* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / unroll.c
blob4e15336b020bb62a53f40fde329588dbbc165731
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 /* The prime factors looked for when trying to unroll a loop by some
135 number which is modulo the total number of iterations. Just checking
136 for these 4 prime factors will find at least one factor for 75% of
137 all numbers theoretically. Practically speaking, this will succeed
138 almost all of the time since loops are generally a multiple of 2
139 and/or 5. */
141 #define NUM_FACTORS 4
143 struct _factor { int factor, count; }
144 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
146 /* Describes the different types of loop unrolling performed. */
148 enum unroll_types
150 UNROLL_COMPLETELY,
151 UNROLL_MODULO,
152 UNROLL_NAIVE
155 #include "config.h"
156 #include "system.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "insn-config.h"
160 #include "integrate.h"
161 #include "regs.h"
162 #include "recog.h"
163 #include "flags.h"
164 #include "function.h"
165 #include "expr.h"
166 #include "loop.h"
167 #include "toplev.h"
168 #include "hard-reg-set.h"
169 #include "basic-block.h"
170 #include "predict.h"
172 /* This controls which loops are unrolled, and by how much we unroll
173 them. */
175 #ifndef MAX_UNROLLED_INSNS
176 #define MAX_UNROLLED_INSNS 100
177 #endif
179 /* Indexed by register number, if non-zero, then it contains a pointer
180 to a struct induction for a DEST_REG giv which has been combined with
181 one of more address givs. This is needed because whenever such a DEST_REG
182 giv is modified, we must modify the value of all split address givs
183 that were combined with this DEST_REG giv. */
185 static struct induction **addr_combined_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the current value of the register, which depends on the
189 iteration number. */
191 static rtx *splittable_regs;
193 /* Indexed by register number, if this is a splittable induction variable,
194 then this will hold the number of instructions in the loop that modify
195 the induction variable. Used to ensure that only the last insn modifying
196 a split iv will update the original iv of the dest. */
198 static int *splittable_regs_updates;
200 /* Forward declarations. */
202 static void init_reg_map PARAMS ((struct inline_remap *, int));
203 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
204 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
205 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
206 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx));
209 static int find_splittable_regs PARAMS ((const struct loop *,
210 enum unroll_types, int));
211 static int find_splittable_givs PARAMS ((const struct loop *,
212 struct iv_class *, enum unroll_types,
213 rtx, int));
214 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
215 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
216 static int verify_addresses PARAMS ((struct induction *, rtx, int));
217 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
218 static rtx find_common_reg_term PARAMS ((rtx, rtx));
219 static rtx subtract_reg_term PARAMS ((rtx, rtx));
220 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
221 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
223 /* Try to unroll one loop and split induction variables in the loop.
225 The loop is described by the arguments LOOP and INSN_COUNT.
226 STRENGTH_REDUCTION_P indicates whether information generated in the
227 strength reduction pass is available.
229 This function is intended to be called from within `strength_reduce'
230 in loop.c. */
232 void
233 unroll_loop (loop, insn_count, strength_reduce_p)
234 struct loop *loop;
235 int insn_count;
236 int strength_reduce_p;
238 struct loop_info *loop_info = LOOP_INFO (loop);
239 struct loop_ivs *ivs = LOOP_IVS (loop);
240 int i, j;
241 unsigned int r;
242 unsigned HOST_WIDE_INT temp;
243 int unroll_number = 1;
244 rtx copy_start, copy_end;
245 rtx insn, sequence, pattern, tem;
246 int max_labelno, max_insnno;
247 rtx insert_before;
248 struct inline_remap *map;
249 char *local_label = NULL;
250 char *local_regno;
251 unsigned int max_local_regnum;
252 unsigned int maxregnum;
253 rtx exit_label = 0;
254 rtx start_label;
255 struct iv_class *bl;
256 int splitting_not_safe = 0;
257 enum unroll_types unroll_type = UNROLL_NAIVE;
258 int loop_preconditioned = 0;
259 rtx safety_label;
260 /* This points to the last real insn in the loop, which should be either
261 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
262 jumps). */
263 rtx last_loop_insn;
264 rtx loop_start = loop->start;
265 rtx loop_end = loop->end;
267 /* Don't bother unrolling huge loops. Since the minimum factor is
268 two, loops greater than one half of MAX_UNROLLED_INSNS will never
269 be unrolled. */
270 if (insn_count > MAX_UNROLLED_INSNS / 2)
272 if (loop_dump_stream)
273 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
274 return;
277 /* When emitting debugger info, we can't unroll loops with unequal numbers
278 of block_beg and block_end notes, because that would unbalance the block
279 structure of the function. This can happen as a result of the
280 "if (foo) bar; else break;" optimization in jump.c. */
281 /* ??? Gcc has a general policy that -g is never supposed to change the code
282 that the compiler emits, so we must disable this optimization always,
283 even if debug info is not being output. This is rare, so this should
284 not be a significant performance problem. */
286 if (1 /* write_symbols != NO_DEBUG */)
288 int block_begins = 0;
289 int block_ends = 0;
291 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
293 if (GET_CODE (insn) == NOTE)
295 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
296 block_begins++;
297 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
298 block_ends++;
299 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
300 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
302 /* Note, would be nice to add code to unroll EH
303 regions, but until that time, we punt (don't
304 unroll). For the proper way of doing it, see
305 expand_inline_function. */
307 if (loop_dump_stream)
308 fprintf (loop_dump_stream,
309 "Unrolling failure: cannot unroll EH regions.\n");
310 return;
315 if (block_begins != block_ends)
317 if (loop_dump_stream)
318 fprintf (loop_dump_stream,
319 "Unrolling failure: Unbalanced block notes.\n");
320 return;
324 /* Determine type of unroll to perform. Depends on the number of iterations
325 and the size of the loop. */
327 /* If there is no strength reduce info, then set
328 loop_info->n_iterations to zero. This can happen if
329 strength_reduce can't find any bivs in the loop. A value of zero
330 indicates that the number of iterations could not be calculated. */
332 if (! strength_reduce_p)
333 loop_info->n_iterations = 0;
335 if (loop_dump_stream && loop_info->n_iterations > 0)
337 fputs ("Loop unrolling: ", loop_dump_stream);
338 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
339 loop_info->n_iterations);
340 fputs (" iterations.\n", loop_dump_stream);
343 /* Find and save a pointer to the last nonnote insn in the loop. */
345 last_loop_insn = prev_nonnote_insn (loop_end);
347 /* Calculate how many times to unroll the loop. Indicate whether or
348 not the loop is being completely unrolled. */
350 if (loop_info->n_iterations == 1)
352 /* Handle the case where the loop begins with an unconditional
353 jump to the loop condition. Make sure to delete the jump
354 insn, otherwise the loop body will never execute. */
356 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
357 if (ujump)
358 delete_related_insns (ujump);
360 /* If number of iterations is exactly 1, then eliminate the compare and
361 branch at the end of the loop since they will never be taken.
362 Then return, since no other action is needed here. */
364 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
365 don't do anything. */
367 if (GET_CODE (last_loop_insn) == BARRIER)
369 /* Delete the jump insn. This will delete the barrier also. */
370 delete_related_insns (PREV_INSN (last_loop_insn));
372 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
374 #ifdef HAVE_cc0
375 rtx prev = PREV_INSN (last_loop_insn);
376 #endif
377 delete_related_insns (last_loop_insn);
378 #ifdef HAVE_cc0
379 /* The immediately preceding insn may be a compare which must be
380 deleted. */
381 if (only_sets_cc0_p (prev))
382 delete_related_insns (prev);
383 #endif
386 /* Remove the loop notes since this is no longer a loop. */
387 if (loop->vtop)
388 delete_related_insns (loop->vtop);
389 if (loop->cont)
390 delete_related_insns (loop->cont);
391 if (loop_start)
392 delete_related_insns (loop_start);
393 if (loop_end)
394 delete_related_insns (loop_end);
396 return;
398 else if (loop_info->n_iterations > 0
399 /* Avoid overflow in the next expression. */
400 && loop_info->n_iterations < MAX_UNROLLED_INSNS
401 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
403 unroll_number = loop_info->n_iterations;
404 unroll_type = UNROLL_COMPLETELY;
406 else if (loop_info->n_iterations > 0)
408 /* Try to factor the number of iterations. Don't bother with the
409 general case, only using 2, 3, 5, and 7 will get 75% of all
410 numbers theoretically, and almost all in practice. */
412 for (i = 0; i < NUM_FACTORS; i++)
413 factors[i].count = 0;
415 temp = loop_info->n_iterations;
416 for (i = NUM_FACTORS - 1; i >= 0; i--)
417 while (temp % factors[i].factor == 0)
419 factors[i].count++;
420 temp = temp / factors[i].factor;
423 /* Start with the larger factors first so that we generally
424 get lots of unrolling. */
426 unroll_number = 1;
427 temp = insn_count;
428 for (i = 3; i >= 0; i--)
429 while (factors[i].count--)
431 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
433 unroll_number *= factors[i].factor;
434 temp *= factors[i].factor;
436 else
437 break;
440 /* If we couldn't find any factors, then unroll as in the normal
441 case. */
442 if (unroll_number == 1)
444 if (loop_dump_stream)
445 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
447 else
448 unroll_type = UNROLL_MODULO;
451 /* Default case, calculate number of times to unroll loop based on its
452 size. */
453 if (unroll_type == UNROLL_NAIVE)
455 if (8 * insn_count < MAX_UNROLLED_INSNS)
456 unroll_number = 8;
457 else if (4 * insn_count < MAX_UNROLLED_INSNS)
458 unroll_number = 4;
459 else
460 unroll_number = 2;
463 /* Now we know how many times to unroll the loop. */
465 if (loop_dump_stream)
466 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
468 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
470 /* Loops of these types can start with jump down to the exit condition
471 in rare circumstances.
473 Consider a pair of nested loops where the inner loop is part
474 of the exit code for the outer loop.
476 In this case jump.c will not duplicate the exit test for the outer
477 loop, so it will start with a jump to the exit code.
479 Then consider if the inner loop turns out to iterate once and
480 only once. We will end up deleting the jumps associated with
481 the inner loop. However, the loop notes are not removed from
482 the instruction stream.
484 And finally assume that we can compute the number of iterations
485 for the outer loop.
487 In this case unroll may want to unroll the outer loop even though
488 it starts with a jump to the outer loop's exit code.
490 We could try to optimize this case, but it hardly seems worth it.
491 Just return without unrolling the loop in such cases. */
493 insn = loop_start;
494 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
495 insn = NEXT_INSN (insn);
496 if (GET_CODE (insn) == JUMP_INSN)
497 return;
500 if (unroll_type == UNROLL_COMPLETELY)
502 /* Completely unrolling the loop: Delete the compare and branch at
503 the end (the last two instructions). This delete must done at the
504 very end of loop unrolling, to avoid problems with calls to
505 back_branch_in_range_p, which is called by find_splittable_regs.
506 All increments of splittable bivs/givs are changed to load constant
507 instructions. */
509 copy_start = loop_start;
511 /* Set insert_before to the instruction immediately after the JUMP_INSN
512 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
513 the loop will be correctly handled by copy_loop_body. */
514 insert_before = NEXT_INSN (last_loop_insn);
516 /* Set copy_end to the insn before the jump at the end of the loop. */
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
519 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
521 copy_end = PREV_INSN (last_loop_insn);
522 #ifdef HAVE_cc0
523 /* The instruction immediately before the JUMP_INSN may be a compare
524 instruction which we do not want to copy. */
525 if (sets_cc0_p (PREV_INSN (copy_end)))
526 copy_end = PREV_INSN (copy_end);
527 #endif
529 else
531 /* We currently can't unroll a loop if it doesn't end with a
532 JUMP_INSN. There would need to be a mechanism that recognizes
533 this case, and then inserts a jump after each loop body, which
534 jumps to after the last loop body. */
535 if (loop_dump_stream)
536 fprintf (loop_dump_stream,
537 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
538 return;
541 else if (unroll_type == UNROLL_MODULO)
543 /* Partially unrolling the loop: The compare and branch at the end
544 (the last two instructions) must remain. Don't copy the compare
545 and branch instructions at the end of the loop. Insert the unrolled
546 code immediately before the compare/branch at the end so that the
547 code will fall through to them as before. */
549 copy_start = loop_start;
551 /* Set insert_before to the jump insn at the end of the loop.
552 Set copy_end to before the jump insn at the end of the loop. */
553 if (GET_CODE (last_loop_insn) == BARRIER)
555 insert_before = PREV_INSN (last_loop_insn);
556 copy_end = PREV_INSN (insert_before);
558 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
560 insert_before = last_loop_insn;
561 #ifdef HAVE_cc0
562 /* The instruction immediately before the JUMP_INSN may be a compare
563 instruction which we do not want to copy or delete. */
564 if (sets_cc0_p (PREV_INSN (insert_before)))
565 insert_before = PREV_INSN (insert_before);
566 #endif
567 copy_end = PREV_INSN (insert_before);
569 else
571 /* We currently can't unroll a loop if it doesn't end with a
572 JUMP_INSN. There would need to be a mechanism that recognizes
573 this case, and then inserts a jump after each loop body, which
574 jumps to after the last loop body. */
575 if (loop_dump_stream)
576 fprintf (loop_dump_stream,
577 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
578 return;
581 else
583 /* Normal case: Must copy the compare and branch instructions at the
584 end of the loop. */
586 if (GET_CODE (last_loop_insn) == BARRIER)
588 /* Loop ends with an unconditional jump and a barrier.
589 Handle this like above, don't copy jump and barrier.
590 This is not strictly necessary, but doing so prevents generating
591 unconditional jumps to an immediately following label.
593 This will be corrected below if the target of this jump is
594 not the start_label. */
596 insert_before = PREV_INSN (last_loop_insn);
597 copy_end = PREV_INSN (insert_before);
599 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
601 /* Set insert_before to immediately after the JUMP_INSN, so that
602 NOTEs at the end of the loop will be correctly handled by
603 copy_loop_body. */
604 insert_before = NEXT_INSN (last_loop_insn);
605 copy_end = last_loop_insn;
607 else
609 /* We currently can't unroll a loop if it doesn't end with a
610 JUMP_INSN. There would need to be a mechanism that recognizes
611 this case, and then inserts a jump after each loop body, which
612 jumps to after the last loop body. */
613 if (loop_dump_stream)
614 fprintf (loop_dump_stream,
615 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
616 return;
619 /* If copying exit test branches because they can not be eliminated,
620 then must convert the fall through case of the branch to a jump past
621 the end of the loop. Create a label to emit after the loop and save
622 it for later use. Do not use the label after the loop, if any, since
623 it might be used by insns outside the loop, or there might be insns
624 added before it later by final_[bg]iv_value which must be after
625 the real exit label. */
626 exit_label = gen_label_rtx ();
628 insn = loop_start;
629 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
630 insn = NEXT_INSN (insn);
632 if (GET_CODE (insn) == JUMP_INSN)
634 /* The loop starts with a jump down to the exit condition test.
635 Start copying the loop after the barrier following this
636 jump insn. */
637 copy_start = NEXT_INSN (insn);
639 /* Splitting induction variables doesn't work when the loop is
640 entered via a jump to the bottom, because then we end up doing
641 a comparison against a new register for a split variable, but
642 we did not execute the set insn for the new register because
643 it was skipped over. */
644 splitting_not_safe = 1;
645 if (loop_dump_stream)
646 fprintf (loop_dump_stream,
647 "Splitting not safe, because loop not entered at top.\n");
649 else
650 copy_start = loop_start;
653 /* This should always be the first label in the loop. */
654 start_label = NEXT_INSN (copy_start);
655 /* There may be a line number note and/or a loop continue note here. */
656 while (GET_CODE (start_label) == NOTE)
657 start_label = NEXT_INSN (start_label);
658 if (GET_CODE (start_label) != CODE_LABEL)
660 /* This can happen as a result of jump threading. If the first insns in
661 the loop test the same condition as the loop's backward jump, or the
662 opposite condition, then the backward jump will be modified to point
663 to elsewhere, and the loop's start label is deleted.
665 This case currently can not be handled by the loop unrolling code. */
667 if (loop_dump_stream)
668 fprintf (loop_dump_stream,
669 "Unrolling failure: unknown insns between BEG note and loop label.\n");
670 return;
672 if (LABEL_NAME (start_label))
674 /* The jump optimization pass must have combined the original start label
675 with a named label for a goto. We can't unroll this case because
676 jumps which go to the named label must be handled differently than
677 jumps to the loop start, and it is impossible to differentiate them
678 in this case. */
679 if (loop_dump_stream)
680 fprintf (loop_dump_stream,
681 "Unrolling failure: loop start label is gone\n");
682 return;
685 if (unroll_type == UNROLL_NAIVE
686 && GET_CODE (last_loop_insn) == BARRIER
687 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
688 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
690 /* In this case, we must copy the jump and barrier, because they will
691 not be converted to jumps to an immediately following label. */
693 insert_before = NEXT_INSN (last_loop_insn);
694 copy_end = last_loop_insn;
697 if (unroll_type == UNROLL_NAIVE
698 && GET_CODE (last_loop_insn) == JUMP_INSN
699 && start_label != JUMP_LABEL (last_loop_insn))
701 /* ??? The loop ends with a conditional branch that does not branch back
702 to the loop start label. In this case, we must emit an unconditional
703 branch to the loop exit after emitting the final branch.
704 copy_loop_body does not have support for this currently, so we
705 give up. It doesn't seem worthwhile to unroll anyways since
706 unrolling would increase the number of branch instructions
707 executed. */
708 if (loop_dump_stream)
709 fprintf (loop_dump_stream,
710 "Unrolling failure: final conditional branch not to loop start\n");
711 return;
714 /* Allocate a translation table for the labels and insn numbers.
715 They will be filled in as we copy the insns in the loop. */
717 max_labelno = max_label_num ();
718 max_insnno = get_max_uid ();
720 /* Various paths through the unroll code may reach the "egress" label
721 without initializing fields within the map structure.
723 To be safe, we use xcalloc to zero the memory. */
724 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
726 /* Allocate the label map. */
728 if (max_labelno > 0)
730 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
732 local_label = (char *) xcalloc (max_labelno, sizeof (char));
735 /* Search the loop and mark all local labels, i.e. the ones which have to
736 be distinct labels when copied. For all labels which might be
737 non-local, set their label_map entries to point to themselves.
738 If they happen to be local their label_map entries will be overwritten
739 before the loop body is copied. The label_map entries for local labels
740 will be set to a different value each time the loop body is copied. */
742 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
744 rtx note;
746 if (GET_CODE (insn) == CODE_LABEL)
747 local_label[CODE_LABEL_NUMBER (insn)] = 1;
748 else if (GET_CODE (insn) == JUMP_INSN)
750 if (JUMP_LABEL (insn))
751 set_label_in_map (map,
752 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
753 JUMP_LABEL (insn));
754 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
755 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
757 rtx pat = PATTERN (insn);
758 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
759 int len = XVECLEN (pat, diff_vec_p);
760 rtx label;
762 for (i = 0; i < len; i++)
764 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
765 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
769 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
770 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
771 XEXP (note, 0));
774 /* Allocate space for the insn map. */
776 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
778 /* Set this to zero, to indicate that we are doing loop unrolling,
779 not function inlining. */
780 map->inline_target = 0;
782 /* The register and constant maps depend on the number of registers
783 present, so the final maps can't be created until after
784 find_splittable_regs is called. However, they are needed for
785 preconditioning, so we create temporary maps when preconditioning
786 is performed. */
788 /* The preconditioning code may allocate two new pseudo registers. */
789 maxregnum = max_reg_num ();
791 /* local_regno is only valid for regnos < max_local_regnum. */
792 max_local_regnum = maxregnum;
794 /* Allocate and zero out the splittable_regs and addr_combined_regs
795 arrays. These must be zeroed here because they will be used if
796 loop preconditioning is performed, and must be zero for that case.
798 It is safe to do this here, since the extra registers created by the
799 preconditioning code and find_splittable_regs will never be used
800 to access the splittable_regs[] and addr_combined_regs[] arrays. */
802 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
803 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
804 addr_combined_regs
805 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
806 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
808 /* Mark all local registers, i.e. the ones which are referenced only
809 inside the loop. */
810 if (INSN_UID (copy_end) < max_uid_for_loop)
812 int copy_start_luid = INSN_LUID (copy_start);
813 int copy_end_luid = INSN_LUID (copy_end);
815 /* If a register is used in the jump insn, we must not duplicate it
816 since it will also be used outside the loop. */
817 if (GET_CODE (copy_end) == JUMP_INSN)
818 copy_end_luid--;
820 /* If we have a target that uses cc0, then we also must not duplicate
821 the insn that sets cc0 before the jump insn, if one is present. */
822 #ifdef HAVE_cc0
823 if (GET_CODE (copy_end) == JUMP_INSN
824 && sets_cc0_p (PREV_INSN (copy_end)))
825 copy_end_luid--;
826 #endif
828 /* If copy_start points to the NOTE that starts the loop, then we must
829 use the next luid, because invariant pseudo-regs moved out of the loop
830 have their lifetimes modified to start here, but they are not safe
831 to duplicate. */
832 if (copy_start == loop_start)
833 copy_start_luid++;
835 /* If a pseudo's lifetime is entirely contained within this loop, then we
836 can use a different pseudo in each unrolled copy of the loop. This
837 results in better code. */
838 /* We must limit the generic test to max_reg_before_loop, because only
839 these pseudo registers have valid regno_first_uid info. */
840 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
841 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
842 && REGNO_FIRST_LUID (r) >= copy_start_luid
843 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
844 && REGNO_LAST_LUID (r) <= copy_end_luid)
846 /* However, we must also check for loop-carried dependencies.
847 If the value the pseudo has at the end of iteration X is
848 used by iteration X+1, then we can not use a different pseudo
849 for each unrolled copy of the loop. */
850 /* A pseudo is safe if regno_first_uid is a set, and this
851 set dominates all instructions from regno_first_uid to
852 regno_last_uid. */
853 /* ??? This check is simplistic. We would get better code if
854 this check was more sophisticated. */
855 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
856 copy_start, copy_end))
857 local_regno[r] = 1;
859 if (loop_dump_stream)
861 if (local_regno[r])
862 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
863 else
864 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
870 /* If this loop requires exit tests when unrolled, check to see if we
871 can precondition the loop so as to make the exit tests unnecessary.
872 Just like variable splitting, this is not safe if the loop is entered
873 via a jump to the bottom. Also, can not do this if no strength
874 reduce info, because precondition_loop_p uses this info. */
876 /* Must copy the loop body for preconditioning before the following
877 find_splittable_regs call since that will emit insns which need to
878 be after the preconditioned loop copies, but immediately before the
879 unrolled loop copies. */
881 /* Also, it is not safe to split induction variables for the preconditioned
882 copies of the loop body. If we split induction variables, then the code
883 assumes that each induction variable can be represented as a function
884 of its initial value and the loop iteration number. This is not true
885 in this case, because the last preconditioned copy of the loop body
886 could be any iteration from the first up to the `unroll_number-1'th,
887 depending on the initial value of the iteration variable. Therefore
888 we can not split induction variables here, because we can not calculate
889 their value. Hence, this code must occur before find_splittable_regs
890 is called. */
892 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
894 rtx initial_value, final_value, increment;
895 enum machine_mode mode;
897 if (precondition_loop_p (loop,
898 &initial_value, &final_value, &increment,
899 &mode))
901 rtx diff;
902 rtx *labels;
903 int abs_inc, neg_inc;
905 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
907 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
908 "unroll_loop_precondition");
909 global_const_equiv_varray = map->const_equiv_varray;
911 init_reg_map (map, maxregnum);
913 /* Limit loop unrolling to 4, since this will make 7 copies of
914 the loop body. */
915 if (unroll_number > 4)
916 unroll_number = 4;
918 /* Save the absolute value of the increment, and also whether or
919 not it is negative. */
920 neg_inc = 0;
921 abs_inc = INTVAL (increment);
922 if (abs_inc < 0)
924 abs_inc = -abs_inc;
925 neg_inc = 1;
928 start_sequence ();
930 /* Calculate the difference between the final and initial values.
931 Final value may be a (plus (reg x) (const_int 1)) rtx.
932 Let the following cse pass simplify this if initial value is
933 a constant.
935 We must copy the final and initial values here to avoid
936 improperly shared rtl. */
938 diff = expand_simple_binop (mode, MINUS, copy_rtx (final_value),
939 copy_rtx (initial_value), NULL_RTX, 0,
940 OPTAB_LIB_WIDEN);
942 /* Now calculate (diff % (unroll * abs (increment))) by using an
943 and instruction. */
944 diff = expand_simple_binop (GET_MODE (diff), AND, diff,
945 GEN_INT (unroll_number * abs_inc - 1),
946 NULL_RTX, 0, OPTAB_LIB_WIDEN);
948 /* Now emit a sequence of branches to jump to the proper precond
949 loop entry point. */
951 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
952 for (i = 0; i < unroll_number; i++)
953 labels[i] = gen_label_rtx ();
955 /* Check for the case where the initial value is greater than or
956 equal to the final value. In that case, we want to execute
957 exactly one loop iteration. The code below will fail for this
958 case. This check does not apply if the loop has a NE
959 comparison at the end. */
961 if (loop_info->comparison_code != NE)
963 emit_cmp_and_jump_insns (initial_value, final_value,
964 neg_inc ? LE : GE,
965 NULL_RTX, mode, 0, 0, labels[1]);
966 predict_insn_def (get_last_insn (), PRED_LOOP_CONDITION, NOT_TAKEN);
967 JUMP_LABEL (get_last_insn ()) = labels[1];
968 LABEL_NUSES (labels[1])++;
971 /* Assuming the unroll_number is 4, and the increment is 2, then
972 for a negative increment: for a positive increment:
973 diff = 0,1 precond 0 diff = 0,7 precond 0
974 diff = 2,3 precond 3 diff = 1,2 precond 1
975 diff = 4,5 precond 2 diff = 3,4 precond 2
976 diff = 6,7 precond 1 diff = 5,6 precond 3 */
978 /* We only need to emit (unroll_number - 1) branches here, the
979 last case just falls through to the following code. */
981 /* ??? This would give better code if we emitted a tree of branches
982 instead of the current linear list of branches. */
984 for (i = 0; i < unroll_number - 1; i++)
986 int cmp_const;
987 enum rtx_code cmp_code;
989 /* For negative increments, must invert the constant compared
990 against, except when comparing against zero. */
991 if (i == 0)
993 cmp_const = 0;
994 cmp_code = EQ;
996 else if (neg_inc)
998 cmp_const = unroll_number - i;
999 cmp_code = GE;
1001 else
1003 cmp_const = i;
1004 cmp_code = LE;
1007 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1008 cmp_code, NULL_RTX, mode, 0, 0,
1009 labels[i]);
1010 JUMP_LABEL (get_last_insn ()) = labels[i];
1011 LABEL_NUSES (labels[i])++;
1012 predict_insn (get_last_insn (), PRED_LOOP_PRECONDITIONING,
1013 REG_BR_PROB_BASE / (unroll_number - i));
1016 /* If the increment is greater than one, then we need another branch,
1017 to handle other cases equivalent to 0. */
1019 /* ??? This should be merged into the code above somehow to help
1020 simplify the code here, and reduce the number of branches emitted.
1021 For the negative increment case, the branch here could easily
1022 be merged with the `0' case branch above. For the positive
1023 increment case, it is not clear how this can be simplified. */
1025 if (abs_inc != 1)
1027 int cmp_const;
1028 enum rtx_code cmp_code;
1030 if (neg_inc)
1032 cmp_const = abs_inc - 1;
1033 cmp_code = LE;
1035 else
1037 cmp_const = abs_inc * (unroll_number - 1) + 1;
1038 cmp_code = GE;
1041 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1042 NULL_RTX, mode, 0, 0, labels[0]);
1043 JUMP_LABEL (get_last_insn ()) = labels[0];
1044 LABEL_NUSES (labels[0])++;
1047 sequence = gen_sequence ();
1048 end_sequence ();
1049 loop_insn_hoist (loop, sequence);
1051 /* Only the last copy of the loop body here needs the exit
1052 test, so set copy_end to exclude the compare/branch here,
1053 and then reset it inside the loop when get to the last
1054 copy. */
1056 if (GET_CODE (last_loop_insn) == BARRIER)
1057 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1058 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1060 copy_end = PREV_INSN (last_loop_insn);
1061 #ifdef HAVE_cc0
1062 /* The immediately preceding insn may be a compare which
1063 we do not want to copy. */
1064 if (sets_cc0_p (PREV_INSN (copy_end)))
1065 copy_end = PREV_INSN (copy_end);
1066 #endif
1068 else
1069 abort ();
1071 for (i = 1; i < unroll_number; i++)
1073 emit_label_after (labels[unroll_number - i],
1074 PREV_INSN (loop_start));
1076 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1077 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1078 0, (VARRAY_SIZE (map->const_equiv_varray)
1079 * sizeof (struct const_equiv_data)));
1080 map->const_age = 0;
1082 for (j = 0; j < max_labelno; j++)
1083 if (local_label[j])
1084 set_label_in_map (map, j, gen_label_rtx ());
1086 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1087 if (local_regno[r])
1089 map->reg_map[r]
1090 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1091 record_base_value (REGNO (map->reg_map[r]),
1092 regno_reg_rtx[r], 0);
1094 /* The last copy needs the compare/branch insns at the end,
1095 so reset copy_end here if the loop ends with a conditional
1096 branch. */
1098 if (i == unroll_number - 1)
1100 if (GET_CODE (last_loop_insn) == BARRIER)
1101 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1102 else
1103 copy_end = last_loop_insn;
1106 /* None of the copies are the `last_iteration', so just
1107 pass zero for that parameter. */
1108 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1109 unroll_type, start_label, loop_end,
1110 loop_start, copy_end);
1112 emit_label_after (labels[0], PREV_INSN (loop_start));
1114 if (GET_CODE (last_loop_insn) == BARRIER)
1116 insert_before = PREV_INSN (last_loop_insn);
1117 copy_end = PREV_INSN (insert_before);
1119 else
1121 insert_before = last_loop_insn;
1122 #ifdef HAVE_cc0
1123 /* The instruction immediately before the JUMP_INSN may
1124 be a compare instruction which we do not want to copy
1125 or delete. */
1126 if (sets_cc0_p (PREV_INSN (insert_before)))
1127 insert_before = PREV_INSN (insert_before);
1128 #endif
1129 copy_end = PREV_INSN (insert_before);
1132 /* Set unroll type to MODULO now. */
1133 unroll_type = UNROLL_MODULO;
1134 loop_preconditioned = 1;
1136 /* Clean up. */
1137 free (labels);
1141 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1142 the loop unless all loops are being unrolled. */
1143 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1145 if (loop_dump_stream)
1146 fprintf (loop_dump_stream,
1147 "Unrolling failure: Naive unrolling not being done.\n");
1148 goto egress;
1151 /* At this point, we are guaranteed to unroll the loop. */
1153 /* Keep track of the unroll factor for the loop. */
1154 loop_info->unroll_number = unroll_number;
1156 /* For each biv and giv, determine whether it can be safely split into
1157 a different variable for each unrolled copy of the loop body.
1158 We precalculate and save this info here, since computing it is
1159 expensive.
1161 Do this before deleting any instructions from the loop, so that
1162 back_branch_in_range_p will work correctly. */
1164 if (splitting_not_safe)
1165 temp = 0;
1166 else
1167 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1169 /* find_splittable_regs may have created some new registers, so must
1170 reallocate the reg_map with the new larger size, and must realloc
1171 the constant maps also. */
1173 maxregnum = max_reg_num ();
1174 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1176 init_reg_map (map, maxregnum);
1178 if (map->const_equiv_varray == 0)
1179 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1180 maxregnum + temp * unroll_number * 2,
1181 "unroll_loop");
1182 global_const_equiv_varray = map->const_equiv_varray;
1184 /* Search the list of bivs and givs to find ones which need to be remapped
1185 when split, and set their reg_map entry appropriately. */
1187 for (bl = ivs->list; bl; bl = bl->next)
1189 if (REGNO (bl->biv->src_reg) != bl->regno)
1190 map->reg_map[bl->regno] = bl->biv->src_reg;
1191 #if 0
1192 /* Currently, non-reduced/final-value givs are never split. */
1193 for (v = bl->giv; v; v = v->next_iv)
1194 if (REGNO (v->src_reg) != bl->regno)
1195 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1196 #endif
1199 /* Use our current register alignment and pointer flags. */
1200 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1201 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1203 /* If the loop is being partially unrolled, and the iteration variables
1204 are being split, and are being renamed for the split, then must fix up
1205 the compare/jump instruction at the end of the loop to refer to the new
1206 registers. This compare isn't copied, so the registers used in it
1207 will never be replaced if it isn't done here. */
1209 if (unroll_type == UNROLL_MODULO)
1211 insn = NEXT_INSN (copy_end);
1212 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1213 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1216 /* For unroll_number times, make a copy of each instruction
1217 between copy_start and copy_end, and insert these new instructions
1218 before the end of the loop. */
1220 for (i = 0; i < unroll_number; i++)
1222 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1223 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1224 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1225 map->const_age = 0;
1227 for (j = 0; j < max_labelno; j++)
1228 if (local_label[j])
1229 set_label_in_map (map, j, gen_label_rtx ());
1231 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1232 if (local_regno[r])
1234 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1235 record_base_value (REGNO (map->reg_map[r]),
1236 regno_reg_rtx[r], 0);
1239 /* If loop starts with a branch to the test, then fix it so that
1240 it points to the test of the first unrolled copy of the loop. */
1241 if (i == 0 && loop_start != copy_start)
1243 insn = PREV_INSN (copy_start);
1244 pattern = PATTERN (insn);
1246 tem = get_label_from_map (map,
1247 CODE_LABEL_NUMBER
1248 (XEXP (SET_SRC (pattern), 0)));
1249 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1251 /* Set the jump label so that it can be used by later loop unrolling
1252 passes. */
1253 JUMP_LABEL (insn) = tem;
1254 LABEL_NUSES (tem)++;
1257 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1258 i == unroll_number - 1, unroll_type, start_label,
1259 loop_end, insert_before, insert_before);
1262 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1263 insn to be deleted. This prevents any runaway delete_insn call from
1264 more insns that it should, as it always stops at a CODE_LABEL. */
1266 /* Delete the compare and branch at the end of the loop if completely
1267 unrolling the loop. Deleting the backward branch at the end also
1268 deletes the code label at the start of the loop. This is done at
1269 the very end to avoid problems with back_branch_in_range_p. */
1271 if (unroll_type == UNROLL_COMPLETELY)
1272 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1273 else
1274 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1276 /* Delete all of the original loop instructions. Don't delete the
1277 LOOP_BEG note, or the first code label in the loop. */
1279 insn = NEXT_INSN (copy_start);
1280 while (insn != safety_label)
1282 /* ??? Don't delete named code labels. They will be deleted when the
1283 jump that references them is deleted. Otherwise, we end up deleting
1284 them twice, which causes them to completely disappear instead of turn
1285 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1286 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1287 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1288 associated LABEL_DECL to point to one of the new label instances. */
1289 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1290 if (insn != start_label
1291 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1292 && ! (GET_CODE (insn) == NOTE
1293 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1294 insn = delete_related_insns (insn);
1295 else
1296 insn = NEXT_INSN (insn);
1299 /* Can now delete the 'safety' label emitted to protect us from runaway
1300 delete_related_insns calls. */
1301 if (INSN_DELETED_P (safety_label))
1302 abort ();
1303 delete_related_insns (safety_label);
1305 /* If exit_label exists, emit it after the loop. Doing the emit here
1306 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1307 This is needed so that mostly_true_jump in reorg.c will treat jumps
1308 to this loop end label correctly, i.e. predict that they are usually
1309 not taken. */
1310 if (exit_label)
1311 emit_label_after (exit_label, loop_end);
1313 egress:
1314 if (unroll_type == UNROLL_COMPLETELY)
1316 /* Remove the loop notes since this is no longer a loop. */
1317 if (loop->vtop)
1318 delete_related_insns (loop->vtop);
1319 if (loop->cont)
1320 delete_related_insns (loop->cont);
1321 if (loop_start)
1322 delete_related_insns (loop_start);
1323 if (loop_end)
1324 delete_related_insns (loop_end);
1327 if (map->const_equiv_varray)
1328 VARRAY_FREE (map->const_equiv_varray);
1329 if (map->label_map)
1331 free (map->label_map);
1332 free (local_label);
1334 free (map->insn_map);
1335 free (splittable_regs);
1336 free (splittable_regs_updates);
1337 free (addr_combined_regs);
1338 free (local_regno);
1339 if (map->reg_map)
1340 free (map->reg_map);
1341 free (map);
1344 /* Return true if the loop can be safely, and profitably, preconditioned
1345 so that the unrolled copies of the loop body don't need exit tests.
1347 This only works if final_value, initial_value and increment can be
1348 determined, and if increment is a constant power of 2.
1349 If increment is not a power of 2, then the preconditioning modulo
1350 operation would require a real modulo instead of a boolean AND, and this
1351 is not considered `profitable'. */
1353 /* ??? If the loop is known to be executed very many times, or the machine
1354 has a very cheap divide instruction, then preconditioning is a win even
1355 when the increment is not a power of 2. Use RTX_COST to compute
1356 whether divide is cheap.
1357 ??? A divide by constant doesn't actually need a divide, look at
1358 expand_divmod. The reduced cost of this optimized modulo is not
1359 reflected in RTX_COST. */
1362 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1363 const struct loop *loop;
1364 rtx *initial_value, *final_value, *increment;
1365 enum machine_mode *mode;
1367 rtx loop_start = loop->start;
1368 struct loop_info *loop_info = LOOP_INFO (loop);
1370 if (loop_info->n_iterations > 0)
1372 *initial_value = const0_rtx;
1373 *increment = const1_rtx;
1374 *final_value = GEN_INT (loop_info->n_iterations);
1375 *mode = word_mode;
1377 if (loop_dump_stream)
1379 fputs ("Preconditioning: Success, number of iterations known, ",
1380 loop_dump_stream);
1381 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1382 loop_info->n_iterations);
1383 fputs (".\n", loop_dump_stream);
1385 return 1;
1388 if (loop_info->iteration_var == 0)
1390 if (loop_dump_stream)
1391 fprintf (loop_dump_stream,
1392 "Preconditioning: Could not find iteration variable.\n");
1393 return 0;
1395 else if (loop_info->initial_value == 0)
1397 if (loop_dump_stream)
1398 fprintf (loop_dump_stream,
1399 "Preconditioning: Could not find initial value.\n");
1400 return 0;
1402 else if (loop_info->increment == 0)
1404 if (loop_dump_stream)
1405 fprintf (loop_dump_stream,
1406 "Preconditioning: Could not find increment value.\n");
1407 return 0;
1409 else if (GET_CODE (loop_info->increment) != CONST_INT)
1411 if (loop_dump_stream)
1412 fprintf (loop_dump_stream,
1413 "Preconditioning: Increment not a constant.\n");
1414 return 0;
1416 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1417 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1419 if (loop_dump_stream)
1420 fprintf (loop_dump_stream,
1421 "Preconditioning: Increment not a constant power of 2.\n");
1422 return 0;
1425 /* Unsigned_compare and compare_dir can be ignored here, since they do
1426 not matter for preconditioning. */
1428 if (loop_info->final_value == 0)
1430 if (loop_dump_stream)
1431 fprintf (loop_dump_stream,
1432 "Preconditioning: EQ comparison loop.\n");
1433 return 0;
1436 /* Must ensure that final_value is invariant, so call
1437 loop_invariant_p to check. Before doing so, must check regno
1438 against max_reg_before_loop to make sure that the register is in
1439 the range covered by loop_invariant_p. If it isn't, then it is
1440 most likely a biv/giv which by definition are not invariant. */
1441 if ((GET_CODE (loop_info->final_value) == REG
1442 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1443 || (GET_CODE (loop_info->final_value) == PLUS
1444 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1445 || ! loop_invariant_p (loop, loop_info->final_value))
1447 if (loop_dump_stream)
1448 fprintf (loop_dump_stream,
1449 "Preconditioning: Final value not invariant.\n");
1450 return 0;
1453 /* Fail for floating point values, since the caller of this function
1454 does not have code to deal with them. */
1455 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1456 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1458 if (loop_dump_stream)
1459 fprintf (loop_dump_stream,
1460 "Preconditioning: Floating point final or initial value.\n");
1461 return 0;
1464 /* Fail if loop_info->iteration_var is not live before loop_start,
1465 since we need to test its value in the preconditioning code. */
1467 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1468 > INSN_LUID (loop_start))
1470 if (loop_dump_stream)
1471 fprintf (loop_dump_stream,
1472 "Preconditioning: Iteration var not live before loop start.\n");
1473 return 0;
1476 /* Note that loop_iterations biases the initial value for GIV iterators
1477 such as "while (i-- > 0)" so that we can calculate the number of
1478 iterations just like for BIV iterators.
1480 Also note that the absolute values of initial_value and
1481 final_value are unimportant as only their difference is used for
1482 calculating the number of loop iterations. */
1483 *initial_value = loop_info->initial_value;
1484 *increment = loop_info->increment;
1485 *final_value = loop_info->final_value;
1487 /* Decide what mode to do these calculations in. Choose the larger
1488 of final_value's mode and initial_value's mode, or a full-word if
1489 both are constants. */
1490 *mode = GET_MODE (*final_value);
1491 if (*mode == VOIDmode)
1493 *mode = GET_MODE (*initial_value);
1494 if (*mode == VOIDmode)
1495 *mode = word_mode;
1497 else if (*mode != GET_MODE (*initial_value)
1498 && (GET_MODE_SIZE (*mode)
1499 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1500 *mode = GET_MODE (*initial_value);
1502 /* Success! */
1503 if (loop_dump_stream)
1504 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1505 return 1;
1508 /* All pseudo-registers must be mapped to themselves. Two hard registers
1509 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1510 REGNUM, to avoid function-inlining specific conversions of these
1511 registers. All other hard regs can not be mapped because they may be
1512 used with different
1513 modes. */
1515 static void
1516 init_reg_map (map, maxregnum)
1517 struct inline_remap *map;
1518 int maxregnum;
1520 int i;
1522 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1523 map->reg_map[i] = regno_reg_rtx[i];
1524 /* Just clear the rest of the entries. */
1525 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1526 map->reg_map[i] = 0;
1528 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1529 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1530 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1531 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1534 /* Strength-reduction will often emit code for optimized biv/givs which
1535 calculates their value in a temporary register, and then copies the result
1536 to the iv. This procedure reconstructs the pattern computing the iv;
1537 verifying that all operands are of the proper form.
1539 PATTERN must be the result of single_set.
1540 The return value is the amount that the giv is incremented by. */
1542 static rtx
1543 calculate_giv_inc (pattern, src_insn, regno)
1544 rtx pattern, src_insn;
1545 unsigned int regno;
1547 rtx increment;
1548 rtx increment_total = 0;
1549 int tries = 0;
1551 retry:
1552 /* Verify that we have an increment insn here. First check for a plus
1553 as the set source. */
1554 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1556 /* SR sometimes computes the new giv value in a temp, then copies it
1557 to the new_reg. */
1558 src_insn = PREV_INSN (src_insn);
1559 pattern = PATTERN (src_insn);
1560 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1561 abort ();
1563 /* The last insn emitted is not needed, so delete it to avoid confusing
1564 the second cse pass. This insn sets the giv unnecessarily. */
1565 delete_related_insns (get_last_insn ());
1568 /* Verify that we have a constant as the second operand of the plus. */
1569 increment = XEXP (SET_SRC (pattern), 1);
1570 if (GET_CODE (increment) != CONST_INT)
1572 /* SR sometimes puts the constant in a register, especially if it is
1573 too big to be an add immed operand. */
1574 src_insn = PREV_INSN (src_insn);
1575 increment = SET_SRC (PATTERN (src_insn));
1577 /* SR may have used LO_SUM to compute the constant if it is too large
1578 for a load immed operand. In this case, the constant is in operand
1579 one of the LO_SUM rtx. */
1580 if (GET_CODE (increment) == LO_SUM)
1581 increment = XEXP (increment, 1);
1583 /* Some ports store large constants in memory and add a REG_EQUAL
1584 note to the store insn. */
1585 else if (GET_CODE (increment) == MEM)
1587 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1588 if (note)
1589 increment = XEXP (note, 0);
1592 else if (GET_CODE (increment) == IOR
1593 || GET_CODE (increment) == ASHIFT
1594 || GET_CODE (increment) == PLUS)
1596 /* The rs6000 port loads some constants with IOR.
1597 The alpha port loads some constants with ASHIFT and PLUS. */
1598 rtx second_part = XEXP (increment, 1);
1599 enum rtx_code code = GET_CODE (increment);
1601 src_insn = PREV_INSN (src_insn);
1602 increment = SET_SRC (PATTERN (src_insn));
1603 /* Don't need the last insn anymore. */
1604 delete_related_insns (get_last_insn ());
1606 if (GET_CODE (second_part) != CONST_INT
1607 || GET_CODE (increment) != CONST_INT)
1608 abort ();
1610 if (code == IOR)
1611 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1612 else if (code == PLUS)
1613 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1614 else
1615 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1618 if (GET_CODE (increment) != CONST_INT)
1619 abort ();
1621 /* The insn loading the constant into a register is no longer needed,
1622 so delete it. */
1623 delete_related_insns (get_last_insn ());
1626 if (increment_total)
1627 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1628 else
1629 increment_total = increment;
1631 /* Check that the source register is the same as the register we expected
1632 to see as the source. If not, something is seriously wrong. */
1633 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1634 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1636 /* Some machines (e.g. the romp), may emit two add instructions for
1637 certain constants, so lets try looking for another add immediately
1638 before this one if we have only seen one add insn so far. */
1640 if (tries == 0)
1642 tries++;
1644 src_insn = PREV_INSN (src_insn);
1645 pattern = PATTERN (src_insn);
1647 delete_related_insns (get_last_insn ());
1649 goto retry;
1652 abort ();
1655 return increment_total;
1658 /* Copy REG_NOTES, except for insn references, because not all insn_map
1659 entries are valid yet. We do need to copy registers now though, because
1660 the reg_map entries can change during copying. */
1662 static rtx
1663 initial_reg_note_copy (notes, map)
1664 rtx notes;
1665 struct inline_remap *map;
1667 rtx copy;
1669 if (notes == 0)
1670 return 0;
1672 copy = rtx_alloc (GET_CODE (notes));
1673 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1675 if (GET_CODE (notes) == EXPR_LIST)
1676 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1677 else if (GET_CODE (notes) == INSN_LIST)
1678 /* Don't substitute for these yet. */
1679 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1680 else
1681 abort ();
1683 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1685 return copy;
1688 /* Fixup insn references in copied REG_NOTES. */
1690 static void
1691 final_reg_note_copy (notesp, map)
1692 rtx *notesp;
1693 struct inline_remap *map;
1695 while (*notesp)
1697 rtx note = *notesp;
1699 if (GET_CODE (note) == INSN_LIST)
1701 /* Sometimes, we have a REG_WAS_0 note that points to a
1702 deleted instruction. In that case, we can just delete the
1703 note. */
1704 if (REG_NOTE_KIND (note) == REG_WAS_0)
1706 *notesp = XEXP (note, 1);
1707 continue;
1709 else
1711 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1713 /* If we failed to remap the note, something is awry. */
1714 if (!insn)
1715 abort ();
1717 XEXP (note, 0) = insn;
1721 notesp = &XEXP (note, 1);
1725 /* Copy each instruction in the loop, substituting from map as appropriate.
1726 This is very similar to a loop in expand_inline_function. */
1728 static void
1729 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1730 unroll_type, start_label, loop_end, insert_before,
1731 copy_notes_from)
1732 struct loop *loop;
1733 rtx copy_start, copy_end;
1734 struct inline_remap *map;
1735 rtx exit_label;
1736 int last_iteration;
1737 enum unroll_types unroll_type;
1738 rtx start_label, loop_end, insert_before, copy_notes_from;
1740 struct loop_ivs *ivs = LOOP_IVS (loop);
1741 rtx insn, pattern;
1742 rtx set, tem, copy = NULL_RTX;
1743 int dest_reg_was_split, i;
1744 #ifdef HAVE_cc0
1745 rtx cc0_insn = 0;
1746 #endif
1747 rtx final_label = 0;
1748 rtx giv_inc, giv_dest_reg, giv_src_reg;
1750 /* If this isn't the last iteration, then map any references to the
1751 start_label to final_label. Final label will then be emitted immediately
1752 after the end of this loop body if it was ever used.
1754 If this is the last iteration, then map references to the start_label
1755 to itself. */
1756 if (! last_iteration)
1758 final_label = gen_label_rtx ();
1759 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1761 else
1762 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1764 start_sequence ();
1766 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1767 Else gen_sequence could return a raw pattern for a jump which we pass
1768 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1769 a variety of losing behaviors later. */
1770 emit_note (0, NOTE_INSN_DELETED);
1772 insn = copy_start;
1775 insn = NEXT_INSN (insn);
1777 map->orig_asm_operands_vector = 0;
1779 switch (GET_CODE (insn))
1781 case INSN:
1782 pattern = PATTERN (insn);
1783 copy = 0;
1784 giv_inc = 0;
1786 /* Check to see if this is a giv that has been combined with
1787 some split address givs. (Combined in the sense that
1788 `combine_givs' in loop.c has put two givs in the same register.)
1789 In this case, we must search all givs based on the same biv to
1790 find the address givs. Then split the address givs.
1791 Do this before splitting the giv, since that may map the
1792 SET_DEST to a new register. */
1794 if ((set = single_set (insn))
1795 && GET_CODE (SET_DEST (set)) == REG
1796 && addr_combined_regs[REGNO (SET_DEST (set))])
1798 struct iv_class *bl;
1799 struct induction *v, *tv;
1800 unsigned int regno = REGNO (SET_DEST (set));
1802 v = addr_combined_regs[REGNO (SET_DEST (set))];
1803 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1805 /* Although the giv_inc amount is not needed here, we must call
1806 calculate_giv_inc here since it might try to delete the
1807 last insn emitted. If we wait until later to call it,
1808 we might accidentally delete insns generated immediately
1809 below by emit_unrolled_add. */
1811 giv_inc = calculate_giv_inc (set, insn, regno);
1813 /* Now find all address giv's that were combined with this
1814 giv 'v'. */
1815 for (tv = bl->giv; tv; tv = tv->next_iv)
1816 if (tv->giv_type == DEST_ADDR && tv->same == v)
1818 int this_giv_inc;
1820 /* If this DEST_ADDR giv was not split, then ignore it. */
1821 if (*tv->location != tv->dest_reg)
1822 continue;
1824 /* Scale this_giv_inc if the multiplicative factors of
1825 the two givs are different. */
1826 this_giv_inc = INTVAL (giv_inc);
1827 if (tv->mult_val != v->mult_val)
1828 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1829 * INTVAL (tv->mult_val));
1831 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1832 *tv->location = tv->dest_reg;
1834 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1836 /* Must emit an insn to increment the split address
1837 giv. Add in the const_adjust field in case there
1838 was a constant eliminated from the address. */
1839 rtx value, dest_reg;
1841 /* tv->dest_reg will be either a bare register,
1842 or else a register plus a constant. */
1843 if (GET_CODE (tv->dest_reg) == REG)
1844 dest_reg = tv->dest_reg;
1845 else
1846 dest_reg = XEXP (tv->dest_reg, 0);
1848 /* Check for shared address givs, and avoid
1849 incrementing the shared pseudo reg more than
1850 once. */
1851 if (! tv->same_insn && ! tv->shared)
1853 /* tv->dest_reg may actually be a (PLUS (REG)
1854 (CONST)) here, so we must call plus_constant
1855 to add the const_adjust amount before calling
1856 emit_unrolled_add below. */
1857 value = plus_constant (tv->dest_reg,
1858 tv->const_adjust);
1860 if (GET_CODE (value) == PLUS)
1862 /* The constant could be too large for an add
1863 immediate, so can't directly emit an insn
1864 here. */
1865 emit_unrolled_add (dest_reg, XEXP (value, 0),
1866 XEXP (value, 1));
1870 /* Reset the giv to be just the register again, in case
1871 it is used after the set we have just emitted.
1872 We must subtract the const_adjust factor added in
1873 above. */
1874 tv->dest_reg = plus_constant (dest_reg,
1875 -tv->const_adjust);
1876 *tv->location = tv->dest_reg;
1881 /* If this is a setting of a splittable variable, then determine
1882 how to split the variable, create a new set based on this split,
1883 and set up the reg_map so that later uses of the variable will
1884 use the new split variable. */
1886 dest_reg_was_split = 0;
1888 if ((set = single_set (insn))
1889 && GET_CODE (SET_DEST (set)) == REG
1890 && splittable_regs[REGNO (SET_DEST (set))])
1892 unsigned int regno = REGNO (SET_DEST (set));
1893 unsigned int src_regno;
1895 dest_reg_was_split = 1;
1897 giv_dest_reg = SET_DEST (set);
1898 giv_src_reg = giv_dest_reg;
1899 /* Compute the increment value for the giv, if it wasn't
1900 already computed above. */
1901 if (giv_inc == 0)
1902 giv_inc = calculate_giv_inc (set, insn, regno);
1904 src_regno = REGNO (giv_src_reg);
1906 if (unroll_type == UNROLL_COMPLETELY)
1908 /* Completely unrolling the loop. Set the induction
1909 variable to a known constant value. */
1911 /* The value in splittable_regs may be an invariant
1912 value, so we must use plus_constant here. */
1913 splittable_regs[regno]
1914 = plus_constant (splittable_regs[src_regno],
1915 INTVAL (giv_inc));
1917 if (GET_CODE (splittable_regs[regno]) == PLUS)
1919 giv_src_reg = XEXP (splittable_regs[regno], 0);
1920 giv_inc = XEXP (splittable_regs[regno], 1);
1922 else
1924 /* The splittable_regs value must be a REG or a
1925 CONST_INT, so put the entire value in the giv_src_reg
1926 variable. */
1927 giv_src_reg = splittable_regs[regno];
1928 giv_inc = const0_rtx;
1931 else
1933 /* Partially unrolling loop. Create a new pseudo
1934 register for the iteration variable, and set it to
1935 be a constant plus the original register. Except
1936 on the last iteration, when the result has to
1937 go back into the original iteration var register. */
1939 /* Handle bivs which must be mapped to a new register
1940 when split. This happens for bivs which need their
1941 final value set before loop entry. The new register
1942 for the biv was stored in the biv's first struct
1943 induction entry by find_splittable_regs. */
1945 if (regno < ivs->n_regs
1946 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1948 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1949 giv_dest_reg = giv_src_reg;
1952 #if 0
1953 /* If non-reduced/final-value givs were split, then
1954 this would have to remap those givs also. See
1955 find_splittable_regs. */
1956 #endif
1958 splittable_regs[regno]
1959 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1960 giv_inc,
1961 splittable_regs[src_regno]);
1962 giv_inc = splittable_regs[regno];
1964 /* Now split the induction variable by changing the dest
1965 of this insn to a new register, and setting its
1966 reg_map entry to point to this new register.
1968 If this is the last iteration, and this is the last insn
1969 that will update the iv, then reuse the original dest,
1970 to ensure that the iv will have the proper value when
1971 the loop exits or repeats.
1973 Using splittable_regs_updates here like this is safe,
1974 because it can only be greater than one if all
1975 instructions modifying the iv are always executed in
1976 order. */
1978 if (! last_iteration
1979 || (splittable_regs_updates[regno]-- != 1))
1981 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1982 giv_dest_reg = tem;
1983 map->reg_map[regno] = tem;
1984 record_base_value (REGNO (tem),
1985 giv_inc == const0_rtx
1986 ? giv_src_reg
1987 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1988 giv_src_reg, giv_inc),
1991 else
1992 map->reg_map[regno] = giv_src_reg;
1995 /* The constant being added could be too large for an add
1996 immediate, so can't directly emit an insn here. */
1997 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1998 copy = get_last_insn ();
1999 pattern = PATTERN (copy);
2001 else
2003 pattern = copy_rtx_and_substitute (pattern, map, 0);
2004 copy = emit_insn (pattern);
2006 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2008 #ifdef HAVE_cc0
2009 /* If this insn is setting CC0, it may need to look at
2010 the insn that uses CC0 to see what type of insn it is.
2011 In that case, the call to recog via validate_change will
2012 fail. So don't substitute constants here. Instead,
2013 do it when we emit the following insn.
2015 For example, see the pyr.md file. That machine has signed and
2016 unsigned compares. The compare patterns must check the
2017 following branch insn to see which what kind of compare to
2018 emit.
2020 If the previous insn set CC0, substitute constants on it as
2021 well. */
2022 if (sets_cc0_p (PATTERN (copy)) != 0)
2023 cc0_insn = copy;
2024 else
2026 if (cc0_insn)
2027 try_constants (cc0_insn, map);
2028 cc0_insn = 0;
2029 try_constants (copy, map);
2031 #else
2032 try_constants (copy, map);
2033 #endif
2035 /* Make split induction variable constants `permanent' since we
2036 know there are no backward branches across iteration variable
2037 settings which would invalidate this. */
2038 if (dest_reg_was_split)
2040 int regno = REGNO (SET_DEST (set));
2042 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2043 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2044 == map->const_age))
2045 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2047 break;
2049 case JUMP_INSN:
2050 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2051 copy = emit_jump_insn (pattern);
2052 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2054 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2055 && ! last_iteration)
2057 /* Update JUMP_LABEL make invert_jump work correctly. */
2058 JUMP_LABEL (copy) = get_label_from_map (map,
2059 CODE_LABEL_NUMBER
2060 (JUMP_LABEL (insn)));
2061 LABEL_NUSES (JUMP_LABEL (copy))++;
2063 /* This is a branch to the beginning of the loop; this is the
2064 last insn being copied; and this is not the last iteration.
2065 In this case, we want to change the original fall through
2066 case to be a branch past the end of the loop, and the
2067 original jump label case to fall_through. */
2069 if (!invert_jump (copy, exit_label, 0))
2071 rtx jmp;
2072 rtx lab = gen_label_rtx ();
2073 /* Can't do it by reversing the jump (probably because we
2074 couldn't reverse the conditions), so emit a new
2075 jump_insn after COPY, and redirect the jump around
2076 that. */
2077 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2078 jmp = emit_barrier_after (jmp);
2079 emit_label_after (lab, jmp);
2080 LABEL_NUSES (lab) = 0;
2081 if (!redirect_jump (copy, lab, 0))
2082 abort ();
2086 #ifdef HAVE_cc0
2087 if (cc0_insn)
2088 try_constants (cc0_insn, map);
2089 cc0_insn = 0;
2090 #endif
2091 try_constants (copy, map);
2093 /* Set the jump label of COPY correctly to avoid problems with
2094 later passes of unroll_loop, if INSN had jump label set. */
2095 if (JUMP_LABEL (insn))
2097 rtx label = 0;
2099 /* Can't use the label_map for every insn, since this may be
2100 the backward branch, and hence the label was not mapped. */
2101 if ((set = single_set (copy)))
2103 tem = SET_SRC (set);
2104 if (GET_CODE (tem) == LABEL_REF)
2105 label = XEXP (tem, 0);
2106 else if (GET_CODE (tem) == IF_THEN_ELSE)
2108 if (XEXP (tem, 1) != pc_rtx)
2109 label = XEXP (XEXP (tem, 1), 0);
2110 else
2111 label = XEXP (XEXP (tem, 2), 0);
2115 if (label && GET_CODE (label) == CODE_LABEL)
2116 JUMP_LABEL (copy) = label;
2117 else
2119 /* An unrecognizable jump insn, probably the entry jump
2120 for a switch statement. This label must have been mapped,
2121 so just use the label_map to get the new jump label. */
2122 JUMP_LABEL (copy)
2123 = get_label_from_map (map,
2124 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2127 /* If this is a non-local jump, then must increase the label
2128 use count so that the label will not be deleted when the
2129 original jump is deleted. */
2130 LABEL_NUSES (JUMP_LABEL (copy))++;
2132 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2133 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2135 rtx pat = PATTERN (copy);
2136 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2137 int len = XVECLEN (pat, diff_vec_p);
2138 int i;
2140 for (i = 0; i < len; i++)
2141 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2144 /* If this used to be a conditional jump insn but whose branch
2145 direction is now known, we must do something special. */
2146 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2148 #ifdef HAVE_cc0
2149 /* If the previous insn set cc0 for us, delete it. */
2150 if (only_sets_cc0_p (PREV_INSN (copy)))
2151 delete_related_insns (PREV_INSN (copy));
2152 #endif
2154 /* If this is now a no-op, delete it. */
2155 if (map->last_pc_value == pc_rtx)
2157 delete_insn (copy);
2158 copy = 0;
2160 else
2161 /* Otherwise, this is unconditional jump so we must put a
2162 BARRIER after it. We could do some dead code elimination
2163 here, but jump.c will do it just as well. */
2164 emit_barrier ();
2166 break;
2168 case CALL_INSN:
2169 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2170 copy = emit_call_insn (pattern);
2171 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2173 /* Because the USAGE information potentially contains objects other
2174 than hard registers, we need to copy it. */
2175 CALL_INSN_FUNCTION_USAGE (copy)
2176 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2177 map, 0);
2179 #ifdef HAVE_cc0
2180 if (cc0_insn)
2181 try_constants (cc0_insn, map);
2182 cc0_insn = 0;
2183 #endif
2184 try_constants (copy, map);
2186 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2188 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2189 break;
2191 case CODE_LABEL:
2192 /* If this is the loop start label, then we don't need to emit a
2193 copy of this label since no one will use it. */
2195 if (insn != start_label)
2197 copy = emit_label (get_label_from_map (map,
2198 CODE_LABEL_NUMBER (insn)));
2199 map->const_age++;
2201 break;
2203 case BARRIER:
2204 copy = emit_barrier ();
2205 break;
2207 case NOTE:
2208 /* VTOP and CONT notes are valid only before the loop exit test.
2209 If placed anywhere else, loop may generate bad code. */
2210 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2211 the associated rtl. We do not want to share the structure in
2212 this new block. */
2214 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2215 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2216 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2217 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2218 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2219 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2220 copy = emit_note (NOTE_SOURCE_FILE (insn),
2221 NOTE_LINE_NUMBER (insn));
2222 else
2223 copy = 0;
2224 break;
2226 default:
2227 abort ();
2230 map->insn_map[INSN_UID (insn)] = copy;
2232 while (insn != copy_end);
2234 /* Now finish coping the REG_NOTES. */
2235 insn = copy_start;
2238 insn = NEXT_INSN (insn);
2239 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2240 || GET_CODE (insn) == CALL_INSN)
2241 && map->insn_map[INSN_UID (insn)])
2242 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2244 while (insn != copy_end);
2246 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2247 each of these notes here, since there may be some important ones, such as
2248 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2249 iteration, because the original notes won't be deleted.
2251 We can't use insert_before here, because when from preconditioning,
2252 insert_before points before the loop. We can't use copy_end, because
2253 there may be insns already inserted after it (which we don't want to
2254 copy) when not from preconditioning code. */
2256 if (! last_iteration)
2258 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2260 /* VTOP notes are valid only before the loop exit test.
2261 If placed anywhere else, loop may generate bad code.
2262 There is no need to test for NOTE_INSN_LOOP_CONT notes
2263 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2264 instructions before the last insn in the loop, and if the
2265 end test is that short, there will be a VTOP note between
2266 the CONT note and the test. */
2267 if (GET_CODE (insn) == NOTE
2268 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2269 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2270 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2271 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2275 if (final_label && LABEL_NUSES (final_label) > 0)
2276 emit_label (final_label);
2278 tem = gen_sequence ();
2279 end_sequence ();
2280 loop_insn_emit_before (loop, 0, insert_before, tem);
2283 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2284 emitted. This will correctly handle the case where the increment value
2285 won't fit in the immediate field of a PLUS insns. */
2287 void
2288 emit_unrolled_add (dest_reg, src_reg, increment)
2289 rtx dest_reg, src_reg, increment;
2291 rtx result;
2293 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2294 dest_reg, 0, OPTAB_LIB_WIDEN);
2296 if (dest_reg != result)
2297 emit_move_insn (dest_reg, result);
2300 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2301 is a backward branch in that range that branches to somewhere between
2302 LOOP->START and INSN. Returns 0 otherwise. */
2304 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2305 In practice, this is not a problem, because this function is seldom called,
2306 and uses a negligible amount of CPU time on average. */
2309 back_branch_in_range_p (loop, insn)
2310 const struct loop *loop;
2311 rtx insn;
2313 rtx p, q, target_insn;
2314 rtx loop_start = loop->start;
2315 rtx loop_end = loop->end;
2316 rtx orig_loop_end = loop->end;
2318 /* Stop before we get to the backward branch at the end of the loop. */
2319 loop_end = prev_nonnote_insn (loop_end);
2320 if (GET_CODE (loop_end) == BARRIER)
2321 loop_end = PREV_INSN (loop_end);
2323 /* Check in case insn has been deleted, search forward for first non
2324 deleted insn following it. */
2325 while (INSN_DELETED_P (insn))
2326 insn = NEXT_INSN (insn);
2328 /* Check for the case where insn is the last insn in the loop. Deal
2329 with the case where INSN was a deleted loop test insn, in which case
2330 it will now be the NOTE_LOOP_END. */
2331 if (insn == loop_end || insn == orig_loop_end)
2332 return 0;
2334 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2336 if (GET_CODE (p) == JUMP_INSN)
2338 target_insn = JUMP_LABEL (p);
2340 /* Search from loop_start to insn, to see if one of them is
2341 the target_insn. We can't use INSN_LUID comparisons here,
2342 since insn may not have an LUID entry. */
2343 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2344 if (q == target_insn)
2345 return 1;
2349 return 0;
2352 /* Try to generate the simplest rtx for the expression
2353 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2354 value of giv's. */
2356 static rtx
2357 fold_rtx_mult_add (mult1, mult2, add1, mode)
2358 rtx mult1, mult2, add1;
2359 enum machine_mode mode;
2361 rtx temp, mult_res;
2362 rtx result;
2364 /* The modes must all be the same. This should always be true. For now,
2365 check to make sure. */
2366 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2367 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2368 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2369 abort ();
2371 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2372 will be a constant. */
2373 if (GET_CODE (mult1) == CONST_INT)
2375 temp = mult2;
2376 mult2 = mult1;
2377 mult1 = temp;
2380 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2381 if (! mult_res)
2382 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2384 /* Again, put the constant second. */
2385 if (GET_CODE (add1) == CONST_INT)
2387 temp = add1;
2388 add1 = mult_res;
2389 mult_res = temp;
2392 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2393 if (! result)
2394 result = gen_rtx_PLUS (mode, add1, mult_res);
2396 return result;
2399 /* Searches the list of induction struct's for the biv BL, to try to calculate
2400 the total increment value for one iteration of the loop as a constant.
2402 Returns the increment value as an rtx, simplified as much as possible,
2403 if it can be calculated. Otherwise, returns 0. */
2406 biv_total_increment (bl)
2407 const struct iv_class *bl;
2409 struct induction *v;
2410 rtx result;
2412 /* For increment, must check every instruction that sets it. Each
2413 instruction must be executed only once each time through the loop.
2414 To verify this, we check that the insn is always executed, and that
2415 there are no backward branches after the insn that branch to before it.
2416 Also, the insn must have a mult_val of one (to make sure it really is
2417 an increment). */
2419 result = const0_rtx;
2420 for (v = bl->biv; v; v = v->next_iv)
2422 if (v->always_computable && v->mult_val == const1_rtx
2423 && ! v->maybe_multiple)
2424 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2425 else
2426 return 0;
2429 return result;
2432 /* For each biv and giv, determine whether it can be safely split into
2433 a different variable for each unrolled copy of the loop body. If it
2434 is safe to split, then indicate that by saving some useful info
2435 in the splittable_regs array.
2437 If the loop is being completely unrolled, then splittable_regs will hold
2438 the current value of the induction variable while the loop is unrolled.
2439 It must be set to the initial value of the induction variable here.
2440 Otherwise, splittable_regs will hold the difference between the current
2441 value of the induction variable and the value the induction variable had
2442 at the top of the loop. It must be set to the value 0 here.
2444 Returns the total number of instructions that set registers that are
2445 splittable. */
2447 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2448 constant values are unnecessary, since we can easily calculate increment
2449 values in this case even if nothing is constant. The increment value
2450 should not involve a multiply however. */
2452 /* ?? Even if the biv/giv increment values aren't constant, it may still
2453 be beneficial to split the variable if the loop is only unrolled a few
2454 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2456 static int
2457 find_splittable_regs (loop, unroll_type, unroll_number)
2458 const struct loop *loop;
2459 enum unroll_types unroll_type;
2460 int unroll_number;
2462 struct loop_ivs *ivs = LOOP_IVS (loop);
2463 struct iv_class *bl;
2464 struct induction *v;
2465 rtx increment, tem;
2466 rtx biv_final_value;
2467 int biv_splittable;
2468 int result = 0;
2470 for (bl = ivs->list; bl; bl = bl->next)
2472 /* Biv_total_increment must return a constant value,
2473 otherwise we can not calculate the split values. */
2475 increment = biv_total_increment (bl);
2476 if (! increment || GET_CODE (increment) != CONST_INT)
2477 continue;
2479 /* The loop must be unrolled completely, or else have a known number
2480 of iterations and only one exit, or else the biv must be dead
2481 outside the loop, or else the final value must be known. Otherwise,
2482 it is unsafe to split the biv since it may not have the proper
2483 value on loop exit. */
2485 /* loop_number_exit_count is non-zero if the loop has an exit other than
2486 a fall through at the end. */
2488 biv_splittable = 1;
2489 biv_final_value = 0;
2490 if (unroll_type != UNROLL_COMPLETELY
2491 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2492 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2493 || ! bl->init_insn
2494 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2495 || (REGNO_FIRST_LUID (bl->regno)
2496 < INSN_LUID (bl->init_insn))
2497 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2498 && ! (biv_final_value = final_biv_value (loop, bl)))
2499 biv_splittable = 0;
2501 /* If any of the insns setting the BIV don't do so with a simple
2502 PLUS, we don't know how to split it. */
2503 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2504 if ((tem = single_set (v->insn)) == 0
2505 || GET_CODE (SET_DEST (tem)) != REG
2506 || REGNO (SET_DEST (tem)) != bl->regno
2507 || GET_CODE (SET_SRC (tem)) != PLUS)
2508 biv_splittable = 0;
2510 /* If final value is non-zero, then must emit an instruction which sets
2511 the value of the biv to the proper value. This is done after
2512 handling all of the givs, since some of them may need to use the
2513 biv's value in their initialization code. */
2515 /* This biv is splittable. If completely unrolling the loop, save
2516 the biv's initial value. Otherwise, save the constant zero. */
2518 if (biv_splittable == 1)
2520 if (unroll_type == UNROLL_COMPLETELY)
2522 /* If the initial value of the biv is itself (i.e. it is too
2523 complicated for strength_reduce to compute), or is a hard
2524 register, or it isn't invariant, then we must create a new
2525 pseudo reg to hold the initial value of the biv. */
2527 if (GET_CODE (bl->initial_value) == REG
2528 && (REGNO (bl->initial_value) == bl->regno
2529 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2530 || ! loop_invariant_p (loop, bl->initial_value)))
2532 rtx tem = gen_reg_rtx (bl->biv->mode);
2534 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2535 loop_insn_hoist (loop,
2536 gen_move_insn (tem, bl->biv->src_reg));
2538 if (loop_dump_stream)
2539 fprintf (loop_dump_stream,
2540 "Biv %d initial value remapped to %d.\n",
2541 bl->regno, REGNO (tem));
2543 splittable_regs[bl->regno] = tem;
2545 else
2546 splittable_regs[bl->regno] = bl->initial_value;
2548 else
2549 splittable_regs[bl->regno] = const0_rtx;
2551 /* Save the number of instructions that modify the biv, so that
2552 we can treat the last one specially. */
2554 splittable_regs_updates[bl->regno] = bl->biv_count;
2555 result += bl->biv_count;
2557 if (loop_dump_stream)
2558 fprintf (loop_dump_stream,
2559 "Biv %d safe to split.\n", bl->regno);
2562 /* Check every giv that depends on this biv to see whether it is
2563 splittable also. Even if the biv isn't splittable, givs which
2564 depend on it may be splittable if the biv is live outside the
2565 loop, and the givs aren't. */
2567 result += find_splittable_givs (loop, bl, unroll_type, increment,
2568 unroll_number);
2570 /* If final value is non-zero, then must emit an instruction which sets
2571 the value of the biv to the proper value. This is done after
2572 handling all of the givs, since some of them may need to use the
2573 biv's value in their initialization code. */
2574 if (biv_final_value)
2576 /* If the loop has multiple exits, emit the insns before the
2577 loop to ensure that it will always be executed no matter
2578 how the loop exits. Otherwise emit the insn after the loop,
2579 since this is slightly more efficient. */
2580 if (! loop->exit_count)
2581 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2582 biv_final_value));
2583 else
2585 /* Create a new register to hold the value of the biv, and then
2586 set the biv to its final value before the loop start. The biv
2587 is set to its final value before loop start to ensure that
2588 this insn will always be executed, no matter how the loop
2589 exits. */
2590 rtx tem = gen_reg_rtx (bl->biv->mode);
2591 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2593 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2594 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2595 biv_final_value));
2597 if (loop_dump_stream)
2598 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2599 REGNO (bl->biv->src_reg), REGNO (tem));
2601 /* Set up the mapping from the original biv register to the new
2602 register. */
2603 bl->biv->src_reg = tem;
2607 return result;
2610 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2611 for the instruction that is using it. Do not make any changes to that
2612 instruction. */
2614 static int
2615 verify_addresses (v, giv_inc, unroll_number)
2616 struct induction *v;
2617 rtx giv_inc;
2618 int unroll_number;
2620 int ret = 1;
2621 rtx orig_addr = *v->location;
2622 rtx last_addr = plus_constant (v->dest_reg,
2623 INTVAL (giv_inc) * (unroll_number - 1));
2625 /* First check to see if either address would fail. Handle the fact
2626 that we have may have a match_dup. */
2627 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2628 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2629 ret = 0;
2631 /* Now put things back the way they were before. This should always
2632 succeed. */
2633 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2634 abort ();
2636 return ret;
2639 /* For every giv based on the biv BL, check to determine whether it is
2640 splittable. This is a subroutine to find_splittable_regs ().
2642 Return the number of instructions that set splittable registers. */
2644 static int
2645 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2646 const struct loop *loop;
2647 struct iv_class *bl;
2648 enum unroll_types unroll_type;
2649 rtx increment;
2650 int unroll_number;
2652 struct loop_ivs *ivs = LOOP_IVS (loop);
2653 struct induction *v, *v2;
2654 rtx final_value;
2655 rtx tem;
2656 int result = 0;
2658 /* Scan the list of givs, and set the same_insn field when there are
2659 multiple identical givs in the same insn. */
2660 for (v = bl->giv; v; v = v->next_iv)
2661 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2662 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2663 && ! v2->same_insn)
2664 v2->same_insn = v;
2666 for (v = bl->giv; v; v = v->next_iv)
2668 rtx giv_inc, value;
2670 /* Only split the giv if it has already been reduced, or if the loop is
2671 being completely unrolled. */
2672 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2673 continue;
2675 /* The giv can be split if the insn that sets the giv is executed once
2676 and only once on every iteration of the loop. */
2677 /* An address giv can always be split. v->insn is just a use not a set,
2678 and hence it does not matter whether it is always executed. All that
2679 matters is that all the biv increments are always executed, and we
2680 won't reach here if they aren't. */
2681 if (v->giv_type != DEST_ADDR
2682 && (! v->always_computable
2683 || back_branch_in_range_p (loop, v->insn)))
2684 continue;
2686 /* The giv increment value must be a constant. */
2687 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2688 v->mode);
2689 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2690 continue;
2692 /* The loop must be unrolled completely, or else have a known number of
2693 iterations and only one exit, or else the giv must be dead outside
2694 the loop, or else the final value of the giv must be known.
2695 Otherwise, it is not safe to split the giv since it may not have the
2696 proper value on loop exit. */
2698 /* The used outside loop test will fail for DEST_ADDR givs. They are
2699 never used outside the loop anyways, so it is always safe to split a
2700 DEST_ADDR giv. */
2702 final_value = 0;
2703 if (unroll_type != UNROLL_COMPLETELY
2704 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2705 && v->giv_type != DEST_ADDR
2706 /* The next part is true if the pseudo is used outside the loop.
2707 We assume that this is true for any pseudo created after loop
2708 starts, because we don't have a reg_n_info entry for them. */
2709 && (REGNO (v->dest_reg) >= max_reg_before_loop
2710 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2711 /* Check for the case where the pseudo is set by a shift/add
2712 sequence, in which case the first insn setting the pseudo
2713 is the first insn of the shift/add sequence. */
2714 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2715 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2716 != INSN_UID (XEXP (tem, 0)))))
2717 /* Line above always fails if INSN was moved by loop opt. */
2718 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2719 >= INSN_LUID (loop->end)))
2720 && ! (final_value = v->final_value))
2721 continue;
2723 #if 0
2724 /* Currently, non-reduced/final-value givs are never split. */
2725 /* Should emit insns after the loop if possible, as the biv final value
2726 code below does. */
2728 /* If the final value is non-zero, and the giv has not been reduced,
2729 then must emit an instruction to set the final value. */
2730 if (final_value && !v->new_reg)
2732 /* Create a new register to hold the value of the giv, and then set
2733 the giv to its final value before the loop start. The giv is set
2734 to its final value before loop start to ensure that this insn
2735 will always be executed, no matter how we exit. */
2736 tem = gen_reg_rtx (v->mode);
2737 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2738 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2740 if (loop_dump_stream)
2741 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2742 REGNO (v->dest_reg), REGNO (tem));
2744 v->src_reg = tem;
2746 #endif
2748 /* This giv is splittable. If completely unrolling the loop, save the
2749 giv's initial value. Otherwise, save the constant zero for it. */
2751 if (unroll_type == UNROLL_COMPLETELY)
2753 /* It is not safe to use bl->initial_value here, because it may not
2754 be invariant. It is safe to use the initial value stored in
2755 the splittable_regs array if it is set. In rare cases, it won't
2756 be set, so then we do exactly the same thing as
2757 find_splittable_regs does to get a safe value. */
2758 rtx biv_initial_value;
2760 if (splittable_regs[bl->regno])
2761 biv_initial_value = splittable_regs[bl->regno];
2762 else if (GET_CODE (bl->initial_value) != REG
2763 || (REGNO (bl->initial_value) != bl->regno
2764 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2765 biv_initial_value = bl->initial_value;
2766 else
2768 rtx tem = gen_reg_rtx (bl->biv->mode);
2770 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2771 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2772 biv_initial_value = tem;
2774 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2775 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2776 v->add_val, v->mode);
2778 else
2779 value = const0_rtx;
2781 if (v->new_reg)
2783 /* If a giv was combined with another giv, then we can only split
2784 this giv if the giv it was combined with was reduced. This
2785 is because the value of v->new_reg is meaningless in this
2786 case. */
2787 if (v->same && ! v->same->new_reg)
2789 if (loop_dump_stream)
2790 fprintf (loop_dump_stream,
2791 "giv combined with unreduced giv not split.\n");
2792 continue;
2794 /* If the giv is an address destination, it could be something other
2795 than a simple register, these have to be treated differently. */
2796 else if (v->giv_type == DEST_REG)
2798 /* If value is not a constant, register, or register plus
2799 constant, then compute its value into a register before
2800 loop start. This prevents invalid rtx sharing, and should
2801 generate better code. We can use bl->initial_value here
2802 instead of splittable_regs[bl->regno] because this code
2803 is going before the loop start. */
2804 if (unroll_type == UNROLL_COMPLETELY
2805 && GET_CODE (value) != CONST_INT
2806 && GET_CODE (value) != REG
2807 && (GET_CODE (value) != PLUS
2808 || GET_CODE (XEXP (value, 0)) != REG
2809 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2811 rtx tem = gen_reg_rtx (v->mode);
2812 record_base_value (REGNO (tem), v->add_val, 0);
2813 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2814 v->add_val, tem);
2815 value = tem;
2818 splittable_regs[REGNO (v->new_reg)] = value;
2820 else
2822 /* Splitting address givs is useful since it will often allow us
2823 to eliminate some increment insns for the base giv as
2824 unnecessary. */
2826 /* If the addr giv is combined with a dest_reg giv, then all
2827 references to that dest reg will be remapped, which is NOT
2828 what we want for split addr regs. We always create a new
2829 register for the split addr giv, just to be safe. */
2831 /* If we have multiple identical address givs within a
2832 single instruction, then use a single pseudo reg for
2833 both. This is necessary in case one is a match_dup
2834 of the other. */
2836 v->const_adjust = 0;
2838 if (v->same_insn)
2840 v->dest_reg = v->same_insn->dest_reg;
2841 if (loop_dump_stream)
2842 fprintf (loop_dump_stream,
2843 "Sharing address givs in insn %d\n",
2844 INSN_UID (v->insn));
2846 /* If multiple address GIVs have been combined with the
2847 same dest_reg GIV, do not create a new register for
2848 each. */
2849 else if (unroll_type != UNROLL_COMPLETELY
2850 && v->giv_type == DEST_ADDR
2851 && v->same && v->same->giv_type == DEST_ADDR
2852 && v->same->unrolled
2853 /* combine_givs_p may return true for some cases
2854 where the add and mult values are not equal.
2855 To share a register here, the values must be
2856 equal. */
2857 && rtx_equal_p (v->same->mult_val, v->mult_val)
2858 && rtx_equal_p (v->same->add_val, v->add_val)
2859 /* If the memory references have different modes,
2860 then the address may not be valid and we must
2861 not share registers. */
2862 && verify_addresses (v, giv_inc, unroll_number))
2864 v->dest_reg = v->same->dest_reg;
2865 v->shared = 1;
2867 else if (unroll_type != UNROLL_COMPLETELY)
2869 /* If not completely unrolling the loop, then create a new
2870 register to hold the split value of the DEST_ADDR giv.
2871 Emit insn to initialize its value before loop start. */
2873 rtx tem = gen_reg_rtx (v->mode);
2874 struct induction *same = v->same;
2875 rtx new_reg = v->new_reg;
2876 record_base_value (REGNO (tem), v->add_val, 0);
2878 /* If the address giv has a constant in its new_reg value,
2879 then this constant can be pulled out and put in value,
2880 instead of being part of the initialization code. */
2882 if (GET_CODE (new_reg) == PLUS
2883 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
2885 v->dest_reg
2886 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
2888 /* Only succeed if this will give valid addresses.
2889 Try to validate both the first and the last
2890 address resulting from loop unrolling, if
2891 one fails, then can't do const elim here. */
2892 if (verify_addresses (v, giv_inc, unroll_number))
2894 /* Save the negative of the eliminated const, so
2895 that we can calculate the dest_reg's increment
2896 value later. */
2897 v->const_adjust = -INTVAL (XEXP (new_reg, 1));
2899 new_reg = XEXP (new_reg, 0);
2900 if (loop_dump_stream)
2901 fprintf (loop_dump_stream,
2902 "Eliminating constant from giv %d\n",
2903 REGNO (tem));
2905 else
2906 v->dest_reg = tem;
2908 else
2909 v->dest_reg = tem;
2911 /* If the address hasn't been checked for validity yet, do so
2912 now, and fail completely if either the first or the last
2913 unrolled copy of the address is not a valid address
2914 for the instruction that uses it. */
2915 if (v->dest_reg == tem
2916 && ! verify_addresses (v, giv_inc, unroll_number))
2918 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2919 if (v2->same_insn == v)
2920 v2->same_insn = 0;
2922 if (loop_dump_stream)
2923 fprintf (loop_dump_stream,
2924 "Invalid address for giv at insn %d\n",
2925 INSN_UID (v->insn));
2926 continue;
2929 v->new_reg = new_reg;
2930 v->same = same;
2932 /* We set this after the address check, to guarantee that
2933 the register will be initialized. */
2934 v->unrolled = 1;
2936 /* To initialize the new register, just move the value of
2937 new_reg into it. This is not guaranteed to give a valid
2938 instruction on machines with complex addressing modes.
2939 If we can't recognize it, then delete it and emit insns
2940 to calculate the value from scratch. */
2941 loop_insn_hoist (loop, gen_rtx_SET (VOIDmode, tem,
2942 copy_rtx (v->new_reg)));
2943 if (recog_memoized (PREV_INSN (loop->start)) < 0)
2945 rtx sequence, ret;
2947 /* We can't use bl->initial_value to compute the initial
2948 value, because the loop may have been preconditioned.
2949 We must calculate it from NEW_REG. */
2950 delete_related_insns (PREV_INSN (loop->start));
2952 start_sequence ();
2953 ret = force_operand (v->new_reg, tem);
2954 if (ret != tem)
2955 emit_move_insn (tem, ret);
2956 sequence = gen_sequence ();
2957 end_sequence ();
2958 loop_insn_hoist (loop, sequence);
2960 if (loop_dump_stream)
2961 fprintf (loop_dump_stream,
2962 "Invalid init insn, rewritten.\n");
2965 else
2967 v->dest_reg = value;
2969 /* Check the resulting address for validity, and fail
2970 if the resulting address would be invalid. */
2971 if (! verify_addresses (v, giv_inc, unroll_number))
2973 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2974 if (v2->same_insn == v)
2975 v2->same_insn = 0;
2977 if (loop_dump_stream)
2978 fprintf (loop_dump_stream,
2979 "Invalid address for giv at insn %d\n",
2980 INSN_UID (v->insn));
2981 continue;
2985 /* Store the value of dest_reg into the insn. This sharing
2986 will not be a problem as this insn will always be copied
2987 later. */
2989 *v->location = v->dest_reg;
2991 /* If this address giv is combined with a dest reg giv, then
2992 save the base giv's induction pointer so that we will be
2993 able to handle this address giv properly. The base giv
2994 itself does not have to be splittable. */
2996 if (v->same && v->same->giv_type == DEST_REG)
2997 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2999 if (GET_CODE (v->new_reg) == REG)
3001 /* This giv maybe hasn't been combined with any others.
3002 Make sure that it's giv is marked as splittable here. */
3004 splittable_regs[REGNO (v->new_reg)] = value;
3006 /* Make it appear to depend upon itself, so that the
3007 giv will be properly split in the main loop above. */
3008 if (! v->same)
3010 v->same = v;
3011 addr_combined_regs[REGNO (v->new_reg)] = v;
3015 if (loop_dump_stream)
3016 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3019 else
3021 #if 0
3022 /* Currently, unreduced giv's can't be split. This is not too much
3023 of a problem since unreduced giv's are not live across loop
3024 iterations anyways. When unrolling a loop completely though,
3025 it makes sense to reduce&split givs when possible, as this will
3026 result in simpler instructions, and will not require that a reg
3027 be live across loop iterations. */
3029 splittable_regs[REGNO (v->dest_reg)] = value;
3030 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3031 REGNO (v->dest_reg), INSN_UID (v->insn));
3032 #else
3033 continue;
3034 #endif
3037 /* Unreduced givs are only updated once by definition. Reduced givs
3038 are updated as many times as their biv is. Mark it so if this is
3039 a splittable register. Don't need to do anything for address givs
3040 where this may not be a register. */
3042 if (GET_CODE (v->new_reg) == REG)
3044 int count = 1;
3045 if (! v->ignore)
3046 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
3048 splittable_regs_updates[REGNO (v->new_reg)] = count;
3051 result++;
3053 if (loop_dump_stream)
3055 int regnum;
3057 if (GET_CODE (v->dest_reg) == CONST_INT)
3058 regnum = -1;
3059 else if (GET_CODE (v->dest_reg) != REG)
3060 regnum = REGNO (XEXP (v->dest_reg, 0));
3061 else
3062 regnum = REGNO (v->dest_reg);
3063 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3064 regnum, INSN_UID (v->insn));
3068 return result;
3071 /* Try to prove that the register is dead after the loop exits. Trace every
3072 loop exit looking for an insn that will always be executed, which sets
3073 the register to some value, and appears before the first use of the register
3074 is found. If successful, then return 1, otherwise return 0. */
3076 /* ?? Could be made more intelligent in the handling of jumps, so that
3077 it can search past if statements and other similar structures. */
3079 static int
3080 reg_dead_after_loop (loop, reg)
3081 const struct loop *loop;
3082 rtx reg;
3084 rtx insn, label;
3085 enum rtx_code code;
3086 int jump_count = 0;
3087 int label_count = 0;
3089 /* In addition to checking all exits of this loop, we must also check
3090 all exits of inner nested loops that would exit this loop. We don't
3091 have any way to identify those, so we just give up if there are any
3092 such inner loop exits. */
3094 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3095 label_count++;
3097 if (label_count != loop->exit_count)
3098 return 0;
3100 /* HACK: Must also search the loop fall through exit, create a label_ref
3101 here which points to the loop->end, and append the loop_number_exit_labels
3102 list to it. */
3103 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3104 LABEL_NEXTREF (label) = loop->exit_labels;
3106 for (; label; label = LABEL_NEXTREF (label))
3108 /* Succeed if find an insn which sets the biv or if reach end of
3109 function. Fail if find an insn that uses the biv, or if come to
3110 a conditional jump. */
3112 insn = NEXT_INSN (XEXP (label, 0));
3113 while (insn)
3115 code = GET_CODE (insn);
3116 if (GET_RTX_CLASS (code) == 'i')
3118 rtx set;
3120 if (reg_referenced_p (reg, PATTERN (insn)))
3121 return 0;
3123 set = single_set (insn);
3124 if (set && rtx_equal_p (SET_DEST (set), reg))
3125 break;
3128 if (code == JUMP_INSN)
3130 if (GET_CODE (PATTERN (insn)) == RETURN)
3131 break;
3132 else if (!any_uncondjump_p (insn)
3133 /* Prevent infinite loop following infinite loops. */
3134 || jump_count++ > 20)
3135 return 0;
3136 else
3137 insn = JUMP_LABEL (insn);
3140 insn = NEXT_INSN (insn);
3144 /* Success, the register is dead on all loop exits. */
3145 return 1;
3148 /* Try to calculate the final value of the biv, the value it will have at
3149 the end of the loop. If we can do it, return that value. */
3152 final_biv_value (loop, bl)
3153 const struct loop *loop;
3154 struct iv_class *bl;
3156 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3157 rtx increment, tem;
3159 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3161 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3162 return 0;
3164 /* The final value for reversed bivs must be calculated differently than
3165 for ordinary bivs. In this case, there is already an insn after the
3166 loop which sets this biv's final value (if necessary), and there are
3167 no other loop exits, so we can return any value. */
3168 if (bl->reversed)
3170 if (loop_dump_stream)
3171 fprintf (loop_dump_stream,
3172 "Final biv value for %d, reversed biv.\n", bl->regno);
3174 return const0_rtx;
3177 /* Try to calculate the final value as initial value + (number of iterations
3178 * increment). For this to work, increment must be invariant, the only
3179 exit from the loop must be the fall through at the bottom (otherwise
3180 it may not have its final value when the loop exits), and the initial
3181 value of the biv must be invariant. */
3183 if (n_iterations != 0
3184 && ! loop->exit_count
3185 && loop_invariant_p (loop, bl->initial_value))
3187 increment = biv_total_increment (bl);
3189 if (increment && loop_invariant_p (loop, increment))
3191 /* Can calculate the loop exit value, emit insns after loop
3192 end to calculate this value into a temporary register in
3193 case it is needed later. */
3195 tem = gen_reg_rtx (bl->biv->mode);
3196 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3197 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3198 bl->initial_value, tem);
3200 if (loop_dump_stream)
3201 fprintf (loop_dump_stream,
3202 "Final biv value for %d, calculated.\n", bl->regno);
3204 return tem;
3208 /* Check to see if the biv is dead at all loop exits. */
3209 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3211 if (loop_dump_stream)
3212 fprintf (loop_dump_stream,
3213 "Final biv value for %d, biv dead after loop exit.\n",
3214 bl->regno);
3216 return const0_rtx;
3219 return 0;
3222 /* Try to calculate the final value of the giv, the value it will have at
3223 the end of the loop. If we can do it, return that value. */
3226 final_giv_value (loop, v)
3227 const struct loop *loop;
3228 struct induction *v;
3230 struct loop_ivs *ivs = LOOP_IVS (loop);
3231 struct iv_class *bl;
3232 rtx insn;
3233 rtx increment, tem;
3234 rtx seq;
3235 rtx loop_end = loop->end;
3236 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3238 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3240 /* The final value for givs which depend on reversed bivs must be calculated
3241 differently than for ordinary givs. In this case, there is already an
3242 insn after the loop which sets this giv's final value (if necessary),
3243 and there are no other loop exits, so we can return any value. */
3244 if (bl->reversed)
3246 if (loop_dump_stream)
3247 fprintf (loop_dump_stream,
3248 "Final giv value for %d, depends on reversed biv\n",
3249 REGNO (v->dest_reg));
3250 return const0_rtx;
3253 /* Try to calculate the final value as a function of the biv it depends
3254 upon. The only exit from the loop must be the fall through at the bottom
3255 (otherwise it may not have its final value when the loop exits). */
3257 /* ??? Can calculate the final giv value by subtracting off the
3258 extra biv increments times the giv's mult_val. The loop must have
3259 only one exit for this to work, but the loop iterations does not need
3260 to be known. */
3262 if (n_iterations != 0
3263 && ! loop->exit_count)
3265 /* ?? It is tempting to use the biv's value here since these insns will
3266 be put after the loop, and hence the biv will have its final value
3267 then. However, this fails if the biv is subsequently eliminated.
3268 Perhaps determine whether biv's are eliminable before trying to
3269 determine whether giv's are replaceable so that we can use the
3270 biv value here if it is not eliminable. */
3272 /* We are emitting code after the end of the loop, so we must make
3273 sure that bl->initial_value is still valid then. It will still
3274 be valid if it is invariant. */
3276 increment = biv_total_increment (bl);
3278 if (increment && loop_invariant_p (loop, increment)
3279 && loop_invariant_p (loop, bl->initial_value))
3281 /* Can calculate the loop exit value of its biv as
3282 (n_iterations * increment) + initial_value */
3284 /* The loop exit value of the giv is then
3285 (final_biv_value - extra increments) * mult_val + add_val.
3286 The extra increments are any increments to the biv which
3287 occur in the loop after the giv's value is calculated.
3288 We must search from the insn that sets the giv to the end
3289 of the loop to calculate this value. */
3291 /* Put the final biv value in tem. */
3292 tem = gen_reg_rtx (v->mode);
3293 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3294 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3295 GEN_INT (n_iterations),
3296 extend_value_for_giv (v, bl->initial_value),
3297 tem);
3299 /* Subtract off extra increments as we find them. */
3300 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3301 insn = NEXT_INSN (insn))
3303 struct induction *biv;
3305 for (biv = bl->biv; biv; biv = biv->next_iv)
3306 if (biv->insn == insn)
3308 start_sequence ();
3309 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3310 biv->add_val, NULL_RTX, 0,
3311 OPTAB_LIB_WIDEN);
3312 seq = gen_sequence ();
3313 end_sequence ();
3314 loop_insn_sink (loop, seq);
3318 /* Now calculate the giv's final value. */
3319 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3321 if (loop_dump_stream)
3322 fprintf (loop_dump_stream,
3323 "Final giv value for %d, calc from biv's value.\n",
3324 REGNO (v->dest_reg));
3326 return tem;
3330 /* Replaceable giv's should never reach here. */
3331 if (v->replaceable)
3332 abort ();
3334 /* Check to see if the biv is dead at all loop exits. */
3335 if (reg_dead_after_loop (loop, v->dest_reg))
3337 if (loop_dump_stream)
3338 fprintf (loop_dump_stream,
3339 "Final giv value for %d, giv dead after loop exit.\n",
3340 REGNO (v->dest_reg));
3342 return const0_rtx;
3345 return 0;
3348 /* Look back before LOOP->START for the insn that sets REG and return
3349 the equivalent constant if there is a REG_EQUAL note otherwise just
3350 the SET_SRC of REG. */
3352 static rtx
3353 loop_find_equiv_value (loop, reg)
3354 const struct loop *loop;
3355 rtx reg;
3357 rtx loop_start = loop->start;
3358 rtx insn, set;
3359 rtx ret;
3361 ret = reg;
3362 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3364 if (GET_CODE (insn) == CODE_LABEL)
3365 break;
3367 else if (INSN_P (insn) && reg_set_p (reg, insn))
3369 /* We found the last insn before the loop that sets the register.
3370 If it sets the entire register, and has a REG_EQUAL note,
3371 then use the value of the REG_EQUAL note. */
3372 if ((set = single_set (insn))
3373 && (SET_DEST (set) == reg))
3375 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3377 /* Only use the REG_EQUAL note if it is a constant.
3378 Other things, divide in particular, will cause
3379 problems later if we use them. */
3380 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3381 && CONSTANT_P (XEXP (note, 0)))
3382 ret = XEXP (note, 0);
3383 else
3384 ret = SET_SRC (set);
3386 /* We cannot do this if it changes between the
3387 assignment and loop start though. */
3388 if (modified_between_p (ret, insn, loop_start))
3389 ret = reg;
3391 break;
3394 return ret;
3397 /* Return a simplified rtx for the expression OP - REG.
3399 REG must appear in OP, and OP must be a register or the sum of a register
3400 and a second term.
3402 Thus, the return value must be const0_rtx or the second term.
3404 The caller is responsible for verifying that REG appears in OP and OP has
3405 the proper form. */
3407 static rtx
3408 subtract_reg_term (op, reg)
3409 rtx op, reg;
3411 if (op == reg)
3412 return const0_rtx;
3413 if (GET_CODE (op) == PLUS)
3415 if (XEXP (op, 0) == reg)
3416 return XEXP (op, 1);
3417 else if (XEXP (op, 1) == reg)
3418 return XEXP (op, 0);
3420 /* OP does not contain REG as a term. */
3421 abort ();
3424 /* Find and return register term common to both expressions OP0 and
3425 OP1 or NULL_RTX if no such term exists. Each expression must be a
3426 REG or a PLUS of a REG. */
3428 static rtx
3429 find_common_reg_term (op0, op1)
3430 rtx op0, op1;
3432 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3433 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3435 rtx op00;
3436 rtx op01;
3437 rtx op10;
3438 rtx op11;
3440 if (GET_CODE (op0) == PLUS)
3441 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3442 else
3443 op01 = const0_rtx, op00 = op0;
3445 if (GET_CODE (op1) == PLUS)
3446 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3447 else
3448 op11 = const0_rtx, op10 = op1;
3450 /* Find and return common register term if present. */
3451 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3452 return op00;
3453 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3454 return op01;
3457 /* No common register term found. */
3458 return NULL_RTX;
3461 /* Determine the loop iterator and calculate the number of loop
3462 iterations. Returns the exact number of loop iterations if it can
3463 be calculated, otherwise returns zero. */
3465 unsigned HOST_WIDE_INT
3466 loop_iterations (loop)
3467 struct loop *loop;
3469 struct loop_info *loop_info = LOOP_INFO (loop);
3470 struct loop_ivs *ivs = LOOP_IVS (loop);
3471 rtx comparison, comparison_value;
3472 rtx iteration_var, initial_value, increment, final_value;
3473 enum rtx_code comparison_code;
3474 HOST_WIDE_INT inc;
3475 unsigned HOST_WIDE_INT abs_inc;
3476 unsigned HOST_WIDE_INT abs_diff;
3477 int off_by_one;
3478 int increment_dir;
3479 int unsigned_p, compare_dir, final_larger;
3480 rtx last_loop_insn;
3481 rtx reg_term;
3482 struct iv_class *bl;
3484 loop_info->n_iterations = 0;
3485 loop_info->initial_value = 0;
3486 loop_info->initial_equiv_value = 0;
3487 loop_info->comparison_value = 0;
3488 loop_info->final_value = 0;
3489 loop_info->final_equiv_value = 0;
3490 loop_info->increment = 0;
3491 loop_info->iteration_var = 0;
3492 loop_info->unroll_number = 1;
3493 loop_info->iv = 0;
3495 /* We used to use prev_nonnote_insn here, but that fails because it might
3496 accidentally get the branch for a contained loop if the branch for this
3497 loop was deleted. We can only trust branches immediately before the
3498 loop_end. */
3499 last_loop_insn = PREV_INSN (loop->end);
3501 /* ??? We should probably try harder to find the jump insn
3502 at the end of the loop. The following code assumes that
3503 the last loop insn is a jump to the top of the loop. */
3504 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3506 if (loop_dump_stream)
3507 fprintf (loop_dump_stream,
3508 "Loop iterations: No final conditional branch found.\n");
3509 return 0;
3512 /* If there is a more than a single jump to the top of the loop
3513 we cannot (easily) determine the iteration count. */
3514 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3516 if (loop_dump_stream)
3517 fprintf (loop_dump_stream,
3518 "Loop iterations: Loop has multiple back edges.\n");
3519 return 0;
3522 /* If there are multiple conditionalized loop exit tests, they may jump
3523 back to differing CODE_LABELs. */
3524 if (loop->top && loop->cont)
3526 rtx temp = PREV_INSN (last_loop_insn);
3530 if (GET_CODE (temp) == JUMP_INSN
3531 /* Previous unrolling may have generated new insns not covered
3532 by the uid_luid array. */
3533 && INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3534 /* Check if we jump back into the loop body. */
3535 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3536 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3538 if (loop_dump_stream)
3539 fprintf (loop_dump_stream,
3540 "Loop iterations: Loop has multiple back edges.\n");
3541 return 0;
3544 while ((temp = PREV_INSN (temp)) != loop->cont);
3547 /* Find the iteration variable. If the last insn is a conditional
3548 branch, and the insn before tests a register value, make that the
3549 iteration variable. */
3551 comparison = get_condition_for_loop (loop, last_loop_insn);
3552 if (comparison == 0)
3554 if (loop_dump_stream)
3555 fprintf (loop_dump_stream,
3556 "Loop iterations: No final comparison found.\n");
3557 return 0;
3560 /* ??? Get_condition may switch position of induction variable and
3561 invariant register when it canonicalizes the comparison. */
3563 comparison_code = GET_CODE (comparison);
3564 iteration_var = XEXP (comparison, 0);
3565 comparison_value = XEXP (comparison, 1);
3567 if (GET_CODE (iteration_var) != REG)
3569 if (loop_dump_stream)
3570 fprintf (loop_dump_stream,
3571 "Loop iterations: Comparison not against register.\n");
3572 return 0;
3575 /* The only new registers that are created before loop iterations
3576 are givs made from biv increments or registers created by
3577 load_mems. In the latter case, it is possible that try_copy_prop
3578 will propagate a new pseudo into the old iteration register but
3579 this will be marked by having the REG_USERVAR_P bit set. */
3581 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3582 && ! REG_USERVAR_P (iteration_var))
3583 abort ();
3585 /* Determine the initial value of the iteration variable, and the amount
3586 that it is incremented each loop. Use the tables constructed by
3587 the strength reduction pass to calculate these values. */
3589 /* Clear the result values, in case no answer can be found. */
3590 initial_value = 0;
3591 increment = 0;
3593 /* The iteration variable can be either a giv or a biv. Check to see
3594 which it is, and compute the variable's initial value, and increment
3595 value if possible. */
3597 /* If this is a new register, can't handle it since we don't have any
3598 reg_iv_type entry for it. */
3599 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3601 if (loop_dump_stream)
3602 fprintf (loop_dump_stream,
3603 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3604 return 0;
3607 /* Reject iteration variables larger than the host wide int size, since they
3608 could result in a number of iterations greater than the range of our
3609 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3610 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3611 > HOST_BITS_PER_WIDE_INT))
3613 if (loop_dump_stream)
3614 fprintf (loop_dump_stream,
3615 "Loop iterations: Iteration var rejected because mode too large.\n");
3616 return 0;
3618 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3620 if (loop_dump_stream)
3621 fprintf (loop_dump_stream,
3622 "Loop iterations: Iteration var not an integer.\n");
3623 return 0;
3625 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3627 if (REGNO (iteration_var) >= ivs->n_regs)
3628 abort ();
3630 /* Grab initial value, only useful if it is a constant. */
3631 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3632 initial_value = bl->initial_value;
3633 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3635 if (loop_dump_stream)
3636 fprintf (loop_dump_stream,
3637 "Loop iterations: Basic induction var not set once in each iteration.\n");
3638 return 0;
3641 increment = biv_total_increment (bl);
3643 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3645 HOST_WIDE_INT offset = 0;
3646 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3647 rtx biv_initial_value;
3649 if (REGNO (v->src_reg) >= ivs->n_regs)
3650 abort ();
3652 if (!v->always_executed || v->maybe_multiple)
3654 if (loop_dump_stream)
3655 fprintf (loop_dump_stream,
3656 "Loop iterations: General induction var not set once in each iteration.\n");
3657 return 0;
3660 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3662 /* Increment value is mult_val times the increment value of the biv. */
3664 increment = biv_total_increment (bl);
3665 if (increment)
3667 struct induction *biv_inc;
3669 increment = fold_rtx_mult_add (v->mult_val,
3670 extend_value_for_giv (v, increment),
3671 const0_rtx, v->mode);
3672 /* The caller assumes that one full increment has occured at the
3673 first loop test. But that's not true when the biv is incremented
3674 after the giv is set (which is the usual case), e.g.:
3675 i = 6; do {;} while (i++ < 9) .
3676 Therefore, we bias the initial value by subtracting the amount of
3677 the increment that occurs between the giv set and the giv test. */
3678 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3680 if (loop_insn_first_p (v->insn, biv_inc->insn))
3681 offset -= INTVAL (biv_inc->add_val);
3684 if (loop_dump_stream)
3685 fprintf (loop_dump_stream,
3686 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3687 (long) offset);
3689 /* Initial value is mult_val times the biv's initial value plus
3690 add_val. Only useful if it is a constant. */
3691 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3692 initial_value
3693 = fold_rtx_mult_add (v->mult_val,
3694 plus_constant (biv_initial_value, offset),
3695 v->add_val, v->mode);
3697 else
3699 if (loop_dump_stream)
3700 fprintf (loop_dump_stream,
3701 "Loop iterations: Not basic or general induction var.\n");
3702 return 0;
3705 if (initial_value == 0)
3706 return 0;
3708 unsigned_p = 0;
3709 off_by_one = 0;
3710 switch (comparison_code)
3712 case LEU:
3713 unsigned_p = 1;
3714 case LE:
3715 compare_dir = 1;
3716 off_by_one = 1;
3717 break;
3718 case GEU:
3719 unsigned_p = 1;
3720 case GE:
3721 compare_dir = -1;
3722 off_by_one = -1;
3723 break;
3724 case EQ:
3725 /* Cannot determine loop iterations with this case. */
3726 compare_dir = 0;
3727 break;
3728 case LTU:
3729 unsigned_p = 1;
3730 case LT:
3731 compare_dir = 1;
3732 break;
3733 case GTU:
3734 unsigned_p = 1;
3735 case GT:
3736 compare_dir = -1;
3737 case NE:
3738 compare_dir = 0;
3739 break;
3740 default:
3741 abort ();
3744 /* If the comparison value is an invariant register, then try to find
3745 its value from the insns before the start of the loop. */
3747 final_value = comparison_value;
3748 if (GET_CODE (comparison_value) == REG
3749 && loop_invariant_p (loop, comparison_value))
3751 final_value = loop_find_equiv_value (loop, comparison_value);
3753 /* If we don't get an invariant final value, we are better
3754 off with the original register. */
3755 if (! loop_invariant_p (loop, final_value))
3756 final_value = comparison_value;
3759 /* Calculate the approximate final value of the induction variable
3760 (on the last successful iteration). The exact final value
3761 depends on the branch operator, and increment sign. It will be
3762 wrong if the iteration variable is not incremented by one each
3763 time through the loop and (comparison_value + off_by_one -
3764 initial_value) % increment != 0.
3765 ??? Note that the final_value may overflow and thus final_larger
3766 will be bogus. A potentially infinite loop will be classified
3767 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3768 if (off_by_one)
3769 final_value = plus_constant (final_value, off_by_one);
3771 /* Save the calculated values describing this loop's bounds, in case
3772 precondition_loop_p will need them later. These values can not be
3773 recalculated inside precondition_loop_p because strength reduction
3774 optimizations may obscure the loop's structure.
3776 These values are only required by precondition_loop_p and insert_bct
3777 whenever the number of iterations cannot be computed at compile time.
3778 Only the difference between final_value and initial_value is
3779 important. Note that final_value is only approximate. */
3780 loop_info->initial_value = initial_value;
3781 loop_info->comparison_value = comparison_value;
3782 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3783 loop_info->increment = increment;
3784 loop_info->iteration_var = iteration_var;
3785 loop_info->comparison_code = comparison_code;
3786 loop_info->iv = bl;
3788 /* Try to determine the iteration count for loops such
3789 as (for i = init; i < init + const; i++). When running the
3790 loop optimization twice, the first pass often converts simple
3791 loops into this form. */
3793 if (REG_P (initial_value))
3795 rtx reg1;
3796 rtx reg2;
3797 rtx const2;
3799 reg1 = initial_value;
3800 if (GET_CODE (final_value) == PLUS)
3801 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3802 else
3803 reg2 = final_value, const2 = const0_rtx;
3805 /* Check for initial_value = reg1, final_value = reg2 + const2,
3806 where reg1 != reg2. */
3807 if (REG_P (reg2) && reg2 != reg1)
3809 rtx temp;
3811 /* Find what reg1 is equivalent to. Hopefully it will
3812 either be reg2 or reg2 plus a constant. */
3813 temp = loop_find_equiv_value (loop, reg1);
3815 if (find_common_reg_term (temp, reg2))
3816 initial_value = temp;
3817 else
3819 /* Find what reg2 is equivalent to. Hopefully it will
3820 either be reg1 or reg1 plus a constant. Let's ignore
3821 the latter case for now since it is not so common. */
3822 temp = loop_find_equiv_value (loop, reg2);
3824 if (temp == loop_info->iteration_var)
3825 temp = initial_value;
3826 if (temp == reg1)
3827 final_value = (const2 == const0_rtx)
3828 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3831 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3833 rtx temp;
3835 /* When running the loop optimizer twice, check_dbra_loop
3836 further obfuscates reversible loops of the form:
3837 for (i = init; i < init + const; i++). We often end up with
3838 final_value = 0, initial_value = temp, temp = temp2 - init,
3839 where temp2 = init + const. If the loop has a vtop we
3840 can replace initial_value with const. */
3842 temp = loop_find_equiv_value (loop, reg1);
3844 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3846 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3848 if (GET_CODE (temp2) == PLUS
3849 && XEXP (temp2, 0) == XEXP (temp, 1))
3850 initial_value = XEXP (temp2, 1);
3855 /* If have initial_value = reg + const1 and final_value = reg +
3856 const2, then replace initial_value with const1 and final_value
3857 with const2. This should be safe since we are protected by the
3858 initial comparison before entering the loop if we have a vtop.
3859 For example, a + b < a + c is not equivalent to b < c for all a
3860 when using modulo arithmetic.
3862 ??? Without a vtop we could still perform the optimization if we check
3863 the initial and final values carefully. */
3864 if (loop->vtop
3865 && (reg_term = find_common_reg_term (initial_value, final_value)))
3867 initial_value = subtract_reg_term (initial_value, reg_term);
3868 final_value = subtract_reg_term (final_value, reg_term);
3871 loop_info->initial_equiv_value = initial_value;
3872 loop_info->final_equiv_value = final_value;
3874 /* For EQ comparison loops, we don't have a valid final value.
3875 Check this now so that we won't leave an invalid value if we
3876 return early for any other reason. */
3877 if (comparison_code == EQ)
3878 loop_info->final_equiv_value = loop_info->final_value = 0;
3880 if (increment == 0)
3882 if (loop_dump_stream)
3883 fprintf (loop_dump_stream,
3884 "Loop iterations: Increment value can't be calculated.\n");
3885 return 0;
3888 if (GET_CODE (increment) != CONST_INT)
3890 /* If we have a REG, check to see if REG holds a constant value. */
3891 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3892 clear if it is worthwhile to try to handle such RTL. */
3893 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3894 increment = loop_find_equiv_value (loop, increment);
3896 if (GET_CODE (increment) != CONST_INT)
3898 if (loop_dump_stream)
3900 fprintf (loop_dump_stream,
3901 "Loop iterations: Increment value not constant ");
3902 print_simple_rtl (loop_dump_stream, increment);
3903 fprintf (loop_dump_stream, ".\n");
3905 return 0;
3907 loop_info->increment = increment;
3910 if (GET_CODE (initial_value) != CONST_INT)
3912 if (loop_dump_stream)
3914 fprintf (loop_dump_stream,
3915 "Loop iterations: Initial value not constant ");
3916 print_simple_rtl (loop_dump_stream, initial_value);
3917 fprintf (loop_dump_stream, ".\n");
3919 return 0;
3921 else if (comparison_code == EQ)
3923 if (loop_dump_stream)
3924 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3925 return 0;
3927 else if (GET_CODE (final_value) != CONST_INT)
3929 if (loop_dump_stream)
3931 fprintf (loop_dump_stream,
3932 "Loop iterations: Final value not constant ");
3933 print_simple_rtl (loop_dump_stream, final_value);
3934 fprintf (loop_dump_stream, ".\n");
3936 return 0;
3939 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3940 if (unsigned_p)
3941 final_larger
3942 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3943 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3944 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3945 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3946 else
3947 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3948 - (INTVAL (final_value) < INTVAL (initial_value));
3950 if (INTVAL (increment) > 0)
3951 increment_dir = 1;
3952 else if (INTVAL (increment) == 0)
3953 increment_dir = 0;
3954 else
3955 increment_dir = -1;
3957 /* There are 27 different cases: compare_dir = -1, 0, 1;
3958 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3959 There are 4 normal cases, 4 reverse cases (where the iteration variable
3960 will overflow before the loop exits), 4 infinite loop cases, and 15
3961 immediate exit (0 or 1 iteration depending on loop type) cases.
3962 Only try to optimize the normal cases. */
3964 /* (compare_dir/final_larger/increment_dir)
3965 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3966 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3967 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3968 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3970 /* ?? If the meaning of reverse loops (where the iteration variable
3971 will overflow before the loop exits) is undefined, then could
3972 eliminate all of these special checks, and just always assume
3973 the loops are normal/immediate/infinite. Note that this means
3974 the sign of increment_dir does not have to be known. Also,
3975 since it does not really hurt if immediate exit loops or infinite loops
3976 are optimized, then that case could be ignored also, and hence all
3977 loops can be optimized.
3979 According to ANSI Spec, the reverse loop case result is undefined,
3980 because the action on overflow is undefined.
3982 See also the special test for NE loops below. */
3984 if (final_larger == increment_dir && final_larger != 0
3985 && (final_larger == compare_dir || compare_dir == 0))
3986 /* Normal case. */
3988 else
3990 if (loop_dump_stream)
3991 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3992 return 0;
3995 /* Calculate the number of iterations, final_value is only an approximation,
3996 so correct for that. Note that abs_diff and n_iterations are
3997 unsigned, because they can be as large as 2^n - 1. */
3999 inc = INTVAL (increment);
4000 if (inc > 0)
4002 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
4003 abs_inc = inc;
4005 else if (inc < 0)
4007 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
4008 abs_inc = -inc;
4010 else
4011 abort ();
4013 /* Given that iteration_var is going to iterate over its own mode,
4014 not HOST_WIDE_INT, disregard higher bits that might have come
4015 into the picture due to sign extension of initial and final
4016 values. */
4017 abs_diff &= ((unsigned HOST_WIDE_INT)1
4018 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
4019 << 1) - 1;
4021 /* For NE tests, make sure that the iteration variable won't miss
4022 the final value. If abs_diff mod abs_incr is not zero, then the
4023 iteration variable will overflow before the loop exits, and we
4024 can not calculate the number of iterations. */
4025 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4026 return 0;
4028 /* Note that the number of iterations could be calculated using
4029 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4030 handle potential overflow of the summation. */
4031 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4032 return loop_info->n_iterations;
4035 /* Replace uses of split bivs with their split pseudo register. This is
4036 for original instructions which remain after loop unrolling without
4037 copying. */
4039 static rtx
4040 remap_split_bivs (loop, x)
4041 struct loop *loop;
4042 rtx x;
4044 struct loop_ivs *ivs = LOOP_IVS (loop);
4045 enum rtx_code code;
4046 int i;
4047 const char *fmt;
4049 if (x == 0)
4050 return x;
4052 code = GET_CODE (x);
4053 switch (code)
4055 case SCRATCH:
4056 case PC:
4057 case CC0:
4058 case CONST_INT:
4059 case CONST_DOUBLE:
4060 case CONST:
4061 case SYMBOL_REF:
4062 case LABEL_REF:
4063 return x;
4065 case REG:
4066 #if 0
4067 /* If non-reduced/final-value givs were split, then this would also
4068 have to remap those givs also. */
4069 #endif
4070 if (REGNO (x) < ivs->n_regs
4071 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
4072 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
4073 break;
4075 default:
4076 break;
4079 fmt = GET_RTX_FORMAT (code);
4080 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4082 if (fmt[i] == 'e')
4083 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
4084 else if (fmt[i] == 'E')
4086 int j;
4087 for (j = 0; j < XVECLEN (x, i); j++)
4088 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
4091 return x;
4094 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4095 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4096 return 0. COPY_START is where we can start looking for the insns
4097 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4098 insns.
4100 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4101 must dominate LAST_UID.
4103 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4104 may not dominate LAST_UID.
4106 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4107 must dominate LAST_UID. */
4110 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4111 int regno;
4112 int first_uid;
4113 int last_uid;
4114 rtx copy_start;
4115 rtx copy_end;
4117 int passed_jump = 0;
4118 rtx p = NEXT_INSN (copy_start);
4120 while (INSN_UID (p) != first_uid)
4122 if (GET_CODE (p) == JUMP_INSN)
4123 passed_jump = 1;
4124 /* Could not find FIRST_UID. */
4125 if (p == copy_end)
4126 return 0;
4127 p = NEXT_INSN (p);
4130 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4131 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4132 return 0;
4134 /* FIRST_UID is always executed. */
4135 if (passed_jump == 0)
4136 return 1;
4138 while (INSN_UID (p) != last_uid)
4140 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4141 can not be sure that FIRST_UID dominates LAST_UID. */
4142 if (GET_CODE (p) == CODE_LABEL)
4143 return 0;
4144 /* Could not find LAST_UID, but we reached the end of the loop, so
4145 it must be safe. */
4146 else if (p == copy_end)
4147 return 1;
4148 p = NEXT_INSN (p);
4151 /* FIRST_UID is always executed if LAST_UID is executed. */
4152 return 1;
4155 /* This routine is called when the number of iterations for the unrolled
4156 loop is one. The goal is to identify a loop that begins with an
4157 unconditional branch to the loop continuation note (or a label just after).
4158 In this case, the unconditional branch that starts the loop needs to be
4159 deleted so that we execute the single iteration. */
4161 static rtx
4162 ujump_to_loop_cont (loop_start, loop_cont)
4163 rtx loop_start;
4164 rtx loop_cont;
4166 rtx x, label, label_ref;
4168 /* See if loop start, or the next insn is an unconditional jump. */
4169 loop_start = next_nonnote_insn (loop_start);
4171 x = pc_set (loop_start);
4172 if (!x)
4173 return NULL_RTX;
4175 label_ref = SET_SRC (x);
4176 if (!label_ref)
4177 return NULL_RTX;
4179 /* Examine insn after loop continuation note. Return if not a label. */
4180 label = next_nonnote_insn (loop_cont);
4181 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4182 return NULL_RTX;
4184 /* Return the loop start if the branch label matches the code label. */
4185 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4186 return loop_start;
4187 else
4188 return NULL_RTX;