i386: move alignment defaults to processor_costs.
[official-gcc.git] / gcc / config / i386 / i386.h
blob01eba5dd01fba83c6624d5388af3c5ac7a4310b6
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
40 /* Redefines for option macros. */
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75 #define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
76 #define TARGET_AVX512BW TARGET_ISA_AVX512BW
77 #define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
78 #define TARGET_AVX512VL TARGET_ISA_AVX512VL
79 #define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
80 #define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81 #define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
82 #define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83 #define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
84 #define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85 #define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86 #define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87 #define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
88 #define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89 #define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
90 #define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91 #define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
92 #define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93 #define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
94 #define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95 #define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
96 #define TARGET_FMA TARGET_ISA_FMA
97 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
98 #define TARGET_SSE4A TARGET_ISA_SSE4A
99 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
100 #define TARGET_FMA4 TARGET_ISA_FMA4
101 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
102 #define TARGET_XOP TARGET_ISA_XOP
103 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
104 #define TARGET_LWP TARGET_ISA_LWP
105 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
106 #define TARGET_ABM TARGET_ISA_ABM
107 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
108 #define TARGET_PCONFIG TARGET_ISA_PCONFIG
109 #define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
110 #define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
111 #define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
112 #define TARGET_SGX TARGET_ISA_SGX
113 #define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
114 #define TARGET_RDPID TARGET_ISA_RDPID
115 #define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
116 #define TARGET_GFNI TARGET_ISA_GFNI
117 #define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
118 #define TARGET_VAES TARGET_ISA_VAES
119 #define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
120 #define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
121 #define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
122 #define TARGET_BMI TARGET_ISA_BMI
123 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
124 #define TARGET_BMI2 TARGET_ISA_BMI2
125 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
126 #define TARGET_LZCNT TARGET_ISA_LZCNT
127 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
128 #define TARGET_TBM TARGET_ISA_TBM
129 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
130 #define TARGET_POPCNT TARGET_ISA_POPCNT
131 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
132 #define TARGET_SAHF TARGET_ISA_SAHF
133 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
134 #define TARGET_MOVBE TARGET_ISA_MOVBE
135 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
136 #define TARGET_CRC32 TARGET_ISA_CRC32
137 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
138 #define TARGET_AES TARGET_ISA_AES
139 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
140 #define TARGET_SHA TARGET_ISA_SHA
141 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
142 #define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
143 #define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
144 #define TARGET_CLZERO TARGET_ISA_CLZERO
145 #define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
146 #define TARGET_XSAVEC TARGET_ISA_XSAVEC
147 #define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
148 #define TARGET_XSAVES TARGET_ISA_XSAVES
149 #define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
150 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
151 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
152 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
153 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
154 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
155 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
156 #define TARGET_RDRND TARGET_ISA_RDRND
157 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
158 #define TARGET_F16C TARGET_ISA_F16C
159 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
160 #define TARGET_RTM TARGET_ISA_RTM
161 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
162 #define TARGET_HLE TARGET_ISA_HLE
163 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
164 #define TARGET_RDSEED TARGET_ISA_RDSEED
165 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
166 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
167 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
168 #define TARGET_ADX TARGET_ISA_ADX
169 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
170 #define TARGET_FXSR TARGET_ISA_FXSR
171 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
172 #define TARGET_XSAVE TARGET_ISA_XSAVE
173 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
174 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
175 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
176 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
177 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
178 #define TARGET_CLWB TARGET_ISA_CLWB
179 #define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
180 #define TARGET_MWAITX TARGET_ISA_MWAITX
181 #define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
182 #define TARGET_PKU TARGET_ISA_PKU
183 #define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
184 #define TARGET_SHSTK TARGET_ISA_SHSTK
185 #define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
186 #define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
187 #define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
188 #define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
189 #define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
190 #define TARGET_WAITPKG TARGET_ISA_WAITPKG
191 #define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
192 #define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
193 #define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
195 #define TARGET_LP64 TARGET_ABI_64
196 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
197 #define TARGET_X32 TARGET_ABI_X32
198 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
199 #define TARGET_16BIT TARGET_CODE16
200 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
202 #include "config/vxworks-dummy.h"
204 #include "config/i386/i386-opts.h"
206 #define MAX_STRINGOP_ALGS 4
208 /* Specify what algorithm to use for stringops on known size.
209 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
210 known at compile time or estimated via feedback, the SIZE array
211 is walked in order until MAX is greater then the estimate (or -1
212 means infinity). Corresponding ALG is used then.
213 When NOALIGN is true the code guaranting the alignment of the memory
214 block is skipped.
216 For example initializer:
217 {{256, loop}, {-1, rep_prefix_4_byte}}
218 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
219 be used otherwise. */
220 struct stringop_algs
222 const enum stringop_alg unknown_size;
223 const struct stringop_strategy {
224 const int max;
225 const enum stringop_alg alg;
226 int noalign;
227 } size [MAX_STRINGOP_ALGS];
230 /* Define the specific costs for a given cpu */
232 struct processor_costs {
233 const int add; /* cost of an add instruction */
234 const int lea; /* cost of a lea instruction */
235 const int shift_var; /* variable shift costs */
236 const int shift_const; /* constant shift costs */
237 const int mult_init[5]; /* cost of starting a multiply
238 in QImode, HImode, SImode, DImode, TImode*/
239 const int mult_bit; /* cost of multiply per each bit set */
240 const int divide[5]; /* cost of a divide/mod
241 in QImode, HImode, SImode, DImode, TImode*/
242 int movsx; /* The cost of movsx operation. */
243 int movzx; /* The cost of movzx operation. */
244 const int large_insn; /* insns larger than this cost more */
245 const int move_ratio; /* The threshold of number of scalar
246 memory-to-memory move insns. */
247 const int movzbl_load; /* cost of loading using movzbl */
248 const int int_load[3]; /* cost of loading integer registers
249 in QImode, HImode and SImode relative
250 to reg-reg move (2). */
251 const int int_store[3]; /* cost of storing integer register
252 in QImode, HImode and SImode */
253 const int fp_move; /* cost of reg,reg fld/fst */
254 const int fp_load[3]; /* cost of loading FP register
255 in SFmode, DFmode and XFmode */
256 const int fp_store[3]; /* cost of storing FP register
257 in SFmode, DFmode and XFmode */
258 const int mmx_move; /* cost of moving MMX register. */
259 const int mmx_load[2]; /* cost of loading MMX register
260 in SImode and DImode */
261 const int mmx_store[2]; /* cost of storing MMX register
262 in SImode and DImode */
263 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
264 zmm_move;
265 const int sse_load[5]; /* cost of loading SSE register
266 in 32bit, 64bit, 128bit, 256bit and 512bit */
267 const int sse_unaligned_load[5];/* cost of unaligned load. */
268 const int sse_store[5]; /* cost of storing SSE register
269 in SImode, DImode and TImode. */
270 const int sse_unaligned_store[5];/* cost of unaligned store. */
271 const int mmxsse_to_integer; /* cost of moving mmxsse register to
272 integer. */
273 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */
274 const int gather_static, gather_per_elt; /* Cost of gather load is computed
275 as static + per_item * nelts. */
276 const int scatter_static, scatter_per_elt; /* Cost of gather store is
277 computed as static + per_item * nelts. */
278 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
279 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
280 const int prefetch_block; /* bytes moved to cache for prefetch. */
281 const int simultaneous_prefetches; /* number of parallel prefetch
282 operations. */
283 const int branch_cost; /* Default value for BRANCH_COST. */
284 const int fadd; /* cost of FADD and FSUB instructions. */
285 const int fmul; /* cost of FMUL instruction. */
286 const int fdiv; /* cost of FDIV instruction. */
287 const int fabs; /* cost of FABS instruction. */
288 const int fchs; /* cost of FCHS instruction. */
289 const int fsqrt; /* cost of FSQRT instruction. */
290 /* Specify what algorithm
291 to use for stringops on unknown size. */
292 const int sse_op; /* cost of cheap SSE instruction. */
293 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
294 const int mulss; /* cost of MULSS instructions. */
295 const int mulsd; /* cost of MULSD instructions. */
296 const int fmass; /* cost of FMASS instructions. */
297 const int fmasd; /* cost of FMASD instructions. */
298 const int divss; /* cost of DIVSS instructions. */
299 const int divsd; /* cost of DIVSD instructions. */
300 const int sqrtss; /* cost of SQRTSS instructions. */
301 const int sqrtsd; /* cost of SQRTSD instructions. */
302 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
303 /* Specify reassociation width for integer,
304 fp, vector integer and vector fp
305 operations. Generally should correspond
306 to number of instructions executed in
307 parallel. See also
308 ix86_reassociation_width. */
309 struct stringop_algs *memcpy, *memset;
310 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
311 cost model. */
312 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
313 vectorizer cost model. */
315 /* The "0:0:8" label alignment specified for some processors generates
316 secondary 8-byte alignment only for those label/jump/loop targets
317 which have primary alignment. */
318 const char *const align_loop; /* Loop alignment. */
319 const char *const align_jump; /* Jump alignment. */
320 const char *const align_label; /* Label alignment. */
321 const char *const align_func; /* Function alignment. */
324 extern const struct processor_costs *ix86_cost;
325 extern const struct processor_costs ix86_size_cost;
327 #define ix86_cur_cost() \
328 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
330 /* Macros used in the machine description to test the flags. */
332 /* configure can arrange to change it. */
334 #ifndef TARGET_CPU_DEFAULT
335 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
336 #endif
338 #ifndef TARGET_FPMATH_DEFAULT
339 #define TARGET_FPMATH_DEFAULT \
340 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
341 #endif
343 #ifndef TARGET_FPMATH_DEFAULT_P
344 #define TARGET_FPMATH_DEFAULT_P(x) \
345 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
346 #endif
348 /* If the i387 is disabled or -miamcu is used , then do not return
349 values in it. */
350 #define TARGET_FLOAT_RETURNS_IN_80387 \
351 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
352 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
353 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
355 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
356 compile-time constant. */
357 #ifdef IN_LIBGCC2
358 #undef TARGET_64BIT
359 #ifdef __x86_64__
360 #define TARGET_64BIT 1
361 #else
362 #define TARGET_64BIT 0
363 #endif
364 #else
365 #ifndef TARGET_BI_ARCH
366 #undef TARGET_64BIT
367 #undef TARGET_64BIT_P
368 #if TARGET_64BIT_DEFAULT
369 #define TARGET_64BIT 1
370 #define TARGET_64BIT_P(x) 1
371 #else
372 #define TARGET_64BIT 0
373 #define TARGET_64BIT_P(x) 0
374 #endif
375 #endif
376 #endif
378 #define HAS_LONG_COND_BRANCH 1
379 #define HAS_LONG_UNCOND_BRANCH 1
381 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
382 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
383 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
384 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
385 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
386 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
387 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
388 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
389 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
390 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
391 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
392 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
393 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
394 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
395 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
396 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
397 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
398 #define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
399 #define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
400 #define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
401 #define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
402 #define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
403 #define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
404 #define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
405 #define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
406 #define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
407 #define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
408 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
409 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
410 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
411 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
412 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
413 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
414 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
415 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
416 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
417 #define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
419 /* Feature tests against the various tunings. */
420 enum ix86_tune_indices {
421 #undef DEF_TUNE
422 #define DEF_TUNE(tune, name, selector) tune,
423 #include "x86-tune.def"
424 #undef DEF_TUNE
425 X86_TUNE_LAST
428 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
430 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
431 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
432 #define TARGET_ZERO_EXTEND_WITH_AND \
433 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
434 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
435 #define TARGET_BRANCH_PREDICTION_HINTS \
436 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
437 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
438 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
439 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
440 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
441 #define TARGET_PARTIAL_FLAG_REG_STALL \
442 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
443 #define TARGET_LCP_STALL \
444 ix86_tune_features[X86_TUNE_LCP_STALL]
445 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
446 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
447 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
448 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
449 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
450 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
451 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
452 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
453 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
454 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
455 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
456 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
457 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
458 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
459 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
460 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
461 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
462 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
463 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
464 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
465 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
466 #define TARGET_INTEGER_DFMODE_MOVES \
467 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
468 #define TARGET_PARTIAL_REG_DEPENDENCY \
469 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
470 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
471 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
472 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
473 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
474 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
475 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
476 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
477 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
478 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
479 #define TARGET_SSE_TYPELESS_STORES \
480 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
481 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
482 #define TARGET_MEMORY_MISMATCH_STALL \
483 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
484 #define TARGET_PROLOGUE_USING_MOVE \
485 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
486 #define TARGET_EPILOGUE_USING_MOVE \
487 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
488 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
489 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
490 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
491 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
492 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
493 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
494 #define TARGET_INTER_UNIT_CONVERSIONS \
495 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
496 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
497 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
498 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
499 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
500 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
501 #define TARGET_PAD_SHORT_FUNCTION \
502 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
503 #define TARGET_EXT_80387_CONSTANTS \
504 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
505 #define TARGET_AVOID_VECTOR_DECODE \
506 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
507 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
508 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
509 #define TARGET_SLOW_IMUL_IMM32_MEM \
510 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
511 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
512 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
513 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
514 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
515 #define TARGET_USE_VECTOR_FP_CONVERTS \
516 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
517 #define TARGET_USE_VECTOR_CONVERTS \
518 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
519 #define TARGET_SLOW_PSHUFB \
520 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
521 #define TARGET_AVOID_4BYTE_PREFIXES \
522 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
523 #define TARGET_USE_GATHER \
524 ix86_tune_features[X86_TUNE_USE_GATHER]
525 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
526 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
527 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
528 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
529 #define TARGET_FUSE_CMP_AND_BRANCH \
530 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
531 : TARGET_FUSE_CMP_AND_BRANCH_32)
532 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
533 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
534 #define TARGET_FUSE_ALU_AND_BRANCH \
535 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
536 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
537 #define TARGET_AVOID_LEA_FOR_ADDR \
538 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
539 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
540 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
541 #define TARGET_AVX128_OPTIMAL \
542 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
543 #define TARGET_GENERAL_REGS_SSE_SPILL \
544 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
545 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
546 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
547 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
548 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
549 #define TARGET_ADJUST_UNROLL \
550 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
551 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
552 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
553 #define TARGET_ONE_IF_CONV_INSN \
554 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
555 #define TARGET_EMIT_VZEROUPPER \
556 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
558 /* Feature tests against the various architecture variations. */
559 enum ix86_arch_indices {
560 X86_ARCH_CMOV,
561 X86_ARCH_CMPXCHG,
562 X86_ARCH_CMPXCHG8B,
563 X86_ARCH_XADD,
564 X86_ARCH_BSWAP,
566 X86_ARCH_LAST
569 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
571 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
572 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
573 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
574 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
575 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
577 /* For sane SSE instruction set generation we need fcomi instruction.
578 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
579 expands to a sequence that includes conditional move. */
580 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
582 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
584 extern unsigned char x86_prefetch_sse;
585 #define TARGET_PREFETCH_SSE x86_prefetch_sse
587 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
589 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
590 #define TARGET_MIX_SSE_I387 \
591 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
593 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
594 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
595 #define TARGET_HARD_XF_REGS (TARGET_80387)
597 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
598 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
599 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
600 #define TARGET_SUN_TLS 0
602 #ifndef TARGET_64BIT_DEFAULT
603 #define TARGET_64BIT_DEFAULT 0
604 #endif
605 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
606 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
607 #endif
609 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
610 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
612 /* Fence to use after loop using storent. */
614 extern tree x86_mfence;
615 #define FENCE_FOLLOWING_MOVNT x86_mfence
617 /* Once GDB has been enhanced to deal with functions without frame
618 pointers, we can change this to allow for elimination of
619 the frame pointer in leaf functions. */
620 #define TARGET_DEFAULT 0
622 /* Extra bits to force. */
623 #define TARGET_SUBTARGET_DEFAULT 0
624 #define TARGET_SUBTARGET_ISA_DEFAULT 0
626 /* Extra bits to force on w/ 32-bit mode. */
627 #define TARGET_SUBTARGET32_DEFAULT 0
628 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
630 /* Extra bits to force on w/ 64-bit mode. */
631 #define TARGET_SUBTARGET64_DEFAULT 0
632 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
634 /* Replace MACH-O, ifdefs by in-line tests, where possible.
635 (a) Macros defined in config/i386/darwin.h */
636 #define TARGET_MACHO 0
637 #define TARGET_MACHO_BRANCH_ISLANDS 0
638 #define MACHOPIC_ATT_STUB 0
639 /* (b) Macros defined in config/darwin.h */
640 #define MACHO_DYNAMIC_NO_PIC_P 0
641 #define MACHOPIC_INDIRECT 0
642 #define MACHOPIC_PURE 0
644 /* For the RDOS */
645 #define TARGET_RDOS 0
647 /* For the Windows 64-bit ABI. */
648 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
650 /* For the Windows 32-bit ABI. */
651 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
653 /* This is re-defined by cygming.h. */
654 #define TARGET_SEH 0
656 /* The default abi used by target. */
657 #define DEFAULT_ABI SYSV_ABI
659 /* The default TLS segment register used by target. */
660 #define DEFAULT_TLS_SEG_REG \
661 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
663 /* Subtargets may reset this to 1 in order to enable 96-bit long double
664 with the rounding mode forced to 53 bits. */
665 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
667 /* -march=native handling only makes sense with compiler running on
668 an x86 or x86_64 chip. If changing this condition, also change
669 the condition in driver-i386.c. */
670 #if defined(__i386__) || defined(__x86_64__)
671 /* In driver-i386.c. */
672 extern const char *host_detect_local_cpu (int argc, const char **argv);
673 #define EXTRA_SPEC_FUNCTIONS \
674 { "local_cpu_detect", host_detect_local_cpu },
675 #define HAVE_LOCAL_CPU_DETECT
676 #endif
678 #if TARGET_64BIT_DEFAULT
679 #define OPT_ARCH64 "!m32"
680 #define OPT_ARCH32 "m32"
681 #else
682 #define OPT_ARCH64 "m64|mx32"
683 #define OPT_ARCH32 "m64|mx32:;"
684 #endif
686 /* Support for configure-time defaults of some command line options.
687 The order here is important so that -march doesn't squash the
688 tune or cpu values. */
689 #define OPTION_DEFAULT_SPECS \
690 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
691 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
692 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
693 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
694 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
695 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
696 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
697 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
698 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
700 /* Specs for the compiler proper */
702 #ifndef CC1_CPU_SPEC
703 #define CC1_CPU_SPEC_1 ""
705 #ifndef HAVE_LOCAL_CPU_DETECT
706 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
707 #else
708 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
709 "%{march=native:%>march=native %:local_cpu_detect(arch) \
710 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
711 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
712 #endif
713 #endif
715 /* Target CPU builtins. */
716 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
718 /* Target Pragmas. */
719 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
721 #ifndef CC1_SPEC
722 #define CC1_SPEC "%(cc1_cpu) "
723 #endif
725 /* This macro defines names of additional specifications to put in the
726 specs that can be used in various specifications like CC1_SPEC. Its
727 definition is an initializer with a subgrouping for each command option.
729 Each subgrouping contains a string constant, that defines the
730 specification name, and a string constant that used by the GCC driver
731 program.
733 Do not define this macro if it does not need to do anything. */
735 #ifndef SUBTARGET_EXTRA_SPECS
736 #define SUBTARGET_EXTRA_SPECS
737 #endif
739 #define EXTRA_SPECS \
740 { "cc1_cpu", CC1_CPU_SPEC }, \
741 SUBTARGET_EXTRA_SPECS
744 /* Whether to allow x87 floating-point arithmetic on MODE (one of
745 SFmode, DFmode and XFmode) in the current excess precision
746 configuration. */
747 #define X87_ENABLE_ARITH(MODE) \
748 (flag_unsafe_math_optimizations \
749 || flag_excess_precision == EXCESS_PRECISION_FAST \
750 || (MODE) == XFmode)
752 /* Likewise, whether to allow direct conversions from integer mode
753 IMODE (HImode, SImode or DImode) to MODE. */
754 #define X87_ENABLE_FLOAT(MODE, IMODE) \
755 (flag_unsafe_math_optimizations \
756 || flag_excess_precision == EXCESS_PRECISION_FAST \
757 || (MODE) == XFmode \
758 || ((MODE) == DFmode && (IMODE) == SImode) \
759 || (IMODE) == HImode)
761 /* target machine storage layout */
763 #define SHORT_TYPE_SIZE 16
764 #define INT_TYPE_SIZE 32
765 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
766 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
767 #define LONG_LONG_TYPE_SIZE 64
768 #define FLOAT_TYPE_SIZE 32
769 #define DOUBLE_TYPE_SIZE 64
770 #define LONG_DOUBLE_TYPE_SIZE \
771 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
773 #define WIDEST_HARDWARE_FP_SIZE 80
775 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
776 #define MAX_BITS_PER_WORD 64
777 #else
778 #define MAX_BITS_PER_WORD 32
779 #endif
781 /* Define this if most significant byte of a word is the lowest numbered. */
782 /* That is true on the 80386. */
784 #define BITS_BIG_ENDIAN 0
786 /* Define this if most significant byte of a word is the lowest numbered. */
787 /* That is not true on the 80386. */
788 #define BYTES_BIG_ENDIAN 0
790 /* Define this if most significant word of a multiword number is the lowest
791 numbered. */
792 /* Not true for 80386 */
793 #define WORDS_BIG_ENDIAN 0
795 /* Width of a word, in units (bytes). */
796 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
798 #ifndef IN_LIBGCC2
799 #define MIN_UNITS_PER_WORD 4
800 #endif
802 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
803 #define PARM_BOUNDARY BITS_PER_WORD
805 /* Boundary (in *bits*) on which stack pointer should be aligned. */
806 #define STACK_BOUNDARY \
807 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
809 /* Stack boundary of the main function guaranteed by OS. */
810 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
812 /* Minimum stack boundary. */
813 #define MIN_STACK_BOUNDARY BITS_PER_WORD
815 /* Boundary (in *bits*) on which the stack pointer prefers to be
816 aligned; the compiler cannot rely on having this alignment. */
817 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
819 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
820 both 32bit and 64bit, to support codes that need 128 bit stack
821 alignment for SSE instructions, but can't realign the stack. */
822 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
823 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
825 /* 1 if -mstackrealign should be turned on by default. It will
826 generate an alternate prologue and epilogue that realigns the
827 runtime stack if nessary. This supports mixing codes that keep a
828 4-byte aligned stack, as specified by i386 psABI, with codes that
829 need a 16-byte aligned stack, as required by SSE instructions. */
830 #define STACK_REALIGN_DEFAULT 0
832 /* Boundary (in *bits*) on which the incoming stack is aligned. */
833 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
835 /* According to Windows x64 software convention, the maximum stack allocatable
836 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
837 instructions allowed to adjust the stack pointer in the epilog, forcing the
838 use of frame pointer for frames larger than 2 GB. This theorical limit
839 is reduced by 256, an over-estimated upper bound for the stack use by the
840 prologue.
841 We define only one threshold for both the prolog and the epilog. When the
842 frame size is larger than this threshold, we allocate the area to save SSE
843 regs, then save them, and then allocate the remaining. There is no SEH
844 unwind info for this later allocation. */
845 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
847 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
848 mandatory for the 64-bit ABI, and may or may not be true for other
849 operating systems. */
850 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
852 /* Minimum allocation boundary for the code of a function. */
853 #define FUNCTION_BOUNDARY 8
855 /* C++ stores the virtual bit in the lowest bit of function pointers. */
856 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
858 /* Minimum size in bits of the largest boundary to which any
859 and all fundamental data types supported by the hardware
860 might need to be aligned. No data type wants to be aligned
861 rounder than this.
863 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
864 and Pentium Pro XFmode values at 128 bit boundaries.
866 When increasing the maximum, also update
867 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
869 #define BIGGEST_ALIGNMENT \
870 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
872 /* Maximum stack alignment. */
873 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
875 /* Alignment value for attribute ((aligned)). It is a constant since
876 it is the part of the ABI. We shouldn't change it with -mavx. */
877 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
879 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
880 #define ALIGN_MODE_128(MODE) \
881 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
883 /* The published ABIs say that doubles should be aligned on word
884 boundaries, so lower the alignment for structure fields unless
885 -malign-double is set. */
887 /* ??? Blah -- this macro is used directly by libobjc. Since it
888 supports no vector modes, cut out the complexity and fall back
889 on BIGGEST_FIELD_ALIGNMENT. */
890 #ifdef IN_TARGET_LIBS
891 #ifdef __x86_64__
892 #define BIGGEST_FIELD_ALIGNMENT 128
893 #else
894 #define BIGGEST_FIELD_ALIGNMENT 32
895 #endif
896 #else
897 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
898 x86_field_alignment ((TYPE), (COMPUTED))
899 #endif
901 /* If defined, a C expression to compute the alignment for a static
902 variable. TYPE is the data type, and ALIGN is the alignment that
903 the object would ordinarily have. The value of this macro is used
904 instead of that alignment to align the object.
906 If this macro is not defined, then ALIGN is used.
908 One use of this macro is to increase alignment of medium-size
909 data to make it all fit in fewer cache lines. Another is to
910 cause character arrays to be word-aligned so that `strcpy' calls
911 that copy constants to character arrays can be done inline. */
913 #define DATA_ALIGNMENT(TYPE, ALIGN) \
914 ix86_data_alignment ((TYPE), (ALIGN), true)
916 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
917 some alignment increase, instead of optimization only purposes. E.g.
918 AMD x86-64 psABI says that variables with array type larger than 15 bytes
919 must be aligned to 16 byte boundaries.
921 If this macro is not defined, then ALIGN is used. */
923 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
924 ix86_data_alignment ((TYPE), (ALIGN), false)
926 /* If defined, a C expression to compute the alignment for a local
927 variable. TYPE is the data type, and ALIGN is the alignment that
928 the object would ordinarily have. The value of this macro is used
929 instead of that alignment to align the object.
931 If this macro is not defined, then ALIGN is used.
933 One use of this macro is to increase alignment of medium-size
934 data to make it all fit in fewer cache lines. */
936 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
937 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
939 /* If defined, a C expression to compute the alignment for stack slot.
940 TYPE is the data type, MODE is the widest mode available, and ALIGN
941 is the alignment that the slot would ordinarily have. The value of
942 this macro is used instead of that alignment to align the slot.
944 If this macro is not defined, then ALIGN is used when TYPE is NULL,
945 Otherwise, LOCAL_ALIGNMENT will be used.
947 One use of this macro is to set alignment of stack slot to the
948 maximum alignment of all possible modes which the slot may have. */
950 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
951 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
953 /* If defined, a C expression to compute the alignment for a local
954 variable DECL.
956 If this macro is not defined, then
957 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
959 One use of this macro is to increase alignment of medium-size
960 data to make it all fit in fewer cache lines. */
962 #define LOCAL_DECL_ALIGNMENT(DECL) \
963 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
965 /* If defined, a C expression to compute the minimum required alignment
966 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
967 MODE, assuming normal alignment ALIGN.
969 If this macro is not defined, then (ALIGN) will be used. */
971 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
972 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
975 /* Set this nonzero if move instructions will actually fail to work
976 when given unaligned data. */
977 #define STRICT_ALIGNMENT 0
979 /* If bit field type is int, don't let it cross an int,
980 and give entire struct the alignment of an int. */
981 /* Required on the 386 since it doesn't have bit-field insns. */
982 #define PCC_BITFIELD_TYPE_MATTERS 1
984 /* Standard register usage. */
986 /* This processor has special stack-like registers. See reg-stack.c
987 for details. */
989 #define STACK_REGS
991 #define IS_STACK_MODE(MODE) \
992 (X87_FLOAT_MODE_P (MODE) \
993 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
994 || TARGET_MIX_SSE_I387))
996 /* Number of actual hardware registers.
997 The hardware registers are assigned numbers for the compiler
998 from 0 to just below FIRST_PSEUDO_REGISTER.
999 All registers that the compiler knows about must be given numbers,
1000 even those that are not normally considered general registers.
1002 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1003 We number the floating point registers 8-15.
1004 Note that registers 0-7 can be accessed as a short or int,
1005 while only 0-3 may be used with byte `mov' instructions.
1007 Reg 16 does not correspond to any hardware register, but instead
1008 appears in the RTL as an argument pointer prior to reload, and is
1009 eliminated during reloading in favor of either the stack or frame
1010 pointer. */
1012 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
1014 /* Number of hardware registers that go into the DWARF-2 unwind info.
1015 If not defined, equals FIRST_PSEUDO_REGISTER. */
1017 #define DWARF_FRAME_REGISTERS 17
1019 /* 1 for registers that have pervasive standard uses
1020 and are not available for the register allocator.
1021 On the 80386, the stack pointer is such, as is the arg pointer.
1023 REX registers are disabled for 32bit targets in
1024 TARGET_CONDITIONAL_REGISTER_USAGE. */
1026 #define FIXED_REGISTERS \
1027 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1028 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
1029 /*arg,flags,fpsr,fpcr,frame*/ \
1030 1, 1, 1, 1, 1, \
1031 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1032 0, 0, 0, 0, 0, 0, 0, 0, \
1033 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1034 0, 0, 0, 0, 0, 0, 0, 0, \
1035 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1036 0, 0, 0, 0, 0, 0, 0, 0, \
1037 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1038 0, 0, 0, 0, 0, 0, 0, 0, \
1039 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1040 0, 0, 0, 0, 0, 0, 0, 0, \
1041 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1042 0, 0, 0, 0, 0, 0, 0, 0, \
1043 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1044 0, 0, 0, 0, 0, 0, 0, 0 }
1046 /* 1 for registers not available across function calls.
1047 These must include the FIXED_REGISTERS and also any
1048 registers that can be used without being saved.
1049 The latter must include the registers where values are returned
1050 and the register where structure-value addresses are passed.
1051 Aside from that, you can include as many other registers as you like.
1053 Value is set to 1 if the register is call used unconditionally.
1054 Bit one is set if the register is call used on TARGET_32BIT ABI.
1055 Bit two is set if the register is call used on TARGET_64BIT ABI.
1056 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1058 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1060 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1061 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1063 #define CALL_USED_REGISTERS \
1064 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1065 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1066 /*arg,flags,fpsr,fpcr,frame*/ \
1067 1, 1, 1, 1, 1, \
1068 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1069 1, 1, 1, 1, 1, 1, 6, 6, \
1070 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1071 1, 1, 1, 1, 1, 1, 1, 1, \
1072 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1073 1, 1, 1, 1, 2, 2, 2, 2, \
1074 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1075 6, 6, 6, 6, 6, 6, 6, 6, \
1076 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1077 6, 6, 6, 6, 6, 6, 6, 6, \
1078 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1079 6, 6, 6, 6, 6, 6, 6, 6, \
1080 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1081 1, 1, 1, 1, 1, 1, 1, 1 }
1083 /* Order in which to allocate registers. Each register must be
1084 listed once, even those in FIXED_REGISTERS. List frame pointer
1085 late and fixed registers last. Note that, in general, we prefer
1086 registers listed in CALL_USED_REGISTERS, keeping the others
1087 available for storage of persistent values.
1089 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1090 so this is just empty initializer for array. */
1092 #define REG_ALLOC_ORDER \
1093 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1094 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1095 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1096 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1097 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
1099 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1100 to be rearranged based on a particular function. When using sse math,
1101 we want to allocate SSE before x87 registers and vice versa. */
1103 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1106 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1108 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1109 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1110 && GENERAL_REGNO_P (REGNO) \
1111 && ((MODE) == XFmode || (MODE) == XCmode))
1113 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1115 #define VALID_AVX256_REG_MODE(MODE) \
1116 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1117 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1118 || (MODE) == V4DFmode)
1120 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1121 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1123 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1124 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1125 || (MODE) == SFmode)
1127 #define VALID_AVX512F_REG_MODE(MODE) \
1128 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1129 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1130 || (MODE) == V4TImode)
1132 #define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1133 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1135 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1136 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1137 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1138 || (MODE) == TFmode || (MODE) == V1TImode)
1140 #define VALID_SSE2_REG_MODE(MODE) \
1141 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1142 || (MODE) == V2DImode || (MODE) == DFmode)
1144 #define VALID_SSE_REG_MODE(MODE) \
1145 ((MODE) == V1TImode || (MODE) == TImode \
1146 || (MODE) == V4SFmode || (MODE) == V4SImode \
1147 || (MODE) == SFmode || (MODE) == TFmode)
1149 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1150 ((MODE) == V2SFmode || (MODE) == SFmode)
1152 #define VALID_MMX_REG_MODE(MODE) \
1153 ((MODE == V1DImode) || (MODE) == DImode \
1154 || (MODE) == V2SImode || (MODE) == SImode \
1155 || (MODE) == V4HImode || (MODE) == V8QImode)
1157 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1159 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1161 #define VALID_DFP_MODE_P(MODE) \
1162 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1164 #define VALID_FP_MODE_P(MODE) \
1165 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1166 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1168 #define VALID_INT_MODE_P(MODE) \
1169 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1170 || (MODE) == DImode \
1171 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1172 || (MODE) == CDImode \
1173 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1174 || (MODE) == TFmode || (MODE) == TCmode)))
1176 /* Return true for modes passed in SSE registers. */
1177 #define SSE_REG_MODE_P(MODE) \
1178 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1179 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1180 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1181 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1182 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1183 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1184 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1185 || (MODE) == V16SFmode)
1187 #define X87_FLOAT_MODE_P(MODE) \
1188 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1190 #define SSE_FLOAT_MODE_P(MODE) \
1191 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1193 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1194 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1195 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1197 /* It is possible to write patterns to move flags; but until someone
1198 does it, */
1199 #define AVOID_CCMODE_COPIES
1201 /* Specify the modes required to caller save a given hard regno.
1202 We do this on i386 to prevent flags from being saved at all.
1204 Kill any attempts to combine saving of modes. */
1206 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1207 (CC_REGNO_P (REGNO) ? VOIDmode \
1208 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1209 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1210 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1211 && TARGET_PARTIAL_REG_STALL) \
1212 || MASK_REGNO_P (REGNO)) ? SImode \
1213 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
1214 || MASK_REGNO_P (REGNO)) ? SImode \
1215 : (MODE))
1217 /* Specify the registers used for certain standard purposes.
1218 The values of these macros are register numbers. */
1220 /* on the 386 the pc register is %eip, and is not usable as a general
1221 register. The ordinary mov instructions won't work */
1222 /* #define PC_REGNUM */
1224 /* Base register for access to arguments of the function. */
1225 #define ARG_POINTER_REGNUM ARGP_REG
1227 /* Register to use for pushing function arguments. */
1228 #define STACK_POINTER_REGNUM SP_REG
1230 /* Base register for access to local variables of the function. */
1231 #define FRAME_POINTER_REGNUM FRAME_REG
1232 #define HARD_FRAME_POINTER_REGNUM BP_REG
1234 #define FIRST_INT_REG AX_REG
1235 #define LAST_INT_REG SP_REG
1237 #define FIRST_QI_REG AX_REG
1238 #define LAST_QI_REG BX_REG
1240 /* First & last stack-like regs */
1241 #define FIRST_STACK_REG ST0_REG
1242 #define LAST_STACK_REG ST7_REG
1244 #define FIRST_SSE_REG XMM0_REG
1245 #define LAST_SSE_REG XMM7_REG
1247 #define FIRST_MMX_REG MM0_REG
1248 #define LAST_MMX_REG MM7_REG
1250 #define FIRST_REX_INT_REG R8_REG
1251 #define LAST_REX_INT_REG R15_REG
1253 #define FIRST_REX_SSE_REG XMM8_REG
1254 #define LAST_REX_SSE_REG XMM15_REG
1256 #define FIRST_EXT_REX_SSE_REG XMM16_REG
1257 #define LAST_EXT_REX_SSE_REG XMM31_REG
1259 #define FIRST_MASK_REG MASK0_REG
1260 #define LAST_MASK_REG MASK7_REG
1262 /* Override this in other tm.h files to cope with various OS lossage
1263 requiring a frame pointer. */
1264 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1265 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1266 #endif
1268 /* Make sure we can access arbitrary call frames. */
1269 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1271 /* Register to hold the addressing base for position independent
1272 code access to data items. We don't use PIC pointer for 64bit
1273 mode. Define the regnum to dummy value to prevent gcc from
1274 pessimizing code dealing with EBX.
1276 To avoid clobbering a call-saved register unnecessarily, we renumber
1277 the pic register when possible. The change is visible after the
1278 prologue has been emitted. */
1280 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1282 #define PIC_OFFSET_TABLE_REGNUM \
1283 (ix86_use_pseudo_pic_reg () \
1284 ? (pic_offset_table_rtx \
1285 ? INVALID_REGNUM \
1286 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1287 : INVALID_REGNUM)
1289 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1291 /* This is overridden by <cygwin.h>. */
1292 #define MS_AGGREGATE_RETURN 0
1294 #define KEEP_AGGREGATE_RETURN_POINTER 0
1296 /* Define the classes of registers for register constraints in the
1297 machine description. Also define ranges of constants.
1299 One of the classes must always be named ALL_REGS and include all hard regs.
1300 If there is more than one class, another class must be named NO_REGS
1301 and contain no registers.
1303 The name GENERAL_REGS must be the name of a class (or an alias for
1304 another name such as ALL_REGS). This is the class of registers
1305 that is allowed by "g" or "r" in a register constraint.
1306 Also, registers outside this class are allocated only when
1307 instructions express preferences for them.
1309 The classes must be numbered in nondecreasing order; that is,
1310 a larger-numbered class must never be contained completely
1311 in a smaller-numbered class. This is why CLOBBERED_REGS class
1312 is listed early, even though in 64-bit mode it contains more
1313 registers than just %eax, %ecx, %edx.
1315 For any two classes, it is very desirable that there be another
1316 class that represents their union.
1318 It might seem that class BREG is unnecessary, since no useful 386
1319 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1320 and the "b" register constraint is useful in asms for syscalls.
1322 The flags, fpsr and fpcr registers are in no class. */
1324 enum reg_class
1326 NO_REGS,
1327 AREG, DREG, CREG, BREG, SIREG, DIREG,
1328 AD_REGS, /* %eax/%edx for DImode */
1329 CLOBBERED_REGS, /* call-clobbered integer registers */
1330 Q_REGS, /* %eax %ebx %ecx %edx */
1331 NON_Q_REGS, /* %esi %edi %ebp %esp */
1332 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
1333 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1334 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1335 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1336 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1337 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1338 FLOAT_REGS,
1339 SSE_FIRST_REG,
1340 NO_REX_SSE_REGS,
1341 SSE_REGS,
1342 EVEX_SSE_REGS,
1343 ALL_SSE_REGS,
1344 MMX_REGS,
1345 FP_TOP_SSE_REGS,
1346 FP_SECOND_SSE_REGS,
1347 FLOAT_SSE_REGS,
1348 FLOAT_INT_REGS,
1349 INT_SSE_REGS,
1350 FLOAT_INT_SSE_REGS,
1351 MASK_EVEX_REGS,
1352 MASK_REGS,
1353 MOD4_SSE_REGS,
1354 ALL_REGS, LIM_REG_CLASSES
1357 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1359 #define INTEGER_CLASS_P(CLASS) \
1360 reg_class_subset_p ((CLASS), GENERAL_REGS)
1361 #define FLOAT_CLASS_P(CLASS) \
1362 reg_class_subset_p ((CLASS), FLOAT_REGS)
1363 #define SSE_CLASS_P(CLASS) \
1364 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1365 #define MMX_CLASS_P(CLASS) \
1366 ((CLASS) == MMX_REGS)
1367 #define MASK_CLASS_P(CLASS) \
1368 reg_class_subset_p ((CLASS), MASK_REGS)
1369 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1370 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1371 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1372 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1373 #define MAYBE_SSE_CLASS_P(CLASS) \
1374 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1375 #define MAYBE_MMX_CLASS_P(CLASS) \
1376 reg_classes_intersect_p ((CLASS), MMX_REGS)
1377 #define MAYBE_MASK_CLASS_P(CLASS) \
1378 reg_classes_intersect_p ((CLASS), MASK_REGS)
1380 #define Q_CLASS_P(CLASS) \
1381 reg_class_subset_p ((CLASS), Q_REGS)
1383 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1384 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1386 /* Give names of register classes as strings for dump file. */
1388 #define REG_CLASS_NAMES \
1389 { "NO_REGS", \
1390 "AREG", "DREG", "CREG", "BREG", \
1391 "SIREG", "DIREG", \
1392 "AD_REGS", \
1393 "CLOBBERED_REGS", \
1394 "Q_REGS", "NON_Q_REGS", \
1395 "TLS_GOTBASE_REGS", \
1396 "INDEX_REGS", \
1397 "LEGACY_REGS", \
1398 "GENERAL_REGS", \
1399 "FP_TOP_REG", "FP_SECOND_REG", \
1400 "FLOAT_REGS", \
1401 "SSE_FIRST_REG", \
1402 "NO_REX_SSE_REGS", \
1403 "SSE_REGS", \
1404 "EVEX_SSE_REGS", \
1405 "ALL_SSE_REGS", \
1406 "MMX_REGS", \
1407 "FP_TOP_SSE_REGS", \
1408 "FP_SECOND_SSE_REGS", \
1409 "FLOAT_SSE_REGS", \
1410 "FLOAT_INT_REGS", \
1411 "INT_SSE_REGS", \
1412 "FLOAT_INT_SSE_REGS", \
1413 "MASK_EVEX_REGS", \
1414 "MASK_REGS", \
1415 "MOD4_SSE_REGS", \
1416 "ALL_REGS" }
1418 /* Define which registers fit in which classes. This is an initializer
1419 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1421 Note that CLOBBERED_REGS are calculated by
1422 TARGET_CONDITIONAL_REGISTER_USAGE. */
1424 #define REG_CLASS_CONTENTS \
1425 { { 0x00, 0x0, 0x0 }, \
1426 { 0x01, 0x0, 0x0 }, /* AREG */ \
1427 { 0x02, 0x0, 0x0 }, /* DREG */ \
1428 { 0x04, 0x0, 0x0 }, /* CREG */ \
1429 { 0x08, 0x0, 0x0 }, /* BREG */ \
1430 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1431 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1432 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1433 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1434 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1435 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1436 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1437 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1438 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1439 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1440 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1441 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1442 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1443 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1444 { 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
1445 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1446 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1447 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1448 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1449 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1450 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1451 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1452 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1453 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1454 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1455 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1456 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1457 { 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1458 { 0xffffffff,0xffffffff,0x1ffff } \
1461 /* The same information, inverted:
1462 Return the class number of the smallest class containing
1463 reg number REGNO. This could be a conditional expression
1464 or could index an array. */
1466 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1468 /* When this hook returns true for MODE, the compiler allows
1469 registers explicitly used in the rtl to be used as spill registers
1470 but prevents the compiler from extending the lifetime of these
1471 registers. */
1472 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1474 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1475 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1477 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1478 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1480 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1481 #define REX_INT_REGNO_P(N) \
1482 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1484 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1485 #define GENERAL_REGNO_P(N) \
1486 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1488 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1489 #define ANY_QI_REGNO_P(N) \
1490 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1492 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1493 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1495 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1496 #define SSE_REGNO_P(N) \
1497 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1498 || REX_SSE_REGNO_P (N) \
1499 || EXT_REX_SSE_REGNO_P (N))
1501 #define REX_SSE_REGNO_P(N) \
1502 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1504 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1506 #define EXT_REX_SSE_REGNO_P(N) \
1507 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1509 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1510 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1512 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1513 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1515 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1516 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1518 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1519 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1521 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1522 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1523 || (N) == XMM4_REG \
1524 || (N) == XMM8_REG \
1525 || (N) == XMM12_REG \
1526 || (N) == XMM16_REG \
1527 || (N) == XMM20_REG \
1528 || (N) == XMM24_REG \
1529 || (N) == XMM28_REG)
1531 /* First floating point reg */
1532 #define FIRST_FLOAT_REG FIRST_STACK_REG
1533 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1535 #define SSE_REGNO(N) \
1536 ((N) < 8 ? FIRST_SSE_REG + (N) \
1537 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1538 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1540 /* The class value for index registers, and the one for base regs. */
1542 #define INDEX_REG_CLASS INDEX_REGS
1543 #define BASE_REG_CLASS GENERAL_REGS
1545 /* Stack layout; function entry, exit and calling. */
1547 /* Define this if pushing a word on the stack
1548 makes the stack pointer a smaller address. */
1549 #define STACK_GROWS_DOWNWARD 1
1551 /* Define this to nonzero if the nominal address of the stack frame
1552 is at the high-address end of the local variables;
1553 that is, each additional local variable allocated
1554 goes at a more negative offset in the frame. */
1555 #define FRAME_GROWS_DOWNWARD 1
1557 #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
1559 /* If defined, the maximum amount of space required for outgoing arguments
1560 will be computed and placed into the variable `crtl->outgoing_args_size'.
1561 No space will be pushed onto the stack for each call; instead, the
1562 function prologue should increase the stack frame size by this amount.
1564 In 32bit mode enabling argument accumulation results in about 5% code size
1565 growth because move instructions are less compact than push. In 64bit
1566 mode the difference is less drastic but visible.
1568 FIXME: Unlike earlier implementations, the size of unwind info seems to
1569 actually grow with accumulation. Is that because accumulated args
1570 unwind info became unnecesarily bloated?
1572 With the 64-bit MS ABI, we can generate correct code with or without
1573 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1574 generated without accumulated args is terrible.
1576 If stack probes are required, the space used for large function
1577 arguments on the stack must also be probed, so enable
1578 -maccumulate-outgoing-args so this happens in the prologue.
1580 We must use argument accumulation in interrupt function if stack
1581 may be realigned to avoid DRAP. */
1583 #define ACCUMULATE_OUTGOING_ARGS \
1584 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1585 && optimize_function_for_speed_p (cfun)) \
1586 || (cfun->machine->func_type != TYPE_NORMAL \
1587 && crtl->stack_realign_needed) \
1588 || TARGET_STACK_PROBE \
1589 || TARGET_64BIT_MS_ABI \
1590 || (TARGET_MACHO && crtl->profile))
1592 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1593 instructions to pass outgoing arguments. */
1595 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1597 /* We want the stack and args grow in opposite directions, even if
1598 PUSH_ARGS is 0. */
1599 #define PUSH_ARGS_REVERSED 1
1601 /* Offset of first parameter from the argument pointer register value. */
1602 #define FIRST_PARM_OFFSET(FNDECL) 0
1604 /* Define this macro if functions should assume that stack space has been
1605 allocated for arguments even when their values are passed in registers.
1607 The value of this macro is the size, in bytes, of the area reserved for
1608 arguments passed in registers for the function represented by FNDECL.
1610 This space can be allocated by the caller, or be a part of the
1611 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1612 which. */
1613 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1615 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1616 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1618 /* Define how to find the value returned by a library function
1619 assuming the value has mode MODE. */
1621 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1623 /* Define the size of the result block used for communication between
1624 untyped_call and untyped_return. The block contains a DImode value
1625 followed by the block used by fnsave and frstor. */
1627 #define APPLY_RESULT_SIZE (8+108)
1629 /* 1 if N is a possible register number for function argument passing. */
1630 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1632 /* Define a data type for recording info about an argument list
1633 during the scan of that argument list. This data type should
1634 hold all necessary information about the function itself
1635 and about the args processed so far, enough to enable macros
1636 such as FUNCTION_ARG to determine where the next arg should go. */
1638 typedef struct ix86_args {
1639 int words; /* # words passed so far */
1640 int nregs; /* # registers available for passing */
1641 int regno; /* next available register number */
1642 int fastcall; /* fastcall or thiscall calling convention
1643 is used */
1644 int sse_words; /* # sse words passed so far */
1645 int sse_nregs; /* # sse registers available for passing */
1646 int warn_avx512f; /* True when we want to warn
1647 about AVX512F ABI. */
1648 int warn_avx; /* True when we want to warn about AVX ABI. */
1649 int warn_sse; /* True when we want to warn about SSE ABI. */
1650 int warn_mmx; /* True when we want to warn about MMX ABI. */
1651 int warn_empty; /* True when we want to warn about empty classes
1652 passing ABI change. */
1653 int sse_regno; /* next available sse register number */
1654 int mmx_words; /* # mmx words passed so far */
1655 int mmx_nregs; /* # mmx registers available for passing */
1656 int mmx_regno; /* next available mmx register number */
1657 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1658 int caller; /* true if it is caller. */
1659 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1660 SFmode/DFmode arguments should be passed
1661 in SSE registers. Otherwise 0. */
1662 int stdarg; /* Set to 1 if function is stdarg. */
1663 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1664 MS_ABI for ms abi. */
1665 tree decl; /* Callee decl. */
1666 } CUMULATIVE_ARGS;
1668 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1669 for a call to a function whose data type is FNTYPE.
1670 For a library call, FNTYPE is 0. */
1672 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1673 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1674 (N_NAMED_ARGS) != -1)
1676 /* Output assembler code to FILE to increment profiler label # LABELNO
1677 for profiling a function entry. */
1679 #define FUNCTION_PROFILER(FILE, LABELNO) \
1680 x86_function_profiler ((FILE), (LABELNO))
1682 #define MCOUNT_NAME "_mcount"
1684 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1686 #define PROFILE_COUNT_REGISTER "edx"
1688 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1689 the stack pointer does not matter. The value is tested only in
1690 functions that have frame pointers.
1691 No definition is equivalent to always zero. */
1692 /* Note on the 386 it might be more efficient not to define this since
1693 we have to restore it ourselves from the frame pointer, in order to
1694 use pop */
1696 #define EXIT_IGNORE_STACK 1
1698 /* Define this macro as a C expression that is nonzero for registers
1699 used by the epilogue or the `return' pattern. */
1701 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1703 /* Output assembler code for a block containing the constant parts
1704 of a trampoline, leaving space for the variable parts. */
1706 /* On the 386, the trampoline contains two instructions:
1707 mov #STATIC,ecx
1708 jmp FUNCTION
1709 The trampoline is generated entirely at runtime. The operand of JMP
1710 is the address of FUNCTION relative to the instruction following the
1711 JMP (which is 5 bytes long). */
1713 /* Length in units of the trampoline for entering a nested function. */
1715 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
1717 /* Definitions for register eliminations.
1719 This is an array of structures. Each structure initializes one pair
1720 of eliminable registers. The "from" register number is given first,
1721 followed by "to". Eliminations of the same "from" register are listed
1722 in order of preference.
1724 There are two registers that can always be eliminated on the i386.
1725 The frame pointer and the arg pointer can be replaced by either the
1726 hard frame pointer or to the stack pointer, depending upon the
1727 circumstances. The hard frame pointer is not used before reload and
1728 so it is not eligible for elimination. */
1730 #define ELIMINABLE_REGS \
1731 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1732 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1733 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1734 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1736 /* Define the offset between two registers, one to be eliminated, and the other
1737 its replacement, at the start of a routine. */
1739 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1740 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1742 /* Addressing modes, and classification of registers for them. */
1744 /* Macros to check register numbers against specific register classes. */
1746 /* These assume that REGNO is a hard or pseudo reg number.
1747 They give nonzero only if REGNO is a hard reg of the suitable class
1748 or a pseudo reg currently allocated to a suitable hard reg.
1749 Since they use reg_renumber, they are safe only once reg_renumber
1750 has been allocated, which happens in reginfo.c during register
1751 allocation. */
1753 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1754 ((REGNO) < STACK_POINTER_REGNUM \
1755 || REX_INT_REGNO_P (REGNO) \
1756 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1757 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1759 #define REGNO_OK_FOR_BASE_P(REGNO) \
1760 (GENERAL_REGNO_P (REGNO) \
1761 || (REGNO) == ARG_POINTER_REGNUM \
1762 || (REGNO) == FRAME_POINTER_REGNUM \
1763 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1765 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1766 and check its validity for a certain class.
1767 We have two alternate definitions for each of them.
1768 The usual definition accepts all pseudo regs; the other rejects
1769 them unless they have been allocated suitable hard regs.
1770 The symbol REG_OK_STRICT causes the latter definition to be used.
1772 Most source files want to accept pseudo regs in the hope that
1773 they will get allocated to the class that the insn wants them to be in.
1774 Source files for reload pass need to be strict.
1775 After reload, it makes no difference, since pseudo regs have
1776 been eliminated by then. */
1779 /* Non strict versions, pseudos are ok. */
1780 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1781 (REGNO (X) < STACK_POINTER_REGNUM \
1782 || REX_INT_REGNO_P (REGNO (X)) \
1783 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1785 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1786 (GENERAL_REGNO_P (REGNO (X)) \
1787 || REGNO (X) == ARG_POINTER_REGNUM \
1788 || REGNO (X) == FRAME_POINTER_REGNUM \
1789 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1791 /* Strict versions, hard registers only */
1792 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1793 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1795 #ifndef REG_OK_STRICT
1796 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1797 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1799 #else
1800 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1801 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1802 #endif
1804 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1805 that is a valid memory address for an instruction.
1806 The MODE argument is the machine mode for the MEM expression
1807 that wants to use this address.
1809 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1810 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1812 See legitimize_pic_address in i386.c for details as to what
1813 constitutes a legitimate address when -fpic is used. */
1815 #define MAX_REGS_PER_ADDRESS 2
1817 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1819 /* If defined, a C expression to determine the base term of address X.
1820 This macro is used in only one place: `find_base_term' in alias.c.
1822 It is always safe for this macro to not be defined. It exists so
1823 that alias analysis can understand machine-dependent addresses.
1825 The typical use of this macro is to handle addresses containing
1826 a label_ref or symbol_ref within an UNSPEC. */
1828 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1830 /* Nonzero if the constant value X is a legitimate general operand
1831 when generating PIC code. It is given that flag_pic is on and
1832 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1834 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1836 #define SYMBOLIC_CONST(X) \
1837 (GET_CODE (X) == SYMBOL_REF \
1838 || GET_CODE (X) == LABEL_REF \
1839 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1841 /* Max number of args passed in registers. If this is more than 3, we will
1842 have problems with ebx (register #4), since it is a caller save register and
1843 is also used as the pic register in ELF. So for now, don't allow more than
1844 3 registers to be passed in registers. */
1846 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1847 #define X86_64_REGPARM_MAX 6
1848 #define X86_64_MS_REGPARM_MAX 4
1850 #define X86_32_REGPARM_MAX 3
1852 #define REGPARM_MAX \
1853 (TARGET_64BIT \
1854 ? (TARGET_64BIT_MS_ABI \
1855 ? X86_64_MS_REGPARM_MAX \
1856 : X86_64_REGPARM_MAX) \
1857 : X86_32_REGPARM_MAX)
1859 #define X86_64_SSE_REGPARM_MAX 8
1860 #define X86_64_MS_SSE_REGPARM_MAX 4
1862 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1864 #define SSE_REGPARM_MAX \
1865 (TARGET_64BIT \
1866 ? (TARGET_64BIT_MS_ABI \
1867 ? X86_64_MS_SSE_REGPARM_MAX \
1868 : X86_64_SSE_REGPARM_MAX) \
1869 : X86_32_SSE_REGPARM_MAX)
1871 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1873 /* Specify the machine mode that this machine uses
1874 for the index in the tablejump instruction. */
1875 #define CASE_VECTOR_MODE \
1876 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1878 /* Define this as 1 if `char' should by default be signed; else as 0. */
1879 #define DEFAULT_SIGNED_CHAR 1
1881 /* Max number of bytes we can move from memory to memory
1882 in one reasonably fast instruction. */
1883 #define MOVE_MAX 16
1885 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1886 move efficiently, as opposed to MOVE_MAX which is the maximum
1887 number of bytes we can move with a single instruction.
1889 ??? We should use TImode in 32-bit mode and use OImode or XImode
1890 if they are available. But since by_pieces_ninsns determines the
1891 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1892 64-bit mode. */
1893 #define MOVE_MAX_PIECES \
1894 ((TARGET_64BIT \
1895 && TARGET_SSE2 \
1896 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1897 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1898 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
1900 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1901 move-instruction pairs, we will do a movmem or libcall instead.
1902 Increasing the value will always make code faster, but eventually
1903 incurs high cost in increased code size.
1905 If you don't define this, a reasonable default is used. */
1907 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1909 /* If a clear memory operation would take CLEAR_RATIO or more simple
1910 move-instruction sequences, we will do a clrmem or libcall instead. */
1912 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1914 /* Define if shifts truncate the shift count which implies one can
1915 omit a sign-extension or zero-extension of a shift count.
1917 On i386, shifts do truncate the count. But bit test instructions
1918 take the modulo of the bit offset operand. */
1920 /* #define SHIFT_COUNT_TRUNCATED */
1922 /* A macro to update M and UNSIGNEDP when an object whose type is
1923 TYPE and which has the specified mode and signedness is to be
1924 stored in a register. This macro is only called when TYPE is a
1925 scalar type.
1927 On i386 it is sometimes useful to promote HImode and QImode
1928 quantities to SImode. The choice depends on target type. */
1930 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1931 do { \
1932 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1933 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1934 (MODE) = SImode; \
1935 } while (0)
1937 /* Specify the machine mode that pointers have.
1938 After generation of rtl, the compiler makes no further distinction
1939 between pointers and any other objects of this machine mode. */
1940 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1942 /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1943 NONLOCAL needs space to save both shadow stack and stack pointers.
1945 FIXME: We only need to save and restore stack pointer in ptr_mode.
1946 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1947 to save and restore stack pointer. See
1948 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1950 #define STACK_SAVEAREA_MODE(LEVEL) \
1951 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1953 /* A C expression whose value is zero if pointers that need to be extended
1954 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1955 greater then zero if they are zero-extended and less then zero if the
1956 ptr_extend instruction should be used. */
1958 #define POINTERS_EXTEND_UNSIGNED 1
1960 /* A function address in a call instruction
1961 is a byte address (for indexing purposes)
1962 so give the MEM rtx a byte's mode. */
1963 #define FUNCTION_MODE QImode
1966 /* A C expression for the cost of a branch instruction. A value of 1
1967 is the default; other values are interpreted relative to that. */
1969 #define BRANCH_COST(speed_p, predictable_p) \
1970 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1972 /* An integer expression for the size in bits of the largest integer machine
1973 mode that should actually be used. We allow pairs of registers. */
1974 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1976 /* Define this macro as a C expression which is nonzero if accessing
1977 less than a word of memory (i.e. a `char' or a `short') is no
1978 faster than accessing a word of memory, i.e., if such access
1979 require more than one instruction or if there is no difference in
1980 cost between byte and (aligned) word loads.
1982 When this macro is not defined, the compiler will access a field by
1983 finding the smallest containing object; when it is defined, a
1984 fullword load will be used if alignment permits. Unless bytes
1985 accesses are faster than word accesses, using word accesses is
1986 preferable since it may eliminate subsequent memory access if
1987 subsequent accesses occur to other fields in the same word of the
1988 structure, but to different bytes. */
1990 #define SLOW_BYTE_ACCESS 0
1992 /* Nonzero if access to memory by shorts is slow and undesirable. */
1993 #define SLOW_SHORT_ACCESS 0
1995 /* Define this macro if it is as good or better to call a constant
1996 function address than to call an address kept in a register.
1998 Desirable on the 386 because a CALL with a constant address is
1999 faster than one with a register address. */
2001 #define NO_FUNCTION_CSE 1
2003 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2004 return the mode to be used for the comparison.
2006 For floating-point equality comparisons, CCFPEQmode should be used.
2007 VOIDmode should be used in all other cases.
2009 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2010 possible, to allow for more combinations. */
2012 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2014 /* Return nonzero if MODE implies a floating point inequality can be
2015 reversed. */
2017 #define REVERSIBLE_CC_MODE(MODE) 1
2019 /* A C expression whose value is reversed condition code of the CODE for
2020 comparison done in CC_MODE mode. */
2021 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2024 /* Control the assembler format that we output, to the extent
2025 this does not vary between assemblers. */
2027 /* How to refer to registers in assembler output.
2028 This sequence is indexed by compiler's hard-register-number (see above). */
2030 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2031 For non floating point regs, the following are the HImode names.
2033 For float regs, the stack top is sometimes referred to as "%st(0)"
2034 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2035 "y" code. */
2037 #define HI_REGISTER_NAMES \
2038 {"ax","dx","cx","bx","si","di","bp","sp", \
2039 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2040 "argp", "flags", "fpsr", "fpcr", "frame", \
2041 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2042 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2043 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2044 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2045 "xmm16", "xmm17", "xmm18", "xmm19", \
2046 "xmm20", "xmm21", "xmm22", "xmm23", \
2047 "xmm24", "xmm25", "xmm26", "xmm27", \
2048 "xmm28", "xmm29", "xmm30", "xmm31", \
2049 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
2051 #define REGISTER_NAMES HI_REGISTER_NAMES
2053 /* Table of additional register names to use in user input. */
2055 #define ADDITIONAL_REGISTER_NAMES \
2056 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2057 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2058 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2059 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2060 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2061 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2062 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2063 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2064 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2065 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2066 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2067 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2068 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2069 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2070 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2071 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2072 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2073 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2074 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2075 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2076 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2077 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2079 /* Note we are omitting these since currently I don't know how
2080 to get gcc to use these, since they want the same but different
2081 number as al, and ax.
2084 #define QI_REGISTER_NAMES \
2085 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2087 /* These parallel the array above, and can be used to access bits 8:15
2088 of regs 0 through 3. */
2090 #define QI_HIGH_REGISTER_NAMES \
2091 {"ah", "dh", "ch", "bh", }
2093 /* How to renumber registers for dbx and gdb. */
2095 #define DBX_REGISTER_NUMBER(N) \
2096 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2098 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2099 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2100 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2102 /* Before the prologue, RA is at 0(%esp). */
2103 #define INCOMING_RETURN_ADDR_RTX \
2104 gen_rtx_MEM (Pmode, stack_pointer_rtx)
2106 /* After the prologue, RA is at -4(AP) in the current frame. */
2107 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2108 ((COUNT) == 0 \
2109 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2110 -UNITS_PER_WORD)) \
2111 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2113 /* PC is dbx register 8; let's use that column for RA. */
2114 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2116 /* Before the prologue, there are return address and error code for
2117 exception handler on the top of the frame. */
2118 #define INCOMING_FRAME_SP_OFFSET \
2119 (cfun->machine->func_type == TYPE_EXCEPTION \
2120 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2122 /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2123 .cfi_startproc. */
2124 #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2126 /* Describe how we implement __builtin_eh_return. */
2127 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2128 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2131 /* Select a format to encode pointers in exception handling data. CODE
2132 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2133 true if the symbol may be affected by dynamic relocations.
2135 ??? All x86 object file formats are capable of representing this.
2136 After all, the relocation needed is the same as for the call insn.
2137 Whether or not a particular assembler allows us to enter such, I
2138 guess we'll have to see. */
2139 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2140 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2142 /* These are a couple of extensions to the formats accepted
2143 by asm_fprintf:
2144 %z prints out opcode suffix for word-mode instruction
2145 %r prints out word-mode name for reg_names[arg] */
2146 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2147 case 'z': \
2148 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2149 break; \
2151 case 'r': \
2153 unsigned int regno = va_arg ((ARGS), int); \
2154 if (LEGACY_INT_REGNO_P (regno)) \
2155 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2156 fputs (reg_names[regno], (FILE)); \
2157 break; \
2160 /* This is how to output an insn to push a register on the stack. */
2162 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2163 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2165 /* This is how to output an insn to pop a register from the stack. */
2167 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2168 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2170 /* This is how to output an element of a case-vector that is absolute. */
2172 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2173 ix86_output_addr_vec_elt ((FILE), (VALUE))
2175 /* This is how to output an element of a case-vector that is relative. */
2177 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2178 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2180 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2182 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2184 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2185 (PTR) += TARGET_AVX ? 1 : 2; \
2188 /* A C statement or statements which output an assembler instruction
2189 opcode to the stdio stream STREAM. The macro-operand PTR is a
2190 variable of type `char *' which points to the opcode name in
2191 its "internal" form--the form that is written in the machine
2192 description. */
2194 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2195 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2197 /* A C statement to output to the stdio stream FILE an assembler
2198 command to pad the location counter to a multiple of 1<<LOG
2199 bytes if it is within MAX_SKIP bytes. */
2201 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2202 #undef ASM_OUTPUT_MAX_SKIP_PAD
2203 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2204 if ((LOG) != 0) \
2206 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
2207 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2208 else \
2209 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2211 #endif
2213 /* Write the extra assembler code needed to declare a function
2214 properly. */
2216 #undef ASM_OUTPUT_FUNCTION_LABEL
2217 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2218 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2220 /* Under some conditions we need jump tables in the text section,
2221 because the assembler cannot handle label differences between
2222 sections. This is the case for x86_64 on Mach-O for example. */
2224 #define JUMP_TABLES_IN_TEXT_SECTION \
2225 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2226 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2228 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2229 and switch back. For x86 we do this only to save a few bytes that
2230 would otherwise be unused in the text section. */
2231 #define CRT_MKSTR2(VAL) #VAL
2232 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2234 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2235 asm (SECTION_OP "\n\t" \
2236 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2237 TEXT_SECTION_ASM_OP);
2239 /* Default threshold for putting data in large sections
2240 with x86-64 medium memory model */
2241 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2243 /* Which processor to tune code generation for. These must be in sync
2244 with processor_target_table in i386.c. */
2246 enum processor_type
2248 PROCESSOR_GENERIC = 0,
2249 PROCESSOR_I386, /* 80386 */
2250 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2251 PROCESSOR_PENTIUM,
2252 PROCESSOR_LAKEMONT,
2253 PROCESSOR_PENTIUMPRO,
2254 PROCESSOR_PENTIUM4,
2255 PROCESSOR_NOCONA,
2256 PROCESSOR_CORE2,
2257 PROCESSOR_NEHALEM,
2258 PROCESSOR_SANDYBRIDGE,
2259 PROCESSOR_HASWELL,
2260 PROCESSOR_BONNELL,
2261 PROCESSOR_SILVERMONT,
2262 PROCESSOR_GOLDMONT,
2263 PROCESSOR_GOLDMONT_PLUS,
2264 PROCESSOR_TREMONT,
2265 PROCESSOR_KNL,
2266 PROCESSOR_KNM,
2267 PROCESSOR_SKYLAKE,
2268 PROCESSOR_SKYLAKE_AVX512,
2269 PROCESSOR_CANNONLAKE,
2270 PROCESSOR_ICELAKE_CLIENT,
2271 PROCESSOR_ICELAKE_SERVER,
2272 PROCESSOR_INTEL,
2273 PROCESSOR_GEODE,
2274 PROCESSOR_K6,
2275 PROCESSOR_ATHLON,
2276 PROCESSOR_K8,
2277 PROCESSOR_AMDFAM10,
2278 PROCESSOR_BDVER1,
2279 PROCESSOR_BDVER2,
2280 PROCESSOR_BDVER3,
2281 PROCESSOR_BDVER4,
2282 PROCESSOR_BTVER1,
2283 PROCESSOR_BTVER2,
2284 PROCESSOR_ZNVER1,
2285 PROCESSOR_max
2288 #if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2289 extern const char *const processor_names[PROCESSOR_max];
2291 #include "wide-int-bitmask.h"
2293 const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2294 const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2295 const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2296 const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2297 const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2298 const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2299 const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2300 const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2301 const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2302 const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2303 const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2304 const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2305 const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2306 const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2307 const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2308 const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2309 const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2310 const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2311 const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2312 const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2313 const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2314 const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2315 const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2316 const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2317 const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2318 const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2319 const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2320 const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2321 const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2322 const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2323 const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2324 const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2325 const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2326 const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2327 const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2328 const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2329 const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2330 const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2331 const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2332 const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2333 const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2334 const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2335 const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2336 const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2337 /* Hole after PTA_MPX was removed. */
2338 const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2339 const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2340 const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2341 const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2342 const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2343 const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2344 const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2345 const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2346 const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2347 const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2348 const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2349 const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2350 const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2351 const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2352 const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2353 const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2354 const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2355 const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2356 const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2357 const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2358 const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2359 const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2360 const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2361 const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2362 const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2363 const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2364 const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2365 const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
2366 const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
2368 const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2369 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2370 const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2371 | PTA_POPCNT;
2372 const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_AES | PTA_PCLMUL;
2373 const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2374 | PTA_XSAVEOPT;
2375 const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2376 | PTA_RDRND | PTA_F16C;
2377 const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2378 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2379 const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2380 | PTA_RDSEED;
2381 const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_CLFLUSHOPT
2382 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2383 const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2384 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2385 | PTA_CLWB;
2386 const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2387 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2388 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2389 const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2390 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2391 | PTA_RDPID | PTA_CLWB;
2392 const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2393 | PTA_WBNOINVD;
2394 const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2395 | PTA_AVX512F | PTA_AVX512CD;
2396 const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2397 const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
2398 const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_SHA | PTA_XSAVE
2399 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2400 | PTA_FSGSBASE;
2401 const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
2402 | PTA_SGX;
2403 const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2404 | PTA_GFNI;
2405 const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2406 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2408 #ifndef GENERATOR_FILE
2410 #include "insn-attr-common.h"
2412 struct pta
2414 const char *const name; /* processor name or nickname. */
2415 const enum processor_type processor;
2416 const enum attr_cpu schedule;
2417 const wide_int_bitmask flags;
2420 extern const pta processor_alias_table[];
2421 extern int const pta_size;
2422 #endif
2424 #endif
2426 extern enum processor_type ix86_tune;
2427 extern enum processor_type ix86_arch;
2429 /* Size of the RED_ZONE area. */
2430 #define RED_ZONE_SIZE 128
2431 /* Reserved area of the red zone for temporaries. */
2432 #define RED_ZONE_RESERVE 8
2434 extern unsigned int ix86_preferred_stack_boundary;
2435 extern unsigned int ix86_incoming_stack_boundary;
2437 /* Smallest class containing REGNO. */
2438 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2440 enum ix86_fpcmp_strategy {
2441 IX86_FPCMP_SAHF,
2442 IX86_FPCMP_COMI,
2443 IX86_FPCMP_ARITH
2446 /* To properly truncate FP values into integers, we need to set i387 control
2447 word. We can't emit proper mode switching code before reload, as spills
2448 generated by reload may truncate values incorrectly, but we still can avoid
2449 redundant computation of new control word by the mode switching pass.
2450 The fldcw instructions are still emitted redundantly, but this is probably
2451 not going to be noticeable problem, as most CPUs do have fast path for
2452 the sequence.
2454 The machinery is to emit simple truncation instructions and split them
2455 before reload to instructions having USEs of two memory locations that
2456 are filled by this code to old and new control word.
2458 Post-reload pass may be later used to eliminate the redundant fildcw if
2459 needed. */
2461 enum ix86_stack_slot
2463 SLOT_TEMP = 0,
2464 SLOT_CW_STORED,
2465 SLOT_CW_TRUNC,
2466 SLOT_CW_FLOOR,
2467 SLOT_CW_CEIL,
2468 SLOT_CW_MASK_PM,
2469 SLOT_STV_TEMP,
2470 MAX_386_STACK_LOCALS
2473 enum ix86_entity
2475 X86_DIRFLAG = 0,
2476 AVX_U128,
2477 I387_TRUNC,
2478 I387_FLOOR,
2479 I387_CEIL,
2480 I387_MASK_PM,
2481 MAX_386_ENTITIES
2484 enum x86_dirflag_state
2486 X86_DIRFLAG_RESET,
2487 X86_DIRFLAG_ANY
2490 enum avx_u128_state
2492 AVX_U128_CLEAN,
2493 AVX_U128_DIRTY,
2494 AVX_U128_ANY
2497 /* Define this macro if the port needs extra instructions inserted
2498 for mode switching in an optimizing compilation. */
2500 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2501 ix86_optimize_mode_switching[(ENTITY)]
2503 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2504 initializer for an array of integers. Each initializer element N
2505 refers to an entity that needs mode switching, and specifies the
2506 number of different modes that might need to be set for this
2507 entity. The position of the initializer in the initializer -
2508 starting counting at zero - determines the integer that is used to
2509 refer to the mode-switched entity in question. */
2511 #define NUM_MODES_FOR_MODE_SWITCHING \
2512 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2513 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2516 /* Avoid renaming of stack registers, as doing so in combination with
2517 scheduling just increases amount of live registers at time and in
2518 the turn amount of fxch instructions needed.
2520 ??? Maybe Pentium chips benefits from renaming, someone can try....
2522 Don't rename evex to non-evex sse registers. */
2524 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2525 (!STACK_REGNO_P (SRC) \
2526 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2529 #define FASTCALL_PREFIX '@'
2531 #ifndef USED_FOR_TARGET
2532 /* Structure describing stack frame layout.
2533 Stack grows downward:
2535 [arguments]
2536 <- ARG_POINTER
2537 saved pc
2539 saved static chain if ix86_static_chain_on_stack
2541 saved frame pointer if frame_pointer_needed
2542 <- HARD_FRAME_POINTER
2543 [saved regs]
2544 <- reg_save_offset
2545 [padding0]
2546 <- stack_realign_offset
2547 [saved SSE regs]
2549 [stub-saved registers for ms x64 --> sysv clobbers
2550 <- Start of out-of-line, stub-saved/restored regs
2551 (see libgcc/config/i386/(sav|res)ms64*.S)
2552 [XMM6-15]
2553 [RSI]
2554 [RDI]
2555 [?RBX] only if RBX is clobbered
2556 [?RBP] only if RBP and RBX are clobbered
2557 [?R12] only if R12 and all previous regs are clobbered
2558 [?R13] only if R13 and all previous regs are clobbered
2559 [?R14] only if R14 and all previous regs are clobbered
2560 [?R15] only if R15 and all previous regs are clobbered
2561 <- end of stub-saved/restored regs
2562 [padding1]
2564 <- sse_reg_save_offset
2565 [padding2]
2566 | <- FRAME_POINTER
2567 [va_arg registers] |
2569 [frame] |
2571 [padding2] | = to_allocate
2572 <- STACK_POINTER
2574 struct GTY(()) ix86_frame
2576 int nsseregs;
2577 int nregs;
2578 int va_arg_size;
2579 int red_zone_size;
2580 int outgoing_arguments_size;
2582 /* The offsets relative to ARG_POINTER. */
2583 HOST_WIDE_INT frame_pointer_offset;
2584 HOST_WIDE_INT hard_frame_pointer_offset;
2585 HOST_WIDE_INT stack_pointer_offset;
2586 HOST_WIDE_INT hfp_save_offset;
2587 HOST_WIDE_INT reg_save_offset;
2588 HOST_WIDE_INT stack_realign_allocate;
2589 HOST_WIDE_INT stack_realign_offset;
2590 HOST_WIDE_INT sse_reg_save_offset;
2592 /* When save_regs_using_mov is set, emit prologue using
2593 move instead of push instructions. */
2594 bool save_regs_using_mov;
2597 /* Machine specific frame tracking during prologue/epilogue generation. All
2598 values are positive, but since the x86 stack grows downward, are subtratced
2599 from the CFA to produce a valid address. */
2601 struct GTY(()) machine_frame_state
2603 /* This pair tracks the currently active CFA as reg+offset. When reg
2604 is drap_reg, we don't bother trying to record here the real CFA when
2605 it might really be a DW_CFA_def_cfa_expression. */
2606 rtx cfa_reg;
2607 HOST_WIDE_INT cfa_offset;
2609 /* The current offset (canonically from the CFA) of ESP and EBP.
2610 When stack frame re-alignment is active, these may not be relative
2611 to the CFA. However, in all cases they are relative to the offsets
2612 of the saved registers stored in ix86_frame. */
2613 HOST_WIDE_INT sp_offset;
2614 HOST_WIDE_INT fp_offset;
2616 /* The size of the red-zone that may be assumed for the purposes of
2617 eliding register restore notes in the epilogue. This may be zero
2618 if no red-zone is in effect, or may be reduced from the real
2619 red-zone value by a maximum runtime stack re-alignment value. */
2620 int red_zone_offset;
2622 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2623 value within the frame. If false then the offset above should be
2624 ignored. Note that DRAP, if valid, *always* points to the CFA and
2625 thus has an offset of zero. */
2626 BOOL_BITFIELD sp_valid : 1;
2627 BOOL_BITFIELD fp_valid : 1;
2628 BOOL_BITFIELD drap_valid : 1;
2630 /* Indicate whether the local stack frame has been re-aligned. When
2631 set, the SP/FP offsets above are relative to the aligned frame
2632 and not the CFA. */
2633 BOOL_BITFIELD realigned : 1;
2635 /* Indicates whether the stack pointer has been re-aligned. When set,
2636 SP/FP continue to be relative to the CFA, but the stack pointer
2637 should only be used for offsets > sp_realigned_offset, while
2638 the frame pointer should be used for offsets <= sp_realigned_fp_last.
2639 The flags realigned and sp_realigned are mutually exclusive. */
2640 BOOL_BITFIELD sp_realigned : 1;
2642 /* If sp_realigned is set, this is the last valid offset from the CFA
2643 that can be used for access with the frame pointer. */
2644 HOST_WIDE_INT sp_realigned_fp_last;
2646 /* If sp_realigned is set, this is the offset from the CFA that the stack
2647 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2648 Access via the stack pointer is only valid for offsets that are greater than
2649 this value. */
2650 HOST_WIDE_INT sp_realigned_offset;
2653 /* Private to winnt.c. */
2654 struct seh_frame_state;
2656 enum function_type
2658 TYPE_UNKNOWN = 0,
2659 TYPE_NORMAL,
2660 /* The current function is an interrupt service routine with a
2661 pointer argument as specified by the "interrupt" attribute. */
2662 TYPE_INTERRUPT,
2663 /* The current function is an interrupt service routine with a
2664 pointer argument and an integer argument as specified by the
2665 "interrupt" attribute. */
2666 TYPE_EXCEPTION
2669 struct GTY(()) machine_function {
2670 struct stack_local_entry *stack_locals;
2671 int varargs_gpr_size;
2672 int varargs_fpr_size;
2673 int optimize_mode_switching[MAX_386_ENTITIES];
2675 /* Cached initial frame layout for the current function. */
2676 struct ix86_frame frame;
2678 /* For -fsplit-stack support: A stack local which holds a pointer to
2679 the stack arguments for a function with a variable number of
2680 arguments. This is set at the start of the function and is used
2681 to initialize the overflow_arg_area field of the va_list
2682 structure. */
2683 rtx split_stack_varargs_pointer;
2685 /* This value is used for amd64 targets and specifies the current abi
2686 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2687 ENUM_BITFIELD(calling_abi) call_abi : 8;
2689 /* Nonzero if the function accesses a previous frame. */
2690 BOOL_BITFIELD accesses_prev_frame : 1;
2692 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2693 expander to determine the style used. */
2694 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2696 /* Nonzero if the current function calls pc thunk and
2697 must not use the red zone. */
2698 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2700 /* If true, the current function needs the default PIC register, not
2701 an alternate register (on x86) and must not use the red zone (on
2702 x86_64), even if it's a leaf function. We don't want the
2703 function to be regarded as non-leaf because TLS calls need not
2704 affect register allocation. This flag is set when a TLS call
2705 instruction is expanded within a function, and never reset, even
2706 if all such instructions are optimized away. Use the
2707 ix86_current_function_calls_tls_descriptor macro for a better
2708 approximation. */
2709 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2711 /* If true, the current function has a STATIC_CHAIN is placed on the
2712 stack below the return address. */
2713 BOOL_BITFIELD static_chain_on_stack : 1;
2715 /* If true, it is safe to not save/restore DRAP register. */
2716 BOOL_BITFIELD no_drap_save_restore : 1;
2718 /* Function type. */
2719 ENUM_BITFIELD(function_type) func_type : 2;
2721 /* How to generate indirec branch. */
2722 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2724 /* If true, the current function has local indirect jumps, like
2725 "indirect_jump" or "tablejump". */
2726 BOOL_BITFIELD has_local_indirect_jump : 1;
2728 /* How to generate function return. */
2729 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2731 /* If true, the current function is a function specified with
2732 the "interrupt" or "no_caller_saved_registers" attribute. */
2733 BOOL_BITFIELD no_caller_saved_registers : 1;
2735 /* If true, there is register available for argument passing. This
2736 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2737 if there is scratch register available for indirect sibcall. In
2738 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2739 pass arguments and can be used for indirect sibcall. */
2740 BOOL_BITFIELD arg_reg_available : 1;
2742 /* If true, we're out-of-lining reg save/restore for regs clobbered
2743 by 64-bit ms_abi functions calling a sysv_abi function. */
2744 BOOL_BITFIELD call_ms2sysv : 1;
2746 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2747 needs padding prior to out-of-line stub save/restore area. */
2748 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2750 /* This is the number of extra registers saved by stub (valid range is
2751 0-6). Each additional register is only saved/restored by the stubs
2752 if all successive ones are. (Will always be zero when using a hard
2753 frame pointer.) */
2754 unsigned int call_ms2sysv_extra_regs:3;
2756 /* Nonzero if the function places outgoing arguments on stack. */
2757 BOOL_BITFIELD outgoing_args_on_stack : 1;
2759 /* The largest alignment, in bytes, of stack slot actually used. */
2760 unsigned int max_used_stack_alignment;
2762 /* During prologue/epilogue generation, the current frame state.
2763 Otherwise, the frame state at the end of the prologue. */
2764 struct machine_frame_state fs;
2766 /* During SEH output, this is non-null. */
2767 struct seh_frame_state * GTY((skip(""))) seh;
2769 #endif
2771 #define ix86_stack_locals (cfun->machine->stack_locals)
2772 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2773 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2774 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2775 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2776 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2777 (cfun->machine->tls_descriptor_call_expanded_p)
2778 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2779 calls are optimized away, we try to detect cases in which it was
2780 optimized away. Since such instructions (use (reg REG_SP)), we can
2781 verify whether there's any such instruction live by testing that
2782 REG_SP is live. */
2783 #define ix86_current_function_calls_tls_descriptor \
2784 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2785 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2786 #define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
2788 /* Control behavior of x86_file_start. */
2789 #define X86_FILE_START_VERSION_DIRECTIVE false
2790 #define X86_FILE_START_FLTUSED false
2792 /* Flag to mark data that is in the large address area. */
2793 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2794 #define SYMBOL_REF_FAR_ADDR_P(X) \
2795 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2797 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2798 have defined always, to avoid ifdefing. */
2799 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2800 #define SYMBOL_REF_DLLIMPORT_P(X) \
2801 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2803 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2804 #define SYMBOL_REF_DLLEXPORT_P(X) \
2805 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2807 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2808 #define SYMBOL_REF_STUBVAR_P(X) \
2809 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2811 extern void debug_ready_dispatch (void);
2812 extern void debug_dispatch_window (int);
2814 /* The value at zero is only defined for the BMI instructions
2815 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2816 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2817 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2818 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2819 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2822 /* Flags returned by ix86_get_callcvt (). */
2823 #define IX86_CALLCVT_CDECL 0x1
2824 #define IX86_CALLCVT_STDCALL 0x2
2825 #define IX86_CALLCVT_FASTCALL 0x4
2826 #define IX86_CALLCVT_THISCALL 0x8
2827 #define IX86_CALLCVT_REGPARM 0x10
2828 #define IX86_CALLCVT_SSEREGPARM 0x20
2830 #define IX86_BASE_CALLCVT(FLAGS) \
2831 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2832 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2834 #define RECIP_MASK_NONE 0x00
2835 #define RECIP_MASK_DIV 0x01
2836 #define RECIP_MASK_SQRT 0x02
2837 #define RECIP_MASK_VEC_DIV 0x04
2838 #define RECIP_MASK_VEC_SQRT 0x08
2839 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2840 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2841 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2843 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2844 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2845 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2846 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2848 /* Use 128-bit AVX instructions in the auto-vectorizer. */
2849 #define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2850 /* Use 256-bit AVX instructions in the auto-vectorizer. */
2851 #define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2852 || prefer_vector_width_type == PVW_AVX256)
2854 #define TARGET_INDIRECT_BRANCH_REGISTER \
2855 (ix86_indirect_branch_register \
2856 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2858 #define IX86_HLE_ACQUIRE (1 << 16)
2859 #define IX86_HLE_RELEASE (1 << 17)
2861 /* For switching between functions with different target attributes. */
2862 #define SWITCHABLE_TARGET 1
2864 #define TARGET_SUPPORTS_WIDE_INT 1
2867 Local variables:
2868 version-control: t
2869 End: