* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / regclass.c
blob826da242dc188c3672d1ebdde74c08a5216d308f
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
186 #ifdef DEBUG_REGISTER_NAMES
187 const char * reg_names[] = REGISTER_NAMES;
188 #endif
190 /* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
195 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
197 /* 1 if class does contain register of given mode. */
199 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
201 /* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
204 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206 /* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
209 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211 /* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
214 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216 #ifdef FORBIDDEN_INC_DEC_CLASSES
218 /* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
221 static int forbidden_inc_dec_class[N_REG_CLASSES];
223 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
226 static char *in_inc_dec;
228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230 #ifdef CLASS_CANNOT_CHANGE_MODE
232 /* These are the classes containing only registers that can be used in
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
236 static int class_can_change_mode[N_REG_CLASSES];
238 /* Registers, including pseudos, which change modes in some way that
239 is illegal. */
241 static regset reg_changes_mode;
243 #endif /* CLASS_CANNOT_CHANGE_MODE */
245 #ifdef HAVE_SECONDARY_RELOADS
247 /* Sample MEM values for use by memory_move_secondary_cost. */
249 static rtx top_of_stack[MAX_MACHINE_MODE];
251 #endif /* HAVE_SECONDARY_RELOADS */
253 /* Linked list of reg_info structures allocated for reg_n_info array.
254 Grouping all of the allocated structures together in one lump
255 means only one call to bzero to clear them, rather than n smaller
256 calls. */
257 struct reg_info_data {
258 struct reg_info_data *next; /* next set of reg_info structures */
259 size_t min_index; /* minimum index # */
260 size_t max_index; /* maximum index # */
261 char used_p; /* non-zero if this has been used previously */
262 reg_info data[1]; /* beginning of the reg_info data */
265 static struct reg_info_data *reg_info_head;
267 /* No more global register variables may be declared; true once
268 regclass has been initialized. */
270 static int no_global_reg_vars = 0;
273 /* Function called only once to initialize the above data on reg usage.
274 Once this is done, various switches may override. */
276 void
277 init_reg_sets ()
279 int i, j;
281 /* First copy the register information from the initial int form into
282 the regsets. */
284 for (i = 0; i < N_REG_CLASSES; i++)
286 CLEAR_HARD_REG_SET (reg_class_contents[i]);
288 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
289 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
290 if (int_reg_class_contents[i][j / 32]
291 & ((unsigned) 1 << (j % 32)))
292 SET_HARD_REG_BIT (reg_class_contents[i], j);
295 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
296 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
297 memset (global_regs, 0, sizeof global_regs);
299 /* Do any additional initialization regsets may need */
300 INIT_ONCE_REG_SET ();
302 #ifdef REG_ALLOC_ORDER
303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
304 inv_reg_alloc_order[reg_alloc_order[i]] = i;
305 #endif
308 /* After switches have been processed, which perhaps alter
309 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
311 static void
312 init_reg_sets_1 ()
314 unsigned int i, j;
315 unsigned int /* enum machine_mode */ m;
316 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
318 /* This macro allows the fixed or call-used registers
319 and the register classes to depend on target flags. */
321 #ifdef CONDITIONAL_REGISTER_USAGE
322 CONDITIONAL_REGISTER_USAGE;
323 #endif
325 /* Compute number of hard regs in each class. */
327 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
328 for (i = 0; i < N_REG_CLASSES; i++)
329 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
330 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
331 reg_class_size[i]++;
333 /* Initialize the table of subunions.
334 reg_class_subunion[I][J] gets the largest-numbered reg-class
335 that is contained in the union of classes I and J. */
337 for (i = 0; i < N_REG_CLASSES; i++)
339 for (j = 0; j < N_REG_CLASSES; j++)
341 #ifdef HARD_REG_SET
342 register /* Declare it register if it's a scalar. */
343 #endif
344 HARD_REG_SET c;
345 int k;
347 COPY_HARD_REG_SET (c, reg_class_contents[i]);
348 IOR_HARD_REG_SET (c, reg_class_contents[j]);
349 for (k = 0; k < N_REG_CLASSES; k++)
351 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
352 subclass1);
353 continue;
355 subclass1:
356 /* keep the largest subclass */ /* SPEE 900308 */
357 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
358 reg_class_contents[(int) reg_class_subunion[i][j]],
359 subclass2);
360 reg_class_subunion[i][j] = (enum reg_class) k;
361 subclass2:
367 /* Initialize the table of superunions.
368 reg_class_superunion[I][J] gets the smallest-numbered reg-class
369 containing the union of classes I and J. */
371 for (i = 0; i < N_REG_CLASSES; i++)
373 for (j = 0; j < N_REG_CLASSES; j++)
375 #ifdef HARD_REG_SET
376 register /* Declare it register if it's a scalar. */
377 #endif
378 HARD_REG_SET c;
379 int k;
381 COPY_HARD_REG_SET (c, reg_class_contents[i]);
382 IOR_HARD_REG_SET (c, reg_class_contents[j]);
383 for (k = 0; k < N_REG_CLASSES; k++)
384 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
386 superclass:
387 reg_class_superunion[i][j] = (enum reg_class) k;
391 /* Initialize the tables of subclasses and superclasses of each reg class.
392 First clear the whole table, then add the elements as they are found. */
394 for (i = 0; i < N_REG_CLASSES; i++)
396 for (j = 0; j < N_REG_CLASSES; j++)
398 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
399 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
403 for (i = 0; i < N_REG_CLASSES; i++)
405 if (i == (int) NO_REGS)
406 continue;
408 for (j = i + 1; j < N_REG_CLASSES; j++)
410 enum reg_class *p;
412 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
413 subclass);
414 continue;
415 subclass:
416 /* Reg class I is a subclass of J.
417 Add J to the table of superclasses of I. */
418 p = &reg_class_superclasses[i][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) j;
421 /* Add I to the table of superclasses of J. */
422 p = &reg_class_subclasses[j][0];
423 while (*p != LIM_REG_CLASSES) p++;
424 *p = (enum reg_class) i;
428 /* Initialize "constant" tables. */
430 CLEAR_HARD_REG_SET (fixed_reg_set);
431 CLEAR_HARD_REG_SET (call_used_reg_set);
432 CLEAR_HARD_REG_SET (call_fixed_reg_set);
433 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
435 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
437 n_non_fixed_regs = 0;
439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 if (fixed_regs[i])
442 SET_HARD_REG_BIT (fixed_reg_set, i);
443 else
444 n_non_fixed_regs++;
446 if (call_used_regs[i])
447 SET_HARD_REG_BIT (call_used_reg_set, i);
448 if (call_fixed_regs[i])
449 SET_HARD_REG_BIT (call_fixed_reg_set, i);
450 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
451 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
453 /* There are a couple of fixed registers that we know are safe to
454 exclude from being clobbered by calls:
456 The frame pointer is always preserved across calls. The arg pointer
457 is if it is fixed. The stack pointer usually is, unless
458 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
459 If we are generating PIC code, the PIC offset table register is
460 preserved across calls, though the target can override that. */
462 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == HARD_FRAME_POINTER_REGNUM)
467 #endif
468 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
469 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
471 #endif
472 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
473 else if (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
475 #endif
476 else if (0
477 #ifdef CALL_REALLY_USED_REGISTERS
478 || call_really_used_regs[i]
479 #else
480 || call_used_regs[i]
481 #endif
482 || global_regs[i])
483 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
486 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
487 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
488 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
491 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
493 && HARD_REGNO_MODE_OK (j, m))
495 contains_reg_of_mode [i][m] = 1;
496 allocatable_regs_of_mode [m] = 1;
497 break;
500 /* Initialize the move cost table. Find every subset of each class
501 and take the maximum cost of moving any subset to any other. */
503 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
504 if (allocatable_regs_of_mode [m])
506 for (i = 0; i < N_REG_CLASSES; i++)
507 if (contains_reg_of_mode [i][m])
508 for (j = 0; j < N_REG_CLASSES; j++)
510 int cost;
511 enum reg_class *p1, *p2;
513 if (!contains_reg_of_mode [j][m])
515 move_cost[m][i][j] = 65536;
516 may_move_in_cost[m][i][j] = 65536;
517 may_move_out_cost[m][i][j] = 65536;
519 else
521 cost = REGISTER_MOVE_COST (m, i, j);
523 for (p2 = &reg_class_subclasses[j][0];
524 *p2 != LIM_REG_CLASSES;
525 p2++)
526 if (*p2 != i && contains_reg_of_mode [*p2][m])
527 cost = MAX (cost, move_cost [m][i][*p2]);
529 for (p1 = &reg_class_subclasses[i][0];
530 *p1 != LIM_REG_CLASSES;
531 p1++)
532 if (*p1 != j && contains_reg_of_mode [*p1][m])
533 cost = MAX (cost, move_cost [m][*p1][j]);
535 move_cost[m][i][j] = cost;
537 if (reg_class_subset_p (i, j))
538 may_move_in_cost[m][i][j] = 0;
539 else
540 may_move_in_cost[m][i][j] = cost;
542 if (reg_class_subset_p (j, i))
543 may_move_out_cost[m][i][j] = 0;
544 else
545 may_move_out_cost[m][i][j] = cost;
548 else
549 for (j = 0; j < N_REG_CLASSES; j++)
551 move_cost[m][i][j] = 65536;
552 may_move_in_cost[m][i][j] = 65536;
553 may_move_out_cost[m][i][j] = 65536;
557 #ifdef CLASS_CANNOT_CHANGE_MODE
559 HARD_REG_SET c;
560 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
562 for (i = 0; i < N_REG_CLASSES; i++)
564 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
565 class_can_change_mode [i] = 0;
566 continue;
567 ok_class:
568 class_can_change_mode [i] = 1;
571 #endif /* CLASS_CANNOT_CHANGE_MODE */
574 /* Compute the table of register modes.
575 These values are used to record death information for individual registers
576 (as opposed to a multi-register mode). */
578 static void
579 init_reg_modes ()
581 int i;
583 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
585 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
587 /* If we couldn't find a valid mode, just use the previous mode.
588 ??? One situation in which we need to do this is on the mips where
589 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
590 to use DF mode for the even registers and VOIDmode for the odd
591 (for the cpu models where the odd ones are inaccessible). */
592 if (reg_raw_mode[i] == VOIDmode)
593 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
597 /* Finish initializing the register sets and
598 initialize the register modes. */
600 void
601 init_regs ()
603 /* This finishes what was started by init_reg_sets, but couldn't be done
604 until after register usage was specified. */
605 init_reg_sets_1 ();
607 init_reg_modes ();
609 #ifdef HAVE_SECONDARY_RELOADS
611 /* Make some fake stack-frame MEM references for use in
612 memory_move_secondary_cost. */
613 int i;
615 for (i = 0; i < MAX_MACHINE_MODE; i++)
616 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
617 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
619 #endif
622 #ifdef HAVE_SECONDARY_RELOADS
624 /* Compute extra cost of moving registers to/from memory due to reloads.
625 Only needed if secondary reloads are required for memory moves. */
628 memory_move_secondary_cost (mode, class, in)
629 enum machine_mode mode;
630 enum reg_class class;
631 int in;
633 enum reg_class altclass;
634 int partial_cost = 0;
635 /* We need a memory reference to feed to SECONDARY... macros. */
636 /* mem may be unused even if the SECONDARY_ macros are defined. */
637 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
640 if (in)
642 #ifdef SECONDARY_INPUT_RELOAD_CLASS
643 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
644 #else
645 altclass = NO_REGS;
646 #endif
648 else
650 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
651 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
652 #else
653 altclass = NO_REGS;
654 #endif
657 if (altclass == NO_REGS)
658 return 0;
660 if (in)
661 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
662 else
663 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
665 if (class == altclass)
666 /* This isn't simply a copy-to-temporary situation. Can't guess
667 what it is, so MEMORY_MOVE_COST really ought not to be calling
668 here in that case.
670 I'm tempted to put in an abort here, but returning this will
671 probably only give poor estimates, which is what we would've
672 had before this code anyways. */
673 return partial_cost;
675 /* Check if the secondary reload register will also need a
676 secondary reload. */
677 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
679 #endif
681 /* Return a machine mode that is legitimate for hard reg REGNO and large
682 enough to save nregs. If we can't find one, return VOIDmode. */
684 enum machine_mode
685 choose_hard_reg_mode (regno, nregs)
686 unsigned int regno ATTRIBUTE_UNUSED;
687 unsigned int nregs;
689 unsigned int /* enum machine_mode */ m;
690 enum machine_mode found_mode = VOIDmode, mode;
692 /* We first look for the largest integer mode that can be validly
693 held in REGNO. If none, we look for the largest floating-point mode.
694 If we still didn't find a valid mode, try CCmode. */
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if (HARD_REGNO_NREGS (regno, mode) == nregs
700 && HARD_REGNO_MODE_OK (regno, mode))
701 found_mode = mode;
703 if (found_mode != VOIDmode)
704 return found_mode;
706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
707 mode != VOIDmode;
708 mode = GET_MODE_WIDER_MODE (mode))
709 if (HARD_REGNO_NREGS (regno, mode) == nregs
710 && HARD_REGNO_MODE_OK (regno, mode))
711 found_mode = mode;
713 if (found_mode != VOIDmode)
714 return found_mode;
716 /* Iterate over all of the CCmodes. */
717 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
719 mode = (enum machine_mode) m;
720 if (HARD_REGNO_NREGS (regno, mode) == nregs
721 && HARD_REGNO_MODE_OK (regno, mode))
722 return mode;
725 /* We can't find a mode valid for this register. */
726 return VOIDmode;
729 /* Specify the usage characteristics of the register named NAME.
730 It should be a fixed register if FIXED and a
731 call-used register if CALL_USED. */
733 void
734 fix_register (name, fixed, call_used)
735 const char *name;
736 int fixed, call_used;
738 int i;
740 /* Decode the name and update the primary form of
741 the register info. */
743 if ((i = decode_reg_name (name)) >= 0)
745 if ((i == STACK_POINTER_REGNUM
746 #ifdef HARD_FRAME_POINTER_REGNUM
747 || i == HARD_FRAME_POINTER_REGNUM
748 #else
749 || i == FRAME_POINTER_REGNUM
750 #endif
752 && (fixed == 0 || call_used == 0))
754 static const char * const what_option[2][2] = {
755 { "call-saved", "call-used" },
756 { "no-such-option", "fixed" }};
758 error ("can't use '%s' as a %s register", name,
759 what_option[fixed][call_used]);
761 else
763 fixed_regs[i] = fixed;
764 call_used_regs[i] = call_used;
765 #ifdef CALL_REALLY_USED_REGISTERS
766 if (fixed == 0)
767 call_really_used_regs[i] = call_used;
768 #endif
771 else
773 warning ("unknown register name: %s", name);
777 /* Mark register number I as global. */
779 void
780 globalize_reg (i)
781 int i;
783 if (fixed_regs[i] == 0 && no_global_reg_vars)
784 error ("global register variable follows a function definition");
786 if (global_regs[i])
788 warning ("register used for two global register variables");
789 return;
792 if (call_used_regs[i] && ! fixed_regs[i])
793 warning ("call-clobbered register used for global register variable");
795 global_regs[i] = 1;
797 /* If already fixed, nothing else to do. */
798 if (fixed_regs[i])
799 return;
801 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
802 n_non_fixed_regs--;
804 SET_HARD_REG_BIT (fixed_reg_set, i);
805 SET_HARD_REG_BIT (call_used_reg_set, i);
806 SET_HARD_REG_BIT (call_fixed_reg_set, i);
809 /* Now the data and code for the `regclass' pass, which happens
810 just before local-alloc. */
812 /* The `costs' struct records the cost of using a hard register of each class
813 and of using memory for each pseudo. We use this data to set up
814 register class preferences. */
816 struct costs
818 int cost[N_REG_CLASSES];
819 int mem_cost;
822 /* Structure used to record preferrences of given pseudo. */
823 struct reg_pref
825 /* (enum reg_class) prefclass is the preferred class. */
826 char prefclass;
828 /* altclass is a register class that we should use for allocating
829 pseudo if no register in the preferred class is available.
830 If no register in this class is available, memory is preferred.
832 It might appear to be more general to have a bitmask of classes here,
833 but since it is recommended that there be a class corresponding to the
834 union of most major pair of classes, that generality is not required. */
835 char altclass;
838 /* Record the cost of each class for each pseudo. */
840 static struct costs *costs;
842 /* Initialized once, and used to initialize cost values for each insn. */
844 static struct costs init_cost;
846 /* Record preferrences of each pseudo.
847 This is available after `regclass' is run. */
849 static struct reg_pref *reg_pref;
851 /* Allocated buffers for reg_pref. */
853 static struct reg_pref *reg_pref_buffer;
855 /* Frequency of executions of current insn. */
857 static int frequency;
859 static rtx scan_one_insn PARAMS ((rtx, int));
860 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
861 static void dump_regclass PARAMS ((FILE *));
862 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
863 const char **, rtx,
864 struct costs *, struct reg_pref *));
865 static int copy_cost PARAMS ((rtx, enum machine_mode,
866 enum reg_class, int));
867 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
868 #ifdef FORBIDDEN_INC_DEC_CLASSES
869 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
870 #endif
871 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
873 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
874 This function is sometimes called before the info has been computed.
875 When that happens, just return GENERAL_REGS, which is innocuous. */
877 enum reg_class
878 reg_preferred_class (regno)
879 int regno;
881 if (reg_pref == 0)
882 return GENERAL_REGS;
883 return (enum reg_class) reg_pref[regno].prefclass;
886 enum reg_class
887 reg_alternate_class (regno)
888 int regno;
890 if (reg_pref == 0)
891 return ALL_REGS;
893 return (enum reg_class) reg_pref[regno].altclass;
896 /* Initialize some global data for this pass. */
898 void
899 regclass_init ()
901 int i;
903 init_cost.mem_cost = 10000;
904 for (i = 0; i < N_REG_CLASSES; i++)
905 init_cost.cost[i] = 10000;
907 /* This prevents dump_flow_info from losing if called
908 before regclass is run. */
909 reg_pref = NULL;
911 /* No more global register variables may be declared. */
912 no_global_reg_vars = 1;
915 /* Dump register costs. */
916 static void
917 dump_regclass (dump)
918 FILE *dump;
920 static const char *const reg_class_names[] = REG_CLASS_NAMES;
921 int i;
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
924 int /* enum reg_class */ class;
925 if (REG_N_REFS (i))
927 fprintf (dump, " Register %i costs:", i);
928 for (class = 0; class < (int) N_REG_CLASSES; class++)
929 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
930 #ifdef FORBIDDEN_INC_DEC_CLASSES
931 && (!in_inc_dec[i]
932 || !forbidden_inc_dec_class[(enum reg_class) class])
933 #endif
934 #ifdef CLASS_CANNOT_CHANGE_MODE
935 && (!REGNO_REG_SET_P (reg_changes_mode, i)
936 || class_can_change_mode [(enum reg_class) class])
937 #endif
939 fprintf (dump, " %s:%i", reg_class_names[class],
940 costs[i].cost[(enum reg_class) class]);
941 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
947 /* Calculate the costs of insn operands. */
949 static void
950 record_operand_costs (insn, op_costs, reg_pref)
951 rtx insn;
952 struct costs *op_costs;
953 struct reg_pref *reg_pref;
955 const char *constraints[MAX_RECOG_OPERANDS];
956 enum machine_mode modes[MAX_RECOG_OPERANDS];
957 int i;
959 for (i = 0; i < recog_data.n_operands; i++)
961 constraints[i] = recog_data.constraints[i];
962 modes[i] = recog_data.operand_mode[i];
965 /* If we get here, we are set up to record the costs of all the
966 operands for this insn. Start by initializing the costs.
967 Then handle any address registers. Finally record the desired
968 classes for any pseudos, doing it twice if some pair of
969 operands are commutative. */
971 for (i = 0; i < recog_data.n_operands; i++)
973 op_costs[i] = init_cost;
975 if (GET_CODE (recog_data.operand[i]) == SUBREG)
977 rtx inner = SUBREG_REG (recog_data.operand[i]);
978 #ifdef CLASS_CANNOT_CHANGE_MODE
979 if (GET_CODE (inner) == REG
980 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
981 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
982 #endif
983 recog_data.operand[i] = inner;
986 if (GET_CODE (recog_data.operand[i]) == MEM)
987 record_address_regs (XEXP (recog_data.operand[i], 0),
988 BASE_REG_CLASS, frequency * 2);
989 else if (constraints[i][0] == 'p')
990 record_address_regs (recog_data.operand[i],
991 BASE_REG_CLASS, frequency * 2);
994 /* Check for commutative in a separate loop so everything will
995 have been initialized. We must do this even if one operand
996 is a constant--see addsi3 in m68k.md. */
998 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
999 if (constraints[i][0] == '%')
1001 const char *xconstraints[MAX_RECOG_OPERANDS];
1002 int j;
1004 /* Handle commutative operands by swapping the constraints.
1005 We assume the modes are the same. */
1007 for (j = 0; j < recog_data.n_operands; j++)
1008 xconstraints[j] = constraints[j];
1010 xconstraints[i] = constraints[i+1];
1011 xconstraints[i+1] = constraints[i];
1012 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1013 recog_data.operand, modes,
1014 xconstraints, insn, op_costs, reg_pref);
1017 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1018 recog_data.operand, modes,
1019 constraints, insn, op_costs, reg_pref);
1022 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1023 time it would save code to put a certain register in a certain class.
1024 PASS, when nonzero, inhibits some optimizations which need only be done
1025 once.
1026 Return the last insn processed, so that the scan can be continued from
1027 there. */
1029 static rtx
1030 scan_one_insn (insn, pass)
1031 rtx insn;
1032 int pass;
1034 enum rtx_code code = GET_CODE (insn);
1035 enum rtx_code pat_code;
1036 rtx set, note;
1037 int i, j;
1038 struct costs op_costs[MAX_RECOG_OPERANDS];
1040 if (GET_RTX_CLASS (code) != 'i')
1041 return insn;
1043 pat_code = GET_CODE (PATTERN (insn));
1044 if (pat_code == USE
1045 || pat_code == CLOBBER
1046 || pat_code == ASM_INPUT
1047 || pat_code == ADDR_VEC
1048 || pat_code == ADDR_DIFF_VEC)
1049 return insn;
1051 set = single_set (insn);
1052 extract_insn (insn);
1054 /* If this insn loads a parameter from its stack slot, then
1055 it represents a savings, rather than a cost, if the
1056 parameter is stored in memory. Record this fact. */
1058 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1059 && GET_CODE (SET_SRC (set)) == MEM
1060 && (note = find_reg_note (insn, REG_EQUIV,
1061 NULL_RTX)) != 0
1062 && GET_CODE (XEXP (note, 0)) == MEM)
1064 costs[REGNO (SET_DEST (set))].mem_cost
1065 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1066 GENERAL_REGS, 1)
1067 * frequency);
1068 record_address_regs (XEXP (SET_SRC (set), 0),
1069 BASE_REG_CLASS, frequency * 2);
1070 return insn;
1073 /* Improve handling of two-address insns such as
1074 (set X (ashift CONST Y)) where CONST must be made to
1075 match X. Change it into two insns: (set X CONST)
1076 (set X (ashift X Y)). If we left this for reloading, it
1077 would probably get three insns because X and Y might go
1078 in the same place. This prevents X and Y from receiving
1079 the same hard reg.
1081 We can only do this if the modes of operands 0 and 1
1082 (which might not be the same) are tieable and we only need
1083 do this during our first pass. */
1085 if (pass == 0 && optimize
1086 && recog_data.n_operands >= 3
1087 && recog_data.constraints[1][0] == '0'
1088 && recog_data.constraints[1][1] == 0
1089 && CONSTANT_P (recog_data.operand[1])
1090 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1091 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1092 && GET_CODE (recog_data.operand[0]) == REG
1093 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1094 recog_data.operand_mode[1]))
1096 rtx previnsn = prev_real_insn (insn);
1097 rtx dest
1098 = gen_lowpart (recog_data.operand_mode[1],
1099 recog_data.operand[0]);
1100 rtx newinsn
1101 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1103 /* If this insn was the start of a basic block,
1104 include the new insn in that block.
1105 We need not check for code_label here;
1106 while a basic block can start with a code_label,
1107 INSN could not be at the beginning of that block. */
1108 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1110 int b;
1111 for (b = 0; b < n_basic_blocks; b++)
1112 if (insn == BLOCK_HEAD (b))
1113 BLOCK_HEAD (b) = newinsn;
1116 /* This makes one more setting of new insns's dest. */
1117 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1118 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1119 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1121 *recog_data.operand_loc[1] = recog_data.operand[0];
1122 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1123 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1124 for (i = recog_data.n_dups - 1; i >= 0; i--)
1125 if (recog_data.dup_num[i] == 1)
1127 *recog_data.dup_loc[i] = recog_data.operand[0];
1128 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1129 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1132 return PREV_INSN (newinsn);
1135 record_operand_costs (insn, op_costs, reg_pref);
1137 /* Now add the cost for each operand to the total costs for
1138 its register. */
1140 for (i = 0; i < recog_data.n_operands; i++)
1141 if (GET_CODE (recog_data.operand[i]) == REG
1142 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1144 int regno = REGNO (recog_data.operand[i]);
1145 struct costs *p = &costs[regno], *q = &op_costs[i];
1147 p->mem_cost += q->mem_cost * frequency;
1148 for (j = 0; j < N_REG_CLASSES; j++)
1149 p->cost[j] += q->cost[j] * frequency;
1152 return insn;
1155 /* This is a pass of the compiler that scans all instructions
1156 and calculates the preferred class for each pseudo-register.
1157 This information can be accessed later by calling `reg_preferred_class'.
1158 This pass comes just before local register allocation. */
1160 void
1161 regclass (f, nregs, dump)
1162 rtx f;
1163 int nregs;
1164 FILE *dump;
1166 rtx insn;
1167 int i;
1168 int pass;
1170 init_recog ();
1172 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1174 #ifdef CLASS_CANNOT_CHANGE_MODE
1175 reg_changes_mode = BITMAP_XMALLOC();
1176 #endif
1178 #ifdef FORBIDDEN_INC_DEC_CLASSES
1180 in_inc_dec = (char *) xmalloc (nregs);
1182 /* Initialize information about which register classes can be used for
1183 pseudos that are auto-incremented or auto-decremented. It would
1184 seem better to put this in init_reg_sets, but we need to be able
1185 to allocate rtx, which we can't do that early. */
1187 for (i = 0; i < N_REG_CLASSES; i++)
1189 rtx r = gen_rtx_REG (VOIDmode, 0);
1190 enum machine_mode m;
1191 int j;
1193 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1194 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1196 REGNO (r) = j;
1198 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1199 m = (enum machine_mode) ((int) m + 1))
1200 if (HARD_REGNO_MODE_OK (j, m))
1202 PUT_MODE (r, m);
1204 /* If a register is not directly suitable for an
1205 auto-increment or decrement addressing mode and
1206 requires secondary reloads, disallow its class from
1207 being used in such addresses. */
1209 if ((0
1210 #ifdef SECONDARY_RELOAD_CLASS
1211 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1212 != NO_REGS)
1213 #else
1214 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1215 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1216 != NO_REGS)
1217 #endif
1218 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1219 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1220 != NO_REGS)
1221 #endif
1222 #endif
1224 && ! auto_inc_dec_reg_p (r, m))
1225 forbidden_inc_dec_class[i] = 1;
1229 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1231 /* Normally we scan the insns once and determine the best class to use for
1232 each register. However, if -fexpensive_optimizations are on, we do so
1233 twice, the second time using the tentative best classes to guide the
1234 selection. */
1236 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1238 int index;
1240 if (dump)
1241 fprintf (dump, "\n\nPass %i\n\n",pass);
1242 /* Zero out our accumulation of the cost of each class for each reg. */
1244 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1246 #ifdef FORBIDDEN_INC_DEC_CLASSES
1247 memset (in_inc_dec, 0, nregs);
1248 #endif
1250 /* Scan the instructions and record each time it would
1251 save code to put a certain register in a certain class. */
1253 if (!optimize)
1255 frequency = REG_FREQ_MAX;
1256 for (insn = f; insn; insn = NEXT_INSN (insn))
1257 insn = scan_one_insn (insn, pass);
1259 else
1260 for (index = 0; index < n_basic_blocks; index++)
1262 basic_block bb = BASIC_BLOCK (index);
1264 /* Show that an insn inside a loop is likely to be executed three
1265 times more than insns outside a loop. This is much more
1266 aggressive than the assumptions made elsewhere and is being
1267 tried as an experiment. */
1268 frequency = REG_FREQ_FROM_BB (bb);
1269 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1271 insn = scan_one_insn (insn, pass);
1272 if (insn == bb->end)
1273 break;
1277 /* Now for each register look at how desirable each class is
1278 and find which class is preferred. Store that in
1279 `prefclass'. Record in `altclass' the largest register
1280 class any of whose registers is better than memory. */
1282 if (pass == 0)
1283 reg_pref = reg_pref_buffer;
1285 if (dump)
1287 dump_regclass (dump);
1288 fprintf (dump,"\n");
1290 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1292 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1293 enum reg_class best = ALL_REGS, alt = NO_REGS;
1294 /* This is an enum reg_class, but we call it an int
1295 to save lots of casts. */
1296 int class;
1297 struct costs *p = &costs[i];
1299 /* In non-optimizing compilation REG_N_REFS is not initialized
1300 yet. */
1301 if (optimize && !REG_N_REFS (i))
1302 continue;
1304 for (class = (int) ALL_REGS - 1; class > 0; class--)
1306 /* Ignore classes that are too small for this operand or
1307 invalid for an operand that was auto-incremented. */
1308 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1309 #ifdef FORBIDDEN_INC_DEC_CLASSES
1310 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1311 #endif
1312 #ifdef CLASS_CANNOT_CHANGE_MODE
1313 || (REGNO_REG_SET_P (reg_changes_mode, i)
1314 && ! class_can_change_mode [class])
1315 #endif
1318 else if (p->cost[class] < best_cost)
1320 best_cost = p->cost[class];
1321 best = (enum reg_class) class;
1323 else if (p->cost[class] == best_cost)
1324 best = reg_class_subunion[(int)best][class];
1327 /* Record the alternate register class; i.e., a class for which
1328 every register in it is better than using memory. If adding a
1329 class would make a smaller class (i.e., no union of just those
1330 classes exists), skip that class. The major unions of classes
1331 should be provided as a register class. Don't do this if we
1332 will be doing it again later. */
1334 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1335 for (class = 0; class < N_REG_CLASSES; class++)
1336 if (p->cost[class] < p->mem_cost
1337 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1338 > reg_class_size[(int) alt])
1339 #ifdef FORBIDDEN_INC_DEC_CLASSES
1340 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1341 #endif
1342 #ifdef CLASS_CANNOT_CHANGE_MODE
1343 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1344 && ! class_can_change_mode [class])
1345 #endif
1347 alt = reg_class_subunion[(int) alt][class];
1349 /* If we don't add any classes, nothing to try. */
1350 if (alt == best)
1351 alt = NO_REGS;
1353 if (dump
1354 && (reg_pref[i].prefclass != (int) best
1355 || reg_pref[i].altclass != (int) alt))
1357 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1358 fprintf (dump, " Register %i", i);
1359 if (alt == ALL_REGS || best == ALL_REGS)
1360 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1361 else if (alt == NO_REGS)
1362 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1363 else
1364 fprintf (dump, " pref %s, else %s\n",
1365 reg_class_names[(int) best],
1366 reg_class_names[(int) alt]);
1369 /* We cast to (int) because (char) hits bugs in some compilers. */
1370 reg_pref[i].prefclass = (int) best;
1371 reg_pref[i].altclass = (int) alt;
1375 #ifdef FORBIDDEN_INC_DEC_CLASSES
1376 free (in_inc_dec);
1377 #endif
1378 #ifdef CLASS_CANNOT_CHANGE_MODE
1379 BITMAP_XFREE (reg_changes_mode);
1380 #endif
1381 free (costs);
1384 /* Record the cost of using memory or registers of various classes for
1385 the operands in INSN.
1387 N_ALTS is the number of alternatives.
1389 N_OPS is the number of operands.
1391 OPS is an array of the operands.
1393 MODES are the modes of the operands, in case any are VOIDmode.
1395 CONSTRAINTS are the constraints to use for the operands. This array
1396 is modified by this procedure.
1398 This procedure works alternative by alternative. For each alternative
1399 we assume that we will be able to allocate all pseudos to their ideal
1400 register class and calculate the cost of using that alternative. Then
1401 we compute for each operand that is a pseudo-register, the cost of
1402 having the pseudo allocated to each register class and using it in that
1403 alternative. To this cost is added the cost of the alternative.
1405 The cost of each class for this insn is its lowest cost among all the
1406 alternatives. */
1408 static void
1409 record_reg_classes (n_alts, n_ops, ops, modes,
1410 constraints, insn, op_costs, reg_pref)
1411 int n_alts;
1412 int n_ops;
1413 rtx *ops;
1414 enum machine_mode *modes;
1415 const char **constraints;
1416 rtx insn;
1417 struct costs *op_costs;
1418 struct reg_pref *reg_pref;
1420 int alt;
1421 int i, j;
1422 rtx set;
1424 /* Process each alternative, each time minimizing an operand's cost with
1425 the cost for each operand in that alternative. */
1427 for (alt = 0; alt < n_alts; alt++)
1429 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1430 int alt_fail = 0;
1431 int alt_cost = 0;
1432 enum reg_class classes[MAX_RECOG_OPERANDS];
1433 int allows_mem[MAX_RECOG_OPERANDS];
1434 int class;
1436 for (i = 0; i < n_ops; i++)
1438 const char *p = constraints[i];
1439 rtx op = ops[i];
1440 enum machine_mode mode = modes[i];
1441 int allows_addr = 0;
1442 int win = 0;
1443 unsigned char c;
1445 /* Initially show we know nothing about the register class. */
1446 classes[i] = NO_REGS;
1447 allows_mem[i] = 0;
1449 /* If this operand has no constraints at all, we can conclude
1450 nothing about it since anything is valid. */
1452 if (*p == 0)
1454 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1455 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1457 continue;
1460 /* If this alternative is only relevant when this operand
1461 matches a previous operand, we do different things depending
1462 on whether this operand is a pseudo-reg or not. We must process
1463 any modifiers for the operand before we can make this test. */
1465 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1466 p++;
1468 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1470 /* Copy class and whether memory is allowed from the matching
1471 alternative. Then perform any needed cost computations
1472 and/or adjustments. */
1473 j = p[0] - '0';
1474 classes[i] = classes[j];
1475 allows_mem[i] = allows_mem[j];
1477 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1479 /* If this matches the other operand, we have no added
1480 cost and we win. */
1481 if (rtx_equal_p (ops[j], op))
1482 win = 1;
1484 /* If we can put the other operand into a register, add to
1485 the cost of this alternative the cost to copy this
1486 operand to the register used for the other operand. */
1488 else if (classes[j] != NO_REGS)
1489 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1491 else if (GET_CODE (ops[j]) != REG
1492 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1494 /* This op is a pseudo but the one it matches is not. */
1496 /* If we can't put the other operand into a register, this
1497 alternative can't be used. */
1499 if (classes[j] == NO_REGS)
1500 alt_fail = 1;
1502 /* Otherwise, add to the cost of this alternative the cost
1503 to copy the other operand to the register used for this
1504 operand. */
1506 else
1507 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1509 else
1511 /* The costs of this operand are not the same as the other
1512 operand since move costs are not symmetric. Moreover,
1513 if we cannot tie them, this alternative needs to do a
1514 copy, which is one instruction. */
1516 struct costs *pp = &this_op_costs[i];
1518 for (class = 0; class < N_REG_CLASSES; class++)
1519 pp->cost[class]
1520 = ((recog_data.operand_type[i] != OP_OUT
1521 ? may_move_in_cost[mode][class][(int) classes[i]]
1522 : 0)
1523 + (recog_data.operand_type[i] != OP_IN
1524 ? may_move_out_cost[mode][(int) classes[i]][class]
1525 : 0));
1527 /* If the alternative actually allows memory, make things
1528 a bit cheaper since we won't need an extra insn to
1529 load it. */
1531 pp->mem_cost
1532 = ((recog_data.operand_type[i] != OP_IN
1533 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1534 : 0)
1535 + (recog_data.operand_type[i] != OP_OUT
1536 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1537 : 0) - allows_mem[i]);
1539 /* If we have assigned a class to this register in our
1540 first pass, add a cost to this alternative corresponding
1541 to what we would add if this register were not in the
1542 appropriate class. */
1544 if (reg_pref)
1545 alt_cost
1546 += (may_move_in_cost[mode]
1547 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1548 [(int) classes[i]]);
1550 if (REGNO (ops[i]) != REGNO (ops[j])
1551 && ! find_reg_note (insn, REG_DEAD, op))
1552 alt_cost += 2;
1554 /* This is in place of ordinary cost computation
1555 for this operand, so skip to the end of the
1556 alternative (should be just one character). */
1557 while (*p && *p++ != ',')
1560 constraints[i] = p;
1561 continue;
1565 /* Scan all the constraint letters. See if the operand matches
1566 any of the constraints. Collect the valid register classes
1567 and see if this operand accepts memory. */
1569 while (*p && (c = *p++) != ',')
1570 switch (c)
1572 case '*':
1573 /* Ignore the next letter for this pass. */
1574 p++;
1575 break;
1577 case '?':
1578 alt_cost += 2;
1579 case '!': case '#': case '&':
1580 case '0': case '1': case '2': case '3': case '4':
1581 case '5': case '6': case '7': case '8': case '9':
1582 break;
1584 case 'p':
1585 allows_addr = 1;
1586 win = address_operand (op, GET_MODE (op));
1587 /* We know this operand is an address, so we want it to be
1588 allocated to a register that can be the base of an
1589 address, ie BASE_REG_CLASS. */
1590 classes[i]
1591 = reg_class_subunion[(int) classes[i]]
1592 [(int) BASE_REG_CLASS];
1593 break;
1595 case 'm': case 'o': case 'V':
1596 /* It doesn't seem worth distinguishing between offsettable
1597 and non-offsettable addresses here. */
1598 allows_mem[i] = 1;
1599 if (GET_CODE (op) == MEM)
1600 win = 1;
1601 break;
1603 case '<':
1604 if (GET_CODE (op) == MEM
1605 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1606 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1607 win = 1;
1608 break;
1610 case '>':
1611 if (GET_CODE (op) == MEM
1612 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1613 || GET_CODE (XEXP (op, 0)) == POST_INC))
1614 win = 1;
1615 break;
1617 case 'E':
1618 #ifndef REAL_ARITHMETIC
1619 /* Match any floating double constant, but only if
1620 we can examine the bits of it reliably. */
1621 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1622 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1623 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1624 break;
1625 #endif
1626 if (GET_CODE (op) == CONST_DOUBLE)
1627 win = 1;
1628 break;
1630 case 'F':
1631 if (GET_CODE (op) == CONST_DOUBLE)
1632 win = 1;
1633 break;
1635 case 'G':
1636 case 'H':
1637 if (GET_CODE (op) == CONST_DOUBLE
1638 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1639 win = 1;
1640 break;
1642 case 's':
1643 if (GET_CODE (op) == CONST_INT
1644 || (GET_CODE (op) == CONST_DOUBLE
1645 && GET_MODE (op) == VOIDmode))
1646 break;
1647 case 'i':
1648 if (CONSTANT_P (op)
1649 #ifdef LEGITIMATE_PIC_OPERAND_P
1650 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1651 #endif
1653 win = 1;
1654 break;
1656 case 'n':
1657 if (GET_CODE (op) == CONST_INT
1658 || (GET_CODE (op) == CONST_DOUBLE
1659 && GET_MODE (op) == VOIDmode))
1660 win = 1;
1661 break;
1663 case 'I':
1664 case 'J':
1665 case 'K':
1666 case 'L':
1667 case 'M':
1668 case 'N':
1669 case 'O':
1670 case 'P':
1671 if (GET_CODE (op) == CONST_INT
1672 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1673 win = 1;
1674 break;
1676 case 'X':
1677 win = 1;
1678 break;
1680 case 'g':
1681 if (GET_CODE (op) == MEM
1682 || (CONSTANT_P (op)
1683 #ifdef LEGITIMATE_PIC_OPERAND_P
1684 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1685 #endif
1687 win = 1;
1688 allows_mem[i] = 1;
1689 case 'r':
1690 classes[i]
1691 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1692 break;
1694 default:
1695 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1696 classes[i]
1697 = reg_class_subunion[(int) classes[i]]
1698 [(int) REG_CLASS_FROM_LETTER (c)];
1699 #ifdef EXTRA_CONSTRAINT
1700 else if (EXTRA_CONSTRAINT (op, c))
1701 win = 1;
1702 #endif
1703 break;
1706 constraints[i] = p;
1708 /* How we account for this operand now depends on whether it is a
1709 pseudo register or not. If it is, we first check if any
1710 register classes are valid. If not, we ignore this alternative,
1711 since we want to assume that all pseudos get allocated for
1712 register preferencing. If some register class is valid, compute
1713 the costs of moving the pseudo into that class. */
1715 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1717 if (classes[i] == NO_REGS)
1719 /* We must always fail if the operand is a REG, but
1720 we did not find a suitable class.
1722 Otherwise we may perform an uninitialized read
1723 from this_op_costs after the `continue' statement
1724 below. */
1725 alt_fail = 1;
1727 else
1729 struct costs *pp = &this_op_costs[i];
1731 for (class = 0; class < N_REG_CLASSES; class++)
1732 pp->cost[class]
1733 = ((recog_data.operand_type[i] != OP_OUT
1734 ? may_move_in_cost[mode][class][(int) classes[i]]
1735 : 0)
1736 + (recog_data.operand_type[i] != OP_IN
1737 ? may_move_out_cost[mode][(int) classes[i]][class]
1738 : 0));
1740 /* If the alternative actually allows memory, make things
1741 a bit cheaper since we won't need an extra insn to
1742 load it. */
1744 pp->mem_cost
1745 = ((recog_data.operand_type[i] != OP_IN
1746 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1747 : 0)
1748 + (recog_data.operand_type[i] != OP_OUT
1749 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1750 : 0) - allows_mem[i]);
1752 /* If we have assigned a class to this register in our
1753 first pass, add a cost to this alternative corresponding
1754 to what we would add if this register were not in the
1755 appropriate class. */
1757 if (reg_pref)
1758 alt_cost
1759 += (may_move_in_cost[mode]
1760 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1761 [(int) classes[i]]);
1765 /* Otherwise, if this alternative wins, either because we
1766 have already determined that or if we have a hard register of
1767 the proper class, there is no cost for this alternative. */
1769 else if (win
1770 || (GET_CODE (op) == REG
1771 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1774 /* If registers are valid, the cost of this alternative includes
1775 copying the object to and/or from a register. */
1777 else if (classes[i] != NO_REGS)
1779 if (recog_data.operand_type[i] != OP_OUT)
1780 alt_cost += copy_cost (op, mode, classes[i], 1);
1782 if (recog_data.operand_type[i] != OP_IN)
1783 alt_cost += copy_cost (op, mode, classes[i], 0);
1786 /* The only other way this alternative can be used is if this is a
1787 constant that could be placed into memory. */
1789 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1790 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1791 else
1792 alt_fail = 1;
1795 if (alt_fail)
1796 continue;
1798 /* Finally, update the costs with the information we've calculated
1799 about this alternative. */
1801 for (i = 0; i < n_ops; i++)
1802 if (GET_CODE (ops[i]) == REG
1803 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1805 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1806 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1808 pp->mem_cost = MIN (pp->mem_cost,
1809 (qq->mem_cost + alt_cost) * scale);
1811 for (class = 0; class < N_REG_CLASSES; class++)
1812 pp->cost[class] = MIN (pp->cost[class],
1813 (qq->cost[class] + alt_cost) * scale);
1817 /* If this insn is a single set copying operand 1 to operand 0
1818 and one operand is a pseudo with the other a hard reg or a pseudo
1819 that prefers a register that is in its own register class then
1820 we may want to adjust the cost of that register class to -1.
1822 Avoid the adjustment if the source does not die to avoid stressing of
1823 register allocator by preferrencing two coliding registers into single
1824 class.
1826 Also avoid the adjustment if a copy between registers of the class
1827 is expensive (ten times the cost of a default copy is considered
1828 arbitrarily expensive). This avoids losing when the preferred class
1829 is very expensive as the source of a copy instruction. */
1831 if ((set = single_set (insn)) != 0
1832 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1833 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1834 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1835 for (i = 0; i <= 1; i++)
1836 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 unsigned int regno = REGNO (ops[!i]);
1839 enum machine_mode mode = GET_MODE (ops[!i]);
1840 int class;
1841 unsigned int nr;
1843 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1845 enum reg_class pref = reg_pref[regno].prefclass;
1847 if ((reg_class_size[(unsigned char) pref]
1848 == CLASS_MAX_NREGS (pref, mode))
1849 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1850 op_costs[i].cost[(unsigned char) pref] = -1;
1852 else if (regno < FIRST_PSEUDO_REGISTER)
1853 for (class = 0; class < N_REG_CLASSES; class++)
1854 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1855 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1857 if (reg_class_size[class] == 1)
1858 op_costs[i].cost[class] = -1;
1859 else
1861 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1863 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1864 regno + nr))
1865 break;
1868 if (nr == HARD_REGNO_NREGS (regno,mode))
1869 op_costs[i].cost[class] = -1;
1875 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1876 TO_P is zero) a register of class CLASS in mode MODE.
1878 X must not be a pseudo. */
1880 static int
1881 copy_cost (x, mode, class, to_p)
1882 rtx x;
1883 enum machine_mode mode ATTRIBUTE_UNUSED;
1884 enum reg_class class;
1885 int to_p ATTRIBUTE_UNUSED;
1887 #ifdef HAVE_SECONDARY_RELOADS
1888 enum reg_class secondary_class = NO_REGS;
1889 #endif
1891 /* If X is a SCRATCH, there is actually nothing to move since we are
1892 assuming optimal allocation. */
1894 if (GET_CODE (x) == SCRATCH)
1895 return 0;
1897 /* Get the class we will actually use for a reload. */
1898 class = PREFERRED_RELOAD_CLASS (x, class);
1900 #ifdef HAVE_SECONDARY_RELOADS
1901 /* If we need a secondary reload (we assume here that we are using
1902 the secondary reload as an intermediate, not a scratch register), the
1903 cost is that to load the input into the intermediate register, then
1904 to copy them. We use a special value of TO_P to avoid recursion. */
1906 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1907 if (to_p == 1)
1908 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1909 #endif
1911 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1912 if (! to_p)
1913 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1914 #endif
1916 if (secondary_class != NO_REGS)
1917 return (move_cost[mode][(int) secondary_class][(int) class]
1918 + copy_cost (x, mode, secondary_class, 2));
1919 #endif /* HAVE_SECONDARY_RELOADS */
1921 /* For memory, use the memory move cost, for (hard) registers, use the
1922 cost to move between the register classes, and use 2 for everything
1923 else (constants). */
1925 if (GET_CODE (x) == MEM || class == NO_REGS)
1926 return MEMORY_MOVE_COST (mode, class, to_p);
1928 else if (GET_CODE (x) == REG)
1929 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1931 else
1932 /* If this is a constant, we may eventually want to call rtx_cost here. */
1933 return COSTS_N_INSNS (1);
1936 /* Record the pseudo registers we must reload into hard registers
1937 in a subexpression of a memory address, X.
1939 CLASS is the class that the register needs to be in and is either
1940 BASE_REG_CLASS or INDEX_REG_CLASS.
1942 SCALE is twice the amount to multiply the cost by (it is twice so we
1943 can represent half-cost adjustments). */
1945 static void
1946 record_address_regs (x, class, scale)
1947 rtx x;
1948 enum reg_class class;
1949 int scale;
1951 enum rtx_code code = GET_CODE (x);
1953 switch (code)
1955 case CONST_INT:
1956 case CONST:
1957 case CC0:
1958 case PC:
1959 case SYMBOL_REF:
1960 case LABEL_REF:
1961 return;
1963 case PLUS:
1964 /* When we have an address that is a sum,
1965 we must determine whether registers are "base" or "index" regs.
1966 If there is a sum of two registers, we must choose one to be
1967 the "base". Luckily, we can use the REG_POINTER to make a good
1968 choice most of the time. We only need to do this on machines
1969 that can have two registers in an address and where the base
1970 and index register classes are different.
1972 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1973 that seems bogus since it should only be set when we are sure
1974 the register is being used as a pointer. */
1977 rtx arg0 = XEXP (x, 0);
1978 rtx arg1 = XEXP (x, 1);
1979 enum rtx_code code0 = GET_CODE (arg0);
1980 enum rtx_code code1 = GET_CODE (arg1);
1982 /* Look inside subregs. */
1983 if (code0 == SUBREG)
1984 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1985 if (code1 == SUBREG)
1986 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1988 /* If this machine only allows one register per address, it must
1989 be in the first operand. */
1991 if (MAX_REGS_PER_ADDRESS == 1)
1992 record_address_regs (arg0, class, scale);
1994 /* If index and base registers are the same on this machine, just
1995 record registers in any non-constant operands. We assume here,
1996 as well as in the tests below, that all addresses are in
1997 canonical form. */
1999 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
2001 record_address_regs (arg0, class, scale);
2002 if (! CONSTANT_P (arg1))
2003 record_address_regs (arg1, class, scale);
2006 /* If the second operand is a constant integer, it doesn't change
2007 what class the first operand must be. */
2009 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2010 record_address_regs (arg0, class, scale);
2012 /* If the second operand is a symbolic constant, the first operand
2013 must be an index register. */
2015 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2016 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2018 /* If both operands are registers but one is already a hard register
2019 of index or base class, give the other the class that the hard
2020 register is not. */
2022 #ifdef REG_OK_FOR_BASE_P
2023 else if (code0 == REG && code1 == REG
2024 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2025 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2026 record_address_regs (arg1,
2027 REG_OK_FOR_BASE_P (arg0)
2028 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2029 scale);
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2032 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2033 record_address_regs (arg0,
2034 REG_OK_FOR_BASE_P (arg1)
2035 ? INDEX_REG_CLASS : BASE_REG_CLASS,
2036 scale);
2037 #endif
2039 /* If one operand is known to be a pointer, it must be the base
2040 with the other operand the index. Likewise if the other operand
2041 is a MULT. */
2043 else if ((code0 == REG && REG_POINTER (arg0))
2044 || code1 == MULT)
2046 record_address_regs (arg0, BASE_REG_CLASS, scale);
2047 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2049 else if ((code1 == REG && REG_POINTER (arg1))
2050 || code0 == MULT)
2052 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2053 record_address_regs (arg1, BASE_REG_CLASS, scale);
2056 /* Otherwise, count equal chances that each might be a base
2057 or index register. This case should be rare. */
2059 else
2061 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
2062 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2063 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
2064 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2067 break;
2069 /* Double the importance of a pseudo register that is incremented
2070 or decremented, since it would take two extra insns
2071 if it ends up in the wrong place. */
2072 case POST_MODIFY:
2073 case PRE_MODIFY:
2074 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
2075 if (REG_P (XEXP (XEXP (x, 1), 1)))
2076 record_address_regs (XEXP (XEXP (x, 1), 1),
2077 INDEX_REG_CLASS, 2 * scale);
2078 break;
2080 case POST_INC:
2081 case PRE_INC:
2082 case POST_DEC:
2083 case PRE_DEC:
2084 /* Double the importance of a pseudo register that is incremented
2085 or decremented, since it would take two extra insns
2086 if it ends up in the wrong place. If the operand is a pseudo,
2087 show it is being used in an INC_DEC context. */
2089 #ifdef FORBIDDEN_INC_DEC_CLASSES
2090 if (GET_CODE (XEXP (x, 0)) == REG
2091 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2092 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2093 #endif
2095 record_address_regs (XEXP (x, 0), class, 2 * scale);
2096 break;
2098 case REG:
2100 struct costs *pp = &costs[REGNO (x)];
2101 int i;
2103 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2105 for (i = 0; i < N_REG_CLASSES; i++)
2106 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2108 break;
2110 default:
2112 const char *fmt = GET_RTX_FORMAT (code);
2113 int i;
2114 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2115 if (fmt[i] == 'e')
2116 record_address_regs (XEXP (x, i), class, scale);
2121 #ifdef FORBIDDEN_INC_DEC_CLASSES
2123 /* Return 1 if REG is valid as an auto-increment memory reference
2124 to an object of MODE. */
2126 static int
2127 auto_inc_dec_reg_p (reg, mode)
2128 rtx reg;
2129 enum machine_mode mode;
2131 if (HAVE_POST_INCREMENT
2132 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2133 return 1;
2135 if (HAVE_POST_DECREMENT
2136 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2137 return 1;
2139 if (HAVE_PRE_INCREMENT
2140 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2141 return 1;
2143 if (HAVE_PRE_DECREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2145 return 1;
2147 return 0;
2149 #endif
2151 static short *renumber;
2152 static size_t regno_allocated;
2153 static unsigned int reg_n_max;
2155 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2156 reg_scan and flow_analysis that are indexed by the register number. If
2157 NEW_P is non zero, initialize all of the registers, otherwise only
2158 initialize the new registers allocated. The same table is kept from
2159 function to function, only reallocating it when we need more room. If
2160 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2162 void
2163 allocate_reg_info (num_regs, new_p, renumber_p)
2164 size_t num_regs;
2165 int new_p;
2166 int renumber_p;
2168 size_t size_info;
2169 size_t size_renumber;
2170 size_t min = (new_p) ? 0 : reg_n_max;
2171 struct reg_info_data *reg_data;
2173 if (num_regs > regno_allocated)
2175 size_t old_allocated = regno_allocated;
2177 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2178 size_renumber = regno_allocated * sizeof (short);
2180 if (!reg_n_info)
2182 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2183 renumber = (short *) xmalloc (size_renumber);
2184 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2185 * sizeof (struct reg_pref));
2188 else
2190 VARRAY_GROW (reg_n_info, regno_allocated);
2192 if (new_p) /* if we're zapping everything, no need to realloc */
2194 free ((char *)renumber);
2195 free ((char *)reg_pref);
2196 renumber = (short *) xmalloc (size_renumber);
2197 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2198 * sizeof (struct reg_pref));
2201 else
2203 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2204 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2205 regno_allocated
2206 * sizeof (struct reg_pref));
2210 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2211 + sizeof (struct reg_info_data) - sizeof (reg_info);
2212 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2213 reg_data->min_index = old_allocated;
2214 reg_data->max_index = regno_allocated - 1;
2215 reg_data->next = reg_info_head;
2216 reg_info_head = reg_data;
2219 reg_n_max = num_regs;
2220 if (min < num_regs)
2222 /* Loop through each of the segments allocated for the actual
2223 reg_info pages, and set up the pointers, zero the pages, etc. */
2224 for (reg_data = reg_info_head;
2225 reg_data && reg_data->max_index >= min;
2226 reg_data = reg_data->next)
2228 size_t min_index = reg_data->min_index;
2229 size_t max_index = reg_data->max_index;
2230 size_t max = MIN (max_index, num_regs);
2231 size_t local_min = min - min_index;
2232 size_t i;
2234 if (reg_data->min_index > num_regs)
2235 continue;
2237 if (min < min_index)
2238 local_min = 0;
2239 if (!reg_data->used_p) /* page just allocated with calloc */
2240 reg_data->used_p = 1; /* no need to zero */
2241 else
2242 memset ((char *) &reg_data->data[local_min], 0,
2243 sizeof (reg_info) * (max - min_index - local_min + 1));
2245 for (i = min_index+local_min; i <= max; i++)
2247 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2248 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2249 renumber[i] = -1;
2250 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2251 reg_pref_buffer[i].altclass = (char) NO_REGS;
2256 /* If {pref,alt}class have already been allocated, update the pointers to
2257 the newly realloced ones. */
2258 if (reg_pref)
2259 reg_pref = reg_pref_buffer;
2261 if (renumber_p)
2262 reg_renumber = renumber;
2264 /* Tell the regset code about the new number of registers */
2265 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2268 /* Free up the space allocated by allocate_reg_info. */
2269 void
2270 free_reg_info ()
2272 if (reg_n_info)
2274 struct reg_info_data *reg_data;
2275 struct reg_info_data *reg_next;
2277 VARRAY_FREE (reg_n_info);
2278 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2280 reg_next = reg_data->next;
2281 free ((char *)reg_data);
2284 free (reg_pref_buffer);
2285 reg_pref_buffer = (struct reg_pref *)0;
2286 reg_info_head = (struct reg_info_data *)0;
2287 renumber = (short *)0;
2289 regno_allocated = 0;
2290 reg_n_max = 0;
2293 /* This is the `regscan' pass of the compiler, run just before cse
2294 and again just before loop.
2296 It finds the first and last use of each pseudo-register
2297 and records them in the vectors regno_first_uid, regno_last_uid
2298 and counts the number of sets in the vector reg_n_sets.
2300 REPEAT is nonzero the second time this is called. */
2302 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2303 Always at least 3, since the combiner could put that many together
2304 and we want this to remain correct for all the remaining passes.
2305 This corresponds to the maximum number of times note_stores will call
2306 a function for any insn. */
2308 int max_parallel;
2310 /* Used as a temporary to record the largest number of registers in
2311 PARALLEL in a SET_DEST. This is added to max_parallel. */
2313 static int max_set_parallel;
2315 void
2316 reg_scan (f, nregs, repeat)
2317 rtx f;
2318 unsigned int nregs;
2319 int repeat ATTRIBUTE_UNUSED;
2321 rtx insn;
2323 allocate_reg_info (nregs, TRUE, FALSE);
2324 max_parallel = 3;
2325 max_set_parallel = 0;
2327 for (insn = f; insn; insn = NEXT_INSN (insn))
2328 if (GET_CODE (insn) == INSN
2329 || GET_CODE (insn) == CALL_INSN
2330 || GET_CODE (insn) == JUMP_INSN)
2332 if (GET_CODE (PATTERN (insn)) == PARALLEL
2333 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2334 max_parallel = XVECLEN (PATTERN (insn), 0);
2335 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2337 if (REG_NOTES (insn))
2338 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2341 max_parallel += max_set_parallel;
2344 /* Update 'regscan' information by looking at the insns
2345 from FIRST to LAST. Some new REGs have been created,
2346 and any REG with number greater than OLD_MAX_REGNO is
2347 such a REG. We only update information for those. */
2349 void
2350 reg_scan_update (first, last, old_max_regno)
2351 rtx first;
2352 rtx last;
2353 unsigned int old_max_regno;
2355 rtx insn;
2357 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2359 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2360 if (GET_CODE (insn) == INSN
2361 || GET_CODE (insn) == CALL_INSN
2362 || GET_CODE (insn) == JUMP_INSN)
2364 if (GET_CODE (PATTERN (insn)) == PARALLEL
2365 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2366 max_parallel = XVECLEN (PATTERN (insn), 0);
2367 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2369 if (REG_NOTES (insn))
2370 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2374 /* X is the expression to scan. INSN is the insn it appears in.
2375 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2376 We should only record information for REGs with numbers
2377 greater than or equal to MIN_REGNO. */
2379 static void
2380 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2381 rtx x;
2382 rtx insn;
2383 int note_flag;
2384 unsigned int min_regno;
2386 enum rtx_code code;
2387 rtx dest;
2388 rtx note;
2390 code = GET_CODE (x);
2391 switch (code)
2393 case CONST:
2394 case CONST_INT:
2395 case CONST_DOUBLE:
2396 case CC0:
2397 case PC:
2398 case SYMBOL_REF:
2399 case LABEL_REF:
2400 case ADDR_VEC:
2401 case ADDR_DIFF_VEC:
2402 return;
2404 case REG:
2406 unsigned int regno = REGNO (x);
2408 if (regno >= min_regno)
2410 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2411 if (!note_flag)
2412 REGNO_LAST_UID (regno) = INSN_UID (insn);
2413 if (REGNO_FIRST_UID (regno) == 0)
2414 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2417 break;
2419 case EXPR_LIST:
2420 if (XEXP (x, 0))
2421 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2422 if (XEXP (x, 1))
2423 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2424 break;
2426 case INSN_LIST:
2427 if (XEXP (x, 1))
2428 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2429 break;
2431 case SET:
2432 /* Count a set of the destination if it is a register. */
2433 for (dest = SET_DEST (x);
2434 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2435 || GET_CODE (dest) == ZERO_EXTEND;
2436 dest = XEXP (dest, 0))
2439 /* For a PARALLEL, record the number of things (less the usual one for a
2440 SET) that are set. */
2441 if (GET_CODE (dest) == PARALLEL)
2442 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2444 if (GET_CODE (dest) == REG
2445 && REGNO (dest) >= min_regno)
2447 REG_N_SETS (REGNO (dest))++;
2448 REG_N_REFS (REGNO (dest))++;
2451 /* If this is setting a pseudo from another pseudo or the sum of a
2452 pseudo and a constant integer and the other pseudo is known to be
2453 a pointer, set the destination to be a pointer as well.
2455 Likewise if it is setting the destination from an address or from a
2456 value equivalent to an address or to the sum of an address and
2457 something else.
2459 But don't do any of this if the pseudo corresponds to a user
2460 variable since it should have already been set as a pointer based
2461 on the type. */
2463 if (GET_CODE (SET_DEST (x)) == REG
2464 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2465 && REGNO (SET_DEST (x)) >= min_regno
2466 /* If the destination pseudo is set more than once, then other
2467 sets might not be to a pointer value (consider access to a
2468 union in two threads of control in the presense of global
2469 optimizations). So only set REG_POINTER on the destination
2470 pseudo if this is the only set of that pseudo. */
2471 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2472 && ! REG_USERVAR_P (SET_DEST (x))
2473 && ! REG_POINTER (SET_DEST (x))
2474 && ((GET_CODE (SET_SRC (x)) == REG
2475 && REG_POINTER (SET_SRC (x)))
2476 || ((GET_CODE (SET_SRC (x)) == PLUS
2477 || GET_CODE (SET_SRC (x)) == LO_SUM)
2478 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2479 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2480 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2481 || GET_CODE (SET_SRC (x)) == CONST
2482 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2483 || GET_CODE (SET_SRC (x)) == LABEL_REF
2484 || (GET_CODE (SET_SRC (x)) == HIGH
2485 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2486 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2487 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2488 || ((GET_CODE (SET_SRC (x)) == PLUS
2489 || GET_CODE (SET_SRC (x)) == LO_SUM)
2490 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2491 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2492 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2493 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2494 && (GET_CODE (XEXP (note, 0)) == CONST
2495 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2496 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2497 REG_POINTER (SET_DEST (x)) = 1;
2499 /* If this is setting a register from a register or from a simple
2500 conversion of a register, propagate REG_DECL. */
2501 if (GET_CODE (dest) == REG)
2503 rtx src = SET_SRC (x);
2505 while (GET_CODE (src) == SIGN_EXTEND
2506 || GET_CODE (src) == ZERO_EXTEND
2507 || GET_CODE (src) == TRUNCATE
2508 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2509 src = XEXP (src, 0);
2511 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2512 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2513 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2514 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2517 /* ... fall through ... */
2519 default:
2521 const char *fmt = GET_RTX_FORMAT (code);
2522 int i;
2523 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2525 if (fmt[i] == 'e')
2526 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2527 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2529 int j;
2530 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2531 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2538 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2539 is also in C2. */
2542 reg_class_subset_p (c1, c2)
2543 enum reg_class c1;
2544 enum reg_class c2;
2546 if (c1 == c2) return 1;
2548 if (c2 == ALL_REGS)
2549 win:
2550 return 1;
2551 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2552 reg_class_contents[(int)c2],
2553 win);
2554 return 0;
2557 /* Return nonzero if there is a register that is in both C1 and C2. */
2560 reg_classes_intersect_p (c1, c2)
2561 enum reg_class c1;
2562 enum reg_class c2;
2564 #ifdef HARD_REG_SET
2565 register
2566 #endif
2567 HARD_REG_SET c;
2569 if (c1 == c2) return 1;
2571 if (c1 == ALL_REGS || c2 == ALL_REGS)
2572 return 1;
2574 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2575 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2577 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2578 return 1;
2580 lose:
2581 return 0;
2584 /* Release any memory allocated by register sets. */
2586 void
2587 regset_release_memory ()
2589 bitmap_release_memory ();