Small ChangeLog tweak.
[official-gcc.git] / libsanitizer / tsan / tsan_interceptors_mac.cc
blobeaf866d6c75c62c7e282769237a7a7b92e27d4c9
1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Mac-specific interceptors.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_platform.h"
14 #if SANITIZER_MAC
16 #include "interception/interception.h"
17 #include "tsan_interceptors.h"
18 #include "tsan_interface.h"
19 #include "tsan_interface_ann.h"
21 #include <libkern/OSAtomic.h>
22 #include <xpc/xpc.h>
24 typedef long long_t; // NOLINT
26 namespace __tsan {
28 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
29 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
30 // actually aliases of each other, and we cannot have different interceptors for
31 // them, because they're actually the same function. Thus, we have to stay
32 // conservative and treat the non-barrier versions as mo_acq_rel.
33 static const morder kMacOrderBarrier = mo_acq_rel;
34 static const morder kMacOrderNonBarrier = mo_acq_rel;
36 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
37 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
38 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
39 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo); \
42 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
43 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
44 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
45 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x; \
48 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
49 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
50 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
51 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1; \
54 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
55 mo) \
56 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
57 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
58 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1; \
61 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m) \
62 m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
63 kMacOrderNonBarrier) \
64 m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
65 kMacOrderBarrier) \
66 m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \
67 kMacOrderNonBarrier) \
68 m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f, \
69 kMacOrderBarrier)
71 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig) \
72 m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
73 kMacOrderNonBarrier) \
74 m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
75 kMacOrderBarrier) \
76 m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
77 kMacOrderNonBarrier) \
78 m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier, \
79 __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
81 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
82 OSATOMIC_INTERCEPTOR_PLUS_X)
83 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
84 OSATOMIC_INTERCEPTOR_PLUS_1)
85 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
86 OSATOMIC_INTERCEPTOR_MINUS_1)
87 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
88 OSATOMIC_INTERCEPTOR)
89 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
90 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
91 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
92 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
94 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t) \
95 TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \
96 SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr); \
97 return tsan_atomic_f##_compare_exchange_strong( \
98 (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
99 kMacOrderNonBarrier, kMacOrderNonBarrier); \
102 TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value, \
103 t volatile *ptr) { \
104 SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr); \
105 return tsan_atomic_f##_compare_exchange_strong( \
106 (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
107 kMacOrderBarrier, kMacOrderNonBarrier); \
110 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
111 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
112 long_t)
113 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
114 void *)
115 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
116 int32_t)
117 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
118 int64_t)
120 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo) \
121 TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
122 SCOPED_TSAN_INTERCEPTOR(f, n, ptr); \
123 char *byte_ptr = ((char *)ptr) + (n >> 3); \
124 char bit = 0x80u >> (n & 7); \
125 char mask = clear ? ~bit : bit; \
126 char orig_byte = op((a8 *)byte_ptr, mask, mo); \
127 return orig_byte & bit; \
130 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear) \
131 OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
132 OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
134 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
135 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
136 true)
138 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
139 size_t offset) {
140 SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
141 __tsan_release(item);
142 REAL(OSAtomicEnqueue)(list, item, offset);
145 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
146 SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
147 void *item = REAL(OSAtomicDequeue)(list, offset);
148 if (item) __tsan_acquire(item);
149 return item;
152 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
153 #if !SANITIZER_IOS
155 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
156 size_t offset) {
157 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
158 __tsan_release(item);
159 REAL(OSAtomicFifoEnqueue)(list, item, offset);
162 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
163 size_t offset) {
164 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
165 void *item = REAL(OSAtomicFifoDequeue)(list, offset);
166 if (item) __tsan_acquire(item);
167 return item;
170 #endif
172 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
173 CHECK(!cur_thread()->is_dead);
174 if (!cur_thread()->is_inited) {
175 return REAL(OSSpinLockLock)(lock);
177 SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
178 REAL(OSSpinLockLock)(lock);
179 Acquire(thr, pc, (uptr)lock);
182 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
183 CHECK(!cur_thread()->is_dead);
184 if (!cur_thread()->is_inited) {
185 return REAL(OSSpinLockTry)(lock);
187 SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
188 bool result = REAL(OSSpinLockTry)(lock);
189 if (result)
190 Acquire(thr, pc, (uptr)lock);
191 return result;
194 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
195 CHECK(!cur_thread()->is_dead);
196 if (!cur_thread()->is_inited) {
197 return REAL(OSSpinLockUnlock)(lock);
199 SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
200 Release(thr, pc, (uptr)lock);
201 REAL(OSSpinLockUnlock)(lock);
204 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
205 CHECK(!cur_thread()->is_dead);
206 if (!cur_thread()->is_inited) {
207 return REAL(os_lock_lock)(lock);
209 SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
210 REAL(os_lock_lock)(lock);
211 Acquire(thr, pc, (uptr)lock);
214 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
215 CHECK(!cur_thread()->is_dead);
216 if (!cur_thread()->is_inited) {
217 return REAL(os_lock_trylock)(lock);
219 SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
220 bool result = REAL(os_lock_trylock)(lock);
221 if (result)
222 Acquire(thr, pc, (uptr)lock);
223 return result;
226 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
227 CHECK(!cur_thread()->is_dead);
228 if (!cur_thread()->is_inited) {
229 return REAL(os_lock_unlock)(lock);
231 SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
232 Release(thr, pc, (uptr)lock);
233 REAL(os_lock_unlock)(lock);
236 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
237 xpc_connection_t connection, xpc_handler_t handler) {
238 SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
239 handler);
240 Release(thr, pc, (uptr)connection);
241 xpc_handler_t new_handler = ^(xpc_object_t object) {
243 SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
244 Acquire(thr, pc, (uptr)connection);
246 handler(object);
248 REAL(xpc_connection_set_event_handler)(connection, new_handler);
251 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
252 dispatch_block_t barrier) {
253 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
254 Release(thr, pc, (uptr)connection);
255 dispatch_block_t new_barrier = ^() {
257 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
258 Acquire(thr, pc, (uptr)connection);
260 barrier();
262 REAL(xpc_connection_send_barrier)(connection, new_barrier);
265 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
266 xpc_connection_t connection, xpc_object_t message,
267 dispatch_queue_t replyq, xpc_handler_t handler) {
268 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
269 message, replyq, handler);
270 Release(thr, pc, (uptr)connection);
271 xpc_handler_t new_handler = ^(xpc_object_t object) {
273 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
274 Acquire(thr, pc, (uptr)connection);
276 handler(object);
278 REAL(xpc_connection_send_message_with_reply)
279 (connection, message, replyq, new_handler);
282 // On macOS, libc++ is always linked dynamically, so intercepting works the
283 // usual way.
284 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
286 namespace {
287 struct fake_shared_weak_count {
288 volatile a64 shared_owners;
289 volatile a64 shared_weak_owners;
290 virtual void _unused_0x0() = 0;
291 virtual void _unused_0x8() = 0;
292 virtual void on_zero_shared() = 0;
293 virtual void _unused_0x18() = 0;
294 virtual void on_zero_shared_weak() = 0;
296 } // namespace
298 // This adds a libc++ interceptor for:
299 // void __shared_weak_count::__release_shared() _NOEXCEPT;
300 // Shared and weak pointers in C++ maintain reference counts via atomics in
301 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
302 // destructor code. This interceptor re-implements the whole function so that
303 // the mo_acq_rel semantics of the atomic decrement are visible.
305 // Unfortunately, this interceptor cannot simply Acquire/Release some sync
306 // object and call the original function, because it would have a race between
307 // the sync and the destruction of the object. Calling both under a lock will
308 // not work because the destructor can invoke this interceptor again (and even
309 // in a different thread, so recursive locks don't help).
310 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
311 fake_shared_weak_count *o) {
312 if (!flags()->shared_ptr_interceptor)
313 return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
315 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
317 if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
318 Acquire(thr, pc, (uptr)&o->shared_owners);
319 o->on_zero_shared();
320 if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
321 0) {
322 Acquire(thr, pc, (uptr)&o->shared_weak_owners);
323 o->on_zero_shared_weak();
328 namespace {
329 struct call_once_callback_args {
330 void (*orig_func)(void *arg);
331 void *orig_arg;
332 void *flag;
335 void call_once_callback_wrapper(void *arg) {
336 call_once_callback_args *new_args = (call_once_callback_args *)arg;
337 new_args->orig_func(new_args->orig_arg);
338 __tsan_release(new_args->flag);
340 } // namespace
342 // This adds a libc++ interceptor for:
343 // void __call_once(volatile unsigned long&, void*, void(*)(void*));
344 // C++11 call_once is implemented via an internal function __call_once which is
345 // inside libc++.dylib, and the atomic release store inside it is thus
346 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
347 // function and performs an explicit Release after the user code has run.
348 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
349 void *arg, void (*func)(void *arg)) {
350 call_once_callback_args new_args = {func, arg, flag};
351 REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
352 call_once_callback_wrapper);
355 } // namespace __tsan
357 #endif // SANITIZER_MAC