* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / libiberty / regex.c
blobe68df05818c5ea40940f2d6ac5e8d699e4127417
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 02111-1307 USA. */
23 /* This file has been modified for usage in libiberty. It includes "xregex.h"
24 instead of <regex.h>. The "xregex.h" header file renames all external
25 routines with an "x" prefix so they do not collide with the native regex
26 routines or with other components regex routines. */
27 /* AIX requires this to be the first thing in the file. */
28 #if defined _AIX && !defined REGEX_MALLOC
29 #pragma alloca
30 #endif
32 #undef _GNU_SOURCE
33 #define _GNU_SOURCE
35 #ifdef HAVE_CONFIG_H
36 # include <config.h>
37 #endif
39 #ifndef PARAMS
40 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
41 # define PARAMS(args) args
42 # else
43 # define PARAMS(args) ()
44 # endif /* GCC. */
45 #endif /* Not PARAMS. */
47 #ifndef INSIDE_RECURSION
49 # if defined STDC_HEADERS && !defined emacs
50 # include <stddef.h>
51 # else
52 /* We need this for `regex.h', and perhaps for the Emacs include files. */
53 # include <sys/types.h>
54 # endif
56 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 # if defined _LIBC || WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62 # include <wchar.h>
63 # include <wctype.h>
64 # endif
66 # ifdef _LIBC
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 # define btowc __btowc
90 /* We are also using some library internals. */
91 # include <locale/localeinfo.h>
92 # include <locale/elem-hash.h>
93 # include <langinfo.h>
94 # include <locale/coll-lookup.h>
95 # endif
97 /* This is for other GNU distributions with internationalized messages. */
98 # if HAVE_LIBINTL_H || defined _LIBC
99 # include <libintl.h>
100 # ifdef _LIBC
101 # undef gettext
102 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103 # endif
104 # else
105 # define gettext(msgid) (msgid)
106 # endif
108 # ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 # endif
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 # ifdef emacs
118 # include "lisp.h"
119 # include "buffer.h"
120 # include "syntax.h"
122 # else /* not emacs */
124 /* If we are not linking with Emacs proper,
125 we can't use the relocating allocator
126 even if config.h says that we can. */
127 # undef REL_ALLOC
129 # if defined STDC_HEADERS || defined _LIBC
130 # include <stdlib.h>
131 # else
132 char *malloc ();
133 char *realloc ();
134 # endif
136 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137 If nothing else has been done, use the method below. */
138 # ifdef INHIBIT_STRING_HEADER
139 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140 # if !defined bzero && !defined bcopy
141 # undef INHIBIT_STRING_HEADER
142 # endif
143 # endif
144 # endif
146 /* This is the normal way of making sure we have a bcopy and a bzero.
147 This is used in most programs--a few other programs avoid this
148 by defining INHIBIT_STRING_HEADER. */
149 # ifndef INHIBIT_STRING_HEADER
150 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151 # include <string.h>
152 # ifndef bzero
153 # ifndef _LIBC
154 # define bzero(s, n) (memset (s, '\0', n), (s))
155 # else
156 # define bzero(s, n) __bzero (s, n)
157 # endif
158 # endif
159 # else
160 # include <strings.h>
161 # ifndef memcmp
162 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
163 # endif
164 # ifndef memcpy
165 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
166 # endif
167 # endif
168 # endif
170 /* Define the syntax stuff for \<, \>, etc. */
172 /* This must be nonzero for the wordchar and notwordchar pattern
173 commands in re_match_2. */
174 # ifndef Sword
175 # define Sword 1
176 # endif
178 # ifdef SWITCH_ENUM_BUG
179 # define SWITCH_ENUM_CAST(x) ((int)(x))
180 # else
181 # define SWITCH_ENUM_CAST(x) (x)
182 # endif
184 # endif /* not emacs */
186 # if defined _LIBC || HAVE_LIMITS_H
187 # include <limits.h>
188 # endif
190 # ifndef MB_LEN_MAX
191 # define MB_LEN_MAX 1
192 # endif
194 /* Get the interface, including the syntax bits. */
195 # include "xregex.h" /* change for libiberty */
197 /* isalpha etc. are used for the character classes. */
198 # include <ctype.h>
200 /* Jim Meyering writes:
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
212 # undef ISASCII
213 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 # define ISASCII(c) 1
215 # else
216 # define ISASCII(c) isascii(c)
217 # endif
219 # ifdef isblank
220 # define ISBLANK(c) (ISASCII (c) && isblank (c))
221 # else
222 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223 # endif
224 # ifdef isgraph
225 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226 # else
227 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228 # endif
230 # undef ISPRINT
231 # define ISPRINT(c) (ISASCII (c) && isprint (c))
232 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 # define ISLOWER(c) (ISASCII (c) && islower (c))
237 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 # define ISSPACE(c) (ISASCII (c) && isspace (c))
239 # define ISUPPER(c) (ISASCII (c) && isupper (c))
240 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
242 # ifdef _tolower
243 # define TOLOWER(c) _tolower(c)
244 # else
245 # define TOLOWER(c) tolower(c)
246 # endif
248 # ifndef NULL
249 # define NULL (void *)0
250 # endif
252 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
253 since ours (we hope) works properly with all combinations of
254 machines, compilers, `char' and `unsigned char' argument types.
255 (Per Bothner suggested the basic approach.) */
256 # undef SIGN_EXTEND_CHAR
257 # if __STDC__
258 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259 # else /* not __STDC__ */
260 /* As in Harbison and Steele. */
261 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262 # endif
264 # ifndef emacs
265 /* How many characters in the character set. */
266 # define CHAR_SET_SIZE 256
268 # ifdef SYNTAX_TABLE
270 extern char *re_syntax_table;
272 # else /* not SYNTAX_TABLE */
274 static char re_syntax_table[CHAR_SET_SIZE];
276 static void init_syntax_once PARAMS ((void));
278 static void
279 init_syntax_once ()
281 register int c;
282 static int done = 0;
284 if (done)
285 return;
286 bzero (re_syntax_table, sizeof re_syntax_table);
288 for (c = 0; c < CHAR_SET_SIZE; ++c)
289 if (ISALNUM (c))
290 re_syntax_table[c] = Sword;
292 re_syntax_table['_'] = Sword;
294 done = 1;
297 # endif /* not SYNTAX_TABLE */
299 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
301 # endif /* emacs */
303 /* Integer type for pointers. */
304 # if !defined _LIBC
305 typedef unsigned long int uintptr_t;
306 # endif
308 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
318 # ifdef REGEX_MALLOC
320 # define REGEX_ALLOCATE malloc
321 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322 # define REGEX_FREE free
324 # else /* not REGEX_MALLOC */
326 /* Emacs already defines alloca, sometimes. */
327 # ifndef alloca
329 /* Make alloca work the best possible way. */
330 # ifdef __GNUC__
331 # define alloca __builtin_alloca
332 # else /* not __GNUC__ */
333 # if HAVE_ALLOCA_H
334 # include <alloca.h>
335 # endif /* HAVE_ALLOCA_H */
336 # endif /* not __GNUC__ */
338 # endif /* not alloca */
340 # define REGEX_ALLOCATE alloca
342 /* Assumes a `char *destination' variable. */
343 # define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
347 /* No need to do anything to free, after alloca. */
348 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
350 # endif /* not REGEX_MALLOC */
352 /* Define how to allocate the failure stack. */
354 # if defined REL_ALLOC && defined REGEX_MALLOC
356 # define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360 # define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
363 # else /* not using relocating allocator */
365 # ifdef REGEX_MALLOC
367 # define REGEX_ALLOCATE_STACK malloc
368 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369 # define REGEX_FREE_STACK free
371 # else /* not REGEX_MALLOC */
373 # define REGEX_ALLOCATE_STACK alloca
375 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377 /* No need to explicitly free anything. */
378 # define REGEX_FREE_STACK(arg)
380 # endif /* not REGEX_MALLOC */
381 # endif /* not using relocating allocator */
384 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
386 a good thing. */
387 # define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
390 /* (Re)Allocate N items of type T using malloc, or fail. */
391 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393 # define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
397 # define BYTEWIDTH 8 /* In bits. */
399 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
401 # undef MAX
402 # undef MIN
403 # define MAX(a, b) ((a) > (b) ? (a) : (b))
404 # define MIN(a, b) ((a) < (b) ? (a) : (b))
406 typedef char boolean;
407 # define false 0
408 # define true 1
410 static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
411 reg_syntax_t syntax,
412 struct re_pattern_buffer *bufp));
414 static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
415 const char *string1, int size1,
416 const char *string2, int size2,
417 int pos,
418 struct re_registers *regs,
419 int stop));
420 static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
421 const char *string1, int size1,
422 const char *string2, int size2,
423 int startpos, int range,
424 struct re_registers *regs, int stop));
425 static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
427 #ifdef MBS_SUPPORT
428 static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
429 reg_syntax_t syntax,
430 struct re_pattern_buffer *bufp));
433 static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
434 const char *cstring1, int csize1,
435 const char *cstring2, int csize2,
436 int pos,
437 struct re_registers *regs,
438 int stop,
439 wchar_t *string1, int size1,
440 wchar_t *string2, int size2,
441 int *mbs_offset1, int *mbs_offset2));
442 static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
443 const char *string1, int size1,
444 const char *string2, int size2,
445 int startpos, int range,
446 struct re_registers *regs, int stop));
447 static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
448 #endif
450 /* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
455 typedef enum
457 no_op = 0,
459 /* Succeed right away--no more backtracking. */
460 succeed,
462 /* Followed by one byte giving n, then by n literal bytes. */
463 exactn,
465 # ifdef MBS_SUPPORT
466 /* Same as exactn, but contains binary data. */
467 exactn_bin,
468 # endif
470 /* Matches any (more or less) character. */
471 anychar,
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
484 elements follow.
485 See regex_compile function. */
486 charset,
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
490 charset_not,
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
498 of re_match_2.) */
499 start_memory,
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
508 stop_memory,
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
512 duplicate,
514 /* Fail unless at beginning of line. */
515 begline,
517 /* Fail unless at end of line. */
518 endline,
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
522 begbuf,
524 /* Analogously, for end of buffer/string. */
525 endbuf,
527 /* Followed by two byte relative address to which to jump. */
528 jump,
530 /* Same as jump, but marks the end of an alternative. */
531 jump_past_alt,
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
536 on_failure_jump,
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump,
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
545 pop_failure_jump,
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
555 maybe_pop_jump,
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
563 dummy_failure_jump,
565 /* Push a dummy failure point and continue. Used at the end of
566 alternatives. */
567 push_dummy_failure,
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
572 succeed_n,
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
577 jump_n,
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
581 bytes of number. */
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
583 set_number_at,
585 wordchar, /* Matches any word-constituent character. */
586 notwordchar, /* Matches any char that is not a word-constituent. */
588 wordbeg, /* Succeeds if at word beginning. */
589 wordend, /* Succeeds if at word end. */
591 wordbound, /* Succeeds if at a word boundary. */
592 notwordbound /* Succeeds if not at a word boundary. */
594 # ifdef emacs
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
601 syntaxspec,
603 /* Matches any character whose syntax is not that specified. */
604 notsyntaxspec
605 # endif /* emacs */
606 } re_opcode_t;
607 #endif /* not INSIDE_RECURSION */
610 #ifdef BYTE
611 # define CHAR_T char
612 # define UCHAR_T unsigned char
613 # define COMPILED_BUFFER_VAR bufp->buffer
614 # define OFFSET_ADDRESS_SIZE 2
615 # define PREFIX(name) byte_##name
616 # define ARG_PREFIX(name) name
617 # define PUT_CHAR(c) putchar (c)
618 #else
619 # ifdef WCHAR
620 # define CHAR_T wchar_t
621 # define UCHAR_T wchar_t
622 # define COMPILED_BUFFER_VAR wc_buffer
623 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625 # define PREFIX(name) wcs_##name
626 # define ARG_PREFIX(name) c##name
627 /* Should we use wide stream?? */
628 # define PUT_CHAR(c) printf ("%C", c);
629 # define TRUE 1
630 # define FALSE 0
631 # else
632 # ifdef MBS_SUPPORT
633 # define WCHAR
634 # define INSIDE_RECURSION
635 # include "regex.c"
636 # undef INSIDE_RECURSION
637 # endif
638 # define BYTE
639 # define INSIDE_RECURSION
640 # include "regex.c"
641 # undef INSIDE_RECURSION
642 # endif
643 #endif
645 #ifdef INSIDE_RECURSION
646 /* Common operations on the compiled pattern. */
648 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
649 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
651 # ifdef WCHAR
652 # define STORE_NUMBER(destination, number) \
653 do { \
654 *(destination) = (UCHAR_T)(number); \
655 } while (0)
656 # else /* BYTE */
657 # define STORE_NUMBER(destination, number) \
658 do { \
659 (destination)[0] = (number) & 0377; \
660 (destination)[1] = (number) >> 8; \
661 } while (0)
662 # endif /* WCHAR */
664 /* Same as STORE_NUMBER, except increment DESTINATION to
665 the byte after where the number is stored. Therefore, DESTINATION
666 must be an lvalue. */
667 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
669 # define STORE_NUMBER_AND_INCR(destination, number) \
670 do { \
671 STORE_NUMBER (destination, number); \
672 (destination) += OFFSET_ADDRESS_SIZE; \
673 } while (0)
675 /* Put into DESTINATION a number stored in two contiguous bytes starting
676 at SOURCE. */
677 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
679 # ifdef WCHAR
680 # define EXTRACT_NUMBER(destination, source) \
681 do { \
682 (destination) = *(source); \
683 } while (0)
684 # else /* BYTE */
685 # define EXTRACT_NUMBER(destination, source) \
686 do { \
687 (destination) = *(source) & 0377; \
688 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
689 } while (0)
690 # endif
692 # ifdef DEBUG
693 static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
694 static void
695 PREFIX(extract_number) (dest, source)
696 int *dest;
697 UCHAR_T *source;
699 # ifdef WCHAR
700 *dest = *source;
701 # else /* BYTE */
702 int temp = SIGN_EXTEND_CHAR (*(source + 1));
703 *dest = *source & 0377;
704 *dest += temp << 8;
705 # endif
708 # ifndef EXTRACT_MACROS /* To debug the macros. */
709 # undef EXTRACT_NUMBER
710 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
711 # endif /* not EXTRACT_MACROS */
713 # endif /* DEBUG */
715 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
716 SOURCE must be an lvalue. */
718 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
719 do { \
720 EXTRACT_NUMBER (destination, source); \
721 (source) += OFFSET_ADDRESS_SIZE; \
722 } while (0)
724 # ifdef DEBUG
725 static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
726 UCHAR_T **source));
727 static void
728 PREFIX(extract_number_and_incr) (destination, source)
729 int *destination;
730 UCHAR_T **source;
732 PREFIX(extract_number) (destination, *source);
733 *source += OFFSET_ADDRESS_SIZE;
736 # ifndef EXTRACT_MACROS
737 # undef EXTRACT_NUMBER_AND_INCR
738 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
739 PREFIX(extract_number_and_incr) (&dest, &src)
740 # endif /* not EXTRACT_MACROS */
742 # endif /* DEBUG */
746 /* If DEBUG is defined, Regex prints many voluminous messages about what
747 it is doing (if the variable `debug' is nonzero). If linked with the
748 main program in `iregex.c', you can enter patterns and strings
749 interactively. And if linked with the main program in `main.c' and
750 the other test files, you can run the already-written tests. */
752 # ifdef DEBUG
754 # ifndef DEFINED_ONCE
756 /* We use standard I/O for debugging. */
757 # include <stdio.h>
759 /* It is useful to test things that ``must'' be true when debugging. */
760 # include <assert.h>
762 static int debug;
764 # define DEBUG_STATEMENT(e) e
765 # define DEBUG_PRINT1(x) if (debug) printf (x)
766 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
767 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
768 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
769 # endif /* not DEFINED_ONCE */
771 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
772 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
773 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
774 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
777 /* Print the fastmap in human-readable form. */
779 # ifndef DEFINED_ONCE
780 void
781 print_fastmap (fastmap)
782 char *fastmap;
784 unsigned was_a_range = 0;
785 unsigned i = 0;
787 while (i < (1 << BYTEWIDTH))
789 if (fastmap[i++])
791 was_a_range = 0;
792 putchar (i - 1);
793 while (i < (1 << BYTEWIDTH) && fastmap[i])
795 was_a_range = 1;
796 i++;
798 if (was_a_range)
800 printf ("-");
801 putchar (i - 1);
805 putchar ('\n');
807 # endif /* not DEFINED_ONCE */
810 /* Print a compiled pattern string in human-readable form, starting at
811 the START pointer into it and ending just before the pointer END. */
813 void
814 PREFIX(print_partial_compiled_pattern) (start, end)
815 UCHAR_T *start;
816 UCHAR_T *end;
818 int mcnt, mcnt2;
819 UCHAR_T *p1;
820 UCHAR_T *p = start;
821 UCHAR_T *pend = end;
823 if (start == NULL)
825 printf ("(null)\n");
826 return;
829 /* Loop over pattern commands. */
830 while (p < pend)
832 # ifdef _LIBC
833 printf ("%td:\t", p - start);
834 # else
835 printf ("%ld:\t", (long int) (p - start));
836 # endif
838 switch ((re_opcode_t) *p++)
840 case no_op:
841 printf ("/no_op");
842 break;
844 case exactn:
845 mcnt = *p++;
846 printf ("/exactn/%d", mcnt);
849 putchar ('/');
850 PUT_CHAR (*p++);
852 while (--mcnt);
853 break;
855 # ifdef MBS_SUPPORT
856 case exactn_bin:
857 mcnt = *p++;
858 printf ("/exactn_bin/%d", mcnt);
861 printf("/%lx", (long int) *p++);
863 while (--mcnt);
864 break;
865 # endif /* MBS_SUPPORT */
867 case start_memory:
868 mcnt = *p++;
869 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
870 break;
872 case stop_memory:
873 mcnt = *p++;
874 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
875 break;
877 case duplicate:
878 printf ("/duplicate/%ld", (long int) *p++);
879 break;
881 case anychar:
882 printf ("/anychar");
883 break;
885 case charset:
886 case charset_not:
888 # ifdef WCHAR
889 int i, length;
890 wchar_t *workp = p;
891 printf ("/charset [%s",
892 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
893 p += 5;
894 length = *workp++; /* the length of char_classes */
895 for (i=0 ; i<length ; i++)
896 printf("[:%lx:]", (long int) *p++);
897 length = *workp++; /* the length of collating_symbol */
898 for (i=0 ; i<length ;)
900 printf("[.");
901 while(*p != 0)
902 PUT_CHAR((i++,*p++));
903 i++,p++;
904 printf(".]");
906 length = *workp++; /* the length of equivalence_class */
907 for (i=0 ; i<length ;)
909 printf("[=");
910 while(*p != 0)
911 PUT_CHAR((i++,*p++));
912 i++,p++;
913 printf("=]");
915 length = *workp++; /* the length of char_range */
916 for (i=0 ; i<length ; i++)
918 wchar_t range_start = *p++;
919 wchar_t range_end = *p++;
920 printf("%C-%C", range_start, range_end);
922 length = *workp++; /* the length of char */
923 for (i=0 ; i<length ; i++)
924 printf("%C", *p++);
925 putchar (']');
926 # else
927 register int c, last = -100;
928 register int in_range = 0;
930 printf ("/charset [%s",
931 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
933 assert (p + *p < pend);
935 for (c = 0; c < 256; c++)
936 if (c / 8 < *p
937 && (p[1 + (c/8)] & (1 << (c % 8))))
939 /* Are we starting a range? */
940 if (last + 1 == c && ! in_range)
942 putchar ('-');
943 in_range = 1;
945 /* Have we broken a range? */
946 else if (last + 1 != c && in_range)
948 putchar (last);
949 in_range = 0;
952 if (! in_range)
953 putchar (c);
955 last = c;
958 if (in_range)
959 putchar (last);
961 putchar (']');
963 p += 1 + *p;
964 # endif /* WCHAR */
966 break;
968 case begline:
969 printf ("/begline");
970 break;
972 case endline:
973 printf ("/endline");
974 break;
976 case on_failure_jump:
977 PREFIX(extract_number_and_incr) (&mcnt, &p);
978 # ifdef _LIBC
979 printf ("/on_failure_jump to %td", p + mcnt - start);
980 # else
981 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
982 # endif
983 break;
985 case on_failure_keep_string_jump:
986 PREFIX(extract_number_and_incr) (&mcnt, &p);
987 # ifdef _LIBC
988 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
989 # else
990 printf ("/on_failure_keep_string_jump to %ld",
991 (long int) (p + mcnt - start));
992 # endif
993 break;
995 case dummy_failure_jump:
996 PREFIX(extract_number_and_incr) (&mcnt, &p);
997 # ifdef _LIBC
998 printf ("/dummy_failure_jump to %td", p + mcnt - start);
999 # else
1000 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1001 # endif
1002 break;
1004 case push_dummy_failure:
1005 printf ("/push_dummy_failure");
1006 break;
1008 case maybe_pop_jump:
1009 PREFIX(extract_number_and_incr) (&mcnt, &p);
1010 # ifdef _LIBC
1011 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1012 # else
1013 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1014 # endif
1015 break;
1017 case pop_failure_jump:
1018 PREFIX(extract_number_and_incr) (&mcnt, &p);
1019 # ifdef _LIBC
1020 printf ("/pop_failure_jump to %td", p + mcnt - start);
1021 # else
1022 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1023 # endif
1024 break;
1026 case jump_past_alt:
1027 PREFIX(extract_number_and_incr) (&mcnt, &p);
1028 # ifdef _LIBC
1029 printf ("/jump_past_alt to %td", p + mcnt - start);
1030 # else
1031 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1032 # endif
1033 break;
1035 case jump:
1036 PREFIX(extract_number_and_incr) (&mcnt, &p);
1037 # ifdef _LIBC
1038 printf ("/jump to %td", p + mcnt - start);
1039 # else
1040 printf ("/jump to %ld", (long int) (p + mcnt - start));
1041 # endif
1042 break;
1044 case succeed_n:
1045 PREFIX(extract_number_and_incr) (&mcnt, &p);
1046 p1 = p + mcnt;
1047 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1048 # ifdef _LIBC
1049 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1050 # else
1051 printf ("/succeed_n to %ld, %d times",
1052 (long int) (p1 - start), mcnt2);
1053 # endif
1054 break;
1056 case jump_n:
1057 PREFIX(extract_number_and_incr) (&mcnt, &p);
1058 p1 = p + mcnt;
1059 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1060 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1061 break;
1063 case set_number_at:
1064 PREFIX(extract_number_and_incr) (&mcnt, &p);
1065 p1 = p + mcnt;
1066 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1067 # ifdef _LIBC
1068 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1069 # else
1070 printf ("/set_number_at location %ld to %d",
1071 (long int) (p1 - start), mcnt2);
1072 # endif
1073 break;
1075 case wordbound:
1076 printf ("/wordbound");
1077 break;
1079 case notwordbound:
1080 printf ("/notwordbound");
1081 break;
1083 case wordbeg:
1084 printf ("/wordbeg");
1085 break;
1087 case wordend:
1088 printf ("/wordend");
1089 break;
1091 # ifdef emacs
1092 case before_dot:
1093 printf ("/before_dot");
1094 break;
1096 case at_dot:
1097 printf ("/at_dot");
1098 break;
1100 case after_dot:
1101 printf ("/after_dot");
1102 break;
1104 case syntaxspec:
1105 printf ("/syntaxspec");
1106 mcnt = *p++;
1107 printf ("/%d", mcnt);
1108 break;
1110 case notsyntaxspec:
1111 printf ("/notsyntaxspec");
1112 mcnt = *p++;
1113 printf ("/%d", mcnt);
1114 break;
1115 # endif /* emacs */
1117 case wordchar:
1118 printf ("/wordchar");
1119 break;
1121 case notwordchar:
1122 printf ("/notwordchar");
1123 break;
1125 case begbuf:
1126 printf ("/begbuf");
1127 break;
1129 case endbuf:
1130 printf ("/endbuf");
1131 break;
1133 default:
1134 printf ("?%ld", (long int) *(p-1));
1137 putchar ('\n');
1140 # ifdef _LIBC
1141 printf ("%td:\tend of pattern.\n", p - start);
1142 # else
1143 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1144 # endif
1148 void
1149 PREFIX(print_compiled_pattern) (bufp)
1150 struct re_pattern_buffer *bufp;
1152 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1154 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1155 + bufp->used / sizeof(UCHAR_T));
1156 printf ("%ld bytes used/%ld bytes allocated.\n",
1157 bufp->used, bufp->allocated);
1159 if (bufp->fastmap_accurate && bufp->fastmap)
1161 printf ("fastmap: ");
1162 print_fastmap (bufp->fastmap);
1165 # ifdef _LIBC
1166 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1167 # else
1168 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1169 # endif
1170 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1171 printf ("can_be_null: %d\t", bufp->can_be_null);
1172 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1173 printf ("no_sub: %d\t", bufp->no_sub);
1174 printf ("not_bol: %d\t", bufp->not_bol);
1175 printf ("not_eol: %d\t", bufp->not_eol);
1176 printf ("syntax: %lx\n", bufp->syntax);
1177 /* Perhaps we should print the translate table? */
1181 void
1182 PREFIX(print_double_string) (where, string1, size1, string2, size2)
1183 const CHAR_T *where;
1184 const CHAR_T *string1;
1185 const CHAR_T *string2;
1186 int size1;
1187 int size2;
1189 int this_char;
1191 if (where == NULL)
1192 printf ("(null)");
1193 else
1195 int cnt;
1197 if (FIRST_STRING_P (where))
1199 for (this_char = where - string1; this_char < size1; this_char++)
1200 PUT_CHAR (string1[this_char]);
1202 where = string2;
1205 cnt = 0;
1206 for (this_char = where - string2; this_char < size2; this_char++)
1208 PUT_CHAR (string2[this_char]);
1209 if (++cnt > 100)
1211 fputs ("...", stdout);
1212 break;
1218 # ifndef DEFINED_ONCE
1219 void
1220 printchar (c)
1221 int c;
1223 putc (c, stderr);
1225 # endif
1227 # else /* not DEBUG */
1229 # ifndef DEFINED_ONCE
1230 # undef assert
1231 # define assert(e)
1233 # define DEBUG_STATEMENT(e)
1234 # define DEBUG_PRINT1(x)
1235 # define DEBUG_PRINT2(x1, x2)
1236 # define DEBUG_PRINT3(x1, x2, x3)
1237 # define DEBUG_PRINT4(x1, x2, x3, x4)
1238 # endif /* not DEFINED_ONCE */
1239 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1240 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1242 # endif /* not DEBUG */
1246 # ifdef WCHAR
1247 /* This convert a multibyte string to a wide character string.
1248 And write their correspondances to offset_buffer(see below)
1249 and write whether each wchar_t is binary data to is_binary.
1250 This assume invalid multibyte sequences as binary data.
1251 We assume offset_buffer and is_binary is already allocated
1252 enough space. */
1254 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1255 size_t len, int *offset_buffer,
1256 char *is_binary);
1257 static size_t
1258 convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1259 CHAR_T *dest;
1260 const unsigned char* src;
1261 size_t len; /* the length of multibyte string. */
1263 /* It hold correspondances between src(char string) and
1264 dest(wchar_t string) for optimization.
1265 e.g. src = "xxxyzz"
1266 dest = {'X', 'Y', 'Z'}
1267 (each "xxx", "y" and "zz" represent one multibyte character
1268 corresponding to 'X', 'Y' and 'Z'.)
1269 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1270 = {0, 3, 4, 6}
1272 int *offset_buffer;
1273 char *is_binary;
1275 wchar_t *pdest = dest;
1276 const unsigned char *psrc = src;
1277 size_t wc_count = 0;
1279 mbstate_t mbs;
1280 int i, consumed;
1281 size_t mb_remain = len;
1282 size_t mb_count = 0;
1284 /* Initialize the conversion state. */
1285 memset (&mbs, 0, sizeof (mbstate_t));
1287 offset_buffer[0] = 0;
1288 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1289 psrc += consumed)
1291 #ifdef _LIBC
1292 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1293 #else
1294 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1295 #endif
1297 if (consumed <= 0)
1298 /* failed to convert. maybe src contains binary data.
1299 So we consume 1 byte manualy. */
1301 *pdest = *psrc;
1302 consumed = 1;
1303 is_binary[wc_count] = TRUE;
1305 else
1306 is_binary[wc_count] = FALSE;
1307 /* In sjis encoding, we use yen sign as escape character in
1308 place of reverse solidus. So we convert 0x5c(yen sign in
1309 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1310 solidus in UCS2). */
1311 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1312 *pdest = (wchar_t) *psrc;
1314 offset_buffer[wc_count + 1] = mb_count += consumed;
1317 /* Fill remain of the buffer with sentinel. */
1318 for (i = wc_count + 1 ; i <= len ; i++)
1319 offset_buffer[i] = mb_count + 1;
1321 return wc_count;
1324 # endif /* WCHAR */
1326 #else /* not INSIDE_RECURSION */
1328 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1329 also be assigned to arbitrarily: each pattern buffer stores its own
1330 syntax, so it can be changed between regex compilations. */
1331 /* This has no initializer because initialized variables in Emacs
1332 become read-only after dumping. */
1333 reg_syntax_t re_syntax_options;
1336 /* Specify the precise syntax of regexps for compilation. This provides
1337 for compatibility for various utilities which historically have
1338 different, incompatible syntaxes.
1340 The argument SYNTAX is a bit mask comprised of the various bits
1341 defined in regex.h. We return the old syntax. */
1343 reg_syntax_t
1344 re_set_syntax (syntax)
1345 reg_syntax_t syntax;
1347 reg_syntax_t ret = re_syntax_options;
1349 re_syntax_options = syntax;
1350 # ifdef DEBUG
1351 if (syntax & RE_DEBUG)
1352 debug = 1;
1353 else if (debug) /* was on but now is not */
1354 debug = 0;
1355 # endif /* DEBUG */
1356 return ret;
1358 # ifdef _LIBC
1359 weak_alias (__re_set_syntax, re_set_syntax)
1360 # endif
1362 /* This table gives an error message for each of the error codes listed
1363 in regex.h. Obviously the order here has to be same as there.
1364 POSIX doesn't require that we do anything for REG_NOERROR,
1365 but why not be nice? */
1367 static const char re_error_msgid[] =
1369 # define REG_NOERROR_IDX 0
1370 gettext_noop ("Success") /* REG_NOERROR */
1371 "\0"
1372 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1373 gettext_noop ("No match") /* REG_NOMATCH */
1374 "\0"
1375 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1376 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1377 "\0"
1378 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1379 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1380 "\0"
1381 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1382 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1383 "\0"
1384 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1385 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1386 "\0"
1387 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1388 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1389 "\0"
1390 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1391 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1392 "\0"
1393 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1394 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1395 "\0"
1396 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1397 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1398 "\0"
1399 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1400 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1401 "\0"
1402 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1403 gettext_noop ("Invalid range end") /* REG_ERANGE */
1404 "\0"
1405 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1406 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1407 "\0"
1408 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1409 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1410 "\0"
1411 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1412 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1413 "\0"
1414 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1415 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1416 "\0"
1417 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1418 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1421 static const size_t re_error_msgid_idx[] =
1423 REG_NOERROR_IDX,
1424 REG_NOMATCH_IDX,
1425 REG_BADPAT_IDX,
1426 REG_ECOLLATE_IDX,
1427 REG_ECTYPE_IDX,
1428 REG_EESCAPE_IDX,
1429 REG_ESUBREG_IDX,
1430 REG_EBRACK_IDX,
1431 REG_EPAREN_IDX,
1432 REG_EBRACE_IDX,
1433 REG_BADBR_IDX,
1434 REG_ERANGE_IDX,
1435 REG_ESPACE_IDX,
1436 REG_BADRPT_IDX,
1437 REG_EEND_IDX,
1438 REG_ESIZE_IDX,
1439 REG_ERPAREN_IDX
1442 #endif /* INSIDE_RECURSION */
1444 #ifndef DEFINED_ONCE
1445 /* Avoiding alloca during matching, to placate r_alloc. */
1447 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1448 searching and matching functions should not call alloca. On some
1449 systems, alloca is implemented in terms of malloc, and if we're
1450 using the relocating allocator routines, then malloc could cause a
1451 relocation, which might (if the strings being searched are in the
1452 ralloc heap) shift the data out from underneath the regexp
1453 routines.
1455 Here's another reason to avoid allocation: Emacs
1456 processes input from X in a signal handler; processing X input may
1457 call malloc; if input arrives while a matching routine is calling
1458 malloc, then we're scrod. But Emacs can't just block input while
1459 calling matching routines; then we don't notice interrupts when
1460 they come in. So, Emacs blocks input around all regexp calls
1461 except the matching calls, which it leaves unprotected, in the
1462 faith that they will not malloc. */
1464 /* Normally, this is fine. */
1465 # define MATCH_MAY_ALLOCATE
1467 /* When using GNU C, we are not REALLY using the C alloca, no matter
1468 what config.h may say. So don't take precautions for it. */
1469 # ifdef __GNUC__
1470 # undef C_ALLOCA
1471 # endif
1473 /* The match routines may not allocate if (1) they would do it with malloc
1474 and (2) it's not safe for them to use malloc.
1475 Note that if REL_ALLOC is defined, matching would not use malloc for the
1476 failure stack, but we would still use it for the register vectors;
1477 so REL_ALLOC should not affect this. */
1478 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1479 # undef MATCH_MAY_ALLOCATE
1480 # endif
1481 #endif /* not DEFINED_ONCE */
1483 #ifdef INSIDE_RECURSION
1484 /* Failure stack declarations and macros; both re_compile_fastmap and
1485 re_match_2 use a failure stack. These have to be macros because of
1486 REGEX_ALLOCATE_STACK. */
1489 /* Number of failure points for which to initially allocate space
1490 when matching. If this number is exceeded, we allocate more
1491 space, so it is not a hard limit. */
1492 # ifndef INIT_FAILURE_ALLOC
1493 # define INIT_FAILURE_ALLOC 5
1494 # endif
1496 /* Roughly the maximum number of failure points on the stack. Would be
1497 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1498 This is a variable only so users of regex can assign to it; we never
1499 change it ourselves. */
1501 # ifdef INT_IS_16BIT
1503 # ifndef DEFINED_ONCE
1504 # if defined MATCH_MAY_ALLOCATE
1505 /* 4400 was enough to cause a crash on Alpha OSF/1,
1506 whose default stack limit is 2mb. */
1507 long int re_max_failures = 4000;
1508 # else
1509 long int re_max_failures = 2000;
1510 # endif
1511 # endif
1513 union PREFIX(fail_stack_elt)
1515 UCHAR_T *pointer;
1516 long int integer;
1519 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1521 typedef struct
1523 PREFIX(fail_stack_elt_t) *stack;
1524 unsigned long int size;
1525 unsigned long int avail; /* Offset of next open position. */
1526 } PREFIX(fail_stack_type);
1528 # else /* not INT_IS_16BIT */
1530 # ifndef DEFINED_ONCE
1531 # if defined MATCH_MAY_ALLOCATE
1532 /* 4400 was enough to cause a crash on Alpha OSF/1,
1533 whose default stack limit is 2mb. */
1534 int re_max_failures = 4000;
1535 # else
1536 int re_max_failures = 2000;
1537 # endif
1538 # endif
1540 union PREFIX(fail_stack_elt)
1542 UCHAR_T *pointer;
1543 int integer;
1546 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1548 typedef struct
1550 PREFIX(fail_stack_elt_t) *stack;
1551 unsigned size;
1552 unsigned avail; /* Offset of next open position. */
1553 } PREFIX(fail_stack_type);
1555 # endif /* INT_IS_16BIT */
1557 # ifndef DEFINED_ONCE
1558 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1559 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1560 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1561 # endif
1564 /* Define macros to initialize and free the failure stack.
1565 Do `return -2' if the alloc fails. */
1567 # ifdef MATCH_MAY_ALLOCATE
1568 # define INIT_FAIL_STACK() \
1569 do { \
1570 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1571 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1573 if (fail_stack.stack == NULL) \
1574 return -2; \
1576 fail_stack.size = INIT_FAILURE_ALLOC; \
1577 fail_stack.avail = 0; \
1578 } while (0)
1580 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1581 # else
1582 # define INIT_FAIL_STACK() \
1583 do { \
1584 fail_stack.avail = 0; \
1585 } while (0)
1587 # define RESET_FAIL_STACK()
1588 # endif
1591 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1593 Return 1 if succeeds, and 0 if either ran out of memory
1594 allocating space for it or it was already too large.
1596 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1598 # define DOUBLE_FAIL_STACK(fail_stack) \
1599 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1600 ? 0 \
1601 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1602 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1603 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1604 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1606 (fail_stack).stack == NULL \
1607 ? 0 \
1608 : ((fail_stack).size <<= 1, \
1609 1)))
1612 /* Push pointer POINTER on FAIL_STACK.
1613 Return 1 if was able to do so and 0 if ran out of memory allocating
1614 space to do so. */
1615 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1616 ((FAIL_STACK_FULL () \
1617 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1618 ? 0 \
1619 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1622 /* Push a pointer value onto the failure stack.
1623 Assumes the variable `fail_stack'. Probably should only
1624 be called from within `PUSH_FAILURE_POINT'. */
1625 # define PUSH_FAILURE_POINTER(item) \
1626 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1628 /* This pushes an integer-valued item onto the failure stack.
1629 Assumes the variable `fail_stack'. Probably should only
1630 be called from within `PUSH_FAILURE_POINT'. */
1631 # define PUSH_FAILURE_INT(item) \
1632 fail_stack.stack[fail_stack.avail++].integer = (item)
1634 /* Push a fail_stack_elt_t value onto the failure stack.
1635 Assumes the variable `fail_stack'. Probably should only
1636 be called from within `PUSH_FAILURE_POINT'. */
1637 # define PUSH_FAILURE_ELT(item) \
1638 fail_stack.stack[fail_stack.avail++] = (item)
1640 /* These three POP... operations complement the three PUSH... operations.
1641 All assume that `fail_stack' is nonempty. */
1642 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1643 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1644 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1646 /* Used to omit pushing failure point id's when we're not debugging. */
1647 # ifdef DEBUG
1648 # define DEBUG_PUSH PUSH_FAILURE_INT
1649 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1650 # else
1651 # define DEBUG_PUSH(item)
1652 # define DEBUG_POP(item_addr)
1653 # endif
1656 /* Push the information about the state we will need
1657 if we ever fail back to it.
1659 Requires variables fail_stack, regstart, regend, reg_info, and
1660 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1661 be declared.
1663 Does `return FAILURE_CODE' if runs out of memory. */
1665 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1666 do { \
1667 char *destination; \
1668 /* Must be int, so when we don't save any registers, the arithmetic \
1669 of 0 + -1 isn't done as unsigned. */ \
1670 /* Can't be int, since there is not a shred of a guarantee that int \
1671 is wide enough to hold a value of something to which pointer can \
1672 be assigned */ \
1673 active_reg_t this_reg; \
1675 DEBUG_STATEMENT (failure_id++); \
1676 DEBUG_STATEMENT (nfailure_points_pushed++); \
1677 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1678 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1679 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1681 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1682 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1684 /* Ensure we have enough space allocated for what we will push. */ \
1685 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1687 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1688 return failure_code; \
1690 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1691 (fail_stack).size); \
1692 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1695 /* Push the info, starting with the registers. */ \
1696 DEBUG_PRINT1 ("\n"); \
1698 if (1) \
1699 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1700 this_reg++) \
1702 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1703 DEBUG_STATEMENT (num_regs_pushed++); \
1705 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1706 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1708 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1709 PUSH_FAILURE_POINTER (regend[this_reg]); \
1711 DEBUG_PRINT2 (" info: %p\n ", \
1712 reg_info[this_reg].word.pointer); \
1713 DEBUG_PRINT2 (" match_null=%d", \
1714 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1715 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1716 DEBUG_PRINT2 (" matched_something=%d", \
1717 MATCHED_SOMETHING (reg_info[this_reg])); \
1718 DEBUG_PRINT2 (" ever_matched=%d", \
1719 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1720 DEBUG_PRINT1 ("\n"); \
1721 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1724 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1725 PUSH_FAILURE_INT (lowest_active_reg); \
1727 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1728 PUSH_FAILURE_INT (highest_active_reg); \
1730 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1731 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1732 PUSH_FAILURE_POINTER (pattern_place); \
1734 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1735 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1736 size2); \
1737 DEBUG_PRINT1 ("'\n"); \
1738 PUSH_FAILURE_POINTER (string_place); \
1740 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1741 DEBUG_PUSH (failure_id); \
1742 } while (0)
1744 # ifndef DEFINED_ONCE
1745 /* This is the number of items that are pushed and popped on the stack
1746 for each register. */
1747 # define NUM_REG_ITEMS 3
1749 /* Individual items aside from the registers. */
1750 # ifdef DEBUG
1751 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1752 # else
1753 # define NUM_NONREG_ITEMS 4
1754 # endif
1756 /* We push at most this many items on the stack. */
1757 /* We used to use (num_regs - 1), which is the number of registers
1758 this regexp will save; but that was changed to 5
1759 to avoid stack overflow for a regexp with lots of parens. */
1760 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1762 /* We actually push this many items. */
1763 # define NUM_FAILURE_ITEMS \
1764 (((0 \
1765 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1766 * NUM_REG_ITEMS) \
1767 + NUM_NONREG_ITEMS)
1769 /* How many items can still be added to the stack without overflowing it. */
1770 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1771 # endif /* not DEFINED_ONCE */
1774 /* Pops what PUSH_FAIL_STACK pushes.
1776 We restore into the parameters, all of which should be lvalues:
1777 STR -- the saved data position.
1778 PAT -- the saved pattern position.
1779 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1780 REGSTART, REGEND -- arrays of string positions.
1781 REG_INFO -- array of information about each subexpression.
1783 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1784 `pend', `string1', `size1', `string2', and `size2'. */
1785 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1787 DEBUG_STATEMENT (unsigned failure_id;) \
1788 active_reg_t this_reg; \
1789 const UCHAR_T *string_temp; \
1791 assert (!FAIL_STACK_EMPTY ()); \
1793 /* Remove failure points and point to how many regs pushed. */ \
1794 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1795 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1796 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1798 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1800 DEBUG_POP (&failure_id); \
1801 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1803 /* If the saved string location is NULL, it came from an \
1804 on_failure_keep_string_jump opcode, and we want to throw away the \
1805 saved NULL, thus retaining our current position in the string. */ \
1806 string_temp = POP_FAILURE_POINTER (); \
1807 if (string_temp != NULL) \
1808 str = (const CHAR_T *) string_temp; \
1810 DEBUG_PRINT2 (" Popping string %p: `", str); \
1811 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1812 DEBUG_PRINT1 ("'\n"); \
1814 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1815 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1816 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1818 /* Restore register info. */ \
1819 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1820 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1822 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1823 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1825 if (1) \
1826 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1828 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1830 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1831 DEBUG_PRINT2 (" info: %p\n", \
1832 reg_info[this_reg].word.pointer); \
1834 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1835 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1837 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1838 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1840 else \
1842 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1844 reg_info[this_reg].word.integer = 0; \
1845 regend[this_reg] = 0; \
1846 regstart[this_reg] = 0; \
1848 highest_active_reg = high_reg; \
1851 set_regs_matched_done = 0; \
1852 DEBUG_STATEMENT (nfailure_points_popped++); \
1853 } /* POP_FAILURE_POINT */
1855 /* Structure for per-register (a.k.a. per-group) information.
1856 Other register information, such as the
1857 starting and ending positions (which are addresses), and the list of
1858 inner groups (which is a bits list) are maintained in separate
1859 variables.
1861 We are making a (strictly speaking) nonportable assumption here: that
1862 the compiler will pack our bit fields into something that fits into
1863 the type of `word', i.e., is something that fits into one item on the
1864 failure stack. */
1867 /* Declarations and macros for re_match_2. */
1869 typedef union
1871 PREFIX(fail_stack_elt_t) word;
1872 struct
1874 /* This field is one if this group can match the empty string,
1875 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1876 # define MATCH_NULL_UNSET_VALUE 3
1877 unsigned match_null_string_p : 2;
1878 unsigned is_active : 1;
1879 unsigned matched_something : 1;
1880 unsigned ever_matched_something : 1;
1881 } bits;
1882 } PREFIX(register_info_type);
1884 # ifndef DEFINED_ONCE
1885 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1886 # define IS_ACTIVE(R) ((R).bits.is_active)
1887 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1888 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1891 /* Call this when have matched a real character; it sets `matched' flags
1892 for the subexpressions which we are currently inside. Also records
1893 that those subexprs have matched. */
1894 # define SET_REGS_MATCHED() \
1895 do \
1897 if (!set_regs_matched_done) \
1899 active_reg_t r; \
1900 set_regs_matched_done = 1; \
1901 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1903 MATCHED_SOMETHING (reg_info[r]) \
1904 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1905 = 1; \
1909 while (0)
1910 # endif /* not DEFINED_ONCE */
1912 /* Registers are set to a sentinel when they haven't yet matched. */
1913 static CHAR_T PREFIX(reg_unset_dummy);
1914 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1915 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1917 /* Subroutine declarations and macros for regex_compile. */
1918 static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1919 static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1920 int arg1, int arg2));
1921 static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1922 int arg, UCHAR_T *end));
1923 static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1924 int arg1, int arg2, UCHAR_T *end));
1925 static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1926 const CHAR_T *p,
1927 reg_syntax_t syntax));
1928 static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1929 const CHAR_T *pend,
1930 reg_syntax_t syntax));
1931 # ifdef WCHAR
1932 static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1933 const CHAR_T **p_ptr,
1934 const CHAR_T *pend,
1935 char *translate,
1936 reg_syntax_t syntax,
1937 UCHAR_T *b,
1938 CHAR_T *char_set));
1939 static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1940 # else /* BYTE */
1941 static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1942 const char **p_ptr,
1943 const char *pend,
1944 char *translate,
1945 reg_syntax_t syntax,
1946 unsigned char *b));
1947 # endif /* WCHAR */
1949 /* Fetch the next character in the uncompiled pattern---translating it
1950 if necessary. Also cast from a signed character in the constant
1951 string passed to us by the user to an unsigned char that we can use
1952 as an array index (in, e.g., `translate'). */
1953 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1954 because it is impossible to allocate 4GB array for some encodings
1955 which have 4 byte character_set like UCS4. */
1956 # ifndef PATFETCH
1957 # ifdef WCHAR
1958 # define PATFETCH(c) \
1959 do {if (p == pend) return REG_EEND; \
1960 c = (UCHAR_T) *p++; \
1961 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1962 } while (0)
1963 # else /* BYTE */
1964 # define PATFETCH(c) \
1965 do {if (p == pend) return REG_EEND; \
1966 c = (unsigned char) *p++; \
1967 if (translate) c = (unsigned char) translate[c]; \
1968 } while (0)
1969 # endif /* WCHAR */
1970 # endif
1972 /* Fetch the next character in the uncompiled pattern, with no
1973 translation. */
1974 # define PATFETCH_RAW(c) \
1975 do {if (p == pend) return REG_EEND; \
1976 c = (UCHAR_T) *p++; \
1977 } while (0)
1979 /* Go backwards one character in the pattern. */
1980 # define PATUNFETCH p--
1983 /* If `translate' is non-null, return translate[D], else just D. We
1984 cast the subscript to translate because some data is declared as
1985 `char *', to avoid warnings when a string constant is passed. But
1986 when we use a character as a subscript we must make it unsigned. */
1987 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1988 because it is impossible to allocate 4GB array for some encodings
1989 which have 4 byte character_set like UCS4. */
1991 # ifndef TRANSLATE
1992 # ifdef WCHAR
1993 # define TRANSLATE(d) \
1994 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1995 ? (char) translate[(unsigned char) (d)] : (d))
1996 # else /* BYTE */
1997 # define TRANSLATE(d) \
1998 (translate ? (char) translate[(unsigned char) (d)] : (d))
1999 # endif /* WCHAR */
2000 # endif
2003 /* Macros for outputting the compiled pattern into `buffer'. */
2005 /* If the buffer isn't allocated when it comes in, use this. */
2006 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2008 /* Make sure we have at least N more bytes of space in buffer. */
2009 # ifdef WCHAR
2010 # define GET_BUFFER_SPACE(n) \
2011 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2012 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2013 EXTEND_BUFFER ()
2014 # else /* BYTE */
2015 # define GET_BUFFER_SPACE(n) \
2016 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2017 EXTEND_BUFFER ()
2018 # endif /* WCHAR */
2020 /* Make sure we have one more byte of buffer space and then add C to it. */
2021 # define BUF_PUSH(c) \
2022 do { \
2023 GET_BUFFER_SPACE (1); \
2024 *b++ = (UCHAR_T) (c); \
2025 } while (0)
2028 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2029 # define BUF_PUSH_2(c1, c2) \
2030 do { \
2031 GET_BUFFER_SPACE (2); \
2032 *b++ = (UCHAR_T) (c1); \
2033 *b++ = (UCHAR_T) (c2); \
2034 } while (0)
2037 /* As with BUF_PUSH_2, except for three bytes. */
2038 # define BUF_PUSH_3(c1, c2, c3) \
2039 do { \
2040 GET_BUFFER_SPACE (3); \
2041 *b++ = (UCHAR_T) (c1); \
2042 *b++ = (UCHAR_T) (c2); \
2043 *b++ = (UCHAR_T) (c3); \
2044 } while (0)
2046 /* Store a jump with opcode OP at LOC to location TO. We store a
2047 relative address offset by the three bytes the jump itself occupies. */
2048 # define STORE_JUMP(op, loc, to) \
2049 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2051 /* Likewise, for a two-argument jump. */
2052 # define STORE_JUMP2(op, loc, to, arg) \
2053 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2055 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2056 # define INSERT_JUMP(op, loc, to) \
2057 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2059 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2060 # define INSERT_JUMP2(op, loc, to, arg) \
2061 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2062 arg, b)
2064 /* This is not an arbitrary limit: the arguments which represent offsets
2065 into the pattern are two bytes long. So if 2^16 bytes turns out to
2066 be too small, many things would have to change. */
2067 /* Any other compiler which, like MSC, has allocation limit below 2^16
2068 bytes will have to use approach similar to what was done below for
2069 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2070 reallocating to 0 bytes. Such thing is not going to work too well.
2071 You have been warned!! */
2072 # ifndef DEFINED_ONCE
2073 # if defined _MSC_VER && !defined WIN32
2074 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2075 The REALLOC define eliminates a flurry of conversion warnings,
2076 but is not required. */
2077 # define MAX_BUF_SIZE 65500L
2078 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2079 # else
2080 # define MAX_BUF_SIZE (1L << 16)
2081 # define REALLOC(p,s) realloc ((p), (s))
2082 # endif
2084 /* Extend the buffer by twice its current size via realloc and
2085 reset the pointers that pointed into the old block to point to the
2086 correct places in the new one. If extending the buffer results in it
2087 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2088 # if __BOUNDED_POINTERS__
2089 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2090 # define MOVE_BUFFER_POINTER(P) \
2091 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2092 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2093 else \
2095 SET_HIGH_BOUND (b); \
2096 SET_HIGH_BOUND (begalt); \
2097 if (fixup_alt_jump) \
2098 SET_HIGH_BOUND (fixup_alt_jump); \
2099 if (laststart) \
2100 SET_HIGH_BOUND (laststart); \
2101 if (pending_exact) \
2102 SET_HIGH_BOUND (pending_exact); \
2104 # else
2105 # define MOVE_BUFFER_POINTER(P) (P) += incr
2106 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2107 # endif
2108 # endif /* not DEFINED_ONCE */
2110 # ifdef WCHAR
2111 # define EXTEND_BUFFER() \
2112 do { \
2113 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2114 int wchar_count; \
2115 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2116 return REG_ESIZE; \
2117 bufp->allocated <<= 1; \
2118 if (bufp->allocated > MAX_BUF_SIZE) \
2119 bufp->allocated = MAX_BUF_SIZE; \
2120 /* How many characters the new buffer can have? */ \
2121 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2122 if (wchar_count == 0) wchar_count = 1; \
2123 /* Truncate the buffer to CHAR_T align. */ \
2124 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2125 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2126 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2127 if (COMPILED_BUFFER_VAR == NULL) \
2128 return REG_ESPACE; \
2129 /* If the buffer moved, move all the pointers into it. */ \
2130 if (old_buffer != COMPILED_BUFFER_VAR) \
2132 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2133 MOVE_BUFFER_POINTER (b); \
2134 MOVE_BUFFER_POINTER (begalt); \
2135 if (fixup_alt_jump) \
2136 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2137 if (laststart) \
2138 MOVE_BUFFER_POINTER (laststart); \
2139 if (pending_exact) \
2140 MOVE_BUFFER_POINTER (pending_exact); \
2142 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2143 } while (0)
2144 # else /* BYTE */
2145 # define EXTEND_BUFFER() \
2146 do { \
2147 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2148 if (bufp->allocated == MAX_BUF_SIZE) \
2149 return REG_ESIZE; \
2150 bufp->allocated <<= 1; \
2151 if (bufp->allocated > MAX_BUF_SIZE) \
2152 bufp->allocated = MAX_BUF_SIZE; \
2153 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2154 bufp->allocated); \
2155 if (COMPILED_BUFFER_VAR == NULL) \
2156 return REG_ESPACE; \
2157 /* If the buffer moved, move all the pointers into it. */ \
2158 if (old_buffer != COMPILED_BUFFER_VAR) \
2160 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2161 MOVE_BUFFER_POINTER (b); \
2162 MOVE_BUFFER_POINTER (begalt); \
2163 if (fixup_alt_jump) \
2164 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2165 if (laststart) \
2166 MOVE_BUFFER_POINTER (laststart); \
2167 if (pending_exact) \
2168 MOVE_BUFFER_POINTER (pending_exact); \
2170 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2171 } while (0)
2172 # endif /* WCHAR */
2174 # ifndef DEFINED_ONCE
2175 /* Since we have one byte reserved for the register number argument to
2176 {start,stop}_memory, the maximum number of groups we can report
2177 things about is what fits in that byte. */
2178 # define MAX_REGNUM 255
2180 /* But patterns can have more than `MAX_REGNUM' registers. We just
2181 ignore the excess. */
2182 typedef unsigned regnum_t;
2185 /* Macros for the compile stack. */
2187 /* Since offsets can go either forwards or backwards, this type needs to
2188 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2189 /* int may be not enough when sizeof(int) == 2. */
2190 typedef long pattern_offset_t;
2192 typedef struct
2194 pattern_offset_t begalt_offset;
2195 pattern_offset_t fixup_alt_jump;
2196 pattern_offset_t inner_group_offset;
2197 pattern_offset_t laststart_offset;
2198 regnum_t regnum;
2199 } compile_stack_elt_t;
2202 typedef struct
2204 compile_stack_elt_t *stack;
2205 unsigned size;
2206 unsigned avail; /* Offset of next open position. */
2207 } compile_stack_type;
2210 # define INIT_COMPILE_STACK_SIZE 32
2212 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2213 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2215 /* The next available element. */
2216 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2218 # endif /* not DEFINED_ONCE */
2220 /* Set the bit for character C in a list. */
2221 # ifndef DEFINED_ONCE
2222 # define SET_LIST_BIT(c) \
2223 (b[((unsigned char) (c)) / BYTEWIDTH] \
2224 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2225 # endif /* DEFINED_ONCE */
2227 /* Get the next unsigned number in the uncompiled pattern. */
2228 # define GET_UNSIGNED_NUMBER(num) \
2230 while (p != pend) \
2232 PATFETCH (c); \
2233 if (c < '0' || c > '9') \
2234 break; \
2235 if (num <= RE_DUP_MAX) \
2237 if (num < 0) \
2238 num = 0; \
2239 num = num * 10 + c - '0'; \
2244 # ifndef DEFINED_ONCE
2245 # if defined _LIBC || WIDE_CHAR_SUPPORT
2246 /* The GNU C library provides support for user-defined character classes
2247 and the functions from ISO C amendement 1. */
2248 # ifdef CHARCLASS_NAME_MAX
2249 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2250 # else
2251 /* This shouldn't happen but some implementation might still have this
2252 problem. Use a reasonable default value. */
2253 # define CHAR_CLASS_MAX_LENGTH 256
2254 # endif
2256 # ifdef _LIBC
2257 # define IS_CHAR_CLASS(string) __wctype (string)
2258 # else
2259 # define IS_CHAR_CLASS(string) wctype (string)
2260 # endif
2261 # else
2262 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2264 # define IS_CHAR_CLASS(string) \
2265 (STREQ (string, "alpha") || STREQ (string, "upper") \
2266 || STREQ (string, "lower") || STREQ (string, "digit") \
2267 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2268 || STREQ (string, "space") || STREQ (string, "print") \
2269 || STREQ (string, "punct") || STREQ (string, "graph") \
2270 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2271 # endif
2272 # endif /* DEFINED_ONCE */
2274 # ifndef MATCH_MAY_ALLOCATE
2276 /* If we cannot allocate large objects within re_match_2_internal,
2277 we make the fail stack and register vectors global.
2278 The fail stack, we grow to the maximum size when a regexp
2279 is compiled.
2280 The register vectors, we adjust in size each time we
2281 compile a regexp, according to the number of registers it needs. */
2283 static PREFIX(fail_stack_type) fail_stack;
2285 /* Size with which the following vectors are currently allocated.
2286 That is so we can make them bigger as needed,
2287 but never make them smaller. */
2288 # ifdef DEFINED_ONCE
2289 static int regs_allocated_size;
2291 static const char ** regstart, ** regend;
2292 static const char ** old_regstart, ** old_regend;
2293 static const char **best_regstart, **best_regend;
2294 static const char **reg_dummy;
2295 # endif /* DEFINED_ONCE */
2297 static PREFIX(register_info_type) *PREFIX(reg_info);
2298 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2300 /* Make the register vectors big enough for NUM_REGS registers,
2301 but don't make them smaller. */
2303 static void
2304 PREFIX(regex_grow_registers) (num_regs)
2305 int num_regs;
2307 if (num_regs > regs_allocated_size)
2309 RETALLOC_IF (regstart, num_regs, const char *);
2310 RETALLOC_IF (regend, num_regs, const char *);
2311 RETALLOC_IF (old_regstart, num_regs, const char *);
2312 RETALLOC_IF (old_regend, num_regs, const char *);
2313 RETALLOC_IF (best_regstart, num_regs, const char *);
2314 RETALLOC_IF (best_regend, num_regs, const char *);
2315 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2316 RETALLOC_IF (reg_dummy, num_regs, const char *);
2317 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2319 regs_allocated_size = num_regs;
2323 # endif /* not MATCH_MAY_ALLOCATE */
2325 # ifndef DEFINED_ONCE
2326 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2327 compile_stack,
2328 regnum_t regnum));
2329 # endif /* not DEFINED_ONCE */
2331 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2332 Returns one of error codes defined in `regex.h', or zero for success.
2334 Assumes the `allocated' (and perhaps `buffer') and `translate'
2335 fields are set in BUFP on entry.
2337 If it succeeds, results are put in BUFP (if it returns an error, the
2338 contents of BUFP are undefined):
2339 `buffer' is the compiled pattern;
2340 `syntax' is set to SYNTAX;
2341 `used' is set to the length of the compiled pattern;
2342 `fastmap_accurate' is zero;
2343 `re_nsub' is the number of subexpressions in PATTERN;
2344 `not_bol' and `not_eol' are zero;
2346 The `fastmap' and `newline_anchor' fields are neither
2347 examined nor set. */
2349 /* Return, freeing storage we allocated. */
2350 # ifdef WCHAR
2351 # define FREE_STACK_RETURN(value) \
2352 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2353 # else
2354 # define FREE_STACK_RETURN(value) \
2355 return (free (compile_stack.stack), value)
2356 # endif /* WCHAR */
2358 static reg_errcode_t
2359 PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2360 const char *ARG_PREFIX(pattern);
2361 size_t ARG_PREFIX(size);
2362 reg_syntax_t syntax;
2363 struct re_pattern_buffer *bufp;
2365 /* We fetch characters from PATTERN here. Even though PATTERN is
2366 `char *' (i.e., signed), we declare these variables as unsigned, so
2367 they can be reliably used as array indices. */
2368 register UCHAR_T c, c1;
2370 #ifdef WCHAR
2371 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2372 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2373 size_t size;
2374 /* offset buffer for optimization. See convert_mbs_to_wc. */
2375 int *mbs_offset = NULL;
2376 /* It hold whether each wchar_t is binary data or not. */
2377 char *is_binary = NULL;
2378 /* A flag whether exactn is handling binary data or not. */
2379 char is_exactn_bin = FALSE;
2380 #endif /* WCHAR */
2382 /* A random temporary spot in PATTERN. */
2383 const CHAR_T *p1;
2385 /* Points to the end of the buffer, where we should append. */
2386 register UCHAR_T *b;
2388 /* Keeps track of unclosed groups. */
2389 compile_stack_type compile_stack;
2391 /* Points to the current (ending) position in the pattern. */
2392 #ifdef WCHAR
2393 const CHAR_T *p;
2394 const CHAR_T *pend;
2395 #else /* BYTE */
2396 const CHAR_T *p = pattern;
2397 const CHAR_T *pend = pattern + size;
2398 #endif /* WCHAR */
2400 /* How to translate the characters in the pattern. */
2401 RE_TRANSLATE_TYPE translate = bufp->translate;
2403 /* Address of the count-byte of the most recently inserted `exactn'
2404 command. This makes it possible to tell if a new exact-match
2405 character can be added to that command or if the character requires
2406 a new `exactn' command. */
2407 UCHAR_T *pending_exact = 0;
2409 /* Address of start of the most recently finished expression.
2410 This tells, e.g., postfix * where to find the start of its
2411 operand. Reset at the beginning of groups and alternatives. */
2412 UCHAR_T *laststart = 0;
2414 /* Address of beginning of regexp, or inside of last group. */
2415 UCHAR_T *begalt;
2417 /* Address of the place where a forward jump should go to the end of
2418 the containing expression. Each alternative of an `or' -- except the
2419 last -- ends with a forward jump of this sort. */
2420 UCHAR_T *fixup_alt_jump = 0;
2422 /* Counts open-groups as they are encountered. Remembered for the
2423 matching close-group on the compile stack, so the same register
2424 number is put in the stop_memory as the start_memory. */
2425 regnum_t regnum = 0;
2427 #ifdef WCHAR
2428 /* Initialize the wchar_t PATTERN and offset_buffer. */
2429 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2430 mbs_offset = TALLOC(csize + 1, int);
2431 is_binary = TALLOC(csize + 1, char);
2432 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2434 free(pattern);
2435 free(mbs_offset);
2436 free(is_binary);
2437 return REG_ESPACE;
2439 pattern[csize] = L'\0'; /* sentinel */
2440 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2441 pend = p + size;
2442 if (size < 0)
2444 free(pattern);
2445 free(mbs_offset);
2446 free(is_binary);
2447 return REG_BADPAT;
2449 #endif
2451 #ifdef DEBUG
2452 DEBUG_PRINT1 ("\nCompiling pattern: ");
2453 if (debug)
2455 unsigned debug_count;
2457 for (debug_count = 0; debug_count < size; debug_count++)
2458 PUT_CHAR (pattern[debug_count]);
2459 putchar ('\n');
2461 #endif /* DEBUG */
2463 /* Initialize the compile stack. */
2464 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2465 if (compile_stack.stack == NULL)
2467 #ifdef WCHAR
2468 free(pattern);
2469 free(mbs_offset);
2470 free(is_binary);
2471 #endif
2472 return REG_ESPACE;
2475 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2476 compile_stack.avail = 0;
2478 /* Initialize the pattern buffer. */
2479 bufp->syntax = syntax;
2480 bufp->fastmap_accurate = 0;
2481 bufp->not_bol = bufp->not_eol = 0;
2483 /* Set `used' to zero, so that if we return an error, the pattern
2484 printer (for debugging) will think there's no pattern. We reset it
2485 at the end. */
2486 bufp->used = 0;
2488 /* Always count groups, whether or not bufp->no_sub is set. */
2489 bufp->re_nsub = 0;
2491 #if !defined emacs && !defined SYNTAX_TABLE
2492 /* Initialize the syntax table. */
2493 init_syntax_once ();
2494 #endif
2496 if (bufp->allocated == 0)
2498 if (bufp->buffer)
2499 { /* If zero allocated, but buffer is non-null, try to realloc
2500 enough space. This loses if buffer's address is bogus, but
2501 that is the user's responsibility. */
2502 #ifdef WCHAR
2503 /* Free bufp->buffer and allocate an array for wchar_t pattern
2504 buffer. */
2505 free(bufp->buffer);
2506 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2507 UCHAR_T);
2508 #else
2509 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2510 #endif /* WCHAR */
2512 else
2513 { /* Caller did not allocate a buffer. Do it for them. */
2514 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2515 UCHAR_T);
2518 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2519 #ifdef WCHAR
2520 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2521 #endif /* WCHAR */
2522 bufp->allocated = INIT_BUF_SIZE;
2524 #ifdef WCHAR
2525 else
2526 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2527 #endif
2529 begalt = b = COMPILED_BUFFER_VAR;
2531 /* Loop through the uncompiled pattern until we're at the end. */
2532 while (p != pend)
2534 PATFETCH (c);
2536 switch (c)
2538 case '^':
2540 if ( /* If at start of pattern, it's an operator. */
2541 p == pattern + 1
2542 /* If context independent, it's an operator. */
2543 || syntax & RE_CONTEXT_INDEP_ANCHORS
2544 /* Otherwise, depends on what's come before. */
2545 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2546 BUF_PUSH (begline);
2547 else
2548 goto normal_char;
2550 break;
2553 case '$':
2555 if ( /* If at end of pattern, it's an operator. */
2556 p == pend
2557 /* If context independent, it's an operator. */
2558 || syntax & RE_CONTEXT_INDEP_ANCHORS
2559 /* Otherwise, depends on what's next. */
2560 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2561 BUF_PUSH (endline);
2562 else
2563 goto normal_char;
2565 break;
2568 case '+':
2569 case '?':
2570 if ((syntax & RE_BK_PLUS_QM)
2571 || (syntax & RE_LIMITED_OPS))
2572 goto normal_char;
2573 handle_plus:
2574 case '*':
2575 /* If there is no previous pattern... */
2576 if (!laststart)
2578 if (syntax & RE_CONTEXT_INVALID_OPS)
2579 FREE_STACK_RETURN (REG_BADRPT);
2580 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2581 goto normal_char;
2585 /* Are we optimizing this jump? */
2586 boolean keep_string_p = false;
2588 /* 1 means zero (many) matches is allowed. */
2589 char zero_times_ok = 0, many_times_ok = 0;
2591 /* If there is a sequence of repetition chars, collapse it
2592 down to just one (the right one). We can't combine
2593 interval operators with these because of, e.g., `a{2}*',
2594 which should only match an even number of `a's. */
2596 for (;;)
2598 zero_times_ok |= c != '+';
2599 many_times_ok |= c != '?';
2601 if (p == pend)
2602 break;
2604 PATFETCH (c);
2606 if (c == '*'
2607 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2610 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2612 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2614 PATFETCH (c1);
2615 if (!(c1 == '+' || c1 == '?'))
2617 PATUNFETCH;
2618 PATUNFETCH;
2619 break;
2622 c = c1;
2624 else
2626 PATUNFETCH;
2627 break;
2630 /* If we get here, we found another repeat character. */
2633 /* Star, etc. applied to an empty pattern is equivalent
2634 to an empty pattern. */
2635 if (!laststart)
2636 break;
2638 /* Now we know whether or not zero matches is allowed
2639 and also whether or not two or more matches is allowed. */
2640 if (many_times_ok)
2641 { /* More than one repetition is allowed, so put in at the
2642 end a backward relative jump from `b' to before the next
2643 jump we're going to put in below (which jumps from
2644 laststart to after this jump).
2646 But if we are at the `*' in the exact sequence `.*\n',
2647 insert an unconditional jump backwards to the .,
2648 instead of the beginning of the loop. This way we only
2649 push a failure point once, instead of every time
2650 through the loop. */
2651 assert (p - 1 > pattern);
2653 /* Allocate the space for the jump. */
2654 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2656 /* We know we are not at the first character of the pattern,
2657 because laststart was nonzero. And we've already
2658 incremented `p', by the way, to be the character after
2659 the `*'. Do we have to do something analogous here
2660 for null bytes, because of RE_DOT_NOT_NULL? */
2661 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2662 && zero_times_ok
2663 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2664 && !(syntax & RE_DOT_NEWLINE))
2665 { /* We have .*\n. */
2666 STORE_JUMP (jump, b, laststart);
2667 keep_string_p = true;
2669 else
2670 /* Anything else. */
2671 STORE_JUMP (maybe_pop_jump, b, laststart -
2672 (1 + OFFSET_ADDRESS_SIZE));
2674 /* We've added more stuff to the buffer. */
2675 b += 1 + OFFSET_ADDRESS_SIZE;
2678 /* On failure, jump from laststart to b + 3, which will be the
2679 end of the buffer after this jump is inserted. */
2680 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2681 'b + 3'. */
2682 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2683 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2684 : on_failure_jump,
2685 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2686 pending_exact = 0;
2687 b += 1 + OFFSET_ADDRESS_SIZE;
2689 if (!zero_times_ok)
2691 /* At least one repetition is required, so insert a
2692 `dummy_failure_jump' before the initial
2693 `on_failure_jump' instruction of the loop. This
2694 effects a skip over that instruction the first time
2695 we hit that loop. */
2696 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2697 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2698 2 + 2 * OFFSET_ADDRESS_SIZE);
2699 b += 1 + OFFSET_ADDRESS_SIZE;
2702 break;
2705 case '.':
2706 laststart = b;
2707 BUF_PUSH (anychar);
2708 break;
2711 case '[':
2713 boolean had_char_class = false;
2714 #ifdef WCHAR
2715 CHAR_T range_start = 0xffffffff;
2716 #else
2717 unsigned int range_start = 0xffffffff;
2718 #endif
2719 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2721 #ifdef WCHAR
2722 /* We assume a charset(_not) structure as a wchar_t array.
2723 charset[0] = (re_opcode_t) charset(_not)
2724 charset[1] = l (= length of char_classes)
2725 charset[2] = m (= length of collating_symbols)
2726 charset[3] = n (= length of equivalence_classes)
2727 charset[4] = o (= length of char_ranges)
2728 charset[5] = p (= length of chars)
2730 charset[6] = char_class (wctype_t)
2731 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2733 charset[l+5] = char_class (wctype_t)
2735 charset[l+6] = collating_symbol (wchar_t)
2737 charset[l+m+5] = collating_symbol (wchar_t)
2738 ifdef _LIBC we use the index if
2739 _NL_COLLATE_SYMB_EXTRAMB instead of
2740 wchar_t string.
2742 charset[l+m+6] = equivalence_classes (wchar_t)
2744 charset[l+m+n+5] = equivalence_classes (wchar_t)
2745 ifdef _LIBC we use the index in
2746 _NL_COLLATE_WEIGHT instead of
2747 wchar_t string.
2749 charset[l+m+n+6] = range_start
2750 charset[l+m+n+7] = range_end
2752 charset[l+m+n+2o+4] = range_start
2753 charset[l+m+n+2o+5] = range_end
2754 ifdef _LIBC we use the value looked up
2755 in _NL_COLLATE_COLLSEQ instead of
2756 wchar_t character.
2758 charset[l+m+n+2o+6] = char
2760 charset[l+m+n+2o+p+5] = char
2764 /* We need at least 6 spaces: the opcode, the length of
2765 char_classes, the length of collating_symbols, the length of
2766 equivalence_classes, the length of char_ranges, the length of
2767 chars. */
2768 GET_BUFFER_SPACE (6);
2770 /* Save b as laststart. And We use laststart as the pointer
2771 to the first element of the charset here.
2772 In other words, laststart[i] indicates charset[i]. */
2773 laststart = b;
2775 /* We test `*p == '^' twice, instead of using an if
2776 statement, so we only need one BUF_PUSH. */
2777 BUF_PUSH (*p == '^' ? charset_not : charset);
2778 if (*p == '^')
2779 p++;
2781 /* Push the length of char_classes, the length of
2782 collating_symbols, the length of equivalence_classes, the
2783 length of char_ranges and the length of chars. */
2784 BUF_PUSH_3 (0, 0, 0);
2785 BUF_PUSH_2 (0, 0);
2787 /* Remember the first position in the bracket expression. */
2788 p1 = p;
2790 /* charset_not matches newline according to a syntax bit. */
2791 if ((re_opcode_t) b[-6] == charset_not
2792 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2794 BUF_PUSH('\n');
2795 laststart[5]++; /* Update the length of characters */
2798 /* Read in characters and ranges, setting map bits. */
2799 for (;;)
2801 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2803 PATFETCH (c);
2805 /* \ might escape characters inside [...] and [^...]. */
2806 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2808 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2810 PATFETCH (c1);
2811 BUF_PUSH(c1);
2812 laststart[5]++; /* Update the length of chars */
2813 range_start = c1;
2814 continue;
2817 /* Could be the end of the bracket expression. If it's
2818 not (i.e., when the bracket expression is `[]' so
2819 far), the ']' character bit gets set way below. */
2820 if (c == ']' && p != p1 + 1)
2821 break;
2823 /* Look ahead to see if it's a range when the last thing
2824 was a character class. */
2825 if (had_char_class && c == '-' && *p != ']')
2826 FREE_STACK_RETURN (REG_ERANGE);
2828 /* Look ahead to see if it's a range when the last thing
2829 was a character: if this is a hyphen not at the
2830 beginning or the end of a list, then it's the range
2831 operator. */
2832 if (c == '-'
2833 && !(p - 2 >= pattern && p[-2] == '[')
2834 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2835 && *p != ']')
2837 reg_errcode_t ret;
2838 /* Allocate the space for range_start and range_end. */
2839 GET_BUFFER_SPACE (2);
2840 /* Update the pointer to indicate end of buffer. */
2841 b += 2;
2842 ret = wcs_compile_range (range_start, &p, pend, translate,
2843 syntax, b, laststart);
2844 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2845 range_start = 0xffffffff;
2847 else if (p[0] == '-' && p[1] != ']')
2848 { /* This handles ranges made up of characters only. */
2849 reg_errcode_t ret;
2851 /* Move past the `-'. */
2852 PATFETCH (c1);
2853 /* Allocate the space for range_start and range_end. */
2854 GET_BUFFER_SPACE (2);
2855 /* Update the pointer to indicate end of buffer. */
2856 b += 2;
2857 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2858 laststart);
2859 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2860 range_start = 0xffffffff;
2863 /* See if we're at the beginning of a possible character
2864 class. */
2865 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2866 { /* Leave room for the null. */
2867 char str[CHAR_CLASS_MAX_LENGTH + 1];
2869 PATFETCH (c);
2870 c1 = 0;
2872 /* If pattern is `[[:'. */
2873 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2875 for (;;)
2877 PATFETCH (c);
2878 if ((c == ':' && *p == ']') || p == pend)
2879 break;
2880 if (c1 < CHAR_CLASS_MAX_LENGTH)
2881 str[c1++] = c;
2882 else
2883 /* This is in any case an invalid class name. */
2884 str[0] = '\0';
2886 str[c1] = '\0';
2888 /* If isn't a word bracketed by `[:' and `:]':
2889 undo the ending character, the letters, and leave
2890 the leading `:' and `[' (but store them as character). */
2891 if (c == ':' && *p == ']')
2893 wctype_t wt;
2894 uintptr_t alignedp;
2896 /* Query the character class as wctype_t. */
2897 wt = IS_CHAR_CLASS (str);
2898 if (wt == 0)
2899 FREE_STACK_RETURN (REG_ECTYPE);
2901 /* Throw away the ] at the end of the character
2902 class. */
2903 PATFETCH (c);
2905 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2907 /* Allocate the space for character class. */
2908 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2909 /* Update the pointer to indicate end of buffer. */
2910 b += CHAR_CLASS_SIZE;
2911 /* Move data which follow character classes
2912 not to violate the data. */
2913 insert_space(CHAR_CLASS_SIZE,
2914 laststart + 6 + laststart[1],
2915 b - 1);
2916 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2917 + __alignof__(wctype_t) - 1)
2918 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2919 /* Store the character class. */
2920 *((wctype_t*)alignedp) = wt;
2921 /* Update length of char_classes */
2922 laststart[1] += CHAR_CLASS_SIZE;
2924 had_char_class = true;
2926 else
2928 c1++;
2929 while (c1--)
2930 PATUNFETCH;
2931 BUF_PUSH ('[');
2932 BUF_PUSH (':');
2933 laststart[5] += 2; /* Update the length of characters */
2934 range_start = ':';
2935 had_char_class = false;
2938 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2939 || *p == '.'))
2941 CHAR_T str[128]; /* Should be large enough. */
2942 CHAR_T delim = *p; /* '=' or '.' */
2943 # ifdef _LIBC
2944 uint32_t nrules =
2945 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2946 # endif
2947 PATFETCH (c);
2948 c1 = 0;
2950 /* If pattern is `[[=' or '[[.'. */
2951 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2953 for (;;)
2955 PATFETCH (c);
2956 if ((c == delim && *p == ']') || p == pend)
2957 break;
2958 if (c1 < sizeof (str) - 1)
2959 str[c1++] = c;
2960 else
2961 /* This is in any case an invalid class name. */
2962 str[0] = '\0';
2964 str[c1] = '\0';
2966 if (c == delim && *p == ']' && str[0] != '\0')
2968 unsigned int i, offset;
2969 /* If we have no collation data we use the default
2970 collation in which each character is in a class
2971 by itself. It also means that ASCII is the
2972 character set and therefore we cannot have character
2973 with more than one byte in the multibyte
2974 representation. */
2976 /* If not defined _LIBC, we push the name and
2977 `\0' for the sake of matching performance. */
2978 int datasize = c1 + 1;
2980 # ifdef _LIBC
2981 int32_t idx = 0;
2982 if (nrules == 0)
2983 # endif
2985 if (c1 != 1)
2986 FREE_STACK_RETURN (REG_ECOLLATE);
2988 # ifdef _LIBC
2989 else
2991 const int32_t *table;
2992 const int32_t *weights;
2993 const int32_t *extra;
2994 const int32_t *indirect;
2995 wint_t *cp;
2997 /* This #include defines a local function! */
2998 # include <locale/weightwc.h>
3000 if(delim == '=')
3002 /* We push the index for equivalence class. */
3003 cp = (wint_t*)str;
3005 table = (const int32_t *)
3006 _NL_CURRENT (LC_COLLATE,
3007 _NL_COLLATE_TABLEWC);
3008 weights = (const int32_t *)
3009 _NL_CURRENT (LC_COLLATE,
3010 _NL_COLLATE_WEIGHTWC);
3011 extra = (const int32_t *)
3012 _NL_CURRENT (LC_COLLATE,
3013 _NL_COLLATE_EXTRAWC);
3014 indirect = (const int32_t *)
3015 _NL_CURRENT (LC_COLLATE,
3016 _NL_COLLATE_INDIRECTWC);
3018 idx = findidx ((const wint_t**)&cp);
3019 if (idx == 0 || cp < (wint_t*) str + c1)
3020 /* This is no valid character. */
3021 FREE_STACK_RETURN (REG_ECOLLATE);
3023 str[0] = (wchar_t)idx;
3025 else /* delim == '.' */
3027 /* We push collation sequence value
3028 for collating symbol. */
3029 int32_t table_size;
3030 const int32_t *symb_table;
3031 const unsigned char *extra;
3032 int32_t idx;
3033 int32_t elem;
3034 int32_t second;
3035 int32_t hash;
3036 char char_str[c1];
3038 /* We have to convert the name to a single-byte
3039 string. This is possible since the names
3040 consist of ASCII characters and the internal
3041 representation is UCS4. */
3042 for (i = 0; i < c1; ++i)
3043 char_str[i] = str[i];
3045 table_size =
3046 _NL_CURRENT_WORD (LC_COLLATE,
3047 _NL_COLLATE_SYMB_HASH_SIZEMB);
3048 symb_table = (const int32_t *)
3049 _NL_CURRENT (LC_COLLATE,
3050 _NL_COLLATE_SYMB_TABLEMB);
3051 extra = (const unsigned char *)
3052 _NL_CURRENT (LC_COLLATE,
3053 _NL_COLLATE_SYMB_EXTRAMB);
3055 /* Locate the character in the hashing table. */
3056 hash = elem_hash (char_str, c1);
3058 idx = 0;
3059 elem = hash % table_size;
3060 second = hash % (table_size - 2);
3061 while (symb_table[2 * elem] != 0)
3063 /* First compare the hashing value. */
3064 if (symb_table[2 * elem] == hash
3065 && c1 == extra[symb_table[2 * elem + 1]]
3066 && memcmp (char_str,
3067 &extra[symb_table[2 * elem + 1]
3068 + 1], c1) == 0)
3070 /* Yep, this is the entry. */
3071 idx = symb_table[2 * elem + 1];
3072 idx += 1 + extra[idx];
3073 break;
3076 /* Next entry. */
3077 elem += second;
3080 if (symb_table[2 * elem] != 0)
3082 /* Compute the index of the byte sequence
3083 in the table. */
3084 idx += 1 + extra[idx];
3085 /* Adjust for the alignment. */
3086 idx = (idx + 3) & ~3;
3088 str[0] = (wchar_t) idx + 4;
3090 else if (symb_table[2 * elem] == 0 && c1 == 1)
3092 /* No valid character. Match it as a
3093 single byte character. */
3094 had_char_class = false;
3095 BUF_PUSH(str[0]);
3096 /* Update the length of characters */
3097 laststart[5]++;
3098 range_start = str[0];
3100 /* Throw away the ] at the end of the
3101 collating symbol. */
3102 PATFETCH (c);
3103 /* exit from the switch block. */
3104 continue;
3106 else
3107 FREE_STACK_RETURN (REG_ECOLLATE);
3109 datasize = 1;
3111 # endif
3112 /* Throw away the ] at the end of the equivalence
3113 class (or collating symbol). */
3114 PATFETCH (c);
3116 /* Allocate the space for the equivalence class
3117 (or collating symbol) (and '\0' if needed). */
3118 GET_BUFFER_SPACE(datasize);
3119 /* Update the pointer to indicate end of buffer. */
3120 b += datasize;
3122 if (delim == '=')
3123 { /* equivalence class */
3124 /* Calculate the offset of char_ranges,
3125 which is next to equivalence_classes. */
3126 offset = laststart[1] + laststart[2]
3127 + laststart[3] +6;
3128 /* Insert space. */
3129 insert_space(datasize, laststart + offset, b - 1);
3131 /* Write the equivalence_class and \0. */
3132 for (i = 0 ; i < datasize ; i++)
3133 laststart[offset + i] = str[i];
3135 /* Update the length of equivalence_classes. */
3136 laststart[3] += datasize;
3137 had_char_class = true;
3139 else /* delim == '.' */
3140 { /* collating symbol */
3141 /* Calculate the offset of the equivalence_classes,
3142 which is next to collating_symbols. */
3143 offset = laststart[1] + laststart[2] + 6;
3144 /* Insert space and write the collationg_symbol
3145 and \0. */
3146 insert_space(datasize, laststart + offset, b-1);
3147 for (i = 0 ; i < datasize ; i++)
3148 laststart[offset + i] = str[i];
3150 /* In re_match_2_internal if range_start < -1, we
3151 assume -range_start is the offset of the
3152 collating symbol which is specified as
3153 the character of the range start. So we assign
3154 -(laststart[1] + laststart[2] + 6) to
3155 range_start. */
3156 range_start = -(laststart[1] + laststart[2] + 6);
3157 /* Update the length of collating_symbol. */
3158 laststart[2] += datasize;
3159 had_char_class = false;
3162 else
3164 c1++;
3165 while (c1--)
3166 PATUNFETCH;
3167 BUF_PUSH ('[');
3168 BUF_PUSH (delim);
3169 laststart[5] += 2; /* Update the length of characters */
3170 range_start = delim;
3171 had_char_class = false;
3174 else
3176 had_char_class = false;
3177 BUF_PUSH(c);
3178 laststart[5]++; /* Update the length of characters */
3179 range_start = c;
3183 #else /* BYTE */
3184 /* Ensure that we have enough space to push a charset: the
3185 opcode, the length count, and the bitset; 34 bytes in all. */
3186 GET_BUFFER_SPACE (34);
3188 laststart = b;
3190 /* We test `*p == '^' twice, instead of using an if
3191 statement, so we only need one BUF_PUSH. */
3192 BUF_PUSH (*p == '^' ? charset_not : charset);
3193 if (*p == '^')
3194 p++;
3196 /* Remember the first position in the bracket expression. */
3197 p1 = p;
3199 /* Push the number of bytes in the bitmap. */
3200 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3202 /* Clear the whole map. */
3203 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3205 /* charset_not matches newline according to a syntax bit. */
3206 if ((re_opcode_t) b[-2] == charset_not
3207 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3208 SET_LIST_BIT ('\n');
3210 /* Read in characters and ranges, setting map bits. */
3211 for (;;)
3213 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3215 PATFETCH (c);
3217 /* \ might escape characters inside [...] and [^...]. */
3218 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3220 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3222 PATFETCH (c1);
3223 SET_LIST_BIT (c1);
3224 range_start = c1;
3225 continue;
3228 /* Could be the end of the bracket expression. If it's
3229 not (i.e., when the bracket expression is `[]' so
3230 far), the ']' character bit gets set way below. */
3231 if (c == ']' && p != p1 + 1)
3232 break;
3234 /* Look ahead to see if it's a range when the last thing
3235 was a character class. */
3236 if (had_char_class && c == '-' && *p != ']')
3237 FREE_STACK_RETURN (REG_ERANGE);
3239 /* Look ahead to see if it's a range when the last thing
3240 was a character: if this is a hyphen not at the
3241 beginning or the end of a list, then it's the range
3242 operator. */
3243 if (c == '-'
3244 && !(p - 2 >= pattern && p[-2] == '[')
3245 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3246 && *p != ']')
3248 reg_errcode_t ret
3249 = byte_compile_range (range_start, &p, pend, translate,
3250 syntax, b);
3251 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3252 range_start = 0xffffffff;
3255 else if (p[0] == '-' && p[1] != ']')
3256 { /* This handles ranges made up of characters only. */
3257 reg_errcode_t ret;
3259 /* Move past the `-'. */
3260 PATFETCH (c1);
3262 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3263 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3264 range_start = 0xffffffff;
3267 /* See if we're at the beginning of a possible character
3268 class. */
3270 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3271 { /* Leave room for the null. */
3272 char str[CHAR_CLASS_MAX_LENGTH + 1];
3274 PATFETCH (c);
3275 c1 = 0;
3277 /* If pattern is `[[:'. */
3278 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3280 for (;;)
3282 PATFETCH (c);
3283 if ((c == ':' && *p == ']') || p == pend)
3284 break;
3285 if (c1 < CHAR_CLASS_MAX_LENGTH)
3286 str[c1++] = c;
3287 else
3288 /* This is in any case an invalid class name. */
3289 str[0] = '\0';
3291 str[c1] = '\0';
3293 /* If isn't a word bracketed by `[:' and `:]':
3294 undo the ending character, the letters, and leave
3295 the leading `:' and `[' (but set bits for them). */
3296 if (c == ':' && *p == ']')
3298 # if defined _LIBC || WIDE_CHAR_SUPPORT
3299 boolean is_lower = STREQ (str, "lower");
3300 boolean is_upper = STREQ (str, "upper");
3301 wctype_t wt;
3302 int ch;
3304 wt = IS_CHAR_CLASS (str);
3305 if (wt == 0)
3306 FREE_STACK_RETURN (REG_ECTYPE);
3308 /* Throw away the ] at the end of the character
3309 class. */
3310 PATFETCH (c);
3312 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3314 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3316 # ifdef _LIBC
3317 if (__iswctype (__btowc (ch), wt))
3318 SET_LIST_BIT (ch);
3319 # else
3320 if (iswctype (btowc (ch), wt))
3321 SET_LIST_BIT (ch);
3322 # endif
3324 if (translate && (is_upper || is_lower)
3325 && (ISUPPER (ch) || ISLOWER (ch)))
3326 SET_LIST_BIT (ch);
3329 had_char_class = true;
3330 # else
3331 int ch;
3332 boolean is_alnum = STREQ (str, "alnum");
3333 boolean is_alpha = STREQ (str, "alpha");
3334 boolean is_blank = STREQ (str, "blank");
3335 boolean is_cntrl = STREQ (str, "cntrl");
3336 boolean is_digit = STREQ (str, "digit");
3337 boolean is_graph = STREQ (str, "graph");
3338 boolean is_lower = STREQ (str, "lower");
3339 boolean is_print = STREQ (str, "print");
3340 boolean is_punct = STREQ (str, "punct");
3341 boolean is_space = STREQ (str, "space");
3342 boolean is_upper = STREQ (str, "upper");
3343 boolean is_xdigit = STREQ (str, "xdigit");
3345 if (!IS_CHAR_CLASS (str))
3346 FREE_STACK_RETURN (REG_ECTYPE);
3348 /* Throw away the ] at the end of the character
3349 class. */
3350 PATFETCH (c);
3352 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3354 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3356 /* This was split into 3 if's to
3357 avoid an arbitrary limit in some compiler. */
3358 if ( (is_alnum && ISALNUM (ch))
3359 || (is_alpha && ISALPHA (ch))
3360 || (is_blank && ISBLANK (ch))
3361 || (is_cntrl && ISCNTRL (ch)))
3362 SET_LIST_BIT (ch);
3363 if ( (is_digit && ISDIGIT (ch))
3364 || (is_graph && ISGRAPH (ch))
3365 || (is_lower && ISLOWER (ch))
3366 || (is_print && ISPRINT (ch)))
3367 SET_LIST_BIT (ch);
3368 if ( (is_punct && ISPUNCT (ch))
3369 || (is_space && ISSPACE (ch))
3370 || (is_upper && ISUPPER (ch))
3371 || (is_xdigit && ISXDIGIT (ch)))
3372 SET_LIST_BIT (ch);
3373 if ( translate && (is_upper || is_lower)
3374 && (ISUPPER (ch) || ISLOWER (ch)))
3375 SET_LIST_BIT (ch);
3377 had_char_class = true;
3378 # endif /* libc || wctype.h */
3380 else
3382 c1++;
3383 while (c1--)
3384 PATUNFETCH;
3385 SET_LIST_BIT ('[');
3386 SET_LIST_BIT (':');
3387 range_start = ':';
3388 had_char_class = false;
3391 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3393 unsigned char str[MB_LEN_MAX + 1];
3394 # ifdef _LIBC
3395 uint32_t nrules =
3396 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3397 # endif
3399 PATFETCH (c);
3400 c1 = 0;
3402 /* If pattern is `[[='. */
3403 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3405 for (;;)
3407 PATFETCH (c);
3408 if ((c == '=' && *p == ']') || p == pend)
3409 break;
3410 if (c1 < MB_LEN_MAX)
3411 str[c1++] = c;
3412 else
3413 /* This is in any case an invalid class name. */
3414 str[0] = '\0';
3416 str[c1] = '\0';
3418 if (c == '=' && *p == ']' && str[0] != '\0')
3420 /* If we have no collation data we use the default
3421 collation in which each character is in a class
3422 by itself. It also means that ASCII is the
3423 character set and therefore we cannot have character
3424 with more than one byte in the multibyte
3425 representation. */
3426 # ifdef _LIBC
3427 if (nrules == 0)
3428 # endif
3430 if (c1 != 1)
3431 FREE_STACK_RETURN (REG_ECOLLATE);
3433 /* Throw away the ] at the end of the equivalence
3434 class. */
3435 PATFETCH (c);
3437 /* Set the bit for the character. */
3438 SET_LIST_BIT (str[0]);
3440 # ifdef _LIBC
3441 else
3443 /* Try to match the byte sequence in `str' against
3444 those known to the collate implementation.
3445 First find out whether the bytes in `str' are
3446 actually from exactly one character. */
3447 const int32_t *table;
3448 const unsigned char *weights;
3449 const unsigned char *extra;
3450 const int32_t *indirect;
3451 int32_t idx;
3452 const unsigned char *cp = str;
3453 int ch;
3455 /* This #include defines a local function! */
3456 # include <locale/weight.h>
3458 table = (const int32_t *)
3459 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3460 weights = (const unsigned char *)
3461 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3462 extra = (const unsigned char *)
3463 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3464 indirect = (const int32_t *)
3465 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3467 idx = findidx (&cp);
3468 if (idx == 0 || cp < str + c1)
3469 /* This is no valid character. */
3470 FREE_STACK_RETURN (REG_ECOLLATE);
3472 /* Throw away the ] at the end of the equivalence
3473 class. */
3474 PATFETCH (c);
3476 /* Now we have to go throught the whole table
3477 and find all characters which have the same
3478 first level weight.
3480 XXX Note that this is not entirely correct.
3481 we would have to match multibyte sequences
3482 but this is not possible with the current
3483 implementation. */
3484 for (ch = 1; ch < 256; ++ch)
3485 /* XXX This test would have to be changed if we
3486 would allow matching multibyte sequences. */
3487 if (table[ch] > 0)
3489 int32_t idx2 = table[ch];
3490 size_t len = weights[idx2];
3492 /* Test whether the lenghts match. */
3493 if (weights[idx] == len)
3495 /* They do. New compare the bytes of
3496 the weight. */
3497 size_t cnt = 0;
3499 while (cnt < len
3500 && (weights[idx + 1 + cnt]
3501 == weights[idx2 + 1 + cnt]))
3502 ++cnt;
3504 if (cnt == len)
3505 /* They match. Mark the character as
3506 acceptable. */
3507 SET_LIST_BIT (ch);
3511 # endif
3512 had_char_class = true;
3514 else
3516 c1++;
3517 while (c1--)
3518 PATUNFETCH;
3519 SET_LIST_BIT ('[');
3520 SET_LIST_BIT ('=');
3521 range_start = '=';
3522 had_char_class = false;
3525 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3527 unsigned char str[128]; /* Should be large enough. */
3528 # ifdef _LIBC
3529 uint32_t nrules =
3530 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3531 # endif
3533 PATFETCH (c);
3534 c1 = 0;
3536 /* If pattern is `[[.'. */
3537 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3539 for (;;)
3541 PATFETCH (c);
3542 if ((c == '.' && *p == ']') || p == pend)
3543 break;
3544 if (c1 < sizeof (str))
3545 str[c1++] = c;
3546 else
3547 /* This is in any case an invalid class name. */
3548 str[0] = '\0';
3550 str[c1] = '\0';
3552 if (c == '.' && *p == ']' && str[0] != '\0')
3554 /* If we have no collation data we use the default
3555 collation in which each character is the name
3556 for its own class which contains only the one
3557 character. It also means that ASCII is the
3558 character set and therefore we cannot have character
3559 with more than one byte in the multibyte
3560 representation. */
3561 # ifdef _LIBC
3562 if (nrules == 0)
3563 # endif
3565 if (c1 != 1)
3566 FREE_STACK_RETURN (REG_ECOLLATE);
3568 /* Throw away the ] at the end of the equivalence
3569 class. */
3570 PATFETCH (c);
3572 /* Set the bit for the character. */
3573 SET_LIST_BIT (str[0]);
3574 range_start = ((const unsigned char *) str)[0];
3576 # ifdef _LIBC
3577 else
3579 /* Try to match the byte sequence in `str' against
3580 those known to the collate implementation.
3581 First find out whether the bytes in `str' are
3582 actually from exactly one character. */
3583 int32_t table_size;
3584 const int32_t *symb_table;
3585 const unsigned char *extra;
3586 int32_t idx;
3587 int32_t elem;
3588 int32_t second;
3589 int32_t hash;
3591 table_size =
3592 _NL_CURRENT_WORD (LC_COLLATE,
3593 _NL_COLLATE_SYMB_HASH_SIZEMB);
3594 symb_table = (const int32_t *)
3595 _NL_CURRENT (LC_COLLATE,
3596 _NL_COLLATE_SYMB_TABLEMB);
3597 extra = (const unsigned char *)
3598 _NL_CURRENT (LC_COLLATE,
3599 _NL_COLLATE_SYMB_EXTRAMB);
3601 /* Locate the character in the hashing table. */
3602 hash = elem_hash (str, c1);
3604 idx = 0;
3605 elem = hash % table_size;
3606 second = hash % (table_size - 2);
3607 while (symb_table[2 * elem] != 0)
3609 /* First compare the hashing value. */
3610 if (symb_table[2 * elem] == hash
3611 && c1 == extra[symb_table[2 * elem + 1]]
3612 && memcmp (str,
3613 &extra[symb_table[2 * elem + 1]
3614 + 1],
3615 c1) == 0)
3617 /* Yep, this is the entry. */
3618 idx = symb_table[2 * elem + 1];
3619 idx += 1 + extra[idx];
3620 break;
3623 /* Next entry. */
3624 elem += second;
3627 if (symb_table[2 * elem] == 0)
3628 /* This is no valid character. */
3629 FREE_STACK_RETURN (REG_ECOLLATE);
3631 /* Throw away the ] at the end of the equivalence
3632 class. */
3633 PATFETCH (c);
3635 /* Now add the multibyte character(s) we found
3636 to the accept list.
3638 XXX Note that this is not entirely correct.
3639 we would have to match multibyte sequences
3640 but this is not possible with the current
3641 implementation. Also, we have to match
3642 collating symbols, which expand to more than
3643 one file, as a whole and not allow the
3644 individual bytes. */
3645 c1 = extra[idx++];
3646 if (c1 == 1)
3647 range_start = extra[idx];
3648 while (c1-- > 0)
3650 SET_LIST_BIT (extra[idx]);
3651 ++idx;
3654 # endif
3655 had_char_class = false;
3657 else
3659 c1++;
3660 while (c1--)
3661 PATUNFETCH;
3662 SET_LIST_BIT ('[');
3663 SET_LIST_BIT ('.');
3664 range_start = '.';
3665 had_char_class = false;
3668 else
3670 had_char_class = false;
3671 SET_LIST_BIT (c);
3672 range_start = c;
3676 /* Discard any (non)matching list bytes that are all 0 at the
3677 end of the map. Decrease the map-length byte too. */
3678 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3679 b[-1]--;
3680 b += b[-1];
3681 #endif /* WCHAR */
3683 break;
3686 case '(':
3687 if (syntax & RE_NO_BK_PARENS)
3688 goto handle_open;
3689 else
3690 goto normal_char;
3693 case ')':
3694 if (syntax & RE_NO_BK_PARENS)
3695 goto handle_close;
3696 else
3697 goto normal_char;
3700 case '\n':
3701 if (syntax & RE_NEWLINE_ALT)
3702 goto handle_alt;
3703 else
3704 goto normal_char;
3707 case '|':
3708 if (syntax & RE_NO_BK_VBAR)
3709 goto handle_alt;
3710 else
3711 goto normal_char;
3714 case '{':
3715 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3716 goto handle_interval;
3717 else
3718 goto normal_char;
3721 case '\\':
3722 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3724 /* Do not translate the character after the \, so that we can
3725 distinguish, e.g., \B from \b, even if we normally would
3726 translate, e.g., B to b. */
3727 PATFETCH_RAW (c);
3729 switch (c)
3731 case '(':
3732 if (syntax & RE_NO_BK_PARENS)
3733 goto normal_backslash;
3735 handle_open:
3736 bufp->re_nsub++;
3737 regnum++;
3739 if (COMPILE_STACK_FULL)
3741 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3742 compile_stack_elt_t);
3743 if (compile_stack.stack == NULL) return REG_ESPACE;
3745 compile_stack.size <<= 1;
3748 /* These are the values to restore when we hit end of this
3749 group. They are all relative offsets, so that if the
3750 whole pattern moves because of realloc, they will still
3751 be valid. */
3752 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3753 COMPILE_STACK_TOP.fixup_alt_jump
3754 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3755 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3756 COMPILE_STACK_TOP.regnum = regnum;
3758 /* We will eventually replace the 0 with the number of
3759 groups inner to this one. But do not push a
3760 start_memory for groups beyond the last one we can
3761 represent in the compiled pattern. */
3762 if (regnum <= MAX_REGNUM)
3764 COMPILE_STACK_TOP.inner_group_offset = b
3765 - COMPILED_BUFFER_VAR + 2;
3766 BUF_PUSH_3 (start_memory, regnum, 0);
3769 compile_stack.avail++;
3771 fixup_alt_jump = 0;
3772 laststart = 0;
3773 begalt = b;
3774 /* If we've reached MAX_REGNUM groups, then this open
3775 won't actually generate any code, so we'll have to
3776 clear pending_exact explicitly. */
3777 pending_exact = 0;
3778 break;
3781 case ')':
3782 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3784 if (COMPILE_STACK_EMPTY)
3786 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3787 goto normal_backslash;
3788 else
3789 FREE_STACK_RETURN (REG_ERPAREN);
3792 handle_close:
3793 if (fixup_alt_jump)
3794 { /* Push a dummy failure point at the end of the
3795 alternative for a possible future
3796 `pop_failure_jump' to pop. See comments at
3797 `push_dummy_failure' in `re_match_2'. */
3798 BUF_PUSH (push_dummy_failure);
3800 /* We allocated space for this jump when we assigned
3801 to `fixup_alt_jump', in the `handle_alt' case below. */
3802 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3805 /* See similar code for backslashed left paren above. */
3806 if (COMPILE_STACK_EMPTY)
3808 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3809 goto normal_char;
3810 else
3811 FREE_STACK_RETURN (REG_ERPAREN);
3814 /* Since we just checked for an empty stack above, this
3815 ``can't happen''. */
3816 assert (compile_stack.avail != 0);
3818 /* We don't just want to restore into `regnum', because
3819 later groups should continue to be numbered higher,
3820 as in `(ab)c(de)' -- the second group is #2. */
3821 regnum_t this_group_regnum;
3823 compile_stack.avail--;
3824 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3825 fixup_alt_jump
3826 = COMPILE_STACK_TOP.fixup_alt_jump
3827 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3828 : 0;
3829 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3830 this_group_regnum = COMPILE_STACK_TOP.regnum;
3831 /* If we've reached MAX_REGNUM groups, then this open
3832 won't actually generate any code, so we'll have to
3833 clear pending_exact explicitly. */
3834 pending_exact = 0;
3836 /* We're at the end of the group, so now we know how many
3837 groups were inside this one. */
3838 if (this_group_regnum <= MAX_REGNUM)
3840 UCHAR_T *inner_group_loc
3841 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3843 *inner_group_loc = regnum - this_group_regnum;
3844 BUF_PUSH_3 (stop_memory, this_group_regnum,
3845 regnum - this_group_regnum);
3848 break;
3851 case '|': /* `\|'. */
3852 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3853 goto normal_backslash;
3854 handle_alt:
3855 if (syntax & RE_LIMITED_OPS)
3856 goto normal_char;
3858 /* Insert before the previous alternative a jump which
3859 jumps to this alternative if the former fails. */
3860 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3861 INSERT_JUMP (on_failure_jump, begalt,
3862 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3863 pending_exact = 0;
3864 b += 1 + OFFSET_ADDRESS_SIZE;
3866 /* The alternative before this one has a jump after it
3867 which gets executed if it gets matched. Adjust that
3868 jump so it will jump to this alternative's analogous
3869 jump (put in below, which in turn will jump to the next
3870 (if any) alternative's such jump, etc.). The last such
3871 jump jumps to the correct final destination. A picture:
3872 _____ _____
3873 | | | |
3874 | v | v
3875 a | b | c
3877 If we are at `b', then fixup_alt_jump right now points to a
3878 three-byte space after `a'. We'll put in the jump, set
3879 fixup_alt_jump to right after `b', and leave behind three
3880 bytes which we'll fill in when we get to after `c'. */
3882 if (fixup_alt_jump)
3883 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3885 /* Mark and leave space for a jump after this alternative,
3886 to be filled in later either by next alternative or
3887 when know we're at the end of a series of alternatives. */
3888 fixup_alt_jump = b;
3889 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3890 b += 1 + OFFSET_ADDRESS_SIZE;
3892 laststart = 0;
3893 begalt = b;
3894 break;
3897 case '{':
3898 /* If \{ is a literal. */
3899 if (!(syntax & RE_INTERVALS)
3900 /* If we're at `\{' and it's not the open-interval
3901 operator. */
3902 || (syntax & RE_NO_BK_BRACES))
3903 goto normal_backslash;
3905 handle_interval:
3907 /* If got here, then the syntax allows intervals. */
3909 /* At least (most) this many matches must be made. */
3910 int lower_bound = -1, upper_bound = -1;
3912 /* Place in the uncompiled pattern (i.e., just after
3913 the '{') to go back to if the interval is invalid. */
3914 const CHAR_T *beg_interval = p;
3916 if (p == pend)
3917 goto invalid_interval;
3919 GET_UNSIGNED_NUMBER (lower_bound);
3921 if (c == ',')
3923 GET_UNSIGNED_NUMBER (upper_bound);
3924 if (upper_bound < 0)
3925 upper_bound = RE_DUP_MAX;
3927 else
3928 /* Interval such as `{1}' => match exactly once. */
3929 upper_bound = lower_bound;
3931 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3932 goto invalid_interval;
3934 if (!(syntax & RE_NO_BK_BRACES))
3936 if (c != '\\' || p == pend)
3937 goto invalid_interval;
3938 PATFETCH (c);
3941 if (c != '}')
3942 goto invalid_interval;
3944 /* If it's invalid to have no preceding re. */
3945 if (!laststart)
3947 if (syntax & RE_CONTEXT_INVALID_OPS
3948 && !(syntax & RE_INVALID_INTERVAL_ORD))
3949 FREE_STACK_RETURN (REG_BADRPT);
3950 else if (syntax & RE_CONTEXT_INDEP_OPS)
3951 laststart = b;
3952 else
3953 goto unfetch_interval;
3956 /* We just parsed a valid interval. */
3958 if (RE_DUP_MAX < upper_bound)
3959 FREE_STACK_RETURN (REG_BADBR);
3961 /* If the upper bound is zero, don't want to succeed at
3962 all; jump from `laststart' to `b + 3', which will be
3963 the end of the buffer after we insert the jump. */
3964 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3965 instead of 'b + 3'. */
3966 if (upper_bound == 0)
3968 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3969 INSERT_JUMP (jump, laststart, b + 1
3970 + OFFSET_ADDRESS_SIZE);
3971 b += 1 + OFFSET_ADDRESS_SIZE;
3974 /* Otherwise, we have a nontrivial interval. When
3975 we're all done, the pattern will look like:
3976 set_number_at <jump count> <upper bound>
3977 set_number_at <succeed_n count> <lower bound>
3978 succeed_n <after jump addr> <succeed_n count>
3979 <body of loop>
3980 jump_n <succeed_n addr> <jump count>
3981 (The upper bound and `jump_n' are omitted if
3982 `upper_bound' is 1, though.) */
3983 else
3984 { /* If the upper bound is > 1, we need to insert
3985 more at the end of the loop. */
3986 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3987 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3989 GET_BUFFER_SPACE (nbytes);
3991 /* Initialize lower bound of the `succeed_n', even
3992 though it will be set during matching by its
3993 attendant `set_number_at' (inserted next),
3994 because `re_compile_fastmap' needs to know.
3995 Jump to the `jump_n' we might insert below. */
3996 INSERT_JUMP2 (succeed_n, laststart,
3997 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3998 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3999 , lower_bound);
4000 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4002 /* Code to initialize the lower bound. Insert
4003 before the `succeed_n'. The `5' is the last two
4004 bytes of this `set_number_at', plus 3 bytes of
4005 the following `succeed_n'. */
4006 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4007 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4008 of the following `succeed_n'. */
4009 PREFIX(insert_op2) (set_number_at, laststart, 1
4010 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
4011 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4013 if (upper_bound > 1)
4014 { /* More than one repetition is allowed, so
4015 append a backward jump to the `succeed_n'
4016 that starts this interval.
4018 When we've reached this during matching,
4019 we'll have matched the interval once, so
4020 jump back only `upper_bound - 1' times. */
4021 STORE_JUMP2 (jump_n, b, laststart
4022 + 2 * OFFSET_ADDRESS_SIZE + 1,
4023 upper_bound - 1);
4024 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4026 /* The location we want to set is the second
4027 parameter of the `jump_n'; that is `b-2' as
4028 an absolute address. `laststart' will be
4029 the `set_number_at' we're about to insert;
4030 `laststart+3' the number to set, the source
4031 for the relative address. But we are
4032 inserting into the middle of the pattern --
4033 so everything is getting moved up by 5.
4034 Conclusion: (b - 2) - (laststart + 3) + 5,
4035 i.e., b - laststart.
4037 We insert this at the beginning of the loop
4038 so that if we fail during matching, we'll
4039 reinitialize the bounds. */
4040 PREFIX(insert_op2) (set_number_at, laststart,
4041 b - laststart,
4042 upper_bound - 1, b);
4043 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4046 pending_exact = 0;
4047 break;
4049 invalid_interval:
4050 if (!(syntax & RE_INVALID_INTERVAL_ORD))
4051 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4052 unfetch_interval:
4053 /* Match the characters as literals. */
4054 p = beg_interval;
4055 c = '{';
4056 if (syntax & RE_NO_BK_BRACES)
4057 goto normal_char;
4058 else
4059 goto normal_backslash;
4062 #ifdef emacs
4063 /* There is no way to specify the before_dot and after_dot
4064 operators. rms says this is ok. --karl */
4065 case '=':
4066 BUF_PUSH (at_dot);
4067 break;
4069 case 's':
4070 laststart = b;
4071 PATFETCH (c);
4072 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4073 break;
4075 case 'S':
4076 laststart = b;
4077 PATFETCH (c);
4078 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4079 break;
4080 #endif /* emacs */
4083 case 'w':
4084 if (syntax & RE_NO_GNU_OPS)
4085 goto normal_char;
4086 laststart = b;
4087 BUF_PUSH (wordchar);
4088 break;
4091 case 'W':
4092 if (syntax & RE_NO_GNU_OPS)
4093 goto normal_char;
4094 laststart = b;
4095 BUF_PUSH (notwordchar);
4096 break;
4099 case '<':
4100 if (syntax & RE_NO_GNU_OPS)
4101 goto normal_char;
4102 BUF_PUSH (wordbeg);
4103 break;
4105 case '>':
4106 if (syntax & RE_NO_GNU_OPS)
4107 goto normal_char;
4108 BUF_PUSH (wordend);
4109 break;
4111 case 'b':
4112 if (syntax & RE_NO_GNU_OPS)
4113 goto normal_char;
4114 BUF_PUSH (wordbound);
4115 break;
4117 case 'B':
4118 if (syntax & RE_NO_GNU_OPS)
4119 goto normal_char;
4120 BUF_PUSH (notwordbound);
4121 break;
4123 case '`':
4124 if (syntax & RE_NO_GNU_OPS)
4125 goto normal_char;
4126 BUF_PUSH (begbuf);
4127 break;
4129 case '\'':
4130 if (syntax & RE_NO_GNU_OPS)
4131 goto normal_char;
4132 BUF_PUSH (endbuf);
4133 break;
4135 case '1': case '2': case '3': case '4': case '5':
4136 case '6': case '7': case '8': case '9':
4137 if (syntax & RE_NO_BK_REFS)
4138 goto normal_char;
4140 c1 = c - '0';
4142 if (c1 > regnum)
4143 FREE_STACK_RETURN (REG_ESUBREG);
4145 /* Can't back reference to a subexpression if inside of it. */
4146 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4147 goto normal_char;
4149 laststart = b;
4150 BUF_PUSH_2 (duplicate, c1);
4151 break;
4154 case '+':
4155 case '?':
4156 if (syntax & RE_BK_PLUS_QM)
4157 goto handle_plus;
4158 else
4159 goto normal_backslash;
4161 default:
4162 normal_backslash:
4163 /* You might think it would be useful for \ to mean
4164 not to translate; but if we don't translate it
4165 it will never match anything. */
4166 c = TRANSLATE (c);
4167 goto normal_char;
4169 break;
4172 default:
4173 /* Expects the character in `c'. */
4174 normal_char:
4175 /* If no exactn currently being built. */
4176 if (!pending_exact
4177 #ifdef WCHAR
4178 /* If last exactn handle binary(or character) and
4179 new exactn handle character(or binary). */
4180 || is_exactn_bin != is_binary[p - 1 - pattern]
4181 #endif /* WCHAR */
4183 /* If last exactn not at current position. */
4184 || pending_exact + *pending_exact + 1 != b
4186 /* We have only one byte following the exactn for the count. */
4187 || *pending_exact == (1 << BYTEWIDTH) - 1
4189 /* If followed by a repetition operator. */
4190 || *p == '*' || *p == '^'
4191 || ((syntax & RE_BK_PLUS_QM)
4192 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4193 : (*p == '+' || *p == '?'))
4194 || ((syntax & RE_INTERVALS)
4195 && ((syntax & RE_NO_BK_BRACES)
4196 ? *p == '{'
4197 : (p[0] == '\\' && p[1] == '{'))))
4199 /* Start building a new exactn. */
4201 laststart = b;
4203 #ifdef WCHAR
4204 /* Is this exactn binary data or character? */
4205 is_exactn_bin = is_binary[p - 1 - pattern];
4206 if (is_exactn_bin)
4207 BUF_PUSH_2 (exactn_bin, 0);
4208 else
4209 BUF_PUSH_2 (exactn, 0);
4210 #else
4211 BUF_PUSH_2 (exactn, 0);
4212 #endif /* WCHAR */
4213 pending_exact = b - 1;
4216 BUF_PUSH (c);
4217 (*pending_exact)++;
4218 break;
4219 } /* switch (c) */
4220 } /* while p != pend */
4223 /* Through the pattern now. */
4225 if (fixup_alt_jump)
4226 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4228 if (!COMPILE_STACK_EMPTY)
4229 FREE_STACK_RETURN (REG_EPAREN);
4231 /* If we don't want backtracking, force success
4232 the first time we reach the end of the compiled pattern. */
4233 if (syntax & RE_NO_POSIX_BACKTRACKING)
4234 BUF_PUSH (succeed);
4236 #ifdef WCHAR
4237 free (pattern);
4238 free (mbs_offset);
4239 free (is_binary);
4240 #endif
4241 free (compile_stack.stack);
4243 /* We have succeeded; set the length of the buffer. */
4244 #ifdef WCHAR
4245 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4246 #else
4247 bufp->used = b - bufp->buffer;
4248 #endif
4250 #ifdef DEBUG
4251 if (debug)
4253 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4254 PREFIX(print_compiled_pattern) (bufp);
4256 #endif /* DEBUG */
4258 #ifndef MATCH_MAY_ALLOCATE
4259 /* Initialize the failure stack to the largest possible stack. This
4260 isn't necessary unless we're trying to avoid calling alloca in
4261 the search and match routines. */
4263 int num_regs = bufp->re_nsub + 1;
4265 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4266 is strictly greater than re_max_failures, the largest possible stack
4267 is 2 * re_max_failures failure points. */
4268 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4270 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4272 # ifdef emacs
4273 if (! fail_stack.stack)
4274 fail_stack.stack
4275 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4276 * sizeof (PREFIX(fail_stack_elt_t)));
4277 else
4278 fail_stack.stack
4279 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4280 (fail_stack.size
4281 * sizeof (PREFIX(fail_stack_elt_t))));
4282 # else /* not emacs */
4283 if (! fail_stack.stack)
4284 fail_stack.stack
4285 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4286 * sizeof (PREFIX(fail_stack_elt_t)));
4287 else
4288 fail_stack.stack
4289 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4290 (fail_stack.size
4291 * sizeof (PREFIX(fail_stack_elt_t))));
4292 # endif /* not emacs */
4295 PREFIX(regex_grow_registers) (num_regs);
4297 #endif /* not MATCH_MAY_ALLOCATE */
4299 return REG_NOERROR;
4300 } /* regex_compile */
4302 /* Subroutines for `regex_compile'. */
4304 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4305 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4307 static void
4308 PREFIX(store_op1) (op, loc, arg)
4309 re_opcode_t op;
4310 UCHAR_T *loc;
4311 int arg;
4313 *loc = (UCHAR_T) op;
4314 STORE_NUMBER (loc + 1, arg);
4318 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4319 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4321 static void
4322 PREFIX(store_op2) (op, loc, arg1, arg2)
4323 re_opcode_t op;
4324 UCHAR_T *loc;
4325 int arg1, arg2;
4327 *loc = (UCHAR_T) op;
4328 STORE_NUMBER (loc + 1, arg1);
4329 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4333 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4334 for OP followed by two-byte integer parameter ARG. */
4335 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4337 static void
4338 PREFIX(insert_op1) (op, loc, arg, end)
4339 re_opcode_t op;
4340 UCHAR_T *loc;
4341 int arg;
4342 UCHAR_T *end;
4344 register UCHAR_T *pfrom = end;
4345 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4347 while (pfrom != loc)
4348 *--pto = *--pfrom;
4350 PREFIX(store_op1) (op, loc, arg);
4354 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4355 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4357 static void
4358 PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4359 re_opcode_t op;
4360 UCHAR_T *loc;
4361 int arg1, arg2;
4362 UCHAR_T *end;
4364 register UCHAR_T *pfrom = end;
4365 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4367 while (pfrom != loc)
4368 *--pto = *--pfrom;
4370 PREFIX(store_op2) (op, loc, arg1, arg2);
4374 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4375 after an alternative or a begin-subexpression. We assume there is at
4376 least one character before the ^. */
4378 static boolean
4379 PREFIX(at_begline_loc_p) (pattern, p, syntax)
4380 const CHAR_T *pattern, *p;
4381 reg_syntax_t syntax;
4383 const CHAR_T *prev = p - 2;
4384 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4386 return
4387 /* After a subexpression? */
4388 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4389 /* After an alternative? */
4390 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4394 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4395 at least one character after the $, i.e., `P < PEND'. */
4397 static boolean
4398 PREFIX(at_endline_loc_p) (p, pend, syntax)
4399 const CHAR_T *p, *pend;
4400 reg_syntax_t syntax;
4402 const CHAR_T *next = p;
4403 boolean next_backslash = *next == '\\';
4404 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4406 return
4407 /* Before a subexpression? */
4408 (syntax & RE_NO_BK_PARENS ? *next == ')'
4409 : next_backslash && next_next && *next_next == ')')
4410 /* Before an alternative? */
4411 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4412 : next_backslash && next_next && *next_next == '|');
4415 #else /* not INSIDE_RECURSION */
4417 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4418 false if it's not. */
4420 static boolean
4421 group_in_compile_stack (compile_stack, regnum)
4422 compile_stack_type compile_stack;
4423 regnum_t regnum;
4425 int this_element;
4427 for (this_element = compile_stack.avail - 1;
4428 this_element >= 0;
4429 this_element--)
4430 if (compile_stack.stack[this_element].regnum == regnum)
4431 return true;
4433 return false;
4435 #endif /* not INSIDE_RECURSION */
4437 #ifdef INSIDE_RECURSION
4439 #ifdef WCHAR
4440 /* This insert space, which size is "num", into the pattern at "loc".
4441 "end" must point the end of the allocated buffer. */
4442 static void
4443 insert_space (num, loc, end)
4444 int num;
4445 CHAR_T *loc;
4446 CHAR_T *end;
4448 register CHAR_T *pto = end;
4449 register CHAR_T *pfrom = end - num;
4451 while (pfrom >= loc)
4452 *pto-- = *pfrom--;
4454 #endif /* WCHAR */
4456 #ifdef WCHAR
4457 static reg_errcode_t
4458 wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4459 char_set)
4460 CHAR_T range_start_char;
4461 const CHAR_T **p_ptr, *pend;
4462 CHAR_T *char_set, *b;
4463 RE_TRANSLATE_TYPE translate;
4464 reg_syntax_t syntax;
4466 const CHAR_T *p = *p_ptr;
4467 CHAR_T range_start, range_end;
4468 reg_errcode_t ret;
4469 # ifdef _LIBC
4470 uint32_t nrules;
4471 uint32_t start_val, end_val;
4472 # endif
4473 if (p == pend)
4474 return REG_ERANGE;
4476 # ifdef _LIBC
4477 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4478 if (nrules != 0)
4480 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4481 _NL_COLLATE_COLLSEQWC);
4482 const unsigned char *extra = (const unsigned char *)
4483 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4485 if (range_start_char < -1)
4487 /* range_start is a collating symbol. */
4488 int32_t *wextra;
4489 /* Retreive the index and get collation sequence value. */
4490 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4491 start_val = wextra[1 + *wextra];
4493 else
4494 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4496 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4498 /* Report an error if the range is empty and the syntax prohibits
4499 this. */
4500 ret = ((syntax & RE_NO_EMPTY_RANGES)
4501 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4503 /* Insert space to the end of the char_ranges. */
4504 insert_space(2, b - char_set[5] - 2, b - 1);
4505 *(b - char_set[5] - 2) = (wchar_t)start_val;
4506 *(b - char_set[5] - 1) = (wchar_t)end_val;
4507 char_set[4]++; /* ranges_index */
4509 else
4510 # endif
4512 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4513 range_start_char;
4514 range_end = TRANSLATE (p[0]);
4515 /* Report an error if the range is empty and the syntax prohibits
4516 this. */
4517 ret = ((syntax & RE_NO_EMPTY_RANGES)
4518 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4520 /* Insert space to the end of the char_ranges. */
4521 insert_space(2, b - char_set[5] - 2, b - 1);
4522 *(b - char_set[5] - 2) = range_start;
4523 *(b - char_set[5] - 1) = range_end;
4524 char_set[4]++; /* ranges_index */
4526 /* Have to increment the pointer into the pattern string, so the
4527 caller isn't still at the ending character. */
4528 (*p_ptr)++;
4530 return ret;
4532 #else /* BYTE */
4533 /* Read the ending character of a range (in a bracket expression) from the
4534 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4535 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4536 Then we set the translation of all bits between the starting and
4537 ending characters (inclusive) in the compiled pattern B.
4539 Return an error code.
4541 We use these short variable names so we can use the same macros as
4542 `regex_compile' itself. */
4544 static reg_errcode_t
4545 byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4546 unsigned int range_start_char;
4547 const char **p_ptr, *pend;
4548 RE_TRANSLATE_TYPE translate;
4549 reg_syntax_t syntax;
4550 unsigned char *b;
4552 unsigned this_char;
4553 const char *p = *p_ptr;
4554 reg_errcode_t ret;
4555 # if _LIBC
4556 const unsigned char *collseq;
4557 unsigned int start_colseq;
4558 unsigned int end_colseq;
4559 # else
4560 unsigned end_char;
4561 # endif
4563 if (p == pend)
4564 return REG_ERANGE;
4566 /* Have to increment the pointer into the pattern string, so the
4567 caller isn't still at the ending character. */
4568 (*p_ptr)++;
4570 /* Report an error if the range is empty and the syntax prohibits this. */
4571 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4573 # if _LIBC
4574 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4575 _NL_COLLATE_COLLSEQMB);
4577 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4578 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4579 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4581 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4583 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4585 SET_LIST_BIT (TRANSLATE (this_char));
4586 ret = REG_NOERROR;
4589 # else
4590 /* Here we see why `this_char' has to be larger than an `unsigned
4591 char' -- we would otherwise go into an infinite loop, since all
4592 characters <= 0xff. */
4593 range_start_char = TRANSLATE (range_start_char);
4594 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4595 and some compilers cast it to int implicitly, so following for_loop
4596 may fall to (almost) infinite loop.
4597 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4598 To avoid this, we cast p[0] to unsigned int and truncate it. */
4599 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4601 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4603 SET_LIST_BIT (TRANSLATE (this_char));
4604 ret = REG_NOERROR;
4606 # endif
4608 return ret;
4610 #endif /* WCHAR */
4612 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4613 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4614 characters can start a string that matches the pattern. This fastmap
4615 is used by re_search to skip quickly over impossible starting points.
4617 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4618 area as BUFP->fastmap.
4620 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4621 the pattern buffer.
4623 Returns 0 if we succeed, -2 if an internal error. */
4625 #ifdef WCHAR
4626 /* local function for re_compile_fastmap.
4627 truncate wchar_t character to char. */
4628 static unsigned char truncate_wchar (CHAR_T c);
4630 static unsigned char
4631 truncate_wchar (c)
4632 CHAR_T c;
4634 unsigned char buf[MB_CUR_MAX];
4635 mbstate_t state;
4636 int retval;
4637 memset (&state, '\0', sizeof (state));
4638 # ifdef _LIBC
4639 retval = __wcrtomb (buf, c, &state);
4640 # else
4641 retval = wcrtomb (buf, c, &state);
4642 # endif
4643 return retval > 0 ? buf[0] : (unsigned char) c;
4645 #endif /* WCHAR */
4647 static int
4648 PREFIX(re_compile_fastmap) (bufp)
4649 struct re_pattern_buffer *bufp;
4651 int j, k;
4652 #ifdef MATCH_MAY_ALLOCATE
4653 PREFIX(fail_stack_type) fail_stack;
4654 #endif
4655 #ifndef REGEX_MALLOC
4656 char *destination;
4657 #endif
4659 register char *fastmap = bufp->fastmap;
4661 #ifdef WCHAR
4662 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4663 pattern to (char*) in regex_compile. */
4664 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4665 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4666 #else /* BYTE */
4667 UCHAR_T *pattern = bufp->buffer;
4668 register UCHAR_T *pend = pattern + bufp->used;
4669 #endif /* WCHAR */
4670 UCHAR_T *p = pattern;
4672 #ifdef REL_ALLOC
4673 /* This holds the pointer to the failure stack, when
4674 it is allocated relocatably. */
4675 fail_stack_elt_t *failure_stack_ptr;
4676 #endif
4678 /* Assume that each path through the pattern can be null until
4679 proven otherwise. We set this false at the bottom of switch
4680 statement, to which we get only if a particular path doesn't
4681 match the empty string. */
4682 boolean path_can_be_null = true;
4684 /* We aren't doing a `succeed_n' to begin with. */
4685 boolean succeed_n_p = false;
4687 assert (fastmap != NULL && p != NULL);
4689 INIT_FAIL_STACK ();
4690 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4691 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4692 bufp->can_be_null = 0;
4694 while (1)
4696 if (p == pend || *p == succeed)
4698 /* We have reached the (effective) end of pattern. */
4699 if (!FAIL_STACK_EMPTY ())
4701 bufp->can_be_null |= path_can_be_null;
4703 /* Reset for next path. */
4704 path_can_be_null = true;
4706 p = fail_stack.stack[--fail_stack.avail].pointer;
4708 continue;
4710 else
4711 break;
4714 /* We should never be about to go beyond the end of the pattern. */
4715 assert (p < pend);
4717 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4720 /* I guess the idea here is to simply not bother with a fastmap
4721 if a backreference is used, since it's too hard to figure out
4722 the fastmap for the corresponding group. Setting
4723 `can_be_null' stops `re_search_2' from using the fastmap, so
4724 that is all we do. */
4725 case duplicate:
4726 bufp->can_be_null = 1;
4727 goto done;
4730 /* Following are the cases which match a character. These end
4731 with `break'. */
4733 #ifdef WCHAR
4734 case exactn:
4735 fastmap[truncate_wchar(p[1])] = 1;
4736 break;
4737 #else /* BYTE */
4738 case exactn:
4739 fastmap[p[1]] = 1;
4740 break;
4741 #endif /* WCHAR */
4742 #ifdef MBS_SUPPORT
4743 case exactn_bin:
4744 fastmap[p[1]] = 1;
4745 break;
4746 #endif
4748 #ifdef WCHAR
4749 /* It is hard to distinguish fastmap from (multi byte) characters
4750 which depends on current locale. */
4751 case charset:
4752 case charset_not:
4753 case wordchar:
4754 case notwordchar:
4755 bufp->can_be_null = 1;
4756 goto done;
4757 #else /* BYTE */
4758 case charset:
4759 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4760 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4761 fastmap[j] = 1;
4762 break;
4765 case charset_not:
4766 /* Chars beyond end of map must be allowed. */
4767 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4768 fastmap[j] = 1;
4770 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4771 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4772 fastmap[j] = 1;
4773 break;
4776 case wordchar:
4777 for (j = 0; j < (1 << BYTEWIDTH); j++)
4778 if (SYNTAX (j) == Sword)
4779 fastmap[j] = 1;
4780 break;
4783 case notwordchar:
4784 for (j = 0; j < (1 << BYTEWIDTH); j++)
4785 if (SYNTAX (j) != Sword)
4786 fastmap[j] = 1;
4787 break;
4788 #endif /* WCHAR */
4790 case anychar:
4792 int fastmap_newline = fastmap['\n'];
4794 /* `.' matches anything ... */
4795 for (j = 0; j < (1 << BYTEWIDTH); j++)
4796 fastmap[j] = 1;
4798 /* ... except perhaps newline. */
4799 if (!(bufp->syntax & RE_DOT_NEWLINE))
4800 fastmap['\n'] = fastmap_newline;
4802 /* Return if we have already set `can_be_null'; if we have,
4803 then the fastmap is irrelevant. Something's wrong here. */
4804 else if (bufp->can_be_null)
4805 goto done;
4807 /* Otherwise, have to check alternative paths. */
4808 break;
4811 #ifdef emacs
4812 case syntaxspec:
4813 k = *p++;
4814 for (j = 0; j < (1 << BYTEWIDTH); j++)
4815 if (SYNTAX (j) == (enum syntaxcode) k)
4816 fastmap[j] = 1;
4817 break;
4820 case notsyntaxspec:
4821 k = *p++;
4822 for (j = 0; j < (1 << BYTEWIDTH); j++)
4823 if (SYNTAX (j) != (enum syntaxcode) k)
4824 fastmap[j] = 1;
4825 break;
4828 /* All cases after this match the empty string. These end with
4829 `continue'. */
4832 case before_dot:
4833 case at_dot:
4834 case after_dot:
4835 continue;
4836 #endif /* emacs */
4839 case no_op:
4840 case begline:
4841 case endline:
4842 case begbuf:
4843 case endbuf:
4844 case wordbound:
4845 case notwordbound:
4846 case wordbeg:
4847 case wordend:
4848 case push_dummy_failure:
4849 continue;
4852 case jump_n:
4853 case pop_failure_jump:
4854 case maybe_pop_jump:
4855 case jump:
4856 case jump_past_alt:
4857 case dummy_failure_jump:
4858 EXTRACT_NUMBER_AND_INCR (j, p);
4859 p += j;
4860 if (j > 0)
4861 continue;
4863 /* Jump backward implies we just went through the body of a
4864 loop and matched nothing. Opcode jumped to should be
4865 `on_failure_jump' or `succeed_n'. Just treat it like an
4866 ordinary jump. For a * loop, it has pushed its failure
4867 point already; if so, discard that as redundant. */
4868 if ((re_opcode_t) *p != on_failure_jump
4869 && (re_opcode_t) *p != succeed_n)
4870 continue;
4872 p++;
4873 EXTRACT_NUMBER_AND_INCR (j, p);
4874 p += j;
4876 /* If what's on the stack is where we are now, pop it. */
4877 if (!FAIL_STACK_EMPTY ()
4878 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4879 fail_stack.avail--;
4881 continue;
4884 case on_failure_jump:
4885 case on_failure_keep_string_jump:
4886 handle_on_failure_jump:
4887 EXTRACT_NUMBER_AND_INCR (j, p);
4889 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4890 end of the pattern. We don't want to push such a point,
4891 since when we restore it above, entering the switch will
4892 increment `p' past the end of the pattern. We don't need
4893 to push such a point since we obviously won't find any more
4894 fastmap entries beyond `pend'. Such a pattern can match
4895 the null string, though. */
4896 if (p + j < pend)
4898 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4900 RESET_FAIL_STACK ();
4901 return -2;
4904 else
4905 bufp->can_be_null = 1;
4907 if (succeed_n_p)
4909 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4910 succeed_n_p = false;
4913 continue;
4916 case succeed_n:
4917 /* Get to the number of times to succeed. */
4918 p += OFFSET_ADDRESS_SIZE;
4920 /* Increment p past the n for when k != 0. */
4921 EXTRACT_NUMBER_AND_INCR (k, p);
4922 if (k == 0)
4924 p -= 2 * OFFSET_ADDRESS_SIZE;
4925 succeed_n_p = true; /* Spaghetti code alert. */
4926 goto handle_on_failure_jump;
4928 continue;
4931 case set_number_at:
4932 p += 2 * OFFSET_ADDRESS_SIZE;
4933 continue;
4936 case start_memory:
4937 case stop_memory:
4938 p += 2;
4939 continue;
4942 default:
4943 abort (); /* We have listed all the cases. */
4944 } /* switch *p++ */
4946 /* Getting here means we have found the possible starting
4947 characters for one path of the pattern -- and that the empty
4948 string does not match. We need not follow this path further.
4949 Instead, look at the next alternative (remembered on the
4950 stack), or quit if no more. The test at the top of the loop
4951 does these things. */
4952 path_can_be_null = false;
4953 p = pend;
4954 } /* while p */
4956 /* Set `can_be_null' for the last path (also the first path, if the
4957 pattern is empty). */
4958 bufp->can_be_null |= path_can_be_null;
4960 done:
4961 RESET_FAIL_STACK ();
4962 return 0;
4965 #else /* not INSIDE_RECURSION */
4968 re_compile_fastmap (bufp)
4969 struct re_pattern_buffer *bufp;
4971 # ifdef MBS_SUPPORT
4972 if (MB_CUR_MAX != 1)
4973 return wcs_re_compile_fastmap(bufp);
4974 else
4975 # endif
4976 return byte_re_compile_fastmap(bufp);
4977 } /* re_compile_fastmap */
4978 #ifdef _LIBC
4979 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4980 #endif
4983 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4984 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4985 this memory for recording register information. STARTS and ENDS
4986 must be allocated using the malloc library routine, and must each
4987 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4989 If NUM_REGS == 0, then subsequent matches should allocate their own
4990 register data.
4992 Unless this function is called, the first search or match using
4993 PATTERN_BUFFER will allocate its own register data, without
4994 freeing the old data. */
4996 void
4997 re_set_registers (bufp, regs, num_regs, starts, ends)
4998 struct re_pattern_buffer *bufp;
4999 struct re_registers *regs;
5000 unsigned num_regs;
5001 regoff_t *starts, *ends;
5003 if (num_regs)
5005 bufp->regs_allocated = REGS_REALLOCATE;
5006 regs->num_regs = num_regs;
5007 regs->start = starts;
5008 regs->end = ends;
5010 else
5012 bufp->regs_allocated = REGS_UNALLOCATED;
5013 regs->num_regs = 0;
5014 regs->start = regs->end = (regoff_t *) 0;
5017 #ifdef _LIBC
5018 weak_alias (__re_set_registers, re_set_registers)
5019 #endif
5021 /* Searching routines. */
5023 /* Like re_search_2, below, but only one string is specified, and
5024 doesn't let you say where to stop matching. */
5027 re_search (bufp, string, size, startpos, range, regs)
5028 struct re_pattern_buffer *bufp;
5029 const char *string;
5030 int size, startpos, range;
5031 struct re_registers *regs;
5033 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
5034 regs, size);
5036 #ifdef _LIBC
5037 weak_alias (__re_search, re_search)
5038 #endif
5041 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5042 virtual concatenation of STRING1 and STRING2, starting first at index
5043 STARTPOS, then at STARTPOS + 1, and so on.
5045 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5047 RANGE is how far to scan while trying to match. RANGE = 0 means try
5048 only at STARTPOS; in general, the last start tried is STARTPOS +
5049 RANGE.
5051 In REGS, return the indices of the virtual concatenation of STRING1
5052 and STRING2 that matched the entire BUFP->buffer and its contained
5053 subexpressions.
5055 Do not consider matching one past the index STOP in the virtual
5056 concatenation of STRING1 and STRING2.
5058 We return either the position in the strings at which the match was
5059 found, -1 if no match, or -2 if error (such as failure
5060 stack overflow). */
5063 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5064 struct re_pattern_buffer *bufp;
5065 const char *string1, *string2;
5066 int size1, size2;
5067 int startpos;
5068 int range;
5069 struct re_registers *regs;
5070 int stop;
5072 # ifdef MBS_SUPPORT
5073 if (MB_CUR_MAX != 1)
5074 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5075 range, regs, stop);
5076 else
5077 # endif
5078 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5079 range, regs, stop);
5080 } /* re_search_2 */
5081 #ifdef _LIBC
5082 weak_alias (__re_search_2, re_search_2)
5083 #endif
5085 #endif /* not INSIDE_RECURSION */
5087 #ifdef INSIDE_RECURSION
5089 #ifdef MATCH_MAY_ALLOCATE
5090 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5091 #else
5092 # define FREE_VAR(var) if (var) free (var); var = NULL
5093 #endif
5095 #ifdef WCHAR
5096 # define MAX_ALLOCA_SIZE 2000
5098 # define FREE_WCS_BUFFERS() \
5099 do { \
5100 if (size1 > MAX_ALLOCA_SIZE) \
5102 free (wcs_string1); \
5103 free (mbs_offset1); \
5105 else \
5107 FREE_VAR (wcs_string1); \
5108 FREE_VAR (mbs_offset1); \
5110 if (size2 > MAX_ALLOCA_SIZE) \
5112 free (wcs_string2); \
5113 free (mbs_offset2); \
5115 else \
5117 FREE_VAR (wcs_string2); \
5118 FREE_VAR (mbs_offset2); \
5120 } while (0)
5122 #endif
5125 static int
5126 PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5127 regs, stop)
5128 struct re_pattern_buffer *bufp;
5129 const char *string1, *string2;
5130 int size1, size2;
5131 int startpos;
5132 int range;
5133 struct re_registers *regs;
5134 int stop;
5136 int val;
5137 register char *fastmap = bufp->fastmap;
5138 register RE_TRANSLATE_TYPE translate = bufp->translate;
5139 int total_size = size1 + size2;
5140 int endpos = startpos + range;
5141 #ifdef WCHAR
5142 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5143 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5144 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5145 int wcs_size1 = 0, wcs_size2 = 0;
5146 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5147 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5148 /* They hold whether each wchar_t is binary data or not. */
5149 char *is_binary = NULL;
5150 #endif /* WCHAR */
5152 /* Check for out-of-range STARTPOS. */
5153 if (startpos < 0 || startpos > total_size)
5154 return -1;
5156 /* Fix up RANGE if it might eventually take us outside
5157 the virtual concatenation of STRING1 and STRING2.
5158 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5159 if (endpos < 0)
5160 range = 0 - startpos;
5161 else if (endpos > total_size)
5162 range = total_size - startpos;
5164 /* If the search isn't to be a backwards one, don't waste time in a
5165 search for a pattern that must be anchored. */
5166 if (bufp->used > 0 && range > 0
5167 && ((re_opcode_t) bufp->buffer[0] == begbuf
5168 /* `begline' is like `begbuf' if it cannot match at newlines. */
5169 || ((re_opcode_t) bufp->buffer[0] == begline
5170 && !bufp->newline_anchor)))
5172 if (startpos > 0)
5173 return -1;
5174 else
5175 range = 1;
5178 #ifdef emacs
5179 /* In a forward search for something that starts with \=.
5180 don't keep searching past point. */
5181 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5183 range = PT - startpos;
5184 if (range <= 0)
5185 return -1;
5187 #endif /* emacs */
5189 /* Update the fastmap now if not correct already. */
5190 if (fastmap && !bufp->fastmap_accurate)
5191 if (re_compile_fastmap (bufp) == -2)
5192 return -2;
5194 #ifdef WCHAR
5195 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5196 fill them with converted string. */
5197 if (size1 != 0)
5199 if (size1 > MAX_ALLOCA_SIZE)
5201 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5202 mbs_offset1 = TALLOC (size1 + 1, int);
5203 is_binary = TALLOC (size1 + 1, char);
5205 else
5207 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5208 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5209 is_binary = REGEX_TALLOC (size1 + 1, char);
5211 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5213 if (size1 > MAX_ALLOCA_SIZE)
5215 free (wcs_string1);
5216 free (mbs_offset1);
5217 free (is_binary);
5219 else
5221 FREE_VAR (wcs_string1);
5222 FREE_VAR (mbs_offset1);
5223 FREE_VAR (is_binary);
5225 return -2;
5227 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5228 mbs_offset1, is_binary);
5229 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5230 if (size1 > MAX_ALLOCA_SIZE)
5231 free (is_binary);
5232 else
5233 FREE_VAR (is_binary);
5235 if (size2 != 0)
5237 if (size2 > MAX_ALLOCA_SIZE)
5239 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5240 mbs_offset2 = TALLOC (size2 + 1, int);
5241 is_binary = TALLOC (size2 + 1, char);
5243 else
5245 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5246 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5247 is_binary = REGEX_TALLOC (size2 + 1, char);
5249 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5251 FREE_WCS_BUFFERS ();
5252 if (size2 > MAX_ALLOCA_SIZE)
5253 free (is_binary);
5254 else
5255 FREE_VAR (is_binary);
5256 return -2;
5258 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5259 mbs_offset2, is_binary);
5260 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5261 if (size2 > MAX_ALLOCA_SIZE)
5262 free (is_binary);
5263 else
5264 FREE_VAR (is_binary);
5266 #endif /* WCHAR */
5269 /* Loop through the string, looking for a place to start matching. */
5270 for (;;)
5272 /* If a fastmap is supplied, skip quickly over characters that
5273 cannot be the start of a match. If the pattern can match the
5274 null string, however, we don't need to skip characters; we want
5275 the first null string. */
5276 if (fastmap && startpos < total_size && !bufp->can_be_null)
5278 if (range > 0) /* Searching forwards. */
5280 register const char *d;
5281 register int lim = 0;
5282 int irange = range;
5284 if (startpos < size1 && startpos + range >= size1)
5285 lim = range - (size1 - startpos);
5287 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5289 /* Written out as an if-else to avoid testing `translate'
5290 inside the loop. */
5291 if (translate)
5292 while (range > lim
5293 && !fastmap[(unsigned char)
5294 translate[(unsigned char) *d++]])
5295 range--;
5296 else
5297 while (range > lim && !fastmap[(unsigned char) *d++])
5298 range--;
5300 startpos += irange - range;
5302 else /* Searching backwards. */
5304 register CHAR_T c = (size1 == 0 || startpos >= size1
5305 ? string2[startpos - size1]
5306 : string1[startpos]);
5308 if (!fastmap[(unsigned char) TRANSLATE (c)])
5309 goto advance;
5313 /* If can't match the null string, and that's all we have left, fail. */
5314 if (range >= 0 && startpos == total_size && fastmap
5315 && !bufp->can_be_null)
5317 #ifdef WCHAR
5318 FREE_WCS_BUFFERS ();
5319 #endif
5320 return -1;
5323 #ifdef WCHAR
5324 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5325 size2, startpos, regs, stop,
5326 wcs_string1, wcs_size1,
5327 wcs_string2, wcs_size2,
5328 mbs_offset1, mbs_offset2);
5329 #else /* BYTE */
5330 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5331 size2, startpos, regs, stop);
5332 #endif /* BYTE */
5334 #ifndef REGEX_MALLOC
5335 # ifdef C_ALLOCA
5336 alloca (0);
5337 # endif
5338 #endif
5340 if (val >= 0)
5342 #ifdef WCHAR
5343 FREE_WCS_BUFFERS ();
5344 #endif
5345 return startpos;
5348 if (val == -2)
5350 #ifdef WCHAR
5351 FREE_WCS_BUFFERS ();
5352 #endif
5353 return -2;
5356 advance:
5357 if (!range)
5358 break;
5359 else if (range > 0)
5361 range--;
5362 startpos++;
5364 else
5366 range++;
5367 startpos--;
5370 #ifdef WCHAR
5371 FREE_WCS_BUFFERS ();
5372 #endif
5373 return -1;
5376 #ifdef WCHAR
5377 /* This converts PTR, a pointer into one of the search wchar_t strings
5378 `string1' and `string2' into an multibyte string offset from the
5379 beginning of that string. We use mbs_offset to optimize.
5380 See convert_mbs_to_wcs. */
5381 # define POINTER_TO_OFFSET(ptr) \
5382 (FIRST_STRING_P (ptr) \
5383 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5384 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5385 + csize1)))
5386 #else /* BYTE */
5387 /* This converts PTR, a pointer into one of the search strings `string1'
5388 and `string2' into an offset from the beginning of that string. */
5389 # define POINTER_TO_OFFSET(ptr) \
5390 (FIRST_STRING_P (ptr) \
5391 ? ((regoff_t) ((ptr) - string1)) \
5392 : ((regoff_t) ((ptr) - string2 + size1)))
5393 #endif /* WCHAR */
5395 /* Macros for dealing with the split strings in re_match_2. */
5397 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5399 /* Call before fetching a character with *d. This switches over to
5400 string2 if necessary. */
5401 #define PREFETCH() \
5402 while (d == dend) \
5404 /* End of string2 => fail. */ \
5405 if (dend == end_match_2) \
5406 goto fail; \
5407 /* End of string1 => advance to string2. */ \
5408 d = string2; \
5409 dend = end_match_2; \
5412 /* Test if at very beginning or at very end of the virtual concatenation
5413 of `string1' and `string2'. If only one string, it's `string2'. */
5414 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5415 #define AT_STRINGS_END(d) ((d) == end2)
5418 /* Test if D points to a character which is word-constituent. We have
5419 two special cases to check for: if past the end of string1, look at
5420 the first character in string2; and if before the beginning of
5421 string2, look at the last character in string1. */
5422 #ifdef WCHAR
5423 /* Use internationalized API instead of SYNTAX. */
5424 # define WORDCHAR_P(d) \
5425 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5426 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5427 || ((d) == end1 ? *string2 \
5428 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5429 #else /* BYTE */
5430 # define WORDCHAR_P(d) \
5431 (SYNTAX ((d) == end1 ? *string2 \
5432 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5433 == Sword)
5434 #endif /* WCHAR */
5436 /* Disabled due to a compiler bug -- see comment at case wordbound */
5437 #if 0
5438 /* Test if the character before D and the one at D differ with respect
5439 to being word-constituent. */
5440 #define AT_WORD_BOUNDARY(d) \
5441 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5442 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5443 #endif
5445 /* Free everything we malloc. */
5446 #ifdef MATCH_MAY_ALLOCATE
5447 # ifdef WCHAR
5448 # define FREE_VARIABLES() \
5449 do { \
5450 REGEX_FREE_STACK (fail_stack.stack); \
5451 FREE_VAR (regstart); \
5452 FREE_VAR (regend); \
5453 FREE_VAR (old_regstart); \
5454 FREE_VAR (old_regend); \
5455 FREE_VAR (best_regstart); \
5456 FREE_VAR (best_regend); \
5457 FREE_VAR (reg_info); \
5458 FREE_VAR (reg_dummy); \
5459 FREE_VAR (reg_info_dummy); \
5460 if (!cant_free_wcs_buf) \
5462 FREE_VAR (string1); \
5463 FREE_VAR (string2); \
5464 FREE_VAR (mbs_offset1); \
5465 FREE_VAR (mbs_offset2); \
5467 } while (0)
5468 # else /* BYTE */
5469 # define FREE_VARIABLES() \
5470 do { \
5471 REGEX_FREE_STACK (fail_stack.stack); \
5472 FREE_VAR (regstart); \
5473 FREE_VAR (regend); \
5474 FREE_VAR (old_regstart); \
5475 FREE_VAR (old_regend); \
5476 FREE_VAR (best_regstart); \
5477 FREE_VAR (best_regend); \
5478 FREE_VAR (reg_info); \
5479 FREE_VAR (reg_dummy); \
5480 FREE_VAR (reg_info_dummy); \
5481 } while (0)
5482 # endif /* WCHAR */
5483 #else
5484 # ifdef WCHAR
5485 # define FREE_VARIABLES() \
5486 do { \
5487 if (!cant_free_wcs_buf) \
5489 FREE_VAR (string1); \
5490 FREE_VAR (string2); \
5491 FREE_VAR (mbs_offset1); \
5492 FREE_VAR (mbs_offset2); \
5494 } while (0)
5495 # else /* BYTE */
5496 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5497 # endif /* WCHAR */
5498 #endif /* not MATCH_MAY_ALLOCATE */
5500 /* These values must meet several constraints. They must not be valid
5501 register values; since we have a limit of 255 registers (because
5502 we use only one byte in the pattern for the register number), we can
5503 use numbers larger than 255. They must differ by 1, because of
5504 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5505 be larger than the value for the highest register, so we do not try
5506 to actually save any registers when none are active. */
5507 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5508 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5510 #else /* not INSIDE_RECURSION */
5511 /* Matching routines. */
5513 #ifndef emacs /* Emacs never uses this. */
5514 /* re_match is like re_match_2 except it takes only a single string. */
5517 re_match (bufp, string, size, pos, regs)
5518 struct re_pattern_buffer *bufp;
5519 const char *string;
5520 int size, pos;
5521 struct re_registers *regs;
5523 int result;
5524 # ifdef MBS_SUPPORT
5525 if (MB_CUR_MAX != 1)
5526 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5527 pos, regs, size,
5528 NULL, 0, NULL, 0, NULL, NULL);
5529 else
5530 # endif
5531 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5532 pos, regs, size);
5533 # ifndef REGEX_MALLOC
5534 # ifdef C_ALLOCA
5535 alloca (0);
5536 # endif
5537 # endif
5538 return result;
5540 # ifdef _LIBC
5541 weak_alias (__re_match, re_match)
5542 # endif
5543 #endif /* not emacs */
5545 #endif /* not INSIDE_RECURSION */
5547 #ifdef INSIDE_RECURSION
5548 static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5549 UCHAR_T *end,
5550 PREFIX(register_info_type) *reg_info));
5551 static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5552 UCHAR_T *end,
5553 PREFIX(register_info_type) *reg_info));
5554 static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5555 UCHAR_T *end,
5556 PREFIX(register_info_type) *reg_info));
5557 static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5558 int len, char *translate));
5559 #else /* not INSIDE_RECURSION */
5561 /* re_match_2 matches the compiled pattern in BUFP against the
5562 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5563 and SIZE2, respectively). We start matching at POS, and stop
5564 matching at STOP.
5566 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5567 store offsets for the substring each group matched in REGS. See the
5568 documentation for exactly how many groups we fill.
5570 We return -1 if no match, -2 if an internal error (such as the
5571 failure stack overflowing). Otherwise, we return the length of the
5572 matched substring. */
5575 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5576 struct re_pattern_buffer *bufp;
5577 const char *string1, *string2;
5578 int size1, size2;
5579 int pos;
5580 struct re_registers *regs;
5581 int stop;
5583 int result;
5584 # ifdef MBS_SUPPORT
5585 if (MB_CUR_MAX != 1)
5586 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5587 pos, regs, stop,
5588 NULL, 0, NULL, 0, NULL, NULL);
5589 else
5590 # endif
5591 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5592 pos, regs, stop);
5594 #ifndef REGEX_MALLOC
5595 # ifdef C_ALLOCA
5596 alloca (0);
5597 # endif
5598 #endif
5599 return result;
5601 #ifdef _LIBC
5602 weak_alias (__re_match_2, re_match_2)
5603 #endif
5605 #endif /* not INSIDE_RECURSION */
5607 #ifdef INSIDE_RECURSION
5609 #ifdef WCHAR
5610 static int count_mbs_length PARAMS ((int *, int));
5612 /* This check the substring (from 0, to length) of the multibyte string,
5613 to which offset_buffer correspond. And count how many wchar_t_characters
5614 the substring occupy. We use offset_buffer to optimization.
5615 See convert_mbs_to_wcs. */
5617 static int
5618 count_mbs_length(offset_buffer, length)
5619 int *offset_buffer;
5620 int length;
5622 int upper, lower;
5624 /* Check whether the size is valid. */
5625 if (length < 0)
5626 return -1;
5628 if (offset_buffer == NULL)
5629 return 0;
5631 /* If there are no multibyte character, offset_buffer[i] == i.
5632 Optmize for this case. */
5633 if (offset_buffer[length] == length)
5634 return length;
5636 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5637 upper = length;
5638 lower = 0;
5640 while (true)
5642 int middle = (lower + upper) / 2;
5643 if (middle == lower || middle == upper)
5644 break;
5645 if (offset_buffer[middle] > length)
5646 upper = middle;
5647 else if (offset_buffer[middle] < length)
5648 lower = middle;
5649 else
5650 return middle;
5653 return -1;
5655 #endif /* WCHAR */
5657 /* This is a separate function so that we can force an alloca cleanup
5658 afterwards. */
5659 #ifdef WCHAR
5660 static int
5661 wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5662 regs, stop, string1, size1, string2, size2,
5663 mbs_offset1, mbs_offset2)
5664 struct re_pattern_buffer *bufp;
5665 const char *cstring1, *cstring2;
5666 int csize1, csize2;
5667 int pos;
5668 struct re_registers *regs;
5669 int stop;
5670 /* string1 == string2 == NULL means string1/2, size1/2 and
5671 mbs_offset1/2 need seting up in this function. */
5672 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5673 wchar_t *string1, *string2;
5674 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5675 int size1, size2;
5676 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5677 int *mbs_offset1, *mbs_offset2;
5678 #else /* BYTE */
5679 static int
5680 byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5681 regs, stop)
5682 struct re_pattern_buffer *bufp;
5683 const char *string1, *string2;
5684 int size1, size2;
5685 int pos;
5686 struct re_registers *regs;
5687 int stop;
5688 #endif /* BYTE */
5690 /* General temporaries. */
5691 int mcnt;
5692 UCHAR_T *p1;
5693 #ifdef WCHAR
5694 /* They hold whether each wchar_t is binary data or not. */
5695 char *is_binary = NULL;
5696 /* If true, we can't free string1/2, mbs_offset1/2. */
5697 int cant_free_wcs_buf = 1;
5698 #endif /* WCHAR */
5700 /* Just past the end of the corresponding string. */
5701 const CHAR_T *end1, *end2;
5703 /* Pointers into string1 and string2, just past the last characters in
5704 each to consider matching. */
5705 const CHAR_T *end_match_1, *end_match_2;
5707 /* Where we are in the data, and the end of the current string. */
5708 const CHAR_T *d, *dend;
5710 /* Where we are in the pattern, and the end of the pattern. */
5711 #ifdef WCHAR
5712 UCHAR_T *pattern, *p;
5713 register UCHAR_T *pend;
5714 #else /* BYTE */
5715 UCHAR_T *p = bufp->buffer;
5716 register UCHAR_T *pend = p + bufp->used;
5717 #endif /* WCHAR */
5719 /* Mark the opcode just after a start_memory, so we can test for an
5720 empty subpattern when we get to the stop_memory. */
5721 UCHAR_T *just_past_start_mem = 0;
5723 /* We use this to map every character in the string. */
5724 RE_TRANSLATE_TYPE translate = bufp->translate;
5726 /* Failure point stack. Each place that can handle a failure further
5727 down the line pushes a failure point on this stack. It consists of
5728 restart, regend, and reg_info for all registers corresponding to
5729 the subexpressions we're currently inside, plus the number of such
5730 registers, and, finally, two char *'s. The first char * is where
5731 to resume scanning the pattern; the second one is where to resume
5732 scanning the strings. If the latter is zero, the failure point is
5733 a ``dummy''; if a failure happens and the failure point is a dummy,
5734 it gets discarded and the next next one is tried. */
5735 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5736 PREFIX(fail_stack_type) fail_stack;
5737 #endif
5738 #ifdef DEBUG
5739 static unsigned failure_id;
5740 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5741 #endif
5743 #ifdef REL_ALLOC
5744 /* This holds the pointer to the failure stack, when
5745 it is allocated relocatably. */
5746 fail_stack_elt_t *failure_stack_ptr;
5747 #endif
5749 /* We fill all the registers internally, independent of what we
5750 return, for use in backreferences. The number here includes
5751 an element for register zero. */
5752 size_t num_regs = bufp->re_nsub + 1;
5754 /* The currently active registers. */
5755 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5756 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5758 /* Information on the contents of registers. These are pointers into
5759 the input strings; they record just what was matched (on this
5760 attempt) by a subexpression part of the pattern, that is, the
5761 regnum-th regstart pointer points to where in the pattern we began
5762 matching and the regnum-th regend points to right after where we
5763 stopped matching the regnum-th subexpression. (The zeroth register
5764 keeps track of what the whole pattern matches.) */
5765 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5766 const CHAR_T **regstart, **regend;
5767 #endif
5769 /* If a group that's operated upon by a repetition operator fails to
5770 match anything, then the register for its start will need to be
5771 restored because it will have been set to wherever in the string we
5772 are when we last see its open-group operator. Similarly for a
5773 register's end. */
5774 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5775 const CHAR_T **old_regstart, **old_regend;
5776 #endif
5778 /* The is_active field of reg_info helps us keep track of which (possibly
5779 nested) subexpressions we are currently in. The matched_something
5780 field of reg_info[reg_num] helps us tell whether or not we have
5781 matched any of the pattern so far this time through the reg_num-th
5782 subexpression. These two fields get reset each time through any
5783 loop their register is in. */
5784 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5785 PREFIX(register_info_type) *reg_info;
5786 #endif
5788 /* The following record the register info as found in the above
5789 variables when we find a match better than any we've seen before.
5790 This happens as we backtrack through the failure points, which in
5791 turn happens only if we have not yet matched the entire string. */
5792 unsigned best_regs_set = false;
5793 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5794 const CHAR_T **best_regstart, **best_regend;
5795 #endif
5797 /* Logically, this is `best_regend[0]'. But we don't want to have to
5798 allocate space for that if we're not allocating space for anything
5799 else (see below). Also, we never need info about register 0 for
5800 any of the other register vectors, and it seems rather a kludge to
5801 treat `best_regend' differently than the rest. So we keep track of
5802 the end of the best match so far in a separate variable. We
5803 initialize this to NULL so that when we backtrack the first time
5804 and need to test it, it's not garbage. */
5805 const CHAR_T *match_end = NULL;
5807 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5808 int set_regs_matched_done = 0;
5810 /* Used when we pop values we don't care about. */
5811 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5812 const CHAR_T **reg_dummy;
5813 PREFIX(register_info_type) *reg_info_dummy;
5814 #endif
5816 #ifdef DEBUG
5817 /* Counts the total number of registers pushed. */
5818 unsigned num_regs_pushed = 0;
5819 #endif
5821 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5823 INIT_FAIL_STACK ();
5825 #ifdef MATCH_MAY_ALLOCATE
5826 /* Do not bother to initialize all the register variables if there are
5827 no groups in the pattern, as it takes a fair amount of time. If
5828 there are groups, we include space for register 0 (the whole
5829 pattern), even though we never use it, since it simplifies the
5830 array indexing. We should fix this. */
5831 if (bufp->re_nsub)
5833 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5834 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5835 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5836 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5837 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5838 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5839 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5840 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5841 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5843 if (!(regstart && regend && old_regstart && old_regend && reg_info
5844 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5846 FREE_VARIABLES ();
5847 return -2;
5850 else
5852 /* We must initialize all our variables to NULL, so that
5853 `FREE_VARIABLES' doesn't try to free them. */
5854 regstart = regend = old_regstart = old_regend = best_regstart
5855 = best_regend = reg_dummy = NULL;
5856 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5858 #endif /* MATCH_MAY_ALLOCATE */
5860 /* The starting position is bogus. */
5861 #ifdef WCHAR
5862 if (pos < 0 || pos > csize1 + csize2)
5863 #else /* BYTE */
5864 if (pos < 0 || pos > size1 + size2)
5865 #endif
5867 FREE_VARIABLES ();
5868 return -1;
5871 #ifdef WCHAR
5872 /* Allocate wchar_t array for string1 and string2 and
5873 fill them with converted string. */
5874 if (string1 == NULL && string2 == NULL)
5876 /* We need seting up buffers here. */
5878 /* We must free wcs buffers in this function. */
5879 cant_free_wcs_buf = 0;
5881 if (csize1 != 0)
5883 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5884 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5885 is_binary = REGEX_TALLOC (csize1 + 1, char);
5886 if (!string1 || !mbs_offset1 || !is_binary)
5888 FREE_VAR (string1);
5889 FREE_VAR (mbs_offset1);
5890 FREE_VAR (is_binary);
5891 return -2;
5894 if (csize2 != 0)
5896 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5897 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5898 is_binary = REGEX_TALLOC (csize2 + 1, char);
5899 if (!string2 || !mbs_offset2 || !is_binary)
5901 FREE_VAR (string1);
5902 FREE_VAR (mbs_offset1);
5903 FREE_VAR (string2);
5904 FREE_VAR (mbs_offset2);
5905 FREE_VAR (is_binary);
5906 return -2;
5908 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5909 mbs_offset2, is_binary);
5910 string2[size2] = L'\0'; /* for a sentinel */
5911 FREE_VAR (is_binary);
5915 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5916 pattern to (char*) in regex_compile. */
5917 p = pattern = (CHAR_T*)bufp->buffer;
5918 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5920 #endif /* WCHAR */
5922 /* Initialize subexpression text positions to -1 to mark ones that no
5923 start_memory/stop_memory has been seen for. Also initialize the
5924 register information struct. */
5925 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5927 regstart[mcnt] = regend[mcnt]
5928 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5930 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5931 IS_ACTIVE (reg_info[mcnt]) = 0;
5932 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5933 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5936 /* We move `string1' into `string2' if the latter's empty -- but not if
5937 `string1' is null. */
5938 if (size2 == 0 && string1 != NULL)
5940 string2 = string1;
5941 size2 = size1;
5942 string1 = 0;
5943 size1 = 0;
5944 #ifdef WCHAR
5945 mbs_offset2 = mbs_offset1;
5946 csize2 = csize1;
5947 mbs_offset1 = NULL;
5948 csize1 = 0;
5949 #endif
5951 end1 = string1 + size1;
5952 end2 = string2 + size2;
5954 /* Compute where to stop matching, within the two strings. */
5955 #ifdef WCHAR
5956 if (stop <= csize1)
5958 mcnt = count_mbs_length(mbs_offset1, stop);
5959 end_match_1 = string1 + mcnt;
5960 end_match_2 = string2;
5962 else
5964 if (stop > csize1 + csize2)
5965 stop = csize1 + csize2;
5966 end_match_1 = end1;
5967 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5968 end_match_2 = string2 + mcnt;
5970 if (mcnt < 0)
5971 { /* count_mbs_length return error. */
5972 FREE_VARIABLES ();
5973 return -1;
5975 #else
5976 if (stop <= size1)
5978 end_match_1 = string1 + stop;
5979 end_match_2 = string2;
5981 else
5983 end_match_1 = end1;
5984 end_match_2 = string2 + stop - size1;
5986 #endif /* WCHAR */
5988 /* `p' scans through the pattern as `d' scans through the data.
5989 `dend' is the end of the input string that `d' points within. `d'
5990 is advanced into the following input string whenever necessary, but
5991 this happens before fetching; therefore, at the beginning of the
5992 loop, `d' can be pointing at the end of a string, but it cannot
5993 equal `string2'. */
5994 #ifdef WCHAR
5995 if (size1 > 0 && pos <= csize1)
5997 mcnt = count_mbs_length(mbs_offset1, pos);
5998 d = string1 + mcnt;
5999 dend = end_match_1;
6001 else
6003 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
6004 d = string2 + mcnt;
6005 dend = end_match_2;
6008 if (mcnt < 0)
6009 { /* count_mbs_length return error. */
6010 FREE_VARIABLES ();
6011 return -1;
6013 #else
6014 if (size1 > 0 && pos <= size1)
6016 d = string1 + pos;
6017 dend = end_match_1;
6019 else
6021 d = string2 + pos - size1;
6022 dend = end_match_2;
6024 #endif /* WCHAR */
6026 DEBUG_PRINT1 ("The compiled pattern is:\n");
6027 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
6028 DEBUG_PRINT1 ("The string to match is: `");
6029 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
6030 DEBUG_PRINT1 ("'\n");
6032 /* This loops over pattern commands. It exits by returning from the
6033 function if the match is complete, or it drops through if the match
6034 fails at this starting point in the input data. */
6035 for (;;)
6037 #ifdef _LIBC
6038 DEBUG_PRINT2 ("\n%p: ", p);
6039 #else
6040 DEBUG_PRINT2 ("\n0x%x: ", p);
6041 #endif
6043 if (p == pend)
6044 { /* End of pattern means we might have succeeded. */
6045 DEBUG_PRINT1 ("end of pattern ... ");
6047 /* If we haven't matched the entire string, and we want the
6048 longest match, try backtracking. */
6049 if (d != end_match_2)
6051 /* 1 if this match ends in the same string (string1 or string2)
6052 as the best previous match. */
6053 boolean same_str_p = (FIRST_STRING_P (match_end)
6054 == MATCHING_IN_FIRST_STRING);
6055 /* 1 if this match is the best seen so far. */
6056 boolean best_match_p;
6058 /* AIX compiler got confused when this was combined
6059 with the previous declaration. */
6060 if (same_str_p)
6061 best_match_p = d > match_end;
6062 else
6063 best_match_p = !MATCHING_IN_FIRST_STRING;
6065 DEBUG_PRINT1 ("backtracking.\n");
6067 if (!FAIL_STACK_EMPTY ())
6068 { /* More failure points to try. */
6070 /* If exceeds best match so far, save it. */
6071 if (!best_regs_set || best_match_p)
6073 best_regs_set = true;
6074 match_end = d;
6076 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6078 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6080 best_regstart[mcnt] = regstart[mcnt];
6081 best_regend[mcnt] = regend[mcnt];
6084 goto fail;
6087 /* If no failure points, don't restore garbage. And if
6088 last match is real best match, don't restore second
6089 best one. */
6090 else if (best_regs_set && !best_match_p)
6092 restore_best_regs:
6093 /* Restore best match. It may happen that `dend ==
6094 end_match_1' while the restored d is in string2.
6095 For example, the pattern `x.*y.*z' against the
6096 strings `x-' and `y-z-', if the two strings are
6097 not consecutive in memory. */
6098 DEBUG_PRINT1 ("Restoring best registers.\n");
6100 d = match_end;
6101 dend = ((d >= string1 && d <= end1)
6102 ? end_match_1 : end_match_2);
6104 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6106 regstart[mcnt] = best_regstart[mcnt];
6107 regend[mcnt] = best_regend[mcnt];
6110 } /* d != end_match_2 */
6112 succeed_label:
6113 DEBUG_PRINT1 ("Accepting match.\n");
6114 /* If caller wants register contents data back, do it. */
6115 if (regs && !bufp->no_sub)
6117 /* Have the register data arrays been allocated? */
6118 if (bufp->regs_allocated == REGS_UNALLOCATED)
6119 { /* No. So allocate them with malloc. We need one
6120 extra element beyond `num_regs' for the `-1' marker
6121 GNU code uses. */
6122 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6123 regs->start = TALLOC (regs->num_regs, regoff_t);
6124 regs->end = TALLOC (regs->num_regs, regoff_t);
6125 if (regs->start == NULL || regs->end == NULL)
6127 FREE_VARIABLES ();
6128 return -2;
6130 bufp->regs_allocated = REGS_REALLOCATE;
6132 else if (bufp->regs_allocated == REGS_REALLOCATE)
6133 { /* Yes. If we need more elements than were already
6134 allocated, reallocate them. If we need fewer, just
6135 leave it alone. */
6136 if (regs->num_regs < num_regs + 1)
6138 regs->num_regs = num_regs + 1;
6139 RETALLOC (regs->start, regs->num_regs, regoff_t);
6140 RETALLOC (regs->end, regs->num_regs, regoff_t);
6141 if (regs->start == NULL || regs->end == NULL)
6143 FREE_VARIABLES ();
6144 return -2;
6148 else
6150 /* These braces fend off a "empty body in an else-statement"
6151 warning under GCC when assert expands to nothing. */
6152 assert (bufp->regs_allocated == REGS_FIXED);
6155 /* Convert the pointer data in `regstart' and `regend' to
6156 indices. Register zero has to be set differently,
6157 since we haven't kept track of any info for it. */
6158 if (regs->num_regs > 0)
6160 regs->start[0] = pos;
6161 #ifdef WCHAR
6162 if (MATCHING_IN_FIRST_STRING)
6163 regs->end[0] = mbs_offset1 != NULL ?
6164 mbs_offset1[d-string1] : 0;
6165 else
6166 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6167 mbs_offset2[d-string2] : 0);
6168 #else
6169 regs->end[0] = (MATCHING_IN_FIRST_STRING
6170 ? ((regoff_t) (d - string1))
6171 : ((regoff_t) (d - string2 + size1)));
6172 #endif /* WCHAR */
6175 /* Go through the first `min (num_regs, regs->num_regs)'
6176 registers, since that is all we initialized. */
6177 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6178 mcnt++)
6180 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6181 regs->start[mcnt] = regs->end[mcnt] = -1;
6182 else
6184 regs->start[mcnt]
6185 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6186 regs->end[mcnt]
6187 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6191 /* If the regs structure we return has more elements than
6192 were in the pattern, set the extra elements to -1. If
6193 we (re)allocated the registers, this is the case,
6194 because we always allocate enough to have at least one
6195 -1 at the end. */
6196 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6197 regs->start[mcnt] = regs->end[mcnt] = -1;
6198 } /* regs && !bufp->no_sub */
6200 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6201 nfailure_points_pushed, nfailure_points_popped,
6202 nfailure_points_pushed - nfailure_points_popped);
6203 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6205 #ifdef WCHAR
6206 if (MATCHING_IN_FIRST_STRING)
6207 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6208 else
6209 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6210 csize1;
6211 mcnt -= pos;
6212 #else
6213 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6214 ? string1
6215 : string2 - size1);
6216 #endif /* WCHAR */
6218 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6220 FREE_VARIABLES ();
6221 return mcnt;
6224 /* Otherwise match next pattern command. */
6225 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6227 /* Ignore these. Used to ignore the n of succeed_n's which
6228 currently have n == 0. */
6229 case no_op:
6230 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6231 break;
6233 case succeed:
6234 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6235 goto succeed_label;
6237 /* Match the next n pattern characters exactly. The following
6238 byte in the pattern defines n, and the n bytes after that
6239 are the characters to match. */
6240 case exactn:
6241 #ifdef MBS_SUPPORT
6242 case exactn_bin:
6243 #endif
6244 mcnt = *p++;
6245 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6247 /* This is written out as an if-else so we don't waste time
6248 testing `translate' inside the loop. */
6249 if (translate)
6253 PREFETCH ();
6254 #ifdef WCHAR
6255 if (*d <= 0xff)
6257 if ((UCHAR_T) translate[(unsigned char) *d++]
6258 != (UCHAR_T) *p++)
6259 goto fail;
6261 else
6263 if (*d++ != (CHAR_T) *p++)
6264 goto fail;
6266 #else
6267 if ((UCHAR_T) translate[(unsigned char) *d++]
6268 != (UCHAR_T) *p++)
6269 goto fail;
6270 #endif /* WCHAR */
6272 while (--mcnt);
6274 else
6278 PREFETCH ();
6279 if (*d++ != (CHAR_T) *p++) goto fail;
6281 while (--mcnt);
6283 SET_REGS_MATCHED ();
6284 break;
6287 /* Match any character except possibly a newline or a null. */
6288 case anychar:
6289 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6291 PREFETCH ();
6293 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6294 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6295 goto fail;
6297 SET_REGS_MATCHED ();
6298 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6299 d++;
6300 break;
6303 case charset:
6304 case charset_not:
6306 register UCHAR_T c;
6307 #ifdef WCHAR
6308 unsigned int i, char_class_length, coll_symbol_length,
6309 equiv_class_length, ranges_length, chars_length, length;
6310 CHAR_T *workp, *workp2, *charset_top;
6311 #define WORK_BUFFER_SIZE 128
6312 CHAR_T str_buf[WORK_BUFFER_SIZE];
6313 # ifdef _LIBC
6314 uint32_t nrules;
6315 # endif /* _LIBC */
6316 #endif /* WCHAR */
6317 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6319 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6320 PREFETCH ();
6321 c = TRANSLATE (*d); /* The character to match. */
6322 #ifdef WCHAR
6323 # ifdef _LIBC
6324 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6325 # endif /* _LIBC */
6326 charset_top = p - 1;
6327 char_class_length = *p++;
6328 coll_symbol_length = *p++;
6329 equiv_class_length = *p++;
6330 ranges_length = *p++;
6331 chars_length = *p++;
6332 /* p points charset[6], so the address of the next instruction
6333 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6334 where l=length of char_classes, m=length of collating_symbol,
6335 n=equivalence_class, o=length of char_range,
6336 p'=length of character. */
6337 workp = p;
6338 /* Update p to indicate the next instruction. */
6339 p += char_class_length + coll_symbol_length+ equiv_class_length +
6340 2*ranges_length + chars_length;
6342 /* match with char_class? */
6343 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6345 wctype_t wctype;
6346 uintptr_t alignedp = ((uintptr_t)workp
6347 + __alignof__(wctype_t) - 1)
6348 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6349 wctype = *((wctype_t*)alignedp);
6350 workp += CHAR_CLASS_SIZE;
6351 # ifdef _LIBC
6352 if (__iswctype((wint_t)c, wctype))
6353 goto char_set_matched;
6354 # else
6355 if (iswctype((wint_t)c, wctype))
6356 goto char_set_matched;
6357 # endif
6360 /* match with collating_symbol? */
6361 # ifdef _LIBC
6362 if (nrules != 0)
6364 const unsigned char *extra = (const unsigned char *)
6365 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6367 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6368 workp++)
6370 int32_t *wextra;
6371 wextra = (int32_t*)(extra + *workp++);
6372 for (i = 0; i < *wextra; ++i)
6373 if (TRANSLATE(d[i]) != wextra[1 + i])
6374 break;
6376 if (i == *wextra)
6378 /* Update d, however d will be incremented at
6379 char_set_matched:, we decrement d here. */
6380 d += i - 1;
6381 goto char_set_matched;
6385 else /* (nrules == 0) */
6386 # endif
6387 /* If we can't look up collation data, we use wcscoll
6388 instead. */
6390 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6392 const CHAR_T *backup_d = d, *backup_dend = dend;
6393 # ifdef _LIBC
6394 length = __wcslen (workp);
6395 # else
6396 length = wcslen (workp);
6397 # endif
6399 /* If wcscoll(the collating symbol, whole string) > 0,
6400 any substring of the string never match with the
6401 collating symbol. */
6402 # ifdef _LIBC
6403 if (__wcscoll (workp, d) > 0)
6404 # else
6405 if (wcscoll (workp, d) > 0)
6406 # endif
6408 workp += length + 1;
6409 continue;
6412 /* First, we compare the collating symbol with
6413 the first character of the string.
6414 If it don't match, we add the next character to
6415 the compare buffer in turn. */
6416 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6418 int match;
6419 if (d == dend)
6421 if (dend == end_match_2)
6422 break;
6423 d = string2;
6424 dend = end_match_2;
6427 /* add next character to the compare buffer. */
6428 str_buf[i] = TRANSLATE(*d);
6429 str_buf[i+1] = '\0';
6431 # ifdef _LIBC
6432 match = __wcscoll (workp, str_buf);
6433 # else
6434 match = wcscoll (workp, str_buf);
6435 # endif
6436 if (match == 0)
6437 goto char_set_matched;
6439 if (match < 0)
6440 /* (str_buf > workp) indicate (str_buf + X > workp),
6441 because for all X (str_buf + X > str_buf).
6442 So we don't need continue this loop. */
6443 break;
6445 /* Otherwise(str_buf < workp),
6446 (str_buf+next_character) may equals (workp).
6447 So we continue this loop. */
6449 /* not matched */
6450 d = backup_d;
6451 dend = backup_dend;
6452 workp += length + 1;
6455 /* match with equivalence_class? */
6456 # ifdef _LIBC
6457 if (nrules != 0)
6459 const CHAR_T *backup_d = d, *backup_dend = dend;
6460 /* Try to match the equivalence class against
6461 those known to the collate implementation. */
6462 const int32_t *table;
6463 const int32_t *weights;
6464 const int32_t *extra;
6465 const int32_t *indirect;
6466 int32_t idx, idx2;
6467 wint_t *cp;
6468 size_t len;
6470 /* This #include defines a local function! */
6471 # include <locale/weightwc.h>
6473 table = (const int32_t *)
6474 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6475 weights = (const wint_t *)
6476 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6477 extra = (const wint_t *)
6478 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6479 indirect = (const int32_t *)
6480 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6482 /* Write 1 collating element to str_buf, and
6483 get its index. */
6484 idx2 = 0;
6486 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6488 cp = (wint_t*)str_buf;
6489 if (d == dend)
6491 if (dend == end_match_2)
6492 break;
6493 d = string2;
6494 dend = end_match_2;
6496 str_buf[i] = TRANSLATE(*(d+i));
6497 str_buf[i+1] = '\0'; /* sentinel */
6498 idx2 = findidx ((const wint_t**)&cp);
6501 /* Update d, however d will be incremented at
6502 char_set_matched:, we decrement d here. */
6503 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6504 if (d >= dend)
6506 if (dend == end_match_2)
6507 d = dend;
6508 else
6510 d = string2;
6511 dend = end_match_2;
6515 len = weights[idx2];
6517 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6518 workp++)
6520 idx = (int32_t)*workp;
6521 /* We already checked idx != 0 in regex_compile. */
6523 if (idx2 != 0 && len == weights[idx])
6525 int cnt = 0;
6526 while (cnt < len && (weights[idx + 1 + cnt]
6527 == weights[idx2 + 1 + cnt]))
6528 ++cnt;
6530 if (cnt == len)
6531 goto char_set_matched;
6534 /* not matched */
6535 d = backup_d;
6536 dend = backup_dend;
6538 else /* (nrules == 0) */
6539 # endif
6540 /* If we can't look up collation data, we use wcscoll
6541 instead. */
6543 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6545 const CHAR_T *backup_d = d, *backup_dend = dend;
6546 # ifdef _LIBC
6547 length = __wcslen (workp);
6548 # else
6549 length = wcslen (workp);
6550 # endif
6552 /* If wcscoll(the collating symbol, whole string) > 0,
6553 any substring of the string never match with the
6554 collating symbol. */
6555 # ifdef _LIBC
6556 if (__wcscoll (workp, d) > 0)
6557 # else
6558 if (wcscoll (workp, d) > 0)
6559 # endif
6561 workp += length + 1;
6562 break;
6565 /* First, we compare the equivalence class with
6566 the first character of the string.
6567 If it don't match, we add the next character to
6568 the compare buffer in turn. */
6569 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6571 int match;
6572 if (d == dend)
6574 if (dend == end_match_2)
6575 break;
6576 d = string2;
6577 dend = end_match_2;
6580 /* add next character to the compare buffer. */
6581 str_buf[i] = TRANSLATE(*d);
6582 str_buf[i+1] = '\0';
6584 # ifdef _LIBC
6585 match = __wcscoll (workp, str_buf);
6586 # else
6587 match = wcscoll (workp, str_buf);
6588 # endif
6590 if (match == 0)
6591 goto char_set_matched;
6593 if (match < 0)
6594 /* (str_buf > workp) indicate (str_buf + X > workp),
6595 because for all X (str_buf + X > str_buf).
6596 So we don't need continue this loop. */
6597 break;
6599 /* Otherwise(str_buf < workp),
6600 (str_buf+next_character) may equals (workp).
6601 So we continue this loop. */
6603 /* not matched */
6604 d = backup_d;
6605 dend = backup_dend;
6606 workp += length + 1;
6610 /* match with char_range? */
6611 # ifdef _LIBC
6612 if (nrules != 0)
6614 uint32_t collseqval;
6615 const char *collseq = (const char *)
6616 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6618 collseqval = collseq_table_lookup (collseq, c);
6620 for (; workp < p - chars_length ;)
6622 uint32_t start_val, end_val;
6624 /* We already compute the collation sequence value
6625 of the characters (or collating symbols). */
6626 start_val = (uint32_t) *workp++; /* range_start */
6627 end_val = (uint32_t) *workp++; /* range_end */
6629 if (start_val <= collseqval && collseqval <= end_val)
6630 goto char_set_matched;
6633 else
6634 # endif
6636 /* We set range_start_char at str_buf[0], range_end_char
6637 at str_buf[4], and compared char at str_buf[2]. */
6638 str_buf[1] = 0;
6639 str_buf[2] = c;
6640 str_buf[3] = 0;
6641 str_buf[5] = 0;
6642 for (; workp < p - chars_length ;)
6644 wchar_t *range_start_char, *range_end_char;
6646 /* match if (range_start_char <= c <= range_end_char). */
6648 /* If range_start(or end) < 0, we assume -range_start(end)
6649 is the offset of the collating symbol which is specified
6650 as the character of the range start(end). */
6652 /* range_start */
6653 if (*workp < 0)
6654 range_start_char = charset_top - (*workp++);
6655 else
6657 str_buf[0] = *workp++;
6658 range_start_char = str_buf;
6661 /* range_end */
6662 if (*workp < 0)
6663 range_end_char = charset_top - (*workp++);
6664 else
6666 str_buf[4] = *workp++;
6667 range_end_char = str_buf + 4;
6670 # ifdef _LIBC
6671 if (__wcscoll (range_start_char, str_buf+2) <= 0
6672 && __wcscoll (str_buf+2, range_end_char) <= 0)
6673 # else
6674 if (wcscoll (range_start_char, str_buf+2) <= 0
6675 && wcscoll (str_buf+2, range_end_char) <= 0)
6676 # endif
6677 goto char_set_matched;
6681 /* match with char? */
6682 for (; workp < p ; workp++)
6683 if (c == *workp)
6684 goto char_set_matched;
6686 not = !not;
6688 char_set_matched:
6689 if (not) goto fail;
6690 #else
6691 /* Cast to `unsigned' instead of `unsigned char' in case the
6692 bit list is a full 32 bytes long. */
6693 if (c < (unsigned) (*p * BYTEWIDTH)
6694 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6695 not = !not;
6697 p += 1 + *p;
6699 if (!not) goto fail;
6700 #undef WORK_BUFFER_SIZE
6701 #endif /* WCHAR */
6702 SET_REGS_MATCHED ();
6703 d++;
6704 break;
6708 /* The beginning of a group is represented by start_memory.
6709 The arguments are the register number in the next byte, and the
6710 number of groups inner to this one in the next. The text
6711 matched within the group is recorded (in the internal
6712 registers data structure) under the register number. */
6713 case start_memory:
6714 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6715 (long int) *p, (long int) p[1]);
6717 /* Find out if this group can match the empty string. */
6718 p1 = p; /* To send to group_match_null_string_p. */
6720 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6721 REG_MATCH_NULL_STRING_P (reg_info[*p])
6722 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6724 /* Save the position in the string where we were the last time
6725 we were at this open-group operator in case the group is
6726 operated upon by a repetition operator, e.g., with `(a*)*b'
6727 against `ab'; then we want to ignore where we are now in
6728 the string in case this attempt to match fails. */
6729 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6730 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6731 : regstart[*p];
6732 DEBUG_PRINT2 (" old_regstart: %d\n",
6733 POINTER_TO_OFFSET (old_regstart[*p]));
6735 regstart[*p] = d;
6736 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6738 IS_ACTIVE (reg_info[*p]) = 1;
6739 MATCHED_SOMETHING (reg_info[*p]) = 0;
6741 /* Clear this whenever we change the register activity status. */
6742 set_regs_matched_done = 0;
6744 /* This is the new highest active register. */
6745 highest_active_reg = *p;
6747 /* If nothing was active before, this is the new lowest active
6748 register. */
6749 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6750 lowest_active_reg = *p;
6752 /* Move past the register number and inner group count. */
6753 p += 2;
6754 just_past_start_mem = p;
6756 break;
6759 /* The stop_memory opcode represents the end of a group. Its
6760 arguments are the same as start_memory's: the register
6761 number, and the number of inner groups. */
6762 case stop_memory:
6763 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6764 (long int) *p, (long int) p[1]);
6766 /* We need to save the string position the last time we were at
6767 this close-group operator in case the group is operated
6768 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6769 against `aba'; then we want to ignore where we are now in
6770 the string in case this attempt to match fails. */
6771 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6772 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6773 : regend[*p];
6774 DEBUG_PRINT2 (" old_regend: %d\n",
6775 POINTER_TO_OFFSET (old_regend[*p]));
6777 regend[*p] = d;
6778 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6780 /* This register isn't active anymore. */
6781 IS_ACTIVE (reg_info[*p]) = 0;
6783 /* Clear this whenever we change the register activity status. */
6784 set_regs_matched_done = 0;
6786 /* If this was the only register active, nothing is active
6787 anymore. */
6788 if (lowest_active_reg == highest_active_reg)
6790 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6791 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6793 else
6794 { /* We must scan for the new highest active register, since
6795 it isn't necessarily one less than now: consider
6796 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6797 new highest active register is 1. */
6798 UCHAR_T r = *p - 1;
6799 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6800 r--;
6802 /* If we end up at register zero, that means that we saved
6803 the registers as the result of an `on_failure_jump', not
6804 a `start_memory', and we jumped to past the innermost
6805 `stop_memory'. For example, in ((.)*) we save
6806 registers 1 and 2 as a result of the *, but when we pop
6807 back to the second ), we are at the stop_memory 1.
6808 Thus, nothing is active. */
6809 if (r == 0)
6811 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6812 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6814 else
6815 highest_active_reg = r;
6818 /* If just failed to match something this time around with a
6819 group that's operated on by a repetition operator, try to
6820 force exit from the ``loop'', and restore the register
6821 information for this group that we had before trying this
6822 last match. */
6823 if ((!MATCHED_SOMETHING (reg_info[*p])
6824 || just_past_start_mem == p - 1)
6825 && (p + 2) < pend)
6827 boolean is_a_jump_n = false;
6829 p1 = p + 2;
6830 mcnt = 0;
6831 switch ((re_opcode_t) *p1++)
6833 case jump_n:
6834 is_a_jump_n = true;
6835 case pop_failure_jump:
6836 case maybe_pop_jump:
6837 case jump:
6838 case dummy_failure_jump:
6839 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6840 if (is_a_jump_n)
6841 p1 += OFFSET_ADDRESS_SIZE;
6842 break;
6844 default:
6845 /* do nothing */ ;
6847 p1 += mcnt;
6849 /* If the next operation is a jump backwards in the pattern
6850 to an on_failure_jump right before the start_memory
6851 corresponding to this stop_memory, exit from the loop
6852 by forcing a failure after pushing on the stack the
6853 on_failure_jump's jump in the pattern, and d. */
6854 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6855 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6856 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6858 /* If this group ever matched anything, then restore
6859 what its registers were before trying this last
6860 failed match, e.g., with `(a*)*b' against `ab' for
6861 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6862 against `aba' for regend[3].
6864 Also restore the registers for inner groups for,
6865 e.g., `((a*)(b*))*' against `aba' (register 3 would
6866 otherwise get trashed). */
6868 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6870 unsigned r;
6872 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6874 /* Restore this and inner groups' (if any) registers. */
6875 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6876 r++)
6878 regstart[r] = old_regstart[r];
6880 /* xx why this test? */
6881 if (old_regend[r] >= regstart[r])
6882 regend[r] = old_regend[r];
6885 p1++;
6886 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6887 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6889 goto fail;
6893 /* Move past the register number and the inner group count. */
6894 p += 2;
6895 break;
6898 /* \<digit> has been turned into a `duplicate' command which is
6899 followed by the numeric value of <digit> as the register number. */
6900 case duplicate:
6902 register const CHAR_T *d2, *dend2;
6903 int regno = *p++; /* Get which register to match against. */
6904 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6906 /* Can't back reference a group which we've never matched. */
6907 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6908 goto fail;
6910 /* Where in input to try to start matching. */
6911 d2 = regstart[regno];
6913 /* Where to stop matching; if both the place to start and
6914 the place to stop matching are in the same string, then
6915 set to the place to stop, otherwise, for now have to use
6916 the end of the first string. */
6918 dend2 = ((FIRST_STRING_P (regstart[regno])
6919 == FIRST_STRING_P (regend[regno]))
6920 ? regend[regno] : end_match_1);
6921 for (;;)
6923 /* If necessary, advance to next segment in register
6924 contents. */
6925 while (d2 == dend2)
6927 if (dend2 == end_match_2) break;
6928 if (dend2 == regend[regno]) break;
6930 /* End of string1 => advance to string2. */
6931 d2 = string2;
6932 dend2 = regend[regno];
6934 /* At end of register contents => success */
6935 if (d2 == dend2) break;
6937 /* If necessary, advance to next segment in data. */
6938 PREFETCH ();
6940 /* How many characters left in this segment to match. */
6941 mcnt = dend - d;
6943 /* Want how many consecutive characters we can match in
6944 one shot, so, if necessary, adjust the count. */
6945 if (mcnt > dend2 - d2)
6946 mcnt = dend2 - d2;
6948 /* Compare that many; failure if mismatch, else move
6949 past them. */
6950 if (translate
6951 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6952 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6953 goto fail;
6954 d += mcnt, d2 += mcnt;
6956 /* Do this because we've match some characters. */
6957 SET_REGS_MATCHED ();
6960 break;
6963 /* begline matches the empty string at the beginning of the string
6964 (unless `not_bol' is set in `bufp'), and, if
6965 `newline_anchor' is set, after newlines. */
6966 case begline:
6967 DEBUG_PRINT1 ("EXECUTING begline.\n");
6969 if (AT_STRINGS_BEG (d))
6971 if (!bufp->not_bol) break;
6973 else if (d[-1] == '\n' && bufp->newline_anchor)
6975 break;
6977 /* In all other cases, we fail. */
6978 goto fail;
6981 /* endline is the dual of begline. */
6982 case endline:
6983 DEBUG_PRINT1 ("EXECUTING endline.\n");
6985 if (AT_STRINGS_END (d))
6987 if (!bufp->not_eol) break;
6990 /* We have to ``prefetch'' the next character. */
6991 else if ((d == end1 ? *string2 : *d) == '\n'
6992 && bufp->newline_anchor)
6994 break;
6996 goto fail;
6999 /* Match at the very beginning of the data. */
7000 case begbuf:
7001 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7002 if (AT_STRINGS_BEG (d))
7003 break;
7004 goto fail;
7007 /* Match at the very end of the data. */
7008 case endbuf:
7009 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7010 if (AT_STRINGS_END (d))
7011 break;
7012 goto fail;
7015 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7016 pushes NULL as the value for the string on the stack. Then
7017 `pop_failure_point' will keep the current value for the
7018 string, instead of restoring it. To see why, consider
7019 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7020 then the . fails against the \n. But the next thing we want
7021 to do is match the \n against the \n; if we restored the
7022 string value, we would be back at the foo.
7024 Because this is used only in specific cases, we don't need to
7025 check all the things that `on_failure_jump' does, to make
7026 sure the right things get saved on the stack. Hence we don't
7027 share its code. The only reason to push anything on the
7028 stack at all is that otherwise we would have to change
7029 `anychar's code to do something besides goto fail in this
7030 case; that seems worse than this. */
7031 case on_failure_keep_string_jump:
7032 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7034 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7035 #ifdef _LIBC
7036 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
7037 #else
7038 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
7039 #endif
7041 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
7042 break;
7045 /* Uses of on_failure_jump:
7047 Each alternative starts with an on_failure_jump that points
7048 to the beginning of the next alternative. Each alternative
7049 except the last ends with a jump that in effect jumps past
7050 the rest of the alternatives. (They really jump to the
7051 ending jump of the following alternative, because tensioning
7052 these jumps is a hassle.)
7054 Repeats start with an on_failure_jump that points past both
7055 the repetition text and either the following jump or
7056 pop_failure_jump back to this on_failure_jump. */
7057 case on_failure_jump:
7058 on_failure:
7059 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7061 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7062 #ifdef _LIBC
7063 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7064 #else
7065 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7066 #endif
7068 /* If this on_failure_jump comes right before a group (i.e.,
7069 the original * applied to a group), save the information
7070 for that group and all inner ones, so that if we fail back
7071 to this point, the group's information will be correct.
7072 For example, in \(a*\)*\1, we need the preceding group,
7073 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7075 /* We can't use `p' to check ahead because we push
7076 a failure point to `p + mcnt' after we do this. */
7077 p1 = p;
7079 /* We need to skip no_op's before we look for the
7080 start_memory in case this on_failure_jump is happening as
7081 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7082 against aba. */
7083 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7084 p1++;
7086 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7088 /* We have a new highest active register now. This will
7089 get reset at the start_memory we are about to get to,
7090 but we will have saved all the registers relevant to
7091 this repetition op, as described above. */
7092 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7093 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7094 lowest_active_reg = *(p1 + 1);
7097 DEBUG_PRINT1 (":\n");
7098 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7099 break;
7102 /* A smart repeat ends with `maybe_pop_jump'.
7103 We change it to either `pop_failure_jump' or `jump'. */
7104 case maybe_pop_jump:
7105 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7106 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7108 register UCHAR_T *p2 = p;
7110 /* Compare the beginning of the repeat with what in the
7111 pattern follows its end. If we can establish that there
7112 is nothing that they would both match, i.e., that we
7113 would have to backtrack because of (as in, e.g., `a*a')
7114 then we can change to pop_failure_jump, because we'll
7115 never have to backtrack.
7117 This is not true in the case of alternatives: in
7118 `(a|ab)*' we do need to backtrack to the `ab' alternative
7119 (e.g., if the string was `ab'). But instead of trying to
7120 detect that here, the alternative has put on a dummy
7121 failure point which is what we will end up popping. */
7123 /* Skip over open/close-group commands.
7124 If what follows this loop is a ...+ construct,
7125 look at what begins its body, since we will have to
7126 match at least one of that. */
7127 while (1)
7129 if (p2 + 2 < pend
7130 && ((re_opcode_t) *p2 == stop_memory
7131 || (re_opcode_t) *p2 == start_memory))
7132 p2 += 3;
7133 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7134 && (re_opcode_t) *p2 == dummy_failure_jump)
7135 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7136 else
7137 break;
7140 p1 = p + mcnt;
7141 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7142 to the `maybe_finalize_jump' of this case. Examine what
7143 follows. */
7145 /* If we're at the end of the pattern, we can change. */
7146 if (p2 == pend)
7148 /* Consider what happens when matching ":\(.*\)"
7149 against ":/". I don't really understand this code
7150 yet. */
7151 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7152 pop_failure_jump;
7153 DEBUG_PRINT1
7154 (" End of pattern: change to `pop_failure_jump'.\n");
7157 else if ((re_opcode_t) *p2 == exactn
7158 #ifdef MBS_SUPPORT
7159 || (re_opcode_t) *p2 == exactn_bin
7160 #endif
7161 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7163 register UCHAR_T c
7164 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7166 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7167 #ifdef MBS_SUPPORT
7168 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7169 #endif
7170 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7172 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7173 pop_failure_jump;
7174 #ifdef WCHAR
7175 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7176 (wint_t) c,
7177 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7178 #else
7179 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7180 (char) c,
7181 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7182 #endif
7185 #ifndef WCHAR
7186 else if ((re_opcode_t) p1[3] == charset
7187 || (re_opcode_t) p1[3] == charset_not)
7189 int not = (re_opcode_t) p1[3] == charset_not;
7191 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7192 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7193 not = !not;
7195 /* `not' is equal to 1 if c would match, which means
7196 that we can't change to pop_failure_jump. */
7197 if (!not)
7199 p[-3] = (unsigned char) pop_failure_jump;
7200 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7203 #endif /* not WCHAR */
7205 #ifndef WCHAR
7206 else if ((re_opcode_t) *p2 == charset)
7208 /* We win if the first character of the loop is not part
7209 of the charset. */
7210 if ((re_opcode_t) p1[3] == exactn
7211 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7212 && (p2[2 + p1[5] / BYTEWIDTH]
7213 & (1 << (p1[5] % BYTEWIDTH)))))
7215 p[-3] = (unsigned char) pop_failure_jump;
7216 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7219 else if ((re_opcode_t) p1[3] == charset_not)
7221 int idx;
7222 /* We win if the charset_not inside the loop
7223 lists every character listed in the charset after. */
7224 for (idx = 0; idx < (int) p2[1]; idx++)
7225 if (! (p2[2 + idx] == 0
7226 || (idx < (int) p1[4]
7227 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7228 break;
7230 if (idx == p2[1])
7232 p[-3] = (unsigned char) pop_failure_jump;
7233 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7236 else if ((re_opcode_t) p1[3] == charset)
7238 int idx;
7239 /* We win if the charset inside the loop
7240 has no overlap with the one after the loop. */
7241 for (idx = 0;
7242 idx < (int) p2[1] && idx < (int) p1[4];
7243 idx++)
7244 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7245 break;
7247 if (idx == p2[1] || idx == p1[4])
7249 p[-3] = (unsigned char) pop_failure_jump;
7250 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7254 #endif /* not WCHAR */
7256 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7257 if ((re_opcode_t) p[-1] != pop_failure_jump)
7259 p[-1] = (UCHAR_T) jump;
7260 DEBUG_PRINT1 (" Match => jump.\n");
7261 goto unconditional_jump;
7263 /* Note fall through. */
7266 /* The end of a simple repeat has a pop_failure_jump back to
7267 its matching on_failure_jump, where the latter will push a
7268 failure point. The pop_failure_jump takes off failure
7269 points put on by this pop_failure_jump's matching
7270 on_failure_jump; we got through the pattern to here from the
7271 matching on_failure_jump, so didn't fail. */
7272 case pop_failure_jump:
7274 /* We need to pass separate storage for the lowest and
7275 highest registers, even though we don't care about the
7276 actual values. Otherwise, we will restore only one
7277 register from the stack, since lowest will == highest in
7278 `pop_failure_point'. */
7279 active_reg_t dummy_low_reg, dummy_high_reg;
7280 UCHAR_T *pdummy = NULL;
7281 const CHAR_T *sdummy = NULL;
7283 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7284 POP_FAILURE_POINT (sdummy, pdummy,
7285 dummy_low_reg, dummy_high_reg,
7286 reg_dummy, reg_dummy, reg_info_dummy);
7288 /* Note fall through. */
7290 unconditional_jump:
7291 #ifdef _LIBC
7292 DEBUG_PRINT2 ("\n%p: ", p);
7293 #else
7294 DEBUG_PRINT2 ("\n0x%x: ", p);
7295 #endif
7296 /* Note fall through. */
7298 /* Unconditionally jump (without popping any failure points). */
7299 case jump:
7300 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7301 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7302 p += mcnt; /* Do the jump. */
7303 #ifdef _LIBC
7304 DEBUG_PRINT2 ("(to %p).\n", p);
7305 #else
7306 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7307 #endif
7308 break;
7311 /* We need this opcode so we can detect where alternatives end
7312 in `group_match_null_string_p' et al. */
7313 case jump_past_alt:
7314 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7315 goto unconditional_jump;
7318 /* Normally, the on_failure_jump pushes a failure point, which
7319 then gets popped at pop_failure_jump. We will end up at
7320 pop_failure_jump, also, and with a pattern of, say, `a+', we
7321 are skipping over the on_failure_jump, so we have to push
7322 something meaningless for pop_failure_jump to pop. */
7323 case dummy_failure_jump:
7324 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7325 /* It doesn't matter what we push for the string here. What
7326 the code at `fail' tests is the value for the pattern. */
7327 PUSH_FAILURE_POINT (NULL, NULL, -2);
7328 goto unconditional_jump;
7331 /* At the end of an alternative, we need to push a dummy failure
7332 point in case we are followed by a `pop_failure_jump', because
7333 we don't want the failure point for the alternative to be
7334 popped. For example, matching `(a|ab)*' against `aab'
7335 requires that we match the `ab' alternative. */
7336 case push_dummy_failure:
7337 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7338 /* See comments just above at `dummy_failure_jump' about the
7339 two zeroes. */
7340 PUSH_FAILURE_POINT (NULL, NULL, -2);
7341 break;
7343 /* Have to succeed matching what follows at least n times.
7344 After that, handle like `on_failure_jump'. */
7345 case succeed_n:
7346 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7347 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7349 assert (mcnt >= 0);
7350 /* Originally, this is how many times we HAVE to succeed. */
7351 if (mcnt > 0)
7353 mcnt--;
7354 p += OFFSET_ADDRESS_SIZE;
7355 STORE_NUMBER_AND_INCR (p, mcnt);
7356 #ifdef _LIBC
7357 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7358 , mcnt);
7359 #else
7360 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7361 , mcnt);
7362 #endif
7364 else if (mcnt == 0)
7366 #ifdef _LIBC
7367 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7368 p + OFFSET_ADDRESS_SIZE);
7369 #else
7370 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7371 p + OFFSET_ADDRESS_SIZE);
7372 #endif /* _LIBC */
7374 #ifdef WCHAR
7375 p[1] = (UCHAR_T) no_op;
7376 #else
7377 p[2] = (UCHAR_T) no_op;
7378 p[3] = (UCHAR_T) no_op;
7379 #endif /* WCHAR */
7380 goto on_failure;
7382 break;
7384 case jump_n:
7385 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7386 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7388 /* Originally, this is how many times we CAN jump. */
7389 if (mcnt)
7391 mcnt--;
7392 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7394 #ifdef _LIBC
7395 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7396 mcnt);
7397 #else
7398 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7399 mcnt);
7400 #endif /* _LIBC */
7401 goto unconditional_jump;
7403 /* If don't have to jump any more, skip over the rest of command. */
7404 else
7405 p += 2 * OFFSET_ADDRESS_SIZE;
7406 break;
7408 case set_number_at:
7410 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7412 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7413 p1 = p + mcnt;
7414 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7415 #ifdef _LIBC
7416 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7417 #else
7418 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7419 #endif
7420 STORE_NUMBER (p1, mcnt);
7421 break;
7424 #if 0
7425 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7426 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7427 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7428 macro and introducing temporary variables works around the bug. */
7430 case wordbound:
7431 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7432 if (AT_WORD_BOUNDARY (d))
7433 break;
7434 goto fail;
7436 case notwordbound:
7437 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7438 if (AT_WORD_BOUNDARY (d))
7439 goto fail;
7440 break;
7441 #else
7442 case wordbound:
7444 boolean prevchar, thischar;
7446 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7447 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7448 break;
7450 prevchar = WORDCHAR_P (d - 1);
7451 thischar = WORDCHAR_P (d);
7452 if (prevchar != thischar)
7453 break;
7454 goto fail;
7457 case notwordbound:
7459 boolean prevchar, thischar;
7461 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7462 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7463 goto fail;
7465 prevchar = WORDCHAR_P (d - 1);
7466 thischar = WORDCHAR_P (d);
7467 if (prevchar != thischar)
7468 goto fail;
7469 break;
7471 #endif
7473 case wordbeg:
7474 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7475 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7476 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7477 break;
7478 goto fail;
7480 case wordend:
7481 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7482 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7483 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7484 break;
7485 goto fail;
7487 #ifdef emacs
7488 case before_dot:
7489 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7490 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7491 goto fail;
7492 break;
7494 case at_dot:
7495 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7496 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7497 goto fail;
7498 break;
7500 case after_dot:
7501 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7502 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7503 goto fail;
7504 break;
7506 case syntaxspec:
7507 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7508 mcnt = *p++;
7509 goto matchsyntax;
7511 case wordchar:
7512 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7513 mcnt = (int) Sword;
7514 matchsyntax:
7515 PREFETCH ();
7516 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7517 d++;
7518 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7519 goto fail;
7520 SET_REGS_MATCHED ();
7521 break;
7523 case notsyntaxspec:
7524 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7525 mcnt = *p++;
7526 goto matchnotsyntax;
7528 case notwordchar:
7529 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7530 mcnt = (int) Sword;
7531 matchnotsyntax:
7532 PREFETCH ();
7533 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7534 d++;
7535 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7536 goto fail;
7537 SET_REGS_MATCHED ();
7538 break;
7540 #else /* not emacs */
7541 case wordchar:
7542 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7543 PREFETCH ();
7544 if (!WORDCHAR_P (d))
7545 goto fail;
7546 SET_REGS_MATCHED ();
7547 d++;
7548 break;
7550 case notwordchar:
7551 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7552 PREFETCH ();
7553 if (WORDCHAR_P (d))
7554 goto fail;
7555 SET_REGS_MATCHED ();
7556 d++;
7557 break;
7558 #endif /* not emacs */
7560 default:
7561 abort ();
7563 continue; /* Successfully executed one pattern command; keep going. */
7566 /* We goto here if a matching operation fails. */
7567 fail:
7568 if (!FAIL_STACK_EMPTY ())
7569 { /* A restart point is known. Restore to that state. */
7570 DEBUG_PRINT1 ("\nFAIL:\n");
7571 POP_FAILURE_POINT (d, p,
7572 lowest_active_reg, highest_active_reg,
7573 regstart, regend, reg_info);
7575 /* If this failure point is a dummy, try the next one. */
7576 if (!p)
7577 goto fail;
7579 /* If we failed to the end of the pattern, don't examine *p. */
7580 assert (p <= pend);
7581 if (p < pend)
7583 boolean is_a_jump_n = false;
7585 /* If failed to a backwards jump that's part of a repetition
7586 loop, need to pop this failure point and use the next one. */
7587 switch ((re_opcode_t) *p)
7589 case jump_n:
7590 is_a_jump_n = true;
7591 case maybe_pop_jump:
7592 case pop_failure_jump:
7593 case jump:
7594 p1 = p + 1;
7595 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7596 p1 += mcnt;
7598 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7599 || (!is_a_jump_n
7600 && (re_opcode_t) *p1 == on_failure_jump))
7601 goto fail;
7602 break;
7603 default:
7604 /* do nothing */ ;
7608 if (d >= string1 && d <= end1)
7609 dend = end_match_1;
7611 else
7612 break; /* Matching at this starting point really fails. */
7613 } /* for (;;) */
7615 if (best_regs_set)
7616 goto restore_best_regs;
7618 FREE_VARIABLES ();
7620 return -1; /* Failure to match. */
7621 } /* re_match_2 */
7623 /* Subroutine definitions for re_match_2. */
7626 /* We are passed P pointing to a register number after a start_memory.
7628 Return true if the pattern up to the corresponding stop_memory can
7629 match the empty string, and false otherwise.
7631 If we find the matching stop_memory, sets P to point to one past its number.
7632 Otherwise, sets P to an undefined byte less than or equal to END.
7634 We don't handle duplicates properly (yet). */
7636 static boolean
7637 PREFIX(group_match_null_string_p) (p, end, reg_info)
7638 UCHAR_T **p, *end;
7639 PREFIX(register_info_type) *reg_info;
7641 int mcnt;
7642 /* Point to after the args to the start_memory. */
7643 UCHAR_T *p1 = *p + 2;
7645 while (p1 < end)
7647 /* Skip over opcodes that can match nothing, and return true or
7648 false, as appropriate, when we get to one that can't, or to the
7649 matching stop_memory. */
7651 switch ((re_opcode_t) *p1)
7653 /* Could be either a loop or a series of alternatives. */
7654 case on_failure_jump:
7655 p1++;
7656 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7658 /* If the next operation is not a jump backwards in the
7659 pattern. */
7661 if (mcnt >= 0)
7663 /* Go through the on_failure_jumps of the alternatives,
7664 seeing if any of the alternatives cannot match nothing.
7665 The last alternative starts with only a jump,
7666 whereas the rest start with on_failure_jump and end
7667 with a jump, e.g., here is the pattern for `a|b|c':
7669 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7670 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7671 /exactn/1/c
7673 So, we have to first go through the first (n-1)
7674 alternatives and then deal with the last one separately. */
7677 /* Deal with the first (n-1) alternatives, which start
7678 with an on_failure_jump (see above) that jumps to right
7679 past a jump_past_alt. */
7681 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7682 jump_past_alt)
7684 /* `mcnt' holds how many bytes long the alternative
7685 is, including the ending `jump_past_alt' and
7686 its number. */
7688 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7689 (1 + OFFSET_ADDRESS_SIZE),
7690 reg_info))
7691 return false;
7693 /* Move to right after this alternative, including the
7694 jump_past_alt. */
7695 p1 += mcnt;
7697 /* Break if it's the beginning of an n-th alternative
7698 that doesn't begin with an on_failure_jump. */
7699 if ((re_opcode_t) *p1 != on_failure_jump)
7700 break;
7702 /* Still have to check that it's not an n-th
7703 alternative that starts with an on_failure_jump. */
7704 p1++;
7705 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7706 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7707 jump_past_alt)
7709 /* Get to the beginning of the n-th alternative. */
7710 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7711 break;
7715 /* Deal with the last alternative: go back and get number
7716 of the `jump_past_alt' just before it. `mcnt' contains
7717 the length of the alternative. */
7718 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7720 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7721 return false;
7723 p1 += mcnt; /* Get past the n-th alternative. */
7724 } /* if mcnt > 0 */
7725 break;
7728 case stop_memory:
7729 assert (p1[1] == **p);
7730 *p = p1 + 2;
7731 return true;
7734 default:
7735 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7736 return false;
7738 } /* while p1 < end */
7740 return false;
7741 } /* group_match_null_string_p */
7744 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7745 It expects P to be the first byte of a single alternative and END one
7746 byte past the last. The alternative can contain groups. */
7748 static boolean
7749 PREFIX(alt_match_null_string_p) (p, end, reg_info)
7750 UCHAR_T *p, *end;
7751 PREFIX(register_info_type) *reg_info;
7753 int mcnt;
7754 UCHAR_T *p1 = p;
7756 while (p1 < end)
7758 /* Skip over opcodes that can match nothing, and break when we get
7759 to one that can't. */
7761 switch ((re_opcode_t) *p1)
7763 /* It's a loop. */
7764 case on_failure_jump:
7765 p1++;
7766 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7767 p1 += mcnt;
7768 break;
7770 default:
7771 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7772 return false;
7774 } /* while p1 < end */
7776 return true;
7777 } /* alt_match_null_string_p */
7780 /* Deals with the ops common to group_match_null_string_p and
7781 alt_match_null_string_p.
7783 Sets P to one after the op and its arguments, if any. */
7785 static boolean
7786 PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7787 UCHAR_T **p, *end;
7788 PREFIX(register_info_type) *reg_info;
7790 int mcnt;
7791 boolean ret;
7792 int reg_no;
7793 UCHAR_T *p1 = *p;
7795 switch ((re_opcode_t) *p1++)
7797 case no_op:
7798 case begline:
7799 case endline:
7800 case begbuf:
7801 case endbuf:
7802 case wordbeg:
7803 case wordend:
7804 case wordbound:
7805 case notwordbound:
7806 #ifdef emacs
7807 case before_dot:
7808 case at_dot:
7809 case after_dot:
7810 #endif
7811 break;
7813 case start_memory:
7814 reg_no = *p1;
7815 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7816 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7818 /* Have to set this here in case we're checking a group which
7819 contains a group and a back reference to it. */
7821 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7822 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7824 if (!ret)
7825 return false;
7826 break;
7828 /* If this is an optimized succeed_n for zero times, make the jump. */
7829 case jump:
7830 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7831 if (mcnt >= 0)
7832 p1 += mcnt;
7833 else
7834 return false;
7835 break;
7837 case succeed_n:
7838 /* Get to the number of times to succeed. */
7839 p1 += OFFSET_ADDRESS_SIZE;
7840 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7842 if (mcnt == 0)
7844 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7845 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7846 p1 += mcnt;
7848 else
7849 return false;
7850 break;
7852 case duplicate:
7853 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7854 return false;
7855 break;
7857 case set_number_at:
7858 p1 += 2 * OFFSET_ADDRESS_SIZE;
7860 default:
7861 /* All other opcodes mean we cannot match the empty string. */
7862 return false;
7865 *p = p1;
7866 return true;
7867 } /* common_op_match_null_string_p */
7870 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7871 bytes; nonzero otherwise. */
7873 static int
7874 PREFIX(bcmp_translate) (s1, s2, len, translate)
7875 const CHAR_T *s1, *s2;
7876 register int len;
7877 RE_TRANSLATE_TYPE translate;
7879 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7880 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7881 while (len)
7883 #ifdef WCHAR
7884 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7885 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7886 return 1;
7887 #else /* BYTE */
7888 if (translate[*p1++] != translate[*p2++]) return 1;
7889 #endif /* WCHAR */
7890 len--;
7892 return 0;
7896 #else /* not INSIDE_RECURSION */
7898 /* Entry points for GNU code. */
7900 /* re_compile_pattern is the GNU regular expression compiler: it
7901 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7902 Returns 0 if the pattern was valid, otherwise an error string.
7904 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7905 are set in BUFP on entry.
7907 We call regex_compile to do the actual compilation. */
7909 const char *
7910 re_compile_pattern (pattern, length, bufp)
7911 const char *pattern;
7912 size_t length;
7913 struct re_pattern_buffer *bufp;
7915 reg_errcode_t ret;
7917 /* GNU code is written to assume at least RE_NREGS registers will be set
7918 (and at least one extra will be -1). */
7919 bufp->regs_allocated = REGS_UNALLOCATED;
7921 /* And GNU code determines whether or not to get register information
7922 by passing null for the REGS argument to re_match, etc., not by
7923 setting no_sub. */
7924 bufp->no_sub = 0;
7926 /* Match anchors at newline. */
7927 bufp->newline_anchor = 1;
7929 # ifdef MBS_SUPPORT
7930 if (MB_CUR_MAX != 1)
7931 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7932 else
7933 # endif
7934 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7936 if (!ret)
7937 return NULL;
7938 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7940 #ifdef _LIBC
7941 weak_alias (__re_compile_pattern, re_compile_pattern)
7942 #endif
7944 /* Entry points compatible with 4.2 BSD regex library. We don't define
7945 them unless specifically requested. */
7947 #if defined _REGEX_RE_COMP || defined _LIBC
7949 /* BSD has one and only one pattern buffer. */
7950 static struct re_pattern_buffer re_comp_buf;
7952 char *
7953 #ifdef _LIBC
7954 /* Make these definitions weak in libc, so POSIX programs can redefine
7955 these names if they don't use our functions, and still use
7956 regcomp/regexec below without link errors. */
7957 weak_function
7958 #endif
7959 re_comp (s)
7960 const char *s;
7962 reg_errcode_t ret;
7964 if (!s)
7966 if (!re_comp_buf.buffer)
7967 return gettext ("No previous regular expression");
7968 return 0;
7971 if (!re_comp_buf.buffer)
7973 re_comp_buf.buffer = (unsigned char *) malloc (200);
7974 if (re_comp_buf.buffer == NULL)
7975 return (char *) gettext (re_error_msgid
7976 + re_error_msgid_idx[(int) REG_ESPACE]);
7977 re_comp_buf.allocated = 200;
7979 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7980 if (re_comp_buf.fastmap == NULL)
7981 return (char *) gettext (re_error_msgid
7982 + re_error_msgid_idx[(int) REG_ESPACE]);
7985 /* Since `re_exec' always passes NULL for the `regs' argument, we
7986 don't need to initialize the pattern buffer fields which affect it. */
7988 /* Match anchors at newlines. */
7989 re_comp_buf.newline_anchor = 1;
7991 # ifdef MBS_SUPPORT
7992 if (MB_CUR_MAX != 1)
7993 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7994 else
7995 # endif
7996 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7998 if (!ret)
7999 return NULL;
8001 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
8002 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8007 #ifdef _LIBC
8008 weak_function
8009 #endif
8010 re_exec (s)
8011 const char *s;
8013 const int len = strlen (s);
8014 return
8015 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
8018 #endif /* _REGEX_RE_COMP */
8020 /* POSIX.2 functions. Don't define these for Emacs. */
8022 #ifndef emacs
8024 /* regcomp takes a regular expression as a string and compiles it.
8026 PREG is a regex_t *. We do not expect any fields to be initialized,
8027 since POSIX says we shouldn't. Thus, we set
8029 `buffer' to the compiled pattern;
8030 `used' to the length of the compiled pattern;
8031 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8032 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8033 RE_SYNTAX_POSIX_BASIC;
8034 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8035 `fastmap' to an allocated space for the fastmap;
8036 `fastmap_accurate' to zero;
8037 `re_nsub' to the number of subexpressions in PATTERN.
8039 PATTERN is the address of the pattern string.
8041 CFLAGS is a series of bits which affect compilation.
8043 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8044 use POSIX basic syntax.
8046 If REG_NEWLINE is set, then . and [^...] don't match newline.
8047 Also, regexec will try a match beginning after every newline.
8049 If REG_ICASE is set, then we considers upper- and lowercase
8050 versions of letters to be equivalent when matching.
8052 If REG_NOSUB is set, then when PREG is passed to regexec, that
8053 routine will report only success or failure, and nothing about the
8054 registers.
8056 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8057 the return codes and their meanings.) */
8060 regcomp (preg, pattern, cflags)
8061 regex_t *preg;
8062 const char *pattern;
8063 int cflags;
8065 reg_errcode_t ret;
8066 reg_syntax_t syntax
8067 = (cflags & REG_EXTENDED) ?
8068 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8070 /* regex_compile will allocate the space for the compiled pattern. */
8071 preg->buffer = 0;
8072 preg->allocated = 0;
8073 preg->used = 0;
8075 /* Try to allocate space for the fastmap. */
8076 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8078 if (cflags & REG_ICASE)
8080 unsigned i;
8082 preg->translate
8083 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8084 * sizeof (*(RE_TRANSLATE_TYPE)0));
8085 if (preg->translate == NULL)
8086 return (int) REG_ESPACE;
8088 /* Map uppercase characters to corresponding lowercase ones. */
8089 for (i = 0; i < CHAR_SET_SIZE; i++)
8090 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8092 else
8093 preg->translate = NULL;
8095 /* If REG_NEWLINE is set, newlines are treated differently. */
8096 if (cflags & REG_NEWLINE)
8097 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8098 syntax &= ~RE_DOT_NEWLINE;
8099 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8100 /* It also changes the matching behavior. */
8101 preg->newline_anchor = 1;
8103 else
8104 preg->newline_anchor = 0;
8106 preg->no_sub = !!(cflags & REG_NOSUB);
8108 /* POSIX says a null character in the pattern terminates it, so we
8109 can use strlen here in compiling the pattern. */
8110 # ifdef MBS_SUPPORT
8111 if (MB_CUR_MAX != 1)
8112 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8113 else
8114 # endif
8115 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8117 /* POSIX doesn't distinguish between an unmatched open-group and an
8118 unmatched close-group: both are REG_EPAREN. */
8119 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8121 if (ret == REG_NOERROR && preg->fastmap)
8123 /* Compute the fastmap now, since regexec cannot modify the pattern
8124 buffer. */
8125 if (re_compile_fastmap (preg) == -2)
8127 /* Some error occurred while computing the fastmap, just forget
8128 about it. */
8129 free (preg->fastmap);
8130 preg->fastmap = NULL;
8134 return (int) ret;
8136 #ifdef _LIBC
8137 weak_alias (__regcomp, regcomp)
8138 #endif
8141 /* regexec searches for a given pattern, specified by PREG, in the
8142 string STRING.
8144 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8145 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8146 least NMATCH elements, and we set them to the offsets of the
8147 corresponding matched substrings.
8149 EFLAGS specifies `execution flags' which affect matching: if
8150 REG_NOTBOL is set, then ^ does not match at the beginning of the
8151 string; if REG_NOTEOL is set, then $ does not match at the end.
8153 We return 0 if we find a match and REG_NOMATCH if not. */
8156 regexec (preg, string, nmatch, pmatch, eflags)
8157 const regex_t *preg;
8158 const char *string;
8159 size_t nmatch;
8160 regmatch_t pmatch[];
8161 int eflags;
8163 int ret;
8164 struct re_registers regs;
8165 regex_t private_preg;
8166 int len = strlen (string);
8167 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8169 private_preg = *preg;
8171 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8172 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8174 /* The user has told us exactly how many registers to return
8175 information about, via `nmatch'. We have to pass that on to the
8176 matching routines. */
8177 private_preg.regs_allocated = REGS_FIXED;
8179 if (want_reg_info)
8181 regs.num_regs = nmatch;
8182 regs.start = TALLOC (nmatch * 2, regoff_t);
8183 if (regs.start == NULL)
8184 return (int) REG_NOMATCH;
8185 regs.end = regs.start + nmatch;
8188 /* Perform the searching operation. */
8189 ret = re_search (&private_preg, string, len,
8190 /* start: */ 0, /* range: */ len,
8191 want_reg_info ? &regs : (struct re_registers *) 0);
8193 /* Copy the register information to the POSIX structure. */
8194 if (want_reg_info)
8196 if (ret >= 0)
8198 unsigned r;
8200 for (r = 0; r < nmatch; r++)
8202 pmatch[r].rm_so = regs.start[r];
8203 pmatch[r].rm_eo = regs.end[r];
8207 /* If we needed the temporary register info, free the space now. */
8208 free (regs.start);
8211 /* We want zero return to mean success, unlike `re_search'. */
8212 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8214 #ifdef _LIBC
8215 weak_alias (__regexec, regexec)
8216 #endif
8219 /* Returns a message corresponding to an error code, ERRCODE, returned
8220 from either regcomp or regexec. We don't use PREG here. */
8222 size_t
8223 regerror (errcode, preg, errbuf, errbuf_size)
8224 int errcode;
8225 const regex_t *preg;
8226 char *errbuf;
8227 size_t errbuf_size;
8229 const char *msg;
8230 size_t msg_size;
8232 if (errcode < 0
8233 || errcode >= (int) (sizeof (re_error_msgid_idx)
8234 / sizeof (re_error_msgid_idx[0])))
8235 /* Only error codes returned by the rest of the code should be passed
8236 to this routine. If we are given anything else, or if other regex
8237 code generates an invalid error code, then the program has a bug.
8238 Dump core so we can fix it. */
8239 abort ();
8241 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8243 msg_size = strlen (msg) + 1; /* Includes the null. */
8245 if (errbuf_size != 0)
8247 if (msg_size > errbuf_size)
8249 #if defined HAVE_MEMPCPY || defined _LIBC
8250 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8251 #else
8252 memcpy (errbuf, msg, errbuf_size - 1);
8253 errbuf[errbuf_size - 1] = 0;
8254 #endif
8256 else
8257 memcpy (errbuf, msg, msg_size);
8260 return msg_size;
8262 #ifdef _LIBC
8263 weak_alias (__regerror, regerror)
8264 #endif
8267 /* Free dynamically allocated space used by PREG. */
8269 void
8270 regfree (preg)
8271 regex_t *preg;
8273 if (preg->buffer != NULL)
8274 free (preg->buffer);
8275 preg->buffer = NULL;
8277 preg->allocated = 0;
8278 preg->used = 0;
8280 if (preg->fastmap != NULL)
8281 free (preg->fastmap);
8282 preg->fastmap = NULL;
8283 preg->fastmap_accurate = 0;
8285 if (preg->translate != NULL)
8286 free (preg->translate);
8287 preg->translate = NULL;
8289 #ifdef _LIBC
8290 weak_alias (__regfree, regfree)
8291 #endif
8293 #endif /* not emacs */
8295 #endif /* not INSIDE_RECURSION */
8298 #undef STORE_NUMBER
8299 #undef STORE_NUMBER_AND_INCR
8300 #undef EXTRACT_NUMBER
8301 #undef EXTRACT_NUMBER_AND_INCR
8303 #undef DEBUG_PRINT_COMPILED_PATTERN
8304 #undef DEBUG_PRINT_DOUBLE_STRING
8306 #undef INIT_FAIL_STACK
8307 #undef RESET_FAIL_STACK
8308 #undef DOUBLE_FAIL_STACK
8309 #undef PUSH_PATTERN_OP
8310 #undef PUSH_FAILURE_POINTER
8311 #undef PUSH_FAILURE_INT
8312 #undef PUSH_FAILURE_ELT
8313 #undef POP_FAILURE_POINTER
8314 #undef POP_FAILURE_INT
8315 #undef POP_FAILURE_ELT
8316 #undef DEBUG_PUSH
8317 #undef DEBUG_POP
8318 #undef PUSH_FAILURE_POINT
8319 #undef POP_FAILURE_POINT
8321 #undef REG_UNSET_VALUE
8322 #undef REG_UNSET
8324 #undef PATFETCH
8325 #undef PATFETCH_RAW
8326 #undef PATUNFETCH
8327 #undef TRANSLATE
8329 #undef INIT_BUF_SIZE
8330 #undef GET_BUFFER_SPACE
8331 #undef BUF_PUSH
8332 #undef BUF_PUSH_2
8333 #undef BUF_PUSH_3
8334 #undef STORE_JUMP
8335 #undef STORE_JUMP2
8336 #undef INSERT_JUMP
8337 #undef INSERT_JUMP2
8338 #undef EXTEND_BUFFER
8339 #undef GET_UNSIGNED_NUMBER
8340 #undef FREE_STACK_RETURN
8342 # undef POINTER_TO_OFFSET
8343 # undef MATCHING_IN_FRST_STRING
8344 # undef PREFETCH
8345 # undef AT_STRINGS_BEG
8346 # undef AT_STRINGS_END
8347 # undef WORDCHAR_P
8348 # undef FREE_VAR
8349 # undef FREE_VARIABLES
8350 # undef NO_HIGHEST_ACTIVE_REG
8351 # undef NO_LOWEST_ACTIVE_REG
8353 # undef CHAR_T
8354 # undef UCHAR_T
8355 # undef COMPILED_BUFFER_VAR
8356 # undef OFFSET_ADDRESS_SIZE
8357 # undef CHAR_CLASS_SIZE
8358 # undef PREFIX
8359 # undef ARG_PREFIX
8360 # undef PUT_CHAR
8361 # undef BYTE
8362 # undef WCHAR
8364 # define DEFINED_ONCE