Small ChangeLog tweak.
[official-gcc.git] / gcc / tree-parloops.c
blob83d3c803080eca1c315ee87d57ce0035fae33205
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-general.h"
53 #include "omp-low.h"
54 #include "tree-ssa.h"
55 #include "params.h"
56 #include "params-enum.h"
57 #include "tree-ssa-alias.h"
58 #include "tree-eh.h"
59 #include "gomp-constants.h"
60 #include "tree-dfa.h"
62 /* This pass tries to distribute iterations of loops into several threads.
63 The implementation is straightforward -- for each loop we test whether its
64 iterations are independent, and if it is the case (and some additional
65 conditions regarding profitability and correctness are satisfied), we
66 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
67 machinery do its job.
69 The most of the complexity is in bringing the code into shape expected
70 by the omp expanders:
71 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
72 variable and that the exit test is at the start of the loop body
73 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
74 variables by accesses through pointers, and breaking up ssa chains
75 by storing the values incoming to the parallelized loop to a structure
76 passed to the new function as an argument (something similar is done
77 in omp gimplification, unfortunately only a small part of the code
78 can be shared).
80 TODO:
81 -- if there are several parallelizable loops in a function, it may be
82 possible to generate the threads just once (using synchronization to
83 ensure that cross-loop dependences are obeyed).
84 -- handling of common reduction patterns for outer loops.
86 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
88 Reduction handling:
89 currently we use vect_force_simple_reduction() to detect reduction patterns.
90 The code transformation will be introduced by an example.
93 parloop
95 int sum=1;
97 for (i = 0; i < N; i++)
99 x[i] = i + 3;
100 sum+=x[i];
104 gimple-like code:
105 header_bb:
107 # sum_29 = PHI <sum_11(5), 1(3)>
108 # i_28 = PHI <i_12(5), 0(3)>
109 D.1795_8 = i_28 + 3;
110 x[i_28] = D.1795_8;
111 sum_11 = D.1795_8 + sum_29;
112 i_12 = i_28 + 1;
113 if (N_6(D) > i_12)
114 goto header_bb;
117 exit_bb:
119 # sum_21 = PHI <sum_11(4)>
120 printf (&"%d"[0], sum_21);
123 after reduction transformation (only relevant parts):
125 parloop
128 ....
131 # Storing the initial value given by the user. #
133 .paral_data_store.32.sum.27 = 1;
135 #pragma omp parallel num_threads(4)
137 #pragma omp for schedule(static)
139 # The neutral element corresponding to the particular
140 reduction's operation, e.g. 0 for PLUS_EXPR,
141 1 for MULT_EXPR, etc. replaces the user's initial value. #
143 # sum.27_29 = PHI <sum.27_11, 0>
145 sum.27_11 = D.1827_8 + sum.27_29;
147 GIMPLE_OMP_CONTINUE
149 # Adding this reduction phi is done at create_phi_for_local_result() #
150 # sum.27_56 = PHI <sum.27_11, 0>
151 GIMPLE_OMP_RETURN
153 # Creating the atomic operation is done at
154 create_call_for_reduction_1() #
156 #pragma omp atomic_load
157 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
158 D.1840_60 = sum.27_56 + D.1839_59;
159 #pragma omp atomic_store (D.1840_60);
161 GIMPLE_OMP_RETURN
163 # collecting the result after the join of the threads is done at
164 create_loads_for_reductions().
165 The value computed by the threads is loaded from the
166 shared struct. #
169 .paral_data_load.33_52 = &.paral_data_store.32;
170 sum_37 = .paral_data_load.33_52->sum.27;
171 sum_43 = D.1795_41 + sum_37;
173 exit bb:
174 # sum_21 = PHI <sum_43, sum_26>
175 printf (&"%d"[0], sum_21);
183 /* Minimal number of iterations of a loop that should be executed in each
184 thread. */
185 #define MIN_PER_THREAD 100
187 /* Element of the hashtable, representing a
188 reduction in the current loop. */
189 struct reduction_info
191 gimple *reduc_stmt; /* reduction statement. */
192 gimple *reduc_phi; /* The phi node defining the reduction. */
193 enum tree_code reduction_code;/* code for the reduction operation. */
194 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
195 result. */
196 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
197 of the reduction variable when existing the loop. */
198 tree initial_value; /* The initial value of the reduction var before entering the loop. */
199 tree field; /* the name of the field in the parloop data structure intended for reduction. */
200 tree reduc_addr; /* The address of the reduction variable for
201 openacc reductions. */
202 tree init; /* reduction initialization value. */
203 gphi *new_phi; /* (helper field) Newly created phi node whose result
204 will be passed to the atomic operation. Represents
205 the local result each thread computed for the reduction
206 operation. */
209 /* Reduction info hashtable helpers. */
211 struct reduction_hasher : free_ptr_hash <reduction_info>
213 static inline hashval_t hash (const reduction_info *);
214 static inline bool equal (const reduction_info *, const reduction_info *);
217 /* Equality and hash functions for hashtab code. */
219 inline bool
220 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
222 return (a->reduc_phi == b->reduc_phi);
225 inline hashval_t
226 reduction_hasher::hash (const reduction_info *a)
228 return a->reduc_version;
231 typedef hash_table<reduction_hasher> reduction_info_table_type;
234 static struct reduction_info *
235 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
237 struct reduction_info tmpred, *red;
239 if (reduction_list->elements () == 0 || phi == NULL)
240 return NULL;
242 if (gimple_uid (phi) == (unsigned int)-1
243 || gimple_uid (phi) == 0)
244 return NULL;
246 tmpred.reduc_phi = phi;
247 tmpred.reduc_version = gimple_uid (phi);
248 red = reduction_list->find (&tmpred);
249 gcc_assert (red == NULL || red->reduc_phi == phi);
251 return red;
254 /* Element of hashtable of names to copy. */
256 struct name_to_copy_elt
258 unsigned version; /* The version of the name to copy. */
259 tree new_name; /* The new name used in the copy. */
260 tree field; /* The field of the structure used to pass the
261 value. */
264 /* Name copies hashtable helpers. */
266 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
268 static inline hashval_t hash (const name_to_copy_elt *);
269 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
272 /* Equality and hash functions for hashtab code. */
274 inline bool
275 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
277 return a->version == b->version;
280 inline hashval_t
281 name_to_copy_hasher::hash (const name_to_copy_elt *a)
283 return (hashval_t) a->version;
286 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
288 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
289 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
290 represents the denominator for every element in the matrix. */
291 typedef struct lambda_trans_matrix_s
293 lambda_matrix matrix;
294 int rowsize;
295 int colsize;
296 int denominator;
297 } *lambda_trans_matrix;
298 #define LTM_MATRIX(T) ((T)->matrix)
299 #define LTM_ROWSIZE(T) ((T)->rowsize)
300 #define LTM_COLSIZE(T) ((T)->colsize)
301 #define LTM_DENOMINATOR(T) ((T)->denominator)
303 /* Allocate a new transformation matrix. */
305 static lambda_trans_matrix
306 lambda_trans_matrix_new (int colsize, int rowsize,
307 struct obstack * lambda_obstack)
309 lambda_trans_matrix ret;
311 ret = (lambda_trans_matrix)
312 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
313 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
314 LTM_ROWSIZE (ret) = rowsize;
315 LTM_COLSIZE (ret) = colsize;
316 LTM_DENOMINATOR (ret) = 1;
317 return ret;
320 /* Multiply a vector VEC by a matrix MAT.
321 MAT is an M*N matrix, and VEC is a vector with length N. The result
322 is stored in DEST which must be a vector of length M. */
324 static void
325 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
326 lambda_vector vec, lambda_vector dest)
328 int i, j;
330 lambda_vector_clear (dest, m);
331 for (i = 0; i < m; i++)
332 for (j = 0; j < n; j++)
333 dest[i] += matrix[i][j] * vec[j];
336 /* Return true if TRANS is a legal transformation matrix that respects
337 the dependence vectors in DISTS and DIRS. The conservative answer
338 is false.
340 "Wolfe proves that a unimodular transformation represented by the
341 matrix T is legal when applied to a loop nest with a set of
342 lexicographically non-negative distance vectors RDG if and only if
343 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
344 i.e.: if and only if it transforms the lexicographically positive
345 distance vectors to lexicographically positive vectors. Note that
346 a unimodular matrix must transform the zero vector (and only it) to
347 the zero vector." S.Muchnick. */
349 static bool
350 lambda_transform_legal_p (lambda_trans_matrix trans,
351 int nb_loops,
352 vec<ddr_p> dependence_relations)
354 unsigned int i, j;
355 lambda_vector distres;
356 struct data_dependence_relation *ddr;
358 gcc_assert (LTM_COLSIZE (trans) == nb_loops
359 && LTM_ROWSIZE (trans) == nb_loops);
361 /* When there are no dependences, the transformation is correct. */
362 if (dependence_relations.length () == 0)
363 return true;
365 ddr = dependence_relations[0];
366 if (ddr == NULL)
367 return true;
369 /* When there is an unknown relation in the dependence_relations, we
370 know that it is no worth looking at this loop nest: give up. */
371 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
372 return false;
374 distres = lambda_vector_new (nb_loops);
376 /* For each distance vector in the dependence graph. */
377 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
379 /* Don't care about relations for which we know that there is no
380 dependence, nor about read-read (aka. output-dependences):
381 these data accesses can happen in any order. */
382 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
383 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
384 continue;
386 /* Conservatively answer: "this transformation is not valid". */
387 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
388 return false;
390 /* If the dependence could not be captured by a distance vector,
391 conservatively answer that the transform is not valid. */
392 if (DDR_NUM_DIST_VECTS (ddr) == 0)
393 return false;
395 /* Compute trans.dist_vect */
396 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
398 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
399 DDR_DIST_VECT (ddr, j), distres);
401 if (!lambda_vector_lexico_pos (distres, nb_loops))
402 return false;
405 return true;
408 /* Data dependency analysis. Returns true if the iterations of LOOP
409 are independent on each other (that is, if we can execute them
410 in parallel). */
412 static bool
413 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
415 vec<ddr_p> dependence_relations;
416 vec<data_reference_p> datarefs;
417 lambda_trans_matrix trans;
418 bool ret = false;
420 if (dump_file && (dump_flags & TDF_DETAILS))
422 fprintf (dump_file, "Considering loop %d\n", loop->num);
423 if (!loop->inner)
424 fprintf (dump_file, "loop is innermost\n");
425 else
426 fprintf (dump_file, "loop NOT innermost\n");
429 /* Check for problems with dependences. If the loop can be reversed,
430 the iterations are independent. */
431 auto_vec<loop_p, 3> loop_nest;
432 datarefs.create (10);
433 dependence_relations.create (100);
434 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
435 &dependence_relations))
437 if (dump_file && (dump_flags & TDF_DETAILS))
438 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
439 ret = false;
440 goto end;
442 if (dump_file && (dump_flags & TDF_DETAILS))
443 dump_data_dependence_relations (dump_file, dependence_relations);
445 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
446 LTM_MATRIX (trans)[0][0] = -1;
448 if (lambda_transform_legal_p (trans, 1, dependence_relations))
450 ret = true;
451 if (dump_file && (dump_flags & TDF_DETAILS))
452 fprintf (dump_file, " SUCCESS: may be parallelized\n");
454 else if (dump_file && (dump_flags & TDF_DETAILS))
455 fprintf (dump_file,
456 " FAILED: data dependencies exist across iterations\n");
458 end:
459 free_dependence_relations (dependence_relations);
460 free_data_refs (datarefs);
462 return ret;
465 /* Return true when LOOP contains basic blocks marked with the
466 BB_IRREDUCIBLE_LOOP flag. */
468 static inline bool
469 loop_has_blocks_with_irreducible_flag (struct loop *loop)
471 unsigned i;
472 basic_block *bbs = get_loop_body_in_dom_order (loop);
473 bool res = true;
475 for (i = 0; i < loop->num_nodes; i++)
476 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
477 goto end;
479 res = false;
480 end:
481 free (bbs);
482 return res;
485 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
486 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
487 to their addresses that can be reused. The address of OBJ is known to
488 be invariant in the whole function. Other needed statements are placed
489 right before GSI. */
491 static tree
492 take_address_of (tree obj, tree type, edge entry,
493 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
495 int uid;
496 tree *var_p, name, addr;
497 gassign *stmt;
498 gimple_seq stmts;
500 /* Since the address of OBJ is invariant, the trees may be shared.
501 Avoid rewriting unrelated parts of the code. */
502 obj = unshare_expr (obj);
503 for (var_p = &obj;
504 handled_component_p (*var_p);
505 var_p = &TREE_OPERAND (*var_p, 0))
506 continue;
508 /* Canonicalize the access to base on a MEM_REF. */
509 if (DECL_P (*var_p))
510 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
512 /* Assign a canonical SSA name to the address of the base decl used
513 in the address and share it for all accesses and addresses based
514 on it. */
515 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
516 int_tree_map elt;
517 elt.uid = uid;
518 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
519 if (!slot->to)
521 if (gsi == NULL)
522 return NULL;
523 addr = TREE_OPERAND (*var_p, 0);
524 const char *obj_name
525 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
526 if (obj_name)
527 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
528 else
529 name = make_ssa_name (TREE_TYPE (addr));
530 stmt = gimple_build_assign (name, addr);
531 gsi_insert_on_edge_immediate (entry, stmt);
533 slot->uid = uid;
534 slot->to = name;
536 else
537 name = slot->to;
539 /* Express the address in terms of the canonical SSA name. */
540 TREE_OPERAND (*var_p, 0) = name;
541 if (gsi == NULL)
542 return build_fold_addr_expr_with_type (obj, type);
544 name = force_gimple_operand (build_addr (obj),
545 &stmts, true, NULL_TREE);
546 if (!gimple_seq_empty_p (stmts))
547 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
549 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
551 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
552 NULL_TREE);
553 if (!gimple_seq_empty_p (stmts))
554 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
557 return name;
560 static tree
561 reduc_stmt_res (gimple *stmt)
563 return (gimple_code (stmt) == GIMPLE_PHI
564 ? gimple_phi_result (stmt)
565 : gimple_assign_lhs (stmt));
568 /* Callback for htab_traverse. Create the initialization statement
569 for reduction described in SLOT, and place it at the preheader of
570 the loop described in DATA. */
573 initialize_reductions (reduction_info **slot, struct loop *loop)
575 tree init;
576 tree type, arg;
577 edge e;
579 struct reduction_info *const reduc = *slot;
581 /* Create initialization in preheader:
582 reduction_variable = initialization value of reduction. */
584 /* In the phi node at the header, replace the argument coming
585 from the preheader with the reduction initialization value. */
587 /* Initialize the reduction. */
588 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
589 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
590 reduc->reduction_code, type);
591 reduc->init = init;
593 /* Replace the argument representing the initialization value
594 with the initialization value for the reduction (neutral
595 element for the particular operation, e.g. 0 for PLUS_EXPR,
596 1 for MULT_EXPR, etc).
597 Keep the old value in a new variable "reduction_initial",
598 that will be taken in consideration after the parallel
599 computing is done. */
601 e = loop_preheader_edge (loop);
602 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
603 /* Create new variable to hold the initial value. */
605 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
606 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
607 reduc->initial_value = arg;
608 return 1;
611 struct elv_data
613 struct walk_stmt_info info;
614 edge entry;
615 int_tree_htab_type *decl_address;
616 gimple_stmt_iterator *gsi;
617 bool changed;
618 bool reset;
621 /* Eliminates references to local variables in *TP out of the single
622 entry single exit region starting at DTA->ENTRY.
623 DECL_ADDRESS contains addresses of the references that had their
624 address taken already. If the expression is changed, CHANGED is
625 set to true. Callback for walk_tree. */
627 static tree
628 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
630 struct elv_data *const dta = (struct elv_data *) data;
631 tree t = *tp, var, addr, addr_type, type, obj;
633 if (DECL_P (t))
635 *walk_subtrees = 0;
637 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
638 return NULL_TREE;
640 type = TREE_TYPE (t);
641 addr_type = build_pointer_type (type);
642 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
643 dta->gsi);
644 if (dta->gsi == NULL && addr == NULL_TREE)
646 dta->reset = true;
647 return NULL_TREE;
650 *tp = build_simple_mem_ref (addr);
652 dta->changed = true;
653 return NULL_TREE;
656 if (TREE_CODE (t) == ADDR_EXPR)
658 /* ADDR_EXPR may appear in two contexts:
659 -- as a gimple operand, when the address taken is a function invariant
660 -- as gimple rhs, when the resulting address in not a function
661 invariant
662 We do not need to do anything special in the latter case (the base of
663 the memory reference whose address is taken may be replaced in the
664 DECL_P case). The former case is more complicated, as we need to
665 ensure that the new address is still a gimple operand. Thus, it
666 is not sufficient to replace just the base of the memory reference --
667 we need to move the whole computation of the address out of the
668 loop. */
669 if (!is_gimple_val (t))
670 return NULL_TREE;
672 *walk_subtrees = 0;
673 obj = TREE_OPERAND (t, 0);
674 var = get_base_address (obj);
675 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
676 return NULL_TREE;
678 addr_type = TREE_TYPE (t);
679 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
680 dta->gsi);
681 if (dta->gsi == NULL && addr == NULL_TREE)
683 dta->reset = true;
684 return NULL_TREE;
686 *tp = addr;
688 dta->changed = true;
689 return NULL_TREE;
692 if (!EXPR_P (t))
693 *walk_subtrees = 0;
695 return NULL_TREE;
698 /* Moves the references to local variables in STMT at *GSI out of the single
699 entry single exit region starting at ENTRY. DECL_ADDRESS contains
700 addresses of the references that had their address taken
701 already. */
703 static void
704 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
705 int_tree_htab_type *decl_address)
707 struct elv_data dta;
708 gimple *stmt = gsi_stmt (*gsi);
710 memset (&dta.info, '\0', sizeof (dta.info));
711 dta.entry = entry;
712 dta.decl_address = decl_address;
713 dta.changed = false;
714 dta.reset = false;
716 if (gimple_debug_bind_p (stmt))
718 dta.gsi = NULL;
719 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
720 eliminate_local_variables_1, &dta.info, NULL);
721 if (dta.reset)
723 gimple_debug_bind_reset_value (stmt);
724 dta.changed = true;
727 else if (gimple_clobber_p (stmt))
729 unlink_stmt_vdef (stmt);
730 stmt = gimple_build_nop ();
731 gsi_replace (gsi, stmt, false);
732 dta.changed = true;
734 else
736 dta.gsi = gsi;
737 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
740 if (dta.changed)
741 update_stmt (stmt);
744 /* Eliminates the references to local variables from the single entry
745 single exit region between the ENTRY and EXIT edges.
747 This includes:
748 1) Taking address of a local variable -- these are moved out of the
749 region (and temporary variable is created to hold the address if
750 necessary).
752 2) Dereferencing a local variable -- these are replaced with indirect
753 references. */
755 static void
756 eliminate_local_variables (edge entry, edge exit)
758 basic_block bb;
759 auto_vec<basic_block, 3> body;
760 unsigned i;
761 gimple_stmt_iterator gsi;
762 bool has_debug_stmt = false;
763 int_tree_htab_type decl_address (10);
764 basic_block entry_bb = entry->src;
765 basic_block exit_bb = exit->dest;
767 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
769 FOR_EACH_VEC_ELT (body, i, bb)
770 if (bb != entry_bb && bb != exit_bb)
772 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
773 if (is_gimple_debug (gsi_stmt (gsi)))
775 if (gimple_debug_bind_p (gsi_stmt (gsi)))
776 has_debug_stmt = true;
778 else
779 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
782 if (has_debug_stmt)
783 FOR_EACH_VEC_ELT (body, i, bb)
784 if (bb != entry_bb && bb != exit_bb)
785 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
786 if (gimple_debug_bind_p (gsi_stmt (gsi)))
787 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
790 /* Returns true if expression EXPR is not defined between ENTRY and
791 EXIT, i.e. if all its operands are defined outside of the region. */
793 static bool
794 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
796 basic_block entry_bb = entry->src;
797 basic_block exit_bb = exit->dest;
798 basic_block def_bb;
800 if (is_gimple_min_invariant (expr))
801 return true;
803 if (TREE_CODE (expr) == SSA_NAME)
805 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
806 if (def_bb
807 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
808 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
809 return false;
811 return true;
814 return false;
817 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
818 The copies are stored to NAME_COPIES, if NAME was already duplicated,
819 its duplicate stored in NAME_COPIES is returned.
821 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
822 duplicated, storing the copies in DECL_COPIES. */
824 static tree
825 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
826 int_tree_htab_type *decl_copies,
827 bool copy_name_p)
829 tree copy, var, var_copy;
830 unsigned idx, uid, nuid;
831 struct int_tree_map ielt;
832 struct name_to_copy_elt elt, *nelt;
833 name_to_copy_elt **slot;
834 int_tree_map *dslot;
836 if (TREE_CODE (name) != SSA_NAME)
837 return name;
839 idx = SSA_NAME_VERSION (name);
840 elt.version = idx;
841 slot = name_copies->find_slot_with_hash (&elt, idx,
842 copy_name_p ? INSERT : NO_INSERT);
843 if (slot && *slot)
844 return (*slot)->new_name;
846 if (copy_name_p)
848 copy = duplicate_ssa_name (name, NULL);
849 nelt = XNEW (struct name_to_copy_elt);
850 nelt->version = idx;
851 nelt->new_name = copy;
852 nelt->field = NULL_TREE;
853 *slot = nelt;
855 else
857 gcc_assert (!slot);
858 copy = name;
861 var = SSA_NAME_VAR (name);
862 if (!var)
863 return copy;
865 uid = DECL_UID (var);
866 ielt.uid = uid;
867 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
868 if (!dslot->to)
870 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
871 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
872 dslot->uid = uid;
873 dslot->to = var_copy;
875 /* Ensure that when we meet this decl next time, we won't duplicate
876 it again. */
877 nuid = DECL_UID (var_copy);
878 ielt.uid = nuid;
879 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
880 gcc_assert (!dslot->to);
881 dslot->uid = nuid;
882 dslot->to = var_copy;
884 else
885 var_copy = dslot->to;
887 replace_ssa_name_symbol (copy, var_copy);
888 return copy;
891 /* Finds the ssa names used in STMT that are defined outside the
892 region between ENTRY and EXIT and replaces such ssa names with
893 their duplicates. The duplicates are stored to NAME_COPIES. Base
894 decls of all ssa names used in STMT (including those defined in
895 LOOP) are replaced with the new temporary variables; the
896 replacement decls are stored in DECL_COPIES. */
898 static void
899 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
900 name_to_copy_table_type *name_copies,
901 int_tree_htab_type *decl_copies)
903 use_operand_p use;
904 def_operand_p def;
905 ssa_op_iter oi;
906 tree name, copy;
907 bool copy_name_p;
909 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
911 name = DEF_FROM_PTR (def);
912 gcc_assert (TREE_CODE (name) == SSA_NAME);
913 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
914 false);
915 gcc_assert (copy == name);
918 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
920 name = USE_FROM_PTR (use);
921 if (TREE_CODE (name) != SSA_NAME)
922 continue;
924 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
925 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
926 copy_name_p);
927 SET_USE (use, copy);
931 /* Finds the ssa names used in STMT that are defined outside the
932 region between ENTRY and EXIT and replaces such ssa names with
933 their duplicates. The duplicates are stored to NAME_COPIES. Base
934 decls of all ssa names used in STMT (including those defined in
935 LOOP) are replaced with the new temporary variables; the
936 replacement decls are stored in DECL_COPIES. */
938 static bool
939 separate_decls_in_region_debug (gimple *stmt,
940 name_to_copy_table_type *name_copies,
941 int_tree_htab_type *decl_copies)
943 use_operand_p use;
944 ssa_op_iter oi;
945 tree var, name;
946 struct int_tree_map ielt;
947 struct name_to_copy_elt elt;
948 name_to_copy_elt **slot;
949 int_tree_map *dslot;
951 if (gimple_debug_bind_p (stmt))
952 var = gimple_debug_bind_get_var (stmt);
953 else if (gimple_debug_source_bind_p (stmt))
954 var = gimple_debug_source_bind_get_var (stmt);
955 else
956 return true;
957 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
958 return true;
959 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
960 ielt.uid = DECL_UID (var);
961 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
962 if (!dslot)
963 return true;
964 if (gimple_debug_bind_p (stmt))
965 gimple_debug_bind_set_var (stmt, dslot->to);
966 else if (gimple_debug_source_bind_p (stmt))
967 gimple_debug_source_bind_set_var (stmt, dslot->to);
969 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
971 name = USE_FROM_PTR (use);
972 if (TREE_CODE (name) != SSA_NAME)
973 continue;
975 elt.version = SSA_NAME_VERSION (name);
976 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
977 if (!slot)
979 gimple_debug_bind_reset_value (stmt);
980 update_stmt (stmt);
981 break;
984 SET_USE (use, (*slot)->new_name);
987 return false;
990 /* Callback for htab_traverse. Adds a field corresponding to the reduction
991 specified in SLOT. The type is passed in DATA. */
994 add_field_for_reduction (reduction_info **slot, tree type)
997 struct reduction_info *const red = *slot;
998 tree var = reduc_stmt_res (red->reduc_stmt);
999 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
1000 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1002 insert_field_into_struct (type, field);
1004 red->field = field;
1006 return 1;
1009 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1010 described in SLOT. The type is passed in DATA. */
1013 add_field_for_name (name_to_copy_elt **slot, tree type)
1015 struct name_to_copy_elt *const elt = *slot;
1016 tree name = ssa_name (elt->version);
1017 tree field = build_decl (UNKNOWN_LOCATION,
1018 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1019 TREE_TYPE (name));
1021 insert_field_into_struct (type, field);
1022 elt->field = field;
1024 return 1;
1027 /* Callback for htab_traverse. A local result is the intermediate result
1028 computed by a single
1029 thread, or the initial value in case no iteration was executed.
1030 This function creates a phi node reflecting these values.
1031 The phi's result will be stored in NEW_PHI field of the
1032 reduction's data structure. */
1035 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1037 struct reduction_info *const reduc = *slot;
1038 edge e;
1039 gphi *new_phi;
1040 basic_block store_bb, continue_bb;
1041 tree local_res;
1042 source_location locus;
1044 /* STORE_BB is the block where the phi
1045 should be stored. It is the destination of the loop exit.
1046 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1047 continue_bb = single_pred (loop->latch);
1048 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1050 /* STORE_BB has two predecessors. One coming from the loop
1051 (the reduction's result is computed at the loop),
1052 and another coming from a block preceding the loop,
1053 when no iterations
1054 are executed (the initial value should be taken). */
1055 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1056 e = EDGE_PRED (store_bb, 1);
1057 else
1058 e = EDGE_PRED (store_bb, 0);
1059 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1060 local_res = copy_ssa_name (lhs);
1061 locus = gimple_location (reduc->reduc_stmt);
1062 new_phi = create_phi_node (local_res, store_bb);
1063 add_phi_arg (new_phi, reduc->init, e, locus);
1064 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1065 reduc->new_phi = new_phi;
1067 return 1;
1070 struct clsn_data
1072 tree store;
1073 tree load;
1075 basic_block store_bb;
1076 basic_block load_bb;
1079 /* Callback for htab_traverse. Create an atomic instruction for the
1080 reduction described in SLOT.
1081 DATA annotates the place in memory the atomic operation relates to,
1082 and the basic block it needs to be generated in. */
1085 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1087 struct reduction_info *const reduc = *slot;
1088 gimple_stmt_iterator gsi;
1089 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1090 tree load_struct;
1091 basic_block bb;
1092 basic_block new_bb;
1093 edge e;
1094 tree t, addr, ref, x;
1095 tree tmp_load, name;
1096 gimple *load;
1098 if (reduc->reduc_addr == NULL_TREE)
1100 load_struct = build_simple_mem_ref (clsn_data->load);
1101 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1103 addr = build_addr (t);
1105 else
1107 /* Set the address for the atomic store. */
1108 addr = reduc->reduc_addr;
1110 /* Remove the non-atomic store '*addr = sum'. */
1111 tree res = PHI_RESULT (reduc->keep_res);
1112 use_operand_p use_p;
1113 gimple *stmt;
1114 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1115 gcc_assert (single_use_p);
1116 replace_uses_by (gimple_vdef (stmt),
1117 gimple_vuse (stmt));
1118 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1119 gsi_remove (&gsi, true);
1122 /* Create phi node. */
1123 bb = clsn_data->load_bb;
1125 gsi = gsi_last_bb (bb);
1126 e = split_block (bb, gsi_stmt (gsi));
1127 new_bb = e->dest;
1129 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1130 tmp_load = make_ssa_name (tmp_load);
1131 load = gimple_build_omp_atomic_load (tmp_load, addr);
1132 SSA_NAME_DEF_STMT (tmp_load) = load;
1133 gsi = gsi_start_bb (new_bb);
1134 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1136 e = split_block (new_bb, load);
1137 new_bb = e->dest;
1138 gsi = gsi_start_bb (new_bb);
1139 ref = tmp_load;
1140 x = fold_build2 (reduc->reduction_code,
1141 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1142 PHI_RESULT (reduc->new_phi));
1144 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1145 GSI_CONTINUE_LINKING);
1147 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1148 return 1;
1151 /* Create the atomic operation at the join point of the threads.
1152 REDUCTION_LIST describes the reductions in the LOOP.
1153 LD_ST_DATA describes the shared data structure where
1154 shared data is stored in and loaded from. */
1155 static void
1156 create_call_for_reduction (struct loop *loop,
1157 reduction_info_table_type *reduction_list,
1158 struct clsn_data *ld_st_data)
1160 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1161 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1162 basic_block continue_bb = single_pred (loop->latch);
1163 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1164 reduction_list
1165 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1168 /* Callback for htab_traverse. Loads the final reduction value at the
1169 join point of all threads, and inserts it in the right place. */
1172 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1174 struct reduction_info *const red = *slot;
1175 gimple *stmt;
1176 gimple_stmt_iterator gsi;
1177 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1178 tree load_struct;
1179 tree name;
1180 tree x;
1182 /* If there's no exit phi, the result of the reduction is unused. */
1183 if (red->keep_res == NULL)
1184 return 1;
1186 gsi = gsi_after_labels (clsn_data->load_bb);
1187 load_struct = build_simple_mem_ref (clsn_data->load);
1188 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1189 NULL_TREE);
1191 x = load_struct;
1192 name = PHI_RESULT (red->keep_res);
1193 stmt = gimple_build_assign (name, x);
1195 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1197 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1198 !gsi_end_p (gsi); gsi_next (&gsi))
1199 if (gsi_stmt (gsi) == red->keep_res)
1201 remove_phi_node (&gsi, false);
1202 return 1;
1204 gcc_unreachable ();
1207 /* Load the reduction result that was stored in LD_ST_DATA.
1208 REDUCTION_LIST describes the list of reductions that the
1209 loads should be generated for. */
1210 static void
1211 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1212 struct clsn_data *ld_st_data)
1214 gimple_stmt_iterator gsi;
1215 tree t;
1216 gimple *stmt;
1218 gsi = gsi_after_labels (ld_st_data->load_bb);
1219 t = build_fold_addr_expr (ld_st_data->store);
1220 stmt = gimple_build_assign (ld_st_data->load, t);
1222 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1224 reduction_list
1225 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1229 /* Callback for htab_traverse. Store the neutral value for the
1230 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1231 1 for MULT_EXPR, etc. into the reduction field.
1232 The reduction is specified in SLOT. The store information is
1233 passed in DATA. */
1236 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1238 struct reduction_info *const red = *slot;
1239 tree t;
1240 gimple *stmt;
1241 gimple_stmt_iterator gsi;
1242 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1244 gsi = gsi_last_bb (clsn_data->store_bb);
1245 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1246 stmt = gimple_build_assign (t, red->initial_value);
1247 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1249 return 1;
1252 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1253 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1254 specified in SLOT. */
1257 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1258 struct clsn_data *clsn_data)
1260 struct name_to_copy_elt *const elt = *slot;
1261 tree t;
1262 gimple *stmt;
1263 gimple_stmt_iterator gsi;
1264 tree type = TREE_TYPE (elt->new_name);
1265 tree load_struct;
1267 gsi = gsi_last_bb (clsn_data->store_bb);
1268 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1269 stmt = gimple_build_assign (t, ssa_name (elt->version));
1270 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1272 gsi = gsi_last_bb (clsn_data->load_bb);
1273 load_struct = build_simple_mem_ref (clsn_data->load);
1274 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1275 stmt = gimple_build_assign (elt->new_name, t);
1276 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1278 return 1;
1281 /* Moves all the variables used in LOOP and defined outside of it (including
1282 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1283 name) to a structure created for this purpose. The code
1285 while (1)
1287 use (a);
1288 use (b);
1291 is transformed this way:
1293 bb0:
1294 old.a = a;
1295 old.b = b;
1297 bb1:
1298 a' = new->a;
1299 b' = new->b;
1300 while (1)
1302 use (a');
1303 use (b');
1306 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1307 pointer `new' is intentionally not initialized (the loop will be split to a
1308 separate function later, and `new' will be initialized from its arguments).
1309 LD_ST_DATA holds information about the shared data structure used to pass
1310 information among the threads. It is initialized here, and
1311 gen_parallel_loop will pass it to create_call_for_reduction that
1312 needs this information. REDUCTION_LIST describes the reductions
1313 in LOOP. */
1315 static void
1316 separate_decls_in_region (edge entry, edge exit,
1317 reduction_info_table_type *reduction_list,
1318 tree *arg_struct, tree *new_arg_struct,
1319 struct clsn_data *ld_st_data)
1322 basic_block bb1 = split_edge (entry);
1323 basic_block bb0 = single_pred (bb1);
1324 name_to_copy_table_type name_copies (10);
1325 int_tree_htab_type decl_copies (10);
1326 unsigned i;
1327 tree type, type_name, nvar;
1328 gimple_stmt_iterator gsi;
1329 struct clsn_data clsn_data;
1330 auto_vec<basic_block, 3> body;
1331 basic_block bb;
1332 basic_block entry_bb = bb1;
1333 basic_block exit_bb = exit->dest;
1334 bool has_debug_stmt = false;
1336 entry = single_succ_edge (entry_bb);
1337 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1339 FOR_EACH_VEC_ELT (body, i, bb)
1341 if (bb != entry_bb && bb != exit_bb)
1343 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1344 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1345 &name_copies, &decl_copies);
1347 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1349 gimple *stmt = gsi_stmt (gsi);
1351 if (is_gimple_debug (stmt))
1352 has_debug_stmt = true;
1353 else
1354 separate_decls_in_region_stmt (entry, exit, stmt,
1355 &name_copies, &decl_copies);
1360 /* Now process debug bind stmts. We must not create decls while
1361 processing debug stmts, so we defer their processing so as to
1362 make sure we will have debug info for as many variables as
1363 possible (all of those that were dealt with in the loop above),
1364 and discard those for which we know there's nothing we can
1365 do. */
1366 if (has_debug_stmt)
1367 FOR_EACH_VEC_ELT (body, i, bb)
1368 if (bb != entry_bb && bb != exit_bb)
1370 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1372 gimple *stmt = gsi_stmt (gsi);
1374 if (is_gimple_debug (stmt))
1376 if (separate_decls_in_region_debug (stmt, &name_copies,
1377 &decl_copies))
1379 gsi_remove (&gsi, true);
1380 continue;
1384 gsi_next (&gsi);
1388 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1390 /* It may happen that there is nothing to copy (if there are only
1391 loop carried and external variables in the loop). */
1392 *arg_struct = NULL;
1393 *new_arg_struct = NULL;
1395 else
1397 /* Create the type for the structure to store the ssa names to. */
1398 type = lang_hooks.types.make_type (RECORD_TYPE);
1399 type_name = build_decl (UNKNOWN_LOCATION,
1400 TYPE_DECL, create_tmp_var_name (".paral_data"),
1401 type);
1402 TYPE_NAME (type) = type_name;
1404 name_copies.traverse <tree, add_field_for_name> (type);
1405 if (reduction_list && reduction_list->elements () > 0)
1407 /* Create the fields for reductions. */
1408 reduction_list->traverse <tree, add_field_for_reduction> (type);
1410 layout_type (type);
1412 /* Create the loads and stores. */
1413 *arg_struct = create_tmp_var (type, ".paral_data_store");
1414 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1415 *new_arg_struct = make_ssa_name (nvar);
1417 ld_st_data->store = *arg_struct;
1418 ld_st_data->load = *new_arg_struct;
1419 ld_st_data->store_bb = bb0;
1420 ld_st_data->load_bb = bb1;
1422 name_copies
1423 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1424 (ld_st_data);
1426 /* Load the calculation from memory (after the join of the threads). */
1428 if (reduction_list && reduction_list->elements () > 0)
1430 reduction_list
1431 ->traverse <struct clsn_data *, create_stores_for_reduction>
1432 (ld_st_data);
1433 clsn_data.load = make_ssa_name (nvar);
1434 clsn_data.load_bb = exit->dest;
1435 clsn_data.store = ld_st_data->store;
1436 create_final_loads_for_reduction (reduction_list, &clsn_data);
1441 /* Returns true if FN was created to run in parallel. */
1443 bool
1444 parallelized_function_p (tree fndecl)
1446 cgraph_node *node = cgraph_node::get (fndecl);
1447 gcc_assert (node != NULL);
1448 return node->parallelized_function;
1451 /* Creates and returns an empty function that will receive the body of
1452 a parallelized loop. */
1454 static tree
1455 create_loop_fn (location_t loc)
1457 char buf[100];
1458 char *tname;
1459 tree decl, type, name, t;
1460 struct function *act_cfun = cfun;
1461 static unsigned loopfn_num;
1463 loc = LOCATION_LOCUS (loc);
1464 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1465 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1466 clean_symbol_name (tname);
1467 name = get_identifier (tname);
1468 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1470 decl = build_decl (loc, FUNCTION_DECL, name, type);
1471 TREE_STATIC (decl) = 1;
1472 TREE_USED (decl) = 1;
1473 DECL_ARTIFICIAL (decl) = 1;
1474 DECL_IGNORED_P (decl) = 0;
1475 TREE_PUBLIC (decl) = 0;
1476 DECL_UNINLINABLE (decl) = 1;
1477 DECL_EXTERNAL (decl) = 0;
1478 DECL_CONTEXT (decl) = NULL_TREE;
1479 DECL_INITIAL (decl) = make_node (BLOCK);
1480 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl;
1482 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1483 DECL_ARTIFICIAL (t) = 1;
1484 DECL_IGNORED_P (t) = 1;
1485 DECL_RESULT (decl) = t;
1487 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1488 ptr_type_node);
1489 DECL_ARTIFICIAL (t) = 1;
1490 DECL_ARG_TYPE (t) = ptr_type_node;
1491 DECL_CONTEXT (t) = decl;
1492 TREE_USED (t) = 1;
1493 DECL_ARGUMENTS (decl) = t;
1495 allocate_struct_function (decl, false);
1497 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1498 it. */
1499 set_cfun (act_cfun);
1501 return decl;
1504 /* Replace uses of NAME by VAL in block BB. */
1506 static void
1507 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1509 gimple *use_stmt;
1510 imm_use_iterator imm_iter;
1512 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1514 if (gimple_bb (use_stmt) != bb)
1515 continue;
1517 use_operand_p use_p;
1518 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1519 SET_USE (use_p, val);
1523 /* Do transformation from:
1525 <bb preheader>:
1527 goto <bb header>
1529 <bb header>:
1530 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1531 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1533 use (ivtmp_a)
1535 sum_b = sum_a + sum_update
1537 if (ivtmp_a < n)
1538 goto <bb latch>;
1539 else
1540 goto <bb exit>;
1542 <bb latch>:
1543 ivtmp_b = ivtmp_a + 1;
1544 goto <bb header>
1546 <bb exit>:
1547 sum_z = PHI <sum_b (cond[1]), ...>
1549 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1550 that's <bb header>.
1554 <bb preheader>:
1556 goto <bb newheader>
1558 <bb header>:
1559 ivtmp_a = PHI <ivtmp_c (latch)>
1560 sum_a = PHI <sum_c (latch)>
1562 use (ivtmp_a)
1564 sum_b = sum_a + sum_update
1566 goto <bb latch>;
1568 <bb newheader>:
1569 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1570 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1571 if (ivtmp_c < n + 1)
1572 goto <bb header>;
1573 else
1574 goto <bb newexit>;
1576 <bb latch>:
1577 ivtmp_b = ivtmp_a + 1;
1578 goto <bb newheader>
1580 <bb newexit>:
1581 sum_y = PHI <sum_c (newheader)>
1583 <bb exit>:
1584 sum_z = PHI <sum_y (newexit), ...>
1587 In unified diff format:
1589 <bb preheader>:
1591 - goto <bb header>
1592 + goto <bb newheader>
1594 <bb header>:
1595 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1596 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1597 + ivtmp_a = PHI <ivtmp_c (latch)>
1598 + sum_a = PHI <sum_c (latch)>
1600 use (ivtmp_a)
1602 sum_b = sum_a + sum_update
1604 - if (ivtmp_a < n)
1605 - goto <bb latch>;
1606 + goto <bb latch>;
1608 + <bb newheader>:
1609 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1610 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1611 + if (ivtmp_c < n + 1)
1612 + goto <bb header>;
1613 else
1614 goto <bb exit>;
1616 <bb latch>:
1617 ivtmp_b = ivtmp_a + 1;
1618 - goto <bb header>
1619 + goto <bb newheader>
1621 + <bb newexit>:
1622 + sum_y = PHI <sum_c (newheader)>
1624 <bb exit>:
1625 - sum_z = PHI <sum_b (cond[1]), ...>
1626 + sum_z = PHI <sum_y (newexit), ...>
1628 Note: the example does not show any virtual phis, but these are handled more
1629 or less as reductions.
1632 Moves the exit condition of LOOP to the beginning of its header.
1633 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1634 bound. */
1636 static void
1637 transform_to_exit_first_loop_alt (struct loop *loop,
1638 reduction_info_table_type *reduction_list,
1639 tree bound)
1641 basic_block header = loop->header;
1642 basic_block latch = loop->latch;
1643 edge exit = single_dom_exit (loop);
1644 basic_block exit_block = exit->dest;
1645 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1646 tree control = gimple_cond_lhs (cond_stmt);
1647 edge e;
1649 /* Rewriting virtuals into loop-closed ssa normal form makes this
1650 transformation simpler. It also ensures that the virtuals are in
1651 loop-closed ssa normal from after the transformation, which is required by
1652 create_parallel_loop. */
1653 rewrite_virtuals_into_loop_closed_ssa (loop);
1655 /* Create the new_header block. */
1656 basic_block new_header = split_block_before_cond_jump (exit->src);
1657 edge edge_at_split = single_pred_edge (new_header);
1659 /* Redirect entry edge to new_header. */
1660 edge entry = loop_preheader_edge (loop);
1661 e = redirect_edge_and_branch (entry, new_header);
1662 gcc_assert (e == entry);
1664 /* Redirect post_inc_edge to new_header. */
1665 edge post_inc_edge = single_succ_edge (latch);
1666 e = redirect_edge_and_branch (post_inc_edge, new_header);
1667 gcc_assert (e == post_inc_edge);
1669 /* Redirect post_cond_edge to header. */
1670 edge post_cond_edge = single_pred_edge (latch);
1671 e = redirect_edge_and_branch (post_cond_edge, header);
1672 gcc_assert (e == post_cond_edge);
1674 /* Redirect edge_at_split to latch. */
1675 e = redirect_edge_and_branch (edge_at_split, latch);
1676 gcc_assert (e == edge_at_split);
1678 /* Set the new loop bound. */
1679 gimple_cond_set_rhs (cond_stmt, bound);
1680 update_stmt (cond_stmt);
1682 /* Repair the ssa. */
1683 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1684 edge_var_map *vm;
1685 gphi_iterator gsi;
1686 int i;
1687 for (gsi = gsi_start_phis (header), i = 0;
1688 !gsi_end_p (gsi) && v->iterate (i, &vm);
1689 gsi_next (&gsi), i++)
1691 gphi *phi = gsi.phi ();
1692 tree res_a = PHI_RESULT (phi);
1694 /* Create new phi. */
1695 tree res_c = copy_ssa_name (res_a, phi);
1696 gphi *nphi = create_phi_node (res_c, new_header);
1698 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1699 replace_uses_in_bb_by (res_a, res_c, new_header);
1701 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1702 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1704 /* Replace sum_b with sum_c in exit phi. */
1705 tree res_b = redirect_edge_var_map_def (vm);
1706 replace_uses_in_bb_by (res_b, res_c, exit_block);
1708 struct reduction_info *red = reduction_phi (reduction_list, phi);
1709 gcc_assert (virtual_operand_p (res_a)
1710 || res_a == control
1711 || red != NULL);
1713 if (red)
1715 /* Register the new reduction phi. */
1716 red->reduc_phi = nphi;
1717 gimple_set_uid (red->reduc_phi, red->reduc_version);
1720 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1722 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1723 flush_pending_stmts (entry);
1725 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1726 flush_pending_stmts (post_inc_edge);
1729 basic_block new_exit_block = NULL;
1730 if (!single_pred_p (exit->dest))
1732 /* Create a new empty exit block, inbetween the new loop header and the
1733 old exit block. The function separate_decls_in_region needs this block
1734 to insert code that is active on loop exit, but not any other path. */
1735 new_exit_block = split_edge (exit);
1738 /* Insert and register the reduction exit phis. */
1739 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1740 !gsi_end_p (gsi);
1741 gsi_next (&gsi))
1743 gphi *phi = gsi.phi ();
1744 gphi *nphi = NULL;
1745 tree res_z = PHI_RESULT (phi);
1746 tree res_c;
1748 if (new_exit_block != NULL)
1750 /* Now that we have a new exit block, duplicate the phi of the old
1751 exit block in the new exit block to preserve loop-closed ssa. */
1752 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1753 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1754 tree res_y = copy_ssa_name (res_z, phi);
1755 nphi = create_phi_node (res_y, new_exit_block);
1756 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1757 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1758 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1760 else
1761 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1763 if (virtual_operand_p (res_z))
1764 continue;
1766 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1767 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1768 if (red != NULL)
1769 red->keep_res = (nphi != NULL
1770 ? nphi
1771 : phi);
1774 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1775 then we're still using some fields, so only bother about fields that are
1776 still used: header and latch.
1777 The loop has a new header bb, so we update it. The latch bb stays the
1778 same. */
1779 loop->header = new_header;
1781 /* Recalculate dominance info. */
1782 free_dominance_info (CDI_DOMINATORS);
1783 calculate_dominance_info (CDI_DOMINATORS);
1785 checking_verify_ssa (true, true);
1788 /* Tries to moves the exit condition of LOOP to the beginning of its header
1789 without duplication of the loop body. NIT is the number of iterations of the
1790 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1791 transformation is successful. */
1793 static bool
1794 try_transform_to_exit_first_loop_alt (struct loop *loop,
1795 reduction_info_table_type *reduction_list,
1796 tree nit)
1798 /* Check whether the latch contains a single statement. */
1799 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1800 return false;
1802 /* Check whether the latch contains no phis. */
1803 if (phi_nodes (loop->latch) != NULL)
1804 return false;
1806 /* Check whether the latch contains the loop iv increment. */
1807 edge back = single_succ_edge (loop->latch);
1808 edge exit = single_dom_exit (loop);
1809 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1810 tree control = gimple_cond_lhs (cond_stmt);
1811 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1812 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1813 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1814 return false;
1816 /* Check whether there's no code between the loop condition and the latch. */
1817 if (!single_pred_p (loop->latch)
1818 || single_pred (loop->latch) != exit->src)
1819 return false;
1821 tree alt_bound = NULL_TREE;
1822 tree nit_type = TREE_TYPE (nit);
1824 /* Figure out whether nit + 1 overflows. */
1825 if (TREE_CODE (nit) == INTEGER_CST)
1827 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1829 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1830 nit, build_one_cst (nit_type));
1832 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1833 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1834 return true;
1836 else
1838 /* Todo: Figure out if we can trigger this, if it's worth to handle
1839 optimally, and if we can handle it optimally. */
1840 return false;
1844 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1846 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1847 iv with base 0 and step 1 that is incremented in the latch, like this:
1849 <bb header>:
1850 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1852 if (iv_1 < nit)
1853 goto <bb latch>;
1854 else
1855 goto <bb exit>;
1857 <bb latch>:
1858 iv_2 = iv_1 + 1;
1859 goto <bb header>;
1861 The range of iv_1 is [0, nit]. The latch edge is taken for
1862 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1863 number of latch executions is equal to nit.
1865 The function max_loop_iterations gives us the maximum number of latch
1866 executions, so it gives us the maximum value of nit. */
1867 widest_int nit_max;
1868 if (!max_loop_iterations (loop, &nit_max))
1869 return false;
1871 /* Check if nit + 1 overflows. */
1872 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1873 if (nit_max >= type_max)
1874 return false;
1876 gimple *def = SSA_NAME_DEF_STMT (nit);
1878 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1879 if (def
1880 && is_gimple_assign (def)
1881 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1883 tree op1 = gimple_assign_rhs1 (def);
1884 tree op2 = gimple_assign_rhs2 (def);
1885 if (integer_minus_onep (op1))
1886 alt_bound = op2;
1887 else if (integer_minus_onep (op2))
1888 alt_bound = op1;
1891 /* If not found, insert nit + 1. */
1892 if (alt_bound == NULL_TREE)
1894 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1895 build_int_cst_type (nit_type, 1));
1897 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1899 alt_bound
1900 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1901 GSI_CONTINUE_LINKING);
1904 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1905 return true;
1908 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1909 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1910 LOOP. */
1912 static void
1913 transform_to_exit_first_loop (struct loop *loop,
1914 reduction_info_table_type *reduction_list,
1915 tree nit)
1917 basic_block *bbs, *nbbs, ex_bb, orig_header;
1918 unsigned n;
1919 bool ok;
1920 edge exit = single_dom_exit (loop), hpred;
1921 tree control, control_name, res, t;
1922 gphi *phi, *nphi;
1923 gassign *stmt;
1924 gcond *cond_stmt, *cond_nit;
1925 tree nit_1;
1927 split_block_after_labels (loop->header);
1928 orig_header = single_succ (loop->header);
1929 hpred = single_succ_edge (loop->header);
1931 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1932 control = gimple_cond_lhs (cond_stmt);
1933 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1935 /* Make sure that we have phi nodes on exit for all loop header phis
1936 (create_parallel_loop requires that). */
1937 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1938 !gsi_end_p (gsi);
1939 gsi_next (&gsi))
1941 phi = gsi.phi ();
1942 res = PHI_RESULT (phi);
1943 t = copy_ssa_name (res, phi);
1944 SET_PHI_RESULT (phi, t);
1945 nphi = create_phi_node (res, orig_header);
1946 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1948 if (res == control)
1950 gimple_cond_set_lhs (cond_stmt, t);
1951 update_stmt (cond_stmt);
1952 control = t;
1956 bbs = get_loop_body_in_dom_order (loop);
1958 for (n = 0; bbs[n] != exit->src; n++)
1959 continue;
1960 nbbs = XNEWVEC (basic_block, n);
1961 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1962 bbs + 1, n, nbbs);
1963 gcc_assert (ok);
1964 free (bbs);
1965 ex_bb = nbbs[0];
1966 free (nbbs);
1968 /* Other than reductions, the only gimple reg that should be copied
1969 out of the loop is the control variable. */
1970 exit = single_dom_exit (loop);
1971 control_name = NULL_TREE;
1972 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1973 !gsi_end_p (gsi); )
1975 phi = gsi.phi ();
1976 res = PHI_RESULT (phi);
1977 if (virtual_operand_p (res))
1979 gsi_next (&gsi);
1980 continue;
1983 /* Check if it is a part of reduction. If it is,
1984 keep the phi at the reduction's keep_res field. The
1985 PHI_RESULT of this phi is the resulting value of the reduction
1986 variable when exiting the loop. */
1988 if (reduction_list->elements () > 0)
1990 struct reduction_info *red;
1992 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1993 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1994 if (red)
1996 red->keep_res = phi;
1997 gsi_next (&gsi);
1998 continue;
2001 gcc_assert (control_name == NULL_TREE
2002 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
2003 control_name = res;
2004 remove_phi_node (&gsi, false);
2006 gcc_assert (control_name != NULL_TREE);
2008 /* Initialize the control variable to number of iterations
2009 according to the rhs of the exit condition. */
2010 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2011 cond_nit = as_a <gcond *> (last_stmt (exit->src));
2012 nit_1 = gimple_cond_rhs (cond_nit);
2013 nit_1 = force_gimple_operand_gsi (&gsi,
2014 fold_convert (TREE_TYPE (control_name), nit_1),
2015 false, NULL_TREE, false, GSI_SAME_STMT);
2016 stmt = gimple_build_assign (control_name, nit_1);
2017 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2020 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2021 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2022 NEW_DATA is the variable that should be initialized from the argument
2023 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2024 that number is to be determined later. */
2026 static void
2027 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
2028 tree new_data, unsigned n_threads, location_t loc,
2029 bool oacc_kernels_p)
2031 gimple_stmt_iterator gsi;
2032 basic_block for_bb, ex_bb, continue_bb;
2033 tree t, param;
2034 gomp_parallel *omp_par_stmt;
2035 gimple *omp_return_stmt1, *omp_return_stmt2;
2036 gimple *phi;
2037 gcond *cond_stmt;
2038 gomp_for *for_stmt;
2039 gomp_continue *omp_cont_stmt;
2040 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2041 edge exit, nexit, guard, end, e;
2043 if (oacc_kernels_p)
2045 gcc_checking_assert (lookup_attribute ("oacc kernels",
2046 DECL_ATTRIBUTES (cfun->decl)));
2047 /* Indicate to later processing that this is a parallelized OpenACC
2048 kernels construct. */
2049 DECL_ATTRIBUTES (cfun->decl)
2050 = tree_cons (get_identifier ("oacc kernels parallelized"),
2051 NULL_TREE, DECL_ATTRIBUTES (cfun->decl));
2053 else
2055 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2057 basic_block bb = loop_preheader_edge (loop)->src;
2058 basic_block paral_bb = single_pred (bb);
2059 gsi = gsi_last_bb (paral_bb);
2061 gcc_checking_assert (n_threads != 0);
2062 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2063 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2064 = build_int_cst (integer_type_node, n_threads);
2065 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2066 gimple_set_location (omp_par_stmt, loc);
2068 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2070 /* Initialize NEW_DATA. */
2071 if (data)
2073 gassign *assign_stmt;
2075 gsi = gsi_after_labels (bb);
2077 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2078 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2079 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2081 assign_stmt = gimple_build_assign (new_data,
2082 fold_convert (TREE_TYPE (new_data), param));
2083 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2086 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2087 bb = split_loop_exit_edge (single_dom_exit (loop));
2088 gsi = gsi_last_bb (bb);
2089 omp_return_stmt1 = gimple_build_omp_return (false);
2090 gimple_set_location (omp_return_stmt1, loc);
2091 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2094 /* Extract data for GIMPLE_OMP_FOR. */
2095 gcc_assert (loop->header == single_dom_exit (loop)->src);
2096 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2098 cvar = gimple_cond_lhs (cond_stmt);
2099 cvar_base = SSA_NAME_VAR (cvar);
2100 phi = SSA_NAME_DEF_STMT (cvar);
2101 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2102 initvar = copy_ssa_name (cvar);
2103 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2104 initvar);
2105 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2107 gsi = gsi_last_nondebug_bb (loop->latch);
2108 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2109 gsi_remove (&gsi, true);
2111 /* Prepare cfg. */
2112 for_bb = split_edge (loop_preheader_edge (loop));
2113 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2114 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2115 gcc_assert (exit == single_dom_exit (loop));
2117 guard = make_edge (for_bb, ex_bb, 0);
2118 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2119 loop->latch = split_edge (single_succ_edge (loop->latch));
2120 single_pred_edge (loop->latch)->flags = 0;
2121 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2122 rescan_loop_exit (end, true, false);
2124 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2125 !gsi_end_p (gpi); gsi_next (&gpi))
2127 source_location locus;
2128 gphi *phi = gpi.phi ();
2129 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2130 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2132 /* If the exit phi is not connected to a header phi in the same loop, this
2133 value is not modified in the loop, and we're done with this phi. */
2134 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2135 && gimple_bb (def_stmt) == loop->header))
2137 locus = gimple_phi_arg_location_from_edge (phi, exit);
2138 add_phi_arg (phi, def, guard, locus);
2139 add_phi_arg (phi, def, end, locus);
2140 continue;
2143 gphi *stmt = as_a <gphi *> (def_stmt);
2144 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2145 locus = gimple_phi_arg_location_from_edge (stmt,
2146 loop_preheader_edge (loop));
2147 add_phi_arg (phi, def, guard, locus);
2149 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2150 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2151 add_phi_arg (phi, def, end, locus);
2153 e = redirect_edge_and_branch (exit, nexit->dest);
2154 PENDING_STMT (e) = NULL;
2156 /* Emit GIMPLE_OMP_FOR. */
2157 if (oacc_kernels_p)
2158 /* Parallelized OpenACC kernels constructs use gang parallelism. See also
2159 omp-offload.c:execute_oacc_device_lower. */
2160 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2161 else
2163 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2164 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2165 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2166 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2167 switch (schedule_type)
2169 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2170 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2171 break;
2172 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2173 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2174 break;
2175 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2176 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2177 break;
2178 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2179 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2180 chunk_size = 0;
2181 break;
2182 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2183 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2184 chunk_size = 0;
2185 break;
2186 default:
2187 gcc_unreachable ();
2189 if (chunk_size != 0)
2190 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2191 = build_int_cst (integer_type_node, chunk_size);
2194 for_stmt = gimple_build_omp_for (NULL,
2195 (oacc_kernels_p
2196 ? GF_OMP_FOR_KIND_OACC_LOOP
2197 : GF_OMP_FOR_KIND_FOR),
2198 t, 1, NULL);
2200 gimple_cond_set_lhs (cond_stmt, cvar_base);
2201 type = TREE_TYPE (cvar);
2202 gimple_set_location (for_stmt, loc);
2203 gimple_omp_for_set_index (for_stmt, 0, initvar);
2204 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2205 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2206 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2207 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2208 cvar_base,
2209 build_int_cst (type, 1)));
2211 gsi = gsi_last_bb (for_bb);
2212 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2213 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2215 /* Emit GIMPLE_OMP_CONTINUE. */
2216 continue_bb = single_pred (loop->latch);
2217 gsi = gsi_last_bb (continue_bb);
2218 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2219 gimple_set_location (omp_cont_stmt, loc);
2220 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2221 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2223 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2224 gsi = gsi_last_bb (ex_bb);
2225 omp_return_stmt2 = gimple_build_omp_return (true);
2226 gimple_set_location (omp_return_stmt2, loc);
2227 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2229 /* After the above dom info is hosed. Re-compute it. */
2230 free_dominance_info (CDI_DOMINATORS);
2231 calculate_dominance_info (CDI_DOMINATORS);
2234 /* Generates code to execute the iterations of LOOP in N_THREADS
2235 threads in parallel, which can be 0 if that number is to be determined
2236 later.
2238 NITER describes number of iterations of LOOP.
2239 REDUCTION_LIST describes the reductions existent in the LOOP. */
2241 static void
2242 gen_parallel_loop (struct loop *loop,
2243 reduction_info_table_type *reduction_list,
2244 unsigned n_threads, struct tree_niter_desc *niter,
2245 bool oacc_kernels_p)
2247 tree many_iterations_cond, type, nit;
2248 tree arg_struct, new_arg_struct;
2249 gimple_seq stmts;
2250 edge entry, exit;
2251 struct clsn_data clsn_data;
2252 unsigned prob;
2253 location_t loc;
2254 gimple *cond_stmt;
2255 unsigned int m_p_thread=2;
2257 /* From
2259 ---------------------------------------------------------------------
2260 loop
2262 IV = phi (INIT, IV + STEP)
2263 BODY1;
2264 if (COND)
2265 break;
2266 BODY2;
2268 ---------------------------------------------------------------------
2270 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2271 we generate the following code:
2273 ---------------------------------------------------------------------
2275 if (MAY_BE_ZERO
2276 || NITER < MIN_PER_THREAD * N_THREADS)
2277 goto original;
2279 BODY1;
2280 store all local loop-invariant variables used in body of the loop to DATA.
2281 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2282 load the variables from DATA.
2283 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2284 BODY2;
2285 BODY1;
2286 GIMPLE_OMP_CONTINUE;
2287 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2288 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2289 goto end;
2291 original:
2292 loop
2294 IV = phi (INIT, IV + STEP)
2295 BODY1;
2296 if (COND)
2297 break;
2298 BODY2;
2301 end:
2305 /* Create two versions of the loop -- in the old one, we know that the
2306 number of iterations is large enough, and we will transform it into the
2307 loop that will be split to loop_fn, the new one will be used for the
2308 remaining iterations. */
2310 /* We should compute a better number-of-iterations value for outer loops.
2311 That is, if we have
2313 for (i = 0; i < n; ++i)
2314 for (j = 0; j < m; ++j)
2317 we should compute nit = n * m, not nit = n.
2318 Also may_be_zero handling would need to be adjusted. */
2320 type = TREE_TYPE (niter->niter);
2321 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2322 NULL_TREE);
2323 if (stmts)
2324 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2326 if (!oacc_kernels_p)
2328 if (loop->inner)
2329 m_p_thread=2;
2330 else
2331 m_p_thread=MIN_PER_THREAD;
2333 gcc_checking_assert (n_threads != 0);
2334 many_iterations_cond =
2335 fold_build2 (GE_EXPR, boolean_type_node,
2336 nit, build_int_cst (type, m_p_thread * n_threads));
2338 many_iterations_cond
2339 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2340 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2341 many_iterations_cond);
2342 many_iterations_cond
2343 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2344 if (stmts)
2345 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2346 if (!is_gimple_condexpr (many_iterations_cond))
2348 many_iterations_cond
2349 = force_gimple_operand (many_iterations_cond, &stmts,
2350 true, NULL_TREE);
2351 if (stmts)
2352 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
2353 stmts);
2356 initialize_original_copy_tables ();
2358 /* We assume that the loop usually iterates a lot. */
2359 prob = 4 * REG_BR_PROB_BASE / 5;
2360 loop_version (loop, many_iterations_cond, NULL,
2361 prob, REG_BR_PROB_BASE - prob,
2362 prob, REG_BR_PROB_BASE - prob, true);
2363 update_ssa (TODO_update_ssa);
2364 free_original_copy_tables ();
2367 /* Base all the induction variables in LOOP on a single control one. */
2368 canonicalize_loop_ivs (loop, &nit, true);
2370 /* Ensure that the exit condition is the first statement in the loop.
2371 The common case is that latch of the loop is empty (apart from the
2372 increment) and immediately follows the loop exit test. Attempt to move the
2373 entry of the loop directly before the exit check and increase the number of
2374 iterations of the loop by one. */
2375 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2377 if (dump_file
2378 && (dump_flags & TDF_DETAILS))
2379 fprintf (dump_file,
2380 "alternative exit-first loop transform succeeded"
2381 " for loop %d\n", loop->num);
2383 else
2385 if (oacc_kernels_p)
2386 n_threads = 1;
2388 /* Fall back on the method that handles more cases, but duplicates the
2389 loop body: move the exit condition of LOOP to the beginning of its
2390 header, and duplicate the part of the last iteration that gets disabled
2391 to the exit of the loop. */
2392 transform_to_exit_first_loop (loop, reduction_list, nit);
2395 /* Generate initializations for reductions. */
2396 if (reduction_list->elements () > 0)
2397 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2399 /* Eliminate the references to local variables from the loop. */
2400 gcc_assert (single_exit (loop));
2401 entry = loop_preheader_edge (loop);
2402 exit = single_dom_exit (loop);
2404 /* This rewrites the body in terms of new variables. This has already
2405 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2406 if (!oacc_kernels_p)
2408 eliminate_local_variables (entry, exit);
2409 /* In the old loop, move all variables non-local to the loop to a
2410 structure and back, and create separate decls for the variables used in
2411 loop. */
2412 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2413 &new_arg_struct, &clsn_data);
2415 else
2417 arg_struct = NULL_TREE;
2418 new_arg_struct = NULL_TREE;
2419 clsn_data.load = NULL_TREE;
2420 clsn_data.load_bb = exit->dest;
2421 clsn_data.store = NULL_TREE;
2422 clsn_data.store_bb = NULL;
2425 /* Create the parallel constructs. */
2426 loc = UNKNOWN_LOCATION;
2427 cond_stmt = last_stmt (loop->header);
2428 if (cond_stmt)
2429 loc = gimple_location (cond_stmt);
2430 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
2431 n_threads, loc, oacc_kernels_p);
2432 if (reduction_list->elements () > 0)
2433 create_call_for_reduction (loop, reduction_list, &clsn_data);
2435 scev_reset ();
2437 /* Free loop bound estimations that could contain references to
2438 removed statements. */
2439 FOR_EACH_LOOP (loop, 0)
2440 free_numbers_of_iterations_estimates_loop (loop);
2443 /* Returns true when LOOP contains vector phi nodes. */
2445 static bool
2446 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2448 unsigned i;
2449 basic_block *bbs = get_loop_body_in_dom_order (loop);
2450 gphi_iterator gsi;
2451 bool res = true;
2453 for (i = 0; i < loop->num_nodes; i++)
2454 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2455 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2456 goto end;
2458 res = false;
2459 end:
2460 free (bbs);
2461 return res;
2464 /* Create a reduction_info struct, initialize it with REDUC_STMT
2465 and PHI, insert it to the REDUCTION_LIST. */
2467 static void
2468 build_new_reduction (reduction_info_table_type *reduction_list,
2469 gimple *reduc_stmt, gphi *phi)
2471 reduction_info **slot;
2472 struct reduction_info *new_reduction;
2473 enum tree_code reduction_code;
2475 gcc_assert (reduc_stmt);
2477 if (dump_file && (dump_flags & TDF_DETAILS))
2479 fprintf (dump_file,
2480 "Detected reduction. reduction stmt is:\n");
2481 print_gimple_stmt (dump_file, reduc_stmt, 0);
2482 fprintf (dump_file, "\n");
2485 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2487 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2488 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2489 reduction_code = gimple_assign_rhs_code (def1);
2492 else
2493 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2495 new_reduction = XCNEW (struct reduction_info);
2497 new_reduction->reduc_stmt = reduc_stmt;
2498 new_reduction->reduc_phi = phi;
2499 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2500 new_reduction->reduction_code = reduction_code;
2501 slot = reduction_list->find_slot (new_reduction, INSERT);
2502 *slot = new_reduction;
2505 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2508 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2510 struct reduction_info *const red = *slot;
2511 gimple_set_uid (red->reduc_phi, red->reduc_version);
2512 return 1;
2515 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2517 static void
2518 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2520 gphi_iterator gsi;
2521 loop_vec_info simple_loop_info;
2522 auto_vec<gphi *, 4> double_reduc_phis;
2523 auto_vec<gimple *, 4> double_reduc_stmts;
2525 if (!stmt_vec_info_vec.exists ())
2526 init_stmt_vec_info_vec ();
2528 simple_loop_info = vect_analyze_loop_form (loop);
2529 if (simple_loop_info == NULL)
2530 goto gather_done;
2532 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2534 gphi *phi = gsi.phi ();
2535 affine_iv iv;
2536 tree res = PHI_RESULT (phi);
2537 bool double_reduc;
2539 if (virtual_operand_p (res))
2540 continue;
2542 if (simple_iv (loop, loop, res, &iv, true))
2543 continue;
2545 gimple *reduc_stmt
2546 = vect_force_simple_reduction (simple_loop_info, phi, true,
2547 &double_reduc, true);
2548 if (!reduc_stmt)
2549 continue;
2551 if (double_reduc)
2553 if (loop->inner->inner != NULL)
2554 continue;
2556 double_reduc_phis.safe_push (phi);
2557 double_reduc_stmts.safe_push (reduc_stmt);
2558 continue;
2561 build_new_reduction (reduction_list, reduc_stmt, phi);
2563 destroy_loop_vec_info (simple_loop_info, true);
2565 if (!double_reduc_phis.is_empty ())
2567 simple_loop_info = vect_analyze_loop_form (loop->inner);
2568 if (simple_loop_info)
2570 gphi *phi;
2571 unsigned int i;
2573 FOR_EACH_VEC_ELT (double_reduc_phis, i, phi)
2575 affine_iv iv;
2576 tree res = PHI_RESULT (phi);
2577 bool double_reduc;
2579 use_operand_p use_p;
2580 gimple *inner_stmt;
2581 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2582 gcc_assert (single_use_p);
2583 if (gimple_code (inner_stmt) != GIMPLE_PHI)
2584 continue;
2585 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2586 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2587 &iv, true))
2588 continue;
2590 gimple *inner_reduc_stmt
2591 = vect_force_simple_reduction (simple_loop_info, inner_phi,
2592 true, &double_reduc, true);
2593 gcc_assert (!double_reduc);
2594 if (inner_reduc_stmt == NULL)
2595 continue;
2597 build_new_reduction (reduction_list, double_reduc_stmts[i], phi);
2599 destroy_loop_vec_info (simple_loop_info, true);
2603 gather_done:
2604 /* Release the claim on gimple_uid. */
2605 free_stmt_vec_info_vec ();
2607 if (reduction_list->elements () == 0)
2608 return;
2610 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2611 and free_stmt_vec_info_vec, we can set gimple_uid of reduc_phi stmts only
2612 now. */
2613 basic_block bb;
2614 FOR_EACH_BB_FN (bb, cfun)
2615 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2616 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
2617 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2620 /* Try to initialize NITER for code generation part. */
2622 static bool
2623 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2625 edge exit = single_dom_exit (loop);
2627 gcc_assert (exit);
2629 /* We need to know # of iterations, and there should be no uses of values
2630 defined inside loop outside of it, unless the values are invariants of
2631 the loop. */
2632 if (!number_of_iterations_exit (loop, exit, niter, false))
2634 if (dump_file && (dump_flags & TDF_DETAILS))
2635 fprintf (dump_file, " FAILED: number of iterations not known\n");
2636 return false;
2639 return true;
2642 /* Return the default def of the first function argument. */
2644 static tree
2645 get_omp_data_i_param (void)
2647 tree decl = DECL_ARGUMENTS (cfun->decl);
2648 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
2649 return ssa_default_def (cfun, decl);
2652 /* For PHI in loop header of LOOP, look for pattern:
2654 <bb preheader>
2655 .omp_data_i = &.omp_data_arr;
2656 addr = .omp_data_i->sum;
2657 sum_a = *addr;
2659 <bb header>:
2660 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2662 and return addr. Otherwise, return NULL_TREE. */
2664 static tree
2665 find_reduc_addr (struct loop *loop, gphi *phi)
2667 edge e = loop_preheader_edge (loop);
2668 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
2669 gimple *stmt = SSA_NAME_DEF_STMT (arg);
2670 if (!gimple_assign_single_p (stmt))
2671 return NULL_TREE;
2672 tree memref = gimple_assign_rhs1 (stmt);
2673 if (TREE_CODE (memref) != MEM_REF)
2674 return NULL_TREE;
2675 tree addr = TREE_OPERAND (memref, 0);
2677 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
2678 if (!gimple_assign_single_p (stmt2))
2679 return NULL_TREE;
2680 tree compref = gimple_assign_rhs1 (stmt2);
2681 if (TREE_CODE (compref) != COMPONENT_REF)
2682 return NULL_TREE;
2683 tree addr2 = TREE_OPERAND (compref, 0);
2684 if (TREE_CODE (addr2) != MEM_REF)
2685 return NULL_TREE;
2686 addr2 = TREE_OPERAND (addr2, 0);
2687 if (TREE_CODE (addr2) != SSA_NAME
2688 || addr2 != get_omp_data_i_param ())
2689 return NULL_TREE;
2691 return addr;
2694 /* Try to initialize REDUCTION_LIST for code generation part.
2695 REDUCTION_LIST describes the reductions. */
2697 static bool
2698 try_create_reduction_list (loop_p loop,
2699 reduction_info_table_type *reduction_list,
2700 bool oacc_kernels_p)
2702 edge exit = single_dom_exit (loop);
2703 gphi_iterator gsi;
2705 gcc_assert (exit);
2707 /* Try to get rid of exit phis. */
2708 final_value_replacement_loop (loop);
2710 gather_scalar_reductions (loop, reduction_list);
2713 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2715 gphi *phi = gsi.phi ();
2716 struct reduction_info *red;
2717 imm_use_iterator imm_iter;
2718 use_operand_p use_p;
2719 gimple *reduc_phi;
2720 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2722 if (!virtual_operand_p (val))
2724 if (dump_file && (dump_flags & TDF_DETAILS))
2726 fprintf (dump_file, "phi is ");
2727 print_gimple_stmt (dump_file, phi, 0);
2728 fprintf (dump_file, "arg of phi to exit: value ");
2729 print_generic_expr (dump_file, val);
2730 fprintf (dump_file, " used outside loop\n");
2731 fprintf (dump_file,
2732 " checking if it is part of reduction pattern:\n");
2734 if (reduction_list->elements () == 0)
2736 if (dump_file && (dump_flags & TDF_DETAILS))
2737 fprintf (dump_file,
2738 " FAILED: it is not a part of reduction.\n");
2739 return false;
2741 reduc_phi = NULL;
2742 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2744 if (!gimple_debug_bind_p (USE_STMT (use_p))
2745 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2747 reduc_phi = USE_STMT (use_p);
2748 break;
2751 red = reduction_phi (reduction_list, reduc_phi);
2752 if (red == NULL)
2754 if (dump_file && (dump_flags & TDF_DETAILS))
2755 fprintf (dump_file,
2756 " FAILED: it is not a part of reduction.\n");
2757 return false;
2759 if (red->keep_res != NULL)
2761 if (dump_file && (dump_flags & TDF_DETAILS))
2762 fprintf (dump_file,
2763 " FAILED: reduction has multiple exit phis.\n");
2764 return false;
2766 red->keep_res = phi;
2767 if (dump_file && (dump_flags & TDF_DETAILS))
2769 fprintf (dump_file, "reduction phi is ");
2770 print_gimple_stmt (dump_file, red->reduc_phi, 0);
2771 fprintf (dump_file, "reduction stmt is ");
2772 print_gimple_stmt (dump_file, red->reduc_stmt, 0);
2777 /* The iterations of the loop may communicate only through bivs whose
2778 iteration space can be distributed efficiently. */
2779 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2781 gphi *phi = gsi.phi ();
2782 tree def = PHI_RESULT (phi);
2783 affine_iv iv;
2785 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2787 struct reduction_info *red;
2789 red = reduction_phi (reduction_list, phi);
2790 if (red == NULL)
2792 if (dump_file && (dump_flags & TDF_DETAILS))
2793 fprintf (dump_file,
2794 " FAILED: scalar dependency between iterations\n");
2795 return false;
2800 if (oacc_kernels_p)
2802 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
2803 gsi_next (&gsi))
2805 gphi *phi = gsi.phi ();
2806 tree def = PHI_RESULT (phi);
2807 affine_iv iv;
2809 if (!virtual_operand_p (def)
2810 && !simple_iv (loop, loop, def, &iv, true))
2812 tree addr = find_reduc_addr (loop, phi);
2813 if (addr == NULL_TREE)
2814 return false;
2815 struct reduction_info *red = reduction_phi (reduction_list, phi);
2816 red->reduc_addr = addr;
2821 return true;
2824 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
2826 static bool
2827 loop_has_phi_with_address_arg (struct loop *loop)
2829 basic_block *bbs = get_loop_body (loop);
2830 bool res = false;
2832 unsigned i, j;
2833 gphi_iterator gsi;
2834 for (i = 0; i < loop->num_nodes; i++)
2835 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2837 gphi *phi = gsi.phi ();
2838 for (j = 0; j < gimple_phi_num_args (phi); j++)
2840 tree arg = gimple_phi_arg_def (phi, j);
2841 if (TREE_CODE (arg) == ADDR_EXPR)
2843 /* This should be handled by eliminate_local_variables, but that
2844 function currently ignores phis. */
2845 res = true;
2846 goto end;
2850 end:
2851 free (bbs);
2853 return res;
2856 /* Return true if memory ref REF (corresponding to the stmt at GSI in
2857 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2858 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2859 store. Ignore conflicts with SKIP_STMT. */
2861 static bool
2862 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
2863 bool ref_is_store, vec<basic_block> region_bbs,
2864 unsigned int i, gimple *skip_stmt)
2866 basic_block bb = region_bbs[i];
2867 gsi_next (&gsi);
2869 while (true)
2871 for (; !gsi_end_p (gsi);
2872 gsi_next (&gsi))
2874 gimple *stmt = gsi_stmt (gsi);
2875 if (stmt == skip_stmt)
2877 if (dump_file)
2879 fprintf (dump_file, "skipping reduction store: ");
2880 print_gimple_stmt (dump_file, stmt, 0);
2882 continue;
2885 if (!gimple_vdef (stmt)
2886 && !gimple_vuse (stmt))
2887 continue;
2889 if (gimple_code (stmt) == GIMPLE_RETURN)
2890 continue;
2892 if (ref_is_store)
2894 if (ref_maybe_used_by_stmt_p (stmt, ref))
2896 if (dump_file)
2898 fprintf (dump_file, "Stmt ");
2899 print_gimple_stmt (dump_file, stmt, 0);
2901 return true;
2904 else
2906 if (stmt_may_clobber_ref_p_1 (stmt, ref))
2908 if (dump_file)
2910 fprintf (dump_file, "Stmt ");
2911 print_gimple_stmt (dump_file, stmt, 0);
2913 return true;
2917 i++;
2918 if (i == region_bbs.length ())
2919 break;
2920 bb = region_bbs[i];
2921 gsi = gsi_start_bb (bb);
2924 return false;
2927 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
2928 in parallel with REGION_BBS containing the loop. Return the stores of
2929 reduction results in REDUCTION_STORES. */
2931 static bool
2932 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
2933 reduction_info_table_type *reduction_list,
2934 bitmap reduction_stores)
2936 tree omp_data_i = get_omp_data_i_param ();
2938 unsigned i;
2939 basic_block bb;
2940 FOR_EACH_VEC_ELT (region_bbs, i, bb)
2942 if (bitmap_bit_p (in_loop_bbs, bb->index))
2943 continue;
2945 gimple_stmt_iterator gsi;
2946 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2947 gsi_next (&gsi))
2949 gimple *stmt = gsi_stmt (gsi);
2950 gimple *skip_stmt = NULL;
2952 if (is_gimple_debug (stmt)
2953 || gimple_code (stmt) == GIMPLE_COND)
2954 continue;
2956 ao_ref ref;
2957 bool ref_is_store = false;
2958 if (gimple_assign_load_p (stmt))
2960 tree rhs = gimple_assign_rhs1 (stmt);
2961 tree base = get_base_address (rhs);
2962 if (TREE_CODE (base) == MEM_REF
2963 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
2964 continue;
2966 tree lhs = gimple_assign_lhs (stmt);
2967 if (TREE_CODE (lhs) == SSA_NAME
2968 && has_single_use (lhs))
2970 use_operand_p use_p;
2971 gimple *use_stmt;
2972 single_imm_use (lhs, &use_p, &use_stmt);
2973 if (gimple_code (use_stmt) == GIMPLE_PHI)
2975 struct reduction_info *red;
2976 red = reduction_phi (reduction_list, use_stmt);
2977 tree val = PHI_RESULT (red->keep_res);
2978 if (has_single_use (val))
2980 single_imm_use (val, &use_p, &use_stmt);
2981 if (gimple_store_p (use_stmt))
2983 unsigned int id
2984 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
2985 bitmap_set_bit (reduction_stores, id);
2986 skip_stmt = use_stmt;
2987 if (dump_file)
2989 fprintf (dump_file, "found reduction load: ");
2990 print_gimple_stmt (dump_file, stmt, 0);
2997 ao_ref_init (&ref, rhs);
2999 else if (gimple_store_p (stmt))
3001 ao_ref_init (&ref, gimple_assign_lhs (stmt));
3002 ref_is_store = true;
3004 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
3005 continue;
3006 else if (!gimple_has_side_effects (stmt)
3007 && !gimple_could_trap_p (stmt)
3008 && !stmt_could_throw_p (stmt)
3009 && !gimple_vdef (stmt)
3010 && !gimple_vuse (stmt))
3011 continue;
3012 else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS))
3013 continue;
3014 else if (gimple_code (stmt) == GIMPLE_RETURN)
3015 continue;
3016 else
3018 if (dump_file)
3020 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
3021 print_gimple_stmt (dump_file, stmt, 0);
3023 return false;
3026 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3027 i, skip_stmt))
3029 if (dump_file)
3031 fprintf (dump_file, "conflicts with entry/exit stmt: ");
3032 print_gimple_stmt (dump_file, stmt, 0);
3034 return false;
3039 return true;
3042 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3043 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3044 if any changes were made. */
3046 static bool
3047 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3048 bitmap reduction_stores)
3050 tree gang_pos = NULL_TREE;
3051 bool changed = false;
3053 unsigned i;
3054 basic_block bb;
3055 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3057 if (bitmap_bit_p (in_loop_bbs, bb->index))
3058 continue;
3060 gimple_stmt_iterator gsi;
3061 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3063 gimple *stmt = gsi_stmt (gsi);
3065 if (!gimple_store_p (stmt))
3067 /* Update gsi to point to next stmt. */
3068 gsi_next (&gsi);
3069 continue;
3072 if (bitmap_bit_p (reduction_stores,
3073 SSA_NAME_VERSION (gimple_vdef (stmt))))
3075 if (dump_file)
3077 fprintf (dump_file,
3078 "skipped reduction store for single-gang"
3079 " neutering: ");
3080 print_gimple_stmt (dump_file, stmt, 0);
3083 /* Update gsi to point to next stmt. */
3084 gsi_next (&gsi);
3085 continue;
3088 changed = true;
3090 if (gang_pos == NULL_TREE)
3092 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3093 gcall *gang_single
3094 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3095 gang_pos = make_ssa_name (integer_type_node);
3096 gimple_call_set_lhs (gang_single, gang_pos);
3097 gimple_stmt_iterator start
3098 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3099 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3100 gimple_set_vuse (gang_single, vuse);
3101 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3104 if (dump_file)
3106 fprintf (dump_file,
3107 "found store that needs single-gang neutering: ");
3108 print_gimple_stmt (dump_file, stmt, 0);
3112 /* Split block before store. */
3113 gimple_stmt_iterator gsi2 = gsi;
3114 gsi_prev (&gsi2);
3115 edge e;
3116 if (gsi_end_p (gsi2))
3118 e = split_block_after_labels (bb);
3119 gsi2 = gsi_last_bb (bb);
3121 else
3122 e = split_block (bb, gsi_stmt (gsi2));
3123 basic_block bb2 = e->dest;
3125 /* Split block after store. */
3126 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3127 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3128 basic_block bb3 = e2->dest;
3130 gimple *cond
3131 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3132 NULL_TREE, NULL_TREE);
3133 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3135 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
3136 e->flags = EDGE_TRUE_VALUE;
3138 tree vdef = gimple_vdef (stmt);
3139 tree vuse = gimple_vuse (stmt);
3141 tree phi_res = copy_ssa_name (vdef);
3142 gphi *new_phi = create_phi_node (phi_res, bb3);
3143 replace_uses_by (vdef, phi_res);
3144 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3145 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3147 /* Update gsi to point to next stmt. */
3148 bb = bb3;
3149 gsi = gsi_start_bb (bb);
3154 return changed;
3157 /* Return true if the statements before and after the LOOP can be executed in
3158 parallel with the function containing the loop. Resolve conflicting stores
3159 outside LOOP by guarding them such that only a single gang executes them. */
3161 static bool
3162 oacc_entry_exit_ok (struct loop *loop,
3163 reduction_info_table_type *reduction_list)
3165 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3166 vec<basic_block> region_bbs
3167 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3169 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3170 bitmap_clear (in_loop_bbs);
3171 for (unsigned int i = 0; i < loop->num_nodes; i++)
3172 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3174 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3175 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3176 reduction_stores);
3178 if (res)
3180 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3181 reduction_stores);
3182 if (changed)
3184 free_dominance_info (CDI_DOMINATORS);
3185 calculate_dominance_info (CDI_DOMINATORS);
3189 region_bbs.release ();
3190 free (loop_bbs);
3192 BITMAP_FREE (in_loop_bbs);
3193 BITMAP_FREE (reduction_stores);
3195 return res;
3198 /* Detect parallel loops and generate parallel code using libgomp
3199 primitives. Returns true if some loop was parallelized, false
3200 otherwise. */
3202 static bool
3203 parallelize_loops (bool oacc_kernels_p)
3205 unsigned n_threads;
3206 bool changed = false;
3207 struct loop *loop;
3208 struct loop *skip_loop = NULL;
3209 struct tree_niter_desc niter_desc;
3210 struct obstack parloop_obstack;
3211 HOST_WIDE_INT estimated;
3212 source_location loop_loc;
3214 /* Do not parallelize loops in the functions created by parallelization. */
3215 if (!oacc_kernels_p
3216 && parallelized_function_p (cfun->decl))
3217 return false;
3219 /* Do not parallelize loops in offloaded functions. */
3220 if (!oacc_kernels_p
3221 && oacc_get_fn_attrib (cfun->decl) != NULL)
3222 return false;
3224 if (cfun->has_nonlocal_label)
3225 return false;
3227 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3228 the argument to -ftree-parallelize-loops. */
3229 if (oacc_kernels_p)
3230 n_threads = 0;
3231 else
3232 n_threads = flag_tree_parallelize_loops;
3234 gcc_obstack_init (&parloop_obstack);
3235 reduction_info_table_type reduction_list (10);
3237 calculate_dominance_info (CDI_DOMINATORS);
3239 FOR_EACH_LOOP (loop, 0)
3241 if (loop == skip_loop)
3243 if (!loop->in_oacc_kernels_region
3244 && dump_file && (dump_flags & TDF_DETAILS))
3245 fprintf (dump_file,
3246 "Skipping loop %d as inner loop of parallelized loop\n",
3247 loop->num);
3249 skip_loop = loop->inner;
3250 continue;
3252 else
3253 skip_loop = NULL;
3255 reduction_list.empty ();
3257 if (oacc_kernels_p)
3259 if (!loop->in_oacc_kernels_region)
3260 continue;
3262 /* Don't try to parallelize inner loops in an oacc kernels region. */
3263 if (loop->inner)
3264 skip_loop = loop->inner;
3266 if (dump_file && (dump_flags & TDF_DETAILS))
3267 fprintf (dump_file,
3268 "Trying loop %d with header bb %d in oacc kernels"
3269 " region\n", loop->num, loop->header->index);
3272 if (dump_file && (dump_flags & TDF_DETAILS))
3274 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
3275 if (loop->inner)
3276 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
3277 else
3278 fprintf (dump_file, "loop %d is innermost\n",loop->num);
3281 /* If we use autopar in graphite pass, we use its marked dependency
3282 checking results. */
3283 if (flag_loop_parallelize_all && !loop->can_be_parallel)
3285 if (dump_file && (dump_flags & TDF_DETAILS))
3286 fprintf (dump_file, "loop is not parallel according to graphite\n");
3287 continue;
3290 if (!single_dom_exit (loop))
3293 if (dump_file && (dump_flags & TDF_DETAILS))
3294 fprintf (dump_file, "loop is !single_dom_exit\n");
3296 continue;
3299 if (/* And of course, the loop must be parallelizable. */
3300 !can_duplicate_loop_p (loop)
3301 || loop_has_blocks_with_irreducible_flag (loop)
3302 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
3303 /* FIXME: the check for vector phi nodes could be removed. */
3304 || loop_has_vector_phi_nodes (loop))
3305 continue;
3307 estimated = estimated_stmt_executions_int (loop);
3308 if (estimated == -1)
3309 estimated = likely_max_stmt_executions_int (loop);
3310 /* FIXME: Bypass this check as graphite doesn't update the
3311 count and frequency correctly now. */
3312 if (!flag_loop_parallelize_all
3313 && !oacc_kernels_p
3314 && ((estimated != -1
3315 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
3316 /* Do not bother with loops in cold areas. */
3317 || optimize_loop_nest_for_size_p (loop)))
3318 continue;
3320 if (!try_get_loop_niter (loop, &niter_desc))
3321 continue;
3323 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
3324 continue;
3326 if (loop_has_phi_with_address_arg (loop))
3327 continue;
3329 if (!flag_loop_parallelize_all
3330 && !loop_parallel_p (loop, &parloop_obstack))
3331 continue;
3333 if (oacc_kernels_p
3334 && !oacc_entry_exit_ok (loop, &reduction_list))
3336 if (dump_file)
3337 fprintf (dump_file, "entry/exit not ok: FAILED\n");
3338 continue;
3341 changed = true;
3342 skip_loop = loop->inner;
3344 loop_loc = find_loop_location (loop);
3345 if (loop->inner)
3346 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
3347 "parallelizing outer loop %d\n", loop->num);
3348 else
3349 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
3350 "parallelizing inner loop %d\n", loop->num);
3352 gen_parallel_loop (loop, &reduction_list,
3353 n_threads, &niter_desc, oacc_kernels_p);
3356 obstack_free (&parloop_obstack, NULL);
3358 /* Parallelization will cause new function calls to be inserted through
3359 which local variables will escape. Reset the points-to solution
3360 for ESCAPED. */
3361 if (changed)
3362 pt_solution_reset (&cfun->gimple_df->escaped);
3364 return changed;
3367 /* Parallelization. */
3369 namespace {
3371 const pass_data pass_data_parallelize_loops =
3373 GIMPLE_PASS, /* type */
3374 "parloops", /* name */
3375 OPTGROUP_LOOP, /* optinfo_flags */
3376 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
3377 ( PROP_cfg | PROP_ssa ), /* properties_required */
3378 0, /* properties_provided */
3379 0, /* properties_destroyed */
3380 0, /* todo_flags_start */
3381 0, /* todo_flags_finish */
3384 class pass_parallelize_loops : public gimple_opt_pass
3386 public:
3387 pass_parallelize_loops (gcc::context *ctxt)
3388 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
3389 oacc_kernels_p (false)
3392 /* opt_pass methods: */
3393 virtual bool gate (function *)
3395 if (oacc_kernels_p)
3396 return flag_openacc;
3397 else
3398 return flag_tree_parallelize_loops > 1;
3400 virtual unsigned int execute (function *);
3401 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
3402 void set_pass_param (unsigned int n, bool param)
3404 gcc_assert (n == 0);
3405 oacc_kernels_p = param;
3408 private:
3409 bool oacc_kernels_p;
3410 }; // class pass_parallelize_loops
3412 unsigned
3413 pass_parallelize_loops::execute (function *fun)
3415 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
3416 if (nthreads == NULL_TREE)
3417 return 0;
3419 bool in_loop_pipeline = scev_initialized_p ();
3420 if (!in_loop_pipeline)
3421 loop_optimizer_init (LOOPS_NORMAL
3422 | LOOPS_HAVE_RECORDED_EXITS);
3424 if (number_of_loops (fun) <= 1)
3425 return 0;
3427 if (!in_loop_pipeline)
3429 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3430 scev_initialize ();
3433 unsigned int todo = 0;
3434 if (parallelize_loops (oacc_kernels_p))
3436 fun->curr_properties &= ~(PROP_gimple_eomp);
3438 checking_verify_loop_structure ();
3440 todo |= TODO_update_ssa;
3443 if (!in_loop_pipeline)
3445 scev_finalize ();
3446 loop_optimizer_finalize ();
3449 return todo;
3452 } // anon namespace
3454 gimple_opt_pass *
3455 make_pass_parallelize_loops (gcc::context *ctxt)
3457 return new pass_parallelize_loops (ctxt);