* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / reload.c
blob8b01ce25403a434cb58efc0e63860ee7f12c373c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
128 int reload_n_operands;
130 /* Replacing reloads.
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
155 /* Used to track what is modified by an operand. */
156 struct decomposition
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
165 #ifdef SECONDARY_MEMORY_NEEDED
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
244 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
245 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
246 static void combine_reloads PARAMS ((void));
247 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
248 enum reload_type, int, int));
249 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
250 enum machine_mode, enum machine_mode,
251 enum reg_class, int, int));
252 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
253 static struct decomposition decompose PARAMS ((rtx));
254 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
255 static int alternative_allows_memconst PARAMS ((const char *, int));
256 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
257 int, rtx, int *));
258 static rtx make_memloc PARAMS ((rtx, int));
259 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
260 int, enum reload_type, int, rtx));
261 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
262 static rtx subst_indexed_address PARAMS ((rtx));
263 static void update_auto_inc_notes PARAMS ((rtx, int, int));
264 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
265 int, enum reload_type,int, rtx));
266 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
267 enum machine_mode, int,
268 enum reload_type, int));
269 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
270 int, rtx));
271 static int find_inc_amount PARAMS ((rtx, rtx));
273 #ifdef HAVE_SECONDARY_RELOADS
275 /* Determine if any secondary reloads are needed for loading (if IN_P is
276 non-zero) or storing (if IN_P is zero) X to or from a reload register of
277 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
278 are needed, push them.
280 Return the reload number of the secondary reload we made, or -1 if
281 we didn't need one. *PICODE is set to the insn_code to use if we do
282 need a secondary reload. */
284 static int
285 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
286 type, picode)
287 int in_p;
288 rtx x;
289 int opnum;
290 int optional;
291 enum reg_class reload_class;
292 enum machine_mode reload_mode;
293 enum reload_type type;
294 enum insn_code *picode;
296 enum reg_class class = NO_REGS;
297 enum machine_mode mode = reload_mode;
298 enum insn_code icode = CODE_FOR_nothing;
299 enum reg_class t_class = NO_REGS;
300 enum machine_mode t_mode = VOIDmode;
301 enum insn_code t_icode = CODE_FOR_nothing;
302 enum reload_type secondary_type;
303 int s_reload, t_reload = -1;
305 if (type == RELOAD_FOR_INPUT_ADDRESS
306 || type == RELOAD_FOR_OUTPUT_ADDRESS
307 || type == RELOAD_FOR_INPADDR_ADDRESS
308 || type == RELOAD_FOR_OUTADDR_ADDRESS)
309 secondary_type = type;
310 else
311 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
313 *picode = CODE_FOR_nothing;
315 /* If X is a paradoxical SUBREG, use the inner value to determine both the
316 mode and object being reloaded. */
317 if (GET_CODE (x) == SUBREG
318 && (GET_MODE_SIZE (GET_MODE (x))
319 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
321 x = SUBREG_REG (x);
322 reload_mode = GET_MODE (x);
325 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
326 is still a pseudo-register by now, it *must* have an equivalent MEM
327 but we don't want to assume that), use that equivalent when seeing if
328 a secondary reload is needed since whether or not a reload is needed
329 might be sensitive to the form of the MEM. */
331 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
332 && reg_equiv_mem[REGNO (x)] != 0)
333 x = reg_equiv_mem[REGNO (x)];
335 #ifdef SECONDARY_INPUT_RELOAD_CLASS
336 if (in_p)
337 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
338 #endif
340 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
341 if (! in_p)
342 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
343 #endif
345 /* If we don't need any secondary registers, done. */
346 if (class == NO_REGS)
347 return -1;
349 /* Get a possible insn to use. If the predicate doesn't accept X, don't
350 use the insn. */
352 icode = (in_p ? reload_in_optab[(int) reload_mode]
353 : reload_out_optab[(int) reload_mode]);
355 if (icode != CODE_FOR_nothing
356 && insn_data[(int) icode].operand[in_p].predicate
357 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
358 icode = CODE_FOR_nothing;
360 /* If we will be using an insn, see if it can directly handle the reload
361 register we will be using. If it can, the secondary reload is for a
362 scratch register. If it can't, we will use the secondary reload for
363 an intermediate register and require a tertiary reload for the scratch
364 register. */
366 if (icode != CODE_FOR_nothing)
368 /* If IN_P is non-zero, the reload register will be the output in
369 operand 0. If IN_P is zero, the reload register will be the input
370 in operand 1. Outputs should have an initial "=", which we must
371 skip. */
373 enum reg_class insn_class;
375 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
376 insn_class = ALL_REGS;
377 else
379 char insn_letter
380 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
381 insn_class
382 = (insn_letter == 'r' ? GENERAL_REGS
383 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
385 if (insn_class == NO_REGS)
386 abort ();
387 if (in_p
388 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
389 abort ();
392 /* The scratch register's constraint must start with "=&". */
393 if (insn_data[(int) icode].operand[2].constraint[0] != '='
394 || insn_data[(int) icode].operand[2].constraint[1] != '&')
395 abort ();
397 if (reg_class_subset_p (reload_class, insn_class))
398 mode = insn_data[(int) icode].operand[2].mode;
399 else
401 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
402 class = insn_class;
403 t_mode = insn_data[(int) icode].operand[2].mode;
404 t_class = (t_letter == 'r' ? GENERAL_REGS
405 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
406 t_icode = icode;
407 icode = CODE_FOR_nothing;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 if (in_p && class == reload_class && icode == CODE_FOR_nothing
426 && t_icode == CODE_FOR_nothing)
427 abort ();
429 /* If we need a tertiary reload, see if we have one we can reuse or else
430 make a new one. */
432 if (t_class != NO_REGS)
434 for (t_reload = 0; t_reload < n_reloads; t_reload++)
435 if (rld[t_reload].secondary_p
436 && (reg_class_subset_p (t_class, rld[t_reload].class)
437 || reg_class_subset_p (rld[t_reload].class, t_class))
438 && ((in_p && rld[t_reload].inmode == t_mode)
439 || (! in_p && rld[t_reload].outmode == t_mode))
440 && ((in_p && (rld[t_reload].secondary_in_icode
441 == CODE_FOR_nothing))
442 || (! in_p &&(rld[t_reload].secondary_out_icode
443 == CODE_FOR_nothing)))
444 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
445 && MERGABLE_RELOADS (secondary_type,
446 rld[t_reload].when_needed,
447 opnum, rld[t_reload].opnum))
449 if (in_p)
450 rld[t_reload].inmode = t_mode;
451 if (! in_p)
452 rld[t_reload].outmode = t_mode;
454 if (reg_class_subset_p (t_class, rld[t_reload].class))
455 rld[t_reload].class = t_class;
457 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
458 rld[t_reload].optional &= optional;
459 rld[t_reload].secondary_p = 1;
460 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
461 opnum, rld[t_reload].opnum))
462 rld[t_reload].when_needed = RELOAD_OTHER;
465 if (t_reload == n_reloads)
467 /* We need to make a new tertiary reload for this register class. */
468 rld[t_reload].in = rld[t_reload].out = 0;
469 rld[t_reload].class = t_class;
470 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
471 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
472 rld[t_reload].reg_rtx = 0;
473 rld[t_reload].optional = optional;
474 rld[t_reload].inc = 0;
475 /* Maybe we could combine these, but it seems too tricky. */
476 rld[t_reload].nocombine = 1;
477 rld[t_reload].in_reg = 0;
478 rld[t_reload].out_reg = 0;
479 rld[t_reload].opnum = opnum;
480 rld[t_reload].when_needed = secondary_type;
481 rld[t_reload].secondary_in_reload = -1;
482 rld[t_reload].secondary_out_reload = -1;
483 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
484 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
485 rld[t_reload].secondary_p = 1;
487 n_reloads++;
491 /* See if we can reuse an existing secondary reload. */
492 for (s_reload = 0; s_reload < n_reloads; s_reload++)
493 if (rld[s_reload].secondary_p
494 && (reg_class_subset_p (class, rld[s_reload].class)
495 || reg_class_subset_p (rld[s_reload].class, class))
496 && ((in_p && rld[s_reload].inmode == mode)
497 || (! in_p && rld[s_reload].outmode == mode))
498 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
499 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
500 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
501 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
502 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
503 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
504 opnum, rld[s_reload].opnum))
506 if (in_p)
507 rld[s_reload].inmode = mode;
508 if (! in_p)
509 rld[s_reload].outmode = mode;
511 if (reg_class_subset_p (class, rld[s_reload].class))
512 rld[s_reload].class = class;
514 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
515 rld[s_reload].optional &= optional;
516 rld[s_reload].secondary_p = 1;
517 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
518 opnum, rld[s_reload].opnum))
519 rld[s_reload].when_needed = RELOAD_OTHER;
522 if (s_reload == n_reloads)
524 #ifdef SECONDARY_MEMORY_NEEDED
525 /* If we need a memory location to copy between the two reload regs,
526 set it up now. Note that we do the input case before making
527 the reload and the output case after. This is due to the
528 way reloads are output. */
530 if (in_p && icode == CODE_FOR_nothing
531 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
533 get_secondary_mem (x, reload_mode, opnum, type);
535 /* We may have just added new reloads. Make sure we add
536 the new reload at the end. */
537 s_reload = n_reloads;
539 #endif
541 /* We need to make a new secondary reload for this register class. */
542 rld[s_reload].in = rld[s_reload].out = 0;
543 rld[s_reload].class = class;
545 rld[s_reload].inmode = in_p ? mode : VOIDmode;
546 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
547 rld[s_reload].reg_rtx = 0;
548 rld[s_reload].optional = optional;
549 rld[s_reload].inc = 0;
550 /* Maybe we could combine these, but it seems too tricky. */
551 rld[s_reload].nocombine = 1;
552 rld[s_reload].in_reg = 0;
553 rld[s_reload].out_reg = 0;
554 rld[s_reload].opnum = opnum;
555 rld[s_reload].when_needed = secondary_type;
556 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
557 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
558 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
559 rld[s_reload].secondary_out_icode
560 = ! in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_p = 1;
563 n_reloads++;
565 #ifdef SECONDARY_MEMORY_NEEDED
566 if (! in_p && icode == CODE_FOR_nothing
567 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
568 get_secondary_mem (x, mode, opnum, type);
569 #endif
572 *picode = icode;
573 return s_reload;
575 #endif /* HAVE_SECONDARY_RELOADS */
577 #ifdef SECONDARY_MEMORY_NEEDED
579 /* Return a memory location that will be used to copy X in mode MODE.
580 If we haven't already made a location for this mode in this insn,
581 call find_reloads_address on the location being returned. */
584 get_secondary_mem (x, mode, opnum, type)
585 rtx x ATTRIBUTE_UNUSED;
586 enum machine_mode mode;
587 int opnum;
588 enum reload_type type;
590 rtx loc;
591 int mem_valid;
593 /* By default, if MODE is narrower than a word, widen it to a word.
594 This is required because most machines that require these memory
595 locations do not support short load and stores from all registers
596 (e.g., FP registers). */
598 #ifdef SECONDARY_MEMORY_NEEDED_MODE
599 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
600 #else
601 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
602 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
603 #endif
605 /* If we already have made a MEM for this operand in MODE, return it. */
606 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
607 return secondary_memlocs_elim[(int) mode][opnum];
609 /* If this is the first time we've tried to get a MEM for this mode,
610 allocate a new one. `something_changed' in reload will get set
611 by noticing that the frame size has changed. */
613 if (secondary_memlocs[(int) mode] == 0)
615 #ifdef SECONDARY_MEMORY_NEEDED_RTX
616 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
617 #else
618 secondary_memlocs[(int) mode]
619 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
620 #endif
623 /* Get a version of the address doing any eliminations needed. If that
624 didn't give us a new MEM, make a new one if it isn't valid. */
626 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
627 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
629 if (! mem_valid && loc == secondary_memlocs[(int) mode])
630 loc = copy_rtx (loc);
632 /* The only time the call below will do anything is if the stack
633 offset is too large. In that case IND_LEVELS doesn't matter, so we
634 can just pass a zero. Adjust the type to be the address of the
635 corresponding object. If the address was valid, save the eliminated
636 address. If it wasn't valid, we need to make a reload each time, so
637 don't save it. */
639 if (! mem_valid)
641 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
642 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
643 : RELOAD_OTHER);
645 find_reloads_address (mode, (rtx*)0, XEXP (loc, 0), &XEXP (loc, 0),
646 opnum, type, 0, 0);
649 secondary_memlocs_elim[(int) mode][opnum] = loc;
650 return loc;
653 /* Clear any secondary memory locations we've made. */
655 void
656 clear_secondary_mem ()
658 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
660 #endif /* SECONDARY_MEMORY_NEEDED */
662 /* Find the largest class for which every register number plus N is valid in
663 M1 (if in range). Abort if no such class exists. */
665 static enum reg_class
666 find_valid_class (m1, n)
667 enum machine_mode m1 ATTRIBUTE_UNUSED;
668 int n;
670 int class;
671 int regno;
672 enum reg_class best_class = NO_REGS;
673 unsigned int best_size = 0;
675 for (class = 1; class < N_REG_CLASSES; class++)
677 int bad = 0;
678 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
679 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
680 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
681 && ! HARD_REGNO_MODE_OK (regno + n, m1))
682 bad = 1;
684 if (! bad && reg_class_size[class] > best_size)
685 best_class = class, best_size = reg_class_size[class];
688 if (best_size == 0)
689 abort ();
691 return best_class;
694 /* Return the number of a previously made reload that can be combined with
695 a new one, or n_reloads if none of the existing reloads can be used.
696 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
697 push_reload, they determine the kind of the new reload that we try to
698 combine. P_IN points to the corresponding value of IN, which can be
699 modified by this function.
700 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
702 static int
703 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
704 rtx *p_in, out;
705 enum reg_class class;
706 enum reload_type type;
707 int opnum, dont_share;
709 rtx in = *p_in;
710 int i;
711 /* We can't merge two reloads if the output of either one is
712 earlyclobbered. */
714 if (earlyclobber_operand_p (out))
715 return n_reloads;
717 /* We can use an existing reload if the class is right
718 and at least one of IN and OUT is a match
719 and the other is at worst neutral.
720 (A zero compared against anything is neutral.)
722 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
723 for the same thing since that can cause us to need more reload registers
724 than we otherwise would. */
726 for (i = 0; i < n_reloads; i++)
727 if ((reg_class_subset_p (class, rld[i].class)
728 || reg_class_subset_p (rld[i].class, class))
729 /* If the existing reload has a register, it must fit our class. */
730 && (rld[i].reg_rtx == 0
731 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
732 true_regnum (rld[i].reg_rtx)))
733 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
734 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
735 || (out != 0 && MATCHES (rld[i].out, out)
736 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
737 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
738 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
739 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
740 return i;
742 /* Reloading a plain reg for input can match a reload to postincrement
743 that reg, since the postincrement's value is the right value.
744 Likewise, it can match a preincrement reload, since we regard
745 the preincrementation as happening before any ref in this insn
746 to that register. */
747 for (i = 0; i < n_reloads; i++)
748 if ((reg_class_subset_p (class, rld[i].class)
749 || reg_class_subset_p (rld[i].class, class))
750 /* If the existing reload has a register, it must fit our
751 class. */
752 && (rld[i].reg_rtx == 0
753 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
754 true_regnum (rld[i].reg_rtx)))
755 && out == 0 && rld[i].out == 0 && rld[i].in != 0
756 && ((GET_CODE (in) == REG
757 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
758 && MATCHES (XEXP (rld[i].in, 0), in))
759 || (GET_CODE (rld[i].in) == REG
760 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
761 && MATCHES (XEXP (in, 0), rld[i].in)))
762 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
763 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
764 && MERGABLE_RELOADS (type, rld[i].when_needed,
765 opnum, rld[i].opnum))
767 /* Make sure reload_in ultimately has the increment,
768 not the plain register. */
769 if (GET_CODE (in) == REG)
770 *p_in = rld[i].in;
771 return i;
773 return n_reloads;
776 /* Return nonzero if X is a SUBREG which will require reloading of its
777 SUBREG_REG expression. */
779 static int
780 reload_inner_reg_of_subreg (x, mode)
781 rtx x;
782 enum machine_mode mode;
784 rtx inner;
786 /* Only SUBREGs are problematical. */
787 if (GET_CODE (x) != SUBREG)
788 return 0;
790 inner = SUBREG_REG (x);
792 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
793 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
794 return 1;
796 /* If INNER is not a hard register, then INNER will not need to
797 be reloaded. */
798 if (GET_CODE (inner) != REG
799 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
800 return 0;
802 /* If INNER is not ok for MODE, then INNER will need reloading. */
803 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
804 return 1;
806 /* If the outer part is a word or smaller, INNER larger than a
807 word and the number of regs for INNER is not the same as the
808 number of words in INNER, then INNER will need reloading. */
809 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
810 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
811 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
812 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
815 /* Record one reload that needs to be performed.
816 IN is an rtx saying where the data are to be found before this instruction.
817 OUT says where they must be stored after the instruction.
818 (IN is zero for data not read, and OUT is zero for data not written.)
819 INLOC and OUTLOC point to the places in the instructions where
820 IN and OUT were found.
821 If IN and OUT are both non-zero, it means the same register must be used
822 to reload both IN and OUT.
824 CLASS is a register class required for the reloaded data.
825 INMODE is the machine mode that the instruction requires
826 for the reg that replaces IN and OUTMODE is likewise for OUT.
828 If IN is zero, then OUT's location and mode should be passed as
829 INLOC and INMODE.
831 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
833 OPTIONAL nonzero means this reload does not need to be performed:
834 it can be discarded if that is more convenient.
836 OPNUM and TYPE say what the purpose of this reload is.
838 The return value is the reload-number for this reload.
840 If both IN and OUT are nonzero, in some rare cases we might
841 want to make two separate reloads. (Actually we never do this now.)
842 Therefore, the reload-number for OUT is stored in
843 output_reloadnum when we return; the return value applies to IN.
844 Usually (presently always), when IN and OUT are nonzero,
845 the two reload-numbers are equal, but the caller should be careful to
846 distinguish them. */
849 push_reload (in, out, inloc, outloc, class,
850 inmode, outmode, strict_low, optional, opnum, type)
851 rtx in, out;
852 rtx *inloc, *outloc;
853 enum reg_class class;
854 enum machine_mode inmode, outmode;
855 int strict_low;
856 int optional;
857 int opnum;
858 enum reload_type type;
860 int i;
861 int dont_share = 0;
862 int dont_remove_subreg = 0;
863 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
864 int secondary_in_reload = -1, secondary_out_reload = -1;
865 enum insn_code secondary_in_icode = CODE_FOR_nothing;
866 enum insn_code secondary_out_icode = CODE_FOR_nothing;
868 /* INMODE and/or OUTMODE could be VOIDmode if no mode
869 has been specified for the operand. In that case,
870 use the operand's mode as the mode to reload. */
871 if (inmode == VOIDmode && in != 0)
872 inmode = GET_MODE (in);
873 if (outmode == VOIDmode && out != 0)
874 outmode = GET_MODE (out);
876 /* If IN is a pseudo register everywhere-equivalent to a constant, and
877 it is not in a hard register, reload straight from the constant,
878 since we want to get rid of such pseudo registers.
879 Often this is done earlier, but not always in find_reloads_address. */
880 if (in != 0 && GET_CODE (in) == REG)
882 int regno = REGNO (in);
884 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
885 && reg_equiv_constant[regno] != 0)
886 in = reg_equiv_constant[regno];
889 /* Likewise for OUT. Of course, OUT will never be equivalent to
890 an actual constant, but it might be equivalent to a memory location
891 (in the case of a parameter). */
892 if (out != 0 && GET_CODE (out) == REG)
894 int regno = REGNO (out);
896 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
897 && reg_equiv_constant[regno] != 0)
898 out = reg_equiv_constant[regno];
901 /* If we have a read-write operand with an address side-effect,
902 change either IN or OUT so the side-effect happens only once. */
903 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
904 switch (GET_CODE (XEXP (in, 0)))
906 case POST_INC: case POST_DEC: case POST_MODIFY:
907 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
908 break;
910 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
911 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
912 break;
914 default:
915 break;
918 /* If we are reloading a (SUBREG constant ...), really reload just the
919 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
920 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
921 a pseudo and hence will become a MEM) with M1 wider than M2 and the
922 register is a pseudo, also reload the inside expression.
923 For machines that extend byte loads, do this for any SUBREG of a pseudo
924 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
925 M2 is an integral mode that gets extended when loaded.
926 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
927 either M1 is not valid for R or M2 is wider than a word but we only
928 need one word to store an M2-sized quantity in R.
929 (However, if OUT is nonzero, we need to reload the reg *and*
930 the subreg, so do nothing here, and let following statement handle it.)
932 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
933 we can't handle it here because CONST_INT does not indicate a mode.
935 Similarly, we must reload the inside expression if we have a
936 STRICT_LOW_PART (presumably, in == out in the cas).
938 Also reload the inner expression if it does not require a secondary
939 reload but the SUBREG does.
941 Finally, reload the inner expression if it is a register that is in
942 the class whose registers cannot be referenced in a different size
943 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
944 cannot reload just the inside since we might end up with the wrong
945 register class. But if it is inside a STRICT_LOW_PART, we have
946 no choice, so we hope we do get the right register class there. */
948 if (in != 0 && GET_CODE (in) == SUBREG
949 && (subreg_lowpart_p (in) || strict_low)
950 #ifdef CLASS_CANNOT_CHANGE_MODE
951 && (class != CLASS_CANNOT_CHANGE_MODE
952 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
953 #endif
954 && (CONSTANT_P (SUBREG_REG (in))
955 || GET_CODE (SUBREG_REG (in)) == PLUS
956 || strict_low
957 || (((GET_CODE (SUBREG_REG (in)) == REG
958 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
959 || GET_CODE (SUBREG_REG (in)) == MEM)
960 && ((GET_MODE_SIZE (inmode)
961 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
962 #ifdef LOAD_EXTEND_OP
963 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
964 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
965 <= UNITS_PER_WORD)
966 && (GET_MODE_SIZE (inmode)
967 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
968 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
969 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
970 #endif
971 #ifdef WORD_REGISTER_OPERATIONS
972 || ((GET_MODE_SIZE (inmode)
973 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
974 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
975 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
976 / UNITS_PER_WORD)))
977 #endif
979 || (GET_CODE (SUBREG_REG (in)) == REG
980 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
981 /* The case where out is nonzero
982 is handled differently in the following statement. */
983 && (out == 0 || subreg_lowpart_p (in))
984 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
985 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
986 > UNITS_PER_WORD)
987 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
988 / UNITS_PER_WORD)
989 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
990 GET_MODE (SUBREG_REG (in)))))
991 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
992 #ifdef SECONDARY_INPUT_RELOAD_CLASS
993 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
994 && (SECONDARY_INPUT_RELOAD_CLASS (class,
995 GET_MODE (SUBREG_REG (in)),
996 SUBREG_REG (in))
997 == NO_REGS))
998 #endif
999 #ifdef CLASS_CANNOT_CHANGE_MODE
1000 || (GET_CODE (SUBREG_REG (in)) == REG
1001 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1002 && (TEST_HARD_REG_BIT
1003 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1004 REGNO (SUBREG_REG (in))))
1005 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1006 inmode))
1007 #endif
1010 in_subreg_loc = inloc;
1011 inloc = &SUBREG_REG (in);
1012 in = *inloc;
1013 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1014 if (GET_CODE (in) == MEM)
1015 /* This is supposed to happen only for paradoxical subregs made by
1016 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1017 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1018 abort ();
1019 #endif
1020 inmode = GET_MODE (in);
1023 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1024 either M1 is not valid for R or M2 is wider than a word but we only
1025 need one word to store an M2-sized quantity in R.
1027 However, we must reload the inner reg *as well as* the subreg in
1028 that case. */
1030 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1031 code above. This can happen if SUBREG_BYTE != 0. */
1033 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1035 enum reg_class in_class = class;
1037 if (GET_CODE (SUBREG_REG (in)) == REG)
1038 in_class
1039 = find_valid_class (inmode,
1040 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1041 GET_MODE (SUBREG_REG (in)),
1042 SUBREG_BYTE (in),
1043 GET_MODE (in)));
1045 /* This relies on the fact that emit_reload_insns outputs the
1046 instructions for input reloads of type RELOAD_OTHER in the same
1047 order as the reloads. Thus if the outer reload is also of type
1048 RELOAD_OTHER, we are guaranteed that this inner reload will be
1049 output before the outer reload. */
1050 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *)0,
1051 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1052 dont_remove_subreg = 1;
1055 /* Similarly for paradoxical and problematical SUBREGs on the output.
1056 Note that there is no reason we need worry about the previous value
1057 of SUBREG_REG (out); even if wider than out,
1058 storing in a subreg is entitled to clobber it all
1059 (except in the case of STRICT_LOW_PART,
1060 and in that case the constraint should label it input-output.) */
1061 if (out != 0 && GET_CODE (out) == SUBREG
1062 && (subreg_lowpart_p (out) || strict_low)
1063 #ifdef CLASS_CANNOT_CHANGE_MODE
1064 && (class != CLASS_CANNOT_CHANGE_MODE
1065 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1066 outmode))
1067 #endif
1068 && (CONSTANT_P (SUBREG_REG (out))
1069 || strict_low
1070 || (((GET_CODE (SUBREG_REG (out)) == REG
1071 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1072 || GET_CODE (SUBREG_REG (out)) == MEM)
1073 && ((GET_MODE_SIZE (outmode)
1074 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1075 #ifdef WORD_REGISTER_OPERATIONS
1076 || ((GET_MODE_SIZE (outmode)
1077 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1078 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1079 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1080 / UNITS_PER_WORD)))
1081 #endif
1083 || (GET_CODE (SUBREG_REG (out)) == REG
1084 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1085 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1086 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1087 > UNITS_PER_WORD)
1088 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1089 / UNITS_PER_WORD)
1090 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1091 GET_MODE (SUBREG_REG (out)))))
1092 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1093 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1094 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1095 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1096 GET_MODE (SUBREG_REG (out)),
1097 SUBREG_REG (out))
1098 == NO_REGS))
1099 #endif
1100 #ifdef CLASS_CANNOT_CHANGE_MODE
1101 || (GET_CODE (SUBREG_REG (out)) == REG
1102 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1103 && (TEST_HARD_REG_BIT
1104 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1105 REGNO (SUBREG_REG (out))))
1106 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1107 outmode))
1108 #endif
1111 out_subreg_loc = outloc;
1112 outloc = &SUBREG_REG (out);
1113 out = *outloc;
1114 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1115 if (GET_CODE (out) == MEM
1116 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1117 abort ();
1118 #endif
1119 outmode = GET_MODE (out);
1122 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1123 either M1 is not valid for R or M2 is wider than a word but we only
1124 need one word to store an M2-sized quantity in R.
1126 However, we must reload the inner reg *as well as* the subreg in
1127 that case. In this case, the inner reg is an in-out reload. */
1129 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1131 /* This relies on the fact that emit_reload_insns outputs the
1132 instructions for output reloads of type RELOAD_OTHER in reverse
1133 order of the reloads. Thus if the outer reload is also of type
1134 RELOAD_OTHER, we are guaranteed that this inner reload will be
1135 output after the outer reload. */
1136 dont_remove_subreg = 1;
1137 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1138 &SUBREG_REG (out),
1139 find_valid_class (outmode,
1140 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1141 GET_MODE (SUBREG_REG (out)),
1142 SUBREG_BYTE (out),
1143 GET_MODE (out))),
1144 VOIDmode, VOIDmode, 0, 0,
1145 opnum, RELOAD_OTHER);
1148 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1149 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1150 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1151 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1152 dont_share = 1;
1154 /* If IN is a SUBREG of a hard register, make a new REG. This
1155 simplifies some of the cases below. */
1157 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1158 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1159 && ! dont_remove_subreg)
1160 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1162 /* Similarly for OUT. */
1163 if (out != 0 && GET_CODE (out) == SUBREG
1164 && GET_CODE (SUBREG_REG (out)) == REG
1165 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1166 && ! dont_remove_subreg)
1167 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1169 /* Narrow down the class of register wanted if that is
1170 desirable on this machine for efficiency. */
1171 if (in != 0)
1172 class = PREFERRED_RELOAD_CLASS (in, class);
1174 /* Output reloads may need analogous treatment, different in detail. */
1175 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1176 if (out != 0)
1177 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1178 #endif
1180 /* Make sure we use a class that can handle the actual pseudo
1181 inside any subreg. For example, on the 386, QImode regs
1182 can appear within SImode subregs. Although GENERAL_REGS
1183 can handle SImode, QImode needs a smaller class. */
1184 #ifdef LIMIT_RELOAD_CLASS
1185 if (in_subreg_loc)
1186 class = LIMIT_RELOAD_CLASS (inmode, class);
1187 else if (in != 0 && GET_CODE (in) == SUBREG)
1188 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1190 if (out_subreg_loc)
1191 class = LIMIT_RELOAD_CLASS (outmode, class);
1192 if (out != 0 && GET_CODE (out) == SUBREG)
1193 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1194 #endif
1196 /* Verify that this class is at least possible for the mode that
1197 is specified. */
1198 if (this_insn_is_asm)
1200 enum machine_mode mode;
1201 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1202 mode = inmode;
1203 else
1204 mode = outmode;
1205 if (mode == VOIDmode)
1207 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1208 mode = word_mode;
1209 if (in != 0)
1210 inmode = word_mode;
1211 if (out != 0)
1212 outmode = word_mode;
1214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1215 if (HARD_REGNO_MODE_OK (i, mode)
1216 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1218 int nregs = HARD_REGNO_NREGS (i, mode);
1220 int j;
1221 for (j = 1; j < nregs; j++)
1222 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1223 break;
1224 if (j == nregs)
1225 break;
1227 if (i == FIRST_PSEUDO_REGISTER)
1229 error_for_asm (this_insn, "impossible register constraint in `asm'");
1230 class = ALL_REGS;
1234 /* Optional output reloads are always OK even if we have no register class,
1235 since the function of these reloads is only to have spill_reg_store etc.
1236 set, so that the storing insn can be deleted later. */
1237 if (class == NO_REGS
1238 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1239 abort ();
1241 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1243 if (i == n_reloads)
1245 /* See if we need a secondary reload register to move between CLASS
1246 and IN or CLASS and OUT. Get the icode and push any required reloads
1247 needed for each of them if so. */
1249 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1250 if (in != 0)
1251 secondary_in_reload
1252 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1253 &secondary_in_icode);
1254 #endif
1256 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1257 if (out != 0 && GET_CODE (out) != SCRATCH)
1258 secondary_out_reload
1259 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1260 type, &secondary_out_icode);
1261 #endif
1263 /* We found no existing reload suitable for re-use.
1264 So add an additional reload. */
1266 #ifdef SECONDARY_MEMORY_NEEDED
1267 /* If a memory location is needed for the copy, make one. */
1268 if (in != 0 && GET_CODE (in) == REG
1269 && REGNO (in) < FIRST_PSEUDO_REGISTER
1270 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1271 class, inmode))
1272 get_secondary_mem (in, inmode, opnum, type);
1273 #endif
1275 i = n_reloads;
1276 rld[i].in = in;
1277 rld[i].out = out;
1278 rld[i].class = class;
1279 rld[i].inmode = inmode;
1280 rld[i].outmode = outmode;
1281 rld[i].reg_rtx = 0;
1282 rld[i].optional = optional;
1283 rld[i].inc = 0;
1284 rld[i].nocombine = 0;
1285 rld[i].in_reg = inloc ? *inloc : 0;
1286 rld[i].out_reg = outloc ? *outloc : 0;
1287 rld[i].opnum = opnum;
1288 rld[i].when_needed = type;
1289 rld[i].secondary_in_reload = secondary_in_reload;
1290 rld[i].secondary_out_reload = secondary_out_reload;
1291 rld[i].secondary_in_icode = secondary_in_icode;
1292 rld[i].secondary_out_icode = secondary_out_icode;
1293 rld[i].secondary_p = 0;
1295 n_reloads++;
1297 #ifdef SECONDARY_MEMORY_NEEDED
1298 if (out != 0 && GET_CODE (out) == REG
1299 && REGNO (out) < FIRST_PSEUDO_REGISTER
1300 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1301 outmode))
1302 get_secondary_mem (out, outmode, opnum, type);
1303 #endif
1305 else
1307 /* We are reusing an existing reload,
1308 but we may have additional information for it.
1309 For example, we may now have both IN and OUT
1310 while the old one may have just one of them. */
1312 /* The modes can be different. If they are, we want to reload in
1313 the larger mode, so that the value is valid for both modes. */
1314 if (inmode != VOIDmode
1315 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1316 rld[i].inmode = inmode;
1317 if (outmode != VOIDmode
1318 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1319 rld[i].outmode = outmode;
1320 if (in != 0)
1322 rtx in_reg = inloc ? *inloc : 0;
1323 /* If we merge reloads for two distinct rtl expressions that
1324 are identical in content, there might be duplicate address
1325 reloads. Remove the extra set now, so that if we later find
1326 that we can inherit this reload, we can get rid of the
1327 address reloads altogether.
1329 Do not do this if both reloads are optional since the result
1330 would be an optional reload which could potentially leave
1331 unresolved address replacements.
1333 It is not sufficient to call transfer_replacements since
1334 choose_reload_regs will remove the replacements for address
1335 reloads of inherited reloads which results in the same
1336 problem. */
1337 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1338 && ! (rld[i].optional && optional))
1340 /* We must keep the address reload with the lower operand
1341 number alive. */
1342 if (opnum > rld[i].opnum)
1344 remove_address_replacements (in);
1345 in = rld[i].in;
1346 in_reg = rld[i].in_reg;
1348 else
1349 remove_address_replacements (rld[i].in);
1351 rld[i].in = in;
1352 rld[i].in_reg = in_reg;
1354 if (out != 0)
1356 rld[i].out = out;
1357 rld[i].out_reg = outloc ? *outloc : 0;
1359 if (reg_class_subset_p (class, rld[i].class))
1360 rld[i].class = class;
1361 rld[i].optional &= optional;
1362 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1363 opnum, rld[i].opnum))
1364 rld[i].when_needed = RELOAD_OTHER;
1365 rld[i].opnum = MIN (rld[i].opnum, opnum);
1368 /* If the ostensible rtx being reloaded differs from the rtx found
1369 in the location to substitute, this reload is not safe to combine
1370 because we cannot reliably tell whether it appears in the insn. */
1372 if (in != 0 && in != *inloc)
1373 rld[i].nocombine = 1;
1375 #if 0
1376 /* This was replaced by changes in find_reloads_address_1 and the new
1377 function inc_for_reload, which go with a new meaning of reload_inc. */
1379 /* If this is an IN/OUT reload in an insn that sets the CC,
1380 it must be for an autoincrement. It doesn't work to store
1381 the incremented value after the insn because that would clobber the CC.
1382 So we must do the increment of the value reloaded from,
1383 increment it, store it back, then decrement again. */
1384 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1386 out = 0;
1387 rld[i].out = 0;
1388 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1389 /* If we did not find a nonzero amount-to-increment-by,
1390 that contradicts the belief that IN is being incremented
1391 in an address in this insn. */
1392 if (rld[i].inc == 0)
1393 abort ();
1395 #endif
1397 /* If we will replace IN and OUT with the reload-reg,
1398 record where they are located so that substitution need
1399 not do a tree walk. */
1401 if (replace_reloads)
1403 if (inloc != 0)
1405 struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->subreg_loc = in_subreg_loc;
1408 r->where = inloc;
1409 r->mode = inmode;
1411 if (outloc != 0 && outloc != inloc)
1413 struct replacement *r = &replacements[n_replacements++];
1414 r->what = i;
1415 r->where = outloc;
1416 r->subreg_loc = out_subreg_loc;
1417 r->mode = outmode;
1421 /* If this reload is just being introduced and it has both
1422 an incoming quantity and an outgoing quantity that are
1423 supposed to be made to match, see if either one of the two
1424 can serve as the place to reload into.
1426 If one of them is acceptable, set rld[i].reg_rtx
1427 to that one. */
1429 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1431 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1432 inmode, outmode,
1433 rld[i].class, i,
1434 earlyclobber_operand_p (out));
1436 /* If the outgoing register already contains the same value
1437 as the incoming one, we can dispense with loading it.
1438 The easiest way to tell the caller that is to give a phony
1439 value for the incoming operand (same as outgoing one). */
1440 if (rld[i].reg_rtx == out
1441 && (GET_CODE (in) == REG || CONSTANT_P (in))
1442 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1443 static_reload_reg_p, i, inmode))
1444 rld[i].in = out;
1447 /* If this is an input reload and the operand contains a register that
1448 dies in this insn and is used nowhere else, see if it is the right class
1449 to be used for this reload. Use it if so. (This occurs most commonly
1450 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1451 this if it is also an output reload that mentions the register unless
1452 the output is a SUBREG that clobbers an entire register.
1454 Note that the operand might be one of the spill regs, if it is a
1455 pseudo reg and we are in a block where spilling has not taken place.
1456 But if there is no spilling in this block, that is OK.
1457 An explicitly used hard reg cannot be a spill reg. */
1459 if (rld[i].reg_rtx == 0 && in != 0)
1461 rtx note;
1462 int regno;
1463 enum machine_mode rel_mode = inmode;
1465 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1466 rel_mode = outmode;
1468 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1469 if (REG_NOTE_KIND (note) == REG_DEAD
1470 && GET_CODE (XEXP (note, 0)) == REG
1471 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1472 && reg_mentioned_p (XEXP (note, 0), in)
1473 && ! refers_to_regno_for_reload_p (regno,
1474 (regno
1475 + HARD_REGNO_NREGS (regno,
1476 rel_mode)),
1477 PATTERN (this_insn), inloc)
1478 /* If this is also an output reload, IN cannot be used as
1479 the reload register if it is set in this insn unless IN
1480 is also OUT. */
1481 && (out == 0 || in == out
1482 || ! hard_reg_set_here_p (regno,
1483 (regno
1484 + HARD_REGNO_NREGS (regno,
1485 rel_mode)),
1486 PATTERN (this_insn)))
1487 /* ??? Why is this code so different from the previous?
1488 Is there any simple coherent way to describe the two together?
1489 What's going on here. */
1490 && (in != out
1491 || (GET_CODE (in) == SUBREG
1492 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1493 / UNITS_PER_WORD)
1494 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1495 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1496 /* Make sure the operand fits in the reg that dies. */
1497 && (GET_MODE_SIZE (rel_mode)
1498 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1499 && HARD_REGNO_MODE_OK (regno, inmode)
1500 && HARD_REGNO_MODE_OK (regno, outmode))
1502 unsigned int offs;
1503 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1504 HARD_REGNO_NREGS (regno, outmode));
1506 for (offs = 0; offs < nregs; offs++)
1507 if (fixed_regs[regno + offs]
1508 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1509 regno + offs))
1510 break;
1512 if (offs == nregs)
1514 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1515 break;
1520 if (out)
1521 output_reloadnum = i;
1523 return i;
1526 /* Record an additional place we must replace a value
1527 for which we have already recorded a reload.
1528 RELOADNUM is the value returned by push_reload
1529 when the reload was recorded.
1530 This is used in insn patterns that use match_dup. */
1532 static void
1533 push_replacement (loc, reloadnum, mode)
1534 rtx *loc;
1535 int reloadnum;
1536 enum machine_mode mode;
1538 if (replace_reloads)
1540 struct replacement *r = &replacements[n_replacements++];
1541 r->what = reloadnum;
1542 r->where = loc;
1543 r->subreg_loc = 0;
1544 r->mode = mode;
1548 /* Transfer all replacements that used to be in reload FROM to be in
1549 reload TO. */
1551 void
1552 transfer_replacements (to, from)
1553 int to, from;
1555 int i;
1557 for (i = 0; i < n_replacements; i++)
1558 if (replacements[i].what == from)
1559 replacements[i].what = to;
1562 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1563 or a subpart of it. If we have any replacements registered for IN_RTX,
1564 cancel the reloads that were supposed to load them.
1565 Return non-zero if we canceled any reloads. */
1567 remove_address_replacements (in_rtx)
1568 rtx in_rtx;
1570 int i, j;
1571 char reload_flags[MAX_RELOADS];
1572 int something_changed = 0;
1574 memset (reload_flags, 0, sizeof reload_flags);
1575 for (i = 0, j = 0; i < n_replacements; i++)
1577 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1578 reload_flags[replacements[i].what] |= 1;
1579 else
1581 replacements[j++] = replacements[i];
1582 reload_flags[replacements[i].what] |= 2;
1585 /* Note that the following store must be done before the recursive calls. */
1586 n_replacements = j;
1588 for (i = n_reloads - 1; i >= 0; i--)
1590 if (reload_flags[i] == 1)
1592 deallocate_reload_reg (i);
1593 remove_address_replacements (rld[i].in);
1594 rld[i].in = 0;
1595 something_changed = 1;
1598 return something_changed;
1601 /* If there is only one output reload, and it is not for an earlyclobber
1602 operand, try to combine it with a (logically unrelated) input reload
1603 to reduce the number of reload registers needed.
1605 This is safe if the input reload does not appear in
1606 the value being output-reloaded, because this implies
1607 it is not needed any more once the original insn completes.
1609 If that doesn't work, see we can use any of the registers that
1610 die in this insn as a reload register. We can if it is of the right
1611 class and does not appear in the value being output-reloaded. */
1613 static void
1614 combine_reloads ()
1616 int i;
1617 int output_reload = -1;
1618 int secondary_out = -1;
1619 rtx note;
1621 /* Find the output reload; return unless there is exactly one
1622 and that one is mandatory. */
1624 for (i = 0; i < n_reloads; i++)
1625 if (rld[i].out != 0)
1627 if (output_reload >= 0)
1628 return;
1629 output_reload = i;
1632 if (output_reload < 0 || rld[output_reload].optional)
1633 return;
1635 /* An input-output reload isn't combinable. */
1637 if (rld[output_reload].in != 0)
1638 return;
1640 /* If this reload is for an earlyclobber operand, we can't do anything. */
1641 if (earlyclobber_operand_p (rld[output_reload].out))
1642 return;
1644 /* Check each input reload; can we combine it? */
1646 for (i = 0; i < n_reloads; i++)
1647 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1648 /* Life span of this reload must not extend past main insn. */
1649 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1650 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1651 && rld[i].when_needed != RELOAD_OTHER
1652 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1653 == CLASS_MAX_NREGS (rld[output_reload].class,
1654 rld[output_reload].outmode))
1655 && rld[i].inc == 0
1656 && rld[i].reg_rtx == 0
1657 #ifdef SECONDARY_MEMORY_NEEDED
1658 /* Don't combine two reloads with different secondary
1659 memory locations. */
1660 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1661 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1662 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1663 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1664 #endif
1665 && (SMALL_REGISTER_CLASSES
1666 ? (rld[i].class == rld[output_reload].class)
1667 : (reg_class_subset_p (rld[i].class,
1668 rld[output_reload].class)
1669 || reg_class_subset_p (rld[output_reload].class,
1670 rld[i].class)))
1671 && (MATCHES (rld[i].in, rld[output_reload].out)
1672 /* Args reversed because the first arg seems to be
1673 the one that we imagine being modified
1674 while the second is the one that might be affected. */
1675 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1676 rld[i].in)
1677 /* However, if the input is a register that appears inside
1678 the output, then we also can't share.
1679 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1680 If the same reload reg is used for both reg 69 and the
1681 result to be stored in memory, then that result
1682 will clobber the address of the memory ref. */
1683 && ! (GET_CODE (rld[i].in) == REG
1684 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1685 rld[output_reload].out))))
1686 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1687 && (reg_class_size[(int) rld[i].class]
1688 || SMALL_REGISTER_CLASSES)
1689 /* We will allow making things slightly worse by combining an
1690 input and an output, but no worse than that. */
1691 && (rld[i].when_needed == RELOAD_FOR_INPUT
1692 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1694 int j;
1696 /* We have found a reload to combine with! */
1697 rld[i].out = rld[output_reload].out;
1698 rld[i].out_reg = rld[output_reload].out_reg;
1699 rld[i].outmode = rld[output_reload].outmode;
1700 /* Mark the old output reload as inoperative. */
1701 rld[output_reload].out = 0;
1702 /* The combined reload is needed for the entire insn. */
1703 rld[i].when_needed = RELOAD_OTHER;
1704 /* If the output reload had a secondary reload, copy it. */
1705 if (rld[output_reload].secondary_out_reload != -1)
1707 rld[i].secondary_out_reload
1708 = rld[output_reload].secondary_out_reload;
1709 rld[i].secondary_out_icode
1710 = rld[output_reload].secondary_out_icode;
1713 #ifdef SECONDARY_MEMORY_NEEDED
1714 /* Copy any secondary MEM. */
1715 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1716 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1717 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1718 #endif
1719 /* If required, minimize the register class. */
1720 if (reg_class_subset_p (rld[output_reload].class,
1721 rld[i].class))
1722 rld[i].class = rld[output_reload].class;
1724 /* Transfer all replacements from the old reload to the combined. */
1725 for (j = 0; j < n_replacements; j++)
1726 if (replacements[j].what == output_reload)
1727 replacements[j].what = i;
1729 return;
1732 /* If this insn has only one operand that is modified or written (assumed
1733 to be the first), it must be the one corresponding to this reload. It
1734 is safe to use anything that dies in this insn for that output provided
1735 that it does not occur in the output (we already know it isn't an
1736 earlyclobber. If this is an asm insn, give up. */
1738 if (INSN_CODE (this_insn) == -1)
1739 return;
1741 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1742 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1743 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1744 return;
1746 /* See if some hard register that dies in this insn and is not used in
1747 the output is the right class. Only works if the register we pick
1748 up can fully hold our output reload. */
1749 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1750 if (REG_NOTE_KIND (note) == REG_DEAD
1751 && GET_CODE (XEXP (note, 0)) == REG
1752 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1753 rld[output_reload].out)
1754 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1755 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1756 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1757 REGNO (XEXP (note, 0)))
1758 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1759 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1760 /* Ensure that a secondary or tertiary reload for this output
1761 won't want this register. */
1762 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1763 || (! (TEST_HARD_REG_BIT
1764 (reg_class_contents[(int) rld[secondary_out].class],
1765 REGNO (XEXP (note, 0))))
1766 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1767 || ! (TEST_HARD_REG_BIT
1768 (reg_class_contents[(int) rld[secondary_out].class],
1769 REGNO (XEXP (note, 0)))))))
1770 && ! fixed_regs[REGNO (XEXP (note, 0))])
1772 rld[output_reload].reg_rtx
1773 = gen_rtx_REG (rld[output_reload].outmode,
1774 REGNO (XEXP (note, 0)));
1775 return;
1779 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1780 See if one of IN and OUT is a register that may be used;
1781 this is desirable since a spill-register won't be needed.
1782 If so, return the register rtx that proves acceptable.
1784 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1785 CLASS is the register class required for the reload.
1787 If FOR_REAL is >= 0, it is the number of the reload,
1788 and in some cases when it can be discovered that OUT doesn't need
1789 to be computed, clear out rld[FOR_REAL].out.
1791 If FOR_REAL is -1, this should not be done, because this call
1792 is just to see if a register can be found, not to find and install it.
1794 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1795 puts an additional constraint on being able to use IN for OUT since
1796 IN must not appear elsewhere in the insn (it is assumed that IN itself
1797 is safe from the earlyclobber). */
1799 static rtx
1800 find_dummy_reload (real_in, real_out, inloc, outloc,
1801 inmode, outmode, class, for_real, earlyclobber)
1802 rtx real_in, real_out;
1803 rtx *inloc, *outloc;
1804 enum machine_mode inmode, outmode;
1805 enum reg_class class;
1806 int for_real;
1807 int earlyclobber;
1809 rtx in = real_in;
1810 rtx out = real_out;
1811 int in_offset = 0;
1812 int out_offset = 0;
1813 rtx value = 0;
1815 /* If operands exceed a word, we can't use either of them
1816 unless they have the same size. */
1817 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1818 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1819 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1820 return 0;
1822 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1823 respectively refers to a hard register. */
1825 /* Find the inside of any subregs. */
1826 while (GET_CODE (out) == SUBREG)
1828 if (GET_CODE (SUBREG_REG (out)) == REG
1829 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1830 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1831 GET_MODE (SUBREG_REG (out)),
1832 SUBREG_BYTE (out),
1833 GET_MODE (out));
1834 out = SUBREG_REG (out);
1836 while (GET_CODE (in) == SUBREG)
1838 if (GET_CODE (SUBREG_REG (in)) == REG
1839 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1840 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1841 GET_MODE (SUBREG_REG (in)),
1842 SUBREG_BYTE (in),
1843 GET_MODE (in));
1844 in = SUBREG_REG (in);
1847 /* Narrow down the reg class, the same way push_reload will;
1848 otherwise we might find a dummy now, but push_reload won't. */
1849 class = PREFERRED_RELOAD_CLASS (in, class);
1851 /* See if OUT will do. */
1852 if (GET_CODE (out) == REG
1853 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1855 unsigned int regno = REGNO (out) + out_offset;
1856 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1857 rtx saved_rtx;
1859 /* When we consider whether the insn uses OUT,
1860 ignore references within IN. They don't prevent us
1861 from copying IN into OUT, because those refs would
1862 move into the insn that reloads IN.
1864 However, we only ignore IN in its role as this reload.
1865 If the insn uses IN elsewhere and it contains OUT,
1866 that counts. We can't be sure it's the "same" operand
1867 so it might not go through this reload. */
1868 saved_rtx = *inloc;
1869 *inloc = const0_rtx;
1871 if (regno < FIRST_PSEUDO_REGISTER
1872 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1873 PATTERN (this_insn), outloc))
1875 unsigned int i;
1877 for (i = 0; i < nwords; i++)
1878 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1879 regno + i))
1880 break;
1882 if (i == nwords)
1884 if (GET_CODE (real_out) == REG)
1885 value = real_out;
1886 else
1887 value = gen_rtx_REG (outmode, regno);
1891 *inloc = saved_rtx;
1894 /* Consider using IN if OUT was not acceptable
1895 or if OUT dies in this insn (like the quotient in a divmod insn).
1896 We can't use IN unless it is dies in this insn,
1897 which means we must know accurately which hard regs are live.
1898 Also, the result can't go in IN if IN is used within OUT,
1899 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1900 if (hard_regs_live_known
1901 && GET_CODE (in) == REG
1902 && REGNO (in) < FIRST_PSEUDO_REGISTER
1903 && (value == 0
1904 || find_reg_note (this_insn, REG_UNUSED, real_out))
1905 && find_reg_note (this_insn, REG_DEAD, real_in)
1906 && !fixed_regs[REGNO (in)]
1907 && HARD_REGNO_MODE_OK (REGNO (in),
1908 /* The only case where out and real_out might
1909 have different modes is where real_out
1910 is a subreg, and in that case, out
1911 has a real mode. */
1912 (GET_MODE (out) != VOIDmode
1913 ? GET_MODE (out) : outmode)))
1915 unsigned int regno = REGNO (in) + in_offset;
1916 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1918 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*)0)
1919 && ! hard_reg_set_here_p (regno, regno + nwords,
1920 PATTERN (this_insn))
1921 && (! earlyclobber
1922 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1923 PATTERN (this_insn), inloc)))
1925 unsigned int i;
1927 for (i = 0; i < nwords; i++)
1928 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1929 regno + i))
1930 break;
1932 if (i == nwords)
1934 /* If we were going to use OUT as the reload reg
1935 and changed our mind, it means OUT is a dummy that
1936 dies here. So don't bother copying value to it. */
1937 if (for_real >= 0 && value == real_out)
1938 rld[for_real].out = 0;
1939 if (GET_CODE (real_in) == REG)
1940 value = real_in;
1941 else
1942 value = gen_rtx_REG (inmode, regno);
1947 return value;
1950 /* This page contains subroutines used mainly for determining
1951 whether the IN or an OUT of a reload can serve as the
1952 reload register. */
1954 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1957 earlyclobber_operand_p (x)
1958 rtx x;
1960 int i;
1962 for (i = 0; i < n_earlyclobbers; i++)
1963 if (reload_earlyclobbers[i] == x)
1964 return 1;
1966 return 0;
1969 /* Return 1 if expression X alters a hard reg in the range
1970 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1971 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1972 X should be the body of an instruction. */
1974 static int
1975 hard_reg_set_here_p (beg_regno, end_regno, x)
1976 unsigned int beg_regno, end_regno;
1977 rtx x;
1979 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1981 rtx op0 = SET_DEST (x);
1983 while (GET_CODE (op0) == SUBREG)
1984 op0 = SUBREG_REG (op0);
1985 if (GET_CODE (op0) == REG)
1987 unsigned int r = REGNO (op0);
1989 /* See if this reg overlaps range under consideration. */
1990 if (r < end_regno
1991 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1992 return 1;
1995 else if (GET_CODE (x) == PARALLEL)
1997 int i = XVECLEN (x, 0) - 1;
1999 for (; i >= 0; i--)
2000 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2001 return 1;
2004 return 0;
2007 /* Return 1 if ADDR is a valid memory address for mode MODE,
2008 and check that each pseudo reg has the proper kind of
2009 hard reg. */
2012 strict_memory_address_p (mode, addr)
2013 enum machine_mode mode ATTRIBUTE_UNUSED;
2014 rtx addr;
2016 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2017 return 0;
2019 win:
2020 return 1;
2023 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2024 if they are the same hard reg, and has special hacks for
2025 autoincrement and autodecrement.
2026 This is specifically intended for find_reloads to use
2027 in determining whether two operands match.
2028 X is the operand whose number is the lower of the two.
2030 The value is 2 if Y contains a pre-increment that matches
2031 a non-incrementing address in X. */
2033 /* ??? To be completely correct, we should arrange to pass
2034 for X the output operand and for Y the input operand.
2035 For now, we assume that the output operand has the lower number
2036 because that is natural in (SET output (... input ...)). */
2039 operands_match_p (x, y)
2040 rtx x, y;
2042 int i;
2043 RTX_CODE code = GET_CODE (x);
2044 const char *fmt;
2045 int success_2;
2047 if (x == y)
2048 return 1;
2049 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2050 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2051 && GET_CODE (SUBREG_REG (y)) == REG)))
2053 int j;
2055 if (code == SUBREG)
2057 i = REGNO (SUBREG_REG (x));
2058 if (i >= FIRST_PSEUDO_REGISTER)
2059 goto slow;
2060 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2061 GET_MODE (SUBREG_REG (x)),
2062 SUBREG_BYTE (x),
2063 GET_MODE (x));
2065 else
2066 i = REGNO (x);
2068 if (GET_CODE (y) == SUBREG)
2070 j = REGNO (SUBREG_REG (y));
2071 if (j >= FIRST_PSEUDO_REGISTER)
2072 goto slow;
2073 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2074 GET_MODE (SUBREG_REG (y)),
2075 SUBREG_BYTE (y),
2076 GET_MODE (y));
2078 else
2079 j = REGNO (y);
2081 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2082 multiple hard register group, so that for example (reg:DI 0) and
2083 (reg:SI 1) will be considered the same register. */
2084 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2085 && i < FIRST_PSEUDO_REGISTER)
2086 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2087 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2088 && j < FIRST_PSEUDO_REGISTER)
2089 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2091 return i == j;
2093 /* If two operands must match, because they are really a single
2094 operand of an assembler insn, then two postincrements are invalid
2095 because the assembler insn would increment only once.
2096 On the other hand, an postincrement matches ordinary indexing
2097 if the postincrement is the output operand. */
2098 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2099 return operands_match_p (XEXP (x, 0), y);
2100 /* Two preincrements are invalid
2101 because the assembler insn would increment only once.
2102 On the other hand, an preincrement matches ordinary indexing
2103 if the preincrement is the input operand.
2104 In this case, return 2, since some callers need to do special
2105 things when this happens. */
2106 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2107 || GET_CODE (y) == PRE_MODIFY)
2108 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2110 slow:
2112 /* Now we have disposed of all the cases
2113 in which different rtx codes can match. */
2114 if (code != GET_CODE (y))
2115 return 0;
2116 if (code == LABEL_REF)
2117 return XEXP (x, 0) == XEXP (y, 0);
2118 if (code == SYMBOL_REF)
2119 return XSTR (x, 0) == XSTR (y, 0);
2121 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2123 if (GET_MODE (x) != GET_MODE (y))
2124 return 0;
2126 /* Compare the elements. If any pair of corresponding elements
2127 fail to match, return 0 for the whole things. */
2129 success_2 = 0;
2130 fmt = GET_RTX_FORMAT (code);
2131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2133 int val, j;
2134 switch (fmt[i])
2136 case 'w':
2137 if (XWINT (x, i) != XWINT (y, i))
2138 return 0;
2139 break;
2141 case 'i':
2142 if (XINT (x, i) != XINT (y, i))
2143 return 0;
2144 break;
2146 case 'e':
2147 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2148 if (val == 0)
2149 return 0;
2150 /* If any subexpression returns 2,
2151 we should return 2 if we are successful. */
2152 if (val == 2)
2153 success_2 = 1;
2154 break;
2156 case '0':
2157 break;
2159 case 'E':
2160 if (XVECLEN (x, i) != XVECLEN (y, i))
2161 return 0;
2162 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2164 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2165 if (val == 0)
2166 return 0;
2167 if (val == 2)
2168 success_2 = 1;
2170 break;
2172 /* It is believed that rtx's at this level will never
2173 contain anything but integers and other rtx's,
2174 except for within LABEL_REFs and SYMBOL_REFs. */
2175 default:
2176 abort ();
2179 return 1 + success_2;
2182 /* Describe the range of registers or memory referenced by X.
2183 If X is a register, set REG_FLAG and put the first register
2184 number into START and the last plus one into END.
2185 If X is a memory reference, put a base address into BASE
2186 and a range of integer offsets into START and END.
2187 If X is pushing on the stack, we can assume it causes no trouble,
2188 so we set the SAFE field. */
2190 static struct decomposition
2191 decompose (x)
2192 rtx x;
2194 struct decomposition val;
2195 int all_const = 0;
2197 val.reg_flag = 0;
2198 val.safe = 0;
2199 val.base = 0;
2200 if (GET_CODE (x) == MEM)
2202 rtx base = NULL_RTX, offset = 0;
2203 rtx addr = XEXP (x, 0);
2205 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2206 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2208 val.base = XEXP (addr, 0);
2209 val.start = -GET_MODE_SIZE (GET_MODE (x));
2210 val.end = GET_MODE_SIZE (GET_MODE (x));
2211 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2212 return val;
2215 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2217 if (GET_CODE (XEXP (addr, 1)) == PLUS
2218 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2219 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2221 val.base = XEXP (addr, 0);
2222 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2223 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2224 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2225 return val;
2229 if (GET_CODE (addr) == CONST)
2231 addr = XEXP (addr, 0);
2232 all_const = 1;
2234 if (GET_CODE (addr) == PLUS)
2236 if (CONSTANT_P (XEXP (addr, 0)))
2238 base = XEXP (addr, 1);
2239 offset = XEXP (addr, 0);
2241 else if (CONSTANT_P (XEXP (addr, 1)))
2243 base = XEXP (addr, 0);
2244 offset = XEXP (addr, 1);
2248 if (offset == 0)
2250 base = addr;
2251 offset = const0_rtx;
2253 if (GET_CODE (offset) == CONST)
2254 offset = XEXP (offset, 0);
2255 if (GET_CODE (offset) == PLUS)
2257 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2259 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2260 offset = XEXP (offset, 0);
2262 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2264 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2265 offset = XEXP (offset, 1);
2267 else
2269 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2270 offset = const0_rtx;
2273 else if (GET_CODE (offset) != CONST_INT)
2275 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2276 offset = const0_rtx;
2279 if (all_const && GET_CODE (base) == PLUS)
2280 base = gen_rtx_CONST (GET_MODE (base), base);
2282 if (GET_CODE (offset) != CONST_INT)
2283 abort ();
2285 val.start = INTVAL (offset);
2286 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2287 val.base = base;
2288 return val;
2290 else if (GET_CODE (x) == REG)
2292 val.reg_flag = 1;
2293 val.start = true_regnum (x);
2294 if (val.start < 0)
2296 /* A pseudo with no hard reg. */
2297 val.start = REGNO (x);
2298 val.end = val.start + 1;
2300 else
2301 /* A hard reg. */
2302 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2304 else if (GET_CODE (x) == SUBREG)
2306 if (GET_CODE (SUBREG_REG (x)) != REG)
2307 /* This could be more precise, but it's good enough. */
2308 return decompose (SUBREG_REG (x));
2309 val.reg_flag = 1;
2310 val.start = true_regnum (x);
2311 if (val.start < 0)
2312 return decompose (SUBREG_REG (x));
2313 else
2314 /* A hard reg. */
2315 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2317 else if (CONSTANT_P (x)
2318 /* This hasn't been assigned yet, so it can't conflict yet. */
2319 || GET_CODE (x) == SCRATCH)
2320 val.safe = 1;
2321 else
2322 abort ();
2323 return val;
2326 /* Return 1 if altering Y will not modify the value of X.
2327 Y is also described by YDATA, which should be decompose (Y). */
2329 static int
2330 immune_p (x, y, ydata)
2331 rtx x, y;
2332 struct decomposition ydata;
2334 struct decomposition xdata;
2336 if (ydata.reg_flag)
2337 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*)0);
2338 if (ydata.safe)
2339 return 1;
2341 if (GET_CODE (y) != MEM)
2342 abort ();
2343 /* If Y is memory and X is not, Y can't affect X. */
2344 if (GET_CODE (x) != MEM)
2345 return 1;
2347 xdata = decompose (x);
2349 if (! rtx_equal_p (xdata.base, ydata.base))
2351 /* If bases are distinct symbolic constants, there is no overlap. */
2352 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2353 return 1;
2354 /* Constants and stack slots never overlap. */
2355 if (CONSTANT_P (xdata.base)
2356 && (ydata.base == frame_pointer_rtx
2357 || ydata.base == hard_frame_pointer_rtx
2358 || ydata.base == stack_pointer_rtx))
2359 return 1;
2360 if (CONSTANT_P (ydata.base)
2361 && (xdata.base == frame_pointer_rtx
2362 || xdata.base == hard_frame_pointer_rtx
2363 || xdata.base == stack_pointer_rtx))
2364 return 1;
2365 /* If either base is variable, we don't know anything. */
2366 return 0;
2369 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2372 /* Similar, but calls decompose. */
2375 safe_from_earlyclobber (op, clobber)
2376 rtx op, clobber;
2378 struct decomposition early_data;
2380 early_data = decompose (clobber);
2381 return immune_p (op, clobber, early_data);
2384 /* Main entry point of this file: search the body of INSN
2385 for values that need reloading and record them with push_reload.
2386 REPLACE nonzero means record also where the values occur
2387 so that subst_reloads can be used.
2389 IND_LEVELS says how many levels of indirection are supported by this
2390 machine; a value of zero means that a memory reference is not a valid
2391 memory address.
2393 LIVE_KNOWN says we have valid information about which hard
2394 regs are live at each point in the program; this is true when
2395 we are called from global_alloc but false when stupid register
2396 allocation has been done.
2398 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2399 which is nonnegative if the reg has been commandeered for reloading into.
2400 It is copied into STATIC_RELOAD_REG_P and referenced from there
2401 by various subroutines.
2403 Return TRUE if some operands need to be changed, because of swapping
2404 commutative operands, reg_equiv_address substitution, or whatever. */
2407 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2408 rtx insn;
2409 int replace, ind_levels;
2410 int live_known;
2411 short *reload_reg_p;
2413 int insn_code_number;
2414 int i, j;
2415 int noperands;
2416 /* These start out as the constraints for the insn
2417 and they are chewed up as we consider alternatives. */
2418 char *constraints[MAX_RECOG_OPERANDS];
2419 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2420 a register. */
2421 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2422 char pref_or_nothing[MAX_RECOG_OPERANDS];
2423 /* Nonzero for a MEM operand whose entire address needs a reload. */
2424 int address_reloaded[MAX_RECOG_OPERANDS];
2425 /* Value of enum reload_type to use for operand. */
2426 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2427 /* Value of enum reload_type to use within address of operand. */
2428 enum reload_type address_type[MAX_RECOG_OPERANDS];
2429 /* Save the usage of each operand. */
2430 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2431 int no_input_reloads = 0, no_output_reloads = 0;
2432 int n_alternatives;
2433 int this_alternative[MAX_RECOG_OPERANDS];
2434 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2435 char this_alternative_win[MAX_RECOG_OPERANDS];
2436 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2437 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2438 int this_alternative_matches[MAX_RECOG_OPERANDS];
2439 int swapped;
2440 int goal_alternative[MAX_RECOG_OPERANDS];
2441 int this_alternative_number;
2442 int goal_alternative_number = 0;
2443 int operand_reloadnum[MAX_RECOG_OPERANDS];
2444 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2445 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2446 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2447 char goal_alternative_win[MAX_RECOG_OPERANDS];
2448 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2449 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2450 int goal_alternative_swapped;
2451 int best;
2452 int commutative;
2453 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2454 rtx substed_operand[MAX_RECOG_OPERANDS];
2455 rtx body = PATTERN (insn);
2456 rtx set = single_set (insn);
2457 int goal_earlyclobber = 0, this_earlyclobber;
2458 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2459 int retval = 0;
2461 this_insn = insn;
2462 n_reloads = 0;
2463 n_replacements = 0;
2464 n_earlyclobbers = 0;
2465 replace_reloads = replace;
2466 hard_regs_live_known = live_known;
2467 static_reload_reg_p = reload_reg_p;
2469 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2470 neither are insns that SET cc0. Insns that use CC0 are not allowed
2471 to have any input reloads. */
2472 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2473 no_output_reloads = 1;
2475 #ifdef HAVE_cc0
2476 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2477 no_input_reloads = 1;
2478 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2479 no_output_reloads = 1;
2480 #endif
2482 #ifdef SECONDARY_MEMORY_NEEDED
2483 /* The eliminated forms of any secondary memory locations are per-insn, so
2484 clear them out here. */
2486 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2487 #endif
2489 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2490 is cheap to move between them. If it is not, there may not be an insn
2491 to do the copy, so we may need a reload. */
2492 if (GET_CODE (body) == SET
2493 && GET_CODE (SET_DEST (body)) == REG
2494 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2495 && GET_CODE (SET_SRC (body)) == REG
2496 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2497 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2498 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2499 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2500 return 0;
2502 extract_insn (insn);
2504 noperands = reload_n_operands = recog_data.n_operands;
2505 n_alternatives = recog_data.n_alternatives;
2507 /* Just return "no reloads" if insn has no operands with constraints. */
2508 if (noperands == 0 || n_alternatives == 0)
2509 return 0;
2511 insn_code_number = INSN_CODE (insn);
2512 this_insn_is_asm = insn_code_number < 0;
2514 memcpy (operand_mode, recog_data.operand_mode,
2515 noperands * sizeof (enum machine_mode));
2516 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2518 commutative = -1;
2520 /* If we will need to know, later, whether some pair of operands
2521 are the same, we must compare them now and save the result.
2522 Reloading the base and index registers will clobber them
2523 and afterward they will fail to match. */
2525 for (i = 0; i < noperands; i++)
2527 char *p;
2528 int c;
2530 substed_operand[i] = recog_data.operand[i];
2531 p = constraints[i];
2533 modified[i] = RELOAD_READ;
2535 /* Scan this operand's constraint to see if it is an output operand,
2536 an in-out operand, is commutative, or should match another. */
2538 while ((c = *p++))
2540 if (c == '=')
2541 modified[i] = RELOAD_WRITE;
2542 else if (c == '+')
2543 modified[i] = RELOAD_READ_WRITE;
2544 else if (c == '%')
2546 /* The last operand should not be marked commutative. */
2547 if (i == noperands - 1)
2548 abort ();
2550 commutative = i;
2552 else if (c >= '0' && c <= '9')
2554 c = strtoul (p - 1, &p, 10);
2556 operands_match[c][i]
2557 = operands_match_p (recog_data.operand[c],
2558 recog_data.operand[i]);
2560 /* An operand may not match itself. */
2561 if (c == i)
2562 abort ();
2564 /* If C can be commuted with C+1, and C might need to match I,
2565 then C+1 might also need to match I. */
2566 if (commutative >= 0)
2568 if (c == commutative || c == commutative + 1)
2570 int other = c + (c == commutative ? 1 : -1);
2571 operands_match[other][i]
2572 = operands_match_p (recog_data.operand[other],
2573 recog_data.operand[i]);
2575 if (i == commutative || i == commutative + 1)
2577 int other = i + (i == commutative ? 1 : -1);
2578 operands_match[c][other]
2579 = operands_match_p (recog_data.operand[c],
2580 recog_data.operand[other]);
2582 /* Note that C is supposed to be less than I.
2583 No need to consider altering both C and I because in
2584 that case we would alter one into the other. */
2590 /* Examine each operand that is a memory reference or memory address
2591 and reload parts of the addresses into index registers.
2592 Also here any references to pseudo regs that didn't get hard regs
2593 but are equivalent to constants get replaced in the insn itself
2594 with those constants. Nobody will ever see them again.
2596 Finally, set up the preferred classes of each operand. */
2598 for (i = 0; i < noperands; i++)
2600 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2602 address_reloaded[i] = 0;
2603 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2604 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2605 : RELOAD_OTHER);
2606 address_type[i]
2607 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2608 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2609 : RELOAD_OTHER);
2611 if (*constraints[i] == 0)
2612 /* Ignore things like match_operator operands. */
2614 else if (constraints[i][0] == 'p')
2616 find_reloads_address (VOIDmode, (rtx*)0,
2617 recog_data.operand[i],
2618 recog_data.operand_loc[i],
2619 i, operand_type[i], ind_levels, insn);
2621 /* If we now have a simple operand where we used to have a
2622 PLUS or MULT, re-recognize and try again. */
2623 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2624 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2625 && (GET_CODE (recog_data.operand[i]) == MULT
2626 || GET_CODE (recog_data.operand[i]) == PLUS))
2628 INSN_CODE (insn) = -1;
2629 retval = find_reloads (insn, replace, ind_levels, live_known,
2630 reload_reg_p);
2631 return retval;
2634 recog_data.operand[i] = *recog_data.operand_loc[i];
2635 substed_operand[i] = recog_data.operand[i];
2637 else if (code == MEM)
2639 address_reloaded[i]
2640 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2641 recog_data.operand_loc[i],
2642 XEXP (recog_data.operand[i], 0),
2643 &XEXP (recog_data.operand[i], 0),
2644 i, address_type[i], ind_levels, insn);
2645 recog_data.operand[i] = *recog_data.operand_loc[i];
2646 substed_operand[i] = recog_data.operand[i];
2648 else if (code == SUBREG)
2650 rtx reg = SUBREG_REG (recog_data.operand[i]);
2651 rtx op
2652 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2653 ind_levels,
2654 set != 0
2655 && &SET_DEST (set) == recog_data.operand_loc[i],
2656 insn,
2657 &address_reloaded[i]);
2659 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2660 that didn't get a hard register, emit a USE with a REG_EQUAL
2661 note in front so that we might inherit a previous, possibly
2662 wider reload. */
2664 if (replace
2665 && GET_CODE (op) == MEM
2666 && GET_CODE (reg) == REG
2667 && (GET_MODE_SIZE (GET_MODE (reg))
2668 >= GET_MODE_SIZE (GET_MODE (op))))
2669 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2670 = gen_rtx_EXPR_LIST (REG_EQUAL,
2671 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2673 substed_operand[i] = recog_data.operand[i] = op;
2675 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2676 /* We can get a PLUS as an "operand" as a result of register
2677 elimination. See eliminate_regs and gen_reload. We handle
2678 a unary operator by reloading the operand. */
2679 substed_operand[i] = recog_data.operand[i]
2680 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2681 ind_levels, 0, insn,
2682 &address_reloaded[i]);
2683 else if (code == REG)
2685 /* This is equivalent to calling find_reloads_toplev.
2686 The code is duplicated for speed.
2687 When we find a pseudo always equivalent to a constant,
2688 we replace it by the constant. We must be sure, however,
2689 that we don't try to replace it in the insn in which it
2690 is being set. */
2691 int regno = REGNO (recog_data.operand[i]);
2692 if (reg_equiv_constant[regno] != 0
2693 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2695 /* Record the existing mode so that the check if constants are
2696 allowed will work when operand_mode isn't specified. */
2698 if (operand_mode[i] == VOIDmode)
2699 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2701 substed_operand[i] = recog_data.operand[i]
2702 = reg_equiv_constant[regno];
2704 if (reg_equiv_memory_loc[regno] != 0
2705 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2706 /* We need not give a valid is_set_dest argument since the case
2707 of a constant equivalence was checked above. */
2708 substed_operand[i] = recog_data.operand[i]
2709 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2710 ind_levels, 0, insn,
2711 &address_reloaded[i]);
2713 /* If the operand is still a register (we didn't replace it with an
2714 equivalent), get the preferred class to reload it into. */
2715 code = GET_CODE (recog_data.operand[i]);
2716 preferred_class[i]
2717 = ((code == REG && REGNO (recog_data.operand[i])
2718 >= FIRST_PSEUDO_REGISTER)
2719 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2720 : NO_REGS);
2721 pref_or_nothing[i]
2722 = (code == REG
2723 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2724 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2727 /* If this is simply a copy from operand 1 to operand 0, merge the
2728 preferred classes for the operands. */
2729 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2730 && recog_data.operand[1] == SET_SRC (set))
2732 preferred_class[0] = preferred_class[1]
2733 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2734 pref_or_nothing[0] |= pref_or_nothing[1];
2735 pref_or_nothing[1] |= pref_or_nothing[0];
2738 /* Now see what we need for pseudo-regs that didn't get hard regs
2739 or got the wrong kind of hard reg. For this, we must consider
2740 all the operands together against the register constraints. */
2742 best = MAX_RECOG_OPERANDS * 2 + 600;
2744 swapped = 0;
2745 goal_alternative_swapped = 0;
2746 try_swapped:
2748 /* The constraints are made of several alternatives.
2749 Each operand's constraint looks like foo,bar,... with commas
2750 separating the alternatives. The first alternatives for all
2751 operands go together, the second alternatives go together, etc.
2753 First loop over alternatives. */
2755 for (this_alternative_number = 0;
2756 this_alternative_number < n_alternatives;
2757 this_alternative_number++)
2759 /* Loop over operands for one constraint alternative. */
2760 /* LOSERS counts those that don't fit this alternative
2761 and would require loading. */
2762 int losers = 0;
2763 /* BAD is set to 1 if it some operand can't fit this alternative
2764 even after reloading. */
2765 int bad = 0;
2766 /* REJECT is a count of how undesirable this alternative says it is
2767 if any reloading is required. If the alternative matches exactly
2768 then REJECT is ignored, but otherwise it gets this much
2769 counted against it in addition to the reloading needed. Each
2770 ? counts three times here since we want the disparaging caused by
2771 a bad register class to only count 1/3 as much. */
2772 int reject = 0;
2774 this_earlyclobber = 0;
2776 for (i = 0; i < noperands; i++)
2778 char *p = constraints[i];
2779 int win = 0;
2780 int did_match = 0;
2781 /* 0 => this operand can be reloaded somehow for this alternative. */
2782 int badop = 1;
2783 /* 0 => this operand can be reloaded if the alternative allows regs. */
2784 int winreg = 0;
2785 int c;
2786 rtx operand = recog_data.operand[i];
2787 int offset = 0;
2788 /* Nonzero means this is a MEM that must be reloaded into a reg
2789 regardless of what the constraint says. */
2790 int force_reload = 0;
2791 int offmemok = 0;
2792 /* Nonzero if a constant forced into memory would be OK for this
2793 operand. */
2794 int constmemok = 0;
2795 int earlyclobber = 0;
2797 /* If the predicate accepts a unary operator, it means that
2798 we need to reload the operand, but do not do this for
2799 match_operator and friends. */
2800 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2801 operand = XEXP (operand, 0);
2803 /* If the operand is a SUBREG, extract
2804 the REG or MEM (or maybe even a constant) within.
2805 (Constants can occur as a result of reg_equiv_constant.) */
2807 while (GET_CODE (operand) == SUBREG)
2809 /* Offset only matters when operand is a REG and
2810 it is a hard reg. This is because it is passed
2811 to reg_fits_class_p if it is a REG and all pseudos
2812 return 0 from that function. */
2813 if (GET_CODE (SUBREG_REG (operand)) == REG
2814 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2816 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2817 GET_MODE (SUBREG_REG (operand)),
2818 SUBREG_BYTE (operand),
2819 GET_MODE (operand));
2821 operand = SUBREG_REG (operand);
2822 /* Force reload if this is a constant or PLUS or if there may
2823 be a problem accessing OPERAND in the outer mode. */
2824 if (CONSTANT_P (operand)
2825 || GET_CODE (operand) == PLUS
2826 /* We must force a reload of paradoxical SUBREGs
2827 of a MEM because the alignment of the inner value
2828 may not be enough to do the outer reference. On
2829 big-endian machines, it may also reference outside
2830 the object.
2832 On machines that extend byte operations and we have a
2833 SUBREG where both the inner and outer modes are no wider
2834 than a word and the inner mode is narrower, is integral,
2835 and gets extended when loaded from memory, combine.c has
2836 made assumptions about the behavior of the machine in such
2837 register access. If the data is, in fact, in memory we
2838 must always load using the size assumed to be in the
2839 register and let the insn do the different-sized
2840 accesses.
2842 This is doubly true if WORD_REGISTER_OPERATIONS. In
2843 this case eliminate_regs has left non-paradoxical
2844 subregs for push_reloads to see. Make sure it does
2845 by forcing the reload.
2847 ??? When is it right at this stage to have a subreg
2848 of a mem that is _not_ to be handled specialy? IMO
2849 those should have been reduced to just a mem. */
2850 || ((GET_CODE (operand) == MEM
2851 || (GET_CODE (operand)== REG
2852 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2853 #ifndef WORD_REGISTER_OPERATIONS
2854 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2855 < BIGGEST_ALIGNMENT)
2856 && (GET_MODE_SIZE (operand_mode[i])
2857 > GET_MODE_SIZE (GET_MODE (operand))))
2858 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2859 #ifdef LOAD_EXTEND_OP
2860 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2861 && (GET_MODE_SIZE (GET_MODE (operand))
2862 <= UNITS_PER_WORD)
2863 && (GET_MODE_SIZE (operand_mode[i])
2864 > GET_MODE_SIZE (GET_MODE (operand)))
2865 && INTEGRAL_MODE_P (GET_MODE (operand))
2866 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2867 #endif
2869 #endif
2871 /* This following hunk of code should no longer be
2872 needed at all with SUBREG_BYTE. If you need this
2873 code back, please explain to me why so I can
2874 fix the real problem. -DaveM */
2875 #if 0
2876 /* Subreg of a hard reg which can't handle the subreg's mode
2877 or which would handle that mode in the wrong number of
2878 registers for subregging to work. */
2879 || (GET_CODE (operand) == REG
2880 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2881 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2882 && (GET_MODE_SIZE (GET_MODE (operand))
2883 > UNITS_PER_WORD)
2884 && ((GET_MODE_SIZE (GET_MODE (operand))
2885 / UNITS_PER_WORD)
2886 != HARD_REGNO_NREGS (REGNO (operand),
2887 GET_MODE (operand))))
2888 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2889 operand_mode[i])))
2890 #endif
2892 force_reload = 1;
2895 this_alternative[i] = (int) NO_REGS;
2896 this_alternative_win[i] = 0;
2897 this_alternative_match_win[i] = 0;
2898 this_alternative_offmemok[i] = 0;
2899 this_alternative_earlyclobber[i] = 0;
2900 this_alternative_matches[i] = -1;
2902 /* An empty constraint or empty alternative
2903 allows anything which matched the pattern. */
2904 if (*p == 0 || *p == ',')
2905 win = 1, badop = 0;
2907 /* Scan this alternative's specs for this operand;
2908 set WIN if the operand fits any letter in this alternative.
2909 Otherwise, clear BADOP if this operand could
2910 fit some letter after reloads,
2911 or set WINREG if this operand could fit after reloads
2912 provided the constraint allows some registers. */
2914 while (*p && (c = *p++) != ',')
2915 switch (c)
2917 case '=': case '+': case '*':
2918 break;
2920 case '%':
2921 /* The last operand should not be marked commutative. */
2922 if (i != noperands - 1)
2923 commutative = i;
2924 break;
2926 case '?':
2927 reject += 6;
2928 break;
2930 case '!':
2931 reject = 600;
2932 break;
2934 case '#':
2935 /* Ignore rest of this alternative as far as
2936 reloading is concerned. */
2937 while (*p && *p != ',')
2938 p++;
2939 break;
2941 case '0': case '1': case '2': case '3': case '4':
2942 case '5': case '6': case '7': case '8': case '9':
2943 c = strtoul (p - 1, &p, 10);
2945 this_alternative_matches[i] = c;
2946 /* We are supposed to match a previous operand.
2947 If we do, we win if that one did.
2948 If we do not, count both of the operands as losers.
2949 (This is too conservative, since most of the time
2950 only a single reload insn will be needed to make
2951 the two operands win. As a result, this alternative
2952 may be rejected when it is actually desirable.) */
2953 if ((swapped && (c != commutative || i != commutative + 1))
2954 /* If we are matching as if two operands were swapped,
2955 also pretend that operands_match had been computed
2956 with swapped.
2957 But if I is the second of those and C is the first,
2958 don't exchange them, because operands_match is valid
2959 only on one side of its diagonal. */
2960 ? (operands_match
2961 [(c == commutative || c == commutative + 1)
2962 ? 2 * commutative + 1 - c : c]
2963 [(i == commutative || i == commutative + 1)
2964 ? 2 * commutative + 1 - i : i])
2965 : operands_match[c][i])
2967 /* If we are matching a non-offsettable address where an
2968 offsettable address was expected, then we must reject
2969 this combination, because we can't reload it. */
2970 if (this_alternative_offmemok[c]
2971 && GET_CODE (recog_data.operand[c]) == MEM
2972 && this_alternative[c] == (int) NO_REGS
2973 && ! this_alternative_win[c])
2974 bad = 1;
2976 did_match = this_alternative_win[c];
2978 else
2980 /* Operands don't match. */
2981 rtx value;
2982 /* Retroactively mark the operand we had to match
2983 as a loser, if it wasn't already. */
2984 if (this_alternative_win[c])
2985 losers++;
2986 this_alternative_win[c] = 0;
2987 if (this_alternative[c] == (int) NO_REGS)
2988 bad = 1;
2989 /* But count the pair only once in the total badness of
2990 this alternative, if the pair can be a dummy reload. */
2991 value
2992 = find_dummy_reload (recog_data.operand[i],
2993 recog_data.operand[c],
2994 recog_data.operand_loc[i],
2995 recog_data.operand_loc[c],
2996 operand_mode[i], operand_mode[c],
2997 this_alternative[c], -1,
2998 this_alternative_earlyclobber[c]);
3000 if (value != 0)
3001 losers--;
3003 /* This can be fixed with reloads if the operand
3004 we are supposed to match can be fixed with reloads. */
3005 badop = 0;
3006 this_alternative[i] = this_alternative[c];
3008 /* If we have to reload this operand and some previous
3009 operand also had to match the same thing as this
3010 operand, we don't know how to do that. So reject this
3011 alternative. */
3012 if (! did_match || force_reload)
3013 for (j = 0; j < i; j++)
3014 if (this_alternative_matches[j]
3015 == this_alternative_matches[i])
3016 badop = 1;
3017 break;
3019 case 'p':
3020 /* All necessary reloads for an address_operand
3021 were handled in find_reloads_address. */
3022 this_alternative[i] = (int) BASE_REG_CLASS;
3023 win = 1;
3024 break;
3026 case 'm':
3027 if (force_reload)
3028 break;
3029 if (GET_CODE (operand) == MEM
3030 || (GET_CODE (operand) == REG
3031 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3032 && reg_renumber[REGNO (operand)] < 0))
3033 win = 1;
3034 if (CONSTANT_P (operand)
3035 /* force_const_mem does not accept HIGH. */
3036 && GET_CODE (operand) != HIGH)
3037 badop = 0;
3038 constmemok = 1;
3039 break;
3041 case '<':
3042 if (GET_CODE (operand) == MEM
3043 && ! address_reloaded[i]
3044 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3045 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3046 win = 1;
3047 break;
3049 case '>':
3050 if (GET_CODE (operand) == MEM
3051 && ! address_reloaded[i]
3052 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3053 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3054 win = 1;
3055 break;
3057 /* Memory operand whose address is not offsettable. */
3058 case 'V':
3059 if (force_reload)
3060 break;
3061 if (GET_CODE (operand) == MEM
3062 && ! (ind_levels ? offsettable_memref_p (operand)
3063 : offsettable_nonstrict_memref_p (operand))
3064 /* Certain mem addresses will become offsettable
3065 after they themselves are reloaded. This is important;
3066 we don't want our own handling of unoffsettables
3067 to override the handling of reg_equiv_address. */
3068 && !(GET_CODE (XEXP (operand, 0)) == REG
3069 && (ind_levels == 0
3070 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3071 win = 1;
3072 break;
3074 /* Memory operand whose address is offsettable. */
3075 case 'o':
3076 if (force_reload)
3077 break;
3078 if ((GET_CODE (operand) == MEM
3079 /* If IND_LEVELS, find_reloads_address won't reload a
3080 pseudo that didn't get a hard reg, so we have to
3081 reject that case. */
3082 && ((ind_levels ? offsettable_memref_p (operand)
3083 : offsettable_nonstrict_memref_p (operand))
3084 /* A reloaded address is offsettable because it is now
3085 just a simple register indirect. */
3086 || address_reloaded[i]))
3087 || (GET_CODE (operand) == REG
3088 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3089 && reg_renumber[REGNO (operand)] < 0
3090 /* If reg_equiv_address is nonzero, we will be
3091 loading it into a register; hence it will be
3092 offsettable, but we cannot say that reg_equiv_mem
3093 is offsettable without checking. */
3094 && ((reg_equiv_mem[REGNO (operand)] != 0
3095 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3096 || (reg_equiv_address[REGNO (operand)] != 0))))
3097 win = 1;
3098 /* force_const_mem does not accept HIGH. */
3099 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3100 || GET_CODE (operand) == MEM)
3101 badop = 0;
3102 constmemok = 1;
3103 offmemok = 1;
3104 break;
3106 case '&':
3107 /* Output operand that is stored before the need for the
3108 input operands (and their index registers) is over. */
3109 earlyclobber = 1, this_earlyclobber = 1;
3110 break;
3112 case 'E':
3113 #ifndef REAL_ARITHMETIC
3114 /* Match any floating double constant, but only if
3115 we can examine the bits of it reliably. */
3116 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3117 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3118 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3119 break;
3120 #endif
3121 if (GET_CODE (operand) == CONST_DOUBLE)
3122 win = 1;
3123 break;
3125 case 'F':
3126 if (GET_CODE (operand) == CONST_DOUBLE)
3127 win = 1;
3128 break;
3130 case 'G':
3131 case 'H':
3132 if (GET_CODE (operand) == CONST_DOUBLE
3133 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3134 win = 1;
3135 break;
3137 case 's':
3138 if (GET_CODE (operand) == CONST_INT
3139 || (GET_CODE (operand) == CONST_DOUBLE
3140 && GET_MODE (operand) == VOIDmode))
3141 break;
3142 case 'i':
3143 if (CONSTANT_P (operand)
3144 #ifdef LEGITIMATE_PIC_OPERAND_P
3145 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3146 #endif
3148 win = 1;
3149 break;
3151 case 'n':
3152 if (GET_CODE (operand) == CONST_INT
3153 || (GET_CODE (operand) == CONST_DOUBLE
3154 && GET_MODE (operand) == VOIDmode))
3155 win = 1;
3156 break;
3158 case 'I':
3159 case 'J':
3160 case 'K':
3161 case 'L':
3162 case 'M':
3163 case 'N':
3164 case 'O':
3165 case 'P':
3166 if (GET_CODE (operand) == CONST_INT
3167 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3168 win = 1;
3169 break;
3171 case 'X':
3172 win = 1;
3173 break;
3175 case 'g':
3176 if (! force_reload
3177 /* A PLUS is never a valid operand, but reload can make
3178 it from a register when eliminating registers. */
3179 && GET_CODE (operand) != PLUS
3180 /* A SCRATCH is not a valid operand. */
3181 && GET_CODE (operand) != SCRATCH
3182 #ifdef LEGITIMATE_PIC_OPERAND_P
3183 && (! CONSTANT_P (operand)
3184 || ! flag_pic
3185 || LEGITIMATE_PIC_OPERAND_P (operand))
3186 #endif
3187 && (GENERAL_REGS == ALL_REGS
3188 || GET_CODE (operand) != REG
3189 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3190 && reg_renumber[REGNO (operand)] < 0)))
3191 win = 1;
3192 /* Drop through into 'r' case. */
3194 case 'r':
3195 this_alternative[i]
3196 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3197 goto reg;
3199 default:
3200 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3202 #ifdef EXTRA_CONSTRAINT
3203 if (EXTRA_CONSTRAINT (operand, c))
3204 win = 1;
3205 #endif
3206 break;
3209 this_alternative[i]
3210 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3211 reg:
3212 if (GET_MODE (operand) == BLKmode)
3213 break;
3214 winreg = 1;
3215 if (GET_CODE (operand) == REG
3216 && reg_fits_class_p (operand, this_alternative[i],
3217 offset, GET_MODE (recog_data.operand[i])))
3218 win = 1;
3219 break;
3222 constraints[i] = p;
3224 /* If this operand could be handled with a reg,
3225 and some reg is allowed, then this operand can be handled. */
3226 if (winreg && this_alternative[i] != (int) NO_REGS)
3227 badop = 0;
3229 /* Record which operands fit this alternative. */
3230 this_alternative_earlyclobber[i] = earlyclobber;
3231 if (win && ! force_reload)
3232 this_alternative_win[i] = 1;
3233 else if (did_match && ! force_reload)
3234 this_alternative_match_win[i] = 1;
3235 else
3237 int const_to_mem = 0;
3239 this_alternative_offmemok[i] = offmemok;
3240 losers++;
3241 if (badop)
3242 bad = 1;
3243 /* Alternative loses if it has no regs for a reg operand. */
3244 if (GET_CODE (operand) == REG
3245 && this_alternative[i] == (int) NO_REGS
3246 && this_alternative_matches[i] < 0)
3247 bad = 1;
3249 /* If this is a constant that is reloaded into the desired
3250 class by copying it to memory first, count that as another
3251 reload. This is consistent with other code and is
3252 required to avoid choosing another alternative when
3253 the constant is moved into memory by this function on
3254 an early reload pass. Note that the test here is
3255 precisely the same as in the code below that calls
3256 force_const_mem. */
3257 if (CONSTANT_P (operand)
3258 /* force_const_mem does not accept HIGH. */
3259 && GET_CODE (operand) != HIGH
3260 && ((PREFERRED_RELOAD_CLASS (operand,
3261 (enum reg_class) this_alternative[i])
3262 == NO_REGS)
3263 || no_input_reloads)
3264 && operand_mode[i] != VOIDmode)
3266 const_to_mem = 1;
3267 if (this_alternative[i] != (int) NO_REGS)
3268 losers++;
3271 /* If we can't reload this value at all, reject this
3272 alternative. Note that we could also lose due to
3273 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3274 here. */
3276 if (! CONSTANT_P (operand)
3277 && (enum reg_class) this_alternative[i] != NO_REGS
3278 && (PREFERRED_RELOAD_CLASS (operand,
3279 (enum reg_class) this_alternative[i])
3280 == NO_REGS))
3281 bad = 1;
3283 /* Alternative loses if it requires a type of reload not
3284 permitted for this insn. We can always reload SCRATCH
3285 and objects with a REG_UNUSED note. */
3286 else if (GET_CODE (operand) != SCRATCH
3287 && modified[i] != RELOAD_READ && no_output_reloads
3288 && ! find_reg_note (insn, REG_UNUSED, operand))
3289 bad = 1;
3290 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3291 && ! const_to_mem)
3292 bad = 1;
3294 /* We prefer to reload pseudos over reloading other things,
3295 since such reloads may be able to be eliminated later.
3296 If we are reloading a SCRATCH, we won't be generating any
3297 insns, just using a register, so it is also preferred.
3298 So bump REJECT in other cases. Don't do this in the
3299 case where we are forcing a constant into memory and
3300 it will then win since we don't want to have a different
3301 alternative match then. */
3302 if (! (GET_CODE (operand) == REG
3303 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3304 && GET_CODE (operand) != SCRATCH
3305 && ! (const_to_mem && constmemok))
3306 reject += 2;
3308 /* Input reloads can be inherited more often than output
3309 reloads can be removed, so penalize output reloads. */
3310 if (operand_type[i] != RELOAD_FOR_INPUT
3311 && GET_CODE (operand) != SCRATCH)
3312 reject++;
3315 /* If this operand is a pseudo register that didn't get a hard
3316 reg and this alternative accepts some register, see if the
3317 class that we want is a subset of the preferred class for this
3318 register. If not, but it intersects that class, use the
3319 preferred class instead. If it does not intersect the preferred
3320 class, show that usage of this alternative should be discouraged;
3321 it will be discouraged more still if the register is `preferred
3322 or nothing'. We do this because it increases the chance of
3323 reusing our spill register in a later insn and avoiding a pair
3324 of memory stores and loads.
3326 Don't bother with this if this alternative will accept this
3327 operand.
3329 Don't do this for a multiword operand, since it is only a
3330 small win and has the risk of requiring more spill registers,
3331 which could cause a large loss.
3333 Don't do this if the preferred class has only one register
3334 because we might otherwise exhaust the class. */
3336 if (! win && ! did_match
3337 && this_alternative[i] != (int) NO_REGS
3338 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3339 && reg_class_size[(int) preferred_class[i]] > 1)
3341 if (! reg_class_subset_p (this_alternative[i],
3342 preferred_class[i]))
3344 /* Since we don't have a way of forming the intersection,
3345 we just do something special if the preferred class
3346 is a subset of the class we have; that's the most
3347 common case anyway. */
3348 if (reg_class_subset_p (preferred_class[i],
3349 this_alternative[i]))
3350 this_alternative[i] = (int) preferred_class[i];
3351 else
3352 reject += (2 + 2 * pref_or_nothing[i]);
3357 /* Now see if any output operands that are marked "earlyclobber"
3358 in this alternative conflict with any input operands
3359 or any memory addresses. */
3361 for (i = 0; i < noperands; i++)
3362 if (this_alternative_earlyclobber[i]
3363 && (this_alternative_win[i] || this_alternative_match_win[i]))
3365 struct decomposition early_data;
3367 early_data = decompose (recog_data.operand[i]);
3369 if (modified[i] == RELOAD_READ)
3370 abort ();
3372 if (this_alternative[i] == NO_REGS)
3374 this_alternative_earlyclobber[i] = 0;
3375 if (this_insn_is_asm)
3376 error_for_asm (this_insn,
3377 "`&' constraint used with no register class");
3378 else
3379 abort ();
3382 for (j = 0; j < noperands; j++)
3383 /* Is this an input operand or a memory ref? */
3384 if ((GET_CODE (recog_data.operand[j]) == MEM
3385 || modified[j] != RELOAD_WRITE)
3386 && j != i
3387 /* Ignore things like match_operator operands. */
3388 && *recog_data.constraints[j] != 0
3389 /* Don't count an input operand that is constrained to match
3390 the early clobber operand. */
3391 && ! (this_alternative_matches[j] == i
3392 && rtx_equal_p (recog_data.operand[i],
3393 recog_data.operand[j]))
3394 /* Is it altered by storing the earlyclobber operand? */
3395 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3396 early_data))
3398 /* If the output is in a single-reg class,
3399 it's costly to reload it, so reload the input instead. */
3400 if (reg_class_size[this_alternative[i]] == 1
3401 && (GET_CODE (recog_data.operand[j]) == REG
3402 || GET_CODE (recog_data.operand[j]) == SUBREG))
3404 losers++;
3405 this_alternative_win[j] = 0;
3406 this_alternative_match_win[j] = 0;
3408 else
3409 break;
3411 /* If an earlyclobber operand conflicts with something,
3412 it must be reloaded, so request this and count the cost. */
3413 if (j != noperands)
3415 losers++;
3416 this_alternative_win[i] = 0;
3417 this_alternative_match_win[j] = 0;
3418 for (j = 0; j < noperands; j++)
3419 if (this_alternative_matches[j] == i
3420 && this_alternative_match_win[j])
3422 this_alternative_win[j] = 0;
3423 this_alternative_match_win[j] = 0;
3424 losers++;
3429 /* If one alternative accepts all the operands, no reload required,
3430 choose that alternative; don't consider the remaining ones. */
3431 if (losers == 0)
3433 /* Unswap these so that they are never swapped at `finish'. */
3434 if (commutative >= 0)
3436 recog_data.operand[commutative] = substed_operand[commutative];
3437 recog_data.operand[commutative + 1]
3438 = substed_operand[commutative + 1];
3440 for (i = 0; i < noperands; i++)
3442 goal_alternative_win[i] = this_alternative_win[i];
3443 goal_alternative_match_win[i] = this_alternative_match_win[i];
3444 goal_alternative[i] = this_alternative[i];
3445 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3446 goal_alternative_matches[i] = this_alternative_matches[i];
3447 goal_alternative_earlyclobber[i]
3448 = this_alternative_earlyclobber[i];
3450 goal_alternative_number = this_alternative_number;
3451 goal_alternative_swapped = swapped;
3452 goal_earlyclobber = this_earlyclobber;
3453 goto finish;
3456 /* REJECT, set by the ! and ? constraint characters and when a register
3457 would be reloaded into a non-preferred class, discourages the use of
3458 this alternative for a reload goal. REJECT is incremented by six
3459 for each ? and two for each non-preferred class. */
3460 losers = losers * 6 + reject;
3462 /* If this alternative can be made to work by reloading,
3463 and it needs less reloading than the others checked so far,
3464 record it as the chosen goal for reloading. */
3465 if (! bad && best > losers)
3467 for (i = 0; i < noperands; i++)
3469 goal_alternative[i] = this_alternative[i];
3470 goal_alternative_win[i] = this_alternative_win[i];
3471 goal_alternative_match_win[i] = this_alternative_match_win[i];
3472 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3473 goal_alternative_matches[i] = this_alternative_matches[i];
3474 goal_alternative_earlyclobber[i]
3475 = this_alternative_earlyclobber[i];
3477 goal_alternative_swapped = swapped;
3478 best = losers;
3479 goal_alternative_number = this_alternative_number;
3480 goal_earlyclobber = this_earlyclobber;
3484 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3485 then we need to try each alternative twice,
3486 the second time matching those two operands
3487 as if we had exchanged them.
3488 To do this, really exchange them in operands.
3490 If we have just tried the alternatives the second time,
3491 return operands to normal and drop through. */
3493 if (commutative >= 0)
3495 swapped = !swapped;
3496 if (swapped)
3498 enum reg_class tclass;
3499 int t;
3501 recog_data.operand[commutative] = substed_operand[commutative + 1];
3502 recog_data.operand[commutative + 1] = substed_operand[commutative];
3504 tclass = preferred_class[commutative];
3505 preferred_class[commutative] = preferred_class[commutative + 1];
3506 preferred_class[commutative + 1] = tclass;
3508 t = pref_or_nothing[commutative];
3509 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3510 pref_or_nothing[commutative + 1] = t;
3512 memcpy (constraints, recog_data.constraints,
3513 noperands * sizeof (char *));
3514 goto try_swapped;
3516 else
3518 recog_data.operand[commutative] = substed_operand[commutative];
3519 recog_data.operand[commutative + 1]
3520 = substed_operand[commutative + 1];
3524 /* The operands don't meet the constraints.
3525 goal_alternative describes the alternative
3526 that we could reach by reloading the fewest operands.
3527 Reload so as to fit it. */
3529 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3531 /* No alternative works with reloads?? */
3532 if (insn_code_number >= 0)
3533 fatal_insn ("Unable to generate reloads for:", insn);
3534 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3535 /* Avoid further trouble with this insn. */
3536 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3537 n_reloads = 0;
3538 return 0;
3541 /* Jump to `finish' from above if all operands are valid already.
3542 In that case, goal_alternative_win is all 1. */
3543 finish:
3545 /* Right now, for any pair of operands I and J that are required to match,
3546 with I < J,
3547 goal_alternative_matches[J] is I.
3548 Set up goal_alternative_matched as the inverse function:
3549 goal_alternative_matched[I] = J. */
3551 for (i = 0; i < noperands; i++)
3552 goal_alternative_matched[i] = -1;
3554 for (i = 0; i < noperands; i++)
3555 if (! goal_alternative_win[i]
3556 && goal_alternative_matches[i] >= 0)
3557 goal_alternative_matched[goal_alternative_matches[i]] = i;
3559 for (i = 0; i < noperands; i++)
3560 goal_alternative_win[i] |= goal_alternative_match_win[i];
3562 /* If the best alternative is with operands 1 and 2 swapped,
3563 consider them swapped before reporting the reloads. Update the
3564 operand numbers of any reloads already pushed. */
3566 if (goal_alternative_swapped)
3568 rtx tem;
3570 tem = substed_operand[commutative];
3571 substed_operand[commutative] = substed_operand[commutative + 1];
3572 substed_operand[commutative + 1] = tem;
3573 tem = recog_data.operand[commutative];
3574 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3575 recog_data.operand[commutative + 1] = tem;
3576 tem = *recog_data.operand_loc[commutative];
3577 *recog_data.operand_loc[commutative]
3578 = *recog_data.operand_loc[commutative + 1];
3579 *recog_data.operand_loc[commutative + 1] = tem;
3581 for (i = 0; i < n_reloads; i++)
3583 if (rld[i].opnum == commutative)
3584 rld[i].opnum = commutative + 1;
3585 else if (rld[i].opnum == commutative + 1)
3586 rld[i].opnum = commutative;
3590 for (i = 0; i < noperands; i++)
3592 operand_reloadnum[i] = -1;
3594 /* If this is an earlyclobber operand, we need to widen the scope.
3595 The reload must remain valid from the start of the insn being
3596 reloaded until after the operand is stored into its destination.
3597 We approximate this with RELOAD_OTHER even though we know that we
3598 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3600 One special case that is worth checking is when we have an
3601 output that is earlyclobber but isn't used past the insn (typically
3602 a SCRATCH). In this case, we only need have the reload live
3603 through the insn itself, but not for any of our input or output
3604 reloads.
3605 But we must not accidentally narrow the scope of an existing
3606 RELOAD_OTHER reload - leave these alone.
3608 In any case, anything needed to address this operand can remain
3609 however they were previously categorized. */
3611 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3612 operand_type[i]
3613 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3614 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3617 /* Any constants that aren't allowed and can't be reloaded
3618 into registers are here changed into memory references. */
3619 for (i = 0; i < noperands; i++)
3620 if (! goal_alternative_win[i]
3621 && CONSTANT_P (recog_data.operand[i])
3622 /* force_const_mem does not accept HIGH. */
3623 && GET_CODE (recog_data.operand[i]) != HIGH
3624 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3625 (enum reg_class) goal_alternative[i])
3626 == NO_REGS)
3627 || no_input_reloads)
3628 && operand_mode[i] != VOIDmode)
3630 substed_operand[i] = recog_data.operand[i]
3631 = find_reloads_toplev (force_const_mem (operand_mode[i],
3632 recog_data.operand[i]),
3633 i, address_type[i], ind_levels, 0, insn,
3634 NULL);
3635 if (alternative_allows_memconst (recog_data.constraints[i],
3636 goal_alternative_number))
3637 goal_alternative_win[i] = 1;
3640 /* Record the values of the earlyclobber operands for the caller. */
3641 if (goal_earlyclobber)
3642 for (i = 0; i < noperands; i++)
3643 if (goal_alternative_earlyclobber[i])
3644 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3646 /* Now record reloads for all the operands that need them. */
3647 for (i = 0; i < noperands; i++)
3648 if (! goal_alternative_win[i])
3650 /* Operands that match previous ones have already been handled. */
3651 if (goal_alternative_matches[i] >= 0)
3653 /* Handle an operand with a nonoffsettable address
3654 appearing where an offsettable address will do
3655 by reloading the address into a base register.
3657 ??? We can also do this when the operand is a register and
3658 reg_equiv_mem is not offsettable, but this is a bit tricky,
3659 so we don't bother with it. It may not be worth doing. */
3660 else if (goal_alternative_matched[i] == -1
3661 && goal_alternative_offmemok[i]
3662 && GET_CODE (recog_data.operand[i]) == MEM)
3664 operand_reloadnum[i]
3665 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3666 &XEXP (recog_data.operand[i], 0), (rtx*)0,
3667 BASE_REG_CLASS,
3668 GET_MODE (XEXP (recog_data.operand[i], 0)),
3669 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3670 rld[operand_reloadnum[i]].inc
3671 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3673 /* If this operand is an output, we will have made any
3674 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3675 now we are treating part of the operand as an input, so
3676 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3678 if (modified[i] == RELOAD_WRITE)
3680 for (j = 0; j < n_reloads; j++)
3682 if (rld[j].opnum == i)
3684 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3685 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3686 else if (rld[j].when_needed
3687 == RELOAD_FOR_OUTADDR_ADDRESS)
3688 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3693 else if (goal_alternative_matched[i] == -1)
3695 operand_reloadnum[i]
3696 = push_reload ((modified[i] != RELOAD_WRITE
3697 ? recog_data.operand[i] : 0),
3698 (modified[i] != RELOAD_READ
3699 ? recog_data.operand[i] : 0),
3700 (modified[i] != RELOAD_WRITE
3701 ? recog_data.operand_loc[i] : 0),
3702 (modified[i] != RELOAD_READ
3703 ? recog_data.operand_loc[i] : 0),
3704 (enum reg_class) goal_alternative[i],
3705 (modified[i] == RELOAD_WRITE
3706 ? VOIDmode : operand_mode[i]),
3707 (modified[i] == RELOAD_READ
3708 ? VOIDmode : operand_mode[i]),
3709 (insn_code_number < 0 ? 0
3710 : insn_data[insn_code_number].operand[i].strict_low),
3711 0, i, operand_type[i]);
3713 /* In a matching pair of operands, one must be input only
3714 and the other must be output only.
3715 Pass the input operand as IN and the other as OUT. */
3716 else if (modified[i] == RELOAD_READ
3717 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3719 operand_reloadnum[i]
3720 = push_reload (recog_data.operand[i],
3721 recog_data.operand[goal_alternative_matched[i]],
3722 recog_data.operand_loc[i],
3723 recog_data.operand_loc[goal_alternative_matched[i]],
3724 (enum reg_class) goal_alternative[i],
3725 operand_mode[i],
3726 operand_mode[goal_alternative_matched[i]],
3727 0, 0, i, RELOAD_OTHER);
3728 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3730 else if (modified[i] == RELOAD_WRITE
3731 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3733 operand_reloadnum[goal_alternative_matched[i]]
3734 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3735 recog_data.operand[i],
3736 recog_data.operand_loc[goal_alternative_matched[i]],
3737 recog_data.operand_loc[i],
3738 (enum reg_class) goal_alternative[i],
3739 operand_mode[goal_alternative_matched[i]],
3740 operand_mode[i],
3741 0, 0, i, RELOAD_OTHER);
3742 operand_reloadnum[i] = output_reloadnum;
3744 else if (insn_code_number >= 0)
3745 abort ();
3746 else
3748 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3749 /* Avoid further trouble with this insn. */
3750 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3751 n_reloads = 0;
3752 return 0;
3755 else if (goal_alternative_matched[i] < 0
3756 && goal_alternative_matches[i] < 0
3757 && optimize)
3759 /* For each non-matching operand that's a MEM or a pseudo-register
3760 that didn't get a hard register, make an optional reload.
3761 This may get done even if the insn needs no reloads otherwise. */
3763 rtx operand = recog_data.operand[i];
3765 while (GET_CODE (operand) == SUBREG)
3766 operand = SUBREG_REG (operand);
3767 if ((GET_CODE (operand) == MEM
3768 || (GET_CODE (operand) == REG
3769 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3770 /* If this is only for an output, the optional reload would not
3771 actually cause us to use a register now, just note that
3772 something is stored here. */
3773 && ((enum reg_class) goal_alternative[i] != NO_REGS
3774 || modified[i] == RELOAD_WRITE)
3775 && ! no_input_reloads
3776 /* An optional output reload might allow to delete INSN later.
3777 We mustn't make in-out reloads on insns that are not permitted
3778 output reloads.
3779 If this is an asm, we can't delete it; we must not even call
3780 push_reload for an optional output reload in this case,
3781 because we can't be sure that the constraint allows a register,
3782 and push_reload verifies the constraints for asms. */
3783 && (modified[i] == RELOAD_READ
3784 || (! no_output_reloads && ! this_insn_is_asm)))
3785 operand_reloadnum[i]
3786 = push_reload ((modified[i] != RELOAD_WRITE
3787 ? recog_data.operand[i] : 0),
3788 (modified[i] != RELOAD_READ
3789 ? recog_data.operand[i] : 0),
3790 (modified[i] != RELOAD_WRITE
3791 ? recog_data.operand_loc[i] : 0),
3792 (modified[i] != RELOAD_READ
3793 ? recog_data.operand_loc[i] : 0),
3794 (enum reg_class) goal_alternative[i],
3795 (modified[i] == RELOAD_WRITE
3796 ? VOIDmode : operand_mode[i]),
3797 (modified[i] == RELOAD_READ
3798 ? VOIDmode : operand_mode[i]),
3799 (insn_code_number < 0 ? 0
3800 : insn_data[insn_code_number].operand[i].strict_low),
3801 1, i, operand_type[i]);
3802 /* If a memory reference remains (either as a MEM or a pseudo that
3803 did not get a hard register), yet we can't make an optional
3804 reload, check if this is actually a pseudo register reference;
3805 we then need to emit a USE and/or a CLOBBER so that reload
3806 inheritance will do the right thing. */
3807 else if (replace
3808 && (GET_CODE (operand) == MEM
3809 || (GET_CODE (operand) == REG
3810 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3811 && reg_renumber [REGNO (operand)] < 0)))
3813 operand = *recog_data.operand_loc[i];
3815 while (GET_CODE (operand) == SUBREG)
3816 operand = SUBREG_REG (operand);
3817 if (GET_CODE (operand) == REG)
3819 if (modified[i] != RELOAD_WRITE)
3820 /* We mark the USE with QImode so that we recognize
3821 it as one that can be safely deleted at the end
3822 of reload. */
3823 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3824 insn), QImode);
3825 if (modified[i] != RELOAD_READ)
3826 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3830 else if (goal_alternative_matches[i] >= 0
3831 && goal_alternative_win[goal_alternative_matches[i]]
3832 && modified[i] == RELOAD_READ
3833 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3834 && ! no_input_reloads && ! no_output_reloads
3835 && optimize)
3837 /* Similarly, make an optional reload for a pair of matching
3838 objects that are in MEM or a pseudo that didn't get a hard reg. */
3840 rtx operand = recog_data.operand[i];
3842 while (GET_CODE (operand) == SUBREG)
3843 operand = SUBREG_REG (operand);
3844 if ((GET_CODE (operand) == MEM
3845 || (GET_CODE (operand) == REG
3846 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3847 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3848 != NO_REGS))
3849 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3850 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3851 recog_data.operand[i],
3852 recog_data.operand_loc[goal_alternative_matches[i]],
3853 recog_data.operand_loc[i],
3854 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3855 operand_mode[goal_alternative_matches[i]],
3856 operand_mode[i],
3857 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3860 /* Perform whatever substitutions on the operands we are supposed
3861 to make due to commutativity or replacement of registers
3862 with equivalent constants or memory slots. */
3864 for (i = 0; i < noperands; i++)
3866 /* We only do this on the last pass through reload, because it is
3867 possible for some data (like reg_equiv_address) to be changed during
3868 later passes. Moreover, we loose the opportunity to get a useful
3869 reload_{in,out}_reg when we do these replacements. */
3871 if (replace)
3873 rtx substitution = substed_operand[i];
3875 *recog_data.operand_loc[i] = substitution;
3877 /* If we're replacing an operand with a LABEL_REF, we need
3878 to make sure that there's a REG_LABEL note attached to
3879 this instruction. */
3880 if (GET_CODE (insn) != JUMP_INSN
3881 && GET_CODE (substitution) == LABEL_REF
3882 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3883 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3884 XEXP (substitution, 0),
3885 REG_NOTES (insn));
3887 else
3888 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3891 /* If this insn pattern contains any MATCH_DUP's, make sure that
3892 they will be substituted if the operands they match are substituted.
3893 Also do now any substitutions we already did on the operands.
3895 Don't do this if we aren't making replacements because we might be
3896 propagating things allocated by frame pointer elimination into places
3897 it doesn't expect. */
3899 if (insn_code_number >= 0 && replace)
3900 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3902 int opno = recog_data.dup_num[i];
3903 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3904 if (operand_reloadnum[opno] >= 0)
3905 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3906 insn_data[insn_code_number].operand[opno].mode);
3909 #if 0
3910 /* This loses because reloading of prior insns can invalidate the equivalence
3911 (or at least find_equiv_reg isn't smart enough to find it any more),
3912 causing this insn to need more reload regs than it needed before.
3913 It may be too late to make the reload regs available.
3914 Now this optimization is done safely in choose_reload_regs. */
3916 /* For each reload of a reg into some other class of reg,
3917 search for an existing equivalent reg (same value now) in the right class.
3918 We can use it as long as we don't need to change its contents. */
3919 for (i = 0; i < n_reloads; i++)
3920 if (rld[i].reg_rtx == 0
3921 && rld[i].in != 0
3922 && GET_CODE (rld[i].in) == REG
3923 && rld[i].out == 0)
3925 rld[i].reg_rtx
3926 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3927 static_reload_reg_p, 0, rld[i].inmode);
3928 /* Prevent generation of insn to load the value
3929 because the one we found already has the value. */
3930 if (rld[i].reg_rtx)
3931 rld[i].in = rld[i].reg_rtx;
3933 #endif
3935 /* Perhaps an output reload can be combined with another
3936 to reduce needs by one. */
3937 if (!goal_earlyclobber)
3938 combine_reloads ();
3940 /* If we have a pair of reloads for parts of an address, they are reloading
3941 the same object, the operands themselves were not reloaded, and they
3942 are for two operands that are supposed to match, merge the reloads and
3943 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3945 for (i = 0; i < n_reloads; i++)
3947 int k;
3949 for (j = i + 1; j < n_reloads; j++)
3950 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3951 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3952 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3953 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3954 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3955 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3956 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3957 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3958 && rtx_equal_p (rld[i].in, rld[j].in)
3959 && (operand_reloadnum[rld[i].opnum] < 0
3960 || rld[operand_reloadnum[rld[i].opnum]].optional)
3961 && (operand_reloadnum[rld[j].opnum] < 0
3962 || rld[operand_reloadnum[rld[j].opnum]].optional)
3963 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3964 || (goal_alternative_matches[rld[j].opnum]
3965 == rld[i].opnum)))
3967 for (k = 0; k < n_replacements; k++)
3968 if (replacements[k].what == j)
3969 replacements[k].what = i;
3971 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3972 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3973 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3974 else
3975 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3976 rld[j].in = 0;
3980 /* Scan all the reloads and update their type.
3981 If a reload is for the address of an operand and we didn't reload
3982 that operand, change the type. Similarly, change the operand number
3983 of a reload when two operands match. If a reload is optional, treat it
3984 as though the operand isn't reloaded.
3986 ??? This latter case is somewhat odd because if we do the optional
3987 reload, it means the object is hanging around. Thus we need only
3988 do the address reload if the optional reload was NOT done.
3990 Change secondary reloads to be the address type of their operand, not
3991 the normal type.
3993 If an operand's reload is now RELOAD_OTHER, change any
3994 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3995 RELOAD_FOR_OTHER_ADDRESS. */
3997 for (i = 0; i < n_reloads; i++)
3999 if (rld[i].secondary_p
4000 && rld[i].when_needed == operand_type[rld[i].opnum])
4001 rld[i].when_needed = address_type[rld[i].opnum];
4003 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4004 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4005 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4006 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4007 && (operand_reloadnum[rld[i].opnum] < 0
4008 || rld[operand_reloadnum[rld[i].opnum]].optional))
4010 /* If we have a secondary reload to go along with this reload,
4011 change its type to RELOAD_FOR_OPADDR_ADDR. */
4013 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4014 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4015 && rld[i].secondary_in_reload != -1)
4017 int secondary_in_reload = rld[i].secondary_in_reload;
4019 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4021 /* If there's a tertiary reload we have to change it also. */
4022 if (secondary_in_reload > 0
4023 && rld[secondary_in_reload].secondary_in_reload != -1)
4024 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4025 = RELOAD_FOR_OPADDR_ADDR;
4028 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4029 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4030 && rld[i].secondary_out_reload != -1)
4032 int secondary_out_reload = rld[i].secondary_out_reload;
4034 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4036 /* If there's a tertiary reload we have to change it also. */
4037 if (secondary_out_reload
4038 && rld[secondary_out_reload].secondary_out_reload != -1)
4039 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4040 = RELOAD_FOR_OPADDR_ADDR;
4043 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4044 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4045 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4046 else
4047 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4050 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4051 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4052 && operand_reloadnum[rld[i].opnum] >= 0
4053 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4054 == RELOAD_OTHER))
4055 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4057 if (goal_alternative_matches[rld[i].opnum] >= 0)
4058 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4061 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4062 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4063 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4065 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4066 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4067 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4068 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4069 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4070 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4071 This is complicated by the fact that a single operand can have more
4072 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4073 choose_reload_regs without affecting code quality, and cases that
4074 actually fail are extremely rare, so it turns out to be better to fix
4075 the problem here by not generating cases that choose_reload_regs will
4076 fail for. */
4077 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4078 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4079 a single operand.
4080 We can reduce the register pressure by exploiting that a
4081 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4082 does not conflict with any of them, if it is only used for the first of
4083 the RELOAD_FOR_X_ADDRESS reloads. */
4085 int first_op_addr_num = -2;
4086 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4087 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4088 int need_change = 0;
4089 /* We use last_op_addr_reload and the contents of the above arrays
4090 first as flags - -2 means no instance encountered, -1 means exactly
4091 one instance encountered.
4092 If more than one instance has been encountered, we store the reload
4093 number of the first reload of the kind in question; reload numbers
4094 are known to be non-negative. */
4095 for (i = 0; i < noperands; i++)
4096 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4097 for (i = n_reloads - 1; i >= 0; i--)
4099 switch (rld[i].when_needed)
4101 case RELOAD_FOR_OPERAND_ADDRESS:
4102 if (++first_op_addr_num >= 0)
4104 first_op_addr_num = i;
4105 need_change = 1;
4107 break;
4108 case RELOAD_FOR_INPUT_ADDRESS:
4109 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4111 first_inpaddr_num[rld[i].opnum] = i;
4112 need_change = 1;
4114 break;
4115 case RELOAD_FOR_OUTPUT_ADDRESS:
4116 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4118 first_outpaddr_num[rld[i].opnum] = i;
4119 need_change = 1;
4121 break;
4122 default:
4123 break;
4127 if (need_change)
4129 for (i = 0; i < n_reloads; i++)
4131 int first_num;
4132 enum reload_type type;
4134 switch (rld[i].when_needed)
4136 case RELOAD_FOR_OPADDR_ADDR:
4137 first_num = first_op_addr_num;
4138 type = RELOAD_FOR_OPERAND_ADDRESS;
4139 break;
4140 case RELOAD_FOR_INPADDR_ADDRESS:
4141 first_num = first_inpaddr_num[rld[i].opnum];
4142 type = RELOAD_FOR_INPUT_ADDRESS;
4143 break;
4144 case RELOAD_FOR_OUTADDR_ADDRESS:
4145 first_num = first_outpaddr_num[rld[i].opnum];
4146 type = RELOAD_FOR_OUTPUT_ADDRESS;
4147 break;
4148 default:
4149 continue;
4151 if (first_num < 0)
4152 continue;
4153 else if (i > first_num)
4154 rld[i].when_needed = type;
4155 else
4157 /* Check if the only TYPE reload that uses reload I is
4158 reload FIRST_NUM. */
4159 for (j = n_reloads - 1; j > first_num; j--)
4161 if (rld[j].when_needed == type
4162 && (rld[i].secondary_p
4163 ? rld[j].secondary_in_reload == i
4164 : reg_mentioned_p (rld[i].in, rld[j].in)))
4166 rld[i].when_needed = type;
4167 break;
4175 /* See if we have any reloads that are now allowed to be merged
4176 because we've changed when the reload is needed to
4177 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4178 check for the most common cases. */
4180 for (i = 0; i < n_reloads; i++)
4181 if (rld[i].in != 0 && rld[i].out == 0
4182 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4183 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4184 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4185 for (j = 0; j < n_reloads; j++)
4186 if (i != j && rld[j].in != 0 && rld[j].out == 0
4187 && rld[j].when_needed == rld[i].when_needed
4188 && MATCHES (rld[i].in, rld[j].in)
4189 && rld[i].class == rld[j].class
4190 && !rld[i].nocombine && !rld[j].nocombine
4191 && rld[i].reg_rtx == rld[j].reg_rtx)
4193 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4194 transfer_replacements (i, j);
4195 rld[j].in = 0;
4198 #ifdef HAVE_cc0
4199 /* If we made any reloads for addresses, see if they violate a
4200 "no input reloads" requirement for this insn. But loads that we
4201 do after the insn (such as for output addresses) are fine. */
4202 if (no_input_reloads)
4203 for (i = 0; i < n_reloads; i++)
4204 if (rld[i].in != 0
4205 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4206 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4207 abort ();
4208 #endif
4210 /* Compute reload_mode and reload_nregs. */
4211 for (i = 0; i < n_reloads; i++)
4213 rld[i].mode
4214 = (rld[i].inmode == VOIDmode
4215 || (GET_MODE_SIZE (rld[i].outmode)
4216 > GET_MODE_SIZE (rld[i].inmode)))
4217 ? rld[i].outmode : rld[i].inmode;
4219 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4222 return retval;
4225 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4226 accepts a memory operand with constant address. */
4228 static int
4229 alternative_allows_memconst (constraint, altnum)
4230 const char *constraint;
4231 int altnum;
4233 int c;
4234 /* Skip alternatives before the one requested. */
4235 while (altnum > 0)
4237 while (*constraint++ != ',');
4238 altnum--;
4240 /* Scan the requested alternative for 'm' or 'o'.
4241 If one of them is present, this alternative accepts memory constants. */
4242 while ((c = *constraint++) && c != ',' && c != '#')
4243 if (c == 'm' || c == 'o')
4244 return 1;
4245 return 0;
4248 /* Scan X for memory references and scan the addresses for reloading.
4249 Also checks for references to "constant" regs that we want to eliminate
4250 and replaces them with the values they stand for.
4251 We may alter X destructively if it contains a reference to such.
4252 If X is just a constant reg, we return the equivalent value
4253 instead of X.
4255 IND_LEVELS says how many levels of indirect addressing this machine
4256 supports.
4258 OPNUM and TYPE identify the purpose of the reload.
4260 IS_SET_DEST is true if X is the destination of a SET, which is not
4261 appropriate to be replaced by a constant.
4263 INSN, if nonzero, is the insn in which we do the reload. It is used
4264 to determine if we may generate output reloads, and where to put USEs
4265 for pseudos that we have to replace with stack slots.
4267 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4268 result of find_reloads_address. */
4270 static rtx
4271 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4272 address_reloaded)
4273 rtx x;
4274 int opnum;
4275 enum reload_type type;
4276 int ind_levels;
4277 int is_set_dest;
4278 rtx insn;
4279 int *address_reloaded;
4281 RTX_CODE code = GET_CODE (x);
4283 const char *fmt = GET_RTX_FORMAT (code);
4284 int i;
4285 int copied;
4287 if (code == REG)
4289 /* This code is duplicated for speed in find_reloads. */
4290 int regno = REGNO (x);
4291 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4292 x = reg_equiv_constant[regno];
4293 #if 0
4294 /* This creates (subreg (mem...)) which would cause an unnecessary
4295 reload of the mem. */
4296 else if (reg_equiv_mem[regno] != 0)
4297 x = reg_equiv_mem[regno];
4298 #endif
4299 else if (reg_equiv_memory_loc[regno]
4300 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4302 rtx mem = make_memloc (x, regno);
4303 if (reg_equiv_address[regno]
4304 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4306 /* If this is not a toplevel operand, find_reloads doesn't see
4307 this substitution. We have to emit a USE of the pseudo so
4308 that delete_output_reload can see it. */
4309 if (replace_reloads && recog_data.operand[opnum] != x)
4310 /* We mark the USE with QImode so that we recognize it
4311 as one that can be safely deleted at the end of
4312 reload. */
4313 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4314 QImode);
4315 x = mem;
4316 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4317 opnum, type, ind_levels, insn);
4318 if (address_reloaded)
4319 *address_reloaded = i;
4322 return x;
4324 if (code == MEM)
4326 rtx tem = x;
4328 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4329 opnum, type, ind_levels, insn);
4330 if (address_reloaded)
4331 *address_reloaded = i;
4333 return tem;
4336 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4338 /* Check for SUBREG containing a REG that's equivalent to a constant.
4339 If the constant has a known value, truncate it right now.
4340 Similarly if we are extracting a single-word of a multi-word
4341 constant. If the constant is symbolic, allow it to be substituted
4342 normally. push_reload will strip the subreg later. If the
4343 constant is VOIDmode, abort because we will lose the mode of
4344 the register (this should never happen because one of the cases
4345 above should handle it). */
4347 int regno = REGNO (SUBREG_REG (x));
4348 rtx tem;
4350 if (subreg_lowpart_p (x)
4351 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4352 && reg_equiv_constant[regno] != 0
4353 && (tem = gen_lowpart_common (GET_MODE (x),
4354 reg_equiv_constant[regno])) != 0)
4355 return tem;
4357 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4358 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4359 && reg_equiv_constant[regno] != 0
4360 && (tem = operand_subword (reg_equiv_constant[regno],
4361 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4362 GET_MODE (SUBREG_REG (x)))) != 0)
4364 /* TEM is now a word sized constant for the bits from X that
4365 we wanted. However, TEM may be the wrong representation.
4367 Use gen_lowpart_common to convert a CONST_INT into a
4368 CONST_DOUBLE and vice versa as needed according to by the mode
4369 of the SUBREG. */
4370 tem = gen_lowpart_common (GET_MODE (x), tem);
4371 if (!tem)
4372 abort ();
4373 return tem;
4376 /* If the SUBREG is wider than a word, the above test will fail.
4377 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4378 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4379 a 32 bit target. We still can - and have to - handle this
4380 for non-paradoxical subregs of CONST_INTs. */
4381 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4382 && reg_equiv_constant[regno] != 0
4383 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4384 && (GET_MODE_SIZE (GET_MODE (x))
4385 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4387 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4388 if (WORDS_BIG_ENDIAN)
4389 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4390 - GET_MODE_BITSIZE (GET_MODE (x))
4391 - shift);
4392 /* Here we use the knowledge that CONST_INTs have a
4393 HOST_WIDE_INT field. */
4394 if (shift >= HOST_BITS_PER_WIDE_INT)
4395 shift = HOST_BITS_PER_WIDE_INT - 1;
4396 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4399 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4400 && reg_equiv_constant[regno] != 0
4401 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4402 abort ();
4404 /* If the subreg contains a reg that will be converted to a mem,
4405 convert the subreg to a narrower memref now.
4406 Otherwise, we would get (subreg (mem ...) ...),
4407 which would force reload of the mem.
4409 We also need to do this if there is an equivalent MEM that is
4410 not offsettable. In that case, alter_subreg would produce an
4411 invalid address on big-endian machines.
4413 For machines that extend byte loads, we must not reload using
4414 a wider mode if we have a paradoxical SUBREG. find_reloads will
4415 force a reload in that case. So we should not do anything here. */
4417 else if (regno >= FIRST_PSEUDO_REGISTER
4418 #ifdef LOAD_EXTEND_OP
4419 && (GET_MODE_SIZE (GET_MODE (x))
4420 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4421 #endif
4422 && (reg_equiv_address[regno] != 0
4423 || (reg_equiv_mem[regno] != 0
4424 && (! strict_memory_address_p (GET_MODE (x),
4425 XEXP (reg_equiv_mem[regno], 0))
4426 || ! offsettable_memref_p (reg_equiv_mem[regno])
4427 || num_not_at_initial_offset))))
4428 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4429 insn);
4432 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4434 if (fmt[i] == 'e')
4436 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4437 ind_levels, is_set_dest, insn,
4438 address_reloaded);
4439 /* If we have replaced a reg with it's equivalent memory loc -
4440 that can still be handled here e.g. if it's in a paradoxical
4441 subreg - we must make the change in a copy, rather than using
4442 a destructive change. This way, find_reloads can still elect
4443 not to do the change. */
4444 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4446 x = shallow_copy_rtx (x);
4447 copied = 1;
4449 XEXP (x, i) = new_part;
4452 return x;
4455 /* Return a mem ref for the memory equivalent of reg REGNO.
4456 This mem ref is not shared with anything. */
4458 static rtx
4459 make_memloc (ad, regno)
4460 rtx ad;
4461 int regno;
4463 /* We must rerun eliminate_regs, in case the elimination
4464 offsets have changed. */
4465 rtx tem
4466 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4468 /* If TEM might contain a pseudo, we must copy it to avoid
4469 modifying it when we do the substitution for the reload. */
4470 if (rtx_varies_p (tem, 0))
4471 tem = copy_rtx (tem);
4473 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4474 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4476 /* Copy the result if it's still the same as the equivalence, to avoid
4477 modifying it when we do the substitution for the reload. */
4478 if (tem == reg_equiv_memory_loc[regno])
4479 tem = copy_rtx (tem);
4480 return tem;
4483 /* Record all reloads needed for handling memory address AD
4484 which appears in *LOC in a memory reference to mode MODE
4485 which itself is found in location *MEMREFLOC.
4486 Note that we take shortcuts assuming that no multi-reg machine mode
4487 occurs as part of an address.
4489 OPNUM and TYPE specify the purpose of this reload.
4491 IND_LEVELS says how many levels of indirect addressing this machine
4492 supports.
4494 INSN, if nonzero, is the insn in which we do the reload. It is used
4495 to determine if we may generate output reloads, and where to put USEs
4496 for pseudos that we have to replace with stack slots.
4498 Value is nonzero if this address is reloaded or replaced as a whole.
4499 This is interesting to the caller if the address is an autoincrement.
4501 Note that there is no verification that the address will be valid after
4502 this routine does its work. Instead, we rely on the fact that the address
4503 was valid when reload started. So we need only undo things that reload
4504 could have broken. These are wrong register types, pseudos not allocated
4505 to a hard register, and frame pointer elimination. */
4507 static int
4508 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4509 enum machine_mode mode;
4510 rtx *memrefloc;
4511 rtx ad;
4512 rtx *loc;
4513 int opnum;
4514 enum reload_type type;
4515 int ind_levels;
4516 rtx insn;
4518 int regno;
4519 int removed_and = 0;
4520 rtx tem;
4522 /* If the address is a register, see if it is a legitimate address and
4523 reload if not. We first handle the cases where we need not reload
4524 or where we must reload in a non-standard way. */
4526 if (GET_CODE (ad) == REG)
4528 regno = REGNO (ad);
4530 /* If the register is equivalent to an invariant expression, substitute
4531 the invariant, and eliminate any eliminable register references. */
4532 tem = reg_equiv_constant[regno];
4533 if (tem != 0
4534 && (tem = eliminate_regs (tem, mode, insn))
4535 && strict_memory_address_p (mode, tem))
4537 *loc = ad = tem;
4538 return 0;
4541 tem = reg_equiv_memory_loc[regno];
4542 if (tem != 0)
4544 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4546 tem = make_memloc (ad, regno);
4547 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4549 find_reloads_address (GET_MODE (tem), (rtx*)0, XEXP (tem, 0),
4550 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4551 ind_levels, insn);
4553 /* We can avoid a reload if the register's equivalent memory
4554 expression is valid as an indirect memory address.
4555 But not all addresses are valid in a mem used as an indirect
4556 address: only reg or reg+constant. */
4558 if (ind_levels > 0
4559 && strict_memory_address_p (mode, tem)
4560 && (GET_CODE (XEXP (tem, 0)) == REG
4561 || (GET_CODE (XEXP (tem, 0)) == PLUS
4562 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4563 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4565 /* TEM is not the same as what we'll be replacing the
4566 pseudo with after reload, put a USE in front of INSN
4567 in the final reload pass. */
4568 if (replace_reloads
4569 && num_not_at_initial_offset
4570 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4572 *loc = tem;
4573 /* We mark the USE with QImode so that we
4574 recognize it as one that can be safely
4575 deleted at the end of reload. */
4576 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4577 insn), QImode);
4579 /* This doesn't really count as replacing the address
4580 as a whole, since it is still a memory access. */
4582 return 0;
4584 ad = tem;
4588 /* The only remaining case where we can avoid a reload is if this is a
4589 hard register that is valid as a base register and which is not the
4590 subject of a CLOBBER in this insn. */
4592 else if (regno < FIRST_PSEUDO_REGISTER
4593 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4594 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4595 return 0;
4597 /* If we do not have one of the cases above, we must do the reload. */
4598 push_reload (ad, NULL_RTX, loc, (rtx*)0, BASE_REG_CLASS,
4599 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4600 return 1;
4603 if (strict_memory_address_p (mode, ad))
4605 /* The address appears valid, so reloads are not needed.
4606 But the address may contain an eliminable register.
4607 This can happen because a machine with indirect addressing
4608 may consider a pseudo register by itself a valid address even when
4609 it has failed to get a hard reg.
4610 So do a tree-walk to find and eliminate all such regs. */
4612 /* But first quickly dispose of a common case. */
4613 if (GET_CODE (ad) == PLUS
4614 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4615 && GET_CODE (XEXP (ad, 0)) == REG
4616 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4617 return 0;
4619 subst_reg_equivs_changed = 0;
4620 *loc = subst_reg_equivs (ad, insn);
4622 if (! subst_reg_equivs_changed)
4623 return 0;
4625 /* Check result for validity after substitution. */
4626 if (strict_memory_address_p (mode, ad))
4627 return 0;
4630 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4633 if (memrefloc)
4635 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4636 ind_levels, win);
4638 break;
4639 win:
4640 *memrefloc = copy_rtx (*memrefloc);
4641 XEXP (*memrefloc, 0) = ad;
4642 move_replacements (&ad, &XEXP (*memrefloc, 0));
4643 return 1;
4645 while (0);
4646 #endif
4648 /* The address is not valid. We have to figure out why. First see if
4649 we have an outer AND and remove it if so. Then analyze what's inside. */
4651 if (GET_CODE (ad) == AND)
4653 removed_and = 1;
4654 loc = &XEXP (ad, 0);
4655 ad = *loc;
4658 /* One possibility for why the address is invalid is that it is itself
4659 a MEM. This can happen when the frame pointer is being eliminated, a
4660 pseudo is not allocated to a hard register, and the offset between the
4661 frame and stack pointers is not its initial value. In that case the
4662 pseudo will have been replaced by a MEM referring to the
4663 stack pointer. */
4664 if (GET_CODE (ad) == MEM)
4666 /* First ensure that the address in this MEM is valid. Then, unless
4667 indirect addresses are valid, reload the MEM into a register. */
4668 tem = ad;
4669 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4670 opnum, ADDR_TYPE (type),
4671 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4673 /* If tem was changed, then we must create a new memory reference to
4674 hold it and store it back into memrefloc. */
4675 if (tem != ad && memrefloc)
4677 *memrefloc = copy_rtx (*memrefloc);
4678 copy_replacements (tem, XEXP (*memrefloc, 0));
4679 loc = &XEXP (*memrefloc, 0);
4680 if (removed_and)
4681 loc = &XEXP (*loc, 0);
4684 /* Check similar cases as for indirect addresses as above except
4685 that we can allow pseudos and a MEM since they should have been
4686 taken care of above. */
4688 if (ind_levels == 0
4689 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4690 || GET_CODE (XEXP (tem, 0)) == MEM
4691 || ! (GET_CODE (XEXP (tem, 0)) == REG
4692 || (GET_CODE (XEXP (tem, 0)) == PLUS
4693 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4694 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4696 /* Must use TEM here, not AD, since it is the one that will
4697 have any subexpressions reloaded, if needed. */
4698 push_reload (tem, NULL_RTX, loc, (rtx*)0,
4699 BASE_REG_CLASS, GET_MODE (tem),
4700 VOIDmode, 0,
4701 0, opnum, type);
4702 return ! removed_and;
4704 else
4705 return 0;
4708 /* If we have address of a stack slot but it's not valid because the
4709 displacement is too large, compute the sum in a register.
4710 Handle all base registers here, not just fp/ap/sp, because on some
4711 targets (namely SH) we can also get too large displacements from
4712 big-endian corrections. */
4713 else if (GET_CODE (ad) == PLUS
4714 && GET_CODE (XEXP (ad, 0)) == REG
4715 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4716 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4717 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4719 /* Unshare the MEM rtx so we can safely alter it. */
4720 if (memrefloc)
4722 *memrefloc = copy_rtx (*memrefloc);
4723 loc = &XEXP (*memrefloc, 0);
4724 if (removed_and)
4725 loc = &XEXP (*loc, 0);
4728 if (double_reg_address_ok)
4730 /* Unshare the sum as well. */
4731 *loc = ad = copy_rtx (ad);
4733 /* Reload the displacement into an index reg.
4734 We assume the frame pointer or arg pointer is a base reg. */
4735 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4736 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4737 type, ind_levels);
4738 return 0;
4740 else
4742 /* If the sum of two regs is not necessarily valid,
4743 reload the sum into a base reg.
4744 That will at least work. */
4745 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4746 Pmode, opnum, type, ind_levels);
4748 return ! removed_and;
4751 /* If we have an indexed stack slot, there are three possible reasons why
4752 it might be invalid: The index might need to be reloaded, the address
4753 might have been made by frame pointer elimination and hence have a
4754 constant out of range, or both reasons might apply.
4756 We can easily check for an index needing reload, but even if that is the
4757 case, we might also have an invalid constant. To avoid making the
4758 conservative assumption and requiring two reloads, we see if this address
4759 is valid when not interpreted strictly. If it is, the only problem is
4760 that the index needs a reload and find_reloads_address_1 will take care
4761 of it.
4763 If we decide to do something here, it must be that
4764 `double_reg_address_ok' is true and that this address rtl was made by
4765 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4766 rework the sum so that the reload register will be added to the index.
4767 This is safe because we know the address isn't shared.
4769 We check for fp/ap/sp as both the first and second operand of the
4770 innermost PLUS. */
4772 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4773 && GET_CODE (XEXP (ad, 0)) == PLUS
4774 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4775 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4776 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4777 #endif
4778 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4779 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4780 #endif
4781 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4782 && ! memory_address_p (mode, ad))
4784 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4785 plus_constant (XEXP (XEXP (ad, 0), 0),
4786 INTVAL (XEXP (ad, 1))),
4787 XEXP (XEXP (ad, 0), 1));
4788 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4789 GET_MODE (ad), opnum, type, ind_levels);
4790 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4791 type, 0, insn);
4793 return 0;
4796 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4797 && GET_CODE (XEXP (ad, 0)) == PLUS
4798 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4799 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4800 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4801 #endif
4802 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4803 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4804 #endif
4805 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4806 && ! memory_address_p (mode, ad))
4808 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4809 XEXP (XEXP (ad, 0), 0),
4810 plus_constant (XEXP (XEXP (ad, 0), 1),
4811 INTVAL (XEXP (ad, 1))));
4812 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4813 GET_MODE (ad), opnum, type, ind_levels);
4814 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4815 type, 0, insn);
4817 return 0;
4820 /* See if address becomes valid when an eliminable register
4821 in a sum is replaced. */
4823 tem = ad;
4824 if (GET_CODE (ad) == PLUS)
4825 tem = subst_indexed_address (ad);
4826 if (tem != ad && strict_memory_address_p (mode, tem))
4828 /* Ok, we win that way. Replace any additional eliminable
4829 registers. */
4831 subst_reg_equivs_changed = 0;
4832 tem = subst_reg_equivs (tem, insn);
4834 /* Make sure that didn't make the address invalid again. */
4836 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4838 *loc = tem;
4839 return 0;
4843 /* If constants aren't valid addresses, reload the constant address
4844 into a register. */
4845 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4847 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4848 Unshare it so we can safely alter it. */
4849 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4850 && CONSTANT_POOL_ADDRESS_P (ad))
4852 *memrefloc = copy_rtx (*memrefloc);
4853 loc = &XEXP (*memrefloc, 0);
4854 if (removed_and)
4855 loc = &XEXP (*loc, 0);
4858 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4859 ind_levels);
4860 return ! removed_and;
4863 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4864 insn);
4867 /* Find all pseudo regs appearing in AD
4868 that are eliminable in favor of equivalent values
4869 and do not have hard regs; replace them by their equivalents.
4870 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4871 front of it for pseudos that we have to replace with stack slots. */
4873 static rtx
4874 subst_reg_equivs (ad, insn)
4875 rtx ad;
4876 rtx insn;
4878 RTX_CODE code = GET_CODE (ad);
4879 int i;
4880 const char *fmt;
4882 switch (code)
4884 case HIGH:
4885 case CONST_INT:
4886 case CONST:
4887 case CONST_DOUBLE:
4888 case SYMBOL_REF:
4889 case LABEL_REF:
4890 case PC:
4891 case CC0:
4892 return ad;
4894 case REG:
4896 int regno = REGNO (ad);
4898 if (reg_equiv_constant[regno] != 0)
4900 subst_reg_equivs_changed = 1;
4901 return reg_equiv_constant[regno];
4903 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4905 rtx mem = make_memloc (ad, regno);
4906 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4908 subst_reg_equivs_changed = 1;
4909 /* We mark the USE with QImode so that we recognize it
4910 as one that can be safely deleted at the end of
4911 reload. */
4912 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4913 QImode);
4914 return mem;
4918 return ad;
4920 case PLUS:
4921 /* Quickly dispose of a common case. */
4922 if (XEXP (ad, 0) == frame_pointer_rtx
4923 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4924 return ad;
4925 break;
4927 default:
4928 break;
4931 fmt = GET_RTX_FORMAT (code);
4932 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4933 if (fmt[i] == 'e')
4934 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4935 return ad;
4938 /* Compute the sum of X and Y, making canonicalizations assumed in an
4939 address, namely: sum constant integers, surround the sum of two
4940 constants with a CONST, put the constant as the second operand, and
4941 group the constant on the outermost sum.
4943 This routine assumes both inputs are already in canonical form. */
4946 form_sum (x, y)
4947 rtx x, y;
4949 rtx tem;
4950 enum machine_mode mode = GET_MODE (x);
4952 if (mode == VOIDmode)
4953 mode = GET_MODE (y);
4955 if (mode == VOIDmode)
4956 mode = Pmode;
4958 if (GET_CODE (x) == CONST_INT)
4959 return plus_constant (y, INTVAL (x));
4960 else if (GET_CODE (y) == CONST_INT)
4961 return plus_constant (x, INTVAL (y));
4962 else if (CONSTANT_P (x))
4963 tem = x, x = y, y = tem;
4965 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4966 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4968 /* Note that if the operands of Y are specified in the opposite
4969 order in the recursive calls below, infinite recursion will occur. */
4970 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4971 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4973 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4974 constant will have been placed second. */
4975 if (CONSTANT_P (x) && CONSTANT_P (y))
4977 if (GET_CODE (x) == CONST)
4978 x = XEXP (x, 0);
4979 if (GET_CODE (y) == CONST)
4980 y = XEXP (y, 0);
4982 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4985 return gen_rtx_PLUS (mode, x, y);
4988 /* If ADDR is a sum containing a pseudo register that should be
4989 replaced with a constant (from reg_equiv_constant),
4990 return the result of doing so, and also apply the associative
4991 law so that the result is more likely to be a valid address.
4992 (But it is not guaranteed to be one.)
4994 Note that at most one register is replaced, even if more are
4995 replaceable. Also, we try to put the result into a canonical form
4996 so it is more likely to be a valid address.
4998 In all other cases, return ADDR. */
5000 static rtx
5001 subst_indexed_address (addr)
5002 rtx addr;
5004 rtx op0 = 0, op1 = 0, op2 = 0;
5005 rtx tem;
5006 int regno;
5008 if (GET_CODE (addr) == PLUS)
5010 /* Try to find a register to replace. */
5011 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5012 if (GET_CODE (op0) == REG
5013 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5014 && reg_renumber[regno] < 0
5015 && reg_equiv_constant[regno] != 0)
5016 op0 = reg_equiv_constant[regno];
5017 else if (GET_CODE (op1) == REG
5018 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5019 && reg_renumber[regno] < 0
5020 && reg_equiv_constant[regno] != 0)
5021 op1 = reg_equiv_constant[regno];
5022 else if (GET_CODE (op0) == PLUS
5023 && (tem = subst_indexed_address (op0)) != op0)
5024 op0 = tem;
5025 else if (GET_CODE (op1) == PLUS
5026 && (tem = subst_indexed_address (op1)) != op1)
5027 op1 = tem;
5028 else
5029 return addr;
5031 /* Pick out up to three things to add. */
5032 if (GET_CODE (op1) == PLUS)
5033 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5034 else if (GET_CODE (op0) == PLUS)
5035 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5037 /* Compute the sum. */
5038 if (op2 != 0)
5039 op1 = form_sum (op1, op2);
5040 if (op1 != 0)
5041 op0 = form_sum (op0, op1);
5043 return op0;
5045 return addr;
5048 /* Update the REG_INC notes for an insn. It updates all REG_INC
5049 notes for the instruction which refer to REGNO the to refer
5050 to the reload number.
5052 INSN is the insn for which any REG_INC notes need updating.
5054 REGNO is the register number which has been reloaded.
5056 RELOADNUM is the reload number. */
5058 static void
5059 update_auto_inc_notes (insn, regno, reloadnum)
5060 rtx insn ATTRIBUTE_UNUSED;
5061 int regno ATTRIBUTE_UNUSED;
5062 int reloadnum ATTRIBUTE_UNUSED;
5064 #ifdef AUTO_INC_DEC
5065 rtx link;
5067 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5068 if (REG_NOTE_KIND (link) == REG_INC
5069 && REGNO (XEXP (link, 0)) == regno)
5070 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5071 #endif
5074 /* Record the pseudo registers we must reload into hard registers in a
5075 subexpression of a would-be memory address, X referring to a value
5076 in mode MODE. (This function is not called if the address we find
5077 is strictly valid.)
5079 CONTEXT = 1 means we are considering regs as index regs,
5080 = 0 means we are considering them as base regs.
5082 OPNUM and TYPE specify the purpose of any reloads made.
5084 IND_LEVELS says how many levels of indirect addressing are
5085 supported at this point in the address.
5087 INSN, if nonzero, is the insn in which we do the reload. It is used
5088 to determine if we may generate output reloads.
5090 We return nonzero if X, as a whole, is reloaded or replaced. */
5092 /* Note that we take shortcuts assuming that no multi-reg machine mode
5093 occurs as part of an address.
5094 Also, this is not fully machine-customizable; it works for machines
5095 such as VAXen and 68000's and 32000's, but other possible machines
5096 could have addressing modes that this does not handle right. */
5098 static int
5099 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5100 enum machine_mode mode;
5101 rtx x;
5102 int context;
5103 rtx *loc;
5104 int opnum;
5105 enum reload_type type;
5106 int ind_levels;
5107 rtx insn;
5109 RTX_CODE code = GET_CODE (x);
5111 switch (code)
5113 case PLUS:
5115 rtx orig_op0 = XEXP (x, 0);
5116 rtx orig_op1 = XEXP (x, 1);
5117 RTX_CODE code0 = GET_CODE (orig_op0);
5118 RTX_CODE code1 = GET_CODE (orig_op1);
5119 rtx op0 = orig_op0;
5120 rtx op1 = orig_op1;
5122 if (GET_CODE (op0) == SUBREG)
5124 op0 = SUBREG_REG (op0);
5125 code0 = GET_CODE (op0);
5126 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5127 op0 = gen_rtx_REG (word_mode,
5128 (REGNO (op0) +
5129 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5130 GET_MODE (SUBREG_REG (orig_op0)),
5131 SUBREG_BYTE (orig_op0),
5132 GET_MODE (orig_op0))));
5135 if (GET_CODE (op1) == SUBREG)
5137 op1 = SUBREG_REG (op1);
5138 code1 = GET_CODE (op1);
5139 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5140 /* ??? Why is this given op1's mode and above for
5141 ??? op0 SUBREGs we use word_mode? */
5142 op1 = gen_rtx_REG (GET_MODE (op1),
5143 (REGNO (op1) +
5144 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5145 GET_MODE (SUBREG_REG (orig_op1)),
5146 SUBREG_BYTE (orig_op1),
5147 GET_MODE (orig_op1))));
5150 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5151 || code0 == ZERO_EXTEND || code1 == MEM)
5153 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5154 type, ind_levels, insn);
5155 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5156 type, ind_levels, insn);
5159 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5160 || code1 == ZERO_EXTEND || code0 == MEM)
5162 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5163 type, ind_levels, insn);
5164 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5165 type, ind_levels, insn);
5168 else if (code0 == CONST_INT || code0 == CONST
5169 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5170 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5171 type, ind_levels, insn);
5173 else if (code1 == CONST_INT || code1 == CONST
5174 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5175 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5176 type, ind_levels, insn);
5178 else if (code0 == REG && code1 == REG)
5180 if (REG_OK_FOR_INDEX_P (op0)
5181 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5182 return 0;
5183 else if (REG_OK_FOR_INDEX_P (op1)
5184 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5185 return 0;
5186 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5187 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5188 type, ind_levels, insn);
5189 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5190 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5191 type, ind_levels, insn);
5192 else if (REG_OK_FOR_INDEX_P (op1))
5193 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5194 type, ind_levels, insn);
5195 else if (REG_OK_FOR_INDEX_P (op0))
5196 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5197 type, ind_levels, insn);
5198 else
5200 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5201 type, ind_levels, insn);
5202 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5203 type, ind_levels, insn);
5207 else if (code0 == REG)
5209 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5210 type, ind_levels, insn);
5211 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5212 type, ind_levels, insn);
5215 else if (code1 == REG)
5217 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5218 type, ind_levels, insn);
5219 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5220 type, ind_levels, insn);
5224 return 0;
5226 case POST_MODIFY:
5227 case PRE_MODIFY:
5229 rtx op0 = XEXP (x, 0);
5230 rtx op1 = XEXP (x, 1);
5232 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5233 return 0;
5235 /* Currently, we only support {PRE,POST}_MODIFY constructs
5236 where a base register is {inc,dec}remented by the contents
5237 of another register or by a constant value. Thus, these
5238 operands must match. */
5239 if (op0 != XEXP (op1, 0))
5240 abort ();
5242 /* Require index register (or constant). Let's just handle the
5243 register case in the meantime... If the target allows
5244 auto-modify by a constant then we could try replacing a pseudo
5245 register with its equivalent constant where applicable. */
5246 if (REG_P (XEXP (op1, 1)))
5247 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5248 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5249 opnum, type, ind_levels, insn);
5251 if (REG_P (XEXP (op1, 0)))
5253 int regno = REGNO (XEXP (op1, 0));
5254 int reloadnum;
5256 /* A register that is incremented cannot be constant! */
5257 if (regno >= FIRST_PSEUDO_REGISTER
5258 && reg_equiv_constant[regno] != 0)
5259 abort ();
5261 /* Handle a register that is equivalent to a memory location
5262 which cannot be addressed directly. */
5263 if (reg_equiv_memory_loc[regno] != 0
5264 && (reg_equiv_address[regno] != 0
5265 || num_not_at_initial_offset))
5267 rtx tem = make_memloc (XEXP (x, 0), regno);
5269 if (reg_equiv_address[regno]
5270 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5272 /* First reload the memory location's address.
5273 We can't use ADDR_TYPE (type) here, because we need to
5274 write back the value after reading it, hence we actually
5275 need two registers. */
5276 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5277 &XEXP (tem, 0), opnum,
5278 RELOAD_OTHER,
5279 ind_levels, insn);
5281 /* Then reload the memory location into a base
5282 register. */
5283 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5284 &XEXP (op1, 0), BASE_REG_CLASS,
5285 GET_MODE (x), GET_MODE (x), 0,
5286 0, opnum, RELOAD_OTHER);
5288 update_auto_inc_notes (this_insn, regno, reloadnum);
5289 return 0;
5293 if (reg_renumber[regno] >= 0)
5294 regno = reg_renumber[regno];
5296 /* We require a base register here... */
5297 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5299 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5300 &XEXP (op1, 0), &XEXP (x, 0),
5301 BASE_REG_CLASS,
5302 GET_MODE (x), GET_MODE (x), 0, 0,
5303 opnum, RELOAD_OTHER);
5305 update_auto_inc_notes (this_insn, regno, reloadnum);
5306 return 0;
5309 else
5310 abort ();
5312 return 0;
5314 case POST_INC:
5315 case POST_DEC:
5316 case PRE_INC:
5317 case PRE_DEC:
5318 if (GET_CODE (XEXP (x, 0)) == REG)
5320 int regno = REGNO (XEXP (x, 0));
5321 int value = 0;
5322 rtx x_orig = x;
5324 /* A register that is incremented cannot be constant! */
5325 if (regno >= FIRST_PSEUDO_REGISTER
5326 && reg_equiv_constant[regno] != 0)
5327 abort ();
5329 /* Handle a register that is equivalent to a memory location
5330 which cannot be addressed directly. */
5331 if (reg_equiv_memory_loc[regno] != 0
5332 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5334 rtx tem = make_memloc (XEXP (x, 0), regno);
5335 if (reg_equiv_address[regno]
5336 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5338 /* First reload the memory location's address.
5339 We can't use ADDR_TYPE (type) here, because we need to
5340 write back the value after reading it, hence we actually
5341 need two registers. */
5342 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5343 &XEXP (tem, 0), opnum, type,
5344 ind_levels, insn);
5345 /* Put this inside a new increment-expression. */
5346 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5347 /* Proceed to reload that, as if it contained a register. */
5351 /* If we have a hard register that is ok as an index,
5352 don't make a reload. If an autoincrement of a nice register
5353 isn't "valid", it must be that no autoincrement is "valid".
5354 If that is true and something made an autoincrement anyway,
5355 this must be a special context where one is allowed.
5356 (For example, a "push" instruction.)
5357 We can't improve this address, so leave it alone. */
5359 /* Otherwise, reload the autoincrement into a suitable hard reg
5360 and record how much to increment by. */
5362 if (reg_renumber[regno] >= 0)
5363 regno = reg_renumber[regno];
5364 if ((regno >= FIRST_PSEUDO_REGISTER
5365 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5366 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5368 int reloadnum;
5370 /* If we can output the register afterwards, do so, this
5371 saves the extra update.
5372 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5373 CALL_INSN - and it does not set CC0.
5374 But don't do this if we cannot directly address the
5375 memory location, since this will make it harder to
5376 reuse address reloads, and increases register pressure.
5377 Also don't do this if we can probably update x directly. */
5378 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5379 ? XEXP (x, 0)
5380 : reg_equiv_mem[regno]);
5381 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5382 if (insn && GET_CODE (insn) == INSN && equiv
5383 && memory_operand (equiv, GET_MODE (equiv))
5384 #ifdef HAVE_cc0
5385 && ! sets_cc0_p (PATTERN (insn))
5386 #endif
5387 && ! (icode != CODE_FOR_nothing
5388 && ((*insn_data[icode].operand[0].predicate)
5389 (equiv, Pmode))
5390 && ((*insn_data[icode].operand[1].predicate)
5391 (equiv, Pmode))))
5393 /* We use the original pseudo for loc, so that
5394 emit_reload_insns() knows which pseudo this
5395 reload refers to and updates the pseudo rtx, not
5396 its equivalent memory location, as well as the
5397 corresponding entry in reg_last_reload_reg. */
5398 loc = &XEXP (x_orig, 0);
5399 x = XEXP (x, 0);
5400 reloadnum
5401 = push_reload (x, x, loc, loc,
5402 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5403 GET_MODE (x), GET_MODE (x), 0, 0,
5404 opnum, RELOAD_OTHER);
5406 else
5408 reloadnum
5409 = push_reload (x, NULL_RTX, loc, (rtx*)0,
5410 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5411 GET_MODE (x), GET_MODE (x), 0, 0,
5412 opnum, type);
5413 rld[reloadnum].inc
5414 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5416 value = 1;
5419 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5420 reloadnum);
5422 return value;
5425 else if (GET_CODE (XEXP (x, 0)) == MEM)
5427 /* This is probably the result of a substitution, by eliminate_regs,
5428 of an equivalent address for a pseudo that was not allocated to a
5429 hard register. Verify that the specified address is valid and
5430 reload it into a register. */
5431 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5432 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5433 rtx link;
5434 int reloadnum;
5436 /* Since we know we are going to reload this item, don't decrement
5437 for the indirection level.
5439 Note that this is actually conservative: it would be slightly
5440 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5441 reload1.c here. */
5442 /* We can't use ADDR_TYPE (type) here, because we need to
5443 write back the value after reading it, hence we actually
5444 need two registers. */
5445 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5446 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5447 opnum, type, ind_levels, insn);
5449 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*)0,
5450 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5451 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5452 rld[reloadnum].inc
5453 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5455 link = FIND_REG_INC_NOTE (this_insn, tem);
5456 if (link != 0)
5457 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5459 return 1;
5461 return 0;
5463 case MEM:
5464 /* This is probably the result of a substitution, by eliminate_regs, of
5465 an equivalent address for a pseudo that was not allocated to a hard
5466 register. Verify that the specified address is valid and reload it
5467 into a register.
5469 Since we know we are going to reload this item, don't decrement for
5470 the indirection level.
5472 Note that this is actually conservative: it would be slightly more
5473 efficient to use the value of SPILL_INDIRECT_LEVELS from
5474 reload1.c here. */
5476 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5477 opnum, ADDR_TYPE (type), ind_levels, insn);
5478 push_reload (*loc, NULL_RTX, loc, (rtx*)0,
5479 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5480 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5481 return 1;
5483 case REG:
5485 int regno = REGNO (x);
5487 if (reg_equiv_constant[regno] != 0)
5489 find_reloads_address_part (reg_equiv_constant[regno], loc,
5490 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5491 GET_MODE (x), opnum, type, ind_levels);
5492 return 1;
5495 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5496 that feeds this insn. */
5497 if (reg_equiv_mem[regno] != 0)
5499 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*)0,
5500 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5501 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5502 return 1;
5504 #endif
5506 if (reg_equiv_memory_loc[regno]
5507 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5509 rtx tem = make_memloc (x, regno);
5510 if (reg_equiv_address[regno] != 0
5511 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5513 x = tem;
5514 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5515 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5516 ind_levels, insn);
5520 if (reg_renumber[regno] >= 0)
5521 regno = reg_renumber[regno];
5523 if ((regno >= FIRST_PSEUDO_REGISTER
5524 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5525 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5527 push_reload (x, NULL_RTX, loc, (rtx*)0,
5528 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5529 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5530 return 1;
5533 /* If a register appearing in an address is the subject of a CLOBBER
5534 in this insn, reload it into some other register to be safe.
5535 The CLOBBER is supposed to make the register unavailable
5536 from before this insn to after it. */
5537 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5539 push_reload (x, NULL_RTX, loc, (rtx*)0,
5540 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5541 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5542 return 1;
5545 return 0;
5547 case SUBREG:
5548 if (GET_CODE (SUBREG_REG (x)) == REG)
5550 /* If this is a SUBREG of a hard register and the resulting register
5551 is of the wrong class, reload the whole SUBREG. This avoids
5552 needless copies if SUBREG_REG is multi-word. */
5553 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5555 int regno = subreg_regno (x);
5557 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5558 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5560 push_reload (x, NULL_RTX, loc, (rtx*)0,
5561 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5562 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5563 return 1;
5566 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5567 is larger than the class size, then reload the whole SUBREG. */
5568 else
5570 enum reg_class class = (context ? INDEX_REG_CLASS
5571 : BASE_REG_CLASS);
5572 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5573 > reg_class_size[class])
5575 x = find_reloads_subreg_address (x, 0, opnum, type,
5576 ind_levels, insn);
5577 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5578 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5579 return 1;
5583 break;
5585 default:
5586 break;
5590 const char *fmt = GET_RTX_FORMAT (code);
5591 int i;
5593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5595 if (fmt[i] == 'e')
5596 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5597 opnum, type, ind_levels, insn);
5601 return 0;
5604 /* X, which is found at *LOC, is a part of an address that needs to be
5605 reloaded into a register of class CLASS. If X is a constant, or if
5606 X is a PLUS that contains a constant, check that the constant is a
5607 legitimate operand and that we are supposed to be able to load
5608 it into the register.
5610 If not, force the constant into memory and reload the MEM instead.
5612 MODE is the mode to use, in case X is an integer constant.
5614 OPNUM and TYPE describe the purpose of any reloads made.
5616 IND_LEVELS says how many levels of indirect addressing this machine
5617 supports. */
5619 static void
5620 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5621 rtx x;
5622 rtx *loc;
5623 enum reg_class class;
5624 enum machine_mode mode;
5625 int opnum;
5626 enum reload_type type;
5627 int ind_levels;
5629 if (CONSTANT_P (x)
5630 && (! LEGITIMATE_CONSTANT_P (x)
5631 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5633 rtx tem;
5635 tem = x = force_const_mem (mode, x);
5636 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5637 opnum, type, ind_levels, 0);
5640 else if (GET_CODE (x) == PLUS
5641 && CONSTANT_P (XEXP (x, 1))
5642 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5643 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5645 rtx tem;
5647 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5648 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5649 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5650 opnum, type, ind_levels, 0);
5653 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5654 mode, VOIDmode, 0, 0, opnum, type);
5657 /* X, a subreg of a pseudo, is a part of an address that needs to be
5658 reloaded.
5660 If the pseudo is equivalent to a memory location that cannot be directly
5661 addressed, make the necessary address reloads.
5663 If address reloads have been necessary, or if the address is changed
5664 by register elimination, return the rtx of the memory location;
5665 otherwise, return X.
5667 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5668 memory location.
5670 OPNUM and TYPE identify the purpose of the reload.
5672 IND_LEVELS says how many levels of indirect addressing are
5673 supported at this point in the address.
5675 INSN, if nonzero, is the insn in which we do the reload. It is used
5676 to determine where to put USEs for pseudos that we have to replace with
5677 stack slots. */
5679 static rtx
5680 find_reloads_subreg_address (x, force_replace, opnum, type,
5681 ind_levels, insn)
5682 rtx x;
5683 int force_replace;
5684 int opnum;
5685 enum reload_type type;
5686 int ind_levels;
5687 rtx insn;
5689 int regno = REGNO (SUBREG_REG (x));
5691 if (reg_equiv_memory_loc[regno])
5693 /* If the address is not directly addressable, or if the address is not
5694 offsettable, then it must be replaced. */
5695 if (! force_replace
5696 && (reg_equiv_address[regno]
5697 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5698 force_replace = 1;
5700 if (force_replace || num_not_at_initial_offset)
5702 rtx tem = make_memloc (SUBREG_REG (x), regno);
5704 /* If the address changes because of register elimination, then
5705 it must be replaced. */
5706 if (force_replace
5707 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5709 int offset = SUBREG_BYTE (x);
5710 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5711 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5713 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5714 PUT_MODE (tem, GET_MODE (x));
5716 /* If this was a paradoxical subreg that we replaced, the
5717 resulting memory must be sufficiently aligned to allow
5718 us to widen the mode of the memory. */
5719 if (outer_size > inner_size && STRICT_ALIGNMENT)
5721 rtx base;
5723 base = XEXP (tem, 0);
5724 if (GET_CODE (base) == PLUS)
5726 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5727 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5728 return x;
5729 base = XEXP (base, 0);
5731 if (GET_CODE (base) != REG
5732 || (REGNO_POINTER_ALIGN (REGNO (base))
5733 < outer_size * BITS_PER_UNIT))
5734 return x;
5737 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5738 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5739 ind_levels, insn);
5741 /* If this is not a toplevel operand, find_reloads doesn't see
5742 this substitution. We have to emit a USE of the pseudo so
5743 that delete_output_reload can see it. */
5744 if (replace_reloads && recog_data.operand[opnum] != x)
5745 /* We mark the USE with QImode so that we recognize it
5746 as one that can be safely deleted at the end of
5747 reload. */
5748 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5749 SUBREG_REG (x)),
5750 insn), QImode);
5751 x = tem;
5755 return x;
5758 /* Substitute into the current INSN the registers into which we have reloaded
5759 the things that need reloading. The array `replacements'
5760 contains the locations of all pointers that must be changed
5761 and says what to replace them with.
5763 Return the rtx that X translates into; usually X, but modified. */
5765 void
5766 subst_reloads (insn)
5767 rtx insn;
5769 int i;
5771 for (i = 0; i < n_replacements; i++)
5773 struct replacement *r = &replacements[i];
5774 rtx reloadreg = rld[r->what].reg_rtx;
5775 if (reloadreg)
5777 #ifdef ENABLE_CHECKING
5778 /* Internal consistency test. Check that we don't modify
5779 anything in the equivalence arrays. Whenever something from
5780 those arrays needs to be reloaded, it must be unshared before
5781 being substituted into; the equivalence must not be modified.
5782 Otherwise, if the equivalence is used after that, it will
5783 have been modified, and the thing substituted (probably a
5784 register) is likely overwritten and not a usable equivalence. */
5785 int check_regno;
5787 for (check_regno = 0; check_regno < max_regno; check_regno++)
5789 #define CHECK_MODF(ARRAY) \
5790 if (ARRAY[check_regno] \
5791 && loc_mentioned_in_p (r->where, \
5792 ARRAY[check_regno])) \
5793 abort ()
5795 CHECK_MODF (reg_equiv_constant);
5796 CHECK_MODF (reg_equiv_memory_loc);
5797 CHECK_MODF (reg_equiv_address);
5798 CHECK_MODF (reg_equiv_mem);
5799 #undef CHECK_MODF
5801 #endif /* ENABLE_CHECKING */
5803 /* If we're replacing a LABEL_REF with a register, add a
5804 REG_LABEL note to indicate to flow which label this
5805 register refers to. */
5806 if (GET_CODE (*r->where) == LABEL_REF
5807 && GET_CODE (insn) == JUMP_INSN)
5808 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5809 XEXP (*r->where, 0),
5810 REG_NOTES (insn));
5812 /* Encapsulate RELOADREG so its machine mode matches what
5813 used to be there. Note that gen_lowpart_common will
5814 do the wrong thing if RELOADREG is multi-word. RELOADREG
5815 will always be a REG here. */
5816 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5817 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5819 /* If we are putting this into a SUBREG and RELOADREG is a
5820 SUBREG, we would be making nested SUBREGs, so we have to fix
5821 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5823 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5825 if (GET_MODE (*r->subreg_loc)
5826 == GET_MODE (SUBREG_REG (reloadreg)))
5827 *r->subreg_loc = SUBREG_REG (reloadreg);
5828 else
5830 int final_offset =
5831 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5833 /* When working with SUBREGs the rule is that the byte
5834 offset must be a multiple of the SUBREG's mode. */
5835 final_offset = (final_offset /
5836 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5837 final_offset = (final_offset *
5838 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5840 *r->where = SUBREG_REG (reloadreg);
5841 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5844 else
5845 *r->where = reloadreg;
5847 /* If reload got no reg and isn't optional, something's wrong. */
5848 else if (! rld[r->what].optional)
5849 abort ();
5853 /* Make a copy of any replacements being done into X and move those copies
5854 to locations in Y, a copy of X. We only look at the highest level of
5855 the RTL. */
5857 void
5858 copy_replacements (x, y)
5859 rtx x;
5860 rtx y;
5862 int i, j;
5863 enum rtx_code code = GET_CODE (x);
5864 const char *fmt = GET_RTX_FORMAT (code);
5865 struct replacement *r;
5867 /* We can't support X being a SUBREG because we might then need to know its
5868 location if something inside it was replaced. */
5869 if (code == SUBREG)
5870 abort ();
5872 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5873 if (fmt[i] == 'e')
5874 for (j = 0; j < n_replacements; j++)
5876 if (replacements[j].subreg_loc == &XEXP (x, i))
5878 r = &replacements[n_replacements++];
5879 r->where = replacements[j].where;
5880 r->subreg_loc = &XEXP (y, i);
5881 r->what = replacements[j].what;
5882 r->mode = replacements[j].mode;
5884 else if (replacements[j].where == &XEXP (x, i))
5886 r = &replacements[n_replacements++];
5887 r->where = &XEXP (y, i);
5888 r->subreg_loc = 0;
5889 r->what = replacements[j].what;
5890 r->mode = replacements[j].mode;
5895 /* Change any replacements being done to *X to be done to *Y */
5897 void
5898 move_replacements (x, y)
5899 rtx *x;
5900 rtx *y;
5902 int i;
5904 for (i = 0; i < n_replacements; i++)
5905 if (replacements[i].subreg_loc == x)
5906 replacements[i].subreg_loc = y;
5907 else if (replacements[i].where == x)
5909 replacements[i].where = y;
5910 replacements[i].subreg_loc = 0;
5914 /* If LOC was scheduled to be replaced by something, return the replacement.
5915 Otherwise, return *LOC. */
5918 find_replacement (loc)
5919 rtx *loc;
5921 struct replacement *r;
5923 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5925 rtx reloadreg = rld[r->what].reg_rtx;
5927 if (reloadreg && r->where == loc)
5929 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5930 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5932 return reloadreg;
5934 else if (reloadreg && r->subreg_loc == loc)
5936 /* RELOADREG must be either a REG or a SUBREG.
5938 ??? Is it actually still ever a SUBREG? If so, why? */
5940 if (GET_CODE (reloadreg) == REG)
5941 return gen_rtx_REG (GET_MODE (*loc),
5942 (REGNO (reloadreg) +
5943 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5944 GET_MODE (SUBREG_REG (*loc)),
5945 SUBREG_BYTE (*loc),
5946 GET_MODE (*loc))));
5947 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5948 return reloadreg;
5949 else
5951 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
5953 /* When working with SUBREGs the rule is that the byte
5954 offset must be a multiple of the SUBREG's mode. */
5955 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
5956 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
5957 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5958 final_offset);
5963 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5964 what's inside and make a new rtl if so. */
5965 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5966 || GET_CODE (*loc) == MULT)
5968 rtx x = find_replacement (&XEXP (*loc, 0));
5969 rtx y = find_replacement (&XEXP (*loc, 1));
5971 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5972 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5975 return *loc;
5978 /* Return nonzero if register in range [REGNO, ENDREGNO)
5979 appears either explicitly or implicitly in X
5980 other than being stored into (except for earlyclobber operands).
5982 References contained within the substructure at LOC do not count.
5983 LOC may be zero, meaning don't ignore anything.
5985 This is similar to refers_to_regno_p in rtlanal.c except that we
5986 look at equivalences for pseudos that didn't get hard registers. */
5989 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5990 unsigned int regno, endregno;
5991 rtx x;
5992 rtx *loc;
5994 int i;
5995 unsigned int r;
5996 RTX_CODE code;
5997 const char *fmt;
5999 if (x == 0)
6000 return 0;
6002 repeat:
6003 code = GET_CODE (x);
6005 switch (code)
6007 case REG:
6008 r = REGNO (x);
6010 /* If this is a pseudo, a hard register must not have been allocated.
6011 X must therefore either be a constant or be in memory. */
6012 if (r >= FIRST_PSEUDO_REGISTER)
6014 if (reg_equiv_memory_loc[r])
6015 return refers_to_regno_for_reload_p (regno, endregno,
6016 reg_equiv_memory_loc[r],
6017 (rtx*)0);
6019 if (reg_equiv_constant[r])
6020 return 0;
6022 abort ();
6025 return (endregno > r
6026 && regno < r + (r < FIRST_PSEUDO_REGISTER
6027 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6028 : 1));
6030 case SUBREG:
6031 /* If this is a SUBREG of a hard reg, we can see exactly which
6032 registers are being modified. Otherwise, handle normally. */
6033 if (GET_CODE (SUBREG_REG (x)) == REG
6034 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6036 unsigned int inner_regno = subreg_regno (x);
6037 unsigned int inner_endregno
6038 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6039 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6041 return endregno > inner_regno && regno < inner_endregno;
6043 break;
6045 case CLOBBER:
6046 case SET:
6047 if (&SET_DEST (x) != loc
6048 /* Note setting a SUBREG counts as referring to the REG it is in for
6049 a pseudo but not for hard registers since we can
6050 treat each word individually. */
6051 && ((GET_CODE (SET_DEST (x)) == SUBREG
6052 && loc != &SUBREG_REG (SET_DEST (x))
6053 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6054 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6055 && refers_to_regno_for_reload_p (regno, endregno,
6056 SUBREG_REG (SET_DEST (x)),
6057 loc))
6058 /* If the output is an earlyclobber operand, this is
6059 a conflict. */
6060 || ((GET_CODE (SET_DEST (x)) != REG
6061 || earlyclobber_operand_p (SET_DEST (x)))
6062 && refers_to_regno_for_reload_p (regno, endregno,
6063 SET_DEST (x), loc))))
6064 return 1;
6066 if (code == CLOBBER || loc == &SET_SRC (x))
6067 return 0;
6068 x = SET_SRC (x);
6069 goto repeat;
6071 default:
6072 break;
6075 /* X does not match, so try its subexpressions. */
6077 fmt = GET_RTX_FORMAT (code);
6078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6080 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6082 if (i == 0)
6084 x = XEXP (x, 0);
6085 goto repeat;
6087 else
6088 if (refers_to_regno_for_reload_p (regno, endregno,
6089 XEXP (x, i), loc))
6090 return 1;
6092 else if (fmt[i] == 'E')
6094 int j;
6095 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6096 if (loc != &XVECEXP (x, i, j)
6097 && refers_to_regno_for_reload_p (regno, endregno,
6098 XVECEXP (x, i, j), loc))
6099 return 1;
6102 return 0;
6105 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6106 we check if any register number in X conflicts with the relevant register
6107 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6108 contains a MEM (we don't bother checking for memory addresses that can't
6109 conflict because we expect this to be a rare case.
6111 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6112 that we look at equivalences for pseudos that didn't get hard registers. */
6115 reg_overlap_mentioned_for_reload_p (x, in)
6116 rtx x, in;
6118 int regno, endregno;
6120 /* Overly conservative. */
6121 if (GET_CODE (x) == STRICT_LOW_PART)
6122 x = XEXP (x, 0);
6124 /* If either argument is a constant, then modifying X can not affect IN. */
6125 if (CONSTANT_P (x) || CONSTANT_P (in))
6126 return 0;
6127 else if (GET_CODE (x) == SUBREG)
6129 regno = REGNO (SUBREG_REG (x));
6130 if (regno < FIRST_PSEUDO_REGISTER)
6131 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6132 GET_MODE (SUBREG_REG (x)),
6133 SUBREG_BYTE (x),
6134 GET_MODE (x));
6136 else if (GET_CODE (x) == REG)
6138 regno = REGNO (x);
6140 /* If this is a pseudo, it must not have been assigned a hard register.
6141 Therefore, it must either be in memory or be a constant. */
6143 if (regno >= FIRST_PSEUDO_REGISTER)
6145 if (reg_equiv_memory_loc[regno])
6146 return refers_to_mem_for_reload_p (in);
6147 else if (reg_equiv_constant[regno])
6148 return 0;
6149 abort ();
6152 else if (GET_CODE (x) == MEM)
6153 return refers_to_mem_for_reload_p (in);
6154 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6155 || GET_CODE (x) == CC0)
6156 return reg_mentioned_p (x, in);
6157 else
6158 abort ();
6160 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6161 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6163 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*)0);
6166 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6167 registers. */
6170 refers_to_mem_for_reload_p (x)
6171 rtx x;
6173 const char *fmt;
6174 int i;
6176 if (GET_CODE (x) == MEM)
6177 return 1;
6179 if (GET_CODE (x) == REG)
6180 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6181 && reg_equiv_memory_loc[REGNO (x)]);
6183 fmt = GET_RTX_FORMAT (GET_CODE (x));
6184 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6185 if (fmt[i] == 'e'
6186 && (GET_CODE (XEXP (x, i)) == MEM
6187 || refers_to_mem_for_reload_p (XEXP (x, i))))
6188 return 1;
6190 return 0;
6193 /* Check the insns before INSN to see if there is a suitable register
6194 containing the same value as GOAL.
6195 If OTHER is -1, look for a register in class CLASS.
6196 Otherwise, just see if register number OTHER shares GOAL's value.
6198 Return an rtx for the register found, or zero if none is found.
6200 If RELOAD_REG_P is (short *)1,
6201 we reject any hard reg that appears in reload_reg_rtx
6202 because such a hard reg is also needed coming into this insn.
6204 If RELOAD_REG_P is any other nonzero value,
6205 it is a vector indexed by hard reg number
6206 and we reject any hard reg whose element in the vector is nonnegative
6207 as well as any that appears in reload_reg_rtx.
6209 If GOAL is zero, then GOALREG is a register number; we look
6210 for an equivalent for that register.
6212 MODE is the machine mode of the value we want an equivalence for.
6213 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6215 This function is used by jump.c as well as in the reload pass.
6217 If GOAL is the sum of the stack pointer and a constant, we treat it
6218 as if it were a constant except that sp is required to be unchanging. */
6221 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6222 rtx goal;
6223 rtx insn;
6224 enum reg_class class;
6225 int other;
6226 short *reload_reg_p;
6227 int goalreg;
6228 enum machine_mode mode;
6230 rtx p = insn;
6231 rtx goaltry, valtry, value, where;
6232 rtx pat;
6233 int regno = -1;
6234 int valueno;
6235 int goal_mem = 0;
6236 int goal_const = 0;
6237 int goal_mem_addr_varies = 0;
6238 int need_stable_sp = 0;
6239 int nregs;
6240 int valuenregs;
6242 if (goal == 0)
6243 regno = goalreg;
6244 else if (GET_CODE (goal) == REG)
6245 regno = REGNO (goal);
6246 else if (GET_CODE (goal) == MEM)
6248 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6249 if (MEM_VOLATILE_P (goal))
6250 return 0;
6251 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6252 return 0;
6253 /* An address with side effects must be reexecuted. */
6254 switch (code)
6256 case POST_INC:
6257 case PRE_INC:
6258 case POST_DEC:
6259 case PRE_DEC:
6260 case POST_MODIFY:
6261 case PRE_MODIFY:
6262 return 0;
6263 default:
6264 break;
6266 goal_mem = 1;
6268 else if (CONSTANT_P (goal))
6269 goal_const = 1;
6270 else if (GET_CODE (goal) == PLUS
6271 && XEXP (goal, 0) == stack_pointer_rtx
6272 && CONSTANT_P (XEXP (goal, 1)))
6273 goal_const = need_stable_sp = 1;
6274 else if (GET_CODE (goal) == PLUS
6275 && XEXP (goal, 0) == frame_pointer_rtx
6276 && CONSTANT_P (XEXP (goal, 1)))
6277 goal_const = 1;
6278 else
6279 return 0;
6281 /* Scan insns back from INSN, looking for one that copies
6282 a value into or out of GOAL.
6283 Stop and give up if we reach a label. */
6285 while (1)
6287 p = PREV_INSN (p);
6288 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6289 return 0;
6291 if (GET_CODE (p) == INSN
6292 /* If we don't want spill regs ... */
6293 && (! (reload_reg_p != 0
6294 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6295 /* ... then ignore insns introduced by reload; they aren't
6296 useful and can cause results in reload_as_needed to be
6297 different from what they were when calculating the need for
6298 spills. If we notice an input-reload insn here, we will
6299 reject it below, but it might hide a usable equivalent.
6300 That makes bad code. It may even abort: perhaps no reg was
6301 spilled for this insn because it was assumed we would find
6302 that equivalent. */
6303 || INSN_UID (p) < reload_first_uid))
6305 rtx tem;
6306 pat = single_set (p);
6308 /* First check for something that sets some reg equal to GOAL. */
6309 if (pat != 0
6310 && ((regno >= 0
6311 && true_regnum (SET_SRC (pat)) == regno
6312 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6314 (regno >= 0
6315 && true_regnum (SET_DEST (pat)) == regno
6316 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6318 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6319 /* When looking for stack pointer + const,
6320 make sure we don't use a stack adjust. */
6321 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6322 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6323 || (goal_mem
6324 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6325 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6326 || (goal_mem
6327 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6328 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6329 /* If we are looking for a constant,
6330 and something equivalent to that constant was copied
6331 into a reg, we can use that reg. */
6332 || (goal_const && REG_NOTES (p) != 0
6333 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6334 && ((rtx_equal_p (XEXP (tem, 0), goal)
6335 && (valueno
6336 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6337 || (GET_CODE (SET_DEST (pat)) == REG
6338 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6339 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6340 == MODE_FLOAT)
6341 && GET_CODE (goal) == CONST_INT
6342 && 0 != (goaltry
6343 = operand_subword (XEXP (tem, 0), 0, 0,
6344 VOIDmode))
6345 && rtx_equal_p (goal, goaltry)
6346 && (valtry
6347 = operand_subword (SET_DEST (pat), 0, 0,
6348 VOIDmode))
6349 && (valueno = true_regnum (valtry)) >= 0)))
6350 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6351 NULL_RTX))
6352 && GET_CODE (SET_DEST (pat)) == REG
6353 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6354 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6355 == MODE_FLOAT)
6356 && GET_CODE (goal) == CONST_INT
6357 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6358 VOIDmode))
6359 && rtx_equal_p (goal, goaltry)
6360 && (valtry
6361 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6362 && (valueno = true_regnum (valtry)) >= 0)))
6364 if (other >= 0)
6366 if (valueno != other)
6367 continue;
6369 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6370 continue;
6371 else
6373 int i;
6375 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6376 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6377 valueno + i))
6378 break;
6379 if (i >= 0)
6380 continue;
6382 value = valtry;
6383 where = p;
6384 break;
6389 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6390 (or copying VALUE into GOAL, if GOAL is also a register).
6391 Now verify that VALUE is really valid. */
6393 /* VALUENO is the register number of VALUE; a hard register. */
6395 /* Don't try to re-use something that is killed in this insn. We want
6396 to be able to trust REG_UNUSED notes. */
6397 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6398 return 0;
6400 /* If we propose to get the value from the stack pointer or if GOAL is
6401 a MEM based on the stack pointer, we need a stable SP. */
6402 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6403 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6404 goal)))
6405 need_stable_sp = 1;
6407 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6408 if (GET_MODE (value) != mode)
6409 return 0;
6411 /* Reject VALUE if it was loaded from GOAL
6412 and is also a register that appears in the address of GOAL. */
6414 if (goal_mem && value == SET_DEST (single_set (where))
6415 && refers_to_regno_for_reload_p (valueno,
6416 (valueno
6417 + HARD_REGNO_NREGS (valueno, mode)),
6418 goal, (rtx*)0))
6419 return 0;
6421 /* Reject registers that overlap GOAL. */
6423 if (!goal_mem && !goal_const
6424 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6425 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6426 return 0;
6428 nregs = HARD_REGNO_NREGS (regno, mode);
6429 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6431 /* Reject VALUE if it is one of the regs reserved for reloads.
6432 Reload1 knows how to reuse them anyway, and it would get
6433 confused if we allocated one without its knowledge.
6434 (Now that insns introduced by reload are ignored above,
6435 this case shouldn't happen, but I'm not positive.) */
6437 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6439 int i;
6440 for (i = 0; i < valuenregs; ++i)
6441 if (reload_reg_p[valueno + i] >= 0)
6442 return 0;
6445 /* Reject VALUE if it is a register being used for an input reload
6446 even if it is not one of those reserved. */
6448 if (reload_reg_p != 0)
6450 int i;
6451 for (i = 0; i < n_reloads; i++)
6452 if (rld[i].reg_rtx != 0 && rld[i].in)
6454 int regno1 = REGNO (rld[i].reg_rtx);
6455 int nregs1 = HARD_REGNO_NREGS (regno1,
6456 GET_MODE (rld[i].reg_rtx));
6457 if (regno1 < valueno + valuenregs
6458 && regno1 + nregs1 > valueno)
6459 return 0;
6463 if (goal_mem)
6464 /* We must treat frame pointer as varying here,
6465 since it can vary--in a nonlocal goto as generated by expand_goto. */
6466 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6468 /* Now verify that the values of GOAL and VALUE remain unaltered
6469 until INSN is reached. */
6471 p = insn;
6472 while (1)
6474 p = PREV_INSN (p);
6475 if (p == where)
6476 return value;
6478 /* Don't trust the conversion past a function call
6479 if either of the two is in a call-clobbered register, or memory. */
6480 if (GET_CODE (p) == CALL_INSN)
6482 int i;
6484 if (goal_mem || need_stable_sp)
6485 return 0;
6487 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6488 for (i = 0; i < nregs; ++i)
6489 if (call_used_regs[regno + i])
6490 return 0;
6492 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6493 for (i = 0; i < valuenregs; ++i)
6494 if (call_used_regs[valueno + i])
6495 return 0;
6496 #ifdef NON_SAVING_SETJMP
6497 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6498 return 0;
6499 #endif
6502 if (INSN_P (p))
6504 pat = PATTERN (p);
6506 /* Watch out for unspec_volatile, and volatile asms. */
6507 if (volatile_insn_p (pat))
6508 return 0;
6510 /* If this insn P stores in either GOAL or VALUE, return 0.
6511 If GOAL is a memory ref and this insn writes memory, return 0.
6512 If GOAL is a memory ref and its address is not constant,
6513 and this insn P changes a register used in GOAL, return 0. */
6515 if (GET_CODE (pat) == COND_EXEC)
6516 pat = COND_EXEC_CODE (pat);
6517 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6519 rtx dest = SET_DEST (pat);
6520 while (GET_CODE (dest) == SUBREG
6521 || GET_CODE (dest) == ZERO_EXTRACT
6522 || GET_CODE (dest) == SIGN_EXTRACT
6523 || GET_CODE (dest) == STRICT_LOW_PART)
6524 dest = XEXP (dest, 0);
6525 if (GET_CODE (dest) == REG)
6527 int xregno = REGNO (dest);
6528 int xnregs;
6529 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6530 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6531 else
6532 xnregs = 1;
6533 if (xregno < regno + nregs && xregno + xnregs > regno)
6534 return 0;
6535 if (xregno < valueno + valuenregs
6536 && xregno + xnregs > valueno)
6537 return 0;
6538 if (goal_mem_addr_varies
6539 && reg_overlap_mentioned_for_reload_p (dest, goal))
6540 return 0;
6541 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6542 return 0;
6544 else if (goal_mem && GET_CODE (dest) == MEM
6545 && ! push_operand (dest, GET_MODE (dest)))
6546 return 0;
6547 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6548 && reg_equiv_memory_loc[regno] != 0)
6549 return 0;
6550 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6551 return 0;
6553 else if (GET_CODE (pat) == PARALLEL)
6555 int i;
6556 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6558 rtx v1 = XVECEXP (pat, 0, i);
6559 if (GET_CODE (v1) == COND_EXEC)
6560 v1 = COND_EXEC_CODE (v1);
6561 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6563 rtx dest = SET_DEST (v1);
6564 while (GET_CODE (dest) == SUBREG
6565 || GET_CODE (dest) == ZERO_EXTRACT
6566 || GET_CODE (dest) == SIGN_EXTRACT
6567 || GET_CODE (dest) == STRICT_LOW_PART)
6568 dest = XEXP (dest, 0);
6569 if (GET_CODE (dest) == REG)
6571 int xregno = REGNO (dest);
6572 int xnregs;
6573 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6574 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6575 else
6576 xnregs = 1;
6577 if (xregno < regno + nregs
6578 && xregno + xnregs > regno)
6579 return 0;
6580 if (xregno < valueno + valuenregs
6581 && xregno + xnregs > valueno)
6582 return 0;
6583 if (goal_mem_addr_varies
6584 && reg_overlap_mentioned_for_reload_p (dest,
6585 goal))
6586 return 0;
6587 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6588 return 0;
6590 else if (goal_mem && GET_CODE (dest) == MEM
6591 && ! push_operand (dest, GET_MODE (dest)))
6592 return 0;
6593 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6594 && reg_equiv_memory_loc[regno] != 0)
6595 return 0;
6596 else if (need_stable_sp
6597 && push_operand (dest, GET_MODE (dest)))
6598 return 0;
6603 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6605 rtx link;
6607 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6608 link = XEXP (link, 1))
6610 pat = XEXP (link, 0);
6611 if (GET_CODE (pat) == CLOBBER)
6613 rtx dest = SET_DEST (pat);
6615 if (GET_CODE (dest) == REG)
6617 int xregno = REGNO (dest);
6618 int xnregs
6619 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6621 if (xregno < regno + nregs
6622 && xregno + xnregs > regno)
6623 return 0;
6624 else if (xregno < valueno + valuenregs
6625 && xregno + xnregs > valueno)
6626 return 0;
6627 else if (goal_mem_addr_varies
6628 && reg_overlap_mentioned_for_reload_p (dest,
6629 goal))
6630 return 0;
6633 else if (goal_mem && GET_CODE (dest) == MEM
6634 && ! push_operand (dest, GET_MODE (dest)))
6635 return 0;
6636 else if (need_stable_sp
6637 && push_operand (dest, GET_MODE (dest)))
6638 return 0;
6643 #ifdef AUTO_INC_DEC
6644 /* If this insn auto-increments or auto-decrements
6645 either regno or valueno, return 0 now.
6646 If GOAL is a memory ref and its address is not constant,
6647 and this insn P increments a register used in GOAL, return 0. */
6649 rtx link;
6651 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6652 if (REG_NOTE_KIND (link) == REG_INC
6653 && GET_CODE (XEXP (link, 0)) == REG)
6655 int incno = REGNO (XEXP (link, 0));
6656 if (incno < regno + nregs && incno >= regno)
6657 return 0;
6658 if (incno < valueno + valuenregs && incno >= valueno)
6659 return 0;
6660 if (goal_mem_addr_varies
6661 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6662 goal))
6663 return 0;
6666 #endif
6671 /* Find a place where INCED appears in an increment or decrement operator
6672 within X, and return the amount INCED is incremented or decremented by.
6673 The value is always positive. */
6675 static int
6676 find_inc_amount (x, inced)
6677 rtx x, inced;
6679 enum rtx_code code = GET_CODE (x);
6680 const char *fmt;
6681 int i;
6683 if (code == MEM)
6685 rtx addr = XEXP (x, 0);
6686 if ((GET_CODE (addr) == PRE_DEC
6687 || GET_CODE (addr) == POST_DEC
6688 || GET_CODE (addr) == PRE_INC
6689 || GET_CODE (addr) == POST_INC)
6690 && XEXP (addr, 0) == inced)
6691 return GET_MODE_SIZE (GET_MODE (x));
6692 else if ((GET_CODE (addr) == PRE_MODIFY
6693 || GET_CODE (addr) == POST_MODIFY)
6694 && GET_CODE (XEXP (addr, 1)) == PLUS
6695 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6696 && XEXP (addr, 0) == inced
6697 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6699 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6700 return i < 0 ? -i : i;
6704 fmt = GET_RTX_FORMAT (code);
6705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6707 if (fmt[i] == 'e')
6709 int tem = find_inc_amount (XEXP (x, i), inced);
6710 if (tem != 0)
6711 return tem;
6713 if (fmt[i] == 'E')
6715 int j;
6716 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6718 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6719 if (tem != 0)
6720 return tem;
6725 return 0;
6728 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6729 If SETS is nonzero, also consider SETs. */
6732 regno_clobbered_p (regno, insn, mode, sets)
6733 unsigned int regno;
6734 rtx insn;
6735 enum machine_mode mode;
6736 int sets;
6738 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6739 unsigned int endregno = regno + nregs;
6741 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6742 || (sets && GET_CODE (PATTERN (insn)) == SET))
6743 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6745 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6747 return test >= regno && test < endregno;
6750 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6752 int i = XVECLEN (PATTERN (insn), 0) - 1;
6754 for (; i >= 0; i--)
6756 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6757 if ((GET_CODE (elt) == CLOBBER
6758 || (sets && GET_CODE (PATTERN (insn)) == SET))
6759 && GET_CODE (XEXP (elt, 0)) == REG)
6761 unsigned int test = REGNO (XEXP (elt, 0));
6763 if (test >= regno && test < endregno)
6764 return 1;
6769 return 0;
6772 static const char *const reload_when_needed_name[] =
6774 "RELOAD_FOR_INPUT",
6775 "RELOAD_FOR_OUTPUT",
6776 "RELOAD_FOR_INSN",
6777 "RELOAD_FOR_INPUT_ADDRESS",
6778 "RELOAD_FOR_INPADDR_ADDRESS",
6779 "RELOAD_FOR_OUTPUT_ADDRESS",
6780 "RELOAD_FOR_OUTADDR_ADDRESS",
6781 "RELOAD_FOR_OPERAND_ADDRESS",
6782 "RELOAD_FOR_OPADDR_ADDR",
6783 "RELOAD_OTHER",
6784 "RELOAD_FOR_OTHER_ADDRESS"
6787 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6789 /* These functions are used to print the variables set by 'find_reloads' */
6791 void
6792 debug_reload_to_stream (f)
6793 FILE *f;
6795 int r;
6796 const char *prefix;
6798 if (! f)
6799 f = stderr;
6800 for (r = 0; r < n_reloads; r++)
6802 fprintf (f, "Reload %d: ", r);
6804 if (rld[r].in != 0)
6806 fprintf (f, "reload_in (%s) = ",
6807 GET_MODE_NAME (rld[r].inmode));
6808 print_inline_rtx (f, rld[r].in, 24);
6809 fprintf (f, "\n\t");
6812 if (rld[r].out != 0)
6814 fprintf (f, "reload_out (%s) = ",
6815 GET_MODE_NAME (rld[r].outmode));
6816 print_inline_rtx (f, rld[r].out, 24);
6817 fprintf (f, "\n\t");
6820 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6822 fprintf (f, "%s (opnum = %d)",
6823 reload_when_needed_name[(int) rld[r].when_needed],
6824 rld[r].opnum);
6826 if (rld[r].optional)
6827 fprintf (f, ", optional");
6829 if (rld[r].nongroup)
6830 fprintf (f, ", nongroup");
6832 if (rld[r].inc != 0)
6833 fprintf (f, ", inc by %d", rld[r].inc);
6835 if (rld[r].nocombine)
6836 fprintf (f, ", can't combine");
6838 if (rld[r].secondary_p)
6839 fprintf (f, ", secondary_reload_p");
6841 if (rld[r].in_reg != 0)
6843 fprintf (f, "\n\treload_in_reg: ");
6844 print_inline_rtx (f, rld[r].in_reg, 24);
6847 if (rld[r].out_reg != 0)
6849 fprintf (f, "\n\treload_out_reg: ");
6850 print_inline_rtx (f, rld[r].out_reg, 24);
6853 if (rld[r].reg_rtx != 0)
6855 fprintf (f, "\n\treload_reg_rtx: ");
6856 print_inline_rtx (f, rld[r].reg_rtx, 24);
6859 prefix = "\n\t";
6860 if (rld[r].secondary_in_reload != -1)
6862 fprintf (f, "%ssecondary_in_reload = %d",
6863 prefix, rld[r].secondary_in_reload);
6864 prefix = ", ";
6867 if (rld[r].secondary_out_reload != -1)
6868 fprintf (f, "%ssecondary_out_reload = %d\n",
6869 prefix, rld[r].secondary_out_reload);
6871 prefix = "\n\t";
6872 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6874 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6875 insn_data[rld[r].secondary_in_icode].name);
6876 prefix = ", ";
6879 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6880 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6881 insn_data[rld[r].secondary_out_icode].name);
6883 fprintf (f, "\n");
6887 void
6888 debug_reload ()
6890 debug_reload_to_stream (stderr);