Small ChangeLog tweak.
[official-gcc.git] / gcc / ada / sem_util.ads
blob74e1841a0ddc33eee323f2c6498d77eef876b5e0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Opt; use Opt;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
37 package Sem_Util is
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
43 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44 -- Add A to the list of access types to process when expanding the
45 -- freeze node of E.
47 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
48 -- Given a block statement N, generate an internal E_Block label and make
49 -- it the identifier of the block. Id denotes the generated entity. If the
50 -- block already has an identifier, Id returns the entity of its label.
52 procedure Add_Global_Declaration (N : Node_Id);
53 -- These procedures adds a declaration N at the library level, to be
54 -- elaborated before any other code in the unit. It is used for example
55 -- for the entity that marks whether a unit has been elaborated. The
56 -- declaration is added to the Declarations list of the Aux_Decls_Node
57 -- for the current unit. The declarations are added in the current scope,
58 -- so the caller should push a new scope as required before the call.
60 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
61 -- Returns the name of E adding Suffix
63 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
64 -- Given two types, returns True if we are in Allow_Integer_Address mode
65 -- and one of the types is (a descendant of) System.Address (and this type
66 -- is private), and the other type is any integer type.
68 function Address_Value (N : Node_Id) return Node_Id;
69 -- Return the underlying value of the expression N of an address clause
71 function Addressable (V : Uint) return Boolean;
72 function Addressable (V : Int) return Boolean;
73 pragma Inline (Addressable);
74 -- Returns True if the value of V is the word size or an addressable factor
75 -- of the word size (typically 8, 16, 32 or 64).
77 procedure Aggregate_Constraint_Checks
78 (Exp : Node_Id;
79 Check_Typ : Entity_Id);
80 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
81 -- and Check_Typ a constrained record type with discriminants, we generate
82 -- the appropriate discriminant checks. If Exp is an array aggregate then
83 -- emit the appropriate length checks. If Exp is a scalar type, or a string
84 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
85 -- are performed at run time. Also used for expressions in the argument of
86 -- 'Update, which shares some of the features of an aggregate.
88 function Alignment_In_Bits (E : Entity_Id) return Uint;
89 -- If the alignment of the type or object E is currently known to the
90 -- compiler, then this function returns the alignment value in bits.
91 -- Otherwise Uint_0 is returned, indicating that the alignment of the
92 -- entity is not yet known to the compiler.
94 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
95 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
96 -- Given a constraint or subtree of a constraint on a composite
97 -- subtype/object, returns True if there are no nonstatic constraints,
98 -- which might cause objects to be created with dynamic size.
99 -- Called for subtype declarations (including implicit ones created for
100 -- subtype indications in object declarations, as well as discriminated
101 -- record aggregate cases). For record aggregates, only records containing
102 -- discriminant-dependent arrays matter, because the discriminants must be
103 -- static when governing a variant part. Access discriminants are
104 -- irrelevant. Also called for array aggregates, but only named notation,
105 -- because those are the only dynamic cases.
107 procedure Append_Inherited_Subprogram (S : Entity_Id);
108 -- If the parent of the operation is declared in the visible part of
109 -- the current scope, the inherited operation is visible even though the
110 -- derived type that inherits the operation may be completed in the private
111 -- part of the current package.
113 procedure Apply_Compile_Time_Constraint_Error
114 (N : Node_Id;
115 Msg : String;
116 Reason : RT_Exception_Code;
117 Ent : Entity_Id := Empty;
118 Typ : Entity_Id := Empty;
119 Loc : Source_Ptr := No_Location;
120 Rep : Boolean := True;
121 Warn : Boolean := False);
122 -- N is a subexpression which will raise constraint error when evaluated
123 -- at runtime. Msg is a message that explains the reason for raising the
124 -- exception. The last character is ? if the message is always a warning,
125 -- even in Ada 95, and is not a ? if the message represents an illegality
126 -- (because of violation of static expression rules) in Ada 95 (but not
127 -- in Ada 83). Typically this routine posts all messages at the Sloc of
128 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
129 -- the message. After posting the appropriate message, and if the flag
130 -- Rep is set, this routine replaces the expression with an appropriate
131 -- N_Raise_Constraint_Error node using the given Reason code. This node
132 -- is then marked as being static if the original node is static, but
133 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
134 -- The error message may contain a } or & insertion character. This
135 -- normally references Etype (N), unless the Ent argument is given
136 -- explicitly, in which case it is used instead. The type of the raise
137 -- node that is built is normally Etype (N), but if the Typ parameter
138 -- is present, this is used instead. Warn is normally False. If it is
139 -- True then the message is treated as a warning even though it does
140 -- not end with a ? (this is used when the caller wants to parameterize
141 -- whether an error or warning is given), or when the message should be
142 -- treated as a warning even when SPARK_Mode is On (which otherwise would
143 -- force an error).
145 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
146 -- Given the entity of an abstract state or a variable, determine whether
147 -- Id is subject to external property Async_Readers and if it is, the
148 -- related expression evaluates to True.
150 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
151 -- Given the entity of an abstract state or a variable, determine whether
152 -- Id is subject to external property Async_Writers and if it is, the
153 -- related expression evaluates to True.
155 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
156 -- If at the point of declaration an array type has a private or limited
157 -- component, several array operations are not available on the type, and
158 -- the array type is flagged accordingly. If in the immediate scope of
159 -- the array type the component becomes non-private or non-limited, these
160 -- operations become available. This can happen if the scopes of both types
161 -- are open, and the scope of the array is not outside the scope of the
162 -- component.
164 procedure Bad_Attribute
165 (N : Node_Id;
166 Nam : Name_Id;
167 Warn : Boolean := False);
168 -- Called when node N is expected to contain a valid attribute name, and
169 -- Nam is found instead. If Warn is set True this is a warning, else this
170 -- is an error.
172 procedure Bad_Predicated_Subtype_Use
173 (Msg : String;
174 N : Node_Id;
175 Typ : Entity_Id;
176 Suggest_Static : Boolean := False);
177 -- This is called when Typ, a predicated subtype, is used in a context
178 -- which does not allow the use of a predicated subtype. Msg is passed to
179 -- Error_Msg_FE to output an appropriate message using N as the location,
180 -- and Typ as the entity. The caller must set up any insertions other than
181 -- the & for the type itself. Note that if Typ is a generic actual type,
182 -- then the message will be output as a warning, and a raise Program_Error
183 -- is inserted using Insert_Action with node N as the insertion point. Node
184 -- N also supplies the source location for construction of the raise node.
185 -- If Typ does not have any predicates, the call has no effect. Set flag
186 -- Suggest_Static when the context warrants an advice on how to avoid the
187 -- use error.
189 function Bad_Unordered_Enumeration_Reference
190 (N : Node_Id;
191 T : Entity_Id) return Boolean;
192 -- Node N contains a potentially dubious reference to type T, either an
193 -- explicit comparison, or an explicit range. This function returns True
194 -- if the type T is an enumeration type for which No pragma Order has been
195 -- given, and the reference N is not in the same extended source unit as
196 -- the declaration of T.
198 function Build_Actual_Subtype
199 (T : Entity_Id;
200 N : Node_Or_Entity_Id) return Node_Id;
201 -- Build an anonymous subtype for an entity or expression, using the
202 -- bounds of the entity or the discriminants of the enclosing record.
203 -- T is the type for which the actual subtype is required, and N is either
204 -- a defining identifier, or any subexpression.
206 function Build_Actual_Subtype_Of_Component
207 (T : Entity_Id;
208 N : Node_Id) return Node_Id;
209 -- Determine whether a selected component has a type that depends on
210 -- discriminants, and build actual subtype for it if so.
212 -- Handling of inherited primitives whose ancestors have class-wide
213 -- pre/postconditions.
215 -- If a primitive operation of a parent type has a class-wide pre/post-
216 -- condition that includes calls to other primitives, and that operation
217 -- is inherited by a descendant type that also overrides some of these
218 -- other primitives, the condition that applies to the inherited
219 -- operation has a modified condition in which the overridden primitives
220 -- have been replaced by the primitives of the descendent type. A call
221 -- to the inherited operation cannot be simply a call to the parent
222 -- operation (with an appropriate conversion) as is the case for other
223 -- inherited operations, but must appear with a wrapper subprogram to which
224 -- the modified conditions apply. Furthermore the call to the parent
225 -- operation must not be subject to the original class-wide condition,
226 -- given that modified conditions apply. To implement these semantics
227 -- economically we create a subprogram body (a "class-wide clone") to
228 -- which no pre/postconditions apply, and we create bodies for the
229 -- original and the inherited operation that have their respective
230 -- pre/postconditions and simply call the clone. The following operations
231 -- take care of constructing declaration and body of the clone, and
232 -- building the calls to it within the appropriate wrappers.
234 procedure Build_Class_Wide_Clone_Body
235 (Spec_Id : Entity_Id;
236 Bod : Node_Id);
237 -- Build body of subprogram that has a class-wide condition that contains
238 -- calls to other primitives. Spec_Id is the Id of the subprogram, and B
239 -- is its source body, which becomes the body of the clone.
241 function Build_Class_Wide_Clone_Call
242 (Loc : Source_Ptr;
243 Decls : List_Id;
244 Spec_Id : Entity_Id;
245 Spec : Node_Id) return Node_Id;
246 -- Build a call to the common class-wide clone of a subprogram with
247 -- class-wide conditions. The body of the subprogram becomes a wrapper
248 -- for a call to the clone. The inherited operation becomes a similar
249 -- wrapper to which modified conditions apply, and the call to the
250 -- clone includes the proper conversion in a call the parent operation.
252 procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id);
253 -- For a subprogram that has a class-wide condition that contains calls
254 -- to other primitives, build an internal subprogram that is invoked
255 -- through a type-specific wrapper for all inherited subprograms that
256 -- may have a modified condition.
258 function Build_Default_Subtype
259 (T : Entity_Id;
260 N : Node_Id) return Entity_Id;
261 -- If T is an unconstrained type with defaulted discriminants, build a
262 -- subtype constrained by the default values, insert the subtype
263 -- declaration in the tree before N, and return the entity of that
264 -- subtype. Otherwise, simply return T.
266 function Build_Discriminal_Subtype_Of_Component
267 (T : Entity_Id) return Node_Id;
268 -- Determine whether a record component has a type that depends on
269 -- discriminants, and build actual subtype for it if so.
271 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
272 -- Given a compilation unit node N, allocate an elaboration counter for
273 -- the compilation unit, and install it in the Elaboration_Entity field
274 -- of Spec_Id, the entity for the compilation unit.
276 function Build_Overriding_Spec
277 (Op : Node_Id;
278 Typ : Entity_Id) return Node_Id;
279 -- Build a subprogram specification for the wrapper of an inherited
280 -- operation with a modified pre- or postcondition (See AI12-0113).
281 -- Op is the parent operation, and Typ is the descendant type that
282 -- inherits the operation.
284 procedure Build_Explicit_Dereference
285 (Expr : Node_Id;
286 Disc : Entity_Id);
287 -- AI05-139: Names with implicit dereference. If the expression N is a
288 -- reference type and the context imposes the corresponding designated
289 -- type, convert N into N.Disc.all. Such expressions are always over-
290 -- loaded with both interpretations, and the dereference interpretation
291 -- carries the name of the reference discriminant.
293 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
294 -- Returns True if the expression cannot possibly raise Constraint_Error.
295 -- The response is conservative in the sense that a result of False does
296 -- not necessarily mean that CE could be raised, but a response of True
297 -- means that for sure CE cannot be raised.
299 procedure Check_Dynamically_Tagged_Expression
300 (Expr : Node_Id;
301 Typ : Entity_Id;
302 Related_Nod : Node_Id);
303 -- Check wrong use of dynamically tagged expression
305 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
306 -- Verify that the full declaration of type T has been seen. If not, place
307 -- error message on node N. Used in object declarations, type conversions
308 -- and qualified expressions.
310 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
311 -- A subprogram that has an Address parameter and is declared in a Pure
312 -- package is not considered Pure, because the parameter may be used as a
313 -- pointer and the referenced data may change even if the address value
314 -- itself does not.
315 -- If the programmer gave an explicit Pure_Function pragma, then we respect
316 -- the pragma and leave the subprogram Pure.
318 procedure Check_Function_Writable_Actuals (N : Node_Id);
319 -- (Ada 2012): If the construct N has two or more direct constituents that
320 -- are names or expressions whose evaluation may occur in an arbitrary
321 -- order, at least one of which contains a function call with an in out or
322 -- out parameter, then the construct is legal only if: for each name that
323 -- is passed as a parameter of mode in out or out to some inner function
324 -- call C2 (not including the construct N itself), there is no other name
325 -- anywhere within a direct constituent of the construct C other than
326 -- the one containing C2, that is known to refer to the same object (RM
327 -- 6.4.1(6.17/3)).
329 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
330 -- AI05-139-2: Accessors and iterators for containers. This procedure
331 -- checks whether T is a reference type, and if so it adds an interprettion
332 -- to N whose type is the designated type of the reference_discriminant.
333 -- If N is a generalized indexing operation, the interpretation is added
334 -- both to the corresponding function call, and to the indexing node.
336 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
337 -- Within a protected function, the current object is a constant, and
338 -- internal calls to a procedure or entry are illegal. Similarly, other
339 -- uses of a protected procedure in a renaming or a generic instantiation
340 -- in the context of a protected function are illegal (AI05-0225).
342 procedure Check_Later_Vs_Basic_Declarations
343 (Decls : List_Id;
344 During_Parsing : Boolean);
345 -- If During_Parsing is True, check for misplacement of later vs basic
346 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
347 -- restriction is set, do the same: although SPARK 95 removes the
348 -- distinction between initial and later declarative items, the distinction
349 -- remains in the Examiner (JB01-005). Note that the Examiner does not
350 -- count package declarations in later declarative items.
352 procedure Check_No_Hidden_State (Id : Entity_Id);
353 -- Determine whether object or state Id introduces a hidden state. If this
354 -- is the case, emit an error.
356 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
357 -- Verify that the profile of nonvolatile function Func_Id does not contain
358 -- effectively volatile parameters or return type.
360 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
361 -- Verify the legality of reference Ref to variable Var_Id when the
362 -- variable is a constituent of a single protected/task type.
364 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
365 -- N is one of the statement forms that is a potentially blocking
366 -- operation. If it appears within a protected action, emit warning.
368 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
369 -- Determine whether the contract of subprogram Subp_Id mentions attribute
370 -- 'Result and it contains an expression that evaluates differently in pre-
371 -- and post-state.
373 procedure Check_State_Refinements
374 (Context : Node_Id;
375 Is_Main_Unit : Boolean := False);
376 -- Verify that all abstract states declared in a block statement, entry
377 -- body, package body, protected body, subprogram body, task body, or a
378 -- package declaration denoted by Context have proper refinement. Emit an
379 -- error if this is not the case. Flag Is_Main_Unit should be set when
380 -- Context denotes the main compilation unit.
382 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
383 -- Verify that all abstract states and objects declared in the state space
384 -- of package body Body_Id are used as constituents. Emit an error if this
385 -- is not the case.
387 procedure Check_Unprotected_Access
388 (Context : Node_Id;
389 Expr : Node_Id);
390 -- Check whether the expression is a pointer to a protected component,
391 -- and the context is external to the protected operation, to warn against
392 -- a possible unlocked access to data.
394 function Choice_List (N : Node_Id) return List_Id;
395 -- Utility to retrieve the choices of a Component_Association or the
396 -- Discrete_Choices of an Iterated_Component_Association. For various
397 -- reasons these nodes have a different structure even though they play
398 -- similar roles in array aggregates.
400 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
401 -- Gather the entities of all abstract states and objects declared in the
402 -- body state space of package body Body_Id.
404 procedure Collect_Interfaces
405 (T : Entity_Id;
406 Ifaces_List : out Elist_Id;
407 Exclude_Parents : Boolean := False;
408 Use_Full_View : Boolean := True);
409 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
410 -- directly or indirectly implemented by T. Exclude_Parents is used to
411 -- avoid the addition of inherited interfaces to the generated list.
412 -- Use_Full_View is used to collect the interfaces using the full-view
413 -- (if available).
415 procedure Collect_Interface_Components
416 (Tagged_Type : Entity_Id;
417 Components_List : out Elist_Id);
418 -- Ada 2005 (AI-251): Collect all the tag components associated with the
419 -- secondary dispatch tables of a tagged type.
421 procedure Collect_Interfaces_Info
422 (T : Entity_Id;
423 Ifaces_List : out Elist_Id;
424 Components_List : out Elist_Id;
425 Tags_List : out Elist_Id);
426 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
427 -- the record component and tag associated with each of these interfaces.
428 -- On exit Ifaces_List, Components_List and Tags_List have the same number
429 -- of elements, and elements at the same position on these tables provide
430 -- information on the same interface type.
432 procedure Collect_Parents
433 (T : Entity_Id;
434 List : out Elist_Id;
435 Use_Full_View : Boolean := True);
436 -- Collect all the parents of Typ. Use_Full_View is used to collect them
437 -- using the full-view of private parents (if available).
439 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
440 -- Called upon type derivation and extension. We scan the declarative part
441 -- in which the type appears, and collect subprograms that have one
442 -- subsidiary subtype of the type. These subprograms can only appear after
443 -- the type itself.
445 function Compile_Time_Constraint_Error
446 (N : Node_Id;
447 Msg : String;
448 Ent : Entity_Id := Empty;
449 Loc : Source_Ptr := No_Location;
450 Warn : Boolean := False) return Node_Id;
451 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
452 -- generates a warning (or error) message in the same manner, but it does
453 -- not replace any nodes. For convenience, the function always returns its
454 -- first argument. The message is a warning if the message ends with ?, or
455 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
457 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
458 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
459 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
461 function Contains_Refined_State (Prag : Node_Id) return Boolean;
462 -- Determine whether pragma Prag contains a reference to the entity of an
463 -- abstract state with a visible refinement. Prag must denote one of the
464 -- following pragmas:
465 -- Depends
466 -- Global
468 function Copy_Component_List
469 (R_Typ : Entity_Id;
470 Loc : Source_Ptr) return List_Id;
471 -- Copy components from record type R_Typ that come from source. Used to
472 -- create a new compatible record type. Loc is the source location assigned
473 -- to the created nodes.
475 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
476 -- Utility to create a parameter profile for a new subprogram spec, when
477 -- the subprogram has a body that acts as spec. This is done for some cases
478 -- of inlining, and for private protected ops. Also used to create bodies
479 -- for stubbed subprograms.
481 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
482 -- Copy the SPARK_Mode aspect if present in the aspect specifications
483 -- of node From to node To. On entry it is assumed that To does not have
484 -- aspect specifications. If From has no aspects, the routine has no
485 -- effect.
487 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
488 -- Replicate a function or a procedure specification denoted by Spec. The
489 -- resulting tree is an exact duplicate of the original tree. New entities
490 -- are created for the unit name and the formal parameters.
492 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
493 -- If a type is a generic actual type, return the corresponding formal in
494 -- the generic parent unit. There is no direct link in the tree for this
495 -- attribute, except in the case of formal private and derived types.
496 -- Possible optimization???
498 function Current_Entity (N : Node_Id) return Entity_Id;
499 pragma Inline (Current_Entity);
500 -- Find the currently visible definition for a given identifier, that is to
501 -- say the first entry in the visibility chain for the Chars of N.
503 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
504 -- Find whether there is a previous definition for identifier N in the
505 -- current scope. Because declarations for a scope are not necessarily
506 -- contiguous (e.g. for packages) the first entry on the visibility chain
507 -- for N is not necessarily in the current scope.
509 function Current_Scope return Entity_Id;
510 -- Get entity representing current scope
512 function Current_Scope_No_Loops return Entity_Id;
513 -- Return the current scope ignoring internally generated loops
515 function Current_Subprogram return Entity_Id;
516 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
517 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
518 -- Current_Scope is returned. The returned value is Empty if this is called
519 -- from a library package which is not within any subprogram.
521 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
522 -- Same as Type_Access_Level, except that if the type is the type of an Ada
523 -- 2012 stand-alone object of an anonymous access type, then return the
524 -- static accesssibility level of the object. In that case, the dynamic
525 -- accessibility level of the object may take on values in a range. The low
526 -- bound of that range is returned by Type_Access_Level; this function
527 -- yields the high bound of that range. Also differs from Type_Access_Level
528 -- in the case of a descendant of a generic formal type (returns Int'Last
529 -- instead of 0).
531 function Defining_Entity
532 (N : Node_Id;
533 Empty_On_Errors : Boolean := False) return Entity_Id;
534 -- Given a declaration N, returns the associated defining entity. If the
535 -- declaration has a specification, the entity is obtained from the
536 -- specification. If the declaration has a defining unit name, then the
537 -- defining entity is obtained from the defining unit name ignoring any
538 -- child unit prefixes.
540 -- Iterator loops also have a defining entity, which holds the list of
541 -- local entities declared during loop expansion. These entities need
542 -- debugging information, generated through Qualify_Entity_Names, and
543 -- the loop declaration must be placed in the table Name_Qualify_Units.
545 -- Set flag Empty_On_Error to change the behavior of this routine as
546 -- follows:
548 -- * True - A declaration that lacks a defining entity returns Empty.
549 -- A node that does not allow for a defining entity returns Empty.
551 -- * False - A declaration that lacks a defining entity is given a new
552 -- internally generated entity which is subsequently returned. A node
553 -- that does not allow for a defining entity raises Program_Error.
555 -- The former semantics is appropriate for the back end; the latter
556 -- semantics is appropriate for the front end.
558 function Denotes_Discriminant
559 (N : Node_Id;
560 Check_Concurrent : Boolean := False) return Boolean;
561 -- Returns True if node N is an Entity_Name node for a discriminant. If the
562 -- flag Check_Concurrent is true, function also returns true when N denotes
563 -- the discriminal of the discriminant of a concurrent type. This is needed
564 -- to disable some optimizations on private components of protected types,
565 -- and constraint checks on entry families constrained by discriminants.
567 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
568 -- Detect suspicious overlapping between actuals in a call, when both are
569 -- writable (RM 2012 6.4.1(6.4/3))
571 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
572 -- Functions to detect suspicious overlapping between actuals in a call,
573 -- when one of them is writable. The predicates are those proposed in
574 -- AI05-0144, to detect dangerous order dependence in complex calls.
575 -- I would add a parameter Warn which enables more extensive testing of
576 -- cases as we find appropriate when we are only warning ??? Or perhaps
577 -- return an indication of (Error, Warn, OK) ???
579 function Denotes_Variable (N : Node_Id) return Boolean;
580 -- Returns True if node N denotes a single variable without parentheses
582 function Depends_On_Discriminant (N : Node_Id) return Boolean;
583 -- Returns True if N denotes a discriminant or if N is a range, a subtype
584 -- indication or a scalar subtype where one of the bounds is a
585 -- discriminant.
587 function Designate_Same_Unit
588 (Name1 : Node_Id;
589 Name2 : Node_Id) return Boolean;
590 -- Returns True if Name1 and Name2 designate the same unit name; each of
591 -- these names is supposed to be a selected component name, an expanded
592 -- name, a defining program unit name or an identifier.
594 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
595 -- Emit an error if iterated component association N is actually an illegal
596 -- quantified expression lacking a quantifier.
598 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
599 -- Expr should be an expression of an access type. Builds an integer
600 -- literal except in cases involving anonymous access types where
601 -- accessibility levels are tracked at runtime (access parameters and Ada
602 -- 2012 stand-alone objects).
604 function Discriminated_Size (Comp : Entity_Id) return Boolean;
605 -- If a component size is not static then a warning will be emitted
606 -- in Ravenscar or other restricted contexts. When a component is non-
607 -- static because of a discriminant constraint we can specialize the
608 -- warning by mentioning discriminants explicitly. This was created for
609 -- private components of protected objects, but is generally useful when
610 -- retriction (No_Implicit_Heap_Allocation) is active.
612 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
613 -- Same as Einfo.Extra_Accessibility except thtat object renames
614 -- are looked through.
616 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
617 -- Given the entity of an abstract state or a variable, determine whether
618 -- Id is subject to external property Effective_Reads and if it is, the
619 -- related expression evaluates to True.
621 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
622 -- Given the entity of an abstract state or a variable, determine whether
623 -- Id is subject to external property Effective_Writes and if it is, the
624 -- related expression evaluates to True.
626 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
627 -- Returns the enclosing N_Compilation_Unit node that is the root of a
628 -- subtree containing N.
630 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
631 -- Returns the closest ancestor of Typ that is a CPP type.
633 function Enclosing_Declaration (N : Node_Id) return Node_Id;
634 -- Returns the declaration node enclosing N (including possibly N itself),
635 -- if any, or Empty otherwise.
637 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
638 -- Returns the Node_Id associated with the innermost enclosing generic
639 -- body, if any. If none, then returns Empty.
641 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
642 -- Returns the Node_Id associated with the innermost enclosing generic
643 -- unit, if any. If none, then returns Empty.
645 function Enclosing_Lib_Unit_Entity
646 (E : Entity_Id := Current_Scope) return Entity_Id;
647 -- Returns the entity of enclosing library unit node which is the root of
648 -- the current scope (which must not be Standard_Standard, and the caller
649 -- is responsible for ensuring this condition) or other specified entity.
651 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
652 -- Returns the N_Compilation_Unit node of the library unit that is directly
653 -- or indirectly (through a subunit) at the root of a subtree containing
654 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
655 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
656 -- library unit. If no such item is found, returns Empty.
658 function Enclosing_Package (E : Entity_Id) return Entity_Id;
659 -- Utility function to return the Ada entity of the package enclosing
660 -- the entity E, if any. Returns Empty if no enclosing package.
662 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
663 -- Returns the entity of the package or subprogram enclosing E, if any.
664 -- Returns Empty if no enclosing package or subprogram.
666 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
667 -- Utility function to return the Ada entity of the subprogram enclosing
668 -- the entity E, if any. Returns Empty if no enclosing subprogram.
670 procedure Ensure_Freeze_Node (E : Entity_Id);
671 -- Make sure a freeze node is allocated for entity E. If necessary, build
672 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
674 procedure Enter_Name (Def_Id : Entity_Id);
675 -- Insert new name in symbol table of current scope with check for
676 -- duplications (error message is issued if a conflict is found).
677 -- Note: Enter_Name is not used for overloadable entities, instead these
678 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
680 function Entity_Of (N : Node_Id) return Entity_Id;
681 -- Return the entity of N or Empty. If N is a renaming, return the entity
682 -- of the root renamed object.
684 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
685 -- This procedure is called after issuing a message complaining about an
686 -- inappropriate use of limited type T. If useful, it adds additional
687 -- continuation lines to the message explaining why type T is limited.
688 -- Messages are placed at node N.
690 function Expression_Of_Expression_Function
691 (Subp : Entity_Id) return Node_Id;
692 -- Return the expression of expression function Subp
694 type Extensions_Visible_Mode is
695 (Extensions_Visible_None,
696 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
697 -- value acts as a default in a non-SPARK compilation.
699 Extensions_Visible_False,
700 -- A value of "False" signifies that Extensions_Visible is either
701 -- missing or the pragma is present and the value of its Boolean
702 -- expression is False.
704 Extensions_Visible_True);
705 -- A value of "True" signifies that Extensions_Visible is present and
706 -- the value of its Boolean expression is True.
708 function Extensions_Visible_Status
709 (Id : Entity_Id) return Extensions_Visible_Mode;
710 -- Given the entity of a subprogram or formal parameter subject to pragma
711 -- Extensions_Visible, return the Boolean value denoted by the expression
712 -- of the pragma.
714 procedure Find_Actual
715 (N : Node_Id;
716 Formal : out Entity_Id;
717 Call : out Node_Id);
718 -- Determines if the node N is an actual parameter of a function or a
719 -- procedure call. If so, then Formal points to the entity for the formal
720 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
721 -- Call is set to the node for the corresponding call. If the node N is not
722 -- an actual parameter then Formal and Call are set to Empty.
724 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
725 -- Find specific type of a class-wide type, and handle the case of an
726 -- incomplete type coming either from a limited_with clause or from an
727 -- incomplete type declaration. If resulting type is private return its
728 -- full view.
730 function Find_Body_Discriminal
731 (Spec_Discriminant : Entity_Id) return Entity_Id;
732 -- Given a discriminant of the record type that implements a task or
733 -- protected type, return the discriminal of the corresponding discriminant
734 -- of the actual concurrent type.
736 function Find_Corresponding_Discriminant
737 (Id : Node_Id;
738 Typ : Entity_Id) return Entity_Id;
739 -- Because discriminants may have different names in a generic unit and in
740 -- an instance, they are resolved positionally when possible. A reference
741 -- to a discriminant carries the discriminant that it denotes when it is
742 -- analyzed. Subsequent uses of this id on a different type denotes the
743 -- discriminant at the same position in this new type.
745 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
746 -- Given an arbitrary entity, try to find the nearest enclosing iterator
747 -- loop. If such a loop is found, return the entity of its identifier (the
748 -- E_Loop scope), otherwise return Empty.
750 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
751 -- Find the nested loop statement in a conditional block. Loops subject to
752 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
753 -- loop are nested within the block.
755 procedure Find_Overlaid_Entity
756 (N : Node_Id;
757 Ent : out Entity_Id;
758 Off : out Boolean);
759 -- The node N should be an address representation clause. Determines if
760 -- the target expression is the address of an entity with an optional
761 -- offset. If so, set Ent to the entity and, if there is an offset, set
762 -- Off to True, otherwise to False. If N is not an address representation
763 -- clause, or if it is not possible to determine that the address is of
764 -- this form, then set Ent to Empty.
766 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
767 -- Return the type of formal parameter Param as determined by its
768 -- specification.
770 -- The following type describes the placement of an arbitrary entity with
771 -- respect to SPARK visible / hidden state space.
773 type State_Space_Kind is
774 (Not_In_Package,
775 -- An entity is not in the visible, private or body state space when
776 -- the immediate enclosing construct is not a package.
778 Visible_State_Space,
779 -- An entity is in the visible state space when it appears immediately
780 -- within the visible declarations of a package or when it appears in
781 -- the visible state space of a nested package which in turn is declared
782 -- in the visible declarations of an enclosing package:
784 -- package Pack is
785 -- Visible_Variable : ...
786 -- package Nested
787 -- with Abstract_State => Visible_State
788 -- is
789 -- Visible_Nested_Variable : ...
790 -- end Nested;
791 -- end Pack;
793 -- Entities associated with a package instantiation inherit the state
794 -- space from the instance placement:
796 -- generic
797 -- package Gen is
798 -- Generic_Variable : ...
799 -- end Gen;
801 -- with Gen;
802 -- package Pack is
803 -- package Inst is new Gen;
804 -- -- Generic_Variable is in the visible state space of Pack
805 -- end Pack;
807 Private_State_Space,
808 -- An entity is in the private state space when it appears immediately
809 -- within the private declarations of a package or when it appears in
810 -- the visible state space of a nested package which in turn is declared
811 -- in the private declarations of an enclosing package:
813 -- package Pack is
814 -- private
815 -- Private_Variable : ...
816 -- package Nested
817 -- with Abstract_State => Private_State
818 -- is
819 -- Private_Nested_Variable : ...
820 -- end Nested;
821 -- end Pack;
823 -- The same placement principle applies to package instantiations
825 Body_State_Space);
826 -- An entity is in the body state space when it appears immediately
827 -- within the declarations of a package body or when it appears in the
828 -- visible state space of a nested package which in turn is declared in
829 -- the declarations of an enclosing package body:
831 -- package body Pack is
832 -- Body_Variable : ...
833 -- package Nested
834 -- with Abstract_State => Body_State
835 -- is
836 -- Body_Nested_Variable : ...
837 -- end Nested;
838 -- end Pack;
840 -- The same placement principle applies to package instantiations
842 procedure Find_Placement_In_State_Space
843 (Item_Id : Entity_Id;
844 Placement : out State_Space_Kind;
845 Pack_Id : out Entity_Id);
846 -- Determine the state space placement of an item. Item_Id denotes the
847 -- entity of an abstract state, object or package instantiation. Placement
848 -- captures the precise placement of the item in the enclosing state space.
849 -- If the state space is that of a package, Pack_Id denotes its entity,
850 -- otherwise Pack_Id is Empty.
852 function Find_Static_Alternative (N : Node_Id) return Node_Id;
853 -- N is a case statement whose expression is a compile-time value.
854 -- Determine the alternative chosen, so that the code of non-selected
855 -- alternatives, and the warnings that may apply to them, are removed.
857 function First_Actual (Node : Node_Id) return Node_Id;
858 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
859 -- N_Entry_Call_Statement node. The result returned is the first actual
860 -- parameter in declaration order (not the order of parameters as they
861 -- appeared in the source, which can be quite different as a result of the
862 -- use of named parameters). Empty is returned for a call with no
863 -- parameters. The procedure for iterating through the actuals in
864 -- declaration order is to use this function to find the first actual, and
865 -- then use Next_Actual to obtain the next actual in declaration order.
866 -- Note that the value returned is always the expression (not the
867 -- N_Parameter_Association nodes, even if named association is used).
869 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
870 -- Replace all occurrences of a particular word in string Msg depending on
871 -- the Ekind of Id as follows:
872 -- * Replace "subprogram" with
873 -- - "entry" when Id is an entry [family]
874 -- - "task type" when Id is a single task object, task type or task
875 -- body.
876 -- * Replace "protected" with
877 -- - "task" when Id is a single task object, task type or task body
878 -- All other non-matching words remain as is
880 function From_Nested_Package (T : Entity_Id) return Boolean;
881 -- A type declared in a nested package may be frozen by a declaration
882 -- appearing after the package but before the package is frozen. If the
883 -- type has aspects that generate subprograms, these may contain references
884 -- to entities local to the nested package. In that case the package must
885 -- be installed on the scope stack to prevent spurious visibility errors.
887 procedure Gather_Components
888 (Typ : Entity_Id;
889 Comp_List : Node_Id;
890 Governed_By : List_Id;
891 Into : Elist_Id;
892 Report_Errors : out Boolean);
893 -- The purpose of this procedure is to gather the valid components in a
894 -- record type according to the values of its discriminants, in order to
895 -- validate the components of a record aggregate.
897 -- Typ is the type of the aggregate when its constrained discriminants
898 -- need to be collected, otherwise it is Empty.
900 -- Comp_List is an N_Component_List node.
902 -- Governed_By is a list of N_Component_Association nodes, where each
903 -- choice list contains the name of a discriminant and the expression
904 -- field gives its value. The values of the discriminants governing
905 -- the (possibly nested) variant parts in Comp_List are found in this
906 -- Component_Association List.
908 -- Into is the list where the valid components are appended. Note that
909 -- Into need not be an Empty list. If it's not, components are attached
910 -- to its tail.
912 -- Report_Errors is set to True if the values of the discriminants are
913 -- non-static.
915 -- This procedure is also used when building a record subtype. If the
916 -- discriminant constraint of the subtype is static, the components of the
917 -- subtype are only those of the variants selected by the values of the
918 -- discriminants. Otherwise all components of the parent must be included
919 -- in the subtype for semantic analysis.
921 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
922 -- Given a node for an expression, obtain the actual subtype of the
923 -- expression. In the case of a parameter where the formal is an
924 -- unconstrained array or discriminated type, this will be the previously
925 -- constructed subtype of the actual. Note that this is not quite the
926 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
927 -- it is the subtype of the value of the actual. The actual subtype is also
928 -- returned in other cases where it has already been constructed for an
929 -- object. Otherwise the expression type is returned unchanged, except for
930 -- the case of an unconstrained array type, where an actual subtype is
931 -- created, using Insert_Actions if necessary to insert any associated
932 -- actions.
934 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
935 -- This is like Get_Actual_Subtype, except that it never constructs an
936 -- actual subtype. If an actual subtype is already available, i.e. the
937 -- Actual_Subtype field of the corresponding entity is set, then it is
938 -- returned. Otherwise the Etype of the node is returned.
940 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
941 -- Return the body node for a stub
943 function Get_Cursor_Type
944 (Aspect : Node_Id;
945 Typ : Entity_Id) return Entity_Id;
946 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
947 -- primitive operation First. For use in resolving the other primitive
948 -- operations of an Iterable type and expanding loops and quantified
949 -- expressions over formal containers.
951 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
952 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
953 -- primitive operation First. For use after resolving the primitive
954 -- operations of an Iterable type.
956 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
957 -- This is used to construct the string literal node representing a
958 -- default external name, i.e. one that is constructed from the name of an
959 -- entity, or (in the case of extended DEC import/export pragmas, an
960 -- identifier provided as the external name. Letters in the name are
961 -- according to the setting of Opt.External_Name_Default_Casing.
963 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
964 -- If expression N references a part of an object, return this object.
965 -- Otherwise return Empty. Expression N should have been resolved already.
967 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
968 -- Returns the true generic entity in an instantiation. If the name in the
969 -- instantiation is a renaming, the function returns the renamed generic.
971 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
972 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
973 -- in a child unit a derived type is within the derivation class of an
974 -- ancestor declared in a parent unit, even if there is an intermediate
975 -- derivation that does not see the full view of that ancestor.
977 procedure Get_Index_Bounds
978 (N : Node_Id;
979 L : out Node_Id;
980 H : out Node_Id;
981 Use_Full_View : Boolean := False);
982 -- This procedure assigns to L and H respectively the values of the low and
983 -- high bounds of node N, which must be a range, subtype indication, or the
984 -- name of a scalar subtype. The result in L, H may be set to Error if
985 -- there was an earlier error in the range.
986 -- Use_Full_View is intended for use by clients other than the compiler
987 -- (specifically, gnat2scil) to indicate that we want the full view if
988 -- the index type turns out to be a partial view; this case should not
989 -- arise during normal compilation of semantically correct programs.
991 procedure Get_Interfacing_Aspects
992 (Iface_Asp : Node_Id;
993 Conv_Asp : out Node_Id;
994 EN_Asp : out Node_Id;
995 Expo_Asp : out Node_Id;
996 Imp_Asp : out Node_Id;
997 LN_Asp : out Node_Id;
998 Do_Checks : Boolean := False);
999 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1000 -- aspects that apply to the same related entity. The aspects considered by
1001 -- this routine are as follows:
1003 -- Conv_Asp - aspect Convention
1004 -- EN_Asp - aspect External_Name
1005 -- Expo_Asp - aspect Export
1006 -- Imp_Asp - aspect Import
1007 -- LN_Asp - aspect Link_Name
1009 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1010 -- aspects.
1012 function Get_Enum_Lit_From_Pos
1013 (T : Entity_Id;
1014 Pos : Uint;
1015 Loc : Source_Ptr) return Node_Id;
1016 -- This function returns an identifier denoting the E_Enumeration_Literal
1017 -- entity for the specified value from the enumeration type or subtype T.
1018 -- The second argument is the Pos value. Constraint_Error is raised if
1019 -- argument Pos is not in range. The third argument supplies a source
1020 -- location for constructed nodes returned by this function. If No_Location
1021 -- is supplied as source location, the location of the returned node is
1022 -- copied from the original source location for the enumeration literal,
1023 -- when available.
1025 function Get_Iterable_Type_Primitive
1026 (Typ : Entity_Id;
1027 Nam : Name_Id) return Entity_Id;
1028 -- Retrieve one of the primitives First, Next, Has_Element, Element from
1029 -- the value of the Iterable aspect of a formal type.
1031 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1032 -- Retrieve the fully expanded name of the library unit declared by
1033 -- Decl_Node into the name buffer.
1035 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1036 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1037 -- is not present. It is assumed that Id denotes an entry.
1039 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1040 pragma Inline (Get_Name_Entity_Id);
1041 -- An entity value is associated with each name in the name table. The
1042 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1043 -- is the innermost visible entity with the given name. See the body of
1044 -- Sem_Ch8 for further details on handling of entity visibility.
1046 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1047 -- Return the Name component of Test_Case pragma N
1048 -- Bad name now that this no longer applies to Contract_Case ???
1050 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1051 -- Get defining entity of parent unit of a child unit. In most cases this
1052 -- is the defining entity of the unit, but for a child instance whose
1053 -- parent needs a body for inlining, the instantiation node of the parent
1054 -- has not yet been rewritten as a package declaration, and the entity has
1055 -- to be retrieved from the Instance_Spec of the unit.
1057 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1058 pragma Inline (Get_Pragma_Id);
1059 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1061 function Get_Qualified_Name
1062 (Id : Entity_Id;
1063 Suffix : Entity_Id := Empty) return Name_Id;
1064 -- Obtain the fully qualified form of entity Id. The format is:
1065 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1067 function Get_Qualified_Name
1068 (Nam : Name_Id;
1069 Suffix : Name_Id := No_Name;
1070 Scop : Entity_Id := Current_Scope) return Name_Id;
1071 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1072 -- Scop. The format is:
1073 -- scop-1__scop__nam__suffix
1075 procedure Get_Reason_String (N : Node_Id);
1076 -- Recursive routine to analyze reason argument for pragma Warnings. The
1077 -- value of the reason argument is appended to the current string using
1078 -- Store_String_Chars. The reason argument is expected to be a string
1079 -- literal or concatenation of string literals. An error is given for
1080 -- any other form.
1082 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1083 -- If Typ has Implicit_Dereference, return discriminant specified in the
1084 -- corresponding aspect.
1086 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1087 -- Given a node, return the renamed object if the node represents a renamed
1088 -- object, otherwise return the node unchanged. The node may represent an
1089 -- arbitrary expression.
1091 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1092 -- Given an entity for an exception, package, subprogram or generic unit,
1093 -- returns the ultimately renamed entity if this is a renaming. If this is
1094 -- not a renamed entity, returns its argument. It is an error to call this
1095 -- with any other kind of entity.
1097 function Get_Return_Object (N : Node_Id) return Entity_Id;
1098 -- Given an extended return statement, return the corresponding return
1099 -- object, identified as the one for which Is_Return_Object = True.
1101 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1102 -- Nod is either a procedure call statement, or a function call, or an
1103 -- accept statement node. This procedure finds the Entity_Id of the related
1104 -- subprogram or entry and returns it, or if no subprogram can be found,
1105 -- returns Empty.
1107 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
1108 pragma Inline (Get_Task_Body_Procedure);
1109 -- Given an entity for a task type or subtype, retrieves the
1110 -- Task_Body_Procedure field from the corresponding task type declaration.
1112 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1113 -- For a type entity, return the entity of the primitive equality function
1114 -- for the type if it exists, otherwise return Empty.
1116 procedure Get_Views
1117 (Typ : Entity_Id;
1118 Priv_Typ : out Entity_Id;
1119 Full_Typ : out Entity_Id;
1120 Full_Base : out Entity_Id;
1121 CRec_Typ : out Entity_Id);
1122 -- Obtain the partial and full view of type Typ and in addition any extra
1123 -- types the full view may have. The return entities are as follows:
1125 -- Priv_Typ - the partial view (a private type)
1126 -- Full_Typ - the full view
1127 -- Full_Base - the base type of the full view
1128 -- CRec_Typ - the corresponding record type of the full view
1130 function Has_Access_Values (T : Entity_Id) return Boolean;
1131 -- Returns true if type or subtype T is an access type, or has a component
1132 -- (at any recursive level) that is an access type. This is a conservative
1133 -- predicate, if it is not known whether or not T contains access values
1134 -- (happens for generic formals in some cases), then False is returned.
1135 -- Note that tagged types return False. Even though the tag is implemented
1136 -- as an access type internally, this function tests only for access types
1137 -- known to the programmer. See also Has_Tagged_Component.
1139 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1140 -- Result of Has_Compatible_Alignment test, description found below. Note
1141 -- that the values are arranged in increasing order of problematicness.
1143 function Has_Compatible_Alignment
1144 (Obj : Entity_Id;
1145 Expr : Node_Id;
1146 Layout_Done : Boolean) return Alignment_Result;
1147 -- Obj is an object entity, and expr is a node for an object reference. If
1148 -- the alignment of the object referenced by Expr is known to be compatible
1149 -- with the alignment of Obj (i.e. is larger or the same), then the result
1150 -- is Known_Compatible. If the alignment of the object referenced by Expr
1151 -- is known to be less than the alignment of Obj, then Known_Incompatible
1152 -- is returned. If neither condition can be reliably established at compile
1153 -- time, then Unknown is returned. If Layout_Done is True, the function can
1154 -- assume that the information on size and alignment of types and objects
1155 -- is present in the tree. This is used to determine if alignment checks
1156 -- are required for address clauses (Layout_Done is False in this case) as
1157 -- well as to issue appropriate warnings for them in the post compilation
1158 -- phase (Layout_Done is True in this case).
1160 -- Note: Known_Incompatible does not mean that at run time the alignment
1161 -- of Expr is known to be wrong for Obj, just that it can be determined
1162 -- that alignments have been explicitly or implicitly specified which are
1163 -- incompatible (whereas Unknown means that even this is not known). The
1164 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1165 -- Unknown, but issue a warning that there may be an alignment error.
1167 function Has_Declarations (N : Node_Id) return Boolean;
1168 -- Determines if the node can have declarations
1170 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1171 -- Simple predicate to test for defaulted discriminants
1173 function Has_Denormals (E : Entity_Id) return Boolean;
1174 -- Determines if the floating-point type E supports denormal numbers.
1175 -- Returns False if E is not a floating-point type.
1177 function Has_Discriminant_Dependent_Constraint
1178 (Comp : Entity_Id) return Boolean;
1179 -- Returns True if and only if Comp has a constrained subtype that depends
1180 -- on a discriminant.
1182 function Has_Effectively_Volatile_Profile
1183 (Subp_Id : Entity_Id) return Boolean;
1184 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1185 -- parameter or returns an effectively volatile value.
1187 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1188 -- Determine whether type Typ defines "full default initialization" as
1189 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1190 -- * A scalar type with specified Default_Value
1191 -- * An array-of-scalar type with specified Default_Component_Value
1192 -- * An array type whose element type defines full default initialization
1193 -- * A protected type, record type or type extension whose components
1194 -- either include a default expression or have a type which defines
1195 -- full default initialization. In the case of type extensions, the
1196 -- parent type defines full default initialization.
1197 -- * A task type
1198 -- * A private type whose Default_Initial_Condition is non-null
1200 function Has_Infinities (E : Entity_Id) return Boolean;
1201 -- Determines if the range of the floating-point type E includes
1202 -- infinities. Returns False if E is not a floating-point type.
1204 function Has_Interfaces
1205 (T : Entity_Id;
1206 Use_Full_View : Boolean := True) return Boolean;
1207 -- Where T is a concurrent type or a record type, returns true if T covers
1208 -- any abstract interface types. In case of private types the argument
1209 -- Use_Full_View controls if the check is done using its full view (if
1210 -- available).
1212 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1213 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1214 -- assumed that Id denotes an entry.
1216 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1217 -- This is a simple minded function for determining whether an expression
1218 -- has no obvious side effects. It is used only for determining whether
1219 -- warnings are needed in certain situations, and is not guaranteed to
1220 -- be accurate in either direction. Exceptions may mean an expression
1221 -- does in fact have side effects, but this may be ignored and True is
1222 -- returned, or a complex expression may in fact be side effect free
1223 -- but we don't recognize it here and return False. The Side_Effect_Free
1224 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1225 -- be shared, so that this routine would be more accurate.
1227 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1228 -- Determine whether abstract state Id has at least one nonnull constituent
1229 -- as expressed in pragma Refined_State. This function does not take into
1230 -- account the visible refinement region of abstract state Id.
1232 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1233 -- Determine whether the body of procedure Proc_Id contains a sole
1234 -- null statement, possibly followed by an optional return. Used to
1235 -- optimize useless calls to assertion checks.
1237 function Has_Non_Trivial_Precondition (P : Entity_Id) return Boolean;
1238 -- True if subprogram has a class-wide precondition that is not
1239 -- statically True.
1241 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1242 -- Determine whether node N has a null exclusion
1244 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1245 -- Determine whether abstract state Id has a null refinement as expressed
1246 -- in pragma Refined_State. This function does not take into account the
1247 -- visible refinement region of abstract state Id.
1249 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1250 -- Predicate to determine whether a controlled type has a user-defined
1251 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1252 -- non-null), which causes the type to not have preelaborable
1253 -- initialization.
1255 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1256 -- Return True iff type E has preelaborable initialization as defined in
1257 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1259 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1260 -- Check if a type has a (sub)component of a private type that has not
1261 -- yet received a full declaration.
1263 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1264 -- Determines if the floating-point type E supports signed zeros.
1265 -- Returns False if E is not a floating-point type.
1267 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1268 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1269 -- All subprograms have a N_Contract node, but this does not mean that the
1270 -- contract is useful.
1272 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1273 -- Return whether an array type has static bounds
1275 function Has_Stream (T : Entity_Id) return Boolean;
1276 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1277 -- case of a composite type, has a component for which this predicate is
1278 -- True, and if so returns True. Otherwise a result of False means that
1279 -- there is no Stream type in sight. For a private type, the test is
1280 -- applied to the underlying type (or returns False if there is no
1281 -- underlying type).
1283 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1284 -- Returns true if the last character of E is Suffix. Used in Assertions.
1286 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1287 -- Returns True if Typ is a composite type (array or record) which is
1288 -- either itself a tagged type, or has a component (recursively) which is
1289 -- a tagged type. Returns False for non-composite type, or if no tagged
1290 -- component is present. This function is used to check if "=" has to be
1291 -- expanded into a bunch component comparisons.
1293 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1294 -- Given arbitrary expression Expr, determine whether it contains at
1295 -- least one name whose entity is Any_Id.
1297 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1298 -- Given arbitrary type Typ, determine whether it contains at least one
1299 -- volatile component.
1301 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1302 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1303 -- implementation requirement which the pragma imposes. The return value is
1304 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1306 function Implements_Interface
1307 (Typ_Ent : Entity_Id;
1308 Iface_Ent : Entity_Id;
1309 Exclude_Parents : Boolean := False) return Boolean;
1310 -- Returns true if the Typ_Ent implements interface Iface_Ent
1312 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1313 -- Returns True if node N appears within a pragma that acts as an assertion
1314 -- expression. See Sem_Prag for the list of qualifying pragmas.
1316 function In_Generic_Scope (E : Entity_Id) return Boolean;
1317 -- Returns True if entity E is inside a generic scope
1319 function In_Instance return Boolean;
1320 -- Returns True if the current scope is within a generic instance
1322 function In_Instance_Body return Boolean;
1323 -- Returns True if current scope is within the body of an instance, where
1324 -- several semantic checks (e.g. accessibility checks) are relaxed.
1326 function In_Instance_Not_Visible return Boolean;
1327 -- Returns True if current scope is with the private part or the body of
1328 -- an instance. Other semantic checks are suppressed in this context.
1330 function In_Instance_Visible_Part return Boolean;
1331 -- Returns True if current scope is within the visible part of a package
1332 -- instance, where several additional semantic checks apply.
1334 function In_Package_Body return Boolean;
1335 -- Returns True if current scope is within a package body
1337 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1338 -- Returns true if the expression N occurs within a pragma with name Nam
1340 function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1341 -- Returns True if node N appears within a pre/postcondition pragma. Note
1342 -- the pragma Check equivalents are NOT considered.
1344 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1345 -- Returns True if N denotes a component or subcomponent in a record or
1346 -- array that has Reverse_Storage_Order.
1348 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1349 -- Determines if the current scope is within a subprogram compilation unit
1350 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1351 -- declaration) or within a task or protected body. The test is for
1352 -- appearing anywhere within such a construct (that is it does not need
1353 -- to be directly within).
1355 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1356 -- Determine whether a declaration occurs within the visible part of a
1357 -- package specification. The package must be on the scope stack, and the
1358 -- corresponding private part must not.
1360 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1361 -- Given the entity of a constant or a type, retrieve the incomplete or
1362 -- partial view of the same entity. Note that Id may not have a partial
1363 -- view in which case the function returns Empty.
1365 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1366 -- Given an N_Indexed_Component node, return the first bit position of the
1367 -- component if it is known at compile time. A value of No_Uint means that
1368 -- either the value is not yet known before back-end processing or it is
1369 -- not known at compile time after back-end processing.
1371 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1372 -- Inherit the rep item chain of type From_Typ without clobbering any
1373 -- existing rep items on Typ's chain. Typ is the destination type.
1375 procedure Insert_Explicit_Dereference (N : Node_Id);
1376 -- In a context that requires a composite or subprogram type and where a
1377 -- prefix is an access type, rewrite the access type node N (which is the
1378 -- prefix, e.g. of an indexed component) as an explicit dereference.
1380 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1381 -- Examine all deferred constants in the declaration list Decls and check
1382 -- whether they have been completed by a full constant declaration or an
1383 -- Import pragma. Emit the error message if that is not the case.
1385 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1386 -- Install both the generic formal parameters and the formal parameters of
1387 -- generic subprogram Subp_Id into visibility.
1389 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1390 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1392 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1393 -- Determines if N is an actual parameter of out mode in a subprogram call
1395 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1396 -- Determines if N is an actual parameter in a subprogram call
1398 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1399 -- Determines if N is an actual parameter of a formal of tagged type in a
1400 -- subprogram call.
1402 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1403 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1404 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1405 -- rules of the language, it does not take into account the restriction
1406 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1407 -- and Obj violates the restriction. The caller is responsible for calling
1408 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1409 -- requirement for obeying the restriction in the call context.
1411 function Is_Ancestor_Package
1412 (E1 : Entity_Id;
1413 E2 : Entity_Id) return Boolean;
1414 -- Determine whether package E1 is an ancestor of E2
1416 function Is_Atomic_Object (N : Node_Id) return Boolean;
1417 -- Determines if the given node denotes an atomic object in the sense of
1418 -- the legality checks described in RM C.6(12).
1420 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1421 -- Determines if the given node is an atomic object (Is_Atomic_Object true)
1422 -- or else is an object for which VFA is present.
1424 function Is_Attribute_Result (N : Node_Id) return Boolean;
1425 -- Determine whether node N denotes attribute 'Result
1427 function Is_Attribute_Update (N : Node_Id) return Boolean;
1428 -- Determine whether node N denotes attribute 'Update
1430 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1431 -- Determine whether node N denotes a body or a package declaration
1433 function Is_Bounded_String (T : Entity_Id) return Boolean;
1434 -- True if T is a bounded string type. Used to make sure "=" composes
1435 -- properly for bounded string types.
1437 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1438 -- Exp is the expression for an array bound. Determines whether the
1439 -- bound is a compile-time known value, or a constant entity, or an
1440 -- enumeration literal, or an expression composed of constant-bound
1441 -- subexpressions which are evaluated by means of standard operators.
1443 function Is_Container_Element (Exp : Node_Id) return Boolean;
1444 -- This routine recognizes expressions that denote an element of one of
1445 -- the predefined containers, when the source only contains an indexing
1446 -- operation and an implicit dereference is inserted by the compiler.
1447 -- In the absence of this optimization, the indexing creates a temporary
1448 -- controlled cursor that sets the tampering bit of the container, and
1449 -- restricts the use of the convenient notation C (X) to contexts that
1450 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1451 -- explicit dereference. The transformation applies when it has the form
1452 -- F (X).Discr.all.
1454 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1455 -- Determine whether aspect specification or pragma Item is a contract
1456 -- annotation.
1458 function Is_Controlling_Limited_Procedure
1459 (Proc_Nam : Entity_Id) return Boolean;
1460 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1461 -- of a limited interface with a controlling first parameter.
1463 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1464 -- Returns True if N is a call to a CPP constructor
1466 function Is_Child_Or_Sibling
1467 (Pack_1 : Entity_Id;
1468 Pack_2 : Entity_Id) return Boolean;
1469 -- Determine the following relations between two arbitrary packages:
1470 -- 1) One package is the parent of a child package
1471 -- 2) Both packages are siblings and share a common parent
1473 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1474 -- First determine whether type T is an interface and then check whether
1475 -- it is of protected, synchronized or task kind.
1477 function Is_Current_Instance (N : Node_Id) return Boolean;
1478 -- Predicate is true if N legally denotes a type name within its own
1479 -- declaration. Prior to Ada 2012 this covered only synchronized type
1480 -- declarations. In Ada 2012 it also covers type and subtype declarations
1481 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1483 function Is_Declaration (N : Node_Id) return Boolean;
1484 -- Determine whether arbitrary node N denotes a declaration
1486 function Is_Declaration_Other_Than_Renaming (N : Node_Id) return Boolean;
1487 -- Determine whether arbitrary node N denotes a non-renaming declaration
1489 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1490 -- Returns True iff component Comp is declared within a variant part
1492 function Is_Dependent_Component_Of_Mutable_Object
1493 (Object : Node_Id) return Boolean;
1494 -- Returns True if Object is the name of a subcomponent that depends on
1495 -- discriminants of a variable whose nominal subtype is unconstrained and
1496 -- not indefinite, and the variable is not aliased. Otherwise returns
1497 -- False. The nodes passed to this function are assumed to denote objects.
1499 function Is_Dereferenced (N : Node_Id) return Boolean;
1500 -- N is a subexpression node of an access type. This function returns true
1501 -- if N appears as the prefix of a node that does a dereference of the
1502 -- access value (selected/indexed component, explicit dereference or a
1503 -- slice), and false otherwise.
1505 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1506 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1507 -- This is the RM definition, a type is a descendant of another type if it
1508 -- is the same type or is derived from a descendant of the other type.
1510 function Is_Descendant_Of_Suspension_Object
1511 (Typ : Entity_Id) return Boolean;
1512 -- Determine whether type Typ is a descendant of type Suspension_Object
1513 -- defined in Ada.Synchronous_Task_Control. This version is different from
1514 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1515 -- an entity and by extension a call to RTSfind.
1517 function Is_Double_Precision_Floating_Point_Type
1518 (E : Entity_Id) return Boolean;
1519 -- Return whether E is a double precision floating point type,
1520 -- characterized by:
1521 -- . machine_radix = 2
1522 -- . machine_mantissa = 53
1523 -- . machine_emax = 2**10
1524 -- . machine_emin = 3 - machine_emax
1526 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1527 -- Determine whether a type or object denoted by entity Id is effectively
1528 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1529 -- * Volatile
1530 -- * An array type subject to aspect Volatile_Components
1531 -- * An array type whose component type is effectively volatile
1532 -- * A protected type
1533 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1535 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1536 -- Determine whether an arbitrary node denotes an effectively volatile
1537 -- object (SPARK RM 7.1.2).
1539 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1540 -- Determine whether entity Id is the body entity of an entry [family]
1542 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1543 -- Determine whether entity Id is the spec entity of an entry [family]
1545 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1546 -- Check whether a function in a call is an expanded priority attribute,
1547 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1548 -- does not take place in a configurable runtime.
1550 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1551 -- Determine whether subprogram [body] Subp denotes an expression function
1553 function Is_Expression_Function_Or_Completion
1554 (Subp : Entity_Id) return Boolean;
1555 -- Determine whether subprogram [body] Subp denotes an expression function
1556 -- or is completed by an expression function body.
1558 function Is_EVF_Expression (N : Node_Id) return Boolean;
1559 -- Determine whether node N denotes a reference to a formal parameter of
1560 -- a specific tagged type whose related subprogram is subject to pragma
1561 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1562 -- constructs fall under this category:
1563 -- 1) A qualified expression whose operand is EVF
1564 -- 2) A type conversion whose operand is EVF
1565 -- 3) An if expression with at least one EVF dependent_expression
1566 -- 4) A case expression with at least one EVF dependent_expression
1568 function Is_False (U : Uint) return Boolean;
1569 pragma Inline (Is_False);
1570 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1571 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1572 -- if it is False (i.e. zero).
1574 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1575 -- Returns True iff the number U is a model number of the fixed-point type
1576 -- T, i.e. if it is an exact multiple of Small.
1578 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1579 -- Typ is a type entity. This function returns true if this type is fully
1580 -- initialized, meaning that an object of the type is fully initialized.
1581 -- Note that initialization resulting from use of pragma Normalize_Scalars
1582 -- does not count. Note that this is only used for the purpose of issuing
1583 -- warnings for objects that are potentially referenced uninitialized. This
1584 -- means that the result returned is not crucial, but should err on the
1585 -- side of thinking things are fully initialized if it does not know.
1587 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1588 -- Determine whether arbitrary declaration Decl denotes a generic package,
1589 -- a generic subprogram or a generic body.
1591 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1592 -- E is a subprogram. Return True is E is an implicit operation inherited
1593 -- by a derived type declaration.
1595 function Is_Inherited_Operation_For_Type
1596 (E : Entity_Id;
1597 Typ : Entity_Id) return Boolean;
1598 -- E is a subprogram. Return True is E is an implicit operation inherited
1599 -- by the derived type declaration for type Typ.
1601 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
1602 -- Return True if Subp is an expression function that fulfills all the
1603 -- following requirements for inlining:
1604 -- 1. pragma/aspect Inline_Always
1605 -- 2. No formals
1606 -- 3. No contracts
1607 -- 4. No dispatching primitive
1608 -- 5. Result subtype controlled (or with controlled components)
1609 -- 6. Result subtype not subject to type-invariant checks
1610 -- 7. Result subtype not a class-wide type
1611 -- 8. Return expression naming an object global to the function
1612 -- 9. Nominal subtype of the returned object statically compatible
1613 -- with the result subtype of the expression function.
1615 function Is_Iterator (Typ : Entity_Id) return Boolean;
1616 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1617 -- Ada.Iterator_Interfaces, or it is derived from one.
1619 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1620 -- N is an iterator specification. Returns True iff N is an iterator over
1621 -- an array, either inside a loop of the form 'for X of A' or a quantified
1622 -- expression of the form 'for all/some X of A' where A is of array type.
1624 type Is_LHS_Result is (Yes, No, Unknown);
1625 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1626 -- Returns Yes if N is definitely used as Name in an assignment statement.
1627 -- Returns No if N is definitely NOT used as a Name in an assignment
1628 -- statement. Returns Unknown if we can't tell at this stage (happens in
1629 -- the case where we don't know the type of N yet, and we have something
1630 -- like N.A := 3, where this counts as N being used on the left side of
1631 -- an assignment only if N is not an access type. If it is an access type
1632 -- then it is N.all.A that is assigned, not N.
1634 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1635 -- A library-level declaration is one that is accessible from Standard,
1636 -- i.e. a library unit or an entity declared in a library package.
1638 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1639 -- Determine whether a given type is a limited class-wide type, in which
1640 -- case it needs a Master_Id, because extensions of its designated type
1641 -- may include task components. A class-wide type that comes from a
1642 -- limited view must be treated in the same way.
1644 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1645 -- Determines whether Expr is a reference to a variable or IN OUT mode
1646 -- parameter of the current enclosing subprogram.
1647 -- Why are OUT parameters not considered here ???
1649 function Is_Name_Reference (N : Node_Id) return Boolean;
1650 -- Determine whether arbitrary node N is a reference to a name. This is
1651 -- similar to Is_Object_Reference but returns True only if N can be renamed
1652 -- without the need for a temporary, the typical example of an object not
1653 -- in this category being a function call.
1655 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
1656 -- Determine whether entity Id denotes the procedure that verifies the
1657 -- assertion expression of pragma Default_Initial_Condition and if it does,
1658 -- the encapsulated expression is nontrivial.
1660 function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1661 -- Determine whether T is declared with a null record definition or a
1662 -- null component list.
1664 function Is_Object_Reference (N : Node_Id) return Boolean;
1665 -- Determines if the tree referenced by N represents an object. Both
1666 -- variable and constant objects return True (compare Is_Variable).
1668 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1669 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1670 -- Note that the Is_Variable function is not quite the right test because
1671 -- this is a case in which conversions whose expression is a variable (in
1672 -- the Is_Variable sense) with an untagged type target are considered view
1673 -- conversions and hence variables.
1675 function Is_OK_Volatile_Context
1676 (Context : Node_Id;
1677 Obj_Ref : Node_Id) return Boolean;
1678 -- Determine whether node Context denotes a "non-interfering context" (as
1679 -- defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref can
1680 -- safely reside.
1682 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1683 -- Determine whether aspect specification or pragma Item is one of the
1684 -- following package contract annotations:
1685 -- Abstract_State
1686 -- Initial_Condition
1687 -- Initializes
1688 -- Refined_State
1690 function Is_Partially_Initialized_Type
1691 (Typ : Entity_Id;
1692 Include_Implicit : Boolean := True) return Boolean;
1693 -- Typ is a type entity. This function returns true if this type is partly
1694 -- initialized, meaning that an object of the type is at least partly
1695 -- initialized (in particular in the record case, that at least one
1696 -- component has an initialization expression). Note that initialization
1697 -- resulting from the use of pragma Normalize_Scalars does not count.
1698 -- Include_Implicit controls whether implicit initialization of access
1699 -- values to null, and of discriminant values, is counted as making the
1700 -- type be partially initialized. For the default setting of True, these
1701 -- implicit cases do count, and discriminated types or types containing
1702 -- access values not explicitly initialized will return True. Otherwise
1703 -- if Include_Implicit is False, these cases do not count as making the
1704 -- type be partially initialized.
1706 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1707 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1709 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1710 -- Determines if type T is a potentially persistent type. A potentially
1711 -- persistent type is defined (recursively) as a scalar type, an untagged
1712 -- record whose components are all of a potentially persistent type, or an
1713 -- array with all static constraints whose component type is potentially
1714 -- persistent. A private type is potentially persistent if the full type
1715 -- is potentially persistent.
1717 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1718 -- Return True if node N denotes a protected type name which represents
1719 -- the current instance of a protected object according to RM 9.4(21/2).
1721 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1722 -- Return True if a compilation unit is the specification or the
1723 -- body of a remote call interface package.
1725 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1726 -- Return True if E is a remote access-to-class-wide type
1728 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1729 -- Return True if E is a remote access to subprogram type
1731 function Is_Remote_Call (N : Node_Id) return Boolean;
1732 -- Return True if N denotes a potentially remote call
1734 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1735 -- Return True if Proc_Nam is a procedure renaming of an entry
1737 function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1738 -- Determine whether arbitrary node N denotes a renaming declaration
1740 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1741 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1742 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1744 function Is_Selector_Name (N : Node_Id) return Boolean;
1745 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1746 -- As described in Sinfo, Selector_Names are special because they
1747 -- represent use of the N_Identifier node for a true identifier, when
1748 -- normally such nodes represent a direct name.
1750 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1751 -- Determine whether arbitrary entity Id denotes the anonymous object
1752 -- created for a single protected or single task type.
1754 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1755 -- Determine whether arbitrary entity Id denotes a single protected or
1756 -- single task type.
1758 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1759 -- Determine whether arbitrary node N denotes the declaration of a single
1760 -- protected type or single task type.
1762 function Is_Single_Precision_Floating_Point_Type
1763 (E : Entity_Id) return Boolean;
1764 -- Return whether E is a single precision floating point type,
1765 -- characterized by:
1766 -- . machine_radix = 2
1767 -- . machine_mantissa = 24
1768 -- . machine_emax = 2**7
1769 -- . machine_emin = 3 - machine_emax
1771 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
1772 -- Determine whether arbitrary entity Id denotes the anonymous object
1773 -- created for a single protected type.
1775 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
1776 -- Determine whether arbitrary entity Id denotes the anonymous object
1777 -- created for a single task type.
1779 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1780 -- Determines if the tree referenced by N represents an initialization
1781 -- expression in SPARK 2005, suitable for initializing an object in an
1782 -- object declaration.
1784 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1785 -- Determines if the tree referenced by N represents an object in SPARK
1786 -- 2005. This differs from Is_Object_Reference in that only variables,
1787 -- constants, formal parameters, and selected_components of those are
1788 -- valid objects in SPARK 2005.
1790 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1791 -- Determine whether an arbitrary [private] type is specifically tagged
1793 function Is_Statement (N : Node_Id) return Boolean;
1794 pragma Inline (Is_Statement);
1795 -- Check if the node N is a statement node. Note that this includes
1796 -- the case of procedure call statements (unlike the direct use of
1797 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1798 -- Note that a label is *not* a statement, and will return False.
1800 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
1801 -- Determine whether aspect specification or pragma Item is one of the
1802 -- following subprogram contract annotations:
1803 -- Contract_Cases
1804 -- Depends
1805 -- Extensions_Visible
1806 -- Global
1807 -- Post
1808 -- Post_Class
1809 -- Postcondition
1810 -- Pre
1811 -- Pre_Class
1812 -- Precondition
1813 -- Refined_Depends
1814 -- Refined_Global
1815 -- Refined_Post
1816 -- Test_Case
1818 function Is_Subprogram_Stub_Without_Prior_Declaration
1819 (N : Node_Id) return Boolean;
1820 -- Return True if N is a subprogram stub with no prior subprogram
1821 -- declaration.
1823 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
1824 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
1825 -- in Ada.Synchronous_Task_Control.
1827 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
1828 -- Determine whether entity Id denotes an object and if it does, whether
1829 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
1830 -- such, the object must be
1831 -- * Of a type that yields a synchronized object
1832 -- * An atomic object with enabled Async_Writers
1833 -- * A constant
1834 -- * A variable subject to pragma Constant_After_Elaboration
1836 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1837 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1839 function Is_Transfer (N : Node_Id) return Boolean;
1840 -- Returns True if the node N is a statement which is known to cause an
1841 -- unconditional transfer of control at runtime, i.e. the following
1842 -- statement definitely will not be executed.
1844 function Is_True (U : Uint) return Boolean;
1845 pragma Inline (Is_True);
1846 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1847 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1848 -- if it is True (i.e. non-zero).
1850 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1851 -- Determine whether an arbitrary entity denotes an instance of function
1852 -- Ada.Unchecked_Conversion.
1854 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1855 pragma Inline (Is_Universal_Numeric_Type);
1856 -- True if T is Universal_Integer or Universal_Real
1858 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
1859 -- Determine whether N denotes a reference to a variable which captures the
1860 -- value of an object for validation purposes.
1862 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1863 -- Returns true if E has variable size components
1865 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1866 -- Returns true if E has variable size components
1868 function Is_Variable
1869 (N : Node_Id;
1870 Use_Original_Node : Boolean := True) return Boolean;
1871 -- Determines if the tree referenced by N represents a variable, i.e. can
1872 -- appear on the left side of an assignment. There is one situation (formal
1873 -- parameters) in which untagged type conversions are also considered
1874 -- variables, but Is_Variable returns False for such cases, since it has
1875 -- no knowledge of the context. Note that this is the point at which
1876 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1877 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1878 -- default is True since this routine is commonly invoked as part of the
1879 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1881 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean;
1882 -- Determine whether pragma Default_Initial_Condition denoted by Prag has
1883 -- an assertion expression which should be verified at runtime.
1885 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1886 -- Check whether T is derived from a visibly controlled type. This is true
1887 -- if the root type is declared in Ada.Finalization. If T is derived
1888 -- instead from a private type whose full view is controlled, an explicit
1889 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1890 -- one.
1892 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
1893 -- Determine whether [generic] function Func_Id is subject to enabled
1894 -- pragma Volatile_Function. Protected functions are treated as volatile
1895 -- (SPARK RM 7.1.2).
1897 function Is_Volatile_Object (N : Node_Id) return Boolean;
1898 -- Determines if the given node denotes an volatile object in the sense of
1899 -- the legality checks described in RM C.6(12). Note that the test here is
1900 -- for something actually declared as volatile, not for an object that gets
1901 -- treated as volatile (see Einfo.Treat_As_Volatile).
1903 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1904 -- Applies to Itypes. True if the Itype is attached to a declaration for
1905 -- the type through its Parent field, which may or not be present in the
1906 -- tree.
1908 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1909 -- This procedure is called to clear all constant indications from all
1910 -- entities in the current scope and in any parent scopes if the current
1911 -- scope is a block or a package (and that recursion continues to the top
1912 -- scope that is not a block or a package). This is used when the
1913 -- sequential flow-of-control assumption is violated (occurrence of a
1914 -- label, head of a loop, or start of an exception handler). The effect of
1915 -- the call is to clear the Current_Value field (but we do not need to
1916 -- clear the Is_True_Constant flag, since that only gets reset if there
1917 -- really is an assignment somewhere in the entity scope). This procedure
1918 -- also calls Kill_All_Checks, since this is a special case of needing to
1919 -- forget saved values. This procedure also clears the Is_Known_Null and
1920 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1921 -- parameters since these are also not known to be trustable any more.
1923 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1924 -- fields and leave other fields unchanged. This is used when we encounter
1925 -- an unconditional flow of control change (return, goto, raise). In such
1926 -- cases we don't need to clear the current values, since it may be that
1927 -- the flow of control change occurs in a conditional context, and if it
1928 -- is not taken, then it is just fine to keep the current values. But the
1929 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1930 -- conditional-return, assign-to-v, we do not want to complain that the
1931 -- second assignment clobbers the first.
1933 procedure Kill_Current_Values
1934 (Ent : Entity_Id;
1935 Last_Assignment_Only : Boolean := False);
1936 -- This performs the same processing as described above for the form with
1937 -- no argument, but for the specific entity given. The call has no effect
1938 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1939 -- same meaning as for the call with no Ent.
1941 procedure Kill_Size_Check_Code (E : Entity_Id);
1942 -- Called when an address clause or pragma Import is applied to an entity.
1943 -- If the entity is a variable or a constant, and size check code is
1944 -- present, this size check code is killed, since the object will not be
1945 -- allocated by the program.
1947 function Known_Non_Null (N : Node_Id) return Boolean;
1948 -- Given a node N for a subexpression of an access type, determines if
1949 -- this subexpression yields a value that is known at compile time to
1950 -- be non-null and returns True if so. Returns False otherwise. It is
1951 -- an error to call this function if N is not of an access type.
1953 function Known_Null (N : Node_Id) return Boolean;
1954 -- Given a node N for a subexpression of an access type, determines if this
1955 -- subexpression yields a value that is known at compile time to be null
1956 -- and returns True if so. Returns False otherwise. It is an error to call
1957 -- this function if N is not of an access type.
1959 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1960 -- The node N is an entity reference. This function determines whether the
1961 -- reference is for sure an assignment of the entity, returning True if
1962 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1963 -- direction. Cases which may possibly be assignments but are not known to
1964 -- be may return True from May_Be_Lvalue, but False from this function.
1966 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1967 -- HSS is a handled statement sequence. This function returns the last
1968 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1969 -- such statement exists, Empty is returned.
1971 function Matching_Static_Array_Bounds
1972 (L_Typ : Node_Id;
1973 R_Typ : Node_Id) return Boolean;
1974 -- L_Typ and R_Typ are two array types. Returns True when they have the
1975 -- same number of dimensions, and the same static bounds for each index
1976 -- position.
1978 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1979 -- Given a node which designates the context of analysis and an origin in
1980 -- the tree, traverse from Root_Nod and mark all allocators as either
1981 -- dynamic or static depending on Context_Nod. Any incorrect marking is
1982 -- cleaned up during resolution.
1984 function May_Be_Lvalue (N : Node_Id) return Boolean;
1985 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1986 -- An lvalue is defined as any expression which appears in a context where
1987 -- a name is required by the syntax, and the identity, rather than merely
1988 -- the value of the node is needed (for example, the prefix of an Access
1989 -- attribute is in this category). Note that, as implied by the name, this
1990 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1991 -- it returns True. It tries hard to get the answer right, but it is hard
1992 -- to guarantee this in all cases. Note that it is more possible to give
1993 -- correct answer if the tree is fully analyzed.
1995 function Might_Raise (N : Node_Id) return Boolean;
1996 -- True if evaluation of N might raise an exception. This is conservative;
1997 -- if we're not sure, we return True. If N is a subprogram body, this is
1998 -- about whether execution of that body can raise.
2000 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2001 -- Return the entity of the nearest enclosing instance which encapsulates
2002 -- entity E. If no such instance exits, return Empty.
2004 function Needs_One_Actual (E : Entity_Id) return Boolean;
2005 -- Returns True if a function has defaults for all but its first
2006 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
2007 -- results from an indexing of a function call written in prefix form.
2009 function New_Copy_List_Tree (List : List_Id) return List_Id;
2010 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2011 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2012 -- nodes (entities) either directly or indirectly using this function.
2014 function New_Copy_Tree
2015 (Source : Node_Id;
2016 Map : Elist_Id := No_Elist;
2017 New_Sloc : Source_Ptr := No_Location;
2018 New_Scope : Entity_Id := Empty) return Node_Id;
2019 -- Given a node that is the root of a subtree, New_Copy_Tree copies the
2020 -- entire syntactic subtree, including recursively any descendants whose
2021 -- parent field references a copied node (descendants not linked to a
2022 -- copied node by the parent field are not copied, instead the copied tree
2023 -- references the same descendant as the original in this case, which is
2024 -- appropriate for non-syntactic fields such as Etype). The parent pointers
2025 -- in the copy are properly set. New_Copy_Tree (Empty/Error) returns
2026 -- Empty/Error. The one exception to the rule of not copying semantic
2027 -- fields is that any implicit types attached to the subtree are
2028 -- duplicated, so that the copy contains a distinct set of implicit type
2029 -- entities. Thus this function is used when it is necessary to duplicate
2030 -- an analyzed tree, declared in the same or some other compilation unit.
2031 -- This function is declared here rather than in atree because it uses
2032 -- semantic information in particular concerning the structure of itypes
2033 -- and the generation of public symbols.
2035 -- The Map argument, if set to a non-empty Elist, specifies a set of
2036 -- mappings to be applied to entities in the tree. The map has the form:
2038 -- old entity 1
2039 -- new entity to replace references to entity 1
2040 -- old entity 2
2041 -- new entity to replace references to entity 2
2042 -- ...
2044 -- The call destroys the contents of Map in this case
2046 -- The parameter New_Sloc, if set to a value other than No_Location, is
2047 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
2048 -- set to its default value No_Location, then the Sloc values of the
2049 -- nodes in the copy are simply copied from the corresponding original.
2051 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
2052 -- the default No_Location value, but is reset if New_Sloc is given, since
2053 -- in this case the result clearly is neither a source node or an exact
2054 -- copy of a source node.
2056 -- The parameter New_Scope, if set to a value other than Empty, is the
2057 -- value to use as the Scope for any Itypes that are copied. The most
2058 -- typical value for this parameter, if given, is Current_Scope.
2060 function New_External_Entity
2061 (Kind : Entity_Kind;
2062 Scope_Id : Entity_Id;
2063 Sloc_Value : Source_Ptr;
2064 Related_Id : Entity_Id;
2065 Suffix : Character;
2066 Suffix_Index : Nat := 0;
2067 Prefix : Character := ' ') return Entity_Id;
2068 -- This function creates an N_Defining_Identifier node for an internal
2069 -- created entity, such as an implicit type or subtype, or a record
2070 -- initialization procedure. The entity name is constructed with a call
2071 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2072 -- that the generated name may be referenced as a public entry, and the
2073 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2074 -- entity is for a type or subtype, the size/align fields are initialized
2075 -- to unknown (Uint_0).
2077 function New_Internal_Entity
2078 (Kind : Entity_Kind;
2079 Scope_Id : Entity_Id;
2080 Sloc_Value : Source_Ptr;
2081 Id_Char : Character) return Entity_Id;
2082 -- This function is similar to New_External_Entity, except that the
2083 -- name is constructed by New_Internal_Name (Id_Char). This is used
2084 -- when the resulting entity does not have to be referenced as a
2085 -- public entity (and in this case Is_Public is not set).
2087 procedure Next_Actual (Actual_Id : in out Node_Id);
2088 pragma Inline (Next_Actual);
2089 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2090 -- inline this procedural form, but not the functional form that follows.
2092 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2093 -- Find next actual parameter in declaration order. As described for
2094 -- First_Actual, this is the next actual in the declaration order, not
2095 -- the call order, so this does not correspond to simply taking the
2096 -- next entry of the Parameter_Associations list. The argument is an
2097 -- actual previously returned by a call to First_Actual or Next_Actual.
2098 -- Note that the result produced is always an expression, not a parameter
2099 -- association node, even if named notation was used.
2101 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2102 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2104 procedure Normalize_Actuals
2105 (N : Node_Id;
2106 S : Entity_Id;
2107 Report : Boolean;
2108 Success : out Boolean);
2109 -- Reorders lists of actuals according to names of formals, value returned
2110 -- in Success indicates success of reordering. For more details, see body.
2111 -- Errors are reported only if Report is set to True.
2113 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2114 -- This routine is called if the sub-expression N maybe the target of
2115 -- an assignment (e.g. it is the left side of an assignment, used as
2116 -- an out parameters, or used as prefixes of access attributes). It
2117 -- sets May_Be_Modified in the associated entity if there is one,
2118 -- taking into account the rule that in the case of renamed objects,
2119 -- it is the flag in the renamed object that must be set.
2121 -- The parameter Sure is set True if the modification is sure to occur
2122 -- (e.g. target of assignment, or out parameter), and to False if the
2123 -- modification is only potential (e.g. address of entity taken).
2125 function Null_To_Null_Address_Convert_OK
2126 (N : Node_Id;
2127 Typ : Entity_Id := Empty) return Boolean;
2128 -- Return True if we are compiling in relaxed RM semantics mode and:
2129 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2130 -- 2) N is a comparison operator, one of the operands is null, and the
2131 -- type of the other operand is a descendant of System.Address.
2133 function Object_Access_Level (Obj : Node_Id) return Uint;
2134 -- Return the accessibility level of the view of the object Obj. For
2135 -- convenience, qualified expressions applied to object names are also
2136 -- allowed as actuals for this function.
2138 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2139 -- Retrieve the name of aspect or pragma N taking into account a possible
2140 -- rewrite and whether the pragma is generated from an aspect as the names
2141 -- may be different. The routine also deals with 'Class in which case it
2142 -- returns the following values:
2144 -- Invariant -> Name_uInvariant
2145 -- Post'Class -> Name_uPost
2146 -- Pre'Class -> Name_uPre
2147 -- Type_Invariant -> Name_uType_Invariant
2148 -- Type_Invariant'Class -> Name_uType_Invariant
2150 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2151 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2152 -- or overrides an inherited dispatching primitive S2, the original
2153 -- corresponding operation of S is the original corresponding operation of
2154 -- S2. Otherwise, it is S itself.
2156 procedure Output_Entity (Id : Entity_Id);
2157 -- Print entity Id to standard output. The name of the entity appears in
2158 -- fully qualified form.
2160 -- WARNING: this routine should be used in debugging scenarios such as
2161 -- tracking down undefined symbols as it is fairly low level.
2163 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2164 -- Print name Nam to standard output. The name appears in fully qualified
2165 -- form assuming it appears in scope Scop. Note that this may not reflect
2166 -- the final qualification as the entity which carries the name may be
2167 -- relocated to a different scope.
2169 -- WARNING: this routine should be used in debugging scenarios such as
2170 -- tracking down undefined symbols as it is fairly low level.
2172 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2173 -- Given a policy, return the policy identifier associated with it. If no
2174 -- such policy is in effect, the value returned is No_Name.
2176 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2177 -- Subp is the entity for a subprogram call. This function returns True if
2178 -- predicate tests are required for the arguments in this call (this is the
2179 -- normal case). It returns False for special cases where these predicate
2180 -- tests should be skipped (see body for details).
2182 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2183 -- Returns True if the names of both entities correspond with matching
2184 -- primitives. This routine includes support for the case in which one
2185 -- or both entities correspond with entities built by Derive_Subprogram
2186 -- with a special name to avoid being overridden (i.e. return true in case
2187 -- of entities with names "nameP" and "name" or vice versa).
2189 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2190 -- Returns some private component (if any) of the given Type_Id.
2191 -- Used to enforce the rules on visibility of operations on composite
2192 -- types, that depend on the full view of the component type. For a
2193 -- record type there may be several such components, we just return
2194 -- the first one.
2196 procedure Process_End_Label
2197 (N : Node_Id;
2198 Typ : Character;
2199 Ent : Entity_Id);
2200 -- N is a node whose End_Label is to be processed, generating all
2201 -- appropriate cross-reference entries, and performing style checks
2202 -- for any identifier references in the end label. Typ is either
2203 -- 'e' or 't indicating the type of the cross-reference entity
2204 -- (e for spec, t for body, see Lib.Xref spec for details). The
2205 -- parameter Ent gives the entity to which the End_Label refers,
2206 -- and to which cross-references are to be generated.
2208 procedure Propagate_Concurrent_Flags
2209 (Typ : Entity_Id;
2210 Comp_Typ : Entity_Id);
2211 -- Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2212 -- are set on Comp_Typ. This follows the definition of these flags which
2213 -- are set (recursively) on any composite type which has a component marked
2214 -- by one of these flags. This procedure can only set flags for Typ, and
2215 -- never clear them. Comp_Typ is the type of a component or a parent.
2217 procedure Propagate_DIC_Attributes
2218 (Typ : Entity_Id;
2219 From_Typ : Entity_Id);
2220 -- Inherit all Default_Initial_Condition-related attributes from type
2221 -- From_Typ. Typ is the destination type.
2223 procedure Propagate_Invariant_Attributes
2224 (Typ : Entity_Id;
2225 From_Typ : Entity_Id);
2226 -- Inherit all invariant-related attributes form type From_Typ. Typ is the
2227 -- destination type.
2229 procedure Record_Possible_Part_Of_Reference
2230 (Var_Id : Entity_Id;
2231 Ref : Node_Id);
2232 -- Save reference Ref to variable Var_Id when the variable is subject to
2233 -- pragma Part_Of. If the variable is known to be a constituent of a single
2234 -- protected/task type, the legality of the reference is verified and the
2235 -- save does not take place.
2237 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2238 -- Determine whether entity Id is referenced within expression Expr
2240 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2241 -- Returns True if the expression Expr contains any references to a generic
2242 -- type. This can only happen within a generic template.
2244 procedure Remove_Homonym (E : Entity_Id);
2245 -- Removes E from the homonym chain
2247 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2248 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2249 -- the primitive operations list of the associated controlling type. NOTE:
2250 -- the removal performed by this routine does not affect the visibility of
2251 -- existing homonyms.
2253 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2254 -- Returns the name of E without Suffix
2256 procedure Replace_Null_By_Null_Address (N : Node_Id);
2257 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2258 -- RM semantics mode, and one of the operands is null. Replace null with
2259 -- System.Null_Address.
2261 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2262 -- This is used to construct the second argument in a call to Rep_To_Pos
2263 -- which is Standard_True if range checks are enabled (E is an entity to
2264 -- which the Range_Checks_Suppressed test is applied), and Standard_False
2265 -- if range checks are suppressed. Loc is the location for the node that
2266 -- is returned (which is a New_Occurrence of the appropriate entity).
2268 -- Note: one might think that it would be fine to always use True and
2269 -- to ignore the suppress in this case, but it is generally better to
2270 -- believe a request to suppress exceptions if possible, and further
2271 -- more there is at least one case in the generated code (the code for
2272 -- array assignment in a loop) that depends on this suppression.
2274 procedure Require_Entity (N : Node_Id);
2275 -- N is a node which should have an entity value if it is an entity name.
2276 -- If not, then check if there were previous errors. If so, just fill
2277 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2278 -- This is used as a defense mechanism against ill-formed trees caused by
2279 -- previous errors (particularly in -gnatq mode).
2281 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2282 -- Id is a type entity. The result is True when temporaries of this type
2283 -- need to be wrapped in a transient scope to be reclaimed properly when a
2284 -- secondary stack is in use. Examples of types requiring such wrapping are
2285 -- controlled types and variable-sized types including unconstrained
2286 -- arrays.
2288 procedure Reset_Analyzed_Flags (N : Node_Id);
2289 -- Reset the Analyzed flags in all nodes of the tree whose root is N
2291 procedure Restore_SPARK_Mode
2292 (Mode : SPARK_Mode_Type;
2293 Prag : Node_Id);
2294 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2295 -- routine must be used in tandem with Set_SPARK_Mode.
2297 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2298 -- Return true if Subp is a function that returns an unconstrained type
2300 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2301 -- Similar to attribute Root_Type, but this version always follows the
2302 -- Full_View of a private type (if available) while searching for the
2303 -- ultimate derivation ancestor.
2305 function Safe_To_Capture_Value
2306 (N : Node_Id;
2307 Ent : Entity_Id;
2308 Cond : Boolean := False) return Boolean;
2309 -- The caller is interested in capturing a value (either the current value,
2310 -- or an indication that the value is non-null) for the given entity Ent.
2311 -- This value can only be captured if sequential execution semantics can be
2312 -- properly guaranteed so that a subsequent reference will indeed be sure
2313 -- that this current value indication is correct. The node N is the
2314 -- construct which resulted in the possible capture of the value (this
2315 -- is used to check if we are in a conditional).
2317 -- Cond is used to skip the test for being inside a conditional. It is used
2318 -- in the case of capturing values from if/while tests, which already do a
2319 -- proper job of handling scoping issues without this help.
2321 -- The only entities whose values can be captured are OUT and IN OUT formal
2322 -- parameters, and variables unless Cond is True, in which case we also
2323 -- allow IN formals, loop parameters and constants, where we cannot ever
2324 -- capture actual value information, but we can capture conditional tests.
2326 function Same_Name (N1, N2 : Node_Id) return Boolean;
2327 -- Determine if two (possibly expanded) names are the same name. This is
2328 -- a purely syntactic test, and N1 and N2 need not be analyzed.
2330 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2331 -- Determine if Node1 and Node2 are known to designate the same object.
2332 -- This is a semantic test and both nodes must be fully analyzed. A result
2333 -- of True is decisively correct. A result of False does not necessarily
2334 -- mean that different objects are designated, just that this could not
2335 -- be reliably determined at compile time.
2337 function Same_Type (T1, T2 : Entity_Id) return Boolean;
2338 -- Determines if T1 and T2 represent exactly the same type. Two types
2339 -- are the same if they are identical, or if one is an unconstrained
2340 -- subtype of the other, or they are both common subtypes of the same
2341 -- type with identical constraints. The result returned is conservative.
2342 -- It is True if the types are known to be the same, but a result of
2343 -- False is indecisive (e.g. the compiler may not be able to tell that
2344 -- two constraints are identical).
2346 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2347 -- Determines if Node1 and Node2 are known to be the same value, which is
2348 -- true if they are both compile time known values and have the same value,
2349 -- or if they are the same object (in the sense of function Same_Object).
2350 -- A result of False does not necessarily mean they have different values,
2351 -- just that it is not possible to determine they have the same value.
2353 function Scalar_Part_Present (T : Entity_Id) return Boolean;
2354 -- Tests if type T can be determined at compile time to have at least one
2355 -- scalar part in the sense of the Valid_Scalars attribute. Returns True if
2356 -- this is the case, and False if no scalar parts are present (meaning that
2357 -- the result of Valid_Scalars applied to T is always vacuously True).
2359 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
2360 -- Determines if the entity Scope1 is the same as Scope2, or if it is
2361 -- inside it, where both entities represent scopes. Note that scopes
2362 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
2363 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
2365 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
2366 -- Like Scope_Within_Or_Same, except that this function returns
2367 -- False in the case where Scope1 and Scope2 are the same scope.
2369 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2370 -- Same as Basic_Set_Convention, but with an extra check for access types.
2371 -- In particular, if E is an access-to-subprogram type, and Val is a
2372 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
2373 -- Also, if the Etype of E is set and is an anonymous access type with
2374 -- no convention set, this anonymous type inherits the convention of E.
2376 procedure Set_Current_Entity (E : Entity_Id);
2377 pragma Inline (Set_Current_Entity);
2378 -- Establish the entity E as the currently visible definition of its
2379 -- associated name (i.e. the Node_Id associated with its name).
2381 procedure Set_Debug_Info_Needed (T : Entity_Id);
2382 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
2383 -- that are needed by T (for an object, the type of the object is needed,
2384 -- and for a type, various subsidiary types are needed -- see body for
2385 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
2386 -- This routine should always be used instead of Set_Needs_Debug_Info to
2387 -- ensure that subsidiary entities are properly handled.
2389 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2390 -- This procedure has the same calling sequence as Set_Entity, but it
2391 -- performs additional checks as follows:
2393 -- If Style_Check is set, then it calls a style checking routine which
2394 -- can check identifier spelling style. This procedure also takes care
2395 -- of checking the restriction No_Implementation_Identifiers.
2397 -- If restriction No_Abort_Statements is set, then it checks that the
2398 -- entity is not Ada.Task_Identification.Abort_Task.
2400 -- If restriction No_Dynamic_Attachment is set, then it checks that the
2401 -- entity is not one of the restricted names for this restriction.
2403 -- If restriction No_Long_Long_Integers is set, then it checks that the
2404 -- entity is not Standard.Long_Long_Integer.
2406 -- If restriction No_Implementation_Identifiers is set, then it checks
2407 -- that the entity is not implementation defined.
2409 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2410 pragma Inline (Set_Name_Entity_Id);
2411 -- Sets the Entity_Id value associated with the given name, which is the
2412 -- Id of the innermost visible entity with the given name. See the body
2413 -- of package Sem_Ch8 for further details on the handling of visibility.
2415 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2416 -- The arguments may be parameter associations, whose descendants
2417 -- are the optional formal name and the actual parameter. Positional
2418 -- parameters are already members of a list, and do not need to be
2419 -- chained separately. See also First_Actual and Next_Actual.
2421 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2422 pragma Inline (Set_Optimize_Alignment_Flags);
2423 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
2425 procedure Set_Public_Status (Id : Entity_Id);
2426 -- If an entity (visible or otherwise) is defined in a library
2427 -- package, or a package that is itself public, then this subprogram
2428 -- labels the entity public as well.
2430 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2431 -- N is the node for either a left hand side (Out_Param set to False),
2432 -- or an Out or In_Out parameter (Out_Param set to True). If there is
2433 -- an assignable entity being referenced, then the appropriate flag
2434 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2435 -- if Out_Param is True) is set True, and the other flag set False.
2437 procedure Set_Scope_Is_Transient (V : Boolean := True);
2438 -- Set the flag Is_Transient of the current scope
2440 procedure Set_Size_Info (T1, T2 : Entity_Id);
2441 pragma Inline (Set_Size_Info);
2442 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
2443 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2444 -- in the fixed-point and discrete cases, and also copies the alignment
2445 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
2446 -- separately set if this is required to be copied also.
2448 procedure Set_SPARK_Mode (Context : Entity_Id);
2449 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
2450 -- a subprogram denoted by Context. This routine must be used in tandem
2451 -- with Restore_SPARK_Mode.
2453 function Scope_Is_Transient return Boolean;
2454 -- True if the current scope is transient
2456 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
2457 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
2458 -- True if we should ignore pragmas with the specified name. In particular,
2459 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
2460 -- predefined unit. The _Par version should be called only from the parser;
2461 -- the _Sem version should be called only during semantic analysis.
2463 function Static_Boolean (N : Node_Id) return Uint;
2464 -- This function analyzes the given expression node and then resolves it
2465 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2466 -- returned corresponding to the value, otherwise an error message is
2467 -- output and No_Uint is returned.
2469 function Static_Integer (N : Node_Id) return Uint;
2470 -- This function analyzes the given expression node and then resolves it
2471 -- as any integer type. If the result is static, then the value of the
2472 -- universal expression is returned, otherwise an error message is output
2473 -- and a value of No_Uint is returned.
2475 function Statically_Different (E1, E2 : Node_Id) return Boolean;
2476 -- Return True if it can be statically determined that the Expressions
2477 -- E1 and E2 refer to different objects
2479 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2480 -- Determine whether node N is a loop statement subject to at least one
2481 -- 'Loop_Entry attribute.
2483 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2484 -- Return the accessibility level of the view denoted by Subp
2486 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2487 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2488 -- Typ is properly sized and aligned).
2490 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2491 -- Print debugging information on entry to each unit being analyzed
2493 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2494 -- Move a list of entities from one scope to another, and recompute
2495 -- Is_Public based upon the new scope.
2497 function Type_Access_Level (Typ : Entity_Id) return Uint;
2498 -- Return the accessibility level of Typ
2500 function Type_Without_Stream_Operation
2501 (T : Entity_Id;
2502 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2503 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2504 -- is active then we cannot generate stream subprograms for composite types
2505 -- with elementary subcomponents that lack user-defined stream subprograms.
2506 -- This predicate determines whether a type has such an elementary
2507 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2508 -- prevents the construction of a composite stream operation. If Op is
2509 -- specified we check only for the given stream operation.
2511 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2512 -- Return the entity which represents declaration N, so that different
2513 -- views of the same entity have the same unique defining entity:
2514 -- * private view and full view of a deferred constant
2515 -- --> full view
2516 -- * entry spec and entry body
2517 -- --> entry spec
2518 -- * formal parameter on spec and body
2519 -- --> formal parameter on spec
2520 -- * package spec, body, and body stub
2521 -- --> package spec
2522 -- * protected type, protected body, and protected body stub
2523 -- --> protected type (full view if private)
2524 -- * subprogram spec, body, and body stub
2525 -- --> subprogram spec
2526 -- * task type, task body, and task body stub
2527 -- --> task type (full view if private)
2528 -- * private or incomplete view and full view of a type
2529 -- --> full view
2530 -- In other cases, return the defining entity for N.
2532 function Unique_Entity (E : Entity_Id) return Entity_Id;
2533 -- Return the unique entity for entity E, which would be returned by
2534 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
2536 function Unique_Name (E : Entity_Id) return String;
2537 -- Return a unique name for entity E, which could be used to identify E
2538 -- across compilation units.
2540 function Unit_Is_Visible (U : Entity_Id) return Boolean;
2541 -- Determine whether a compilation unit is visible in the current context,
2542 -- because there is a with_clause that makes the unit available. Used to
2543 -- provide better messages on common visiblity errors on operators.
2545 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2546 -- Yields Universal_Integer or Universal_Real if this is a candidate
2548 function Unqualify (Expr : Node_Id) return Node_Id;
2549 pragma Inline (Unqualify);
2550 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2551 -- returns X. If Expr is not a qualified expression, returns Expr.
2553 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2554 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2555 -- of a type extension or private extension declaration. If the full-view
2556 -- of private parents and progenitors is available then it is used to
2557 -- generate the list of visible ancestors; otherwise their partial
2558 -- view is added to the resulting list.
2560 function Within_Init_Proc return Boolean;
2561 -- Determines if Current_Scope is within an init proc
2563 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2564 -- Returns True if entity E is declared within scope S
2566 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2567 -- Output error message for incorrectly typed expression. Expr is the node
2568 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2569 -- and Expected_Type is the entity for the expected type. Note that Expr
2570 -- does not have to be a subexpression, anything with an Etype field may
2571 -- be used.
2573 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2574 -- Determine whether type Typ "yields synchronized object" as specified by
2575 -- SPARK RM 9.1. To qualify as such, a type must be
2576 -- * An array type whose element type yields a synchronized object
2577 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2578 -- * A protected type
2579 -- * A record type or type extension without defaulted discriminants
2580 -- whose components are of a type that yields a synchronized object.
2581 -- * A synchronized interface type
2582 -- * A task type
2584 function Yields_Universal_Type (N : Node_Id) return Boolean;
2585 -- Determine whether unanalyzed node N yields a universal type
2587 end Sem_Util;