Small ChangeLog tweak.
[official-gcc.git] / gcc / rtlanal.c
blobd9f57c30d8e6f01172e090a9077321b0d3216420
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
53 machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
56 machine_mode, unsigned int);
58 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
59 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
61 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
72 DESTINATION. */
74 static unsigned int
75 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
77 /* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
80 template <typename T>
81 typename T::value_type *
82 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
83 value_type *base,
84 size_t i, value_type x)
86 if (base == array.stack)
88 if (i < LOCAL_ELEMS)
90 base[i] = x;
91 return base;
93 gcc_checking_assert (i == LOCAL_ELEMS);
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array.heap) <= i)
97 vec_safe_grow (array.heap, i + 1);
98 base = array.heap->address ();
99 memcpy (base, array.stack, sizeof (array.stack));
100 base[LOCAL_ELEMS] = x;
101 return base;
103 unsigned int length = array.heap->length ();
104 if (length > i)
106 gcc_checking_assert (base == array.heap->address ());
107 base[i] = x;
108 return base;
110 else
112 gcc_checking_assert (i == length);
113 vec_safe_push (array.heap, x);
114 return array.heap->address ();
118 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
121 template <typename T>
122 size_t
123 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
124 value_type *base,
125 size_t end, rtx_type x)
127 enum rtx_code code = GET_CODE (x);
128 const char *format = GET_RTX_FORMAT (code);
129 size_t orig_end = end;
130 if (__builtin_expect (INSN_P (x), false))
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
134 code below. */
135 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
136 if (format[i] == 'e')
138 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
139 if (__builtin_expect (end < LOCAL_ELEMS, true))
140 base[end++] = subx;
141 else
142 base = add_single_to_queue (array, base, end++, subx);
145 else
146 for (int i = 0; format[i]; ++i)
147 if (format[i] == 'e')
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
155 else if (format[i] == 'E')
157 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
158 rtx *vec = x->u.fld[i].rt_rtvec->elem;
159 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
160 for (unsigned int j = 0; j < length; j++)
161 base[end++] = T::get_value (vec[j]);
162 else
163 for (unsigned int j = 0; j < length; j++)
164 base = add_single_to_queue (array, base, end++,
165 T::get_value (vec[j]));
166 if (code == SEQUENCE && end == length)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
171 subinstructions. */
172 for (unsigned int j = 0; j < length; j++)
174 typename T::rtx_type x = T::get_rtx (base[j]);
175 if (INSN_P (x))
176 base[j] = T::get_value (PATTERN (x));
179 return end - orig_end;
182 template <typename T>
183 void
184 generic_subrtx_iterator <T>::free_array (array_type &array)
186 vec_free (array.heap);
189 template <typename T>
190 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
192 template class generic_subrtx_iterator <const_rtx_accessor>;
193 template class generic_subrtx_iterator <rtx_var_accessor>;
194 template class generic_subrtx_iterator <rtx_ptr_accessor>;
196 /* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
202 rtx_unstable_p (const_rtx x)
204 const RTX_CODE code = GET_CODE (x);
205 int i;
206 const char *fmt;
208 switch (code)
210 case MEM:
211 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
213 case CONST:
214 CASE_CONST_ANY:
215 case SYMBOL_REF:
216 case LABEL_REF:
217 return 0;
219 case REG:
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
221 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
222 /* The arg pointer varies if it is not a fixed register. */
223 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
224 return 0;
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
229 return 0;
230 return 1;
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_unstable_p (XEXP (x, i)))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_unstable_p (XVECEXP (x, i, j)))
254 return 1;
257 return 0;
260 /* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
265 The frame pointer and the arg pointer are considered constant. */
267 bool
268 rtx_varies_p (const_rtx x, bool for_alias)
270 RTX_CODE code;
271 int i;
272 const char *fmt;
274 if (!x)
275 return 0;
277 code = GET_CODE (x);
278 switch (code)
280 case MEM:
281 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
283 case CONST:
284 CASE_CONST_ANY:
285 case SYMBOL_REF:
286 case LABEL_REF:
287 return 0;
289 case REG:
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
293 for pseudos. */
294 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
297 return 0;
298 if (x == pic_offset_table_rtx
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
304 return 0;
305 return 1;
307 case LO_SUM:
308 /* The operand 0 of a LO_SUM is considered constant
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
312 || rtx_varies_p (XEXP (x, 1), for_alias);
314 case ASM_OPERANDS:
315 if (MEM_VOLATILE_P (x))
316 return 1;
318 /* Fall through. */
320 default:
321 break;
324 fmt = GET_RTX_FORMAT (code);
325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
326 if (fmt[i] == 'e')
328 if (rtx_varies_p (XEXP (x, i), for_alias))
329 return 1;
331 else if (fmt[i] == 'E')
333 int j;
334 for (j = 0; j < XVECLEN (x, i); j++)
335 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
336 return 1;
339 return 0;
342 /* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
344 of the routine. */
346 static HOST_WIDE_INT
347 get_initial_register_offset (int from, int to)
349 static const struct elim_table_t
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
357 if (to == from)
358 return 0;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
380 if (table[i].to == to)
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
386 for (j = 0; j < ARRAY_SIZE (table); j++)
388 if (table[j].to == to
389 && table[j].from == table[i].to)
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
397 if (table[j].from == to
398 && table[j].to == table[i].to)
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
408 else if (table[i].to == from)
410 if (table[i].from == to)
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
416 for (j = 0; j < ARRAY_SIZE (table); j++)
418 if (table[j].to == to
419 && table[j].from == table[i].from)
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
427 if (table[j].from == to
428 && table[j].to == table[i].from)
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
453 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
458 static int
459 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
460 machine_mode mode, bool unaligned_mems)
462 enum rtx_code code = GET_CODE (x);
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
468 HOST_WIDE_INT actual_offset = offset;
470 #ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
476 actual_offset -= STACK_POINTER_OFFSET;
477 #endif
479 if (actual_offset % GET_MODE_SIZE (mode) != 0)
480 return 1;
483 switch (code)
485 case SYMBOL_REF:
486 if (SYMBOL_REF_WEAK (x))
487 return 1;
488 if (!CONSTANT_POOL_ADDRESS_P (x))
490 tree decl;
491 HOST_WIDE_INT decl_size;
493 if (offset < 0)
494 return 1;
495 if (size == 0)
496 size = GET_MODE_SIZE (mode);
497 if (size == 0)
498 return offset != 0;
500 /* If the size of the access or of the symbol is unknown,
501 assume the worst. */
502 decl = SYMBOL_REF_DECL (x);
504 /* Else check that the access is in bounds. TODO: restructure
505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
506 if (!decl)
507 decl_size = -1;
508 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
509 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
510 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
511 : -1);
512 else if (TREE_CODE (decl) == STRING_CST)
513 decl_size = TREE_STRING_LENGTH (decl);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
515 decl_size = int_size_in_bytes (TREE_TYPE (decl));
516 else
517 decl_size = -1;
519 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
522 return 0;
524 case LABEL_REF:
525 return 0;
527 case REG:
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
530 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
531 || x == stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
535 #ifdef RED_ZONE_SIZE
536 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
537 #else
538 HOST_WIDE_INT red_zone_size = 0;
539 #endif
540 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
541 / BITS_PER_UNIT;
542 HOST_WIDE_INT low_bound, high_bound;
544 if (size == 0)
545 size = GET_MODE_SIZE (mode);
546 if (size == 0)
547 return 1;
549 if (x == frame_pointer_rtx)
551 if (FRAME_GROWS_DOWNWARD)
553 high_bound = STARTING_FRAME_OFFSET;
554 low_bound = high_bound - get_frame_size ();
556 else
558 low_bound = STARTING_FRAME_OFFSET;
559 high_bound = low_bound + get_frame_size ();
562 else if (x == hard_frame_pointer_rtx)
564 HOST_WIDE_INT sp_offset
565 = get_initial_register_offset (STACK_POINTER_REGNUM,
566 HARD_FRAME_POINTER_REGNUM);
567 HOST_WIDE_INT ap_offset
568 = get_initial_register_offset (ARG_POINTER_REGNUM,
569 HARD_FRAME_POINTER_REGNUM);
571 #if STACK_GROWS_DOWNWARD
572 low_bound = sp_offset - red_zone_size - stack_boundary;
573 high_bound = ap_offset
574 + FIRST_PARM_OFFSET (current_function_decl)
575 #if !ARGS_GROW_DOWNWARD
576 + crtl->args.size
577 #endif
578 + stack_boundary;
579 #else
580 high_bound = sp_offset + red_zone_size + stack_boundary;
581 low_bound = ap_offset
582 + FIRST_PARM_OFFSET (current_function_decl)
583 #if ARGS_GROW_DOWNWARD
584 - crtl->args.size
585 #endif
586 - stack_boundary;
587 #endif
589 else if (x == stack_pointer_rtx)
591 HOST_WIDE_INT ap_offset
592 = get_initial_register_offset (ARG_POINTER_REGNUM,
593 STACK_POINTER_REGNUM);
595 #if STACK_GROWS_DOWNWARD
596 low_bound = - red_zone_size - stack_boundary;
597 high_bound = ap_offset
598 + FIRST_PARM_OFFSET (current_function_decl)
599 #if !ARGS_GROW_DOWNWARD
600 + crtl->args.size
601 #endif
602 + stack_boundary;
603 #else
604 high_bound = red_zone_size + stack_boundary;
605 low_bound = ap_offset
606 + FIRST_PARM_OFFSET (current_function_decl)
607 #if ARGS_GROW_DOWNWARD
608 - crtl->args.size
609 #endif
610 - stack_boundary;
611 #endif
613 else
615 /* We assume that accesses are safe to at least the
616 next stack boundary.
617 Examples are varargs and __builtin_return_address. */
618 #if ARGS_GROW_DOWNWARD
619 high_bound = FIRST_PARM_OFFSET (current_function_decl)
620 + stack_boundary;
621 low_bound = FIRST_PARM_OFFSET (current_function_decl)
622 - crtl->args.size - stack_boundary;
623 #else
624 low_bound = FIRST_PARM_OFFSET (current_function_decl)
625 - stack_boundary;
626 high_bound = FIRST_PARM_OFFSET (current_function_decl)
627 + crtl->args.size + stack_boundary;
628 #endif
631 if (offset >= low_bound && offset <= high_bound - size)
632 return 0;
633 return 1;
635 /* All of the virtual frame registers are stack references. */
636 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
637 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
638 return 0;
639 return 1;
641 case CONST:
642 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
643 mode, unaligned_mems);
645 case PLUS:
646 /* An address is assumed not to trap if:
647 - it is the pic register plus a constant. */
648 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
649 return 0;
651 /* - or it is an address that can't trap plus a constant integer. */
652 if (CONST_INT_P (XEXP (x, 1))
653 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
654 size, mode, unaligned_mems))
655 return 0;
657 return 1;
659 case LO_SUM:
660 case PRE_MODIFY:
661 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
662 mode, unaligned_mems);
664 case PRE_DEC:
665 case PRE_INC:
666 case POST_DEC:
667 case POST_INC:
668 case POST_MODIFY:
669 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
670 mode, unaligned_mems);
672 default:
673 break;
676 /* If it isn't one of the case above, it can cause a trap. */
677 return 1;
680 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
683 rtx_addr_can_trap_p (const_rtx x)
685 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
688 /* Return true if X contains a MEM subrtx. */
690 bool
691 contains_mem_rtx_p (rtx x)
693 subrtx_iterator::array_type array;
694 FOR_EACH_SUBRTX (iter, array, x, ALL)
695 if (MEM_P (*iter))
696 return true;
698 return false;
701 /* Return true if X is an address that is known to not be zero. */
703 bool
704 nonzero_address_p (const_rtx x)
706 const enum rtx_code code = GET_CODE (x);
708 switch (code)
710 case SYMBOL_REF:
711 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
713 case LABEL_REF:
714 return true;
716 case REG:
717 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
718 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
719 || x == stack_pointer_rtx
720 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
721 return true;
722 /* All of the virtual frame registers are stack references. */
723 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
724 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
725 return true;
726 return false;
728 case CONST:
729 return nonzero_address_p (XEXP (x, 0));
731 case PLUS:
732 /* Handle PIC references. */
733 if (XEXP (x, 0) == pic_offset_table_rtx
734 && CONSTANT_P (XEXP (x, 1)))
735 return true;
736 return false;
738 case PRE_MODIFY:
739 /* Similar to the above; allow positive offsets. Further, since
740 auto-inc is only allowed in memories, the register must be a
741 pointer. */
742 if (CONST_INT_P (XEXP (x, 1))
743 && INTVAL (XEXP (x, 1)) > 0)
744 return true;
745 return nonzero_address_p (XEXP (x, 0));
747 case PRE_INC:
748 /* Similarly. Further, the offset is always positive. */
749 return true;
751 case PRE_DEC:
752 case POST_DEC:
753 case POST_INC:
754 case POST_MODIFY:
755 return nonzero_address_p (XEXP (x, 0));
757 case LO_SUM:
758 return nonzero_address_p (XEXP (x, 1));
760 default:
761 break;
764 /* If it isn't one of the case above, might be zero. */
765 return false;
768 /* Return 1 if X refers to a memory location whose address
769 cannot be compared reliably with constant addresses,
770 or if X refers to a BLKmode memory object.
771 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
772 zero, we are slightly more conservative. */
774 bool
775 rtx_addr_varies_p (const_rtx x, bool for_alias)
777 enum rtx_code code;
778 int i;
779 const char *fmt;
781 if (x == 0)
782 return 0;
784 code = GET_CODE (x);
785 if (code == MEM)
786 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
788 fmt = GET_RTX_FORMAT (code);
789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
790 if (fmt[i] == 'e')
792 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
793 return 1;
795 else if (fmt[i] == 'E')
797 int j;
798 for (j = 0; j < XVECLEN (x, i); j++)
799 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
800 return 1;
802 return 0;
805 /* Return the CALL in X if there is one. */
808 get_call_rtx_from (rtx x)
810 if (INSN_P (x))
811 x = PATTERN (x);
812 if (GET_CODE (x) == PARALLEL)
813 x = XVECEXP (x, 0, 0);
814 if (GET_CODE (x) == SET)
815 x = SET_SRC (x);
816 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
817 return x;
818 return NULL_RTX;
821 /* Return the value of the integer term in X, if one is apparent;
822 otherwise return 0.
823 Only obvious integer terms are detected.
824 This is used in cse.c with the `related_value' field. */
826 HOST_WIDE_INT
827 get_integer_term (const_rtx x)
829 if (GET_CODE (x) == CONST)
830 x = XEXP (x, 0);
832 if (GET_CODE (x) == MINUS
833 && CONST_INT_P (XEXP (x, 1)))
834 return - INTVAL (XEXP (x, 1));
835 if (GET_CODE (x) == PLUS
836 && CONST_INT_P (XEXP (x, 1)))
837 return INTVAL (XEXP (x, 1));
838 return 0;
841 /* If X is a constant, return the value sans apparent integer term;
842 otherwise return 0.
843 Only obvious integer terms are detected. */
846 get_related_value (const_rtx x)
848 if (GET_CODE (x) != CONST)
849 return 0;
850 x = XEXP (x, 0);
851 if (GET_CODE (x) == PLUS
852 && CONST_INT_P (XEXP (x, 1)))
853 return XEXP (x, 0);
854 else if (GET_CODE (x) == MINUS
855 && CONST_INT_P (XEXP (x, 1)))
856 return XEXP (x, 0);
857 return 0;
860 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
861 to somewhere in the same object or object_block as SYMBOL. */
863 bool
864 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
866 tree decl;
868 if (GET_CODE (symbol) != SYMBOL_REF)
869 return false;
871 if (offset == 0)
872 return true;
874 if (offset > 0)
876 if (CONSTANT_POOL_ADDRESS_P (symbol)
877 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
878 return true;
880 decl = SYMBOL_REF_DECL (symbol);
881 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
882 return true;
885 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
886 && SYMBOL_REF_BLOCK (symbol)
887 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
888 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
889 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
890 return true;
892 return false;
895 /* Split X into a base and a constant offset, storing them in *BASE_OUT
896 and *OFFSET_OUT respectively. */
898 void
899 split_const (rtx x, rtx *base_out, rtx *offset_out)
901 if (GET_CODE (x) == CONST)
903 x = XEXP (x, 0);
904 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
906 *base_out = XEXP (x, 0);
907 *offset_out = XEXP (x, 1);
908 return;
911 *base_out = x;
912 *offset_out = const0_rtx;
915 /* Return the number of places FIND appears within X. If COUNT_DEST is
916 zero, we do not count occurrences inside the destination of a SET. */
919 count_occurrences (const_rtx x, const_rtx find, int count_dest)
921 int i, j;
922 enum rtx_code code;
923 const char *format_ptr;
924 int count;
926 if (x == find)
927 return 1;
929 code = GET_CODE (x);
931 switch (code)
933 case REG:
934 CASE_CONST_ANY:
935 case SYMBOL_REF:
936 case CODE_LABEL:
937 case PC:
938 case CC0:
939 return 0;
941 case EXPR_LIST:
942 count = count_occurrences (XEXP (x, 0), find, count_dest);
943 if (XEXP (x, 1))
944 count += count_occurrences (XEXP (x, 1), find, count_dest);
945 return count;
947 case MEM:
948 if (MEM_P (find) && rtx_equal_p (x, find))
949 return 1;
950 break;
952 case SET:
953 if (SET_DEST (x) == find && ! count_dest)
954 return count_occurrences (SET_SRC (x), find, count_dest);
955 break;
957 default:
958 break;
961 format_ptr = GET_RTX_FORMAT (code);
962 count = 0;
964 for (i = 0; i < GET_RTX_LENGTH (code); i++)
966 switch (*format_ptr++)
968 case 'e':
969 count += count_occurrences (XEXP (x, i), find, count_dest);
970 break;
972 case 'E':
973 for (j = 0; j < XVECLEN (x, i); j++)
974 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
975 break;
978 return count;
982 /* Return TRUE if OP is a register or subreg of a register that
983 holds an unsigned quantity. Otherwise, return FALSE. */
985 bool
986 unsigned_reg_p (rtx op)
988 if (REG_P (op)
989 && REG_EXPR (op)
990 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
991 return true;
993 if (GET_CODE (op) == SUBREG
994 && SUBREG_PROMOTED_SIGN (op))
995 return true;
997 return false;
1001 /* Nonzero if register REG appears somewhere within IN.
1002 Also works if REG is not a register; in this case it checks
1003 for a subexpression of IN that is Lisp "equal" to REG. */
1006 reg_mentioned_p (const_rtx reg, const_rtx in)
1008 const char *fmt;
1009 int i;
1010 enum rtx_code code;
1012 if (in == 0)
1013 return 0;
1015 if (reg == in)
1016 return 1;
1018 if (GET_CODE (in) == LABEL_REF)
1019 return reg == label_ref_label (in);
1021 code = GET_CODE (in);
1023 switch (code)
1025 /* Compare registers by number. */
1026 case REG:
1027 return REG_P (reg) && REGNO (in) == REGNO (reg);
1029 /* These codes have no constituent expressions
1030 and are unique. */
1031 case SCRATCH:
1032 case CC0:
1033 case PC:
1034 return 0;
1036 CASE_CONST_ANY:
1037 /* These are kept unique for a given value. */
1038 return 0;
1040 default:
1041 break;
1044 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1045 return 1;
1047 fmt = GET_RTX_FORMAT (code);
1049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1051 if (fmt[i] == 'E')
1053 int j;
1054 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1055 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1056 return 1;
1058 else if (fmt[i] == 'e'
1059 && reg_mentioned_p (reg, XEXP (in, i)))
1060 return 1;
1062 return 0;
1065 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1066 no CODE_LABEL insn. */
1069 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1071 rtx_insn *p;
1072 if (beg == end)
1073 return 0;
1074 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1075 if (LABEL_P (p))
1076 return 0;
1077 return 1;
1080 /* Nonzero if register REG is used in an insn between
1081 FROM_INSN and TO_INSN (exclusive of those two). */
1084 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1085 const rtx_insn *to_insn)
1087 rtx_insn *insn;
1089 if (from_insn == to_insn)
1090 return 0;
1092 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1093 if (NONDEBUG_INSN_P (insn)
1094 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1095 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1096 return 1;
1097 return 0;
1100 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1101 is entirely replaced by a new value and the only use is as a SET_DEST,
1102 we do not consider it a reference. */
1105 reg_referenced_p (const_rtx x, const_rtx body)
1107 int i;
1109 switch (GET_CODE (body))
1111 case SET:
1112 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1113 return 1;
1115 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1116 of a REG that occupies all of the REG, the insn references X if
1117 it is mentioned in the destination. */
1118 if (GET_CODE (SET_DEST (body)) != CC0
1119 && GET_CODE (SET_DEST (body)) != PC
1120 && !REG_P (SET_DEST (body))
1121 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1122 && REG_P (SUBREG_REG (SET_DEST (body)))
1123 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1124 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1125 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1126 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1127 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1128 return 1;
1129 return 0;
1131 case ASM_OPERANDS:
1132 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1133 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1134 return 1;
1135 return 0;
1137 case CALL:
1138 case USE:
1139 case IF_THEN_ELSE:
1140 return reg_overlap_mentioned_p (x, body);
1142 case TRAP_IF:
1143 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1145 case PREFETCH:
1146 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1148 case UNSPEC:
1149 case UNSPEC_VOLATILE:
1150 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1151 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1152 return 1;
1153 return 0;
1155 case PARALLEL:
1156 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1157 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1158 return 1;
1159 return 0;
1161 case CLOBBER:
1162 if (MEM_P (XEXP (body, 0)))
1163 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1164 return 1;
1165 return 0;
1167 case COND_EXEC:
1168 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1169 return 1;
1170 return reg_referenced_p (x, COND_EXEC_CODE (body));
1172 default:
1173 return 0;
1177 /* Nonzero if register REG is set or clobbered in an insn between
1178 FROM_INSN and TO_INSN (exclusive of those two). */
1181 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1182 const rtx_insn *to_insn)
1184 const rtx_insn *insn;
1186 if (from_insn == to_insn)
1187 return 0;
1189 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1190 if (INSN_P (insn) && reg_set_p (reg, insn))
1191 return 1;
1192 return 0;
1195 /* Return true if REG is set or clobbered inside INSN. */
1198 reg_set_p (const_rtx reg, const_rtx insn)
1200 /* After delay slot handling, call and branch insns might be in a
1201 sequence. Check all the elements there. */
1202 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1204 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1205 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1206 return true;
1208 return false;
1211 /* We can be passed an insn or part of one. If we are passed an insn,
1212 check if a side-effect of the insn clobbers REG. */
1213 if (INSN_P (insn)
1214 && (FIND_REG_INC_NOTE (insn, reg)
1215 || (CALL_P (insn)
1216 && ((REG_P (reg)
1217 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1218 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1219 GET_MODE (reg), REGNO (reg)))
1220 || MEM_P (reg)
1221 || find_reg_fusage (insn, CLOBBER, reg)))))
1222 return true;
1224 /* There are no REG_INC notes for SP autoinc. */
1225 if (reg == stack_pointer_rtx && INSN_P (insn))
1227 subrtx_var_iterator::array_type array;
1228 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1230 rtx mem = *iter;
1231 if (mem
1232 && MEM_P (mem)
1233 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1235 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1236 return true;
1237 iter.skip_subrtxes ();
1242 return set_of (reg, insn) != NULL_RTX;
1245 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1246 only if none of them are modified between START and END. Return 1 if
1247 X contains a MEM; this routine does use memory aliasing. */
1250 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1252 const enum rtx_code code = GET_CODE (x);
1253 const char *fmt;
1254 int i, j;
1255 rtx_insn *insn;
1257 if (start == end)
1258 return 0;
1260 switch (code)
1262 CASE_CONST_ANY:
1263 case CONST:
1264 case SYMBOL_REF:
1265 case LABEL_REF:
1266 return 0;
1268 case PC:
1269 case CC0:
1270 return 1;
1272 case MEM:
1273 if (modified_between_p (XEXP (x, 0), start, end))
1274 return 1;
1275 if (MEM_READONLY_P (x))
1276 return 0;
1277 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1278 if (memory_modified_in_insn_p (x, insn))
1279 return 1;
1280 return 0;
1282 case REG:
1283 return reg_set_between_p (x, start, end);
1285 default:
1286 break;
1289 fmt = GET_RTX_FORMAT (code);
1290 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1292 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1293 return 1;
1295 else if (fmt[i] == 'E')
1296 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1297 if (modified_between_p (XVECEXP (x, i, j), start, end))
1298 return 1;
1301 return 0;
1304 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1305 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1306 does use memory aliasing. */
1309 modified_in_p (const_rtx x, const_rtx insn)
1311 const enum rtx_code code = GET_CODE (x);
1312 const char *fmt;
1313 int i, j;
1315 switch (code)
1317 CASE_CONST_ANY:
1318 case CONST:
1319 case SYMBOL_REF:
1320 case LABEL_REF:
1321 return 0;
1323 case PC:
1324 case CC0:
1325 return 1;
1327 case MEM:
1328 if (modified_in_p (XEXP (x, 0), insn))
1329 return 1;
1330 if (MEM_READONLY_P (x))
1331 return 0;
1332 if (memory_modified_in_insn_p (x, insn))
1333 return 1;
1334 return 0;
1336 case REG:
1337 return reg_set_p (x, insn);
1339 default:
1340 break;
1343 fmt = GET_RTX_FORMAT (code);
1344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1346 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1347 return 1;
1349 else if (fmt[i] == 'E')
1350 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1351 if (modified_in_p (XVECEXP (x, i, j), insn))
1352 return 1;
1355 return 0;
1358 /* Helper function for set_of. */
1359 struct set_of_data
1361 const_rtx found;
1362 const_rtx pat;
1365 static void
1366 set_of_1 (rtx x, const_rtx pat, void *data1)
1368 struct set_of_data *const data = (struct set_of_data *) (data1);
1369 if (rtx_equal_p (x, data->pat)
1370 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1371 data->found = pat;
1374 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1375 (either directly or via STRICT_LOW_PART and similar modifiers). */
1376 const_rtx
1377 set_of (const_rtx pat, const_rtx insn)
1379 struct set_of_data data;
1380 data.found = NULL_RTX;
1381 data.pat = pat;
1382 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1383 return data.found;
1386 /* Add all hard register in X to *PSET. */
1387 void
1388 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1390 subrtx_iterator::array_type array;
1391 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1393 const_rtx x = *iter;
1394 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1395 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1399 /* This function, called through note_stores, collects sets and
1400 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1401 by DATA. */
1402 void
1403 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1405 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1406 if (REG_P (x) && HARD_REGISTER_P (x))
1407 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1410 /* Examine INSN, and compute the set of hard registers written by it.
1411 Store it in *PSET. Should only be called after reload. */
1412 void
1413 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1415 rtx link;
1417 CLEAR_HARD_REG_SET (*pset);
1418 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1419 if (CALL_P (insn))
1421 if (implicit)
1422 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1424 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1425 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1427 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1428 if (REG_NOTE_KIND (link) == REG_INC)
1429 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1432 /* Like record_hard_reg_sets, but called through note_uses. */
1433 void
1434 record_hard_reg_uses (rtx *px, void *data)
1436 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1439 /* Given an INSN, return a SET expression if this insn has only a single SET.
1440 It may also have CLOBBERs, USEs, or SET whose output
1441 will not be used, which we ignore. */
1444 single_set_2 (const rtx_insn *insn, const_rtx pat)
1446 rtx set = NULL;
1447 int set_verified = 1;
1448 int i;
1450 if (GET_CODE (pat) == PARALLEL)
1452 for (i = 0; i < XVECLEN (pat, 0); i++)
1454 rtx sub = XVECEXP (pat, 0, i);
1455 switch (GET_CODE (sub))
1457 case USE:
1458 case CLOBBER:
1459 break;
1461 case SET:
1462 /* We can consider insns having multiple sets, where all
1463 but one are dead as single set insns. In common case
1464 only single set is present in the pattern so we want
1465 to avoid checking for REG_UNUSED notes unless necessary.
1467 When we reach set first time, we just expect this is
1468 the single set we are looking for and only when more
1469 sets are found in the insn, we check them. */
1470 if (!set_verified)
1472 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1473 && !side_effects_p (set))
1474 set = NULL;
1475 else
1476 set_verified = 1;
1478 if (!set)
1479 set = sub, set_verified = 0;
1480 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1481 || side_effects_p (sub))
1482 return NULL_RTX;
1483 break;
1485 default:
1486 return NULL_RTX;
1490 return set;
1493 /* Given an INSN, return nonzero if it has more than one SET, else return
1494 zero. */
1497 multiple_sets (const_rtx insn)
1499 int found;
1500 int i;
1502 /* INSN must be an insn. */
1503 if (! INSN_P (insn))
1504 return 0;
1506 /* Only a PARALLEL can have multiple SETs. */
1507 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1509 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1510 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1512 /* If we have already found a SET, then return now. */
1513 if (found)
1514 return 1;
1515 else
1516 found = 1;
1520 /* Either zero or one SET. */
1521 return 0;
1524 /* Return nonzero if the destination of SET equals the source
1525 and there are no side effects. */
1528 set_noop_p (const_rtx set)
1530 rtx src = SET_SRC (set);
1531 rtx dst = SET_DEST (set);
1533 if (dst == pc_rtx && src == pc_rtx)
1534 return 1;
1536 if (MEM_P (dst) && MEM_P (src))
1537 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1539 if (GET_CODE (dst) == ZERO_EXTRACT)
1540 return rtx_equal_p (XEXP (dst, 0), src)
1541 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1542 && !side_effects_p (src);
1544 if (GET_CODE (dst) == STRICT_LOW_PART)
1545 dst = XEXP (dst, 0);
1547 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1549 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1550 return 0;
1551 src = SUBREG_REG (src);
1552 dst = SUBREG_REG (dst);
1555 /* It is a NOOP if destination overlaps with selected src vector
1556 elements. */
1557 if (GET_CODE (src) == VEC_SELECT
1558 && REG_P (XEXP (src, 0)) && REG_P (dst)
1559 && HARD_REGISTER_P (XEXP (src, 0))
1560 && HARD_REGISTER_P (dst))
1562 int i;
1563 rtx par = XEXP (src, 1);
1564 rtx src0 = XEXP (src, 0);
1565 int c0 = INTVAL (XVECEXP (par, 0, 0));
1566 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1568 for (i = 1; i < XVECLEN (par, 0); i++)
1569 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1570 return 0;
1571 return
1572 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1573 offset, GET_MODE (dst)) == (int) REGNO (dst);
1576 return (REG_P (src) && REG_P (dst)
1577 && REGNO (src) == REGNO (dst));
1580 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1581 value to itself. */
1584 noop_move_p (const rtx_insn *insn)
1586 rtx pat = PATTERN (insn);
1588 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1589 return 1;
1591 /* Insns carrying these notes are useful later on. */
1592 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1593 return 0;
1595 /* Check the code to be executed for COND_EXEC. */
1596 if (GET_CODE (pat) == COND_EXEC)
1597 pat = COND_EXEC_CODE (pat);
1599 if (GET_CODE (pat) == SET && set_noop_p (pat))
1600 return 1;
1602 if (GET_CODE (pat) == PARALLEL)
1604 int i;
1605 /* If nothing but SETs of registers to themselves,
1606 this insn can also be deleted. */
1607 for (i = 0; i < XVECLEN (pat, 0); i++)
1609 rtx tem = XVECEXP (pat, 0, i);
1611 if (GET_CODE (tem) == USE
1612 || GET_CODE (tem) == CLOBBER)
1613 continue;
1615 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1616 return 0;
1619 return 1;
1621 return 0;
1625 /* Return nonzero if register in range [REGNO, ENDREGNO)
1626 appears either explicitly or implicitly in X
1627 other than being stored into.
1629 References contained within the substructure at LOC do not count.
1630 LOC may be zero, meaning don't ignore anything. */
1632 bool
1633 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1634 rtx *loc)
1636 int i;
1637 unsigned int x_regno;
1638 RTX_CODE code;
1639 const char *fmt;
1641 repeat:
1642 /* The contents of a REG_NONNEG note is always zero, so we must come here
1643 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1644 if (x == 0)
1645 return false;
1647 code = GET_CODE (x);
1649 switch (code)
1651 case REG:
1652 x_regno = REGNO (x);
1654 /* If we modifying the stack, frame, or argument pointer, it will
1655 clobber a virtual register. In fact, we could be more precise,
1656 but it isn't worth it. */
1657 if ((x_regno == STACK_POINTER_REGNUM
1658 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1659 && x_regno == ARG_POINTER_REGNUM)
1660 || x_regno == FRAME_POINTER_REGNUM)
1661 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1662 return true;
1664 return endregno > x_regno && regno < END_REGNO (x);
1666 case SUBREG:
1667 /* If this is a SUBREG of a hard reg, we can see exactly which
1668 registers are being modified. Otherwise, handle normally. */
1669 if (REG_P (SUBREG_REG (x))
1670 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1672 unsigned int inner_regno = subreg_regno (x);
1673 unsigned int inner_endregno
1674 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1675 ? subreg_nregs (x) : 1);
1677 return endregno > inner_regno && regno < inner_endregno;
1679 break;
1681 case CLOBBER:
1682 case SET:
1683 if (&SET_DEST (x) != loc
1684 /* Note setting a SUBREG counts as referring to the REG it is in for
1685 a pseudo but not for hard registers since we can
1686 treat each word individually. */
1687 && ((GET_CODE (SET_DEST (x)) == SUBREG
1688 && loc != &SUBREG_REG (SET_DEST (x))
1689 && REG_P (SUBREG_REG (SET_DEST (x)))
1690 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1691 && refers_to_regno_p (regno, endregno,
1692 SUBREG_REG (SET_DEST (x)), loc))
1693 || (!REG_P (SET_DEST (x))
1694 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1695 return true;
1697 if (code == CLOBBER || loc == &SET_SRC (x))
1698 return false;
1699 x = SET_SRC (x);
1700 goto repeat;
1702 default:
1703 break;
1706 /* X does not match, so try its subexpressions. */
1708 fmt = GET_RTX_FORMAT (code);
1709 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1711 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1713 if (i == 0)
1715 x = XEXP (x, 0);
1716 goto repeat;
1718 else
1719 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1720 return true;
1722 else if (fmt[i] == 'E')
1724 int j;
1725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1726 if (loc != &XVECEXP (x, i, j)
1727 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1728 return true;
1731 return false;
1734 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1735 we check if any register number in X conflicts with the relevant register
1736 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1737 contains a MEM (we don't bother checking for memory addresses that can't
1738 conflict because we expect this to be a rare case. */
1741 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1743 unsigned int regno, endregno;
1745 /* If either argument is a constant, then modifying X can not
1746 affect IN. Here we look at IN, we can profitably combine
1747 CONSTANT_P (x) with the switch statement below. */
1748 if (CONSTANT_P (in))
1749 return 0;
1751 recurse:
1752 switch (GET_CODE (x))
1754 case STRICT_LOW_PART:
1755 case ZERO_EXTRACT:
1756 case SIGN_EXTRACT:
1757 /* Overly conservative. */
1758 x = XEXP (x, 0);
1759 goto recurse;
1761 case SUBREG:
1762 regno = REGNO (SUBREG_REG (x));
1763 if (regno < FIRST_PSEUDO_REGISTER)
1764 regno = subreg_regno (x);
1765 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1766 ? subreg_nregs (x) : 1);
1767 goto do_reg;
1769 case REG:
1770 regno = REGNO (x);
1771 endregno = END_REGNO (x);
1772 do_reg:
1773 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1775 case MEM:
1777 const char *fmt;
1778 int i;
1780 if (MEM_P (in))
1781 return 1;
1783 fmt = GET_RTX_FORMAT (GET_CODE (in));
1784 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1785 if (fmt[i] == 'e')
1787 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1788 return 1;
1790 else if (fmt[i] == 'E')
1792 int j;
1793 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1794 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1795 return 1;
1798 return 0;
1801 case SCRATCH:
1802 case PC:
1803 case CC0:
1804 return reg_mentioned_p (x, in);
1806 case PARALLEL:
1808 int i;
1810 /* If any register in here refers to it we return true. */
1811 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1812 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1813 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1814 return 1;
1815 return 0;
1818 default:
1819 gcc_assert (CONSTANT_P (x));
1820 return 0;
1824 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1825 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1826 ignored by note_stores, but passed to FUN.
1828 FUN receives three arguments:
1829 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1830 2. the SET or CLOBBER rtx that does the store,
1831 3. the pointer DATA provided to note_stores.
1833 If the item being stored in or clobbered is a SUBREG of a hard register,
1834 the SUBREG will be passed. */
1836 void
1837 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1839 int i;
1841 if (GET_CODE (x) == COND_EXEC)
1842 x = COND_EXEC_CODE (x);
1844 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1846 rtx dest = SET_DEST (x);
1848 while ((GET_CODE (dest) == SUBREG
1849 && (!REG_P (SUBREG_REG (dest))
1850 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1851 || GET_CODE (dest) == ZERO_EXTRACT
1852 || GET_CODE (dest) == STRICT_LOW_PART)
1853 dest = XEXP (dest, 0);
1855 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1856 each of whose first operand is a register. */
1857 if (GET_CODE (dest) == PARALLEL)
1859 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1860 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1861 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1863 else
1864 (*fun) (dest, x, data);
1867 else if (GET_CODE (x) == PARALLEL)
1868 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1869 note_stores (XVECEXP (x, 0, i), fun, data);
1872 /* Like notes_stores, but call FUN for each expression that is being
1873 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1874 FUN for each expression, not any interior subexpressions. FUN receives a
1875 pointer to the expression and the DATA passed to this function.
1877 Note that this is not quite the same test as that done in reg_referenced_p
1878 since that considers something as being referenced if it is being
1879 partially set, while we do not. */
1881 void
1882 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1884 rtx body = *pbody;
1885 int i;
1887 switch (GET_CODE (body))
1889 case COND_EXEC:
1890 (*fun) (&COND_EXEC_TEST (body), data);
1891 note_uses (&COND_EXEC_CODE (body), fun, data);
1892 return;
1894 case PARALLEL:
1895 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1896 note_uses (&XVECEXP (body, 0, i), fun, data);
1897 return;
1899 case SEQUENCE:
1900 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1901 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1902 return;
1904 case USE:
1905 (*fun) (&XEXP (body, 0), data);
1906 return;
1908 case ASM_OPERANDS:
1909 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1910 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1911 return;
1913 case TRAP_IF:
1914 (*fun) (&TRAP_CONDITION (body), data);
1915 return;
1917 case PREFETCH:
1918 (*fun) (&XEXP (body, 0), data);
1919 return;
1921 case UNSPEC:
1922 case UNSPEC_VOLATILE:
1923 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1924 (*fun) (&XVECEXP (body, 0, i), data);
1925 return;
1927 case CLOBBER:
1928 if (MEM_P (XEXP (body, 0)))
1929 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1930 return;
1932 case SET:
1934 rtx dest = SET_DEST (body);
1936 /* For sets we replace everything in source plus registers in memory
1937 expression in store and operands of a ZERO_EXTRACT. */
1938 (*fun) (&SET_SRC (body), data);
1940 if (GET_CODE (dest) == ZERO_EXTRACT)
1942 (*fun) (&XEXP (dest, 1), data);
1943 (*fun) (&XEXP (dest, 2), data);
1946 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1947 dest = XEXP (dest, 0);
1949 if (MEM_P (dest))
1950 (*fun) (&XEXP (dest, 0), data);
1952 return;
1954 default:
1955 /* All the other possibilities never store. */
1956 (*fun) (pbody, data);
1957 return;
1961 /* Return nonzero if X's old contents don't survive after INSN.
1962 This will be true if X is (cc0) or if X is a register and
1963 X dies in INSN or because INSN entirely sets X.
1965 "Entirely set" means set directly and not through a SUBREG, or
1966 ZERO_EXTRACT, so no trace of the old contents remains.
1967 Likewise, REG_INC does not count.
1969 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1970 but for this use that makes no difference, since regs don't overlap
1971 during their lifetimes. Therefore, this function may be used
1972 at any time after deaths have been computed.
1974 If REG is a hard reg that occupies multiple machine registers, this
1975 function will only return 1 if each of those registers will be replaced
1976 by INSN. */
1979 dead_or_set_p (const rtx_insn *insn, const_rtx x)
1981 unsigned int regno, end_regno;
1982 unsigned int i;
1984 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1985 if (GET_CODE (x) == CC0)
1986 return 1;
1988 gcc_assert (REG_P (x));
1990 regno = REGNO (x);
1991 end_regno = END_REGNO (x);
1992 for (i = regno; i < end_regno; i++)
1993 if (! dead_or_set_regno_p (insn, i))
1994 return 0;
1996 return 1;
1999 /* Return TRUE iff DEST is a register or subreg of a register and
2000 doesn't change the number of words of the inner register, and any
2001 part of the register is TEST_REGNO. */
2003 static bool
2004 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2006 unsigned int regno, endregno;
2008 if (GET_CODE (dest) == SUBREG
2009 && (((GET_MODE_SIZE (GET_MODE (dest))
2010 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2011 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2012 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2013 dest = SUBREG_REG (dest);
2015 if (!REG_P (dest))
2016 return false;
2018 regno = REGNO (dest);
2019 endregno = END_REGNO (dest);
2020 return (test_regno >= regno && test_regno < endregno);
2023 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2024 any member matches the covers_regno_no_parallel_p criteria. */
2026 static bool
2027 covers_regno_p (const_rtx dest, unsigned int test_regno)
2029 if (GET_CODE (dest) == PARALLEL)
2031 /* Some targets place small structures in registers for return
2032 values of functions, and those registers are wrapped in
2033 PARALLELs that we may see as the destination of a SET. */
2034 int i;
2036 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2038 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2039 if (inner != NULL_RTX
2040 && covers_regno_no_parallel_p (inner, test_regno))
2041 return true;
2044 return false;
2046 else
2047 return covers_regno_no_parallel_p (dest, test_regno);
2050 /* Utility function for dead_or_set_p to check an individual register. */
2053 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2055 const_rtx pattern;
2057 /* See if there is a death note for something that includes TEST_REGNO. */
2058 if (find_regno_note (insn, REG_DEAD, test_regno))
2059 return 1;
2061 if (CALL_P (insn)
2062 && find_regno_fusage (insn, CLOBBER, test_regno))
2063 return 1;
2065 pattern = PATTERN (insn);
2067 /* If a COND_EXEC is not executed, the value survives. */
2068 if (GET_CODE (pattern) == COND_EXEC)
2069 return 0;
2071 if (GET_CODE (pattern) == SET)
2072 return covers_regno_p (SET_DEST (pattern), test_regno);
2073 else if (GET_CODE (pattern) == PARALLEL)
2075 int i;
2077 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2079 rtx body = XVECEXP (pattern, 0, i);
2081 if (GET_CODE (body) == COND_EXEC)
2082 body = COND_EXEC_CODE (body);
2084 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2085 && covers_regno_p (SET_DEST (body), test_regno))
2086 return 1;
2090 return 0;
2093 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2094 If DATUM is nonzero, look for one whose datum is DATUM. */
2097 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2099 rtx link;
2101 gcc_checking_assert (insn);
2103 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2104 if (! INSN_P (insn))
2105 return 0;
2106 if (datum == 0)
2108 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2109 if (REG_NOTE_KIND (link) == kind)
2110 return link;
2111 return 0;
2114 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2115 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2116 return link;
2117 return 0;
2120 /* Return the reg-note of kind KIND in insn INSN which applies to register
2121 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2122 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2123 it might be the case that the note overlaps REGNO. */
2126 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2128 rtx link;
2130 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2131 if (! INSN_P (insn))
2132 return 0;
2134 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2135 if (REG_NOTE_KIND (link) == kind
2136 /* Verify that it is a register, so that scratch and MEM won't cause a
2137 problem here. */
2138 && REG_P (XEXP (link, 0))
2139 && REGNO (XEXP (link, 0)) <= regno
2140 && END_REGNO (XEXP (link, 0)) > regno)
2141 return link;
2142 return 0;
2145 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2146 has such a note. */
2149 find_reg_equal_equiv_note (const_rtx insn)
2151 rtx link;
2153 if (!INSN_P (insn))
2154 return 0;
2156 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2157 if (REG_NOTE_KIND (link) == REG_EQUAL
2158 || REG_NOTE_KIND (link) == REG_EQUIV)
2160 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2161 insns that have multiple sets. Checking single_set to
2162 make sure of this is not the proper check, as explained
2163 in the comment in set_unique_reg_note.
2165 This should be changed into an assert. */
2166 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2167 return 0;
2168 return link;
2170 return NULL;
2173 /* Check whether INSN is a single_set whose source is known to be
2174 equivalent to a constant. Return that constant if so, otherwise
2175 return null. */
2178 find_constant_src (const rtx_insn *insn)
2180 rtx note, set, x;
2182 set = single_set (insn);
2183 if (set)
2185 x = avoid_constant_pool_reference (SET_SRC (set));
2186 if (CONSTANT_P (x))
2187 return x;
2190 note = find_reg_equal_equiv_note (insn);
2191 if (note && CONSTANT_P (XEXP (note, 0)))
2192 return XEXP (note, 0);
2194 return NULL_RTX;
2197 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2198 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2201 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2203 /* If it's not a CALL_INSN, it can't possibly have a
2204 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2205 if (!CALL_P (insn))
2206 return 0;
2208 gcc_assert (datum);
2210 if (!REG_P (datum))
2212 rtx link;
2214 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2215 link;
2216 link = XEXP (link, 1))
2217 if (GET_CODE (XEXP (link, 0)) == code
2218 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2219 return 1;
2221 else
2223 unsigned int regno = REGNO (datum);
2225 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2226 to pseudo registers, so don't bother checking. */
2228 if (regno < FIRST_PSEUDO_REGISTER)
2230 unsigned int end_regno = END_REGNO (datum);
2231 unsigned int i;
2233 for (i = regno; i < end_regno; i++)
2234 if (find_regno_fusage (insn, code, i))
2235 return 1;
2239 return 0;
2242 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2243 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2246 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2248 rtx link;
2250 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2251 to pseudo registers, so don't bother checking. */
2253 if (regno >= FIRST_PSEUDO_REGISTER
2254 || !CALL_P (insn) )
2255 return 0;
2257 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2259 rtx op, reg;
2261 if (GET_CODE (op = XEXP (link, 0)) == code
2262 && REG_P (reg = XEXP (op, 0))
2263 && REGNO (reg) <= regno
2264 && END_REGNO (reg) > regno)
2265 return 1;
2268 return 0;
2272 /* Return true if KIND is an integer REG_NOTE. */
2274 static bool
2275 int_reg_note_p (enum reg_note kind)
2277 return kind == REG_BR_PROB;
2280 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2281 stored as the pointer to the next register note. */
2284 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2286 rtx note;
2288 gcc_checking_assert (!int_reg_note_p (kind));
2289 switch (kind)
2291 case REG_CC_SETTER:
2292 case REG_CC_USER:
2293 case REG_LABEL_TARGET:
2294 case REG_LABEL_OPERAND:
2295 case REG_TM:
2296 /* These types of register notes use an INSN_LIST rather than an
2297 EXPR_LIST, so that copying is done right and dumps look
2298 better. */
2299 note = alloc_INSN_LIST (datum, list);
2300 PUT_REG_NOTE_KIND (note, kind);
2301 break;
2303 default:
2304 note = alloc_EXPR_LIST (kind, datum, list);
2305 break;
2308 return note;
2311 /* Add register note with kind KIND and datum DATUM to INSN. */
2313 void
2314 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2316 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2319 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2321 void
2322 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2324 gcc_checking_assert (int_reg_note_p (kind));
2325 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2326 datum, REG_NOTES (insn));
2329 /* Add a register note like NOTE to INSN. */
2331 void
2332 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2334 if (GET_CODE (note) == INT_LIST)
2335 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2336 else
2337 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2340 /* Duplicate NOTE and return the copy. */
2342 duplicate_reg_note (rtx note)
2344 reg_note kind = REG_NOTE_KIND (note);
2346 if (GET_CODE (note) == INT_LIST)
2347 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2348 else if (GET_CODE (note) == EXPR_LIST)
2349 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2350 else
2351 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2354 /* Remove register note NOTE from the REG_NOTES of INSN. */
2356 void
2357 remove_note (rtx_insn *insn, const_rtx note)
2359 rtx link;
2361 if (note == NULL_RTX)
2362 return;
2364 if (REG_NOTES (insn) == note)
2365 REG_NOTES (insn) = XEXP (note, 1);
2366 else
2367 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2368 if (XEXP (link, 1) == note)
2370 XEXP (link, 1) = XEXP (note, 1);
2371 break;
2374 switch (REG_NOTE_KIND (note))
2376 case REG_EQUAL:
2377 case REG_EQUIV:
2378 df_notes_rescan (insn);
2379 break;
2380 default:
2381 break;
2385 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2386 Return true if any note has been removed. */
2388 bool
2389 remove_reg_equal_equiv_notes (rtx_insn *insn)
2391 rtx *loc;
2392 bool ret = false;
2394 loc = &REG_NOTES (insn);
2395 while (*loc)
2397 enum reg_note kind = REG_NOTE_KIND (*loc);
2398 if (kind == REG_EQUAL || kind == REG_EQUIV)
2400 *loc = XEXP (*loc, 1);
2401 ret = true;
2403 else
2404 loc = &XEXP (*loc, 1);
2406 return ret;
2409 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2411 void
2412 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2414 df_ref eq_use;
2416 if (!df)
2417 return;
2419 /* This loop is a little tricky. We cannot just go down the chain because
2420 it is being modified by some actions in the loop. So we just iterate
2421 over the head. We plan to drain the list anyway. */
2422 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2424 rtx_insn *insn = DF_REF_INSN (eq_use);
2425 rtx note = find_reg_equal_equiv_note (insn);
2427 /* This assert is generally triggered when someone deletes a REG_EQUAL
2428 or REG_EQUIV note by hacking the list manually rather than calling
2429 remove_note. */
2430 gcc_assert (note);
2432 remove_note (insn, note);
2436 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2437 return 1 if it is found. A simple equality test is used to determine if
2438 NODE matches. */
2440 bool
2441 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2443 const_rtx x;
2445 for (x = listp; x; x = XEXP (x, 1))
2446 if (node == XEXP (x, 0))
2447 return true;
2449 return false;
2452 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2453 remove that entry from the list if it is found.
2455 A simple equality test is used to determine if NODE matches. */
2457 void
2458 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2460 rtx_expr_list *temp = *listp;
2461 rtx_expr_list *prev = NULL;
2463 while (temp)
2465 if (node == temp->element ())
2467 /* Splice the node out of the list. */
2468 if (prev)
2469 XEXP (prev, 1) = temp->next ();
2470 else
2471 *listp = temp->next ();
2473 return;
2476 prev = temp;
2477 temp = temp->next ();
2481 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2482 remove that entry from the list if it is found.
2484 A simple equality test is used to determine if NODE matches. */
2486 void
2487 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2489 rtx_insn_list *temp = *listp;
2490 rtx_insn_list *prev = NULL;
2492 while (temp)
2494 if (node == temp->insn ())
2496 /* Splice the node out of the list. */
2497 if (prev)
2498 XEXP (prev, 1) = temp->next ();
2499 else
2500 *listp = temp->next ();
2502 return;
2505 prev = temp;
2506 temp = temp->next ();
2510 /* Nonzero if X contains any volatile instructions. These are instructions
2511 which may cause unpredictable machine state instructions, and thus no
2512 instructions or register uses should be moved or combined across them.
2513 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2516 volatile_insn_p (const_rtx x)
2518 const RTX_CODE code = GET_CODE (x);
2519 switch (code)
2521 case LABEL_REF:
2522 case SYMBOL_REF:
2523 case CONST:
2524 CASE_CONST_ANY:
2525 case CC0:
2526 case PC:
2527 case REG:
2528 case SCRATCH:
2529 case CLOBBER:
2530 case ADDR_VEC:
2531 case ADDR_DIFF_VEC:
2532 case CALL:
2533 case MEM:
2534 return 0;
2536 case UNSPEC_VOLATILE:
2537 return 1;
2539 case ASM_INPUT:
2540 case ASM_OPERANDS:
2541 if (MEM_VOLATILE_P (x))
2542 return 1;
2544 default:
2545 break;
2548 /* Recursively scan the operands of this expression. */
2551 const char *const fmt = GET_RTX_FORMAT (code);
2552 int i;
2554 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2556 if (fmt[i] == 'e')
2558 if (volatile_insn_p (XEXP (x, i)))
2559 return 1;
2561 else if (fmt[i] == 'E')
2563 int j;
2564 for (j = 0; j < XVECLEN (x, i); j++)
2565 if (volatile_insn_p (XVECEXP (x, i, j)))
2566 return 1;
2570 return 0;
2573 /* Nonzero if X contains any volatile memory references
2574 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2577 volatile_refs_p (const_rtx x)
2579 const RTX_CODE code = GET_CODE (x);
2580 switch (code)
2582 case LABEL_REF:
2583 case SYMBOL_REF:
2584 case CONST:
2585 CASE_CONST_ANY:
2586 case CC0:
2587 case PC:
2588 case REG:
2589 case SCRATCH:
2590 case CLOBBER:
2591 case ADDR_VEC:
2592 case ADDR_DIFF_VEC:
2593 return 0;
2595 case UNSPEC_VOLATILE:
2596 return 1;
2598 case MEM:
2599 case ASM_INPUT:
2600 case ASM_OPERANDS:
2601 if (MEM_VOLATILE_P (x))
2602 return 1;
2604 default:
2605 break;
2608 /* Recursively scan the operands of this expression. */
2611 const char *const fmt = GET_RTX_FORMAT (code);
2612 int i;
2614 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2616 if (fmt[i] == 'e')
2618 if (volatile_refs_p (XEXP (x, i)))
2619 return 1;
2621 else if (fmt[i] == 'E')
2623 int j;
2624 for (j = 0; j < XVECLEN (x, i); j++)
2625 if (volatile_refs_p (XVECEXP (x, i, j)))
2626 return 1;
2630 return 0;
2633 /* Similar to above, except that it also rejects register pre- and post-
2634 incrementing. */
2637 side_effects_p (const_rtx x)
2639 const RTX_CODE code = GET_CODE (x);
2640 switch (code)
2642 case LABEL_REF:
2643 case SYMBOL_REF:
2644 case CONST:
2645 CASE_CONST_ANY:
2646 case CC0:
2647 case PC:
2648 case REG:
2649 case SCRATCH:
2650 case ADDR_VEC:
2651 case ADDR_DIFF_VEC:
2652 case VAR_LOCATION:
2653 return 0;
2655 case CLOBBER:
2656 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2657 when some combination can't be done. If we see one, don't think
2658 that we can simplify the expression. */
2659 return (GET_MODE (x) != VOIDmode);
2661 case PRE_INC:
2662 case PRE_DEC:
2663 case POST_INC:
2664 case POST_DEC:
2665 case PRE_MODIFY:
2666 case POST_MODIFY:
2667 case CALL:
2668 case UNSPEC_VOLATILE:
2669 return 1;
2671 case MEM:
2672 case ASM_INPUT:
2673 case ASM_OPERANDS:
2674 if (MEM_VOLATILE_P (x))
2675 return 1;
2677 default:
2678 break;
2681 /* Recursively scan the operands of this expression. */
2684 const char *fmt = GET_RTX_FORMAT (code);
2685 int i;
2687 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2689 if (fmt[i] == 'e')
2691 if (side_effects_p (XEXP (x, i)))
2692 return 1;
2694 else if (fmt[i] == 'E')
2696 int j;
2697 for (j = 0; j < XVECLEN (x, i); j++)
2698 if (side_effects_p (XVECEXP (x, i, j)))
2699 return 1;
2703 return 0;
2706 /* Return nonzero if evaluating rtx X might cause a trap.
2707 FLAGS controls how to consider MEMs. A nonzero means the context
2708 of the access may have changed from the original, such that the
2709 address may have become invalid. */
2712 may_trap_p_1 (const_rtx x, unsigned flags)
2714 int i;
2715 enum rtx_code code;
2716 const char *fmt;
2718 /* We make no distinction currently, but this function is part of
2719 the internal target-hooks ABI so we keep the parameter as
2720 "unsigned flags". */
2721 bool code_changed = flags != 0;
2723 if (x == 0)
2724 return 0;
2725 code = GET_CODE (x);
2726 switch (code)
2728 /* Handle these cases quickly. */
2729 CASE_CONST_ANY:
2730 case SYMBOL_REF:
2731 case LABEL_REF:
2732 case CONST:
2733 case PC:
2734 case CC0:
2735 case REG:
2736 case SCRATCH:
2737 return 0;
2739 case UNSPEC:
2740 return targetm.unspec_may_trap_p (x, flags);
2742 case UNSPEC_VOLATILE:
2743 case ASM_INPUT:
2744 case TRAP_IF:
2745 return 1;
2747 case ASM_OPERANDS:
2748 return MEM_VOLATILE_P (x);
2750 /* Memory ref can trap unless it's a static var or a stack slot. */
2751 case MEM:
2752 /* Recognize specific pattern of stack checking probes. */
2753 if (flag_stack_check
2754 && MEM_VOLATILE_P (x)
2755 && XEXP (x, 0) == stack_pointer_rtx)
2756 return 1;
2757 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2758 reference; moving it out of context such as when moving code
2759 when optimizing, might cause its address to become invalid. */
2760 code_changed
2761 || !MEM_NOTRAP_P (x))
2763 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2764 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2765 GET_MODE (x), code_changed);
2768 return 0;
2770 /* Division by a non-constant might trap. */
2771 case DIV:
2772 case MOD:
2773 case UDIV:
2774 case UMOD:
2775 if (HONOR_SNANS (x))
2776 return 1;
2777 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2778 return flag_trapping_math;
2779 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2780 return 1;
2781 break;
2783 case EXPR_LIST:
2784 /* An EXPR_LIST is used to represent a function call. This
2785 certainly may trap. */
2786 return 1;
2788 case GE:
2789 case GT:
2790 case LE:
2791 case LT:
2792 case LTGT:
2793 case COMPARE:
2794 /* Some floating point comparisons may trap. */
2795 if (!flag_trapping_math)
2796 break;
2797 /* ??? There is no machine independent way to check for tests that trap
2798 when COMPARE is used, though many targets do make this distinction.
2799 For instance, sparc uses CCFPE for compares which generate exceptions
2800 and CCFP for compares which do not generate exceptions. */
2801 if (HONOR_NANS (x))
2802 return 1;
2803 /* But often the compare has some CC mode, so check operand
2804 modes as well. */
2805 if (HONOR_NANS (XEXP (x, 0))
2806 || HONOR_NANS (XEXP (x, 1)))
2807 return 1;
2808 break;
2810 case EQ:
2811 case NE:
2812 if (HONOR_SNANS (x))
2813 return 1;
2814 /* Often comparison is CC mode, so check operand modes. */
2815 if (HONOR_SNANS (XEXP (x, 0))
2816 || HONOR_SNANS (XEXP (x, 1)))
2817 return 1;
2818 break;
2820 case FIX:
2821 /* Conversion of floating point might trap. */
2822 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2823 return 1;
2824 break;
2826 case NEG:
2827 case ABS:
2828 case SUBREG:
2829 /* These operations don't trap even with floating point. */
2830 break;
2832 default:
2833 /* Any floating arithmetic may trap. */
2834 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2835 return 1;
2838 fmt = GET_RTX_FORMAT (code);
2839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2841 if (fmt[i] == 'e')
2843 if (may_trap_p_1 (XEXP (x, i), flags))
2844 return 1;
2846 else if (fmt[i] == 'E')
2848 int j;
2849 for (j = 0; j < XVECLEN (x, i); j++)
2850 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2851 return 1;
2854 return 0;
2857 /* Return nonzero if evaluating rtx X might cause a trap. */
2860 may_trap_p (const_rtx x)
2862 return may_trap_p_1 (x, 0);
2865 /* Same as above, but additionally return nonzero if evaluating rtx X might
2866 cause a fault. We define a fault for the purpose of this function as a
2867 erroneous execution condition that cannot be encountered during the normal
2868 execution of a valid program; the typical example is an unaligned memory
2869 access on a strict alignment machine. The compiler guarantees that it
2870 doesn't generate code that will fault from a valid program, but this
2871 guarantee doesn't mean anything for individual instructions. Consider
2872 the following example:
2874 struct S { int d; union { char *cp; int *ip; }; };
2876 int foo(struct S *s)
2878 if (s->d == 1)
2879 return *s->ip;
2880 else
2881 return *s->cp;
2884 on a strict alignment machine. In a valid program, foo will never be
2885 invoked on a structure for which d is equal to 1 and the underlying
2886 unique field of the union not aligned on a 4-byte boundary, but the
2887 expression *s->ip might cause a fault if considered individually.
2889 At the RTL level, potentially problematic expressions will almost always
2890 verify may_trap_p; for example, the above dereference can be emitted as
2891 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2892 However, suppose that foo is inlined in a caller that causes s->cp to
2893 point to a local character variable and guarantees that s->d is not set
2894 to 1; foo may have been effectively translated into pseudo-RTL as:
2896 if ((reg:SI) == 1)
2897 (set (reg:SI) (mem:SI (%fp - 7)))
2898 else
2899 (set (reg:QI) (mem:QI (%fp - 7)))
2901 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2902 memory reference to a stack slot, but it will certainly cause a fault
2903 on a strict alignment machine. */
2906 may_trap_or_fault_p (const_rtx x)
2908 return may_trap_p_1 (x, 1);
2911 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2912 i.e., an inequality. */
2915 inequality_comparisons_p (const_rtx x)
2917 const char *fmt;
2918 int len, i;
2919 const enum rtx_code code = GET_CODE (x);
2921 switch (code)
2923 case REG:
2924 case SCRATCH:
2925 case PC:
2926 case CC0:
2927 CASE_CONST_ANY:
2928 case CONST:
2929 case LABEL_REF:
2930 case SYMBOL_REF:
2931 return 0;
2933 case LT:
2934 case LTU:
2935 case GT:
2936 case GTU:
2937 case LE:
2938 case LEU:
2939 case GE:
2940 case GEU:
2941 return 1;
2943 default:
2944 break;
2947 len = GET_RTX_LENGTH (code);
2948 fmt = GET_RTX_FORMAT (code);
2950 for (i = 0; i < len; i++)
2952 if (fmt[i] == 'e')
2954 if (inequality_comparisons_p (XEXP (x, i)))
2955 return 1;
2957 else if (fmt[i] == 'E')
2959 int j;
2960 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2961 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2962 return 1;
2966 return 0;
2969 /* Replace any occurrence of FROM in X with TO. The function does
2970 not enter into CONST_DOUBLE for the replace.
2972 Note that copying is not done so X must not be shared unless all copies
2973 are to be modified.
2975 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2976 those pointer-equal ones. */
2979 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2981 int i, j;
2982 const char *fmt;
2984 if (x == from)
2985 return to;
2987 /* Allow this function to make replacements in EXPR_LISTs. */
2988 if (x == 0)
2989 return 0;
2991 if (all_regs
2992 && REG_P (x)
2993 && REG_P (from)
2994 && REGNO (x) == REGNO (from))
2996 gcc_assert (GET_MODE (x) == GET_MODE (from));
2997 return to;
2999 else if (GET_CODE (x) == SUBREG)
3001 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3003 if (CONST_INT_P (new_rtx))
3005 x = simplify_subreg (GET_MODE (x), new_rtx,
3006 GET_MODE (SUBREG_REG (x)),
3007 SUBREG_BYTE (x));
3008 gcc_assert (x);
3010 else
3011 SUBREG_REG (x) = new_rtx;
3013 return x;
3015 else if (GET_CODE (x) == ZERO_EXTEND)
3017 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3019 if (CONST_INT_P (new_rtx))
3021 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3022 new_rtx, GET_MODE (XEXP (x, 0)));
3023 gcc_assert (x);
3025 else
3026 XEXP (x, 0) = new_rtx;
3028 return x;
3031 fmt = GET_RTX_FORMAT (GET_CODE (x));
3032 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3034 if (fmt[i] == 'e')
3035 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3036 else if (fmt[i] == 'E')
3037 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3038 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3039 from, to, all_regs);
3042 return x;
3045 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3046 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3048 void
3049 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3051 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3052 rtx x = *loc;
3053 if (JUMP_TABLE_DATA_P (x))
3055 x = PATTERN (x);
3056 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3057 int len = GET_NUM_ELEM (vec);
3058 for (int i = 0; i < len; ++i)
3060 rtx ref = RTVEC_ELT (vec, i);
3061 if (XEXP (ref, 0) == old_label)
3063 XEXP (ref, 0) = new_label;
3064 if (update_label_nuses)
3066 ++LABEL_NUSES (new_label);
3067 --LABEL_NUSES (old_label);
3071 return;
3074 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3075 field. This is not handled by the iterator because it doesn't
3076 handle unprinted ('0') fields. */
3077 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3078 JUMP_LABEL (x) = new_label;
3080 subrtx_ptr_iterator::array_type array;
3081 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3083 rtx *loc = *iter;
3084 if (rtx x = *loc)
3086 if (GET_CODE (x) == SYMBOL_REF
3087 && CONSTANT_POOL_ADDRESS_P (x))
3089 rtx c = get_pool_constant (x);
3090 if (rtx_referenced_p (old_label, c))
3092 /* Create a copy of constant C; replace the label inside
3093 but do not update LABEL_NUSES because uses in constant pool
3094 are not counted. */
3095 rtx new_c = copy_rtx (c);
3096 replace_label (&new_c, old_label, new_label, false);
3098 /* Add the new constant NEW_C to constant pool and replace
3099 the old reference to constant by new reference. */
3100 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3101 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3105 if ((GET_CODE (x) == LABEL_REF
3106 || GET_CODE (x) == INSN_LIST)
3107 && XEXP (x, 0) == old_label)
3109 XEXP (x, 0) = new_label;
3110 if (update_label_nuses)
3112 ++LABEL_NUSES (new_label);
3113 --LABEL_NUSES (old_label);
3120 void
3121 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3122 rtx_insn *new_label, bool update_label_nuses)
3124 rtx insn_as_rtx = insn;
3125 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3126 gcc_checking_assert (insn_as_rtx == insn);
3129 /* Return true if X is referenced in BODY. */
3131 bool
3132 rtx_referenced_p (const_rtx x, const_rtx body)
3134 subrtx_iterator::array_type array;
3135 FOR_EACH_SUBRTX (iter, array, body, ALL)
3136 if (const_rtx y = *iter)
3138 /* Check if a label_ref Y refers to label X. */
3139 if (GET_CODE (y) == LABEL_REF
3140 && LABEL_P (x)
3141 && label_ref_label (y) == x)
3142 return true;
3144 if (rtx_equal_p (x, y))
3145 return true;
3147 /* If Y is a reference to pool constant traverse the constant. */
3148 if (GET_CODE (y) == SYMBOL_REF
3149 && CONSTANT_POOL_ADDRESS_P (y))
3150 iter.substitute (get_pool_constant (y));
3152 return false;
3155 /* If INSN is a tablejump return true and store the label (before jump table) to
3156 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3158 bool
3159 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3160 rtx_jump_table_data **tablep)
3162 if (!JUMP_P (insn))
3163 return false;
3165 rtx target = JUMP_LABEL (insn);
3166 if (target == NULL_RTX || ANY_RETURN_P (target))
3167 return false;
3169 rtx_insn *label = as_a<rtx_insn *> (target);
3170 rtx_insn *table = next_insn (label);
3171 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3172 return false;
3174 if (labelp)
3175 *labelp = label;
3176 if (tablep)
3177 *tablep = as_a <rtx_jump_table_data *> (table);
3178 return true;
3181 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3182 constant that is not in the constant pool and not in the condition
3183 of an IF_THEN_ELSE. */
3185 static int
3186 computed_jump_p_1 (const_rtx x)
3188 const enum rtx_code code = GET_CODE (x);
3189 int i, j;
3190 const char *fmt;
3192 switch (code)
3194 case LABEL_REF:
3195 case PC:
3196 return 0;
3198 case CONST:
3199 CASE_CONST_ANY:
3200 case SYMBOL_REF:
3201 case REG:
3202 return 1;
3204 case MEM:
3205 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3206 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3208 case IF_THEN_ELSE:
3209 return (computed_jump_p_1 (XEXP (x, 1))
3210 || computed_jump_p_1 (XEXP (x, 2)));
3212 default:
3213 break;
3216 fmt = GET_RTX_FORMAT (code);
3217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3219 if (fmt[i] == 'e'
3220 && computed_jump_p_1 (XEXP (x, i)))
3221 return 1;
3223 else if (fmt[i] == 'E')
3224 for (j = 0; j < XVECLEN (x, i); j++)
3225 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3226 return 1;
3229 return 0;
3232 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3234 Tablejumps and casesi insns are not considered indirect jumps;
3235 we can recognize them by a (use (label_ref)). */
3238 computed_jump_p (const rtx_insn *insn)
3240 int i;
3241 if (JUMP_P (insn))
3243 rtx pat = PATTERN (insn);
3245 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3246 if (JUMP_LABEL (insn) != NULL)
3247 return 0;
3249 if (GET_CODE (pat) == PARALLEL)
3251 int len = XVECLEN (pat, 0);
3252 int has_use_labelref = 0;
3254 for (i = len - 1; i >= 0; i--)
3255 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3256 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3257 == LABEL_REF))
3259 has_use_labelref = 1;
3260 break;
3263 if (! has_use_labelref)
3264 for (i = len - 1; i >= 0; i--)
3265 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3266 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3267 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3268 return 1;
3270 else if (GET_CODE (pat) == SET
3271 && SET_DEST (pat) == pc_rtx
3272 && computed_jump_p_1 (SET_SRC (pat)))
3273 return 1;
3275 return 0;
3280 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3281 the equivalent add insn and pass the result to FN, using DATA as the
3282 final argument. */
3284 static int
3285 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3287 rtx x = XEXP (mem, 0);
3288 switch (GET_CODE (x))
3290 case PRE_INC:
3291 case POST_INC:
3293 int size = GET_MODE_SIZE (GET_MODE (mem));
3294 rtx r1 = XEXP (x, 0);
3295 rtx c = gen_int_mode (size, GET_MODE (r1));
3296 return fn (mem, x, r1, r1, c, data);
3299 case PRE_DEC:
3300 case POST_DEC:
3302 int size = GET_MODE_SIZE (GET_MODE (mem));
3303 rtx r1 = XEXP (x, 0);
3304 rtx c = gen_int_mode (-size, GET_MODE (r1));
3305 return fn (mem, x, r1, r1, c, data);
3308 case PRE_MODIFY:
3309 case POST_MODIFY:
3311 rtx r1 = XEXP (x, 0);
3312 rtx add = XEXP (x, 1);
3313 return fn (mem, x, r1, add, NULL, data);
3316 default:
3317 gcc_unreachable ();
3321 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3322 For each such autoinc operation found, call FN, passing it
3323 the innermost enclosing MEM, the operation itself, the RTX modified
3324 by the operation, two RTXs (the second may be NULL) that, once
3325 added, represent the value to be held by the modified RTX
3326 afterwards, and DATA. FN is to return 0 to continue the
3327 traversal or any other value to have it returned to the caller of
3328 for_each_inc_dec. */
3331 for_each_inc_dec (rtx x,
3332 for_each_inc_dec_fn fn,
3333 void *data)
3335 subrtx_var_iterator::array_type array;
3336 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3338 rtx mem = *iter;
3339 if (mem
3340 && MEM_P (mem)
3341 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3343 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3344 if (res != 0)
3345 return res;
3346 iter.skip_subrtxes ();
3349 return 0;
3353 /* Searches X for any reference to REGNO, returning the rtx of the
3354 reference found if any. Otherwise, returns NULL_RTX. */
3357 regno_use_in (unsigned int regno, rtx x)
3359 const char *fmt;
3360 int i, j;
3361 rtx tem;
3363 if (REG_P (x) && REGNO (x) == regno)
3364 return x;
3366 fmt = GET_RTX_FORMAT (GET_CODE (x));
3367 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3369 if (fmt[i] == 'e')
3371 if ((tem = regno_use_in (regno, XEXP (x, i))))
3372 return tem;
3374 else if (fmt[i] == 'E')
3375 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3376 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3377 return tem;
3380 return NULL_RTX;
3383 /* Return a value indicating whether OP, an operand of a commutative
3384 operation, is preferred as the first or second operand. The more
3385 positive the value, the stronger the preference for being the first
3386 operand. */
3389 commutative_operand_precedence (rtx op)
3391 enum rtx_code code = GET_CODE (op);
3393 /* Constants always become the second operand. Prefer "nice" constants. */
3394 if (code == CONST_INT)
3395 return -8;
3396 if (code == CONST_WIDE_INT)
3397 return -7;
3398 if (code == CONST_DOUBLE)
3399 return -7;
3400 if (code == CONST_FIXED)
3401 return -7;
3402 op = avoid_constant_pool_reference (op);
3403 code = GET_CODE (op);
3405 switch (GET_RTX_CLASS (code))
3407 case RTX_CONST_OBJ:
3408 if (code == CONST_INT)
3409 return -6;
3410 if (code == CONST_WIDE_INT)
3411 return -6;
3412 if (code == CONST_DOUBLE)
3413 return -5;
3414 if (code == CONST_FIXED)
3415 return -5;
3416 return -4;
3418 case RTX_EXTRA:
3419 /* SUBREGs of objects should come second. */
3420 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3421 return -3;
3422 return 0;
3424 case RTX_OBJ:
3425 /* Complex expressions should be the first, so decrease priority
3426 of objects. Prefer pointer objects over non pointer objects. */
3427 if ((REG_P (op) && REG_POINTER (op))
3428 || (MEM_P (op) && MEM_POINTER (op)))
3429 return -1;
3430 return -2;
3432 case RTX_COMM_ARITH:
3433 /* Prefer operands that are themselves commutative to be first.
3434 This helps to make things linear. In particular,
3435 (and (and (reg) (reg)) (not (reg))) is canonical. */
3436 return 4;
3438 case RTX_BIN_ARITH:
3439 /* If only one operand is a binary expression, it will be the first
3440 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3441 is canonical, although it will usually be further simplified. */
3442 return 2;
3444 case RTX_UNARY:
3445 /* Then prefer NEG and NOT. */
3446 if (code == NEG || code == NOT)
3447 return 1;
3448 /* FALLTHRU */
3450 default:
3451 return 0;
3455 /* Return 1 iff it is necessary to swap operands of commutative operation
3456 in order to canonicalize expression. */
3458 bool
3459 swap_commutative_operands_p (rtx x, rtx y)
3461 return (commutative_operand_precedence (x)
3462 < commutative_operand_precedence (y));
3465 /* Return 1 if X is an autoincrement side effect and the register is
3466 not the stack pointer. */
3468 auto_inc_p (const_rtx x)
3470 switch (GET_CODE (x))
3472 case PRE_INC:
3473 case POST_INC:
3474 case PRE_DEC:
3475 case POST_DEC:
3476 case PRE_MODIFY:
3477 case POST_MODIFY:
3478 /* There are no REG_INC notes for SP. */
3479 if (XEXP (x, 0) != stack_pointer_rtx)
3480 return 1;
3481 default:
3482 break;
3484 return 0;
3487 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3489 loc_mentioned_in_p (rtx *loc, const_rtx in)
3491 enum rtx_code code;
3492 const char *fmt;
3493 int i, j;
3495 if (!in)
3496 return 0;
3498 code = GET_CODE (in);
3499 fmt = GET_RTX_FORMAT (code);
3500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3502 if (fmt[i] == 'e')
3504 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3505 return 1;
3507 else if (fmt[i] == 'E')
3508 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3509 if (loc == &XVECEXP (in, i, j)
3510 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3511 return 1;
3513 return 0;
3516 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3517 and SUBREG_BYTE, return the bit offset where the subreg begins
3518 (counting from the least significant bit of the operand). */
3520 unsigned int
3521 subreg_lsb_1 (machine_mode outer_mode,
3522 machine_mode inner_mode,
3523 unsigned int subreg_byte)
3525 unsigned int bitpos;
3526 unsigned int byte;
3527 unsigned int word;
3529 /* A paradoxical subreg begins at bit position 0. */
3530 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3531 return 0;
3533 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3534 /* If the subreg crosses a word boundary ensure that
3535 it also begins and ends on a word boundary. */
3536 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3537 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3538 && (subreg_byte % UNITS_PER_WORD
3539 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3541 if (WORDS_BIG_ENDIAN)
3542 word = (GET_MODE_SIZE (inner_mode)
3543 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3544 else
3545 word = subreg_byte / UNITS_PER_WORD;
3546 bitpos = word * BITS_PER_WORD;
3548 if (BYTES_BIG_ENDIAN)
3549 byte = (GET_MODE_SIZE (inner_mode)
3550 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3551 else
3552 byte = subreg_byte % UNITS_PER_WORD;
3553 bitpos += byte * BITS_PER_UNIT;
3555 return bitpos;
3558 /* Given a subreg X, return the bit offset where the subreg begins
3559 (counting from the least significant bit of the reg). */
3561 unsigned int
3562 subreg_lsb (const_rtx x)
3564 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3565 SUBREG_BYTE (x));
3568 /* Return the subreg byte offset for a subreg whose outer value has
3569 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3570 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3571 lsb of the inner value. This is the inverse of the calculation
3572 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3574 unsigned int
3575 subreg_size_offset_from_lsb (unsigned int outer_bytes,
3576 unsigned int inner_bytes,
3577 unsigned int lsb_shift)
3579 /* A paradoxical subreg begins at bit position 0. */
3580 if (outer_bytes > inner_bytes)
3582 gcc_checking_assert (lsb_shift == 0);
3583 return 0;
3586 gcc_assert (lsb_shift % BITS_PER_UNIT == 0);
3587 unsigned int lower_bytes = lsb_shift / BITS_PER_UNIT;
3588 unsigned int upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3589 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3590 return upper_bytes;
3591 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3592 return lower_bytes;
3593 else
3595 unsigned int lower_word_part = lower_bytes & -UNITS_PER_WORD;
3596 unsigned int upper_word_part = upper_bytes & -UNITS_PER_WORD;
3597 if (WORDS_BIG_ENDIAN)
3598 return upper_word_part + (lower_bytes - lower_word_part);
3599 else
3600 return lower_word_part + (upper_bytes - upper_word_part);
3604 /* Fill in information about a subreg of a hard register.
3605 xregno - A regno of an inner hard subreg_reg (or what will become one).
3606 xmode - The mode of xregno.
3607 offset - The byte offset.
3608 ymode - The mode of a top level SUBREG (or what may become one).
3609 info - Pointer to structure to fill in.
3611 Rather than considering one particular inner register (and thus one
3612 particular "outer" register) in isolation, this function really uses
3613 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3614 function does not check whether adding INFO->offset to XREGNO gives
3615 a valid hard register; even if INFO->offset + XREGNO is out of range,
3616 there might be another register of the same type that is in range.
3617 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3618 register, since that can depend on things like whether the final
3619 register number is even or odd. Callers that want to check whether
3620 this particular subreg can be replaced by a simple (reg ...) should
3621 use simplify_subreg_regno. */
3623 void
3624 subreg_get_info (unsigned int xregno, machine_mode xmode,
3625 unsigned int offset, machine_mode ymode,
3626 struct subreg_info *info)
3628 unsigned int nregs_xmode, nregs_ymode;
3630 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3632 unsigned int xsize = GET_MODE_SIZE (xmode);
3633 unsigned int ysize = GET_MODE_SIZE (ymode);
3634 bool rknown = false;
3636 /* If the register representation of a non-scalar mode has holes in it,
3637 we expect the scalar units to be concatenated together, with the holes
3638 distributed evenly among the scalar units. Each scalar unit must occupy
3639 at least one register. */
3640 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3642 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3643 unsigned int nunits = GET_MODE_NUNITS (xmode);
3644 machine_mode xmode_unit = GET_MODE_INNER (xmode);
3645 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3646 gcc_assert (nregs_xmode
3647 == (nunits
3648 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3649 gcc_assert (hard_regno_nregs[xregno][xmode]
3650 == hard_regno_nregs[xregno][xmode_unit] * nunits);
3652 /* You can only ask for a SUBREG of a value with holes in the middle
3653 if you don't cross the holes. (Such a SUBREG should be done by
3654 picking a different register class, or doing it in memory if
3655 necessary.) An example of a value with holes is XCmode on 32-bit
3656 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3657 3 for each part, but in memory it's two 128-bit parts.
3658 Padding is assumed to be at the end (not necessarily the 'high part')
3659 of each unit. */
3660 if ((offset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3661 && (offset / GET_MODE_SIZE (xmode_unit)
3662 != ((offset + ysize - 1) / GET_MODE_SIZE (xmode_unit))))
3664 info->representable_p = false;
3665 rknown = true;
3668 else
3669 nregs_xmode = hard_regno_nregs[xregno][xmode];
3671 nregs_ymode = hard_regno_nregs[xregno][ymode];
3673 /* Paradoxical subregs are otherwise valid. */
3674 if (!rknown && offset == 0 && ysize > xsize)
3676 info->representable_p = true;
3677 /* If this is a big endian paradoxical subreg, which uses more
3678 actual hard registers than the original register, we must
3679 return a negative offset so that we find the proper highpart
3680 of the register.
3682 We assume that the ordering of registers within a multi-register
3683 value has a consistent endianness: if bytes and register words
3684 have different endianness, the hard registers that make up a
3685 multi-register value must be at least word-sized. */
3686 if (REG_WORDS_BIG_ENDIAN)
3687 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3688 else
3689 info->offset = 0;
3690 info->nregs = nregs_ymode;
3691 return;
3694 /* If registers store different numbers of bits in the different
3695 modes, we cannot generally form this subreg. */
3696 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3697 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3698 && (xsize % nregs_xmode) == 0
3699 && (ysize % nregs_ymode) == 0)
3701 int regsize_xmode = xsize / nregs_xmode;
3702 int regsize_ymode = ysize / nregs_ymode;
3703 if (!rknown
3704 && ((nregs_ymode > 1 && regsize_xmode > regsize_ymode)
3705 || (nregs_xmode > 1 && regsize_ymode > regsize_xmode)))
3707 info->representable_p = false;
3708 info->nregs = CEIL (ysize, regsize_xmode);
3709 info->offset = offset / regsize_xmode;
3710 return;
3712 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3713 would go outside of XMODE. */
3714 if (!rknown && ysize + offset > xsize)
3716 info->representable_p = false;
3717 info->nregs = nregs_ymode;
3718 info->offset = offset / regsize_xmode;
3719 return;
3721 /* Quick exit for the simple and common case of extracting whole
3722 subregisters from a multiregister value. */
3723 /* ??? It would be better to integrate this into the code below,
3724 if we can generalize the concept enough and figure out how
3725 odd-sized modes can coexist with the other weird cases we support. */
3726 if (!rknown
3727 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3728 && regsize_xmode == regsize_ymode
3729 && (offset % regsize_ymode) == 0)
3731 info->representable_p = true;
3732 info->nregs = nregs_ymode;
3733 info->offset = offset / regsize_ymode;
3734 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3735 return;
3739 /* Lowpart subregs are otherwise valid. */
3740 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3742 info->representable_p = true;
3743 rknown = true;
3745 if (offset == 0 || nregs_xmode == nregs_ymode)
3747 info->offset = 0;
3748 info->nregs = nregs_ymode;
3749 return;
3753 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3754 values there are in (reg:XMODE XREGNO). We can view the register
3755 as consisting of this number of independent "blocks", where each
3756 block occupies NREGS_YMODE registers and contains exactly one
3757 representable YMODE value. */
3758 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3759 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3761 /* Calculate the number of bytes in each block. This must always
3762 be exact, otherwise we don't know how to verify the constraint.
3763 These conditions may be relaxed but subreg_regno_offset would
3764 need to be redesigned. */
3765 gcc_assert ((xsize % num_blocks) == 0);
3766 unsigned int bytes_per_block = xsize / num_blocks;
3768 /* Get the number of the first block that contains the subreg and the byte
3769 offset of the subreg from the start of that block. */
3770 unsigned int block_number = offset / bytes_per_block;
3771 unsigned int subblock_offset = offset % bytes_per_block;
3773 if (!rknown)
3775 /* Only the lowpart of each block is representable. */
3776 info->representable_p
3777 = (subblock_offset
3778 == subreg_size_lowpart_offset (ysize, bytes_per_block));
3779 rknown = true;
3782 /* We assume that the ordering of registers within a multi-register
3783 value has a consistent endianness: if bytes and register words
3784 have different endianness, the hard registers that make up a
3785 multi-register value must be at least word-sized. */
3786 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3787 /* The block number we calculated above followed memory endianness.
3788 Convert it to register endianness by counting back from the end.
3789 (Note that, because of the assumption above, each block must be
3790 at least word-sized.) */
3791 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3792 else
3793 info->offset = block_number * nregs_ymode;
3794 info->nregs = nregs_ymode;
3797 /* This function returns the regno offset of a subreg expression.
3798 xregno - A regno of an inner hard subreg_reg (or what will become one).
3799 xmode - The mode of xregno.
3800 offset - The byte offset.
3801 ymode - The mode of a top level SUBREG (or what may become one).
3802 RETURN - The regno offset which would be used. */
3803 unsigned int
3804 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3805 unsigned int offset, machine_mode ymode)
3807 struct subreg_info info;
3808 subreg_get_info (xregno, xmode, offset, ymode, &info);
3809 return info.offset;
3812 /* This function returns true when the offset is representable via
3813 subreg_offset in the given regno.
3814 xregno - A regno of an inner hard subreg_reg (or what will become one).
3815 xmode - The mode of xregno.
3816 offset - The byte offset.
3817 ymode - The mode of a top level SUBREG (or what may become one).
3818 RETURN - Whether the offset is representable. */
3819 bool
3820 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3821 unsigned int offset, machine_mode ymode)
3823 struct subreg_info info;
3824 subreg_get_info (xregno, xmode, offset, ymode, &info);
3825 return info.representable_p;
3828 /* Return the number of a YMODE register to which
3830 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3832 can be simplified. Return -1 if the subreg can't be simplified.
3834 XREGNO is a hard register number. */
3837 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3838 unsigned int offset, machine_mode ymode)
3840 struct subreg_info info;
3841 unsigned int yregno;
3843 #ifdef CANNOT_CHANGE_MODE_CLASS
3844 /* Give the backend a chance to disallow the mode change. */
3845 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3846 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3847 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3848 /* We can use mode change in LRA for some transformations. */
3849 && ! lra_in_progress)
3850 return -1;
3851 #endif
3853 /* We shouldn't simplify stack-related registers. */
3854 if ((!reload_completed || frame_pointer_needed)
3855 && xregno == FRAME_POINTER_REGNUM)
3856 return -1;
3858 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3859 && xregno == ARG_POINTER_REGNUM)
3860 return -1;
3862 if (xregno == STACK_POINTER_REGNUM
3863 /* We should convert hard stack register in LRA if it is
3864 possible. */
3865 && ! lra_in_progress)
3866 return -1;
3868 /* Try to get the register offset. */
3869 subreg_get_info (xregno, xmode, offset, ymode, &info);
3870 if (!info.representable_p)
3871 return -1;
3873 /* Make sure that the offsetted register value is in range. */
3874 yregno = xregno + info.offset;
3875 if (!HARD_REGISTER_NUM_P (yregno))
3876 return -1;
3878 /* See whether (reg:YMODE YREGNO) is valid.
3880 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3881 This is a kludge to work around how complex FP arguments are passed
3882 on IA-64 and should be fixed. See PR target/49226. */
3883 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3884 && HARD_REGNO_MODE_OK (xregno, xmode))
3885 return -1;
3887 return (int) yregno;
3890 /* Return the final regno that a subreg expression refers to. */
3891 unsigned int
3892 subreg_regno (const_rtx x)
3894 unsigned int ret;
3895 rtx subreg = SUBREG_REG (x);
3896 int regno = REGNO (subreg);
3898 ret = regno + subreg_regno_offset (regno,
3899 GET_MODE (subreg),
3900 SUBREG_BYTE (x),
3901 GET_MODE (x));
3902 return ret;
3906 /* Return the number of registers that a subreg expression refers
3907 to. */
3908 unsigned int
3909 subreg_nregs (const_rtx x)
3911 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3914 /* Return the number of registers that a subreg REG with REGNO
3915 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3916 changed so that the regno can be passed in. */
3918 unsigned int
3919 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3921 struct subreg_info info;
3922 rtx subreg = SUBREG_REG (x);
3924 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3925 &info);
3926 return info.nregs;
3929 struct parms_set_data
3931 int nregs;
3932 HARD_REG_SET regs;
3935 /* Helper function for noticing stores to parameter registers. */
3936 static void
3937 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3939 struct parms_set_data *const d = (struct parms_set_data *) data;
3940 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3941 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3943 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3944 d->nregs--;
3948 /* Look backward for first parameter to be loaded.
3949 Note that loads of all parameters will not necessarily be
3950 found if CSE has eliminated some of them (e.g., an argument
3951 to the outer function is passed down as a parameter).
3952 Do not skip BOUNDARY. */
3953 rtx_insn *
3954 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3956 struct parms_set_data parm;
3957 rtx p;
3958 rtx_insn *before, *first_set;
3960 /* Since different machines initialize their parameter registers
3961 in different orders, assume nothing. Collect the set of all
3962 parameter registers. */
3963 CLEAR_HARD_REG_SET (parm.regs);
3964 parm.nregs = 0;
3965 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3966 if (GET_CODE (XEXP (p, 0)) == USE
3967 && REG_P (XEXP (XEXP (p, 0), 0))
3968 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
3970 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3972 /* We only care about registers which can hold function
3973 arguments. */
3974 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3975 continue;
3977 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3978 parm.nregs++;
3980 before = call_insn;
3981 first_set = call_insn;
3983 /* Search backward for the first set of a register in this set. */
3984 while (parm.nregs && before != boundary)
3986 before = PREV_INSN (before);
3988 /* It is possible that some loads got CSEed from one call to
3989 another. Stop in that case. */
3990 if (CALL_P (before))
3991 break;
3993 /* Our caller needs either ensure that we will find all sets
3994 (in case code has not been optimized yet), or take care
3995 for possible labels in a way by setting boundary to preceding
3996 CODE_LABEL. */
3997 if (LABEL_P (before))
3999 gcc_assert (before == boundary);
4000 break;
4003 if (INSN_P (before))
4005 int nregs_old = parm.nregs;
4006 note_stores (PATTERN (before), parms_set, &parm);
4007 /* If we found something that did not set a parameter reg,
4008 we're done. Do not keep going, as that might result
4009 in hoisting an insn before the setting of a pseudo
4010 that is used by the hoisted insn. */
4011 if (nregs_old != parm.nregs)
4012 first_set = before;
4013 else
4014 break;
4017 return first_set;
4020 /* Return true if we should avoid inserting code between INSN and preceding
4021 call instruction. */
4023 bool
4024 keep_with_call_p (const rtx_insn *insn)
4026 rtx set;
4028 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4030 if (REG_P (SET_DEST (set))
4031 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4032 && fixed_regs[REGNO (SET_DEST (set))]
4033 && general_operand (SET_SRC (set), VOIDmode))
4034 return true;
4035 if (REG_P (SET_SRC (set))
4036 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4037 && REG_P (SET_DEST (set))
4038 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4039 return true;
4040 /* There may be a stack pop just after the call and before the store
4041 of the return register. Search for the actual store when deciding
4042 if we can break or not. */
4043 if (SET_DEST (set) == stack_pointer_rtx)
4045 /* This CONST_CAST is okay because next_nonnote_insn just
4046 returns its argument and we assign it to a const_rtx
4047 variable. */
4048 const rtx_insn *i2
4049 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4050 if (i2 && keep_with_call_p (i2))
4051 return true;
4054 return false;
4057 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4058 to non-complex jumps. That is, direct unconditional, conditional,
4059 and tablejumps, but not computed jumps or returns. It also does
4060 not apply to the fallthru case of a conditional jump. */
4062 bool
4063 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4065 rtx tmp = JUMP_LABEL (jump_insn);
4066 rtx_jump_table_data *table;
4068 if (label == tmp)
4069 return true;
4071 if (tablejump_p (jump_insn, NULL, &table))
4073 rtvec vec = table->get_labels ();
4074 int i, veclen = GET_NUM_ELEM (vec);
4076 for (i = 0; i < veclen; ++i)
4077 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4078 return true;
4081 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4082 return true;
4084 return false;
4088 /* Return an estimate of the cost of computing rtx X.
4089 One use is in cse, to decide which expression to keep in the hash table.
4090 Another is in rtl generation, to pick the cheapest way to multiply.
4091 Other uses like the latter are expected in the future.
4093 X appears as operand OPNO in an expression with code OUTER_CODE.
4094 SPEED specifies whether costs optimized for speed or size should
4095 be returned. */
4098 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4099 int opno, bool speed)
4101 int i, j;
4102 enum rtx_code code;
4103 const char *fmt;
4104 int total;
4105 int factor;
4107 if (x == 0)
4108 return 0;
4110 if (GET_MODE (x) != VOIDmode)
4111 mode = GET_MODE (x);
4113 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4114 many insns, taking N times as long. */
4115 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4116 if (factor == 0)
4117 factor = 1;
4119 /* Compute the default costs of certain things.
4120 Note that targetm.rtx_costs can override the defaults. */
4122 code = GET_CODE (x);
4123 switch (code)
4125 case MULT:
4126 /* Multiplication has time-complexity O(N*N), where N is the
4127 number of units (translated from digits) when using
4128 schoolbook long multiplication. */
4129 total = factor * factor * COSTS_N_INSNS (5);
4130 break;
4131 case DIV:
4132 case UDIV:
4133 case MOD:
4134 case UMOD:
4135 /* Similarly, complexity for schoolbook long division. */
4136 total = factor * factor * COSTS_N_INSNS (7);
4137 break;
4138 case USE:
4139 /* Used in combine.c as a marker. */
4140 total = 0;
4141 break;
4142 case SET:
4143 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4144 the mode for the factor. */
4145 mode = GET_MODE (SET_DEST (x));
4146 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4147 if (factor == 0)
4148 factor = 1;
4149 /* FALLTHRU */
4150 default:
4151 total = factor * COSTS_N_INSNS (1);
4154 switch (code)
4156 case REG:
4157 return 0;
4159 case SUBREG:
4160 total = 0;
4161 /* If we can't tie these modes, make this expensive. The larger
4162 the mode, the more expensive it is. */
4163 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4164 return COSTS_N_INSNS (2 + factor);
4165 break;
4167 case TRUNCATE:
4168 if (MODES_TIEABLE_P (mode, GET_MODE (XEXP (x, 0))))
4170 total = 0;
4171 break;
4173 /* FALLTHRU */
4174 default:
4175 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4176 return total;
4177 break;
4180 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4181 which is already in total. */
4183 fmt = GET_RTX_FORMAT (code);
4184 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4185 if (fmt[i] == 'e')
4186 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4187 else if (fmt[i] == 'E')
4188 for (j = 0; j < XVECLEN (x, i); j++)
4189 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4191 return total;
4194 /* Fill in the structure C with information about both speed and size rtx
4195 costs for X, which is operand OPNO in an expression with code OUTER. */
4197 void
4198 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4199 struct full_rtx_costs *c)
4201 c->speed = rtx_cost (x, mode, outer, opno, true);
4202 c->size = rtx_cost (x, mode, outer, opno, false);
4206 /* Return cost of address expression X.
4207 Expect that X is properly formed address reference.
4209 SPEED parameter specify whether costs optimized for speed or size should
4210 be returned. */
4213 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4215 /* We may be asked for cost of various unusual addresses, such as operands
4216 of push instruction. It is not worthwhile to complicate writing
4217 of the target hook by such cases. */
4219 if (!memory_address_addr_space_p (mode, x, as))
4220 return 1000;
4222 return targetm.address_cost (x, mode, as, speed);
4225 /* If the target doesn't override, compute the cost as with arithmetic. */
4228 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4230 return rtx_cost (x, Pmode, MEM, 0, speed);
4234 unsigned HOST_WIDE_INT
4235 nonzero_bits (const_rtx x, machine_mode mode)
4237 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4240 unsigned int
4241 num_sign_bit_copies (const_rtx x, machine_mode mode)
4243 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4246 /* Return true if nonzero_bits1 might recurse into both operands
4247 of X. */
4249 static inline bool
4250 nonzero_bits_binary_arith_p (const_rtx x)
4252 if (!ARITHMETIC_P (x))
4253 return false;
4254 switch (GET_CODE (x))
4256 case AND:
4257 case XOR:
4258 case IOR:
4259 case UMIN:
4260 case UMAX:
4261 case SMIN:
4262 case SMAX:
4263 case PLUS:
4264 case MINUS:
4265 case MULT:
4266 case DIV:
4267 case UDIV:
4268 case MOD:
4269 case UMOD:
4270 return true;
4271 default:
4272 return false;
4276 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4277 It avoids exponential behavior in nonzero_bits1 when X has
4278 identical subexpressions on the first or the second level. */
4280 static unsigned HOST_WIDE_INT
4281 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4282 machine_mode known_mode,
4283 unsigned HOST_WIDE_INT known_ret)
4285 if (x == known_x && mode == known_mode)
4286 return known_ret;
4288 /* Try to find identical subexpressions. If found call
4289 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4290 precomputed value for the subexpression as KNOWN_RET. */
4292 if (nonzero_bits_binary_arith_p (x))
4294 rtx x0 = XEXP (x, 0);
4295 rtx x1 = XEXP (x, 1);
4297 /* Check the first level. */
4298 if (x0 == x1)
4299 return nonzero_bits1 (x, mode, x0, mode,
4300 cached_nonzero_bits (x0, mode, known_x,
4301 known_mode, known_ret));
4303 /* Check the second level. */
4304 if (nonzero_bits_binary_arith_p (x0)
4305 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4306 return nonzero_bits1 (x, mode, x1, mode,
4307 cached_nonzero_bits (x1, mode, known_x,
4308 known_mode, known_ret));
4310 if (nonzero_bits_binary_arith_p (x1)
4311 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4312 return nonzero_bits1 (x, mode, x0, mode,
4313 cached_nonzero_bits (x0, mode, known_x,
4314 known_mode, known_ret));
4317 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4320 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4321 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4322 is less useful. We can't allow both, because that results in exponential
4323 run time recursion. There is a nullstone testcase that triggered
4324 this. This macro avoids accidental uses of num_sign_bit_copies. */
4325 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4327 /* Given an expression, X, compute which bits in X can be nonzero.
4328 We don't care about bits outside of those defined in MODE.
4330 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4331 an arithmetic operation, we can do better. */
4333 static unsigned HOST_WIDE_INT
4334 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4335 machine_mode known_mode,
4336 unsigned HOST_WIDE_INT known_ret)
4338 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4339 unsigned HOST_WIDE_INT inner_nz;
4340 enum rtx_code code;
4341 machine_mode inner_mode;
4342 unsigned int mode_width = GET_MODE_PRECISION (mode);
4344 /* For floating-point and vector values, assume all bits are needed. */
4345 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4346 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4347 return nonzero;
4349 /* If X is wider than MODE, use its mode instead. */
4350 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4352 mode = GET_MODE (x);
4353 nonzero = GET_MODE_MASK (mode);
4354 mode_width = GET_MODE_PRECISION (mode);
4357 if (mode_width > HOST_BITS_PER_WIDE_INT)
4358 /* Our only callers in this case look for single bit values. So
4359 just return the mode mask. Those tests will then be false. */
4360 return nonzero;
4362 /* If MODE is wider than X, but both are a single word for both the host
4363 and target machines, we can compute this from which bits of the
4364 object might be nonzero in its own mode, taking into account the fact
4365 that on many CISC machines, accessing an object in a wider mode
4366 causes the high-order bits to become undefined. So they are
4367 not known to be zero. */
4369 if (!WORD_REGISTER_OPERATIONS
4370 && GET_MODE (x) != VOIDmode
4371 && GET_MODE (x) != mode
4372 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4373 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4374 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4376 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4377 known_x, known_mode, known_ret);
4378 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4379 return nonzero;
4382 /* Please keep nonzero_bits_binary_arith_p above in sync with
4383 the code in the switch below. */
4384 code = GET_CODE (x);
4385 switch (code)
4387 case REG:
4388 #if defined(POINTERS_EXTEND_UNSIGNED)
4389 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4390 all the bits above ptr_mode are known to be zero. */
4391 /* As we do not know which address space the pointer is referring to,
4392 we can do this only if the target does not support different pointer
4393 or address modes depending on the address space. */
4394 if (target_default_pointer_address_modes_p ()
4395 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4396 && REG_POINTER (x)
4397 && !targetm.have_ptr_extend ())
4398 nonzero &= GET_MODE_MASK (ptr_mode);
4399 #endif
4401 /* Include declared information about alignment of pointers. */
4402 /* ??? We don't properly preserve REG_POINTER changes across
4403 pointer-to-integer casts, so we can't trust it except for
4404 things that we know must be pointers. See execute/960116-1.c. */
4405 if ((x == stack_pointer_rtx
4406 || x == frame_pointer_rtx
4407 || x == arg_pointer_rtx)
4408 && REGNO_POINTER_ALIGN (REGNO (x)))
4410 unsigned HOST_WIDE_INT alignment
4411 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4413 #ifdef PUSH_ROUNDING
4414 /* If PUSH_ROUNDING is defined, it is possible for the
4415 stack to be momentarily aligned only to that amount,
4416 so we pick the least alignment. */
4417 if (x == stack_pointer_rtx && PUSH_ARGS)
4418 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4419 alignment);
4420 #endif
4422 nonzero &= ~(alignment - 1);
4426 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4427 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4428 known_mode, known_ret,
4429 &nonzero_for_hook);
4431 if (new_rtx)
4432 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4433 known_mode, known_ret);
4435 return nonzero_for_hook;
4438 case CONST_INT:
4439 /* If X is negative in MODE, sign-extend the value. */
4440 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4441 && mode_width < BITS_PER_WORD
4442 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4443 != 0)
4444 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4446 return UINTVAL (x);
4448 case MEM:
4449 /* In many, if not most, RISC machines, reading a byte from memory
4450 zeros the rest of the register. Noticing that fact saves a lot
4451 of extra zero-extends. */
4452 if (load_extend_op (GET_MODE (x)) == ZERO_EXTEND)
4453 nonzero &= GET_MODE_MASK (GET_MODE (x));
4454 break;
4456 case EQ: case NE:
4457 case UNEQ: case LTGT:
4458 case GT: case GTU: case UNGT:
4459 case LT: case LTU: case UNLT:
4460 case GE: case GEU: case UNGE:
4461 case LE: case LEU: case UNLE:
4462 case UNORDERED: case ORDERED:
4463 /* If this produces an integer result, we know which bits are set.
4464 Code here used to clear bits outside the mode of X, but that is
4465 now done above. */
4466 /* Mind that MODE is the mode the caller wants to look at this
4467 operation in, and not the actual operation mode. We can wind
4468 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4469 that describes the results of a vector compare. */
4470 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4471 && mode_width <= HOST_BITS_PER_WIDE_INT)
4472 nonzero = STORE_FLAG_VALUE;
4473 break;
4475 case NEG:
4476 #if 0
4477 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4478 and num_sign_bit_copies. */
4479 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4480 == GET_MODE_PRECISION (GET_MODE (x)))
4481 nonzero = 1;
4482 #endif
4484 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4485 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4486 break;
4488 case ABS:
4489 #if 0
4490 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4491 and num_sign_bit_copies. */
4492 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4493 == GET_MODE_PRECISION (GET_MODE (x)))
4494 nonzero = 1;
4495 #endif
4496 break;
4498 case TRUNCATE:
4499 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4500 known_x, known_mode, known_ret)
4501 & GET_MODE_MASK (mode));
4502 break;
4504 case ZERO_EXTEND:
4505 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4506 known_x, known_mode, known_ret);
4507 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4508 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4509 break;
4511 case SIGN_EXTEND:
4512 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4513 Otherwise, show all the bits in the outer mode but not the inner
4514 may be nonzero. */
4515 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4516 known_x, known_mode, known_ret);
4517 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4519 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4520 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4521 inner_nz |= (GET_MODE_MASK (mode)
4522 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4525 nonzero &= inner_nz;
4526 break;
4528 case AND:
4529 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4530 known_x, known_mode, known_ret)
4531 & cached_nonzero_bits (XEXP (x, 1), mode,
4532 known_x, known_mode, known_ret);
4533 break;
4535 case XOR: case IOR:
4536 case UMIN: case UMAX: case SMIN: case SMAX:
4538 unsigned HOST_WIDE_INT nonzero0
4539 = cached_nonzero_bits (XEXP (x, 0), mode,
4540 known_x, known_mode, known_ret);
4542 /* Don't call nonzero_bits for the second time if it cannot change
4543 anything. */
4544 if ((nonzero & nonzero0) != nonzero)
4545 nonzero &= nonzero0
4546 | cached_nonzero_bits (XEXP (x, 1), mode,
4547 known_x, known_mode, known_ret);
4549 break;
4551 case PLUS: case MINUS:
4552 case MULT:
4553 case DIV: case UDIV:
4554 case MOD: case UMOD:
4555 /* We can apply the rules of arithmetic to compute the number of
4556 high- and low-order zero bits of these operations. We start by
4557 computing the width (position of the highest-order nonzero bit)
4558 and the number of low-order zero bits for each value. */
4560 unsigned HOST_WIDE_INT nz0
4561 = cached_nonzero_bits (XEXP (x, 0), mode,
4562 known_x, known_mode, known_ret);
4563 unsigned HOST_WIDE_INT nz1
4564 = cached_nonzero_bits (XEXP (x, 1), mode,
4565 known_x, known_mode, known_ret);
4566 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4567 int width0 = floor_log2 (nz0) + 1;
4568 int width1 = floor_log2 (nz1) + 1;
4569 int low0 = ctz_or_zero (nz0);
4570 int low1 = ctz_or_zero (nz1);
4571 unsigned HOST_WIDE_INT op0_maybe_minusp
4572 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4573 unsigned HOST_WIDE_INT op1_maybe_minusp
4574 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4575 unsigned int result_width = mode_width;
4576 int result_low = 0;
4578 switch (code)
4580 case PLUS:
4581 result_width = MAX (width0, width1) + 1;
4582 result_low = MIN (low0, low1);
4583 break;
4584 case MINUS:
4585 result_low = MIN (low0, low1);
4586 break;
4587 case MULT:
4588 result_width = width0 + width1;
4589 result_low = low0 + low1;
4590 break;
4591 case DIV:
4592 if (width1 == 0)
4593 break;
4594 if (!op0_maybe_minusp && !op1_maybe_minusp)
4595 result_width = width0;
4596 break;
4597 case UDIV:
4598 if (width1 == 0)
4599 break;
4600 result_width = width0;
4601 break;
4602 case MOD:
4603 if (width1 == 0)
4604 break;
4605 if (!op0_maybe_minusp && !op1_maybe_minusp)
4606 result_width = MIN (width0, width1);
4607 result_low = MIN (low0, low1);
4608 break;
4609 case UMOD:
4610 if (width1 == 0)
4611 break;
4612 result_width = MIN (width0, width1);
4613 result_low = MIN (low0, low1);
4614 break;
4615 default:
4616 gcc_unreachable ();
4619 if (result_width < mode_width)
4620 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4622 if (result_low > 0)
4623 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4625 break;
4627 case ZERO_EXTRACT:
4628 if (CONST_INT_P (XEXP (x, 1))
4629 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4630 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4631 break;
4633 case SUBREG:
4634 /* If this is a SUBREG formed for a promoted variable that has
4635 been zero-extended, we know that at least the high-order bits
4636 are zero, though others might be too. */
4637 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4638 nonzero = GET_MODE_MASK (GET_MODE (x))
4639 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4640 known_x, known_mode, known_ret);
4642 /* If the inner mode is a single word for both the host and target
4643 machines, we can compute this from which bits of the inner
4644 object might be nonzero. */
4645 inner_mode = GET_MODE (SUBREG_REG (x));
4646 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4647 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT)
4649 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4650 known_x, known_mode, known_ret);
4652 /* On many CISC machines, accessing an object in a wider mode
4653 causes the high-order bits to become undefined. So they are
4654 not known to be zero. */
4655 rtx_code extend_op;
4656 if ((!WORD_REGISTER_OPERATIONS
4657 /* If this is a typical RISC machine, we only have to worry
4658 about the way loads are extended. */
4659 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4660 ? val_signbit_known_set_p (inner_mode, nonzero)
4661 : extend_op != ZERO_EXTEND)
4662 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4663 && GET_MODE_PRECISION (GET_MODE (x))
4664 > GET_MODE_PRECISION (inner_mode))
4665 nonzero
4666 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4668 break;
4670 case ASHIFTRT:
4671 case LSHIFTRT:
4672 case ASHIFT:
4673 case ROTATE:
4674 /* The nonzero bits are in two classes: any bits within MODE
4675 that aren't in GET_MODE (x) are always significant. The rest of the
4676 nonzero bits are those that are significant in the operand of
4677 the shift when shifted the appropriate number of bits. This
4678 shows that high-order bits are cleared by the right shift and
4679 low-order bits by left shifts. */
4680 if (CONST_INT_P (XEXP (x, 1))
4681 && INTVAL (XEXP (x, 1)) >= 0
4682 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4683 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4685 machine_mode inner_mode = GET_MODE (x);
4686 unsigned int width = GET_MODE_PRECISION (inner_mode);
4687 int count = INTVAL (XEXP (x, 1));
4688 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4689 unsigned HOST_WIDE_INT op_nonzero
4690 = cached_nonzero_bits (XEXP (x, 0), mode,
4691 known_x, known_mode, known_ret);
4692 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4693 unsigned HOST_WIDE_INT outer = 0;
4695 if (mode_width > width)
4696 outer = (op_nonzero & nonzero & ~mode_mask);
4698 if (code == LSHIFTRT)
4699 inner >>= count;
4700 else if (code == ASHIFTRT)
4702 inner >>= count;
4704 /* If the sign bit may have been nonzero before the shift, we
4705 need to mark all the places it could have been copied to
4706 by the shift as possibly nonzero. */
4707 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4708 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4709 << (width - count);
4711 else if (code == ASHIFT)
4712 inner <<= count;
4713 else
4714 inner = ((inner << (count % width)
4715 | (inner >> (width - (count % width)))) & mode_mask);
4717 nonzero &= (outer | inner);
4719 break;
4721 case FFS:
4722 case POPCOUNT:
4723 /* This is at most the number of bits in the mode. */
4724 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4725 break;
4727 case CLZ:
4728 /* If CLZ has a known value at zero, then the nonzero bits are
4729 that value, plus the number of bits in the mode minus one. */
4730 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4731 nonzero
4732 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4733 else
4734 nonzero = -1;
4735 break;
4737 case CTZ:
4738 /* If CTZ has a known value at zero, then the nonzero bits are
4739 that value, plus the number of bits in the mode minus one. */
4740 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4741 nonzero
4742 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4743 else
4744 nonzero = -1;
4745 break;
4747 case CLRSB:
4748 /* This is at most the number of bits in the mode minus 1. */
4749 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4750 break;
4752 case PARITY:
4753 nonzero = 1;
4754 break;
4756 case IF_THEN_ELSE:
4758 unsigned HOST_WIDE_INT nonzero_true
4759 = cached_nonzero_bits (XEXP (x, 1), mode,
4760 known_x, known_mode, known_ret);
4762 /* Don't call nonzero_bits for the second time if it cannot change
4763 anything. */
4764 if ((nonzero & nonzero_true) != nonzero)
4765 nonzero &= nonzero_true
4766 | cached_nonzero_bits (XEXP (x, 2), mode,
4767 known_x, known_mode, known_ret);
4769 break;
4771 default:
4772 break;
4775 return nonzero;
4778 /* See the macro definition above. */
4779 #undef cached_num_sign_bit_copies
4782 /* Return true if num_sign_bit_copies1 might recurse into both operands
4783 of X. */
4785 static inline bool
4786 num_sign_bit_copies_binary_arith_p (const_rtx x)
4788 if (!ARITHMETIC_P (x))
4789 return false;
4790 switch (GET_CODE (x))
4792 case IOR:
4793 case AND:
4794 case XOR:
4795 case SMIN:
4796 case SMAX:
4797 case UMIN:
4798 case UMAX:
4799 case PLUS:
4800 case MINUS:
4801 case MULT:
4802 return true;
4803 default:
4804 return false;
4808 /* The function cached_num_sign_bit_copies is a wrapper around
4809 num_sign_bit_copies1. It avoids exponential behavior in
4810 num_sign_bit_copies1 when X has identical subexpressions on the
4811 first or the second level. */
4813 static unsigned int
4814 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4815 machine_mode known_mode,
4816 unsigned int known_ret)
4818 if (x == known_x && mode == known_mode)
4819 return known_ret;
4821 /* Try to find identical subexpressions. If found call
4822 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4823 the precomputed value for the subexpression as KNOWN_RET. */
4825 if (num_sign_bit_copies_binary_arith_p (x))
4827 rtx x0 = XEXP (x, 0);
4828 rtx x1 = XEXP (x, 1);
4830 /* Check the first level. */
4831 if (x0 == x1)
4832 return
4833 num_sign_bit_copies1 (x, mode, x0, mode,
4834 cached_num_sign_bit_copies (x0, mode, known_x,
4835 known_mode,
4836 known_ret));
4838 /* Check the second level. */
4839 if (num_sign_bit_copies_binary_arith_p (x0)
4840 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4841 return
4842 num_sign_bit_copies1 (x, mode, x1, mode,
4843 cached_num_sign_bit_copies (x1, mode, known_x,
4844 known_mode,
4845 known_ret));
4847 if (num_sign_bit_copies_binary_arith_p (x1)
4848 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4849 return
4850 num_sign_bit_copies1 (x, mode, x0, mode,
4851 cached_num_sign_bit_copies (x0, mode, known_x,
4852 known_mode,
4853 known_ret));
4856 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4859 /* Return the number of bits at the high-order end of X that are known to
4860 be equal to the sign bit. X will be used in mode MODE; if MODE is
4861 VOIDmode, X will be used in its own mode. The returned value will always
4862 be between 1 and the number of bits in MODE. */
4864 static unsigned int
4865 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4866 machine_mode known_mode,
4867 unsigned int known_ret)
4869 enum rtx_code code = GET_CODE (x);
4870 machine_mode inner_mode;
4871 int num0, num1, result;
4872 unsigned HOST_WIDE_INT nonzero;
4874 /* If we weren't given a mode, use the mode of X. If the mode is still
4875 VOIDmode, we don't know anything. Likewise if one of the modes is
4876 floating-point. */
4878 if (mode == VOIDmode)
4879 mode = GET_MODE (x);
4881 gcc_checking_assert (mode != BLKmode);
4883 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4884 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4885 return 1;
4887 /* For a smaller mode, just ignore the high bits. */
4888 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4889 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4891 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4892 known_x, known_mode, known_ret);
4893 return MAX (1,
4894 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4897 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4899 /* If this machine does not do all register operations on the entire
4900 register and MODE is wider than the mode of X, we can say nothing
4901 at all about the high-order bits. */
4902 if (!WORD_REGISTER_OPERATIONS)
4903 return 1;
4905 /* Likewise on machines that do, if the mode of the object is smaller
4906 than a word and loads of that size don't sign extend, we can say
4907 nothing about the high order bits. */
4908 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4909 && load_extend_op (GET_MODE (x)) != SIGN_EXTEND)
4910 return 1;
4913 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4914 the code in the switch below. */
4915 switch (code)
4917 case REG:
4919 #if defined(POINTERS_EXTEND_UNSIGNED)
4920 /* If pointers extend signed and this is a pointer in Pmode, say that
4921 all the bits above ptr_mode are known to be sign bit copies. */
4922 /* As we do not know which address space the pointer is referring to,
4923 we can do this only if the target does not support different pointer
4924 or address modes depending on the address space. */
4925 if (target_default_pointer_address_modes_p ()
4926 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4927 && mode == Pmode && REG_POINTER (x)
4928 && !targetm.have_ptr_extend ())
4929 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4930 #endif
4933 unsigned int copies_for_hook = 1, copies = 1;
4934 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4935 known_mode, known_ret,
4936 &copies_for_hook);
4938 if (new_rtx)
4939 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4940 known_mode, known_ret);
4942 if (copies > 1 || copies_for_hook > 1)
4943 return MAX (copies, copies_for_hook);
4945 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4947 break;
4949 case MEM:
4950 /* Some RISC machines sign-extend all loads of smaller than a word. */
4951 if (load_extend_op (GET_MODE (x)) == SIGN_EXTEND)
4952 return MAX (1, ((int) bitwidth
4953 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4954 break;
4956 case CONST_INT:
4957 /* If the constant is negative, take its 1's complement and remask.
4958 Then see how many zero bits we have. */
4959 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4960 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4961 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4962 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4964 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4966 case SUBREG:
4967 /* If this is a SUBREG for a promoted object that is sign-extended
4968 and we are looking at it in a wider mode, we know that at least the
4969 high-order bits are known to be sign bit copies. */
4971 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4973 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4974 known_x, known_mode, known_ret);
4975 return MAX ((int) bitwidth
4976 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4977 num0);
4980 /* For a smaller object, just ignore the high bits. */
4981 inner_mode = GET_MODE (SUBREG_REG (x));
4982 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
4984 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4985 known_x, known_mode, known_ret);
4986 return
4987 MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth));
4990 /* For paradoxical SUBREGs on machines where all register operations
4991 affect the entire register, just look inside. Note that we are
4992 passing MODE to the recursive call, so the number of sign bit copies
4993 will remain relative to that mode, not the inner mode. */
4995 /* This works only if loads sign extend. Otherwise, if we get a
4996 reload for the inner part, it may be loaded from the stack, and
4997 then we lose all sign bit copies that existed before the store
4998 to the stack. */
5000 if (WORD_REGISTER_OPERATIONS
5001 && load_extend_op (inner_mode) == SIGN_EXTEND
5002 && paradoxical_subreg_p (x)
5003 && (MEM_P (SUBREG_REG (x)) || REG_P (SUBREG_REG (x))))
5004 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5005 known_x, known_mode, known_ret);
5006 break;
5008 case SIGN_EXTRACT:
5009 if (CONST_INT_P (XEXP (x, 1)))
5010 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5011 break;
5013 case SIGN_EXTEND:
5014 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
5015 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
5016 known_x, known_mode, known_ret));
5018 case TRUNCATE:
5019 /* For a smaller object, just ignore the high bits. */
5020 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
5021 known_x, known_mode, known_ret);
5022 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
5023 - bitwidth)));
5025 case NOT:
5026 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5027 known_x, known_mode, known_ret);
5029 case ROTATE: case ROTATERT:
5030 /* If we are rotating left by a number of bits less than the number
5031 of sign bit copies, we can just subtract that amount from the
5032 number. */
5033 if (CONST_INT_P (XEXP (x, 1))
5034 && INTVAL (XEXP (x, 1)) >= 0
5035 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5037 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5038 known_x, known_mode, known_ret);
5039 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5040 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5042 break;
5044 case NEG:
5045 /* In general, this subtracts one sign bit copy. But if the value
5046 is known to be positive, the number of sign bit copies is the
5047 same as that of the input. Finally, if the input has just one bit
5048 that might be nonzero, all the bits are copies of the sign bit. */
5049 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5050 known_x, known_mode, known_ret);
5051 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5052 return num0 > 1 ? num0 - 1 : 1;
5054 nonzero = nonzero_bits (XEXP (x, 0), mode);
5055 if (nonzero == 1)
5056 return bitwidth;
5058 if (num0 > 1
5059 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5060 num0--;
5062 return num0;
5064 case IOR: case AND: case XOR:
5065 case SMIN: case SMAX: case UMIN: case UMAX:
5066 /* Logical operations will preserve the number of sign-bit copies.
5067 MIN and MAX operations always return one of the operands. */
5068 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5069 known_x, known_mode, known_ret);
5070 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5071 known_x, known_mode, known_ret);
5073 /* If num1 is clearing some of the top bits then regardless of
5074 the other term, we are guaranteed to have at least that many
5075 high-order zero bits. */
5076 if (code == AND
5077 && num1 > 1
5078 && bitwidth <= HOST_BITS_PER_WIDE_INT
5079 && CONST_INT_P (XEXP (x, 1))
5080 && (UINTVAL (XEXP (x, 1))
5081 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5082 return num1;
5084 /* Similarly for IOR when setting high-order bits. */
5085 if (code == IOR
5086 && num1 > 1
5087 && bitwidth <= HOST_BITS_PER_WIDE_INT
5088 && CONST_INT_P (XEXP (x, 1))
5089 && (UINTVAL (XEXP (x, 1))
5090 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5091 return num1;
5093 return MIN (num0, num1);
5095 case PLUS: case MINUS:
5096 /* For addition and subtraction, we can have a 1-bit carry. However,
5097 if we are subtracting 1 from a positive number, there will not
5098 be such a carry. Furthermore, if the positive number is known to
5099 be 0 or 1, we know the result is either -1 or 0. */
5101 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5102 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5104 nonzero = nonzero_bits (XEXP (x, 0), mode);
5105 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5106 return (nonzero == 1 || nonzero == 0 ? bitwidth
5107 : bitwidth - floor_log2 (nonzero) - 1);
5110 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5111 known_x, known_mode, known_ret);
5112 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5113 known_x, known_mode, known_ret);
5114 result = MAX (1, MIN (num0, num1) - 1);
5116 return result;
5118 case MULT:
5119 /* The number of bits of the product is the sum of the number of
5120 bits of both terms. However, unless one of the terms if known
5121 to be positive, we must allow for an additional bit since negating
5122 a negative number can remove one sign bit copy. */
5124 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5125 known_x, known_mode, known_ret);
5126 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5127 known_x, known_mode, known_ret);
5129 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5130 if (result > 0
5131 && (bitwidth > HOST_BITS_PER_WIDE_INT
5132 || (((nonzero_bits (XEXP (x, 0), mode)
5133 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5134 && ((nonzero_bits (XEXP (x, 1), mode)
5135 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5136 != 0))))
5137 result--;
5139 return MAX (1, result);
5141 case UDIV:
5142 /* The result must be <= the first operand. If the first operand
5143 has the high bit set, we know nothing about the number of sign
5144 bit copies. */
5145 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5146 return 1;
5147 else if ((nonzero_bits (XEXP (x, 0), mode)
5148 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5149 return 1;
5150 else
5151 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5152 known_x, known_mode, known_ret);
5154 case UMOD:
5155 /* The result must be <= the second operand. If the second operand
5156 has (or just might have) the high bit set, we know nothing about
5157 the number of sign bit copies. */
5158 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5159 return 1;
5160 else if ((nonzero_bits (XEXP (x, 1), mode)
5161 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5162 return 1;
5163 else
5164 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5165 known_x, known_mode, known_ret);
5167 case DIV:
5168 /* Similar to unsigned division, except that we have to worry about
5169 the case where the divisor is negative, in which case we have
5170 to add 1. */
5171 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5172 known_x, known_mode, known_ret);
5173 if (result > 1
5174 && (bitwidth > HOST_BITS_PER_WIDE_INT
5175 || (nonzero_bits (XEXP (x, 1), mode)
5176 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5177 result--;
5179 return result;
5181 case MOD:
5182 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5183 known_x, known_mode, known_ret);
5184 if (result > 1
5185 && (bitwidth > HOST_BITS_PER_WIDE_INT
5186 || (nonzero_bits (XEXP (x, 1), mode)
5187 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5188 result--;
5190 return result;
5192 case ASHIFTRT:
5193 /* Shifts by a constant add to the number of bits equal to the
5194 sign bit. */
5195 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5196 known_x, known_mode, known_ret);
5197 if (CONST_INT_P (XEXP (x, 1))
5198 && INTVAL (XEXP (x, 1)) > 0
5199 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5200 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5202 return num0;
5204 case ASHIFT:
5205 /* Left shifts destroy copies. */
5206 if (!CONST_INT_P (XEXP (x, 1))
5207 || INTVAL (XEXP (x, 1)) < 0
5208 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5209 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5210 return 1;
5212 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5213 known_x, known_mode, known_ret);
5214 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5216 case IF_THEN_ELSE:
5217 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5218 known_x, known_mode, known_ret);
5219 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5220 known_x, known_mode, known_ret);
5221 return MIN (num0, num1);
5223 case EQ: case NE: case GE: case GT: case LE: case LT:
5224 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5225 case GEU: case GTU: case LEU: case LTU:
5226 case UNORDERED: case ORDERED:
5227 /* If the constant is negative, take its 1's complement and remask.
5228 Then see how many zero bits we have. */
5229 nonzero = STORE_FLAG_VALUE;
5230 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5231 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5232 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5234 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5236 default:
5237 break;
5240 /* If we haven't been able to figure it out by one of the above rules,
5241 see if some of the high-order bits are known to be zero. If so,
5242 count those bits and return one less than that amount. If we can't
5243 safely compute the mask for this mode, always return BITWIDTH. */
5245 bitwidth = GET_MODE_PRECISION (mode);
5246 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5247 return 1;
5249 nonzero = nonzero_bits (x, mode);
5250 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5251 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5254 /* Calculate the rtx_cost of a single instruction. A return value of
5255 zero indicates an instruction pattern without a known cost. */
5258 insn_rtx_cost (rtx pat, bool speed)
5260 int i, cost;
5261 rtx set;
5263 /* Extract the single set rtx from the instruction pattern.
5264 We can't use single_set since we only have the pattern. */
5265 if (GET_CODE (pat) == SET)
5266 set = pat;
5267 else if (GET_CODE (pat) == PARALLEL)
5269 set = NULL_RTX;
5270 for (i = 0; i < XVECLEN (pat, 0); i++)
5272 rtx x = XVECEXP (pat, 0, i);
5273 if (GET_CODE (x) == SET)
5275 if (set)
5276 return 0;
5277 set = x;
5280 if (!set)
5281 return 0;
5283 else
5284 return 0;
5286 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5287 return cost > 0 ? cost : COSTS_N_INSNS (1);
5290 /* Returns estimate on cost of computing SEQ. */
5292 unsigned
5293 seq_cost (const rtx_insn *seq, bool speed)
5295 unsigned cost = 0;
5296 rtx set;
5298 for (; seq; seq = NEXT_INSN (seq))
5300 set = single_set (seq);
5301 if (set)
5302 cost += set_rtx_cost (set, speed);
5303 else
5304 cost++;
5307 return cost;
5310 /* Given an insn INSN and condition COND, return the condition in a
5311 canonical form to simplify testing by callers. Specifically:
5313 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5314 (2) Both operands will be machine operands; (cc0) will have been replaced.
5315 (3) If an operand is a constant, it will be the second operand.
5316 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5317 for GE, GEU, and LEU.
5319 If the condition cannot be understood, or is an inequality floating-point
5320 comparison which needs to be reversed, 0 will be returned.
5322 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5324 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5325 insn used in locating the condition was found. If a replacement test
5326 of the condition is desired, it should be placed in front of that
5327 insn and we will be sure that the inputs are still valid.
5329 If WANT_REG is nonzero, we wish the condition to be relative to that
5330 register, if possible. Therefore, do not canonicalize the condition
5331 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5332 to be a compare to a CC mode register.
5334 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5335 and at INSN. */
5338 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5339 rtx_insn **earliest,
5340 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5342 enum rtx_code code;
5343 rtx_insn *prev = insn;
5344 const_rtx set;
5345 rtx tem;
5346 rtx op0, op1;
5347 int reverse_code = 0;
5348 machine_mode mode;
5349 basic_block bb = BLOCK_FOR_INSN (insn);
5351 code = GET_CODE (cond);
5352 mode = GET_MODE (cond);
5353 op0 = XEXP (cond, 0);
5354 op1 = XEXP (cond, 1);
5356 if (reverse)
5357 code = reversed_comparison_code (cond, insn);
5358 if (code == UNKNOWN)
5359 return 0;
5361 if (earliest)
5362 *earliest = insn;
5364 /* If we are comparing a register with zero, see if the register is set
5365 in the previous insn to a COMPARE or a comparison operation. Perform
5366 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5367 in cse.c */
5369 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5370 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5371 && op1 == CONST0_RTX (GET_MODE (op0))
5372 && op0 != want_reg)
5374 /* Set nonzero when we find something of interest. */
5375 rtx x = 0;
5377 /* If comparison with cc0, import actual comparison from compare
5378 insn. */
5379 if (op0 == cc0_rtx)
5381 if ((prev = prev_nonnote_insn (prev)) == 0
5382 || !NONJUMP_INSN_P (prev)
5383 || (set = single_set (prev)) == 0
5384 || SET_DEST (set) != cc0_rtx)
5385 return 0;
5387 op0 = SET_SRC (set);
5388 op1 = CONST0_RTX (GET_MODE (op0));
5389 if (earliest)
5390 *earliest = prev;
5393 /* If this is a COMPARE, pick up the two things being compared. */
5394 if (GET_CODE (op0) == COMPARE)
5396 op1 = XEXP (op0, 1);
5397 op0 = XEXP (op0, 0);
5398 continue;
5400 else if (!REG_P (op0))
5401 break;
5403 /* Go back to the previous insn. Stop if it is not an INSN. We also
5404 stop if it isn't a single set or if it has a REG_INC note because
5405 we don't want to bother dealing with it. */
5407 prev = prev_nonnote_nondebug_insn (prev);
5409 if (prev == 0
5410 || !NONJUMP_INSN_P (prev)
5411 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5412 /* In cfglayout mode, there do not have to be labels at the
5413 beginning of a block, or jumps at the end, so the previous
5414 conditions would not stop us when we reach bb boundary. */
5415 || BLOCK_FOR_INSN (prev) != bb)
5416 break;
5418 set = set_of (op0, prev);
5420 if (set
5421 && (GET_CODE (set) != SET
5422 || !rtx_equal_p (SET_DEST (set), op0)))
5423 break;
5425 /* If this is setting OP0, get what it sets it to if it looks
5426 relevant. */
5427 if (set)
5429 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5430 #ifdef FLOAT_STORE_FLAG_VALUE
5431 REAL_VALUE_TYPE fsfv;
5432 #endif
5434 /* ??? We may not combine comparisons done in a CCmode with
5435 comparisons not done in a CCmode. This is to aid targets
5436 like Alpha that have an IEEE compliant EQ instruction, and
5437 a non-IEEE compliant BEQ instruction. The use of CCmode is
5438 actually artificial, simply to prevent the combination, but
5439 should not affect other platforms.
5441 However, we must allow VOIDmode comparisons to match either
5442 CCmode or non-CCmode comparison, because some ports have
5443 modeless comparisons inside branch patterns.
5445 ??? This mode check should perhaps look more like the mode check
5446 in simplify_comparison in combine. */
5447 if (((GET_MODE_CLASS (mode) == MODE_CC)
5448 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5449 && mode != VOIDmode
5450 && inner_mode != VOIDmode)
5451 break;
5452 if (GET_CODE (SET_SRC (set)) == COMPARE
5453 || (((code == NE
5454 || (code == LT
5455 && val_signbit_known_set_p (inner_mode,
5456 STORE_FLAG_VALUE))
5457 #ifdef FLOAT_STORE_FLAG_VALUE
5458 || (code == LT
5459 && SCALAR_FLOAT_MODE_P (inner_mode)
5460 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5461 REAL_VALUE_NEGATIVE (fsfv)))
5462 #endif
5464 && COMPARISON_P (SET_SRC (set))))
5465 x = SET_SRC (set);
5466 else if (((code == EQ
5467 || (code == GE
5468 && val_signbit_known_set_p (inner_mode,
5469 STORE_FLAG_VALUE))
5470 #ifdef FLOAT_STORE_FLAG_VALUE
5471 || (code == GE
5472 && SCALAR_FLOAT_MODE_P (inner_mode)
5473 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5474 REAL_VALUE_NEGATIVE (fsfv)))
5475 #endif
5477 && COMPARISON_P (SET_SRC (set)))
5479 reverse_code = 1;
5480 x = SET_SRC (set);
5482 else if ((code == EQ || code == NE)
5483 && GET_CODE (SET_SRC (set)) == XOR)
5484 /* Handle sequences like:
5486 (set op0 (xor X Y))
5487 ...(eq|ne op0 (const_int 0))...
5489 in which case:
5491 (eq op0 (const_int 0)) reduces to (eq X Y)
5492 (ne op0 (const_int 0)) reduces to (ne X Y)
5494 This is the form used by MIPS16, for example. */
5495 x = SET_SRC (set);
5496 else
5497 break;
5500 else if (reg_set_p (op0, prev))
5501 /* If this sets OP0, but not directly, we have to give up. */
5502 break;
5504 if (x)
5506 /* If the caller is expecting the condition to be valid at INSN,
5507 make sure X doesn't change before INSN. */
5508 if (valid_at_insn_p)
5509 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5510 break;
5511 if (COMPARISON_P (x))
5512 code = GET_CODE (x);
5513 if (reverse_code)
5515 code = reversed_comparison_code (x, prev);
5516 if (code == UNKNOWN)
5517 return 0;
5518 reverse_code = 0;
5521 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5522 if (earliest)
5523 *earliest = prev;
5527 /* If constant is first, put it last. */
5528 if (CONSTANT_P (op0))
5529 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5531 /* If OP0 is the result of a comparison, we weren't able to find what
5532 was really being compared, so fail. */
5533 if (!allow_cc_mode
5534 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5535 return 0;
5537 /* Canonicalize any ordered comparison with integers involving equality
5538 if we can do computations in the relevant mode and we do not
5539 overflow. */
5541 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5542 && CONST_INT_P (op1)
5543 && GET_MODE (op0) != VOIDmode
5544 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5546 HOST_WIDE_INT const_val = INTVAL (op1);
5547 unsigned HOST_WIDE_INT uconst_val = const_val;
5548 unsigned HOST_WIDE_INT max_val
5549 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5551 switch (code)
5553 case LE:
5554 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5555 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5556 break;
5558 /* When cross-compiling, const_val might be sign-extended from
5559 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5560 case GE:
5561 if ((const_val & max_val)
5562 != (HOST_WIDE_INT_1U
5563 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5564 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5565 break;
5567 case LEU:
5568 if (uconst_val < max_val)
5569 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5570 break;
5572 case GEU:
5573 if (uconst_val != 0)
5574 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5575 break;
5577 default:
5578 break;
5582 /* Never return CC0; return zero instead. */
5583 if (CC0_P (op0))
5584 return 0;
5586 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5589 /* Given a jump insn JUMP, return the condition that will cause it to branch
5590 to its JUMP_LABEL. If the condition cannot be understood, or is an
5591 inequality floating-point comparison which needs to be reversed, 0 will
5592 be returned.
5594 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5595 insn used in locating the condition was found. If a replacement test
5596 of the condition is desired, it should be placed in front of that
5597 insn and we will be sure that the inputs are still valid. If EARLIEST
5598 is null, the returned condition will be valid at INSN.
5600 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5601 compare CC mode register.
5603 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5606 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5607 int valid_at_insn_p)
5609 rtx cond;
5610 int reverse;
5611 rtx set;
5613 /* If this is not a standard conditional jump, we can't parse it. */
5614 if (!JUMP_P (jump)
5615 || ! any_condjump_p (jump))
5616 return 0;
5617 set = pc_set (jump);
5619 cond = XEXP (SET_SRC (set), 0);
5621 /* If this branches to JUMP_LABEL when the condition is false, reverse
5622 the condition. */
5623 reverse
5624 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5625 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5627 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5628 allow_cc_mode, valid_at_insn_p);
5631 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5632 TARGET_MODE_REP_EXTENDED.
5634 Note that we assume that the property of
5635 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5636 narrower than mode B. I.e., if A is a mode narrower than B then in
5637 order to be able to operate on it in mode B, mode A needs to
5638 satisfy the requirements set by the representation of mode B. */
5640 static void
5641 init_num_sign_bit_copies_in_rep (void)
5643 machine_mode mode, in_mode;
5645 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5646 in_mode = GET_MODE_WIDER_MODE (mode))
5647 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5648 mode = GET_MODE_WIDER_MODE (mode))
5650 machine_mode i;
5652 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5653 extends to the next widest mode. */
5654 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5655 || GET_MODE_WIDER_MODE (mode) == in_mode);
5657 /* We are in in_mode. Count how many bits outside of mode
5658 have to be copies of the sign-bit. */
5659 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5661 machine_mode wider = GET_MODE_WIDER_MODE (i);
5663 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5664 /* We can only check sign-bit copies starting from the
5665 top-bit. In order to be able to check the bits we
5666 have already seen we pretend that subsequent bits
5667 have to be sign-bit copies too. */
5668 || num_sign_bit_copies_in_rep [in_mode][mode])
5669 num_sign_bit_copies_in_rep [in_mode][mode]
5670 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5675 /* Suppose that truncation from the machine mode of X to MODE is not a
5676 no-op. See if there is anything special about X so that we can
5677 assume it already contains a truncated value of MODE. */
5679 bool
5680 truncated_to_mode (machine_mode mode, const_rtx x)
5682 /* This register has already been used in MODE without explicit
5683 truncation. */
5684 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5685 return true;
5687 /* See if we already satisfy the requirements of MODE. If yes we
5688 can just switch to MODE. */
5689 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5690 && (num_sign_bit_copies (x, GET_MODE (x))
5691 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5692 return true;
5694 return false;
5697 /* Return true if RTX code CODE has a single sequence of zero or more
5698 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5699 entry in that case. */
5701 static bool
5702 setup_reg_subrtx_bounds (unsigned int code)
5704 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5705 unsigned int i = 0;
5706 for (; format[i] != 'e'; ++i)
5708 if (!format[i])
5709 /* No subrtxes. Leave start and count as 0. */
5710 return true;
5711 if (format[i] == 'E' || format[i] == 'V')
5712 return false;
5715 /* Record the sequence of 'e's. */
5716 rtx_all_subrtx_bounds[code].start = i;
5718 ++i;
5719 while (format[i] == 'e');
5720 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5721 /* rtl-iter.h relies on this. */
5722 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5724 for (; format[i]; ++i)
5725 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5726 return false;
5728 return true;
5731 /* Initialize rtx_all_subrtx_bounds. */
5732 void
5733 init_rtlanal (void)
5735 int i;
5736 for (i = 0; i < NUM_RTX_CODE; i++)
5738 if (!setup_reg_subrtx_bounds (i))
5739 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5740 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5741 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5744 init_num_sign_bit_copies_in_rep ();
5747 /* Check whether this is a constant pool constant. */
5748 bool
5749 constant_pool_constant_p (rtx x)
5751 x = avoid_constant_pool_reference (x);
5752 return CONST_DOUBLE_P (x);
5755 /* If M is a bitmask that selects a field of low-order bits within an item but
5756 not the entire word, return the length of the field. Return -1 otherwise.
5757 M is used in machine mode MODE. */
5760 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5762 if (mode != VOIDmode)
5764 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5765 return -1;
5766 m &= GET_MODE_MASK (mode);
5769 return exact_log2 (m + 1);
5772 /* Return the mode of MEM's address. */
5774 machine_mode
5775 get_address_mode (rtx mem)
5777 machine_mode mode;
5779 gcc_assert (MEM_P (mem));
5780 mode = GET_MODE (XEXP (mem, 0));
5781 if (mode != VOIDmode)
5782 return mode;
5783 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5786 /* Split up a CONST_DOUBLE or integer constant rtx
5787 into two rtx's for single words,
5788 storing in *FIRST the word that comes first in memory in the target
5789 and in *SECOND the other.
5791 TODO: This function needs to be rewritten to work on any size
5792 integer. */
5794 void
5795 split_double (rtx value, rtx *first, rtx *second)
5797 if (CONST_INT_P (value))
5799 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5801 /* In this case the CONST_INT holds both target words.
5802 Extract the bits from it into two word-sized pieces.
5803 Sign extend each half to HOST_WIDE_INT. */
5804 unsigned HOST_WIDE_INT low, high;
5805 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5806 unsigned bits_per_word = BITS_PER_WORD;
5808 /* Set sign_bit to the most significant bit of a word. */
5809 sign_bit = 1;
5810 sign_bit <<= bits_per_word - 1;
5812 /* Set mask so that all bits of the word are set. We could
5813 have used 1 << BITS_PER_WORD instead of basing the
5814 calculation on sign_bit. However, on machines where
5815 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5816 compiler warning, even though the code would never be
5817 executed. */
5818 mask = sign_bit << 1;
5819 mask--;
5821 /* Set sign_extend as any remaining bits. */
5822 sign_extend = ~mask;
5824 /* Pick the lower word and sign-extend it. */
5825 low = INTVAL (value);
5826 low &= mask;
5827 if (low & sign_bit)
5828 low |= sign_extend;
5830 /* Pick the higher word, shifted to the least significant
5831 bits, and sign-extend it. */
5832 high = INTVAL (value);
5833 high >>= bits_per_word - 1;
5834 high >>= 1;
5835 high &= mask;
5836 if (high & sign_bit)
5837 high |= sign_extend;
5839 /* Store the words in the target machine order. */
5840 if (WORDS_BIG_ENDIAN)
5842 *first = GEN_INT (high);
5843 *second = GEN_INT (low);
5845 else
5847 *first = GEN_INT (low);
5848 *second = GEN_INT (high);
5851 else
5853 /* The rule for using CONST_INT for a wider mode
5854 is that we regard the value as signed.
5855 So sign-extend it. */
5856 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5857 if (WORDS_BIG_ENDIAN)
5859 *first = high;
5860 *second = value;
5862 else
5864 *first = value;
5865 *second = high;
5869 else if (GET_CODE (value) == CONST_WIDE_INT)
5871 /* All of this is scary code and needs to be converted to
5872 properly work with any size integer. */
5873 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5874 if (WORDS_BIG_ENDIAN)
5876 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5877 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5879 else
5881 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5882 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5885 else if (!CONST_DOUBLE_P (value))
5887 if (WORDS_BIG_ENDIAN)
5889 *first = const0_rtx;
5890 *second = value;
5892 else
5894 *first = value;
5895 *second = const0_rtx;
5898 else if (GET_MODE (value) == VOIDmode
5899 /* This is the old way we did CONST_DOUBLE integers. */
5900 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5902 /* In an integer, the words are defined as most and least significant.
5903 So order them by the target's convention. */
5904 if (WORDS_BIG_ENDIAN)
5906 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5907 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5909 else
5911 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5912 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5915 else
5917 long l[2];
5919 /* Note, this converts the REAL_VALUE_TYPE to the target's
5920 format, splits up the floating point double and outputs
5921 exactly 32 bits of it into each of l[0] and l[1] --
5922 not necessarily BITS_PER_WORD bits. */
5923 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5925 /* If 32 bits is an entire word for the target, but not for the host,
5926 then sign-extend on the host so that the number will look the same
5927 way on the host that it would on the target. See for instance
5928 simplify_unary_operation. The #if is needed to avoid compiler
5929 warnings. */
5931 #if HOST_BITS_PER_LONG > 32
5932 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5934 if (l[0] & ((long) 1 << 31))
5935 l[0] |= ((unsigned long) (-1) << 32);
5936 if (l[1] & ((long) 1 << 31))
5937 l[1] |= ((unsigned long) (-1) << 32);
5939 #endif
5941 *first = GEN_INT (l[0]);
5942 *second = GEN_INT (l[1]);
5946 /* Return true if X is a sign_extract or zero_extract from the least
5947 significant bit. */
5949 static bool
5950 lsb_bitfield_op_p (rtx x)
5952 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5954 machine_mode mode = GET_MODE (XEXP (x, 0));
5955 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5956 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5958 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5960 return false;
5963 /* Strip outer address "mutations" from LOC and return a pointer to the
5964 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5965 stripped expression there.
5967 "Mutations" either convert between modes or apply some kind of
5968 extension, truncation or alignment. */
5970 rtx *
5971 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5973 for (;;)
5975 enum rtx_code code = GET_CODE (*loc);
5976 if (GET_RTX_CLASS (code) == RTX_UNARY)
5977 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5978 used to convert between pointer sizes. */
5979 loc = &XEXP (*loc, 0);
5980 else if (lsb_bitfield_op_p (*loc))
5981 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5982 acts as a combined truncation and extension. */
5983 loc = &XEXP (*loc, 0);
5984 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5985 /* (and ... (const_int -X)) is used to align to X bytes. */
5986 loc = &XEXP (*loc, 0);
5987 else if (code == SUBREG
5988 && !OBJECT_P (SUBREG_REG (*loc))
5989 && subreg_lowpart_p (*loc))
5990 /* (subreg (operator ...) ...) inside and is used for mode
5991 conversion too. */
5992 loc = &SUBREG_REG (*loc);
5993 else
5994 return loc;
5995 if (outer_code)
5996 *outer_code = code;
6000 /* Return true if CODE applies some kind of scale. The scaled value is
6001 is the first operand and the scale is the second. */
6003 static bool
6004 binary_scale_code_p (enum rtx_code code)
6006 return (code == MULT
6007 || code == ASHIFT
6008 /* Needed by ARM targets. */
6009 || code == ASHIFTRT
6010 || code == LSHIFTRT
6011 || code == ROTATE
6012 || code == ROTATERT);
6015 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6016 (see address_info). Return null otherwise. */
6018 static rtx *
6019 get_base_term (rtx *inner)
6021 if (GET_CODE (*inner) == LO_SUM)
6022 inner = strip_address_mutations (&XEXP (*inner, 0));
6023 if (REG_P (*inner)
6024 || MEM_P (*inner)
6025 || GET_CODE (*inner) == SUBREG
6026 || GET_CODE (*inner) == SCRATCH)
6027 return inner;
6028 return 0;
6031 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6032 (see address_info). Return null otherwise. */
6034 static rtx *
6035 get_index_term (rtx *inner)
6037 /* At present, only constant scales are allowed. */
6038 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6039 inner = strip_address_mutations (&XEXP (*inner, 0));
6040 if (REG_P (*inner)
6041 || MEM_P (*inner)
6042 || GET_CODE (*inner) == SUBREG
6043 || GET_CODE (*inner) == SCRATCH)
6044 return inner;
6045 return 0;
6048 /* Set the segment part of address INFO to LOC, given that INNER is the
6049 unmutated value. */
6051 static void
6052 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6054 gcc_assert (!info->segment);
6055 info->segment = loc;
6056 info->segment_term = inner;
6059 /* Set the base part of address INFO to LOC, given that INNER is the
6060 unmutated value. */
6062 static void
6063 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6065 gcc_assert (!info->base);
6066 info->base = loc;
6067 info->base_term = inner;
6070 /* Set the index part of address INFO to LOC, given that INNER is the
6071 unmutated value. */
6073 static void
6074 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6076 gcc_assert (!info->index);
6077 info->index = loc;
6078 info->index_term = inner;
6081 /* Set the displacement part of address INFO to LOC, given that INNER
6082 is the constant term. */
6084 static void
6085 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6087 gcc_assert (!info->disp);
6088 info->disp = loc;
6089 info->disp_term = inner;
6092 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6093 rest of INFO accordingly. */
6095 static void
6096 decompose_incdec_address (struct address_info *info)
6098 info->autoinc_p = true;
6100 rtx *base = &XEXP (*info->inner, 0);
6101 set_address_base (info, base, base);
6102 gcc_checking_assert (info->base == info->base_term);
6104 /* These addresses are only valid when the size of the addressed
6105 value is known. */
6106 gcc_checking_assert (info->mode != VOIDmode);
6109 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6110 of INFO accordingly. */
6112 static void
6113 decompose_automod_address (struct address_info *info)
6115 info->autoinc_p = true;
6117 rtx *base = &XEXP (*info->inner, 0);
6118 set_address_base (info, base, base);
6119 gcc_checking_assert (info->base == info->base_term);
6121 rtx plus = XEXP (*info->inner, 1);
6122 gcc_assert (GET_CODE (plus) == PLUS);
6124 info->base_term2 = &XEXP (plus, 0);
6125 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6127 rtx *step = &XEXP (plus, 1);
6128 rtx *inner_step = strip_address_mutations (step);
6129 if (CONSTANT_P (*inner_step))
6130 set_address_disp (info, step, inner_step);
6131 else
6132 set_address_index (info, step, inner_step);
6135 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6136 values in [PTR, END). Return a pointer to the end of the used array. */
6138 static rtx **
6139 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6141 rtx x = *loc;
6142 if (GET_CODE (x) == PLUS)
6144 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6145 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6147 else
6149 gcc_assert (ptr != end);
6150 *ptr++ = loc;
6152 return ptr;
6155 /* Evaluate the likelihood of X being a base or index value, returning
6156 positive if it is likely to be a base, negative if it is likely to be
6157 an index, and 0 if we can't tell. Make the magnitude of the return
6158 value reflect the amount of confidence we have in the answer.
6160 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6162 static int
6163 baseness (rtx x, machine_mode mode, addr_space_t as,
6164 enum rtx_code outer_code, enum rtx_code index_code)
6166 /* Believe *_POINTER unless the address shape requires otherwise. */
6167 if (REG_P (x) && REG_POINTER (x))
6168 return 2;
6169 if (MEM_P (x) && MEM_POINTER (x))
6170 return 2;
6172 if (REG_P (x) && HARD_REGISTER_P (x))
6174 /* X is a hard register. If it only fits one of the base
6175 or index classes, choose that interpretation. */
6176 int regno = REGNO (x);
6177 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6178 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6179 if (base_p != index_p)
6180 return base_p ? 1 : -1;
6182 return 0;
6185 /* INFO->INNER describes a normal, non-automodified address.
6186 Fill in the rest of INFO accordingly. */
6188 static void
6189 decompose_normal_address (struct address_info *info)
6191 /* Treat the address as the sum of up to four values. */
6192 rtx *ops[4];
6193 size_t n_ops = extract_plus_operands (info->inner, ops,
6194 ops + ARRAY_SIZE (ops)) - ops;
6196 /* If there is more than one component, any base component is in a PLUS. */
6197 if (n_ops > 1)
6198 info->base_outer_code = PLUS;
6200 /* Try to classify each sum operand now. Leave those that could be
6201 either a base or an index in OPS. */
6202 rtx *inner_ops[4];
6203 size_t out = 0;
6204 for (size_t in = 0; in < n_ops; ++in)
6206 rtx *loc = ops[in];
6207 rtx *inner = strip_address_mutations (loc);
6208 if (CONSTANT_P (*inner))
6209 set_address_disp (info, loc, inner);
6210 else if (GET_CODE (*inner) == UNSPEC)
6211 set_address_segment (info, loc, inner);
6212 else
6214 /* The only other possibilities are a base or an index. */
6215 rtx *base_term = get_base_term (inner);
6216 rtx *index_term = get_index_term (inner);
6217 gcc_assert (base_term || index_term);
6218 if (!base_term)
6219 set_address_index (info, loc, index_term);
6220 else if (!index_term)
6221 set_address_base (info, loc, base_term);
6222 else
6224 gcc_assert (base_term == index_term);
6225 ops[out] = loc;
6226 inner_ops[out] = base_term;
6227 ++out;
6232 /* Classify the remaining OPS members as bases and indexes. */
6233 if (out == 1)
6235 /* If we haven't seen a base or an index yet, assume that this is
6236 the base. If we were confident that another term was the base
6237 or index, treat the remaining operand as the other kind. */
6238 if (!info->base)
6239 set_address_base (info, ops[0], inner_ops[0]);
6240 else
6241 set_address_index (info, ops[0], inner_ops[0]);
6243 else if (out == 2)
6245 /* In the event of a tie, assume the base comes first. */
6246 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6247 GET_CODE (*ops[1]))
6248 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6249 GET_CODE (*ops[0])))
6251 set_address_base (info, ops[0], inner_ops[0]);
6252 set_address_index (info, ops[1], inner_ops[1]);
6254 else
6256 set_address_base (info, ops[1], inner_ops[1]);
6257 set_address_index (info, ops[0], inner_ops[0]);
6260 else
6261 gcc_assert (out == 0);
6264 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6265 or VOIDmode if not known. AS is the address space associated with LOC.
6266 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6268 void
6269 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6270 addr_space_t as, enum rtx_code outer_code)
6272 memset (info, 0, sizeof (*info));
6273 info->mode = mode;
6274 info->as = as;
6275 info->addr_outer_code = outer_code;
6276 info->outer = loc;
6277 info->inner = strip_address_mutations (loc, &outer_code);
6278 info->base_outer_code = outer_code;
6279 switch (GET_CODE (*info->inner))
6281 case PRE_DEC:
6282 case PRE_INC:
6283 case POST_DEC:
6284 case POST_INC:
6285 decompose_incdec_address (info);
6286 break;
6288 case PRE_MODIFY:
6289 case POST_MODIFY:
6290 decompose_automod_address (info);
6291 break;
6293 default:
6294 decompose_normal_address (info);
6295 break;
6299 /* Describe address operand LOC in INFO. */
6301 void
6302 decompose_lea_address (struct address_info *info, rtx *loc)
6304 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6307 /* Describe the address of MEM X in INFO. */
6309 void
6310 decompose_mem_address (struct address_info *info, rtx x)
6312 gcc_assert (MEM_P (x));
6313 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6314 MEM_ADDR_SPACE (x), MEM);
6317 /* Update INFO after a change to the address it describes. */
6319 void
6320 update_address (struct address_info *info)
6322 decompose_address (info, info->outer, info->mode, info->as,
6323 info->addr_outer_code);
6326 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6327 more complicated than that. */
6329 HOST_WIDE_INT
6330 get_index_scale (const struct address_info *info)
6332 rtx index = *info->index;
6333 if (GET_CODE (index) == MULT
6334 && CONST_INT_P (XEXP (index, 1))
6335 && info->index_term == &XEXP (index, 0))
6336 return INTVAL (XEXP (index, 1));
6338 if (GET_CODE (index) == ASHIFT
6339 && CONST_INT_P (XEXP (index, 1))
6340 && info->index_term == &XEXP (index, 0))
6341 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6343 if (info->index == info->index_term)
6344 return 1;
6346 return 0;
6349 /* Return the "index code" of INFO, in the form required by
6350 ok_for_base_p_1. */
6352 enum rtx_code
6353 get_index_code (const struct address_info *info)
6355 if (info->index)
6356 return GET_CODE (*info->index);
6358 if (info->disp)
6359 return GET_CODE (*info->disp);
6361 return SCRATCH;
6364 /* Return true if RTL X contains a SYMBOL_REF. */
6366 bool
6367 contains_symbol_ref_p (const_rtx x)
6369 subrtx_iterator::array_type array;
6370 FOR_EACH_SUBRTX (iter, array, x, ALL)
6371 if (SYMBOL_REF_P (*iter))
6372 return true;
6374 return false;
6377 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6379 bool
6380 contains_symbolic_reference_p (const_rtx x)
6382 subrtx_iterator::array_type array;
6383 FOR_EACH_SUBRTX (iter, array, x, ALL)
6384 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6385 return true;
6387 return false;
6390 /* Return true if X contains a thread-local symbol. */
6392 bool
6393 tls_referenced_p (const_rtx x)
6395 if (!targetm.have_tls)
6396 return false;
6398 subrtx_iterator::array_type array;
6399 FOR_EACH_SUBRTX (iter, array, x, ALL)
6400 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6401 return true;
6402 return false;