regno_nregs[i][reg_raw_mode[i]])
12359 rtx piece = regno_reg_rtx[i];
12360 basic_block bb = this_basic_block;
12362 if (! dead_or_set_p (place, piece)
12363 && ! reg_bitfield_target_p (piece,
12364 PATTERN (place)))
12366 rtx new_note
12367 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12369 distribute_notes (new_note, place, place,
12370 NULL_RTX, NULL_RTX, NULL_RTX);
12372 else if (! refers_to_regno_p (i, i + 1,
12373 PATTERN (place), 0)
12374 && ! find_regno_fusage (place, USE, i))
12375 for (tem = PREV_INSN (place); ;
12376 tem = PREV_INSN (tem))
12378 if (! INSN_P (tem))
12380 if (tem == BB_HEAD (bb))
12382 SET_BIT (refresh_blocks,
12383 this_basic_block->index);
12384 break;
12386 continue;
12388 if (dead_or_set_p (tem, piece)
12389 || reg_bitfield_target_p (piece,
12390 PATTERN (tem)))
12392 REG_NOTES (tem)
12393 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12394 REG_NOTES (tem));
12395 break;
12401 place = 0;
12405 break;
12407 default:
12408 /* Any other notes should not be present at this point in the
12409 compilation. */
12410 gcc_unreachable ();
12413 if (place)
12415 XEXP (note, 1) = REG_NOTES (place);
12416 REG_NOTES (place) = note;
12418 else if ((REG_NOTE_KIND (note) == REG_DEAD
12419 || REG_NOTE_KIND (note) == REG_UNUSED)
12420 && REG_P (XEXP (note, 0)))
12421 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12423 if (place2)
12425 if ((REG_NOTE_KIND (note) == REG_DEAD
12426 || REG_NOTE_KIND (note) == REG_UNUSED)
12427 && REG_P (XEXP (note, 0)))
12428 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12430 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12431 REG_NOTE_KIND (note),
12432 XEXP (note, 0),
12433 REG_NOTES (place2));
12438 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12439 I3, I2, and I1 to new locations. This is also called to add a link
12440 pointing at I3 when I3's destination is changed. */
12442 static void
12443 distribute_links (rtx links)
12445 rtx link, next_link;
12447 for (link = links; link; link = next_link)
12449 rtx place = 0;
12450 rtx insn;
12451 rtx set, reg;
12453 next_link = XEXP (link, 1);
12455 /* If the insn that this link points to is a NOTE or isn't a single
12456 set, ignore it. In the latter case, it isn't clear what we
12457 can do other than ignore the link, since we can't tell which
12458 register it was for. Such links wouldn't be used by combine
12459 anyway.
12461 It is not possible for the destination of the target of the link to
12462 have been changed by combine. The only potential of this is if we
12463 replace I3, I2, and I1 by I3 and I2. But in that case the
12464 destination of I2 also remains unchanged. */
12466 if (NOTE_P (XEXP (link, 0))
12467 || (set = single_set (XEXP (link, 0))) == 0)
12468 continue;
12470 reg = SET_DEST (set);
12471 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12472 || GET_CODE (reg) == STRICT_LOW_PART)
12473 reg = XEXP (reg, 0);
12475 /* A LOG_LINK is defined as being placed on the first insn that uses
12476 a register and points to the insn that sets the register. Start
12477 searching at the next insn after the target of the link and stop
12478 when we reach a set of the register or the end of the basic block.
12480 Note that this correctly handles the link that used to point from
12481 I3 to I2. Also note that not much searching is typically done here
12482 since most links don't point very far away. */
12484 for (insn = NEXT_INSN (XEXP (link, 0));
12485 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12486 || BB_HEAD (this_basic_block->next_bb) != insn));
12487 insn = NEXT_INSN (insn))
12488 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12490 if (reg_referenced_p (reg, PATTERN (insn)))
12491 place = insn;
12492 break;
12494 else if (CALL_P (insn)
12495 && find_reg_fusage (insn, USE, reg))
12497 place = insn;
12498 break;
12500 else if (INSN_P (insn) && reg_set_p (reg, insn))
12501 break;
12503 /* If we found a place to put the link, place it there unless there
12504 is already a link to the same insn as LINK at that point. */
12506 if (place)
12508 rtx link2;
12510 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12511 if (XEXP (link2, 0) == XEXP (link, 0))
12512 break;
12514 if (link2 == 0)
12516 XEXP (link, 1) = LOG_LINKS (place);
12517 LOG_LINKS (place) = link;
12519 /* Set added_links_insn to the earliest insn we added a
12520 link to. */
12521 if (added_links_insn == 0
12522 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12523 added_links_insn = place;
12529 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12530 Check whether the expression pointer to by LOC is a register or
12531 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12532 Otherwise return zero. */
12534 static int
12535 unmentioned_reg_p_1 (rtx *loc, void *expr)
12537 rtx x = *loc;
12539 if (x != NULL_RTX
12540 && (REG_P (x) || MEM_P (x))
12541 && ! reg_mentioned_p (x, (rtx) expr))
12542 return 1;
12543 return 0;
12546 /* Check for any register or memory mentioned in EQUIV that is not
12547 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12548 of EXPR where some registers may have been replaced by constants. */
12550 static bool
12551 unmentioned_reg_p (rtx equiv, rtx expr)
12553 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12556 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12558 static int
12559 insn_cuid (rtx insn)
12561 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12562 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12563 insn = NEXT_INSN (insn);
12565 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12567 return INSN_CUID (insn);
12570 void
12571 dump_combine_stats (FILE *file)
12573 fprintf
12574 (file,
12575 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12576 combine_attempts, combine_merges, combine_extras, combine_successes);
12579 void
12580 dump_combine_total_stats (FILE *file)
12582 fprintf
12583 (file,
12584 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12585 total_attempts, total_merges, total_extras, total_successes);
12589 static bool
12590 gate_handle_combine (void)
12592 return (optimize > 0);
12595 /* Try combining insns through substitution. */
12596 static unsigned int
12597 rest_of_handle_combine (void)
12599 int rebuild_jump_labels_after_combine
12600 = combine_instructions (get_insns (), max_reg_num ());
12602 /* Combining insns may have turned an indirect jump into a
12603 direct jump. Rebuild the JUMP_LABEL fields of jumping
12604 instructions. */
12605 if (rebuild_jump_labels_after_combine)
12607 timevar_push (TV_JUMP);
12608 rebuild_jump_labels (get_insns ());
12609 timevar_pop (TV_JUMP);
12611 delete_dead_jumptables ();
12612 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12614 return 0;
12617 struct tree_opt_pass pass_combine =
12619 "combine", /* name */
12620 gate_handle_combine, /* gate */
12621 rest_of_handle_combine, /* execute */
12622 NULL, /* sub */
12623 NULL, /* next */
12624 0, /* static_pass_number */
12625 TV_COMBINE, /* tv_id */
12626 0, /* properties_required */
12627 0, /* properties_provided */
12628 0, /* properties_destroyed */
12629 0, /* todo_flags_start */
12630 TODO_dump_func |
12631 TODO_ggc_collect, /* todo_flags_finish */
12632 'c' /* letter */