* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / loop.c
blobc81a2c645a292032a02a6e7fe67ec2f0323b73ce
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "tm_p.h"
41 #include "obstack.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "hard-reg-set.h"
45 #include "basic-block.h"
46 #include "insn-config.h"
47 #include "regs.h"
48 #include "recog.h"
49 #include "flags.h"
50 #include "real.h"
51 #include "loop.h"
52 #include "cselib.h"
53 #include "except.h"
54 #include "toplev.h"
55 #include "predict.h"
57 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
58 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
60 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
61 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
62 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
65 /* Vector mapping INSN_UIDs to luids.
66 The luids are like uids but increase monotonically always.
67 We use them to see whether a jump comes from outside a given loop. */
69 int *uid_luid;
71 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
72 number the insn is contained in. */
74 struct loop **uid_loop;
76 /* 1 + largest uid of any insn. */
78 int max_uid_for_loop;
80 /* 1 + luid of last insn. */
82 static int max_luid;
84 /* Number of loops detected in current function. Used as index to the
85 next few tables. */
87 static int max_loop_num;
89 /* Bound on pseudo register number before loop optimization.
90 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
91 unsigned int max_reg_before_loop;
93 /* The value to pass to the next call of reg_scan_update. */
94 static int loop_max_reg;
96 #define obstack_chunk_alloc xmalloc
97 #define obstack_chunk_free free
99 /* During the analysis of a loop, a chain of `struct movable's
100 is made to record all the movable insns found.
101 Then the entire chain can be scanned to decide which to move. */
103 struct movable
105 rtx insn; /* A movable insn */
106 rtx set_src; /* The expression this reg is set from. */
107 rtx set_dest; /* The destination of this SET. */
108 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
109 of any registers used within the LIBCALL. */
110 int consec; /* Number of consecutive following insns
111 that must be moved with this one. */
112 unsigned int regno; /* The register it sets */
113 short lifetime; /* lifetime of that register;
114 may be adjusted when matching movables
115 that load the same value are found. */
116 short savings; /* Number of insns we can move for this reg,
117 including other movables that force this
118 or match this one. */
119 unsigned int cond : 1; /* 1 if only conditionally movable */
120 unsigned int force : 1; /* 1 means MUST move this insn */
121 unsigned int global : 1; /* 1 means reg is live outside this loop */
122 /* If PARTIAL is 1, GLOBAL means something different:
123 that the reg is live outside the range from where it is set
124 to the following label. */
125 unsigned int done : 1; /* 1 inhibits further processing of this */
127 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
128 In particular, moving it does not make it
129 invariant. */
130 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
131 load SRC, rather than copying INSN. */
132 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
133 first insn of a consecutive sets group. */
134 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
135 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
136 that we should avoid changing when clearing
137 the rest of the reg. */
138 struct movable *match; /* First entry for same value */
139 struct movable *forces; /* An insn that must be moved if this is */
140 struct movable *next;
144 FILE *loop_dump_stream;
146 /* Forward declarations. */
148 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
149 static void mark_loop_jump PARAMS ((rtx, struct loop *));
150 static void prescan_loop PARAMS ((struct loop *));
151 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
152 static int consec_sets_invariant_p PARAMS ((const struct loop *,
153 rtx, int, rtx));
154 static int labels_in_range_p PARAMS ((rtx, int));
155 static void count_one_set PARAMS ((struct loop_regs *, rtx, rtx, rtx *));
156 static void note_addr_stored PARAMS ((rtx, rtx, void *));
157 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
158 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
159 static void scan_loop PARAMS ((struct loop*, int));
160 #if 0
161 static void replace_call_address PARAMS ((rtx, rtx, rtx));
162 #endif
163 static rtx skip_consec_insns PARAMS ((rtx, int));
164 static int libcall_benefit PARAMS ((rtx));
165 static void ignore_some_movables PARAMS ((struct loop_movables *));
166 static void force_movables PARAMS ((struct loop_movables *));
167 static void combine_movables PARAMS ((struct loop_movables *,
168 struct loop_regs *));
169 static int num_unmoved_movables PARAMS ((const struct loop *));
170 static int regs_match_p PARAMS ((rtx, rtx, struct loop_movables *));
171 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct loop_movables *,
172 struct loop_regs *));
173 static void add_label_notes PARAMS ((rtx, rtx));
174 static void move_movables PARAMS ((struct loop *loop, struct loop_movables *,
175 int, int));
176 static void loop_movables_add PARAMS((struct loop_movables *,
177 struct movable *));
178 static void loop_movables_free PARAMS((struct loop_movables *));
179 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
180 static void loop_bivs_find PARAMS((struct loop *));
181 static void loop_bivs_init_find PARAMS((struct loop *));
182 static void loop_bivs_check PARAMS((struct loop *));
183 static void loop_givs_find PARAMS((struct loop *));
184 static void loop_givs_check PARAMS((struct loop *));
185 static int loop_biv_eliminable_p PARAMS((struct loop *, struct iv_class *,
186 int, int));
187 static int loop_giv_reduce_benefit PARAMS((struct loop *, struct iv_class *,
188 struct induction *, rtx));
189 static void loop_givs_dead_check PARAMS((struct loop *, struct iv_class *));
190 static void loop_givs_reduce PARAMS((struct loop *, struct iv_class *));
191 static void loop_givs_rescan PARAMS((struct loop *, struct iv_class *,
192 rtx *));
193 static void loop_ivs_free PARAMS((struct loop *));
194 static void strength_reduce PARAMS ((struct loop *, int));
195 static void find_single_use_in_loop PARAMS ((struct loop_regs *, rtx, rtx));
196 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
197 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
198 static void record_biv PARAMS ((struct loop *, struct induction *,
199 rtx, rtx, rtx, rtx, rtx *,
200 int, int));
201 static void check_final_value PARAMS ((const struct loop *,
202 struct induction *));
203 static void loop_ivs_dump PARAMS((const struct loop *, FILE *, int));
204 static void loop_iv_class_dump PARAMS((const struct iv_class *, FILE *, int));
205 static void loop_biv_dump PARAMS((const struct induction *, FILE *, int));
206 static void loop_giv_dump PARAMS((const struct induction *, FILE *, int));
207 static void record_giv PARAMS ((const struct loop *, struct induction *,
208 rtx, rtx, rtx, rtx, rtx, rtx, int,
209 enum g_types, int, int, rtx *));
210 static void update_giv_derive PARAMS ((const struct loop *, rtx));
211 static void check_ext_dependant_givs PARAMS ((struct iv_class *,
212 struct loop_info *));
213 static int basic_induction_var PARAMS ((const struct loop *, rtx,
214 enum machine_mode, rtx, rtx,
215 rtx *, rtx *, rtx **));
216 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, rtx *, int *));
217 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
218 rtx *, rtx *, rtx *, int, int *,
219 enum machine_mode));
220 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
221 rtx, rtx, rtx *, rtx *, rtx *, rtx *));
222 static int check_dbra_loop PARAMS ((struct loop *, int));
223 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
224 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
225 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
226 static void combine_givs PARAMS ((struct loop_regs *, struct iv_class *));
227 static int product_cheap_p PARAMS ((rtx, rtx));
228 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
229 int, int, int));
230 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
231 struct iv_class *, int,
232 basic_block, rtx));
233 static int last_use_this_basic_block PARAMS ((rtx, rtx));
234 static void record_initial PARAMS ((rtx, rtx, void *));
235 static void update_reg_last_use PARAMS ((rtx, rtx));
236 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
237 static void loop_regs_scan PARAMS ((const struct loop *, int));
238 static int count_insns_in_loop PARAMS ((const struct loop *));
239 static void load_mems PARAMS ((const struct loop *));
240 static int insert_loop_mem PARAMS ((rtx *, void *));
241 static int replace_loop_mem PARAMS ((rtx *, void *));
242 static void replace_loop_mems PARAMS ((rtx, rtx, rtx));
243 static int replace_loop_reg PARAMS ((rtx *, void *));
244 static void replace_loop_regs PARAMS ((rtx insn, rtx, rtx));
245 static void note_reg_stored PARAMS ((rtx, rtx, void *));
246 static void try_copy_prop PARAMS ((const struct loop *, rtx, unsigned int));
247 static void try_swap_copy_prop PARAMS ((const struct loop *, rtx,
248 unsigned int));
249 static int replace_label PARAMS ((rtx *, void *));
250 static rtx check_insn_for_givs PARAMS((struct loop *, rtx, int, int));
251 static rtx check_insn_for_bivs PARAMS((struct loop *, rtx, int, int));
252 static rtx gen_add_mult PARAMS ((rtx, rtx, rtx, rtx));
253 static void loop_regs_update PARAMS ((const struct loop *, rtx));
254 static int iv_add_mult_cost PARAMS ((rtx, rtx, rtx, rtx));
256 static rtx loop_insn_emit_after PARAMS((const struct loop *, basic_block,
257 rtx, rtx));
258 static rtx loop_call_insn_emit_before PARAMS((const struct loop *,
259 basic_block, rtx, rtx));
260 static rtx loop_call_insn_hoist PARAMS((const struct loop *, rtx));
261 static rtx loop_insn_sink_or_swim PARAMS((const struct loop *, rtx));
263 static void loop_dump_aux PARAMS ((const struct loop *, FILE *, int));
264 static void loop_delete_insns PARAMS ((rtx, rtx));
265 void debug_ivs PARAMS ((const struct loop *));
266 void debug_iv_class PARAMS ((const struct iv_class *));
267 void debug_biv PARAMS ((const struct induction *));
268 void debug_giv PARAMS ((const struct induction *));
269 void debug_loop PARAMS ((const struct loop *));
270 void debug_loops PARAMS ((const struct loops *));
272 typedef struct rtx_pair
274 rtx r1;
275 rtx r2;
276 } rtx_pair;
278 typedef struct loop_replace_args
280 rtx match;
281 rtx replacement;
282 rtx insn;
283 } loop_replace_args;
285 /* Nonzero iff INSN is between START and END, inclusive. */
286 #define INSN_IN_RANGE_P(INSN, START, END) \
287 (INSN_UID (INSN) < max_uid_for_loop \
288 && INSN_LUID (INSN) >= INSN_LUID (START) \
289 && INSN_LUID (INSN) <= INSN_LUID (END))
291 /* Indirect_jump_in_function is computed once per function. */
292 static int indirect_jump_in_function;
293 static int indirect_jump_in_function_p PARAMS ((rtx));
295 static int compute_luids PARAMS ((rtx, rtx, int));
297 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
298 struct induction *,
299 rtx));
301 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
302 copy the value of the strength reduced giv to its original register. */
303 static int copy_cost;
305 /* Cost of using a register, to normalize the benefits of a giv. */
306 static int reg_address_cost;
308 void
309 init_loop ()
311 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
313 reg_address_cost = address_cost (reg, SImode);
315 copy_cost = COSTS_N_INSNS (1);
318 /* Compute the mapping from uids to luids.
319 LUIDs are numbers assigned to insns, like uids,
320 except that luids increase monotonically through the code.
321 Start at insn START and stop just before END. Assign LUIDs
322 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
323 static int
324 compute_luids (start, end, prev_luid)
325 rtx start, end;
326 int prev_luid;
328 int i;
329 rtx insn;
331 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
333 if (INSN_UID (insn) >= max_uid_for_loop)
334 continue;
335 /* Don't assign luids to line-number NOTEs, so that the distance in
336 luids between two insns is not affected by -g. */
337 if (GET_CODE (insn) != NOTE
338 || NOTE_LINE_NUMBER (insn) <= 0)
339 uid_luid[INSN_UID (insn)] = ++i;
340 else
341 /* Give a line number note the same luid as preceding insn. */
342 uid_luid[INSN_UID (insn)] = i;
344 return i + 1;
347 /* Entry point of this file. Perform loop optimization
348 on the current function. F is the first insn of the function
349 and DUMPFILE is a stream for output of a trace of actions taken
350 (or 0 if none should be output). */
352 void
353 loop_optimize (f, dumpfile, flags)
354 /* f is the first instruction of a chain of insns for one function */
355 rtx f;
356 FILE *dumpfile;
357 int flags;
359 rtx insn;
360 int i;
361 struct loops loops_data;
362 struct loops *loops = &loops_data;
363 struct loop_info *loops_info;
365 loop_dump_stream = dumpfile;
367 init_recog_no_volatile ();
369 max_reg_before_loop = max_reg_num ();
370 loop_max_reg = max_reg_before_loop;
372 regs_may_share = 0;
374 /* Count the number of loops. */
376 max_loop_num = 0;
377 for (insn = f; insn; insn = NEXT_INSN (insn))
379 if (GET_CODE (insn) == NOTE
380 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
381 max_loop_num++;
384 /* Don't waste time if no loops. */
385 if (max_loop_num == 0)
386 return;
388 loops->num = max_loop_num;
390 /* Get size to use for tables indexed by uids.
391 Leave some space for labels allocated by find_and_verify_loops. */
392 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
394 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
395 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
396 sizeof (struct loop *));
398 /* Allocate storage for array of loops. */
399 loops->array = (struct loop *)
400 xcalloc (loops->num, sizeof (struct loop));
402 /* Find and process each loop.
403 First, find them, and record them in order of their beginnings. */
404 find_and_verify_loops (f, loops);
406 /* Allocate and initialize auxiliary loop information. */
407 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
408 for (i = 0; i < loops->num; i++)
409 loops->array[i].aux = loops_info + i;
411 /* Now find all register lifetimes. This must be done after
412 find_and_verify_loops, because it might reorder the insns in the
413 function. */
414 reg_scan (f, max_reg_before_loop, 1);
416 /* This must occur after reg_scan so that registers created by gcse
417 will have entries in the register tables.
419 We could have added a call to reg_scan after gcse_main in toplev.c,
420 but moving this call to init_alias_analysis is more efficient. */
421 init_alias_analysis ();
423 /* See if we went too far. Note that get_max_uid already returns
424 one more that the maximum uid of all insn. */
425 if (get_max_uid () > max_uid_for_loop)
426 abort ();
427 /* Now reset it to the actual size we need. See above. */
428 max_uid_for_loop = get_max_uid ();
430 /* find_and_verify_loops has already called compute_luids, but it
431 might have rearranged code afterwards, so we need to recompute
432 the luids now. */
433 max_luid = compute_luids (f, NULL_RTX, 0);
435 /* Don't leave gaps in uid_luid for insns that have been
436 deleted. It is possible that the first or last insn
437 using some register has been deleted by cross-jumping.
438 Make sure that uid_luid for that former insn's uid
439 points to the general area where that insn used to be. */
440 for (i = 0; i < max_uid_for_loop; i++)
442 uid_luid[0] = uid_luid[i];
443 if (uid_luid[0] != 0)
444 break;
446 for (i = 0; i < max_uid_for_loop; i++)
447 if (uid_luid[i] == 0)
448 uid_luid[i] = uid_luid[i - 1];
450 /* Determine if the function has indirect jump. On some systems
451 this prevents low overhead loop instructions from being used. */
452 indirect_jump_in_function = indirect_jump_in_function_p (f);
454 /* Now scan the loops, last ones first, since this means inner ones are done
455 before outer ones. */
456 for (i = max_loop_num - 1; i >= 0; i--)
458 struct loop *loop = &loops->array[i];
460 if (! loop->invalid && loop->end)
461 scan_loop (loop, flags);
464 /* If there were lexical blocks inside the loop, they have been
465 replicated. We will now have more than one NOTE_INSN_BLOCK_BEG
466 and NOTE_INSN_BLOCK_END for each such block. We must duplicate
467 the BLOCKs as well. */
468 if (write_symbols != NO_DEBUG)
469 reorder_blocks ();
471 end_alias_analysis ();
473 /* Clean up. */
474 free (uid_luid);
475 free (uid_loop);
476 free (loops_info);
477 free (loops->array);
480 /* Returns the next insn, in execution order, after INSN. START and
481 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
482 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
483 insn-stream; it is used with loops that are entered near the
484 bottom. */
486 static rtx
487 next_insn_in_loop (loop, insn)
488 const struct loop *loop;
489 rtx insn;
491 insn = NEXT_INSN (insn);
493 if (insn == loop->end)
495 if (loop->top)
496 /* Go to the top of the loop, and continue there. */
497 insn = loop->top;
498 else
499 /* We're done. */
500 insn = NULL_RTX;
503 if (insn == loop->scan_start)
504 /* We're done. */
505 insn = NULL_RTX;
507 return insn;
510 /* Optimize one loop described by LOOP. */
512 /* ??? Could also move memory writes out of loops if the destination address
513 is invariant, the source is invariant, the memory write is not volatile,
514 and if we can prove that no read inside the loop can read this address
515 before the write occurs. If there is a read of this address after the
516 write, then we can also mark the memory read as invariant. */
518 static void
519 scan_loop (loop, flags)
520 struct loop *loop;
521 int flags;
523 struct loop_info *loop_info = LOOP_INFO (loop);
524 struct loop_regs *regs = LOOP_REGS (loop);
525 int i;
526 rtx loop_start = loop->start;
527 rtx loop_end = loop->end;
528 rtx p;
529 /* 1 if we are scanning insns that could be executed zero times. */
530 int maybe_never = 0;
531 /* 1 if we are scanning insns that might never be executed
532 due to a subroutine call which might exit before they are reached. */
533 int call_passed = 0;
534 /* Jump insn that enters the loop, or 0 if control drops in. */
535 rtx loop_entry_jump = 0;
536 /* Number of insns in the loop. */
537 int insn_count;
538 int tem;
539 rtx temp, update_start, update_end;
540 /* The SET from an insn, if it is the only SET in the insn. */
541 rtx set, set1;
542 /* Chain describing insns movable in current loop. */
543 struct loop_movables *movables = LOOP_MOVABLES (loop);
544 /* Ratio of extra register life span we can justify
545 for saving an instruction. More if loop doesn't call subroutines
546 since in that case saving an insn makes more difference
547 and more registers are available. */
548 int threshold;
549 /* Nonzero if we are scanning instructions in a sub-loop. */
550 int loop_depth = 0;
552 loop->top = 0;
554 movables->head = 0;
555 movables->last = 0;
557 /* Determine whether this loop starts with a jump down to a test at
558 the end. This will occur for a small number of loops with a test
559 that is too complex to duplicate in front of the loop.
561 We search for the first insn or label in the loop, skipping NOTEs.
562 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
563 (because we might have a loop executed only once that contains a
564 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
565 (in case we have a degenerate loop).
567 Note that if we mistakenly think that a loop is entered at the top
568 when, in fact, it is entered at the exit test, the only effect will be
569 slightly poorer optimization. Making the opposite error can generate
570 incorrect code. Since very few loops now start with a jump to the
571 exit test, the code here to detect that case is very conservative. */
573 for (p = NEXT_INSN (loop_start);
574 p != loop_end
575 && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
576 && (GET_CODE (p) != NOTE
577 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
578 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
579 p = NEXT_INSN (p))
582 loop->scan_start = p;
584 /* If loop end is the end of the current function, then emit a
585 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
586 note insn. This is the position we use when sinking insns out of
587 the loop. */
588 if (NEXT_INSN (loop->end) != 0)
589 loop->sink = NEXT_INSN (loop->end);
590 else
591 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
593 /* Set up variables describing this loop. */
594 prescan_loop (loop);
595 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
597 /* If loop has a jump before the first label,
598 the true entry is the target of that jump.
599 Start scan from there.
600 But record in LOOP->TOP the place where the end-test jumps
601 back to so we can scan that after the end of the loop. */
602 if (GET_CODE (p) == JUMP_INSN)
604 loop_entry_jump = p;
606 /* Loop entry must be unconditional jump (and not a RETURN) */
607 if (any_uncondjump_p (p)
608 && JUMP_LABEL (p) != 0
609 /* Check to see whether the jump actually
610 jumps out of the loop (meaning it's no loop).
611 This case can happen for things like
612 do {..} while (0). If this label was generated previously
613 by loop, we can't tell anything about it and have to reject
614 the loop. */
615 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
617 loop->top = next_label (loop->scan_start);
618 loop->scan_start = JUMP_LABEL (p);
622 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
623 as required by loop_reg_used_before_p. So skip such loops. (This
624 test may never be true, but it's best to play it safe.)
626 Also, skip loops where we do not start scanning at a label. This
627 test also rejects loops starting with a JUMP_INSN that failed the
628 test above. */
630 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
631 || GET_CODE (loop->scan_start) != CODE_LABEL)
633 if (loop_dump_stream)
634 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
635 INSN_UID (loop_start), INSN_UID (loop_end));
636 return;
639 /* Allocate extra space for REGs that might be created by load_mems.
640 We allocate a little extra slop as well, in the hopes that we
641 won't have to reallocate the regs array. */
642 loop_regs_scan (loop, loop_info->mems_idx + 16);
643 insn_count = count_insns_in_loop (loop);
645 if (loop_dump_stream)
647 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
648 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
649 if (loop->cont)
650 fprintf (loop_dump_stream, "Continue at insn %d.\n",
651 INSN_UID (loop->cont));
654 /* Scan through the loop finding insns that are safe to move.
655 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
656 this reg will be considered invariant for subsequent insns.
657 We consider whether subsequent insns use the reg
658 in deciding whether it is worth actually moving.
660 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
661 and therefore it is possible that the insns we are scanning
662 would never be executed. At such times, we must make sure
663 that it is safe to execute the insn once instead of zero times.
664 When MAYBE_NEVER is 0, all insns will be executed at least once
665 so that is not a problem. */
667 for (p = next_insn_in_loop (loop, loop->scan_start);
668 p != NULL_RTX;
669 p = next_insn_in_loop (loop, p))
671 if (GET_CODE (p) == INSN
672 && (set = single_set (p))
673 && GET_CODE (SET_DEST (set)) == REG
674 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
676 int tem1 = 0;
677 int tem2 = 0;
678 int move_insn = 0;
679 rtx src = SET_SRC (set);
680 rtx dependencies = 0;
682 /* Figure out what to use as a source of this insn. If a REG_EQUIV
683 note is given or if a REG_EQUAL note with a constant operand is
684 specified, use it as the source and mark that we should move
685 this insn by calling emit_move_insn rather that duplicating the
686 insn.
688 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
689 is present. */
690 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
691 if (temp)
692 src = XEXP (temp, 0), move_insn = 1;
693 else
695 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
696 if (temp && CONSTANT_P (XEXP (temp, 0)))
697 src = XEXP (temp, 0), move_insn = 1;
698 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
700 src = XEXP (temp, 0);
701 /* A libcall block can use regs that don't appear in
702 the equivalent expression. To move the libcall,
703 we must move those regs too. */
704 dependencies = libcall_other_reg (p, src);
708 /* For parallels, add any possible uses to the depencies, as we can't move
709 the insn without resolving them first. */
710 if (GET_CODE (PATTERN (p)) == PARALLEL)
712 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
714 rtx x = XVECEXP (PATTERN (p), 0, i);
715 if (GET_CODE (x) == USE)
716 dependencies = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0), dependencies);
720 /* Don't try to optimize a register that was made
721 by loop-optimization for an inner loop.
722 We don't know its life-span, so we can't compute the benefit. */
723 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
725 else if (/* The register is used in basic blocks other
726 than the one where it is set (meaning that
727 something after this point in the loop might
728 depend on its value before the set). */
729 ! reg_in_basic_block_p (p, SET_DEST (set))
730 /* And the set is not guaranteed to be executed once
731 the loop starts, or the value before the set is
732 needed before the set occurs...
734 ??? Note we have quadratic behaviour here, mitigated
735 by the fact that the previous test will often fail for
736 large loops. Rather than re-scanning the entire loop
737 each time for register usage, we should build tables
738 of the register usage and use them here instead. */
739 && (maybe_never
740 || loop_reg_used_before_p (loop, set, p)))
741 /* It is unsafe to move the set.
743 This code used to consider it OK to move a set of a variable
744 which was not created by the user and not used in an exit test.
745 That behavior is incorrect and was removed. */
747 else if ((tem = loop_invariant_p (loop, src))
748 && (dependencies == 0
749 || (tem2 = loop_invariant_p (loop, dependencies)) != 0)
750 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
751 || (tem1
752 = consec_sets_invariant_p
753 (loop, SET_DEST (set),
754 regs->array[REGNO (SET_DEST (set))].set_in_loop,
755 p)))
756 /* If the insn can cause a trap (such as divide by zero),
757 can't move it unless it's guaranteed to be executed
758 once loop is entered. Even a function call might
759 prevent the trap insn from being reached
760 (since it might exit!) */
761 && ! ((maybe_never || call_passed)
762 && may_trap_p (src)))
764 struct movable *m;
765 int regno = REGNO (SET_DEST (set));
767 /* A potential lossage is where we have a case where two insns
768 can be combined as long as they are both in the loop, but
769 we move one of them outside the loop. For large loops,
770 this can lose. The most common case of this is the address
771 of a function being called.
773 Therefore, if this register is marked as being used exactly
774 once if we are in a loop with calls (a "large loop"), see if
775 we can replace the usage of this register with the source
776 of this SET. If we can, delete this insn.
778 Don't do this if P has a REG_RETVAL note or if we have
779 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
781 if (loop_info->has_call
782 && regs->array[regno].single_usage != 0
783 && regs->array[regno].single_usage != const0_rtx
784 && REGNO_FIRST_UID (regno) == INSN_UID (p)
785 && (REGNO_LAST_UID (regno)
786 == INSN_UID (regs->array[regno].single_usage))
787 && regs->array[regno].set_in_loop == 1
788 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
789 && ! side_effects_p (SET_SRC (set))
790 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
791 && (! SMALL_REGISTER_CLASSES
792 || (! (GET_CODE (SET_SRC (set)) == REG
793 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
794 /* This test is not redundant; SET_SRC (set) might be
795 a call-clobbered register and the life of REGNO
796 might span a call. */
797 && ! modified_between_p (SET_SRC (set), p,
798 regs->array[regno].single_usage)
799 && no_labels_between_p (p, regs->array[regno].single_usage)
800 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
801 regs->array[regno].single_usage))
803 /* Replace any usage in a REG_EQUAL note. Must copy the
804 new source, so that we don't get rtx sharing between the
805 SET_SOURCE and REG_NOTES of insn p. */
806 REG_NOTES (regs->array[regno].single_usage)
807 = replace_rtx (REG_NOTES (regs->array[regno].single_usage),
808 SET_DEST (set), copy_rtx (SET_SRC (set)));
810 delete_insn (p);
811 regs->array[regno].set_in_loop = 0;
812 continue;
815 m = (struct movable *) xmalloc (sizeof (struct movable));
816 m->next = 0;
817 m->insn = p;
818 m->set_src = src;
819 m->dependencies = dependencies;
820 m->set_dest = SET_DEST (set);
821 m->force = 0;
822 m->consec = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
823 m->done = 0;
824 m->forces = 0;
825 m->partial = 0;
826 m->move_insn = move_insn;
827 m->move_insn_first = 0;
828 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
829 m->savemode = VOIDmode;
830 m->regno = regno;
831 /* Set M->cond if either loop_invariant_p
832 or consec_sets_invariant_p returned 2
833 (only conditionally invariant). */
834 m->cond = ((tem | tem1 | tem2) > 1);
835 m->global = LOOP_REG_GLOBAL_P (loop, regno);
836 m->match = 0;
837 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
838 m->savings = regs->array[regno].n_times_set;
839 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
840 m->savings += libcall_benefit (p);
841 regs->array[regno].set_in_loop = move_insn ? -2 : -1;
842 /* Add M to the end of the chain MOVABLES. */
843 loop_movables_add (movables, m);
845 if (m->consec > 0)
847 /* It is possible for the first instruction to have a
848 REG_EQUAL note but a non-invariant SET_SRC, so we must
849 remember the status of the first instruction in case
850 the last instruction doesn't have a REG_EQUAL note. */
851 m->move_insn_first = m->move_insn;
853 /* Skip this insn, not checking REG_LIBCALL notes. */
854 p = next_nonnote_insn (p);
855 /* Skip the consecutive insns, if there are any. */
856 p = skip_consec_insns (p, m->consec);
857 /* Back up to the last insn of the consecutive group. */
858 p = prev_nonnote_insn (p);
860 /* We must now reset m->move_insn, m->is_equiv, and possibly
861 m->set_src to correspond to the effects of all the
862 insns. */
863 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
864 if (temp)
865 m->set_src = XEXP (temp, 0), m->move_insn = 1;
866 else
868 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
869 if (temp && CONSTANT_P (XEXP (temp, 0)))
870 m->set_src = XEXP (temp, 0), m->move_insn = 1;
871 else
872 m->move_insn = 0;
875 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
878 /* If this register is always set within a STRICT_LOW_PART
879 or set to zero, then its high bytes are constant.
880 So clear them outside the loop and within the loop
881 just load the low bytes.
882 We must check that the machine has an instruction to do so.
883 Also, if the value loaded into the register
884 depends on the same register, this cannot be done. */
885 else if (SET_SRC (set) == const0_rtx
886 && GET_CODE (NEXT_INSN (p)) == INSN
887 && (set1 = single_set (NEXT_INSN (p)))
888 && GET_CODE (set1) == SET
889 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
890 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
891 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
892 == SET_DEST (set))
893 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
895 int regno = REGNO (SET_DEST (set));
896 if (regs->array[regno].set_in_loop == 2)
898 struct movable *m;
899 m = (struct movable *) xmalloc (sizeof (struct movable));
900 m->next = 0;
901 m->insn = p;
902 m->set_dest = SET_DEST (set);
903 m->dependencies = 0;
904 m->force = 0;
905 m->consec = 0;
906 m->done = 0;
907 m->forces = 0;
908 m->move_insn = 0;
909 m->move_insn_first = 0;
910 m->partial = 1;
911 /* If the insn may not be executed on some cycles,
912 we can't clear the whole reg; clear just high part.
913 Not even if the reg is used only within this loop.
914 Consider this:
915 while (1)
916 while (s != t) {
917 if (foo ()) x = *s;
918 use (x);
920 Clearing x before the inner loop could clobber a value
921 being saved from the last time around the outer loop.
922 However, if the reg is not used outside this loop
923 and all uses of the register are in the same
924 basic block as the store, there is no problem.
926 If this insn was made by loop, we don't know its
927 INSN_LUID and hence must make a conservative
928 assumption. */
929 m->global = (INSN_UID (p) >= max_uid_for_loop
930 || LOOP_REG_GLOBAL_P (loop, regno)
931 || (labels_in_range_p
932 (p, REGNO_FIRST_LUID (regno))));
933 if (maybe_never && m->global)
934 m->savemode = GET_MODE (SET_SRC (set1));
935 else
936 m->savemode = VOIDmode;
937 m->regno = regno;
938 m->cond = 0;
939 m->match = 0;
940 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
941 m->savings = 1;
942 regs->array[regno].set_in_loop = -1;
943 /* Add M to the end of the chain MOVABLES. */
944 loop_movables_add (movables, m);
948 /* Past a call insn, we get to insns which might not be executed
949 because the call might exit. This matters for insns that trap.
950 Constant and pure call insns always return, so they don't count. */
951 else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
952 call_passed = 1;
953 /* Past a label or a jump, we get to insns for which we
954 can't count on whether or how many times they will be
955 executed during each iteration. Therefore, we can
956 only move out sets of trivial variables
957 (those not used after the loop). */
958 /* Similar code appears twice in strength_reduce. */
959 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
960 /* If we enter the loop in the middle, and scan around to the
961 beginning, don't set maybe_never for that. This must be an
962 unconditional jump, otherwise the code at the top of the
963 loop might never be executed. Unconditional jumps are
964 followed by a barrier then the loop_end. */
965 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
966 && NEXT_INSN (NEXT_INSN (p)) == loop_end
967 && any_uncondjump_p (p)))
968 maybe_never = 1;
969 else if (GET_CODE (p) == NOTE)
971 /* At the virtual top of a converted loop, insns are again known to
972 be executed: logically, the loop begins here even though the exit
973 code has been duplicated. */
974 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
975 maybe_never = call_passed = 0;
976 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
977 loop_depth++;
978 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
979 loop_depth--;
983 /* If one movable subsumes another, ignore that other. */
985 ignore_some_movables (movables);
987 /* For each movable insn, see if the reg that it loads
988 leads when it dies right into another conditionally movable insn.
989 If so, record that the second insn "forces" the first one,
990 since the second can be moved only if the first is. */
992 force_movables (movables);
994 /* See if there are multiple movable insns that load the same value.
995 If there are, make all but the first point at the first one
996 through the `match' field, and add the priorities of them
997 all together as the priority of the first. */
999 combine_movables (movables, regs);
1001 /* Now consider each movable insn to decide whether it is worth moving.
1002 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1004 Generally this increases code size, so do not move moveables when
1005 optimizing for code size. */
1007 if (! optimize_size)
1008 move_movables (loop, movables, threshold, insn_count);
1010 /* Now candidates that still are negative are those not moved.
1011 Change regs->array[I].set_in_loop to indicate that those are not actually
1012 invariant. */
1013 for (i = 0; i < regs->num; i++)
1014 if (regs->array[i].set_in_loop < 0)
1015 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1017 /* Now that we've moved some things out of the loop, we might be able to
1018 hoist even more memory references. */
1019 load_mems (loop);
1021 /* Recalculate regs->array if load_mems has created new registers. */
1022 if (max_reg_num () > regs->num)
1023 loop_regs_scan (loop, 0);
1025 for (update_start = loop_start;
1026 PREV_INSN (update_start)
1027 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1028 update_start = PREV_INSN (update_start))
1030 update_end = NEXT_INSN (loop_end);
1032 reg_scan_update (update_start, update_end, loop_max_reg);
1033 loop_max_reg = max_reg_num ();
1035 if (flag_strength_reduce)
1037 if (update_end && GET_CODE (update_end) == CODE_LABEL)
1038 /* Ensure our label doesn't go away. */
1039 LABEL_NUSES (update_end)++;
1041 strength_reduce (loop, flags);
1043 reg_scan_update (update_start, update_end, loop_max_reg);
1044 loop_max_reg = max_reg_num ();
1046 if (update_end && GET_CODE (update_end) == CODE_LABEL
1047 && --LABEL_NUSES (update_end) == 0)
1048 delete_related_insns (update_end);
1052 /* The movable information is required for strength reduction. */
1053 loop_movables_free (movables);
1055 free (regs->array);
1056 regs->array = 0;
1057 regs->num = 0;
1060 /* Add elements to *OUTPUT to record all the pseudo-regs
1061 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1063 void
1064 record_excess_regs (in_this, not_in_this, output)
1065 rtx in_this, not_in_this;
1066 rtx *output;
1068 enum rtx_code code;
1069 const char *fmt;
1070 int i;
1072 code = GET_CODE (in_this);
1074 switch (code)
1076 case PC:
1077 case CC0:
1078 case CONST_INT:
1079 case CONST_DOUBLE:
1080 case CONST:
1081 case SYMBOL_REF:
1082 case LABEL_REF:
1083 return;
1085 case REG:
1086 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1087 && ! reg_mentioned_p (in_this, not_in_this))
1088 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1089 return;
1091 default:
1092 break;
1095 fmt = GET_RTX_FORMAT (code);
1096 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1098 int j;
1100 switch (fmt[i])
1102 case 'E':
1103 for (j = 0; j < XVECLEN (in_this, i); j++)
1104 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1105 break;
1107 case 'e':
1108 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1109 break;
1114 /* Check what regs are referred to in the libcall block ending with INSN,
1115 aside from those mentioned in the equivalent value.
1116 If there are none, return 0.
1117 If there are one or more, return an EXPR_LIST containing all of them. */
1120 libcall_other_reg (insn, equiv)
1121 rtx insn, equiv;
1123 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1124 rtx p = XEXP (note, 0);
1125 rtx output = 0;
1127 /* First, find all the regs used in the libcall block
1128 that are not mentioned as inputs to the result. */
1130 while (p != insn)
1132 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1133 || GET_CODE (p) == CALL_INSN)
1134 record_excess_regs (PATTERN (p), equiv, &output);
1135 p = NEXT_INSN (p);
1138 return output;
1141 /* Return 1 if all uses of REG
1142 are between INSN and the end of the basic block. */
1144 static int
1145 reg_in_basic_block_p (insn, reg)
1146 rtx insn, reg;
1148 int regno = REGNO (reg);
1149 rtx p;
1151 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1152 return 0;
1154 /* Search this basic block for the already recorded last use of the reg. */
1155 for (p = insn; p; p = NEXT_INSN (p))
1157 switch (GET_CODE (p))
1159 case NOTE:
1160 break;
1162 case INSN:
1163 case CALL_INSN:
1164 /* Ordinary insn: if this is the last use, we win. */
1165 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1166 return 1;
1167 break;
1169 case JUMP_INSN:
1170 /* Jump insn: if this is the last use, we win. */
1171 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1172 return 1;
1173 /* Otherwise, it's the end of the basic block, so we lose. */
1174 return 0;
1176 case CODE_LABEL:
1177 case BARRIER:
1178 /* It's the end of the basic block, so we lose. */
1179 return 0;
1181 default:
1182 break;
1186 /* The "last use" that was recorded can't be found after the first
1187 use. This can happen when the last use was deleted while
1188 processing an inner loop, this inner loop was then completely
1189 unrolled, and the outer loop is always exited after the inner loop,
1190 so that everything after the first use becomes a single basic block. */
1191 return 1;
1194 /* Compute the benefit of eliminating the insns in the block whose
1195 last insn is LAST. This may be a group of insns used to compute a
1196 value directly or can contain a library call. */
1198 static int
1199 libcall_benefit (last)
1200 rtx last;
1202 rtx insn;
1203 int benefit = 0;
1205 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1206 insn != last; insn = NEXT_INSN (insn))
1208 if (GET_CODE (insn) == CALL_INSN)
1209 benefit += 10; /* Assume at least this many insns in a library
1210 routine. */
1211 else if (GET_CODE (insn) == INSN
1212 && GET_CODE (PATTERN (insn)) != USE
1213 && GET_CODE (PATTERN (insn)) != CLOBBER)
1214 benefit++;
1217 return benefit;
1220 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1222 static rtx
1223 skip_consec_insns (insn, count)
1224 rtx insn;
1225 int count;
1227 for (; count > 0; count--)
1229 rtx temp;
1231 /* If first insn of libcall sequence, skip to end. */
1232 /* Do this at start of loop, since INSN is guaranteed to
1233 be an insn here. */
1234 if (GET_CODE (insn) != NOTE
1235 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1236 insn = XEXP (temp, 0);
1239 insn = NEXT_INSN (insn);
1240 while (GET_CODE (insn) == NOTE);
1243 return insn;
1246 /* Ignore any movable whose insn falls within a libcall
1247 which is part of another movable.
1248 We make use of the fact that the movable for the libcall value
1249 was made later and so appears later on the chain. */
1251 static void
1252 ignore_some_movables (movables)
1253 struct loop_movables *movables;
1255 struct movable *m, *m1;
1257 for (m = movables->head; m; m = m->next)
1259 /* Is this a movable for the value of a libcall? */
1260 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1261 if (note)
1263 rtx insn;
1264 /* Check for earlier movables inside that range,
1265 and mark them invalid. We cannot use LUIDs here because
1266 insns created by loop.c for prior loops don't have LUIDs.
1267 Rather than reject all such insns from movables, we just
1268 explicitly check each insn in the libcall (since invariant
1269 libcalls aren't that common). */
1270 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1271 for (m1 = movables->head; m1 != m; m1 = m1->next)
1272 if (m1->insn == insn)
1273 m1->done = 1;
1278 /* For each movable insn, see if the reg that it loads
1279 leads when it dies right into another conditionally movable insn.
1280 If so, record that the second insn "forces" the first one,
1281 since the second can be moved only if the first is. */
1283 static void
1284 force_movables (movables)
1285 struct loop_movables *movables;
1287 struct movable *m, *m1;
1289 for (m1 = movables->head; m1; m1 = m1->next)
1290 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1291 if (!m1->partial && !m1->done)
1293 int regno = m1->regno;
1294 for (m = m1->next; m; m = m->next)
1295 /* ??? Could this be a bug? What if CSE caused the
1296 register of M1 to be used after this insn?
1297 Since CSE does not update regno_last_uid,
1298 this insn M->insn might not be where it dies.
1299 But very likely this doesn't matter; what matters is
1300 that M's reg is computed from M1's reg. */
1301 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1302 && !m->done)
1303 break;
1304 if (m != 0 && m->set_src == m1->set_dest
1305 /* If m->consec, m->set_src isn't valid. */
1306 && m->consec == 0)
1307 m = 0;
1309 /* Increase the priority of the moving the first insn
1310 since it permits the second to be moved as well. */
1311 if (m != 0)
1313 m->forces = m1;
1314 m1->lifetime += m->lifetime;
1315 m1->savings += m->savings;
1320 /* Find invariant expressions that are equal and can be combined into
1321 one register. */
1323 static void
1324 combine_movables (movables, regs)
1325 struct loop_movables *movables;
1326 struct loop_regs *regs;
1328 struct movable *m;
1329 char *matched_regs = (char *) xmalloc (regs->num);
1330 enum machine_mode mode;
1332 /* Regs that are set more than once are not allowed to match
1333 or be matched. I'm no longer sure why not. */
1334 /* Perhaps testing m->consec_sets would be more appropriate here? */
1336 for (m = movables->head; m; m = m->next)
1337 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1338 && !m->partial)
1340 struct movable *m1;
1341 int regno = m->regno;
1343 memset (matched_regs, 0, regs->num);
1344 matched_regs[regno] = 1;
1346 /* We want later insns to match the first one. Don't make the first
1347 one match any later ones. So start this loop at m->next. */
1348 for (m1 = m->next; m1; m1 = m1->next)
1349 if (m != m1 && m1->match == 0
1350 && regs->array[m1->regno].n_times_set == 1
1351 /* A reg used outside the loop mustn't be eliminated. */
1352 && !m1->global
1353 /* A reg used for zero-extending mustn't be eliminated. */
1354 && !m1->partial
1355 && (matched_regs[m1->regno]
1358 /* Can combine regs with different modes loaded from the
1359 same constant only if the modes are the same or
1360 if both are integer modes with M wider or the same
1361 width as M1. The check for integer is redundant, but
1362 safe, since the only case of differing destination
1363 modes with equal sources is when both sources are
1364 VOIDmode, i.e., CONST_INT. */
1365 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1366 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1367 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1368 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1369 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1370 /* See if the source of M1 says it matches M. */
1371 && ((GET_CODE (m1->set_src) == REG
1372 && matched_regs[REGNO (m1->set_src)])
1373 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1374 movables, regs))))
1375 && ((m->dependencies == m1->dependencies)
1376 || rtx_equal_p (m->dependencies, m1->dependencies)))
1378 m->lifetime += m1->lifetime;
1379 m->savings += m1->savings;
1380 m1->done = 1;
1381 m1->match = m;
1382 matched_regs[m1->regno] = 1;
1386 /* Now combine the regs used for zero-extension.
1387 This can be done for those not marked `global'
1388 provided their lives don't overlap. */
1390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1391 mode = GET_MODE_WIDER_MODE (mode))
1393 struct movable *m0 = 0;
1395 /* Combine all the registers for extension from mode MODE.
1396 Don't combine any that are used outside this loop. */
1397 for (m = movables->head; m; m = m->next)
1398 if (m->partial && ! m->global
1399 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1401 struct movable *m1;
1403 int first = REGNO_FIRST_LUID (m->regno);
1404 int last = REGNO_LAST_LUID (m->regno);
1406 if (m0 == 0)
1408 /* First one: don't check for overlap, just record it. */
1409 m0 = m;
1410 continue;
1413 /* Make sure they extend to the same mode.
1414 (Almost always true.) */
1415 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1416 continue;
1418 /* We already have one: check for overlap with those
1419 already combined together. */
1420 for (m1 = movables->head; m1 != m; m1 = m1->next)
1421 if (m1 == m0 || (m1->partial && m1->match == m0))
1422 if (! (REGNO_FIRST_LUID (m1->regno) > last
1423 || REGNO_LAST_LUID (m1->regno) < first))
1424 goto overlap;
1426 /* No overlap: we can combine this with the others. */
1427 m0->lifetime += m->lifetime;
1428 m0->savings += m->savings;
1429 m->done = 1;
1430 m->match = m0;
1432 overlap:
1437 /* Clean up. */
1438 free (matched_regs);
1441 /* Returns the number of movable instructions in LOOP that were not
1442 moved outside the loop. */
1444 static int
1445 num_unmoved_movables (loop)
1446 const struct loop *loop;
1448 int num = 0;
1449 struct movable *m;
1451 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1452 if (!m->done)
1453 ++num;
1455 return num;
1459 /* Return 1 if regs X and Y will become the same if moved. */
1461 static int
1462 regs_match_p (x, y, movables)
1463 rtx x, y;
1464 struct loop_movables *movables;
1466 unsigned int xn = REGNO (x);
1467 unsigned int yn = REGNO (y);
1468 struct movable *mx, *my;
1470 for (mx = movables->head; mx; mx = mx->next)
1471 if (mx->regno == xn)
1472 break;
1474 for (my = movables->head; my; my = my->next)
1475 if (my->regno == yn)
1476 break;
1478 return (mx && my
1479 && ((mx->match == my->match && mx->match != 0)
1480 || mx->match == my
1481 || mx == my->match));
1484 /* Return 1 if X and Y are identical-looking rtx's.
1485 This is the Lisp function EQUAL for rtx arguments.
1487 If two registers are matching movables or a movable register and an
1488 equivalent constant, consider them equal. */
1490 static int
1491 rtx_equal_for_loop_p (x, y, movables, regs)
1492 rtx x, y;
1493 struct loop_movables *movables;
1494 struct loop_regs *regs;
1496 int i;
1497 int j;
1498 struct movable *m;
1499 enum rtx_code code;
1500 const char *fmt;
1502 if (x == y)
1503 return 1;
1504 if (x == 0 || y == 0)
1505 return 0;
1507 code = GET_CODE (x);
1509 /* If we have a register and a constant, they may sometimes be
1510 equal. */
1511 if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
1512 && CONSTANT_P (y))
1514 for (m = movables->head; m; m = m->next)
1515 if (m->move_insn && m->regno == REGNO (x)
1516 && rtx_equal_p (m->set_src, y))
1517 return 1;
1519 else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
1520 && CONSTANT_P (x))
1522 for (m = movables->head; m; m = m->next)
1523 if (m->move_insn && m->regno == REGNO (y)
1524 && rtx_equal_p (m->set_src, x))
1525 return 1;
1528 /* Otherwise, rtx's of different codes cannot be equal. */
1529 if (code != GET_CODE (y))
1530 return 0;
1532 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1533 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1535 if (GET_MODE (x) != GET_MODE (y))
1536 return 0;
1538 /* These three types of rtx's can be compared nonrecursively. */
1539 if (code == REG)
1540 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1542 if (code == LABEL_REF)
1543 return XEXP (x, 0) == XEXP (y, 0);
1544 if (code == SYMBOL_REF)
1545 return XSTR (x, 0) == XSTR (y, 0);
1547 /* Compare the elements. If any pair of corresponding elements
1548 fail to match, return 0 for the whole things. */
1550 fmt = GET_RTX_FORMAT (code);
1551 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1553 switch (fmt[i])
1555 case 'w':
1556 if (XWINT (x, i) != XWINT (y, i))
1557 return 0;
1558 break;
1560 case 'i':
1561 if (XINT (x, i) != XINT (y, i))
1562 return 0;
1563 break;
1565 case 'E':
1566 /* Two vectors must have the same length. */
1567 if (XVECLEN (x, i) != XVECLEN (y, i))
1568 return 0;
1570 /* And the corresponding elements must match. */
1571 for (j = 0; j < XVECLEN (x, i); j++)
1572 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
1573 movables, regs) == 0)
1574 return 0;
1575 break;
1577 case 'e':
1578 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
1579 == 0)
1580 return 0;
1581 break;
1583 case 's':
1584 if (strcmp (XSTR (x, i), XSTR (y, i)))
1585 return 0;
1586 break;
1588 case 'u':
1589 /* These are just backpointers, so they don't matter. */
1590 break;
1592 case '0':
1593 break;
1595 /* It is believed that rtx's at this level will never
1596 contain anything but integers and other rtx's,
1597 except for within LABEL_REFs and SYMBOL_REFs. */
1598 default:
1599 abort ();
1602 return 1;
1605 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1606 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1607 references is incremented once for each added note. */
1609 static void
1610 add_label_notes (x, insns)
1611 rtx x;
1612 rtx insns;
1614 enum rtx_code code = GET_CODE (x);
1615 int i, j;
1616 const char *fmt;
1617 rtx insn;
1619 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1621 /* This code used to ignore labels that referred to dispatch tables to
1622 avoid flow generating (slighly) worse code.
1624 We no longer ignore such label references (see LABEL_REF handling in
1625 mark_jump_label for additional information). */
1626 for (insn = insns; insn; insn = NEXT_INSN (insn))
1627 if (reg_mentioned_p (XEXP (x, 0), insn))
1629 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
1630 REG_NOTES (insn));
1631 if (LABEL_P (XEXP (x, 0)))
1632 LABEL_NUSES (XEXP (x, 0))++;
1636 fmt = GET_RTX_FORMAT (code);
1637 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1639 if (fmt[i] == 'e')
1640 add_label_notes (XEXP (x, i), insns);
1641 else if (fmt[i] == 'E')
1642 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1643 add_label_notes (XVECEXP (x, i, j), insns);
1647 /* Scan MOVABLES, and move the insns that deserve to be moved.
1648 If two matching movables are combined, replace one reg with the
1649 other throughout. */
1651 static void
1652 move_movables (loop, movables, threshold, insn_count)
1653 struct loop *loop;
1654 struct loop_movables *movables;
1655 int threshold;
1656 int insn_count;
1658 struct loop_regs *regs = LOOP_REGS (loop);
1659 int nregs = regs->num;
1660 rtx new_start = 0;
1661 struct movable *m;
1662 rtx p;
1663 rtx loop_start = loop->start;
1664 rtx loop_end = loop->end;
1665 /* Map of pseudo-register replacements to handle combining
1666 when we move several insns that load the same value
1667 into different pseudo-registers. */
1668 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1669 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1671 for (m = movables->head; m; m = m->next)
1673 /* Describe this movable insn. */
1675 if (loop_dump_stream)
1677 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1678 INSN_UID (m->insn), m->regno, m->lifetime);
1679 if (m->consec > 0)
1680 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1681 if (m->cond)
1682 fprintf (loop_dump_stream, "cond ");
1683 if (m->force)
1684 fprintf (loop_dump_stream, "force ");
1685 if (m->global)
1686 fprintf (loop_dump_stream, "global ");
1687 if (m->done)
1688 fprintf (loop_dump_stream, "done ");
1689 if (m->move_insn)
1690 fprintf (loop_dump_stream, "move-insn ");
1691 if (m->match)
1692 fprintf (loop_dump_stream, "matches %d ",
1693 INSN_UID (m->match->insn));
1694 if (m->forces)
1695 fprintf (loop_dump_stream, "forces %d ",
1696 INSN_UID (m->forces->insn));
1699 /* Ignore the insn if it's already done (it matched something else).
1700 Otherwise, see if it is now safe to move. */
1702 if (!m->done
1703 && (! m->cond
1704 || (1 == loop_invariant_p (loop, m->set_src)
1705 && (m->dependencies == 0
1706 || 1 == loop_invariant_p (loop, m->dependencies))
1707 && (m->consec == 0
1708 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1709 m->consec + 1,
1710 m->insn))))
1711 && (! m->forces || m->forces->done))
1713 int regno;
1714 rtx p;
1715 int savings = m->savings;
1717 /* We have an insn that is safe to move.
1718 Compute its desirability. */
1720 p = m->insn;
1721 regno = m->regno;
1723 if (loop_dump_stream)
1724 fprintf (loop_dump_stream, "savings %d ", savings);
1726 if (regs->array[regno].moved_once && loop_dump_stream)
1727 fprintf (loop_dump_stream, "halved since already moved ");
1729 /* An insn MUST be moved if we already moved something else
1730 which is safe only if this one is moved too: that is,
1731 if already_moved[REGNO] is nonzero. */
1733 /* An insn is desirable to move if the new lifetime of the
1734 register is no more than THRESHOLD times the old lifetime.
1735 If it's not desirable, it means the loop is so big
1736 that moving won't speed things up much,
1737 and it is liable to make register usage worse. */
1739 /* It is also desirable to move if it can be moved at no
1740 extra cost because something else was already moved. */
1742 if (already_moved[regno]
1743 || flag_move_all_movables
1744 || (threshold * savings * m->lifetime) >=
1745 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
1746 || (m->forces && m->forces->done
1747 && regs->array[m->forces->regno].n_times_set == 1))
1749 int count;
1750 struct movable *m1;
1751 rtx first = NULL_RTX;
1753 /* Now move the insns that set the reg. */
1755 if (m->partial && m->match)
1757 rtx newpat, i1;
1758 rtx r1, r2;
1759 /* Find the end of this chain of matching regs.
1760 Thus, we load each reg in the chain from that one reg.
1761 And that reg is loaded with 0 directly,
1762 since it has ->match == 0. */
1763 for (m1 = m; m1->match; m1 = m1->match);
1764 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1765 SET_DEST (PATTERN (m1->insn)));
1766 i1 = loop_insn_hoist (loop, newpat);
1768 /* Mark the moved, invariant reg as being allowed to
1769 share a hard reg with the other matching invariant. */
1770 REG_NOTES (i1) = REG_NOTES (m->insn);
1771 r1 = SET_DEST (PATTERN (m->insn));
1772 r2 = SET_DEST (PATTERN (m1->insn));
1773 regs_may_share
1774 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1775 gen_rtx_EXPR_LIST (VOIDmode, r2,
1776 regs_may_share));
1777 delete_insn (m->insn);
1779 if (new_start == 0)
1780 new_start = i1;
1782 if (loop_dump_stream)
1783 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1785 /* If we are to re-generate the item being moved with a
1786 new move insn, first delete what we have and then emit
1787 the move insn before the loop. */
1788 else if (m->move_insn)
1790 rtx i1, temp, seq;
1792 for (count = m->consec; count >= 0; count--)
1794 /* If this is the first insn of a library call sequence,
1795 skip to the end. */
1796 if (GET_CODE (p) != NOTE
1797 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1798 p = XEXP (temp, 0);
1800 /* If this is the last insn of a libcall sequence, then
1801 delete every insn in the sequence except the last.
1802 The last insn is handled in the normal manner. */
1803 if (GET_CODE (p) != NOTE
1804 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1806 temp = XEXP (temp, 0);
1807 while (temp != p)
1808 temp = delete_insn (temp);
1811 temp = p;
1812 p = delete_insn (p);
1814 /* simplify_giv_expr expects that it can walk the insns
1815 at m->insn forwards and see this old sequence we are
1816 tossing here. delete_insn does preserve the next
1817 pointers, but when we skip over a NOTE we must fix
1818 it up. Otherwise that code walks into the non-deleted
1819 insn stream. */
1820 while (p && GET_CODE (p) == NOTE)
1821 p = NEXT_INSN (temp) = NEXT_INSN (p);
1824 start_sequence ();
1825 emit_move_insn (m->set_dest, m->set_src);
1826 temp = get_insns ();
1827 seq = gen_sequence ();
1828 end_sequence ();
1830 add_label_notes (m->set_src, temp);
1832 i1 = loop_insn_hoist (loop, seq);
1833 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1834 REG_NOTES (i1)
1835 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1836 m->set_src, REG_NOTES (i1));
1838 if (loop_dump_stream)
1839 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1841 /* The more regs we move, the less we like moving them. */
1842 threshold -= 3;
1844 else
1846 for (count = m->consec; count >= 0; count--)
1848 rtx i1, temp;
1850 /* If first insn of libcall sequence, skip to end. */
1851 /* Do this at start of loop, since p is guaranteed to
1852 be an insn here. */
1853 if (GET_CODE (p) != NOTE
1854 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1855 p = XEXP (temp, 0);
1857 /* If last insn of libcall sequence, move all
1858 insns except the last before the loop. The last
1859 insn is handled in the normal manner. */
1860 if (GET_CODE (p) != NOTE
1861 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1863 rtx fn_address = 0;
1864 rtx fn_reg = 0;
1865 rtx fn_address_insn = 0;
1867 first = 0;
1868 for (temp = XEXP (temp, 0); temp != p;
1869 temp = NEXT_INSN (temp))
1871 rtx body;
1872 rtx n;
1873 rtx next;
1875 if (GET_CODE (temp) == NOTE)
1876 continue;
1878 body = PATTERN (temp);
1880 /* Find the next insn after TEMP,
1881 not counting USE or NOTE insns. */
1882 for (next = NEXT_INSN (temp); next != p;
1883 next = NEXT_INSN (next))
1884 if (! (GET_CODE (next) == INSN
1885 && GET_CODE (PATTERN (next)) == USE)
1886 && GET_CODE (next) != NOTE)
1887 break;
1889 /* If that is the call, this may be the insn
1890 that loads the function address.
1892 Extract the function address from the insn
1893 that loads it into a register.
1894 If this insn was cse'd, we get incorrect code.
1896 So emit a new move insn that copies the
1897 function address into the register that the
1898 call insn will use. flow.c will delete any
1899 redundant stores that we have created. */
1900 if (GET_CODE (next) == CALL_INSN
1901 && GET_CODE (body) == SET
1902 && GET_CODE (SET_DEST (body)) == REG
1903 && (n = find_reg_note (temp, REG_EQUAL,
1904 NULL_RTX)))
1906 fn_reg = SET_SRC (body);
1907 if (GET_CODE (fn_reg) != REG)
1908 fn_reg = SET_DEST (body);
1909 fn_address = XEXP (n, 0);
1910 fn_address_insn = temp;
1912 /* We have the call insn.
1913 If it uses the register we suspect it might,
1914 load it with the correct address directly. */
1915 if (GET_CODE (temp) == CALL_INSN
1916 && fn_address != 0
1917 && reg_referenced_p (fn_reg, body))
1918 loop_insn_emit_after (loop, 0, fn_address_insn,
1919 gen_move_insn
1920 (fn_reg, fn_address));
1922 if (GET_CODE (temp) == CALL_INSN)
1924 i1 = loop_call_insn_hoist (loop, body);
1925 /* Because the USAGE information potentially
1926 contains objects other than hard registers
1927 we need to copy it. */
1928 if (CALL_INSN_FUNCTION_USAGE (temp))
1929 CALL_INSN_FUNCTION_USAGE (i1)
1930 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1932 else
1933 i1 = loop_insn_hoist (loop, body);
1934 if (first == 0)
1935 first = i1;
1936 if (temp == fn_address_insn)
1937 fn_address_insn = i1;
1938 REG_NOTES (i1) = REG_NOTES (temp);
1939 REG_NOTES (temp) = NULL;
1940 delete_insn (temp);
1942 if (new_start == 0)
1943 new_start = first;
1945 if (m->savemode != VOIDmode)
1947 /* P sets REG to zero; but we should clear only
1948 the bits that are not covered by the mode
1949 m->savemode. */
1950 rtx reg = m->set_dest;
1951 rtx sequence;
1952 rtx tem;
1954 start_sequence ();
1955 tem = expand_simple_binop
1956 (GET_MODE (reg), AND, reg,
1957 GEN_INT ((((HOST_WIDE_INT) 1
1958 << GET_MODE_BITSIZE (m->savemode)))
1959 - 1),
1960 reg, 1, OPTAB_LIB_WIDEN);
1961 if (tem == 0)
1962 abort ();
1963 if (tem != reg)
1964 emit_move_insn (reg, tem);
1965 sequence = gen_sequence ();
1966 end_sequence ();
1967 i1 = loop_insn_hoist (loop, sequence);
1969 else if (GET_CODE (p) == CALL_INSN)
1971 i1 = loop_call_insn_hoist (loop, PATTERN (p));
1972 /* Because the USAGE information potentially
1973 contains objects other than hard registers
1974 we need to copy it. */
1975 if (CALL_INSN_FUNCTION_USAGE (p))
1976 CALL_INSN_FUNCTION_USAGE (i1)
1977 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1979 else if (count == m->consec && m->move_insn_first)
1981 rtx seq;
1982 /* The SET_SRC might not be invariant, so we must
1983 use the REG_EQUAL note. */
1984 start_sequence ();
1985 emit_move_insn (m->set_dest, m->set_src);
1986 temp = get_insns ();
1987 seq = gen_sequence ();
1988 end_sequence ();
1990 add_label_notes (m->set_src, temp);
1992 i1 = loop_insn_hoist (loop, seq);
1993 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1994 REG_NOTES (i1)
1995 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
1996 : REG_EQUAL),
1997 m->set_src, REG_NOTES (i1));
1999 else
2000 i1 = loop_insn_hoist (loop, PATTERN (p));
2002 if (REG_NOTES (i1) == 0)
2004 REG_NOTES (i1) = REG_NOTES (p);
2005 REG_NOTES (p) = NULL;
2007 /* If there is a REG_EQUAL note present whose value
2008 is not loop invariant, then delete it, since it
2009 may cause problems with later optimization passes.
2010 It is possible for cse to create such notes
2011 like this as a result of record_jump_cond. */
2013 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2014 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2015 remove_note (i1, temp);
2018 if (new_start == 0)
2019 new_start = i1;
2021 if (loop_dump_stream)
2022 fprintf (loop_dump_stream, " moved to %d",
2023 INSN_UID (i1));
2025 /* If library call, now fix the REG_NOTES that contain
2026 insn pointers, namely REG_LIBCALL on FIRST
2027 and REG_RETVAL on I1. */
2028 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2030 XEXP (temp, 0) = first;
2031 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2032 XEXP (temp, 0) = i1;
2035 temp = p;
2036 delete_insn (p);
2037 p = NEXT_INSN (p);
2039 /* simplify_giv_expr expects that it can walk the insns
2040 at m->insn forwards and see this old sequence we are
2041 tossing here. delete_insn does preserve the next
2042 pointers, but when we skip over a NOTE we must fix
2043 it up. Otherwise that code walks into the non-deleted
2044 insn stream. */
2045 while (p && GET_CODE (p) == NOTE)
2046 p = NEXT_INSN (temp) = NEXT_INSN (p);
2049 /* The more regs we move, the less we like moving them. */
2050 threshold -= 3;
2053 /* Any other movable that loads the same register
2054 MUST be moved. */
2055 already_moved[regno] = 1;
2057 /* This reg has been moved out of one loop. */
2058 regs->array[regno].moved_once = 1;
2060 /* The reg set here is now invariant. */
2061 if (! m->partial)
2062 regs->array[regno].set_in_loop = 0;
2064 m->done = 1;
2066 /* Change the length-of-life info for the register
2067 to say it lives at least the full length of this loop.
2068 This will help guide optimizations in outer loops. */
2070 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2071 /* This is the old insn before all the moved insns.
2072 We can't use the moved insn because it is out of range
2073 in uid_luid. Only the old insns have luids. */
2074 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2075 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2076 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2078 /* Combine with this moved insn any other matching movables. */
2080 if (! m->partial)
2081 for (m1 = movables->head; m1; m1 = m1->next)
2082 if (m1->match == m)
2084 rtx temp;
2086 /* Schedule the reg loaded by M1
2087 for replacement so that shares the reg of M.
2088 If the modes differ (only possible in restricted
2089 circumstances, make a SUBREG.
2091 Note this assumes that the target dependent files
2092 treat REG and SUBREG equally, including within
2093 GO_IF_LEGITIMATE_ADDRESS and in all the
2094 predicates since we never verify that replacing the
2095 original register with a SUBREG results in a
2096 recognizable insn. */
2097 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2098 reg_map[m1->regno] = m->set_dest;
2099 else
2100 reg_map[m1->regno]
2101 = gen_lowpart_common (GET_MODE (m1->set_dest),
2102 m->set_dest);
2104 /* Get rid of the matching insn
2105 and prevent further processing of it. */
2106 m1->done = 1;
2108 /* if library call, delete all insns. */
2109 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2110 NULL_RTX)))
2111 delete_insn_chain (XEXP (temp, 0), m1->insn);
2112 else
2113 delete_insn (m1->insn);
2115 /* Any other movable that loads the same register
2116 MUST be moved. */
2117 already_moved[m1->regno] = 1;
2119 /* The reg merged here is now invariant,
2120 if the reg it matches is invariant. */
2121 if (! m->partial)
2122 regs->array[m1->regno].set_in_loop = 0;
2125 else if (loop_dump_stream)
2126 fprintf (loop_dump_stream, "not desirable");
2128 else if (loop_dump_stream && !m->match)
2129 fprintf (loop_dump_stream, "not safe");
2131 if (loop_dump_stream)
2132 fprintf (loop_dump_stream, "\n");
2135 if (new_start == 0)
2136 new_start = loop_start;
2138 /* Go through all the instructions in the loop, making
2139 all the register substitutions scheduled in REG_MAP. */
2140 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2141 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2142 || GET_CODE (p) == CALL_INSN)
2144 replace_regs (PATTERN (p), reg_map, nregs, 0);
2145 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2146 INSN_CODE (p) = -1;
2149 /* Clean up. */
2150 free (reg_map);
2151 free (already_moved);
2155 static void
2156 loop_movables_add (movables, m)
2157 struct loop_movables *movables;
2158 struct movable *m;
2160 if (movables->head == 0)
2161 movables->head = m;
2162 else
2163 movables->last->next = m;
2164 movables->last = m;
2168 static void
2169 loop_movables_free (movables)
2170 struct loop_movables *movables;
2172 struct movable *m;
2173 struct movable *m_next;
2175 for (m = movables->head; m; m = m_next)
2177 m_next = m->next;
2178 free (m);
2182 #if 0
2183 /* Scan X and replace the address of any MEM in it with ADDR.
2184 REG is the address that MEM should have before the replacement. */
2186 static void
2187 replace_call_address (x, reg, addr)
2188 rtx x, reg, addr;
2190 enum rtx_code code;
2191 int i;
2192 const char *fmt;
2194 if (x == 0)
2195 return;
2196 code = GET_CODE (x);
2197 switch (code)
2199 case PC:
2200 case CC0:
2201 case CONST_INT:
2202 case CONST_DOUBLE:
2203 case CONST:
2204 case SYMBOL_REF:
2205 case LABEL_REF:
2206 case REG:
2207 return;
2209 case SET:
2210 /* Short cut for very common case. */
2211 replace_call_address (XEXP (x, 1), reg, addr);
2212 return;
2214 case CALL:
2215 /* Short cut for very common case. */
2216 replace_call_address (XEXP (x, 0), reg, addr);
2217 return;
2219 case MEM:
2220 /* If this MEM uses a reg other than the one we expected,
2221 something is wrong. */
2222 if (XEXP (x, 0) != reg)
2223 abort ();
2224 XEXP (x, 0) = addr;
2225 return;
2227 default:
2228 break;
2231 fmt = GET_RTX_FORMAT (code);
2232 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2234 if (fmt[i] == 'e')
2235 replace_call_address (XEXP (x, i), reg, addr);
2236 else if (fmt[i] == 'E')
2238 int j;
2239 for (j = 0; j < XVECLEN (x, i); j++)
2240 replace_call_address (XVECEXP (x, i, j), reg, addr);
2244 #endif
2246 /* Return the number of memory refs to addresses that vary
2247 in the rtx X. */
2249 static int
2250 count_nonfixed_reads (loop, x)
2251 const struct loop *loop;
2252 rtx x;
2254 enum rtx_code code;
2255 int i;
2256 const char *fmt;
2257 int value;
2259 if (x == 0)
2260 return 0;
2262 code = GET_CODE (x);
2263 switch (code)
2265 case PC:
2266 case CC0:
2267 case CONST_INT:
2268 case CONST_DOUBLE:
2269 case CONST:
2270 case SYMBOL_REF:
2271 case LABEL_REF:
2272 case REG:
2273 return 0;
2275 case MEM:
2276 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2277 + count_nonfixed_reads (loop, XEXP (x, 0)));
2279 default:
2280 break;
2283 value = 0;
2284 fmt = GET_RTX_FORMAT (code);
2285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2287 if (fmt[i] == 'e')
2288 value += count_nonfixed_reads (loop, XEXP (x, i));
2289 if (fmt[i] == 'E')
2291 int j;
2292 for (j = 0; j < XVECLEN (x, i); j++)
2293 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2296 return value;
2299 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2300 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2301 `unknown_address_altered', `unknown_constant_address_altered', and
2302 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2303 list `store_mems' in LOOP. */
2305 static void
2306 prescan_loop (loop)
2307 struct loop *loop;
2309 int level = 1;
2310 rtx insn;
2311 struct loop_info *loop_info = LOOP_INFO (loop);
2312 rtx start = loop->start;
2313 rtx end = loop->end;
2314 /* The label after END. Jumping here is just like falling off the
2315 end of the loop. We use next_nonnote_insn instead of next_label
2316 as a hedge against the (pathological) case where some actual insn
2317 might end up between the two. */
2318 rtx exit_target = next_nonnote_insn (end);
2320 loop_info->has_indirect_jump = indirect_jump_in_function;
2321 loop_info->pre_header_has_call = 0;
2322 loop_info->has_call = 0;
2323 loop_info->has_nonconst_call = 0;
2324 loop_info->has_volatile = 0;
2325 loop_info->has_tablejump = 0;
2326 loop_info->has_multiple_exit_targets = 0;
2327 loop->level = 1;
2329 loop_info->unknown_address_altered = 0;
2330 loop_info->unknown_constant_address_altered = 0;
2331 loop_info->store_mems = NULL_RTX;
2332 loop_info->first_loop_store_insn = NULL_RTX;
2333 loop_info->mems_idx = 0;
2334 loop_info->num_mem_sets = 0;
2337 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
2338 insn = PREV_INSN (insn))
2340 if (GET_CODE (insn) == CALL_INSN)
2342 loop_info->pre_header_has_call = 1;
2343 break;
2347 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2348 insn = NEXT_INSN (insn))
2350 if (GET_CODE (insn) == NOTE)
2352 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2354 ++level;
2355 /* Count number of loops contained in this one. */
2356 loop->level++;
2358 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2360 --level;
2363 else if (GET_CODE (insn) == CALL_INSN)
2365 if (! CONST_OR_PURE_CALL_P (insn))
2367 loop_info->unknown_address_altered = 1;
2368 loop_info->has_nonconst_call = 1;
2370 loop_info->has_call = 1;
2372 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2374 rtx label1 = NULL_RTX;
2375 rtx label2 = NULL_RTX;
2377 if (volatile_refs_p (PATTERN (insn)))
2378 loop_info->has_volatile = 1;
2380 if (GET_CODE (insn) == JUMP_INSN
2381 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2382 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2383 loop_info->has_tablejump = 1;
2385 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2386 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2387 loop_info->first_loop_store_insn = insn;
2389 if (! loop_info->has_multiple_exit_targets
2390 && GET_CODE (insn) == JUMP_INSN
2391 && GET_CODE (PATTERN (insn)) == SET
2392 && SET_DEST (PATTERN (insn)) == pc_rtx)
2394 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2396 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2397 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2399 else
2401 label1 = SET_SRC (PATTERN (insn));
2406 if (label1 && label1 != pc_rtx)
2408 if (GET_CODE (label1) != LABEL_REF)
2410 /* Something tricky. */
2411 loop_info->has_multiple_exit_targets = 1;
2412 break;
2414 else if (XEXP (label1, 0) != exit_target
2415 && LABEL_OUTSIDE_LOOP_P (label1))
2417 /* A jump outside the current loop. */
2418 loop_info->has_multiple_exit_targets = 1;
2419 break;
2423 label1 = label2;
2424 label2 = NULL_RTX;
2426 while (label1);
2429 else if (GET_CODE (insn) == RETURN)
2430 loop_info->has_multiple_exit_targets = 1;
2433 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2434 if (/* An exception thrown by a called function might land us
2435 anywhere. */
2436 ! loop_info->has_nonconst_call
2437 /* We don't want loads for MEMs moved to a location before the
2438 one at which their stack memory becomes allocated. (Note
2439 that this is not a problem for malloc, etc., since those
2440 require actual function calls. */
2441 && ! current_function_calls_alloca
2442 /* There are ways to leave the loop other than falling off the
2443 end. */
2444 && ! loop_info->has_multiple_exit_targets)
2445 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2446 insn = NEXT_INSN (insn))
2447 for_each_rtx (&insn, insert_loop_mem, loop_info);
2449 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2450 that loop_invariant_p and load_mems can use true_dependence
2451 to determine what is really clobbered. */
2452 if (loop_info->unknown_address_altered)
2454 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2456 loop_info->store_mems
2457 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2459 if (loop_info->unknown_constant_address_altered)
2461 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2463 RTX_UNCHANGING_P (mem) = 1;
2464 loop_info->store_mems
2465 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2469 /* Scan the function looking for loops. Record the start and end of each loop.
2470 Also mark as invalid loops any loops that contain a setjmp or are branched
2471 to from outside the loop. */
2473 static void
2474 find_and_verify_loops (f, loops)
2475 rtx f;
2476 struct loops *loops;
2478 rtx insn;
2479 rtx label;
2480 int num_loops;
2481 struct loop *current_loop;
2482 struct loop *next_loop;
2483 struct loop *loop;
2485 num_loops = loops->num;
2487 compute_luids (f, NULL_RTX, 0);
2489 /* If there are jumps to undefined labels,
2490 treat them as jumps out of any/all loops.
2491 This also avoids writing past end of tables when there are no loops. */
2492 uid_loop[0] = NULL;
2494 /* Find boundaries of loops, mark which loops are contained within
2495 loops, and invalidate loops that have setjmp. */
2497 num_loops = 0;
2498 current_loop = NULL;
2499 for (insn = f; insn; insn = NEXT_INSN (insn))
2501 if (GET_CODE (insn) == NOTE)
2502 switch (NOTE_LINE_NUMBER (insn))
2504 case NOTE_INSN_LOOP_BEG:
2505 next_loop = loops->array + num_loops;
2506 next_loop->num = num_loops;
2507 num_loops++;
2508 next_loop->start = insn;
2509 next_loop->outer = current_loop;
2510 current_loop = next_loop;
2511 break;
2513 case NOTE_INSN_LOOP_CONT:
2514 current_loop->cont = insn;
2515 break;
2517 case NOTE_INSN_LOOP_VTOP:
2518 current_loop->vtop = insn;
2519 break;
2521 case NOTE_INSN_LOOP_END:
2522 if (! current_loop)
2523 abort ();
2525 current_loop->end = insn;
2526 current_loop = current_loop->outer;
2527 break;
2529 default:
2530 break;
2533 if (GET_CODE (insn) == CALL_INSN
2534 && find_reg_note (insn, REG_SETJMP, NULL))
2536 /* In this case, we must invalidate our current loop and any
2537 enclosing loop. */
2538 for (loop = current_loop; loop; loop = loop->outer)
2540 loop->invalid = 1;
2541 if (loop_dump_stream)
2542 fprintf (loop_dump_stream,
2543 "\nLoop at %d ignored due to setjmp.\n",
2544 INSN_UID (loop->start));
2548 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2549 enclosing loop, but this doesn't matter. */
2550 uid_loop[INSN_UID (insn)] = current_loop;
2553 /* Any loop containing a label used in an initializer must be invalidated,
2554 because it can be jumped into from anywhere. */
2556 for (label = forced_labels; label; label = XEXP (label, 1))
2558 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2559 loop; loop = loop->outer)
2560 loop->invalid = 1;
2563 /* Any loop containing a label used for an exception handler must be
2564 invalidated, because it can be jumped into from anywhere. */
2566 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2568 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2569 loop; loop = loop->outer)
2570 loop->invalid = 1;
2573 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2574 loop that it is not contained within, that loop is marked invalid.
2575 If any INSN or CALL_INSN uses a label's address, then the loop containing
2576 that label is marked invalid, because it could be jumped into from
2577 anywhere.
2579 Also look for blocks of code ending in an unconditional branch that
2580 exits the loop. If such a block is surrounded by a conditional
2581 branch around the block, move the block elsewhere (see below) and
2582 invert the jump to point to the code block. This may eliminate a
2583 label in our loop and will simplify processing by both us and a
2584 possible second cse pass. */
2586 for (insn = f; insn; insn = NEXT_INSN (insn))
2587 if (INSN_P (insn))
2589 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2591 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2593 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2594 if (note)
2596 for (loop = uid_loop[INSN_UID (XEXP (note, 0))];
2597 loop; loop = loop->outer)
2598 loop->invalid = 1;
2602 if (GET_CODE (insn) != JUMP_INSN)
2603 continue;
2605 mark_loop_jump (PATTERN (insn), this_loop);
2607 /* See if this is an unconditional branch outside the loop. */
2608 if (this_loop
2609 && (GET_CODE (PATTERN (insn)) == RETURN
2610 || (any_uncondjump_p (insn)
2611 && onlyjump_p (insn)
2612 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2613 != this_loop)))
2614 && get_max_uid () < max_uid_for_loop)
2616 rtx p;
2617 rtx our_next = next_real_insn (insn);
2618 rtx last_insn_to_move = NEXT_INSN (insn);
2619 struct loop *dest_loop;
2620 struct loop *outer_loop = NULL;
2622 /* Go backwards until we reach the start of the loop, a label,
2623 or a JUMP_INSN. */
2624 for (p = PREV_INSN (insn);
2625 GET_CODE (p) != CODE_LABEL
2626 && ! (GET_CODE (p) == NOTE
2627 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2628 && GET_CODE (p) != JUMP_INSN;
2629 p = PREV_INSN (p))
2632 /* Check for the case where we have a jump to an inner nested
2633 loop, and do not perform the optimization in that case. */
2635 if (JUMP_LABEL (insn))
2637 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2638 if (dest_loop)
2640 for (outer_loop = dest_loop; outer_loop;
2641 outer_loop = outer_loop->outer)
2642 if (outer_loop == this_loop)
2643 break;
2647 /* Make sure that the target of P is within the current loop. */
2649 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2650 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2651 outer_loop = this_loop;
2653 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2654 we have a block of code to try to move.
2656 We look backward and then forward from the target of INSN
2657 to find a BARRIER at the same loop depth as the target.
2658 If we find such a BARRIER, we make a new label for the start
2659 of the block, invert the jump in P and point it to that label,
2660 and move the block of code to the spot we found. */
2662 if (! outer_loop
2663 && GET_CODE (p) == JUMP_INSN
2664 && JUMP_LABEL (p) != 0
2665 /* Just ignore jumps to labels that were never emitted.
2666 These always indicate compilation errors. */
2667 && INSN_UID (JUMP_LABEL (p)) != 0
2668 && any_condjump_p (p) && onlyjump_p (p)
2669 && next_real_insn (JUMP_LABEL (p)) == our_next
2670 /* If it's not safe to move the sequence, then we
2671 mustn't try. */
2672 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2673 &last_insn_to_move))
2675 rtx target
2676 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2677 struct loop *target_loop = uid_loop[INSN_UID (target)];
2678 rtx loc, loc2;
2679 rtx tmp;
2681 /* Search for possible garbage past the conditional jumps
2682 and look for the last barrier. */
2683 for (tmp = last_insn_to_move;
2684 tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
2685 if (GET_CODE (tmp) == BARRIER)
2686 last_insn_to_move = tmp;
2688 for (loc = target; loc; loc = PREV_INSN (loc))
2689 if (GET_CODE (loc) == BARRIER
2690 /* Don't move things inside a tablejump. */
2691 && ((loc2 = next_nonnote_insn (loc)) == 0
2692 || GET_CODE (loc2) != CODE_LABEL
2693 || (loc2 = next_nonnote_insn (loc2)) == 0
2694 || GET_CODE (loc2) != JUMP_INSN
2695 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2696 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2697 && uid_loop[INSN_UID (loc)] == target_loop)
2698 break;
2700 if (loc == 0)
2701 for (loc = target; loc; loc = NEXT_INSN (loc))
2702 if (GET_CODE (loc) == BARRIER
2703 /* Don't move things inside a tablejump. */
2704 && ((loc2 = next_nonnote_insn (loc)) == 0
2705 || GET_CODE (loc2) != CODE_LABEL
2706 || (loc2 = next_nonnote_insn (loc2)) == 0
2707 || GET_CODE (loc2) != JUMP_INSN
2708 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2709 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2710 && uid_loop[INSN_UID (loc)] == target_loop)
2711 break;
2713 if (loc)
2715 rtx cond_label = JUMP_LABEL (p);
2716 rtx new_label = get_label_after (p);
2718 /* Ensure our label doesn't go away. */
2719 LABEL_NUSES (cond_label)++;
2721 /* Verify that uid_loop is large enough and that
2722 we can invert P. */
2723 if (invert_jump (p, new_label, 1))
2725 rtx q, r;
2727 /* If no suitable BARRIER was found, create a suitable
2728 one before TARGET. Since TARGET is a fall through
2729 path, we'll need to insert an jump around our block
2730 and add a BARRIER before TARGET.
2732 This creates an extra unconditional jump outside
2733 the loop. However, the benefits of removing rarely
2734 executed instructions from inside the loop usually
2735 outweighs the cost of the extra unconditional jump
2736 outside the loop. */
2737 if (loc == 0)
2739 rtx temp;
2741 temp = gen_jump (JUMP_LABEL (insn));
2742 temp = emit_jump_insn_before (temp, target);
2743 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2744 LABEL_NUSES (JUMP_LABEL (insn))++;
2745 loc = emit_barrier_before (target);
2748 /* Include the BARRIER after INSN and copy the
2749 block after LOC. */
2750 squeeze_notes (&new_label, &last_insn_to_move);
2751 reorder_insns (new_label, last_insn_to_move, loc);
2753 /* All those insns are now in TARGET_LOOP. */
2754 for (q = new_label;
2755 q != NEXT_INSN (last_insn_to_move);
2756 q = NEXT_INSN (q))
2757 uid_loop[INSN_UID (q)] = target_loop;
2759 /* The label jumped to by INSN is no longer a loop
2760 exit. Unless INSN does not have a label (e.g.,
2761 it is a RETURN insn), search loop->exit_labels
2762 to find its label_ref, and remove it. Also turn
2763 off LABEL_OUTSIDE_LOOP_P bit. */
2764 if (JUMP_LABEL (insn))
2766 for (q = 0, r = this_loop->exit_labels;
2768 q = r, r = LABEL_NEXTREF (r))
2769 if (XEXP (r, 0) == JUMP_LABEL (insn))
2771 LABEL_OUTSIDE_LOOP_P (r) = 0;
2772 if (q)
2773 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2774 else
2775 this_loop->exit_labels = LABEL_NEXTREF (r);
2776 break;
2779 for (loop = this_loop; loop && loop != target_loop;
2780 loop = loop->outer)
2781 loop->exit_count--;
2783 /* If we didn't find it, then something is
2784 wrong. */
2785 if (! r)
2786 abort ();
2789 /* P is now a jump outside the loop, so it must be put
2790 in loop->exit_labels, and marked as such.
2791 The easiest way to do this is to just call
2792 mark_loop_jump again for P. */
2793 mark_loop_jump (PATTERN (p), this_loop);
2795 /* If INSN now jumps to the insn after it,
2796 delete INSN. */
2797 if (JUMP_LABEL (insn) != 0
2798 && (next_real_insn (JUMP_LABEL (insn))
2799 == next_real_insn (insn)))
2800 delete_related_insns (insn);
2803 /* Continue the loop after where the conditional
2804 branch used to jump, since the only branch insn
2805 in the block (if it still remains) is an inter-loop
2806 branch and hence needs no processing. */
2807 insn = NEXT_INSN (cond_label);
2809 if (--LABEL_NUSES (cond_label) == 0)
2810 delete_related_insns (cond_label);
2812 /* This loop will be continued with NEXT_INSN (insn). */
2813 insn = PREV_INSN (insn);
2820 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2821 loops it is contained in, mark the target loop invalid.
2823 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2825 static void
2826 mark_loop_jump (x, loop)
2827 rtx x;
2828 struct loop *loop;
2830 struct loop *dest_loop;
2831 struct loop *outer_loop;
2832 int i;
2834 switch (GET_CODE (x))
2836 case PC:
2837 case USE:
2838 case CLOBBER:
2839 case REG:
2840 case MEM:
2841 case CONST_INT:
2842 case CONST_DOUBLE:
2843 case RETURN:
2844 return;
2846 case CONST:
2847 /* There could be a label reference in here. */
2848 mark_loop_jump (XEXP (x, 0), loop);
2849 return;
2851 case PLUS:
2852 case MINUS:
2853 case MULT:
2854 mark_loop_jump (XEXP (x, 0), loop);
2855 mark_loop_jump (XEXP (x, 1), loop);
2856 return;
2858 case LO_SUM:
2859 /* This may refer to a LABEL_REF or SYMBOL_REF. */
2860 mark_loop_jump (XEXP (x, 1), loop);
2861 return;
2863 case SIGN_EXTEND:
2864 case ZERO_EXTEND:
2865 mark_loop_jump (XEXP (x, 0), loop);
2866 return;
2868 case LABEL_REF:
2869 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
2871 /* Link together all labels that branch outside the loop. This
2872 is used by final_[bg]iv_value and the loop unrolling code. Also
2873 mark this LABEL_REF so we know that this branch should predict
2874 false. */
2876 /* A check to make sure the label is not in an inner nested loop,
2877 since this does not count as a loop exit. */
2878 if (dest_loop)
2880 for (outer_loop = dest_loop; outer_loop;
2881 outer_loop = outer_loop->outer)
2882 if (outer_loop == loop)
2883 break;
2885 else
2886 outer_loop = NULL;
2888 if (loop && ! outer_loop)
2890 LABEL_OUTSIDE_LOOP_P (x) = 1;
2891 LABEL_NEXTREF (x) = loop->exit_labels;
2892 loop->exit_labels = x;
2894 for (outer_loop = loop;
2895 outer_loop && outer_loop != dest_loop;
2896 outer_loop = outer_loop->outer)
2897 outer_loop->exit_count++;
2900 /* If this is inside a loop, but not in the current loop or one enclosed
2901 by it, it invalidates at least one loop. */
2903 if (! dest_loop)
2904 return;
2906 /* We must invalidate every nested loop containing the target of this
2907 label, except those that also contain the jump insn. */
2909 for (; dest_loop; dest_loop = dest_loop->outer)
2911 /* Stop when we reach a loop that also contains the jump insn. */
2912 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
2913 if (dest_loop == outer_loop)
2914 return;
2916 /* If we get here, we know we need to invalidate a loop. */
2917 if (loop_dump_stream && ! dest_loop->invalid)
2918 fprintf (loop_dump_stream,
2919 "\nLoop at %d ignored due to multiple entry points.\n",
2920 INSN_UID (dest_loop->start));
2922 dest_loop->invalid = 1;
2924 return;
2926 case SET:
2927 /* If this is not setting pc, ignore. */
2928 if (SET_DEST (x) == pc_rtx)
2929 mark_loop_jump (SET_SRC (x), loop);
2930 return;
2932 case IF_THEN_ELSE:
2933 mark_loop_jump (XEXP (x, 1), loop);
2934 mark_loop_jump (XEXP (x, 2), loop);
2935 return;
2937 case PARALLEL:
2938 case ADDR_VEC:
2939 for (i = 0; i < XVECLEN (x, 0); i++)
2940 mark_loop_jump (XVECEXP (x, 0, i), loop);
2941 return;
2943 case ADDR_DIFF_VEC:
2944 for (i = 0; i < XVECLEN (x, 1); i++)
2945 mark_loop_jump (XVECEXP (x, 1, i), loop);
2946 return;
2948 default:
2949 /* Strictly speaking this is not a jump into the loop, only a possible
2950 jump out of the loop. However, we have no way to link the destination
2951 of this jump onto the list of exit labels. To be safe we mark this
2952 loop and any containing loops as invalid. */
2953 if (loop)
2955 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
2957 if (loop_dump_stream && ! outer_loop->invalid)
2958 fprintf (loop_dump_stream,
2959 "\nLoop at %d ignored due to unknown exit jump.\n",
2960 INSN_UID (outer_loop->start));
2961 outer_loop->invalid = 1;
2964 return;
2968 /* Return nonzero if there is a label in the range from
2969 insn INSN to and including the insn whose luid is END
2970 INSN must have an assigned luid (i.e., it must not have
2971 been previously created by loop.c). */
2973 static int
2974 labels_in_range_p (insn, end)
2975 rtx insn;
2976 int end;
2978 while (insn && INSN_LUID (insn) <= end)
2980 if (GET_CODE (insn) == CODE_LABEL)
2981 return 1;
2982 insn = NEXT_INSN (insn);
2985 return 0;
2988 /* Record that a memory reference X is being set. */
2990 static void
2991 note_addr_stored (x, y, data)
2992 rtx x;
2993 rtx y ATTRIBUTE_UNUSED;
2994 void *data ATTRIBUTE_UNUSED;
2996 struct loop_info *loop_info = data;
2998 if (x == 0 || GET_CODE (x) != MEM)
2999 return;
3001 /* Count number of memory writes.
3002 This affects heuristics in strength_reduce. */
3003 loop_info->num_mem_sets++;
3005 /* BLKmode MEM means all memory is clobbered. */
3006 if (GET_MODE (x) == BLKmode)
3008 if (RTX_UNCHANGING_P (x))
3009 loop_info->unknown_constant_address_altered = 1;
3010 else
3011 loop_info->unknown_address_altered = 1;
3013 return;
3016 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3017 loop_info->store_mems);
3020 /* X is a value modified by an INSN that references a biv inside a loop
3021 exit test (ie, X is somehow related to the value of the biv). If X
3022 is a pseudo that is used more than once, then the biv is (effectively)
3023 used more than once. DATA is a pointer to a loop_regs structure. */
3025 static void
3026 note_set_pseudo_multiple_uses (x, y, data)
3027 rtx x;
3028 rtx y ATTRIBUTE_UNUSED;
3029 void *data;
3031 struct loop_regs *regs = (struct loop_regs *) data;
3033 if (x == 0)
3034 return;
3036 while (GET_CODE (x) == STRICT_LOW_PART
3037 || GET_CODE (x) == SIGN_EXTRACT
3038 || GET_CODE (x) == ZERO_EXTRACT
3039 || GET_CODE (x) == SUBREG)
3040 x = XEXP (x, 0);
3042 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3043 return;
3045 /* If we do not have usage information, or if we know the register
3046 is used more than once, note that fact for check_dbra_loop. */
3047 if (REGNO (x) >= max_reg_before_loop
3048 || ! regs->array[REGNO (x)].single_usage
3049 || regs->array[REGNO (x)].single_usage == const0_rtx)
3050 regs->multiple_uses = 1;
3053 /* Return nonzero if the rtx X is invariant over the current loop.
3055 The value is 2 if we refer to something only conditionally invariant.
3057 A memory ref is invariant if it is not volatile and does not conflict
3058 with anything stored in `loop_info->store_mems'. */
3061 loop_invariant_p (loop, x)
3062 const struct loop *loop;
3063 rtx x;
3065 struct loop_info *loop_info = LOOP_INFO (loop);
3066 struct loop_regs *regs = LOOP_REGS (loop);
3067 int i;
3068 enum rtx_code code;
3069 const char *fmt;
3070 int conditional = 0;
3071 rtx mem_list_entry;
3073 if (x == 0)
3074 return 1;
3075 code = GET_CODE (x);
3076 switch (code)
3078 case CONST_INT:
3079 case CONST_DOUBLE:
3080 case SYMBOL_REF:
3081 case CONST:
3082 return 1;
3084 case LABEL_REF:
3085 /* A LABEL_REF is normally invariant, however, if we are unrolling
3086 loops, and this label is inside the loop, then it isn't invariant.
3087 This is because each unrolled copy of the loop body will have
3088 a copy of this label. If this was invariant, then an insn loading
3089 the address of this label into a register might get moved outside
3090 the loop, and then each loop body would end up using the same label.
3092 We don't know the loop bounds here though, so just fail for all
3093 labels. */
3094 if (flag_unroll_loops)
3095 return 0;
3096 else
3097 return 1;
3099 case PC:
3100 case CC0:
3101 case UNSPEC_VOLATILE:
3102 return 0;
3104 case REG:
3105 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3106 since the reg might be set by initialization within the loop. */
3108 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3109 || x == arg_pointer_rtx)
3110 && ! current_function_has_nonlocal_goto)
3111 return 1;
3113 if (LOOP_INFO (loop)->has_call
3114 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3115 return 0;
3117 if (regs->array[REGNO (x)].set_in_loop < 0)
3118 return 2;
3120 return regs->array[REGNO (x)].set_in_loop == 0;
3122 case MEM:
3123 /* Volatile memory references must be rejected. Do this before
3124 checking for read-only items, so that volatile read-only items
3125 will be rejected also. */
3126 if (MEM_VOLATILE_P (x))
3127 return 0;
3129 /* See if there is any dependence between a store and this load. */
3130 mem_list_entry = loop_info->store_mems;
3131 while (mem_list_entry)
3133 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3134 x, rtx_varies_p))
3135 return 0;
3137 mem_list_entry = XEXP (mem_list_entry, 1);
3140 /* It's not invalidated by a store in memory
3141 but we must still verify the address is invariant. */
3142 break;
3144 case ASM_OPERANDS:
3145 /* Don't mess with insns declared volatile. */
3146 if (MEM_VOLATILE_P (x))
3147 return 0;
3148 break;
3150 default:
3151 break;
3154 fmt = GET_RTX_FORMAT (code);
3155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3157 if (fmt[i] == 'e')
3159 int tem = loop_invariant_p (loop, XEXP (x, i));
3160 if (tem == 0)
3161 return 0;
3162 if (tem == 2)
3163 conditional = 1;
3165 else if (fmt[i] == 'E')
3167 int j;
3168 for (j = 0; j < XVECLEN (x, i); j++)
3170 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3171 if (tem == 0)
3172 return 0;
3173 if (tem == 2)
3174 conditional = 1;
3180 return 1 + conditional;
3183 /* Return nonzero if all the insns in the loop that set REG
3184 are INSN and the immediately following insns,
3185 and if each of those insns sets REG in an invariant way
3186 (not counting uses of REG in them).
3188 The value is 2 if some of these insns are only conditionally invariant.
3190 We assume that INSN itself is the first set of REG
3191 and that its source is invariant. */
3193 static int
3194 consec_sets_invariant_p (loop, reg, n_sets, insn)
3195 const struct loop *loop;
3196 int n_sets;
3197 rtx reg, insn;
3199 struct loop_regs *regs = LOOP_REGS (loop);
3200 rtx p = insn;
3201 unsigned int regno = REGNO (reg);
3202 rtx temp;
3203 /* Number of sets we have to insist on finding after INSN. */
3204 int count = n_sets - 1;
3205 int old = regs->array[regno].set_in_loop;
3206 int value = 0;
3207 int this;
3209 /* If N_SETS hit the limit, we can't rely on its value. */
3210 if (n_sets == 127)
3211 return 0;
3213 regs->array[regno].set_in_loop = 0;
3215 while (count > 0)
3217 enum rtx_code code;
3218 rtx set;
3220 p = NEXT_INSN (p);
3221 code = GET_CODE (p);
3223 /* If library call, skip to end of it. */
3224 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3225 p = XEXP (temp, 0);
3227 this = 0;
3228 if (code == INSN
3229 && (set = single_set (p))
3230 && GET_CODE (SET_DEST (set)) == REG
3231 && REGNO (SET_DEST (set)) == regno)
3233 this = loop_invariant_p (loop, SET_SRC (set));
3234 if (this != 0)
3235 value |= this;
3236 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3238 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3239 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3240 notes are OK. */
3241 this = (CONSTANT_P (XEXP (temp, 0))
3242 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3243 && loop_invariant_p (loop, XEXP (temp, 0))));
3244 if (this != 0)
3245 value |= this;
3248 if (this != 0)
3249 count--;
3250 else if (code != NOTE)
3252 regs->array[regno].set_in_loop = old;
3253 return 0;
3257 regs->array[regno].set_in_loop = old;
3258 /* If loop_invariant_p ever returned 2, we return 2. */
3259 return 1 + (value & 2);
3262 #if 0
3263 /* I don't think this condition is sufficient to allow INSN
3264 to be moved, so we no longer test it. */
3266 /* Return 1 if all insns in the basic block of INSN and following INSN
3267 that set REG are invariant according to TABLE. */
3269 static int
3270 all_sets_invariant_p (reg, insn, table)
3271 rtx reg, insn;
3272 short *table;
3274 rtx p = insn;
3275 int regno = REGNO (reg);
3277 while (1)
3279 enum rtx_code code;
3280 p = NEXT_INSN (p);
3281 code = GET_CODE (p);
3282 if (code == CODE_LABEL || code == JUMP_INSN)
3283 return 1;
3284 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3285 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3286 && REGNO (SET_DEST (PATTERN (p))) == regno)
3288 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3289 return 0;
3293 #endif /* 0 */
3295 /* Look at all uses (not sets) of registers in X. For each, if it is
3296 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3297 a different insn, set USAGE[REGNO] to const0_rtx. */
3299 static void
3300 find_single_use_in_loop (regs, insn, x)
3301 struct loop_regs *regs;
3302 rtx insn;
3303 rtx x;
3305 enum rtx_code code = GET_CODE (x);
3306 const char *fmt = GET_RTX_FORMAT (code);
3307 int i, j;
3309 if (code == REG)
3310 regs->array[REGNO (x)].single_usage
3311 = (regs->array[REGNO (x)].single_usage != 0
3312 && regs->array[REGNO (x)].single_usage != insn)
3313 ? const0_rtx : insn;
3315 else if (code == SET)
3317 /* Don't count SET_DEST if it is a REG; otherwise count things
3318 in SET_DEST because if a register is partially modified, it won't
3319 show up as a potential movable so we don't care how USAGE is set
3320 for it. */
3321 if (GET_CODE (SET_DEST (x)) != REG)
3322 find_single_use_in_loop (regs, insn, SET_DEST (x));
3323 find_single_use_in_loop (regs, insn, SET_SRC (x));
3325 else
3326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3328 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3329 find_single_use_in_loop (regs, insn, XEXP (x, i));
3330 else if (fmt[i] == 'E')
3331 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3332 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3336 /* Count and record any set in X which is contained in INSN. Update
3337 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3338 in X. */
3340 static void
3341 count_one_set (regs, insn, x, last_set)
3342 struct loop_regs *regs;
3343 rtx insn, x;
3344 rtx *last_set;
3346 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3347 /* Don't move a reg that has an explicit clobber.
3348 It's not worth the pain to try to do it correctly. */
3349 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3351 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3353 rtx dest = SET_DEST (x);
3354 while (GET_CODE (dest) == SUBREG
3355 || GET_CODE (dest) == ZERO_EXTRACT
3356 || GET_CODE (dest) == SIGN_EXTRACT
3357 || GET_CODE (dest) == STRICT_LOW_PART)
3358 dest = XEXP (dest, 0);
3359 if (GET_CODE (dest) == REG)
3361 int regno = REGNO (dest);
3362 /* If this is the first setting of this reg
3363 in current basic block, and it was set before,
3364 it must be set in two basic blocks, so it cannot
3365 be moved out of the loop. */
3366 if (regs->array[regno].set_in_loop > 0
3367 && last_set == 0)
3368 regs->array[regno].may_not_optimize = 1;
3369 /* If this is not first setting in current basic block,
3370 see if reg was used in between previous one and this.
3371 If so, neither one can be moved. */
3372 if (last_set[regno] != 0
3373 && reg_used_between_p (dest, last_set[regno], insn))
3374 regs->array[regno].may_not_optimize = 1;
3375 if (regs->array[regno].set_in_loop < 127)
3376 ++regs->array[regno].set_in_loop;
3377 last_set[regno] = insn;
3382 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3383 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3384 contained in insn INSN is used by any insn that precedes INSN in
3385 cyclic order starting from the loop entry point.
3387 We don't want to use INSN_LUID here because if we restrict INSN to those
3388 that have a valid INSN_LUID, it means we cannot move an invariant out
3389 from an inner loop past two loops. */
3391 static int
3392 loop_reg_used_before_p (loop, set, insn)
3393 const struct loop *loop;
3394 rtx set, insn;
3396 rtx reg = SET_DEST (set);
3397 rtx p;
3399 /* Scan forward checking for register usage. If we hit INSN, we
3400 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3401 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3403 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3404 return 1;
3406 if (p == loop->end)
3407 p = loop->start;
3410 return 0;
3413 /* A "basic induction variable" or biv is a pseudo reg that is set
3414 (within this loop) only by incrementing or decrementing it. */
3415 /* A "general induction variable" or giv is a pseudo reg whose
3416 value is a linear function of a biv. */
3418 /* Bivs are recognized by `basic_induction_var';
3419 Givs by `general_induction_var'. */
3421 /* Communication with routines called via `note_stores'. */
3423 static rtx note_insn;
3425 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3427 static rtx addr_placeholder;
3429 /* ??? Unfinished optimizations, and possible future optimizations,
3430 for the strength reduction code. */
3432 /* ??? The interaction of biv elimination, and recognition of 'constant'
3433 bivs, may cause problems. */
3435 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3436 performance problems.
3438 Perhaps don't eliminate things that can be combined with an addressing
3439 mode. Find all givs that have the same biv, mult_val, and add_val;
3440 then for each giv, check to see if its only use dies in a following
3441 memory address. If so, generate a new memory address and check to see
3442 if it is valid. If it is valid, then store the modified memory address,
3443 otherwise, mark the giv as not done so that it will get its own iv. */
3445 /* ??? Could try to optimize branches when it is known that a biv is always
3446 positive. */
3448 /* ??? When replace a biv in a compare insn, we should replace with closest
3449 giv so that an optimized branch can still be recognized by the combiner,
3450 e.g. the VAX acb insn. */
3452 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3453 was rerun in loop_optimize whenever a register was added or moved.
3454 Also, some of the optimizations could be a little less conservative. */
3456 /* Scan the loop body and call FNCALL for each insn. In the addition to the
3457 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
3458 callback.
3460 NOT_EVERY_ITERATION if current insn is not executed at least once for every
3461 loop iteration except for the last one.
3463 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
3464 loop iteration.
3466 void
3467 for_each_insn_in_loop (loop, fncall)
3468 struct loop *loop;
3469 loop_insn_callback fncall;
3471 /* This is 1 if current insn is not executed at least once for every loop
3472 iteration. */
3473 int not_every_iteration = 0;
3474 int maybe_multiple = 0;
3475 int past_loop_latch = 0;
3476 int loop_depth = 0;
3477 rtx p;
3479 /* If loop_scan_start points to the loop exit test, we have to be wary of
3480 subversive use of gotos inside expression statements. */
3481 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
3482 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
3484 /* Scan through loop to find all possible bivs. */
3486 for (p = next_insn_in_loop (loop, loop->scan_start);
3487 p != NULL_RTX;
3488 p = next_insn_in_loop (loop, p))
3490 p = fncall (loop, p, not_every_iteration, maybe_multiple);
3492 /* Past CODE_LABEL, we get to insns that may be executed multiple
3493 times. The only way we can be sure that they can't is if every
3494 jump insn between here and the end of the loop either
3495 returns, exits the loop, is a jump to a location that is still
3496 behind the label, or is a jump to the loop start. */
3498 if (GET_CODE (p) == CODE_LABEL)
3500 rtx insn = p;
3502 maybe_multiple = 0;
3504 while (1)
3506 insn = NEXT_INSN (insn);
3507 if (insn == loop->scan_start)
3508 break;
3509 if (insn == loop->end)
3511 if (loop->top != 0)
3512 insn = loop->top;
3513 else
3514 break;
3515 if (insn == loop->scan_start)
3516 break;
3519 if (GET_CODE (insn) == JUMP_INSN
3520 && GET_CODE (PATTERN (insn)) != RETURN
3521 && (!any_condjump_p (insn)
3522 || (JUMP_LABEL (insn) != 0
3523 && JUMP_LABEL (insn) != loop->scan_start
3524 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
3526 maybe_multiple = 1;
3527 break;
3532 /* Past a jump, we get to insns for which we can't count
3533 on whether they will be executed during each iteration. */
3534 /* This code appears twice in strength_reduce. There is also similar
3535 code in scan_loop. */
3536 if (GET_CODE (p) == JUMP_INSN
3537 /* If we enter the loop in the middle, and scan around to the
3538 beginning, don't set not_every_iteration for that.
3539 This can be any kind of jump, since we want to know if insns
3540 will be executed if the loop is executed. */
3541 && !(JUMP_LABEL (p) == loop->top
3542 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
3543 && any_uncondjump_p (p))
3544 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
3546 rtx label = 0;
3548 /* If this is a jump outside the loop, then it also doesn't
3549 matter. Check to see if the target of this branch is on the
3550 loop->exits_labels list. */
3552 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3553 if (XEXP (label, 0) == JUMP_LABEL (p))
3554 break;
3556 if (!label)
3557 not_every_iteration = 1;
3560 else if (GET_CODE (p) == NOTE)
3562 /* At the virtual top of a converted loop, insns are again known to
3563 be executed each iteration: logically, the loop begins here
3564 even though the exit code has been duplicated.
3566 Insns are also again known to be executed each iteration at
3567 the LOOP_CONT note. */
3568 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3569 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3570 && loop_depth == 0)
3571 not_every_iteration = 0;
3572 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3573 loop_depth++;
3574 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3575 loop_depth--;
3578 /* Note if we pass a loop latch. If we do, then we can not clear
3579 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3580 a loop since a jump before the last CODE_LABEL may have started
3581 a new loop iteration.
3583 Note that LOOP_TOP is only set for rotated loops and we need
3584 this check for all loops, so compare against the CODE_LABEL
3585 which immediately follows LOOP_START. */
3586 if (GET_CODE (p) == JUMP_INSN
3587 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
3588 past_loop_latch = 1;
3590 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3591 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3592 or not an insn is known to be executed each iteration of the
3593 loop, whether or not any iterations are known to occur.
3595 Therefore, if we have just passed a label and have no more labels
3596 between here and the test insn of the loop, and we have not passed
3597 a jump to the top of the loop, then we know these insns will be
3598 executed each iteration. */
3600 if (not_every_iteration
3601 && !past_loop_latch
3602 && GET_CODE (p) == CODE_LABEL
3603 && no_labels_between_p (p, loop->end)
3604 && loop_insn_first_p (p, loop->cont))
3605 not_every_iteration = 0;
3609 static void
3610 loop_bivs_find (loop)
3611 struct loop *loop;
3613 struct loop_regs *regs = LOOP_REGS (loop);
3614 struct loop_ivs *ivs = LOOP_IVS (loop);
3615 /* Temporary list pointers for traversing ivs->list. */
3616 struct iv_class *bl, **backbl;
3618 ivs->list = 0;
3620 for_each_insn_in_loop (loop, check_insn_for_bivs);
3622 /* Scan ivs->list to remove all regs that proved not to be bivs.
3623 Make a sanity check against regs->n_times_set. */
3624 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
3626 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
3627 /* Above happens if register modified by subreg, etc. */
3628 /* Make sure it is not recognized as a basic induction var: */
3629 || regs->array[bl->regno].n_times_set != bl->biv_count
3630 /* If never incremented, it is invariant that we decided not to
3631 move. So leave it alone. */
3632 || ! bl->incremented)
3634 if (loop_dump_stream)
3635 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
3636 bl->regno,
3637 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
3638 ? "not induction variable"
3639 : (! bl->incremented ? "never incremented"
3640 : "count error")));
3642 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
3643 *backbl = bl->next;
3645 else
3647 backbl = &bl->next;
3649 if (loop_dump_stream)
3650 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
3656 /* Determine how BIVS are initialised by looking through pre-header
3657 extended basic block. */
3658 static void
3659 loop_bivs_init_find (loop)
3660 struct loop *loop;
3662 struct loop_ivs *ivs = LOOP_IVS (loop);
3663 /* Temporary list pointers for traversing ivs->list. */
3664 struct iv_class *bl;
3665 int call_seen;
3666 rtx p;
3668 /* Find initial value for each biv by searching backwards from loop_start,
3669 halting at first label. Also record any test condition. */
3671 call_seen = 0;
3672 for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3674 rtx test;
3676 note_insn = p;
3678 if (GET_CODE (p) == CALL_INSN)
3679 call_seen = 1;
3681 if (INSN_P (p))
3682 note_stores (PATTERN (p), record_initial, ivs);
3684 /* Record any test of a biv that branches around the loop if no store
3685 between it and the start of loop. We only care about tests with
3686 constants and registers and only certain of those. */
3687 if (GET_CODE (p) == JUMP_INSN
3688 && JUMP_LABEL (p) != 0
3689 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
3690 && (test = get_condition_for_loop (loop, p)) != 0
3691 && GET_CODE (XEXP (test, 0)) == REG
3692 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3693 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
3694 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
3695 && bl->init_insn == 0)
3697 /* If an NE test, we have an initial value! */
3698 if (GET_CODE (test) == NE)
3700 bl->init_insn = p;
3701 bl->init_set = gen_rtx_SET (VOIDmode,
3702 XEXP (test, 0), XEXP (test, 1));
3704 else
3705 bl->initial_test = test;
3711 /* Look at the each biv and see if we can say anything better about its
3712 initial value from any initializing insns set up above. (This is done
3713 in two passes to avoid missing SETs in a PARALLEL.) */
3714 static void
3715 loop_bivs_check (loop)
3716 struct loop *loop;
3718 struct loop_ivs *ivs = LOOP_IVS (loop);
3719 /* Temporary list pointers for traversing ivs->list. */
3720 struct iv_class *bl;
3721 struct iv_class **backbl;
3723 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
3725 rtx src;
3726 rtx note;
3728 if (! bl->init_insn)
3729 continue;
3731 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3732 is a constant, use the value of that. */
3733 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3734 && CONSTANT_P (XEXP (note, 0)))
3735 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3736 && CONSTANT_P (XEXP (note, 0))))
3737 src = XEXP (note, 0);
3738 else
3739 src = SET_SRC (bl->init_set);
3741 if (loop_dump_stream)
3742 fprintf (loop_dump_stream,
3743 "Biv %d: initialized at insn %d: initial value ",
3744 bl->regno, INSN_UID (bl->init_insn));
3746 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3747 || GET_MODE (src) == VOIDmode)
3748 && valid_initial_value_p (src, bl->init_insn,
3749 LOOP_INFO (loop)->pre_header_has_call,
3750 loop->start))
3752 bl->initial_value = src;
3754 if (loop_dump_stream)
3756 print_simple_rtl (loop_dump_stream, src);
3757 fputc ('\n', loop_dump_stream);
3760 /* If we can't make it a giv,
3761 let biv keep initial value of "itself". */
3762 else if (loop_dump_stream)
3763 fprintf (loop_dump_stream, "is complex\n");
3768 /* Search the loop for general induction variables. */
3770 static void
3771 loop_givs_find (loop)
3772 struct loop* loop;
3774 for_each_insn_in_loop (loop, check_insn_for_givs);
3778 /* For each giv for which we still don't know whether or not it is
3779 replaceable, check to see if it is replaceable because its final value
3780 can be calculated. */
3782 static void
3783 loop_givs_check (loop)
3784 struct loop *loop;
3786 struct loop_ivs *ivs = LOOP_IVS (loop);
3787 struct iv_class *bl;
3789 for (bl = ivs->list; bl; bl = bl->next)
3791 struct induction *v;
3793 for (v = bl->giv; v; v = v->next_iv)
3794 if (! v->replaceable && ! v->not_replaceable)
3795 check_final_value (loop, v);
3800 /* Return non-zero if it is possible to eliminate the biv BL provided
3801 all givs are reduced. This is possible if either the reg is not
3802 used outside the loop, or we can compute what its final value will
3803 be. */
3805 static int
3806 loop_biv_eliminable_p (loop, bl, threshold, insn_count)
3807 struct loop *loop;
3808 struct iv_class *bl;
3809 int threshold;
3810 int insn_count;
3812 /* For architectures with a decrement_and_branch_until_zero insn,
3813 don't do this if we put a REG_NONNEG note on the endtest for this
3814 biv. */
3816 #ifdef HAVE_decrement_and_branch_until_zero
3817 if (bl->nonneg)
3819 if (loop_dump_stream)
3820 fprintf (loop_dump_stream,
3821 "Cannot eliminate nonneg biv %d.\n", bl->regno);
3822 return 0;
3824 #endif
3826 /* Check that biv is used outside loop or if it has a final value.
3827 Compare against bl->init_insn rather than loop->start. We aren't
3828 concerned with any uses of the biv between init_insn and
3829 loop->start since these won't be affected by the value of the biv
3830 elsewhere in the function, so long as init_insn doesn't use the
3831 biv itself. */
3833 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
3834 && bl->init_insn
3835 && INSN_UID (bl->init_insn) < max_uid_for_loop
3836 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
3837 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3838 || (bl->final_value = final_biv_value (loop, bl)))
3839 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
3841 if (loop_dump_stream)
3843 fprintf (loop_dump_stream,
3844 "Cannot eliminate biv %d.\n",
3845 bl->regno);
3846 fprintf (loop_dump_stream,
3847 "First use: insn %d, last use: insn %d.\n",
3848 REGNO_FIRST_UID (bl->regno),
3849 REGNO_LAST_UID (bl->regno));
3851 return 0;
3855 /* Reduce each giv of BL that we have decided to reduce. */
3857 static void
3858 loop_givs_reduce (loop, bl)
3859 struct loop *loop;
3860 struct iv_class *bl;
3862 struct induction *v;
3864 for (v = bl->giv; v; v = v->next_iv)
3866 struct induction *tv;
3867 if (! v->ignore && v->same == 0)
3869 int auto_inc_opt = 0;
3871 /* If the code for derived givs immediately below has already
3872 allocated a new_reg, we must keep it. */
3873 if (! v->new_reg)
3874 v->new_reg = gen_reg_rtx (v->mode);
3876 #ifdef AUTO_INC_DEC
3877 /* If the target has auto-increment addressing modes, and
3878 this is an address giv, then try to put the increment
3879 immediately after its use, so that flow can create an
3880 auto-increment addressing mode. */
3881 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
3882 && bl->biv->always_executed && ! bl->biv->maybe_multiple
3883 /* We don't handle reversed biv's because bl->biv->insn
3884 does not have a valid INSN_LUID. */
3885 && ! bl->reversed
3886 && v->always_executed && ! v->maybe_multiple
3887 && INSN_UID (v->insn) < max_uid_for_loop)
3889 /* If other giv's have been combined with this one, then
3890 this will work only if all uses of the other giv's occur
3891 before this giv's insn. This is difficult to check.
3893 We simplify this by looking for the common case where
3894 there is one DEST_REG giv, and this giv's insn is the
3895 last use of the dest_reg of that DEST_REG giv. If the
3896 increment occurs after the address giv, then we can
3897 perform the optimization. (Otherwise, the increment
3898 would have to go before other_giv, and we would not be
3899 able to combine it with the address giv to get an
3900 auto-inc address.) */
3901 if (v->combined_with)
3903 struct induction *other_giv = 0;
3905 for (tv = bl->giv; tv; tv = tv->next_iv)
3906 if (tv->same == v)
3908 if (other_giv)
3909 break;
3910 else
3911 other_giv = tv;
3913 if (! tv && other_giv
3914 && REGNO (other_giv->dest_reg) < max_reg_before_loop
3915 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
3916 == INSN_UID (v->insn))
3917 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
3918 auto_inc_opt = 1;
3920 /* Check for case where increment is before the address
3921 giv. Do this test in "loop order". */
3922 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
3923 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
3924 || (INSN_LUID (bl->biv->insn)
3925 > INSN_LUID (loop->scan_start))))
3926 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
3927 && (INSN_LUID (loop->scan_start)
3928 < INSN_LUID (bl->biv->insn))))
3929 auto_inc_opt = -1;
3930 else
3931 auto_inc_opt = 1;
3933 #ifdef HAVE_cc0
3935 rtx prev;
3937 /* We can't put an insn immediately after one setting
3938 cc0, or immediately before one using cc0. */
3939 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
3940 || (auto_inc_opt == -1
3941 && (prev = prev_nonnote_insn (v->insn)) != 0
3942 && INSN_P (prev)
3943 && sets_cc0_p (PATTERN (prev))))
3944 auto_inc_opt = 0;
3946 #endif
3948 if (auto_inc_opt)
3949 v->auto_inc_opt = 1;
3951 #endif
3953 /* For each place where the biv is incremented, add an insn
3954 to increment the new, reduced reg for the giv. */
3955 for (tv = bl->biv; tv; tv = tv->next_iv)
3957 rtx insert_before;
3959 if (! auto_inc_opt)
3960 insert_before = tv->insn;
3961 else if (auto_inc_opt == 1)
3962 insert_before = NEXT_INSN (v->insn);
3963 else
3964 insert_before = v->insn;
3966 if (tv->mult_val == const1_rtx)
3967 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
3968 v->new_reg, v->new_reg,
3969 0, insert_before);
3970 else /* tv->mult_val == const0_rtx */
3971 /* A multiply is acceptable here
3972 since this is presumed to be seldom executed. */
3973 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
3974 v->add_val, v->new_reg,
3975 0, insert_before);
3978 /* Add code at loop start to initialize giv's reduced reg. */
3980 loop_iv_add_mult_hoist (loop,
3981 extend_value_for_giv (v, bl->initial_value),
3982 v->mult_val, v->add_val, v->new_reg);
3988 /* Check for givs whose first use is their definition and whose
3989 last use is the definition of another giv. If so, it is likely
3990 dead and should not be used to derive another giv nor to
3991 eliminate a biv. */
3993 static void
3994 loop_givs_dead_check (loop, bl)
3995 struct loop *loop ATTRIBUTE_UNUSED;
3996 struct iv_class *bl;
3998 struct induction *v;
4000 for (v = bl->giv; v; v = v->next_iv)
4002 if (v->ignore
4003 || (v->same && v->same->ignore))
4004 continue;
4006 if (v->giv_type == DEST_REG
4007 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4009 struct induction *v1;
4011 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4012 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4013 v->maybe_dead = 1;
4019 static void
4020 loop_givs_rescan (loop, bl, reg_map)
4021 struct loop *loop;
4022 struct iv_class *bl;
4023 rtx *reg_map;
4025 struct induction *v;
4027 for (v = bl->giv; v; v = v->next_iv)
4029 if (v->same && v->same->ignore)
4030 v->ignore = 1;
4032 if (v->ignore)
4033 continue;
4035 /* Update expression if this was combined, in case other giv was
4036 replaced. */
4037 if (v->same)
4038 v->new_reg = replace_rtx (v->new_reg,
4039 v->same->dest_reg, v->same->new_reg);
4041 /* See if this register is known to be a pointer to something. If
4042 so, see if we can find the alignment. First see if there is a
4043 destination register that is a pointer. If so, this shares the
4044 alignment too. Next see if we can deduce anything from the
4045 computational information. If not, and this is a DEST_ADDR
4046 giv, at least we know that it's a pointer, though we don't know
4047 the alignment. */
4048 if (GET_CODE (v->new_reg) == REG
4049 && v->giv_type == DEST_REG
4050 && REG_POINTER (v->dest_reg))
4051 mark_reg_pointer (v->new_reg,
4052 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
4053 else if (GET_CODE (v->new_reg) == REG
4054 && REG_POINTER (v->src_reg))
4056 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
4058 if (align == 0
4059 || GET_CODE (v->add_val) != CONST_INT
4060 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
4061 align = 0;
4063 mark_reg_pointer (v->new_reg, align);
4065 else if (GET_CODE (v->new_reg) == REG
4066 && GET_CODE (v->add_val) == REG
4067 && REG_POINTER (v->add_val))
4069 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
4071 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
4072 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
4073 align = 0;
4075 mark_reg_pointer (v->new_reg, align);
4077 else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
4078 mark_reg_pointer (v->new_reg, 0);
4080 if (v->giv_type == DEST_ADDR)
4081 /* Store reduced reg as the address in the memref where we found
4082 this giv. */
4083 validate_change (v->insn, v->location, v->new_reg, 0);
4084 else if (v->replaceable)
4086 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4088 else
4090 /* Not replaceable; emit an insn to set the original giv reg from
4091 the reduced giv, same as above. */
4092 loop_insn_emit_after (loop, 0, v->insn,
4093 gen_move_insn (v->dest_reg, v->new_reg));
4096 /* When a loop is reversed, givs which depend on the reversed
4097 biv, and which are live outside the loop, must be set to their
4098 correct final value. This insn is only needed if the giv is
4099 not replaceable. The correct final value is the same as the
4100 value that the giv starts the reversed loop with. */
4101 if (bl->reversed && ! v->replaceable)
4102 loop_iv_add_mult_sink (loop,
4103 extend_value_for_giv (v, bl->initial_value),
4104 v->mult_val, v->add_val, v->dest_reg);
4105 else if (v->final_value)
4106 loop_insn_sink_or_swim (loop,
4107 gen_move_insn (v->dest_reg, v->final_value));
4109 if (loop_dump_stream)
4111 fprintf (loop_dump_stream, "giv at %d reduced to ",
4112 INSN_UID (v->insn));
4113 print_simple_rtl (loop_dump_stream, v->new_reg);
4114 fprintf (loop_dump_stream, "\n");
4120 static int
4121 loop_giv_reduce_benefit (loop, bl, v, test_reg)
4122 struct loop *loop ATTRIBUTE_UNUSED;
4123 struct iv_class *bl;
4124 struct induction *v;
4125 rtx test_reg;
4127 int add_cost;
4128 int benefit;
4130 benefit = v->benefit;
4131 PUT_MODE (test_reg, v->mode);
4132 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
4133 test_reg, test_reg);
4135 /* Reduce benefit if not replaceable, since we will insert a
4136 move-insn to replace the insn that calculates this giv. Don't do
4137 this unless the giv is a user variable, since it will often be
4138 marked non-replaceable because of the duplication of the exit
4139 code outside the loop. In such a case, the copies we insert are
4140 dead and will be deleted. So they don't have a cost. Similar
4141 situations exist. */
4142 /* ??? The new final_[bg]iv_value code does a much better job of
4143 finding replaceable giv's, and hence this code may no longer be
4144 necessary. */
4145 if (! v->replaceable && ! bl->eliminable
4146 && REG_USERVAR_P (v->dest_reg))
4147 benefit -= copy_cost;
4149 /* Decrease the benefit to count the add-insns that we will insert
4150 to increment the reduced reg for the giv. ??? This can
4151 overestimate the run-time cost of the additional insns, e.g. if
4152 there are multiple basic blocks that increment the biv, but only
4153 one of these blocks is executed during each iteration. There is
4154 no good way to detect cases like this with the current structure
4155 of the loop optimizer. This code is more accurate for
4156 determining code size than run-time benefits. */
4157 benefit -= add_cost * bl->biv_count;
4159 /* Decide whether to strength-reduce this giv or to leave the code
4160 unchanged (recompute it from the biv each time it is used). This
4161 decision can be made independently for each giv. */
4163 #ifdef AUTO_INC_DEC
4164 /* Attempt to guess whether autoincrement will handle some of the
4165 new add insns; if so, increase BENEFIT (undo the subtraction of
4166 add_cost that was done above). */
4167 if (v->giv_type == DEST_ADDR
4168 /* Increasing the benefit is risky, since this is only a guess.
4169 Avoid increasing register pressure in cases where there would
4170 be no other benefit from reducing this giv. */
4171 && benefit > 0
4172 && GET_CODE (v->mult_val) == CONST_INT)
4174 int size = GET_MODE_SIZE (GET_MODE (v->mem));
4176 if (HAVE_POST_INCREMENT
4177 && INTVAL (v->mult_val) == size)
4178 benefit += add_cost * bl->biv_count;
4179 else if (HAVE_PRE_INCREMENT
4180 && INTVAL (v->mult_val) == size)
4181 benefit += add_cost * bl->biv_count;
4182 else if (HAVE_POST_DECREMENT
4183 && -INTVAL (v->mult_val) == size)
4184 benefit += add_cost * bl->biv_count;
4185 else if (HAVE_PRE_DECREMENT
4186 && -INTVAL (v->mult_val) == size)
4187 benefit += add_cost * bl->biv_count;
4189 #endif
4191 return benefit;
4195 /* Free IV structures for LOOP. */
4197 static void
4198 loop_ivs_free (loop)
4199 struct loop *loop;
4201 struct loop_ivs *ivs = LOOP_IVS (loop);
4202 struct iv_class *iv = ivs->list;
4204 free (ivs->regs);
4206 while (iv)
4208 struct iv_class *next = iv->next;
4209 struct induction *induction;
4210 struct induction *next_induction;
4212 for (induction = iv->biv; induction; induction = next_induction)
4214 next_induction = induction->next_iv;
4215 free (induction);
4217 for (induction = iv->giv; induction; induction = next_induction)
4219 next_induction = induction->next_iv;
4220 free (induction);
4223 free (iv);
4224 iv = next;
4229 /* Perform strength reduction and induction variable elimination.
4231 Pseudo registers created during this function will be beyond the
4232 last valid index in several tables including
4233 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
4234 problem here, because the added registers cannot be givs outside of
4235 their loop, and hence will never be reconsidered. But scan_loop
4236 must check regnos to make sure they are in bounds. */
4238 static void
4239 strength_reduce (loop, flags)
4240 struct loop *loop;
4241 int flags;
4243 struct loop_info *loop_info = LOOP_INFO (loop);
4244 struct loop_regs *regs = LOOP_REGS (loop);
4245 struct loop_ivs *ivs = LOOP_IVS (loop);
4246 rtx p;
4247 /* Temporary list pointer for traversing ivs->list. */
4248 struct iv_class *bl;
4249 /* Ratio of extra register life span we can justify
4250 for saving an instruction. More if loop doesn't call subroutines
4251 since in that case saving an insn makes more difference
4252 and more registers are available. */
4253 /* ??? could set this to last value of threshold in move_movables */
4254 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
4255 /* Map of pseudo-register replacements. */
4256 rtx *reg_map = NULL;
4257 int reg_map_size;
4258 int unrolled_insn_copies = 0;
4259 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
4260 int insn_count = count_insns_in_loop (loop);
4262 addr_placeholder = gen_reg_rtx (Pmode);
4264 ivs->n_regs = max_reg_before_loop;
4265 ivs->regs = (struct iv *) xcalloc (ivs->n_regs, sizeof (struct iv));
4267 /* Find all BIVs in loop. */
4268 loop_bivs_find (loop);
4270 /* Exit if there are no bivs. */
4271 if (! ivs->list)
4273 /* Can still unroll the loop anyways, but indicate that there is no
4274 strength reduction info available. */
4275 if (flags & LOOP_UNROLL)
4276 unroll_loop (loop, insn_count, 0);
4278 loop_ivs_free (loop);
4279 return;
4282 /* Determine how BIVS are initialised by looking through pre-header
4283 extended basic block. */
4284 loop_bivs_init_find (loop);
4286 /* Look at the each biv and see if we can say anything better about its
4287 initial value from any initializing insns set up above. */
4288 loop_bivs_check (loop);
4290 /* Search the loop for general induction variables. */
4291 loop_givs_find (loop);
4293 /* Try to calculate and save the number of loop iterations. This is
4294 set to zero if the actual number can not be calculated. This must
4295 be called after all giv's have been identified, since otherwise it may
4296 fail if the iteration variable is a giv. */
4297 loop_iterations (loop);
4299 /* Now for each giv for which we still don't know whether or not it is
4300 replaceable, check to see if it is replaceable because its final value
4301 can be calculated. This must be done after loop_iterations is called,
4302 so that final_giv_value will work correctly. */
4303 loop_givs_check (loop);
4305 /* Try to prove that the loop counter variable (if any) is always
4306 nonnegative; if so, record that fact with a REG_NONNEG note
4307 so that "decrement and branch until zero" insn can be used. */
4308 check_dbra_loop (loop, insn_count);
4310 /* Create reg_map to hold substitutions for replaceable giv regs.
4311 Some givs might have been made from biv increments, so look at
4312 ivs->reg_iv_type for a suitable size. */
4313 reg_map_size = ivs->n_regs;
4314 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
4316 /* Examine each iv class for feasibility of strength reduction/induction
4317 variable elimination. */
4319 for (bl = ivs->list; bl; bl = bl->next)
4321 struct induction *v;
4322 int benefit;
4324 /* Test whether it will be possible to eliminate this biv
4325 provided all givs are reduced. */
4326 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
4328 /* This will be true at the end, if all givs which depend on this
4329 biv have been strength reduced.
4330 We can't (currently) eliminate the biv unless this is so. */
4331 bl->all_reduced = 1;
4333 /* Check each extension dependent giv in this class to see if its
4334 root biv is safe from wrapping in the interior mode. */
4335 check_ext_dependant_givs (bl, loop_info);
4337 /* Combine all giv's for this iv_class. */
4338 combine_givs (regs, bl);
4340 for (v = bl->giv; v; v = v->next_iv)
4342 struct induction *tv;
4344 if (v->ignore || v->same)
4345 continue;
4347 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
4349 /* If an insn is not to be strength reduced, then set its ignore
4350 flag, and clear bl->all_reduced. */
4352 /* A giv that depends on a reversed biv must be reduced if it is
4353 used after the loop exit, otherwise, it would have the wrong
4354 value after the loop exit. To make it simple, just reduce all
4355 of such giv's whether or not we know they are used after the loop
4356 exit. */
4358 if (! flag_reduce_all_givs
4359 && v->lifetime * threshold * benefit < insn_count
4360 && ! bl->reversed)
4362 if (loop_dump_stream)
4363 fprintf (loop_dump_stream,
4364 "giv of insn %d not worth while, %d vs %d.\n",
4365 INSN_UID (v->insn),
4366 v->lifetime * threshold * benefit, insn_count);
4367 v->ignore = 1;
4368 bl->all_reduced = 0;
4370 else
4372 /* Check that we can increment the reduced giv without a
4373 multiply insn. If not, reject it. */
4375 for (tv = bl->biv; tv; tv = tv->next_iv)
4376 if (tv->mult_val == const1_rtx
4377 && ! product_cheap_p (tv->add_val, v->mult_val))
4379 if (loop_dump_stream)
4380 fprintf (loop_dump_stream,
4381 "giv of insn %d: would need a multiply.\n",
4382 INSN_UID (v->insn));
4383 v->ignore = 1;
4384 bl->all_reduced = 0;
4385 break;
4390 /* Check for givs whose first use is their definition and whose
4391 last use is the definition of another giv. If so, it is likely
4392 dead and should not be used to derive another giv nor to
4393 eliminate a biv. */
4394 loop_givs_dead_check (loop, bl);
4396 /* Reduce each giv that we decided to reduce. */
4397 loop_givs_reduce (loop, bl);
4399 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4400 as not reduced.
4402 For each giv register that can be reduced now: if replaceable,
4403 substitute reduced reg wherever the old giv occurs;
4404 else add new move insn "giv_reg = reduced_reg". */
4405 loop_givs_rescan (loop, bl, reg_map);
4407 /* All the givs based on the biv bl have been reduced if they
4408 merit it. */
4410 /* For each giv not marked as maybe dead that has been combined with a
4411 second giv, clear any "maybe dead" mark on that second giv.
4412 v->new_reg will either be or refer to the register of the giv it
4413 combined with.
4415 Doing this clearing avoids problems in biv elimination where
4416 a giv's new_reg is a complex value that can't be put in the
4417 insn but the giv combined with (with a reg as new_reg) is
4418 marked maybe_dead. Since the register will be used in either
4419 case, we'd prefer it be used from the simpler giv. */
4421 for (v = bl->giv; v; v = v->next_iv)
4422 if (! v->maybe_dead && v->same)
4423 v->same->maybe_dead = 0;
4425 /* Try to eliminate the biv, if it is a candidate.
4426 This won't work if ! bl->all_reduced,
4427 since the givs we planned to use might not have been reduced.
4429 We have to be careful that we didn't initially think we could
4430 eliminate this biv because of a giv that we now think may be
4431 dead and shouldn't be used as a biv replacement.
4433 Also, there is the possibility that we may have a giv that looks
4434 like it can be used to eliminate a biv, but the resulting insn
4435 isn't valid. This can happen, for example, on the 88k, where a
4436 JUMP_INSN can compare a register only with zero. Attempts to
4437 replace it with a compare with a constant will fail.
4439 Note that in cases where this call fails, we may have replaced some
4440 of the occurrences of the biv with a giv, but no harm was done in
4441 doing so in the rare cases where it can occur. */
4443 if (bl->all_reduced == 1 && bl->eliminable
4444 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
4446 /* ?? If we created a new test to bypass the loop entirely,
4447 or otherwise drop straight in, based on this test, then
4448 we might want to rewrite it also. This way some later
4449 pass has more hope of removing the initialization of this
4450 biv entirely. */
4452 /* If final_value != 0, then the biv may be used after loop end
4453 and we must emit an insn to set it just in case.
4455 Reversed bivs already have an insn after the loop setting their
4456 value, so we don't need another one. We can't calculate the
4457 proper final value for such a biv here anyways. */
4458 if (bl->final_value && ! bl->reversed)
4459 loop_insn_sink_or_swim (loop, gen_move_insn
4460 (bl->biv->dest_reg, bl->final_value));
4462 if (loop_dump_stream)
4463 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4464 bl->regno);
4468 /* Go through all the instructions in the loop, making all the
4469 register substitutions scheduled in REG_MAP. */
4471 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
4472 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4473 || GET_CODE (p) == CALL_INSN)
4475 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
4476 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
4477 INSN_CODE (p) = -1;
4480 if (loop_info->n_iterations > 0)
4482 /* When we completely unroll a loop we will likely not need the increment
4483 of the loop BIV and we will not need the conditional branch at the
4484 end of the loop. */
4485 unrolled_insn_copies = insn_count - 2;
4487 #ifdef HAVE_cc0
4488 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
4489 need the comparison before the conditional branch at the end of the
4490 loop. */
4491 unrolled_insn_copies -= 1;
4492 #endif
4494 /* We'll need one copy for each loop iteration. */
4495 unrolled_insn_copies *= loop_info->n_iterations;
4497 /* A little slop to account for the ability to remove initialization
4498 code, better CSE, and other secondary benefits of completely
4499 unrolling some loops. */
4500 unrolled_insn_copies -= 1;
4502 /* Clamp the value. */
4503 if (unrolled_insn_copies < 0)
4504 unrolled_insn_copies = 0;
4507 /* Unroll loops from within strength reduction so that we can use the
4508 induction variable information that strength_reduce has already
4509 collected. Always unroll loops that would be as small or smaller
4510 unrolled than when rolled. */
4511 if ((flags & LOOP_UNROLL)
4512 || (loop_info->n_iterations > 0
4513 && unrolled_insn_copies <= insn_count))
4514 unroll_loop (loop, insn_count, 1);
4516 #ifdef HAVE_doloop_end
4517 if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
4518 doloop_optimize (loop);
4519 #endif /* HAVE_doloop_end */
4521 /* In case number of iterations is known, drop branch prediction note
4522 in the branch. Do that only in second loop pass, as loop unrolling
4523 may change the number of iterations performed. */
4524 if ((flags & LOOP_BCT)
4525 && loop_info->n_iterations / loop_info->unroll_number > 1)
4527 int n = loop_info->n_iterations / loop_info->unroll_number;
4528 predict_insn (PREV_INSN (loop->end),
4529 PRED_LOOP_ITERATIONS,
4530 REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
4533 if (loop_dump_stream)
4534 fprintf (loop_dump_stream, "\n");
4536 loop_ivs_free (loop);
4537 if (reg_map)
4538 free (reg_map);
4541 /*Record all basic induction variables calculated in the insn. */
4542 static rtx
4543 check_insn_for_bivs (loop, p, not_every_iteration, maybe_multiple)
4544 struct loop *loop;
4545 rtx p;
4546 int not_every_iteration;
4547 int maybe_multiple;
4549 struct loop_ivs *ivs = LOOP_IVS (loop);
4550 rtx set;
4551 rtx dest_reg;
4552 rtx inc_val;
4553 rtx mult_val;
4554 rtx *location;
4556 if (GET_CODE (p) == INSN
4557 && (set = single_set (p))
4558 && GET_CODE (SET_DEST (set)) == REG)
4560 dest_reg = SET_DEST (set);
4561 if (REGNO (dest_reg) < max_reg_before_loop
4562 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
4563 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
4565 if (basic_induction_var (loop, SET_SRC (set),
4566 GET_MODE (SET_SRC (set)),
4567 dest_reg, p, &inc_val, &mult_val,
4568 &location))
4570 /* It is a possible basic induction variable.
4571 Create and initialize an induction structure for it. */
4573 struct induction *v
4574 = (struct induction *) xmalloc (sizeof (struct induction));
4576 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
4577 not_every_iteration, maybe_multiple);
4578 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
4580 else if (REGNO (dest_reg) < ivs->n_regs)
4581 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
4584 return p;
4587 /* Record all givs calculated in the insn.
4588 A register is a giv if: it is only set once, it is a function of a
4589 biv and a constant (or invariant), and it is not a biv. */
4590 static rtx
4591 check_insn_for_givs (loop, p, not_every_iteration, maybe_multiple)
4592 struct loop *loop;
4593 rtx p;
4594 int not_every_iteration;
4595 int maybe_multiple;
4597 struct loop_regs *regs = LOOP_REGS (loop);
4599 rtx set;
4600 /* Look for a general induction variable in a register. */
4601 if (GET_CODE (p) == INSN
4602 && (set = single_set (p))
4603 && GET_CODE (SET_DEST (set)) == REG
4604 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
4606 rtx src_reg;
4607 rtx dest_reg;
4608 rtx add_val;
4609 rtx mult_val;
4610 rtx ext_val;
4611 int benefit;
4612 rtx regnote = 0;
4613 rtx last_consec_insn;
4615 dest_reg = SET_DEST (set);
4616 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
4617 return p;
4619 if (/* SET_SRC is a giv. */
4620 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
4621 &mult_val, &ext_val, 0, &benefit, VOIDmode)
4622 /* Equivalent expression is a giv. */
4623 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
4624 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
4625 &add_val, &mult_val, &ext_val, 0,
4626 &benefit, VOIDmode)))
4627 /* Don't try to handle any regs made by loop optimization.
4628 We have nothing on them in regno_first_uid, etc. */
4629 && REGNO (dest_reg) < max_reg_before_loop
4630 /* Don't recognize a BASIC_INDUCT_VAR here. */
4631 && dest_reg != src_reg
4632 /* This must be the only place where the register is set. */
4633 && (regs->array[REGNO (dest_reg)].n_times_set == 1
4634 /* or all sets must be consecutive and make a giv. */
4635 || (benefit = consec_sets_giv (loop, benefit, p,
4636 src_reg, dest_reg,
4637 &add_val, &mult_val, &ext_val,
4638 &last_consec_insn))))
4640 struct induction *v
4641 = (struct induction *) xmalloc (sizeof (struct induction));
4643 /* If this is a library call, increase benefit. */
4644 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
4645 benefit += libcall_benefit (p);
4647 /* Skip the consecutive insns, if there are any. */
4648 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
4649 p = last_consec_insn;
4651 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
4652 ext_val, benefit, DEST_REG, not_every_iteration,
4653 maybe_multiple, (rtx*)0);
4658 #ifndef DONT_REDUCE_ADDR
4659 /* Look for givs which are memory addresses. */
4660 /* This resulted in worse code on a VAX 8600. I wonder if it
4661 still does. */
4662 if (GET_CODE (p) == INSN)
4663 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
4664 maybe_multiple);
4665 #endif
4667 /* Update the status of whether giv can derive other givs. This can
4668 change when we pass a label or an insn that updates a biv. */
4669 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4670 || GET_CODE (p) == CODE_LABEL)
4671 update_giv_derive (loop, p);
4672 return p;
4675 /* Return 1 if X is a valid source for an initial value (or as value being
4676 compared against in an initial test).
4678 X must be either a register or constant and must not be clobbered between
4679 the current insn and the start of the loop.
4681 INSN is the insn containing X. */
4683 static int
4684 valid_initial_value_p (x, insn, call_seen, loop_start)
4685 rtx x;
4686 rtx insn;
4687 int call_seen;
4688 rtx loop_start;
4690 if (CONSTANT_P (x))
4691 return 1;
4693 /* Only consider pseudos we know about initialized in insns whose luids
4694 we know. */
4695 if (GET_CODE (x) != REG
4696 || REGNO (x) >= max_reg_before_loop)
4697 return 0;
4699 /* Don't use call-clobbered registers across a call which clobbers it. On
4700 some machines, don't use any hard registers at all. */
4701 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4702 && (SMALL_REGISTER_CLASSES
4703 || (call_used_regs[REGNO (x)] && call_seen)))
4704 return 0;
4706 /* Don't use registers that have been clobbered before the start of the
4707 loop. */
4708 if (reg_set_between_p (x, insn, loop_start))
4709 return 0;
4711 return 1;
4714 /* Scan X for memory refs and check each memory address
4715 as a possible giv. INSN is the insn whose pattern X comes from.
4716 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4717 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
4718 more thanonce in each loop iteration. */
4720 static void
4721 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
4722 const struct loop *loop;
4723 rtx x;
4724 rtx insn;
4725 int not_every_iteration, maybe_multiple;
4727 int i, j;
4728 enum rtx_code code;
4729 const char *fmt;
4731 if (x == 0)
4732 return;
4734 code = GET_CODE (x);
4735 switch (code)
4737 case REG:
4738 case CONST_INT:
4739 case CONST:
4740 case CONST_DOUBLE:
4741 case SYMBOL_REF:
4742 case LABEL_REF:
4743 case PC:
4744 case CC0:
4745 case ADDR_VEC:
4746 case ADDR_DIFF_VEC:
4747 case USE:
4748 case CLOBBER:
4749 return;
4751 case MEM:
4753 rtx src_reg;
4754 rtx add_val;
4755 rtx mult_val;
4756 rtx ext_val;
4757 int benefit;
4759 /* This code used to disable creating GIVs with mult_val == 1 and
4760 add_val == 0. However, this leads to lost optimizations when
4761 it comes time to combine a set of related DEST_ADDR GIVs, since
4762 this one would not be seen. */
4764 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
4765 &mult_val, &ext_val, 1, &benefit,
4766 GET_MODE (x)))
4768 /* Found one; record it. */
4769 struct induction *v
4770 = (struct induction *) xmalloc (sizeof (struct induction));
4772 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
4773 add_val, ext_val, benefit, DEST_ADDR,
4774 not_every_iteration, maybe_multiple, &XEXP (x, 0));
4776 v->mem = x;
4779 return;
4781 default:
4782 break;
4785 /* Recursively scan the subexpressions for other mem refs. */
4787 fmt = GET_RTX_FORMAT (code);
4788 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4789 if (fmt[i] == 'e')
4790 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
4791 maybe_multiple);
4792 else if (fmt[i] == 'E')
4793 for (j = 0; j < XVECLEN (x, i); j++)
4794 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
4795 maybe_multiple);
4798 /* Fill in the data about one biv update.
4799 V is the `struct induction' in which we record the biv. (It is
4800 allocated by the caller, with alloca.)
4801 INSN is the insn that sets it.
4802 DEST_REG is the biv's reg.
4804 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4805 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4806 being set to INC_VAL.
4808 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4809 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4810 can be executed more than once per iteration. If MAYBE_MULTIPLE
4811 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4812 executed exactly once per iteration. */
4814 static void
4815 record_biv (loop, v, insn, dest_reg, inc_val, mult_val, location,
4816 not_every_iteration, maybe_multiple)
4817 struct loop *loop;
4818 struct induction *v;
4819 rtx insn;
4820 rtx dest_reg;
4821 rtx inc_val;
4822 rtx mult_val;
4823 rtx *location;
4824 int not_every_iteration;
4825 int maybe_multiple;
4827 struct loop_ivs *ivs = LOOP_IVS (loop);
4828 struct iv_class *bl;
4830 v->insn = insn;
4831 v->src_reg = dest_reg;
4832 v->dest_reg = dest_reg;
4833 v->mult_val = mult_val;
4834 v->add_val = inc_val;
4835 v->ext_dependant = NULL_RTX;
4836 v->location = location;
4837 v->mode = GET_MODE (dest_reg);
4838 v->always_computable = ! not_every_iteration;
4839 v->always_executed = ! not_every_iteration;
4840 v->maybe_multiple = maybe_multiple;
4842 /* Add this to the reg's iv_class, creating a class
4843 if this is the first incrementation of the reg. */
4845 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
4846 if (bl == 0)
4848 /* Create and initialize new iv_class. */
4850 bl = (struct iv_class *) xmalloc (sizeof (struct iv_class));
4852 bl->regno = REGNO (dest_reg);
4853 bl->biv = 0;
4854 bl->giv = 0;
4855 bl->biv_count = 0;
4856 bl->giv_count = 0;
4858 /* Set initial value to the reg itself. */
4859 bl->initial_value = dest_reg;
4860 bl->final_value = 0;
4861 /* We haven't seen the initializing insn yet */
4862 bl->init_insn = 0;
4863 bl->init_set = 0;
4864 bl->initial_test = 0;
4865 bl->incremented = 0;
4866 bl->eliminable = 0;
4867 bl->nonneg = 0;
4868 bl->reversed = 0;
4869 bl->total_benefit = 0;
4871 /* Add this class to ivs->list. */
4872 bl->next = ivs->list;
4873 ivs->list = bl;
4875 /* Put it in the array of biv register classes. */
4876 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
4879 /* Update IV_CLASS entry for this biv. */
4880 v->next_iv = bl->biv;
4881 bl->biv = v;
4882 bl->biv_count++;
4883 if (mult_val == const1_rtx)
4884 bl->incremented = 1;
4886 if (loop_dump_stream)
4887 loop_biv_dump (v, loop_dump_stream, 0);
4890 /* Fill in the data about one giv.
4891 V is the `struct induction' in which we record the giv. (It is
4892 allocated by the caller, with alloca.)
4893 INSN is the insn that sets it.
4894 BENEFIT estimates the savings from deleting this insn.
4895 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4896 into a register or is used as a memory address.
4898 SRC_REG is the biv reg which the giv is computed from.
4899 DEST_REG is the giv's reg (if the giv is stored in a reg).
4900 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4901 LOCATION points to the place where this giv's value appears in INSN. */
4903 static void
4904 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, ext_val,
4905 benefit, type, not_every_iteration, maybe_multiple, location)
4906 const struct loop *loop;
4907 struct induction *v;
4908 rtx insn;
4909 rtx src_reg;
4910 rtx dest_reg;
4911 rtx mult_val, add_val, ext_val;
4912 int benefit;
4913 enum g_types type;
4914 int not_every_iteration, maybe_multiple;
4915 rtx *location;
4917 struct loop_ivs *ivs = LOOP_IVS (loop);
4918 struct induction *b;
4919 struct iv_class *bl;
4920 rtx set = single_set (insn);
4921 rtx temp;
4923 /* Attempt to prove constantness of the values. Don't let simplity_rtx
4924 undo the MULT canonicalization that we performed earlier. */
4925 temp = simplify_rtx (add_val);
4926 if (temp
4927 && ! (GET_CODE (add_val) == MULT
4928 && GET_CODE (temp) == ASHIFT))
4929 add_val = temp;
4931 v->insn = insn;
4932 v->src_reg = src_reg;
4933 v->giv_type = type;
4934 v->dest_reg = dest_reg;
4935 v->mult_val = mult_val;
4936 v->add_val = add_val;
4937 v->ext_dependant = ext_val;
4938 v->benefit = benefit;
4939 v->location = location;
4940 v->cant_derive = 0;
4941 v->combined_with = 0;
4942 v->maybe_multiple = maybe_multiple;
4943 v->maybe_dead = 0;
4944 v->derive_adjustment = 0;
4945 v->same = 0;
4946 v->ignore = 0;
4947 v->new_reg = 0;
4948 v->final_value = 0;
4949 v->same_insn = 0;
4950 v->auto_inc_opt = 0;
4951 v->unrolled = 0;
4952 v->shared = 0;
4954 /* The v->always_computable field is used in update_giv_derive, to
4955 determine whether a giv can be used to derive another giv. For a
4956 DEST_REG giv, INSN computes a new value for the giv, so its value
4957 isn't computable if INSN insn't executed every iteration.
4958 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4959 it does not compute a new value. Hence the value is always computable
4960 regardless of whether INSN is executed each iteration. */
4962 if (type == DEST_ADDR)
4963 v->always_computable = 1;
4964 else
4965 v->always_computable = ! not_every_iteration;
4967 v->always_executed = ! not_every_iteration;
4969 if (type == DEST_ADDR)
4971 v->mode = GET_MODE (*location);
4972 v->lifetime = 1;
4974 else /* type == DEST_REG */
4976 v->mode = GET_MODE (SET_DEST (set));
4978 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
4980 /* If the lifetime is zero, it means that this register is
4981 really a dead store. So mark this as a giv that can be
4982 ignored. This will not prevent the biv from being eliminated. */
4983 if (v->lifetime == 0)
4984 v->ignore = 1;
4986 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
4987 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
4990 /* Add the giv to the class of givs computed from one biv. */
4992 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
4993 if (bl)
4995 v->next_iv = bl->giv;
4996 bl->giv = v;
4997 /* Don't count DEST_ADDR. This is supposed to count the number of
4998 insns that calculate givs. */
4999 if (type == DEST_REG)
5000 bl->giv_count++;
5001 bl->total_benefit += benefit;
5003 else
5004 /* Fatal error, biv missing for this giv? */
5005 abort ();
5007 if (type == DEST_ADDR)
5008 v->replaceable = 1;
5009 else
5011 /* The giv can be replaced outright by the reduced register only if all
5012 of the following conditions are true:
5013 - the insn that sets the giv is always executed on any iteration
5014 on which the giv is used at all
5015 (there are two ways to deduce this:
5016 either the insn is executed on every iteration,
5017 or all uses follow that insn in the same basic block),
5018 - the giv is not used outside the loop
5019 - no assignments to the biv occur during the giv's lifetime. */
5021 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5022 /* Previous line always fails if INSN was moved by loop opt. */
5023 && REGNO_LAST_LUID (REGNO (dest_reg))
5024 < INSN_LUID (loop->end)
5025 && (! not_every_iteration
5026 || last_use_this_basic_block (dest_reg, insn)))
5028 /* Now check that there are no assignments to the biv within the
5029 giv's lifetime. This requires two separate checks. */
5031 /* Check each biv update, and fail if any are between the first
5032 and last use of the giv.
5034 If this loop contains an inner loop that was unrolled, then
5035 the insn modifying the biv may have been emitted by the loop
5036 unrolling code, and hence does not have a valid luid. Just
5037 mark the biv as not replaceable in this case. It is not very
5038 useful as a biv, because it is used in two different loops.
5039 It is very unlikely that we would be able to optimize the giv
5040 using this biv anyways. */
5042 v->replaceable = 1;
5043 for (b = bl->biv; b; b = b->next_iv)
5045 if (INSN_UID (b->insn) >= max_uid_for_loop
5046 || ((INSN_LUID (b->insn)
5047 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
5048 && (INSN_LUID (b->insn)
5049 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
5051 v->replaceable = 0;
5052 v->not_replaceable = 1;
5053 break;
5057 /* If there are any backwards branches that go from after the
5058 biv update to before it, then this giv is not replaceable. */
5059 if (v->replaceable)
5060 for (b = bl->biv; b; b = b->next_iv)
5061 if (back_branch_in_range_p (loop, b->insn))
5063 v->replaceable = 0;
5064 v->not_replaceable = 1;
5065 break;
5068 else
5070 /* May still be replaceable, we don't have enough info here to
5071 decide. */
5072 v->replaceable = 0;
5073 v->not_replaceable = 0;
5077 /* Record whether the add_val contains a const_int, for later use by
5078 combine_givs. */
5080 rtx tem = add_val;
5082 v->no_const_addval = 1;
5083 if (tem == const0_rtx)
5085 else if (CONSTANT_P (add_val))
5086 v->no_const_addval = 0;
5087 if (GET_CODE (tem) == PLUS)
5089 while (1)
5091 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5092 tem = XEXP (tem, 0);
5093 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5094 tem = XEXP (tem, 1);
5095 else
5096 break;
5098 if (CONSTANT_P (XEXP (tem, 1)))
5099 v->no_const_addval = 0;
5103 if (loop_dump_stream)
5104 loop_giv_dump (v, loop_dump_stream, 0);
5107 /* All this does is determine whether a giv can be made replaceable because
5108 its final value can be calculated. This code can not be part of record_giv
5109 above, because final_giv_value requires that the number of loop iterations
5110 be known, and that can not be accurately calculated until after all givs
5111 have been identified. */
5113 static void
5114 check_final_value (loop, v)
5115 const struct loop *loop;
5116 struct induction *v;
5118 struct loop_ivs *ivs = LOOP_IVS (loop);
5119 struct iv_class *bl;
5120 rtx final_value = 0;
5122 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
5124 /* DEST_ADDR givs will never reach here, because they are always marked
5125 replaceable above in record_giv. */
5127 /* The giv can be replaced outright by the reduced register only if all
5128 of the following conditions are true:
5129 - the insn that sets the giv is always executed on any iteration
5130 on which the giv is used at all
5131 (there are two ways to deduce this:
5132 either the insn is executed on every iteration,
5133 or all uses follow that insn in the same basic block),
5134 - its final value can be calculated (this condition is different
5135 than the one above in record_giv)
5136 - it's not used before the it's set
5137 - no assignments to the biv occur during the giv's lifetime. */
5139 #if 0
5140 /* This is only called now when replaceable is known to be false. */
5141 /* Clear replaceable, so that it won't confuse final_giv_value. */
5142 v->replaceable = 0;
5143 #endif
5145 if ((final_value = final_giv_value (loop, v))
5146 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5148 int biv_increment_seen = 0, before_giv_insn = 0;
5149 rtx p = v->insn;
5150 rtx last_giv_use;
5152 v->replaceable = 1;
5154 /* When trying to determine whether or not a biv increment occurs
5155 during the lifetime of the giv, we can ignore uses of the variable
5156 outside the loop because final_value is true. Hence we can not
5157 use regno_last_uid and regno_first_uid as above in record_giv. */
5159 /* Search the loop to determine whether any assignments to the
5160 biv occur during the giv's lifetime. Start with the insn
5161 that sets the giv, and search around the loop until we come
5162 back to that insn again.
5164 Also fail if there is a jump within the giv's lifetime that jumps
5165 to somewhere outside the lifetime but still within the loop. This
5166 catches spaghetti code where the execution order is not linear, and
5167 hence the above test fails. Here we assume that the giv lifetime
5168 does not extend from one iteration of the loop to the next, so as
5169 to make the test easier. Since the lifetime isn't known yet,
5170 this requires two loops. See also record_giv above. */
5172 last_giv_use = v->insn;
5174 while (1)
5176 p = NEXT_INSN (p);
5177 if (p == loop->end)
5179 before_giv_insn = 1;
5180 p = NEXT_INSN (loop->start);
5182 if (p == v->insn)
5183 break;
5185 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5186 || GET_CODE (p) == CALL_INSN)
5188 /* It is possible for the BIV increment to use the GIV if we
5189 have a cycle. Thus we must be sure to check each insn for
5190 both BIV and GIV uses, and we must check for BIV uses
5191 first. */
5193 if (! biv_increment_seen
5194 && reg_set_p (v->src_reg, PATTERN (p)))
5195 biv_increment_seen = 1;
5197 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5199 if (biv_increment_seen || before_giv_insn)
5201 v->replaceable = 0;
5202 v->not_replaceable = 1;
5203 break;
5205 last_giv_use = p;
5210 /* Now that the lifetime of the giv is known, check for branches
5211 from within the lifetime to outside the lifetime if it is still
5212 replaceable. */
5214 if (v->replaceable)
5216 p = v->insn;
5217 while (1)
5219 p = NEXT_INSN (p);
5220 if (p == loop->end)
5221 p = NEXT_INSN (loop->start);
5222 if (p == last_giv_use)
5223 break;
5225 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5226 && LABEL_NAME (JUMP_LABEL (p))
5227 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5228 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
5229 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5230 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
5232 v->replaceable = 0;
5233 v->not_replaceable = 1;
5235 if (loop_dump_stream)
5236 fprintf (loop_dump_stream,
5237 "Found branch outside giv lifetime.\n");
5239 break;
5244 /* If it is replaceable, then save the final value. */
5245 if (v->replaceable)
5246 v->final_value = final_value;
5249 if (loop_dump_stream && v->replaceable)
5250 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5251 INSN_UID (v->insn), REGNO (v->dest_reg));
5254 /* Update the status of whether a giv can derive other givs.
5256 We need to do something special if there is or may be an update to the biv
5257 between the time the giv is defined and the time it is used to derive
5258 another giv.
5260 In addition, a giv that is only conditionally set is not allowed to
5261 derive another giv once a label has been passed.
5263 The cases we look at are when a label or an update to a biv is passed. */
5265 static void
5266 update_giv_derive (loop, p)
5267 const struct loop *loop;
5268 rtx p;
5270 struct loop_ivs *ivs = LOOP_IVS (loop);
5271 struct iv_class *bl;
5272 struct induction *biv, *giv;
5273 rtx tem;
5274 int dummy;
5276 /* Search all IV classes, then all bivs, and finally all givs.
5278 There are three cases we are concerned with. First we have the situation
5279 of a giv that is only updated conditionally. In that case, it may not
5280 derive any givs after a label is passed.
5282 The second case is when a biv update occurs, or may occur, after the
5283 definition of a giv. For certain biv updates (see below) that are
5284 known to occur between the giv definition and use, we can adjust the
5285 giv definition. For others, or when the biv update is conditional,
5286 we must prevent the giv from deriving any other givs. There are two
5287 sub-cases within this case.
5289 If this is a label, we are concerned with any biv update that is done
5290 conditionally, since it may be done after the giv is defined followed by
5291 a branch here (actually, we need to pass both a jump and a label, but
5292 this extra tracking doesn't seem worth it).
5294 If this is a jump, we are concerned about any biv update that may be
5295 executed multiple times. We are actually only concerned about
5296 backward jumps, but it is probably not worth performing the test
5297 on the jump again here.
5299 If this is a biv update, we must adjust the giv status to show that a
5300 subsequent biv update was performed. If this adjustment cannot be done,
5301 the giv cannot derive further givs. */
5303 for (bl = ivs->list; bl; bl = bl->next)
5304 for (biv = bl->biv; biv; biv = biv->next_iv)
5305 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5306 || biv->insn == p)
5308 for (giv = bl->giv; giv; giv = giv->next_iv)
5310 /* If cant_derive is already true, there is no point in
5311 checking all of these conditions again. */
5312 if (giv->cant_derive)
5313 continue;
5315 /* If this giv is conditionally set and we have passed a label,
5316 it cannot derive anything. */
5317 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5318 giv->cant_derive = 1;
5320 /* Skip givs that have mult_val == 0, since
5321 they are really invariants. Also skip those that are
5322 replaceable, since we know their lifetime doesn't contain
5323 any biv update. */
5324 else if (giv->mult_val == const0_rtx || giv->replaceable)
5325 continue;
5327 /* The only way we can allow this giv to derive another
5328 is if this is a biv increment and we can form the product
5329 of biv->add_val and giv->mult_val. In this case, we will
5330 be able to compute a compensation. */
5331 else if (biv->insn == p)
5333 rtx ext_val_dummy;
5335 tem = 0;
5336 if (biv->mult_val == const1_rtx)
5337 tem = simplify_giv_expr (loop,
5338 gen_rtx_MULT (giv->mode,
5339 biv->add_val,
5340 giv->mult_val),
5341 &ext_val_dummy, &dummy);
5343 if (tem && giv->derive_adjustment)
5344 tem = simplify_giv_expr
5345 (loop,
5346 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
5347 &ext_val_dummy, &dummy);
5349 if (tem)
5350 giv->derive_adjustment = tem;
5351 else
5352 giv->cant_derive = 1;
5354 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5355 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5356 giv->cant_derive = 1;
5361 /* Check whether an insn is an increment legitimate for a basic induction var.
5362 X is the source of insn P, or a part of it.
5363 MODE is the mode in which X should be interpreted.
5365 DEST_REG is the putative biv, also the destination of the insn.
5366 We accept patterns of these forms:
5367 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5368 REG = INVARIANT + REG
5370 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5371 store the additive term into *INC_VAL, and store the place where
5372 we found the additive term into *LOCATION.
5374 If X is an assignment of an invariant into DEST_REG, we set
5375 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5377 We also want to detect a BIV when it corresponds to a variable
5378 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5379 of the variable may be a PLUS that adds a SUBREG of that variable to
5380 an invariant and then sign- or zero-extends the result of the PLUS
5381 into the variable.
5383 Most GIVs in such cases will be in the promoted mode, since that is the
5384 probably the natural computation mode (and almost certainly the mode
5385 used for addresses) on the machine. So we view the pseudo-reg containing
5386 the variable as the BIV, as if it were simply incremented.
5388 Note that treating the entire pseudo as a BIV will result in making
5389 simple increments to any GIVs based on it. However, if the variable
5390 overflows in its declared mode but not its promoted mode, the result will
5391 be incorrect. This is acceptable if the variable is signed, since
5392 overflows in such cases are undefined, but not if it is unsigned, since
5393 those overflows are defined. So we only check for SIGN_EXTEND and
5394 not ZERO_EXTEND.
5396 If we cannot find a biv, we return 0. */
5398 static int
5399 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val, location)
5400 const struct loop *loop;
5401 rtx x;
5402 enum machine_mode mode;
5403 rtx dest_reg;
5404 rtx p;
5405 rtx *inc_val;
5406 rtx *mult_val;
5407 rtx **location;
5409 enum rtx_code code;
5410 rtx *argp, arg;
5411 rtx insn, set = 0;
5413 code = GET_CODE (x);
5414 *location = NULL;
5415 switch (code)
5417 case PLUS:
5418 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5419 || (GET_CODE (XEXP (x, 0)) == SUBREG
5420 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5421 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5423 argp = &XEXP (x, 1);
5425 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5426 || (GET_CODE (XEXP (x, 1)) == SUBREG
5427 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5428 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5430 argp = &XEXP (x, 0);
5432 else
5433 return 0;
5435 arg = *argp;
5436 if (loop_invariant_p (loop, arg) != 1)
5437 return 0;
5439 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5440 *mult_val = const1_rtx;
5441 *location = argp;
5442 return 1;
5444 case SUBREG:
5445 /* If this is a SUBREG for a promoted variable, check the inner
5446 value. */
5447 if (SUBREG_PROMOTED_VAR_P (x))
5448 return basic_induction_var (loop, SUBREG_REG (x),
5449 GET_MODE (SUBREG_REG (x)),
5450 dest_reg, p, inc_val, mult_val, location);
5451 return 0;
5453 case REG:
5454 /* If this register is assigned in a previous insn, look at its
5455 source, but don't go outside the loop or past a label. */
5457 /* If this sets a register to itself, we would repeat any previous
5458 biv increment if we applied this strategy blindly. */
5459 if (rtx_equal_p (dest_reg, x))
5460 return 0;
5462 insn = p;
5463 while (1)
5465 rtx dest;
5468 insn = PREV_INSN (insn);
5470 while (insn && GET_CODE (insn) == NOTE
5471 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5473 if (!insn)
5474 break;
5475 set = single_set (insn);
5476 if (set == 0)
5477 break;
5478 dest = SET_DEST (set);
5479 if (dest == x
5480 || (GET_CODE (dest) == SUBREG
5481 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
5482 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
5483 && SUBREG_REG (dest) == x))
5484 return basic_induction_var (loop, SET_SRC (set),
5485 (GET_MODE (SET_SRC (set)) == VOIDmode
5486 ? GET_MODE (x)
5487 : GET_MODE (SET_SRC (set))),
5488 dest_reg, insn,
5489 inc_val, mult_val, location);
5491 while (GET_CODE (dest) == SIGN_EXTRACT
5492 || GET_CODE (dest) == ZERO_EXTRACT
5493 || GET_CODE (dest) == SUBREG
5494 || GET_CODE (dest) == STRICT_LOW_PART)
5495 dest = XEXP (dest, 0);
5496 if (dest == x)
5497 break;
5499 /* Fall through. */
5501 /* Can accept constant setting of biv only when inside inner most loop.
5502 Otherwise, a biv of an inner loop may be incorrectly recognized
5503 as a biv of the outer loop,
5504 causing code to be moved INTO the inner loop. */
5505 case MEM:
5506 if (loop_invariant_p (loop, x) != 1)
5507 return 0;
5508 case CONST_INT:
5509 case SYMBOL_REF:
5510 case CONST:
5511 /* convert_modes aborts if we try to convert to or from CCmode, so just
5512 exclude that case. It is very unlikely that a condition code value
5513 would be a useful iterator anyways. */
5514 if (loop->level == 1
5515 && GET_MODE_CLASS (mode) != MODE_CC
5516 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
5518 /* Possible bug here? Perhaps we don't know the mode of X. */
5519 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5520 *mult_val = const0_rtx;
5521 return 1;
5523 else
5524 return 0;
5526 case SIGN_EXTEND:
5527 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5528 dest_reg, p, inc_val, mult_val, location);
5530 case ASHIFTRT:
5531 /* Similar, since this can be a sign extension. */
5532 for (insn = PREV_INSN (p);
5533 (insn && GET_CODE (insn) == NOTE
5534 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5535 insn = PREV_INSN (insn))
5538 if (insn)
5539 set = single_set (insn);
5541 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
5542 && set && SET_DEST (set) == XEXP (x, 0)
5543 && GET_CODE (XEXP (x, 1)) == CONST_INT
5544 && INTVAL (XEXP (x, 1)) >= 0
5545 && GET_CODE (SET_SRC (set)) == ASHIFT
5546 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5547 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
5548 GET_MODE (XEXP (x, 0)),
5549 dest_reg, insn, inc_val, mult_val,
5550 location);
5551 return 0;
5553 default:
5554 return 0;
5558 /* A general induction variable (giv) is any quantity that is a linear
5559 function of a basic induction variable,
5560 i.e. giv = biv * mult_val + add_val.
5561 The coefficients can be any loop invariant quantity.
5562 A giv need not be computed directly from the biv;
5563 it can be computed by way of other givs. */
5565 /* Determine whether X computes a giv.
5566 If it does, return a nonzero value
5567 which is the benefit from eliminating the computation of X;
5568 set *SRC_REG to the register of the biv that it is computed from;
5569 set *ADD_VAL and *MULT_VAL to the coefficients,
5570 such that the value of X is biv * mult + add; */
5572 static int
5573 general_induction_var (loop, x, src_reg, add_val, mult_val, ext_val,
5574 is_addr, pbenefit, addr_mode)
5575 const struct loop *loop;
5576 rtx x;
5577 rtx *src_reg;
5578 rtx *add_val;
5579 rtx *mult_val;
5580 rtx *ext_val;
5581 int is_addr;
5582 int *pbenefit;
5583 enum machine_mode addr_mode;
5585 struct loop_ivs *ivs = LOOP_IVS (loop);
5586 rtx orig_x = x;
5588 /* If this is an invariant, forget it, it isn't a giv. */
5589 if (loop_invariant_p (loop, x) == 1)
5590 return 0;
5592 *pbenefit = 0;
5593 *ext_val = NULL_RTX;
5594 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
5595 if (x == 0)
5596 return 0;
5598 switch (GET_CODE (x))
5600 case USE:
5601 case CONST_INT:
5602 /* Since this is now an invariant and wasn't before, it must be a giv
5603 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5604 with. */
5605 *src_reg = ivs->list->biv->dest_reg;
5606 *mult_val = const0_rtx;
5607 *add_val = x;
5608 break;
5610 case REG:
5611 /* This is equivalent to a BIV. */
5612 *src_reg = x;
5613 *mult_val = const1_rtx;
5614 *add_val = const0_rtx;
5615 break;
5617 case PLUS:
5618 /* Either (plus (biv) (invar)) or
5619 (plus (mult (biv) (invar_1)) (invar_2)). */
5620 if (GET_CODE (XEXP (x, 0)) == MULT)
5622 *src_reg = XEXP (XEXP (x, 0), 0);
5623 *mult_val = XEXP (XEXP (x, 0), 1);
5625 else
5627 *src_reg = XEXP (x, 0);
5628 *mult_val = const1_rtx;
5630 *add_val = XEXP (x, 1);
5631 break;
5633 case MULT:
5634 /* ADD_VAL is zero. */
5635 *src_reg = XEXP (x, 0);
5636 *mult_val = XEXP (x, 1);
5637 *add_val = const0_rtx;
5638 break;
5640 default:
5641 abort ();
5644 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5645 unless they are CONST_INT). */
5646 if (GET_CODE (*add_val) == USE)
5647 *add_val = XEXP (*add_val, 0);
5648 if (GET_CODE (*mult_val) == USE)
5649 *mult_val = XEXP (*mult_val, 0);
5651 if (is_addr)
5652 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
5653 else
5654 *pbenefit += rtx_cost (orig_x, SET);
5656 /* Always return true if this is a giv so it will be detected as such,
5657 even if the benefit is zero or negative. This allows elimination
5658 of bivs that might otherwise not be eliminated. */
5659 return 1;
5662 /* Given an expression, X, try to form it as a linear function of a biv.
5663 We will canonicalize it to be of the form
5664 (plus (mult (BIV) (invar_1))
5665 (invar_2))
5666 with possible degeneracies.
5668 The invariant expressions must each be of a form that can be used as a
5669 machine operand. We surround then with a USE rtx (a hack, but localized
5670 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5671 routine; it is the caller's responsibility to strip them.
5673 If no such canonicalization is possible (i.e., two biv's are used or an
5674 expression that is neither invariant nor a biv or giv), this routine
5675 returns 0.
5677 For a non-zero return, the result will have a code of CONST_INT, USE,
5678 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5680 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5682 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
5683 static rtx sge_plus_constant PARAMS ((rtx, rtx));
5685 static rtx
5686 simplify_giv_expr (loop, x, ext_val, benefit)
5687 const struct loop *loop;
5688 rtx x;
5689 rtx *ext_val;
5690 int *benefit;
5692 struct loop_ivs *ivs = LOOP_IVS (loop);
5693 struct loop_regs *regs = LOOP_REGS (loop);
5694 enum machine_mode mode = GET_MODE (x);
5695 rtx arg0, arg1;
5696 rtx tem;
5698 /* If this is not an integer mode, or if we cannot do arithmetic in this
5699 mode, this can't be a giv. */
5700 if (mode != VOIDmode
5701 && (GET_MODE_CLASS (mode) != MODE_INT
5702 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5703 return NULL_RTX;
5705 switch (GET_CODE (x))
5707 case PLUS:
5708 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
5709 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
5710 if (arg0 == 0 || arg1 == 0)
5711 return NULL_RTX;
5713 /* Put constant last, CONST_INT last if both constant. */
5714 if ((GET_CODE (arg0) == USE
5715 || GET_CODE (arg0) == CONST_INT)
5716 && ! ((GET_CODE (arg0) == USE
5717 && GET_CODE (arg1) == USE)
5718 || GET_CODE (arg1) == CONST_INT))
5719 tem = arg0, arg0 = arg1, arg1 = tem;
5721 /* Handle addition of zero, then addition of an invariant. */
5722 if (arg1 == const0_rtx)
5723 return arg0;
5724 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5725 switch (GET_CODE (arg0))
5727 case CONST_INT:
5728 case USE:
5729 /* Adding two invariants must result in an invariant, so enclose
5730 addition operation inside a USE and return it. */
5731 if (GET_CODE (arg0) == USE)
5732 arg0 = XEXP (arg0, 0);
5733 if (GET_CODE (arg1) == USE)
5734 arg1 = XEXP (arg1, 0);
5736 if (GET_CODE (arg0) == CONST_INT)
5737 tem = arg0, arg0 = arg1, arg1 = tem;
5738 if (GET_CODE (arg1) == CONST_INT)
5739 tem = sge_plus_constant (arg0, arg1);
5740 else
5741 tem = sge_plus (mode, arg0, arg1);
5743 if (GET_CODE (tem) != CONST_INT)
5744 tem = gen_rtx_USE (mode, tem);
5745 return tem;
5747 case REG:
5748 case MULT:
5749 /* biv + invar or mult + invar. Return sum. */
5750 return gen_rtx_PLUS (mode, arg0, arg1);
5752 case PLUS:
5753 /* (a + invar_1) + invar_2. Associate. */
5754 return
5755 simplify_giv_expr (loop,
5756 gen_rtx_PLUS (mode,
5757 XEXP (arg0, 0),
5758 gen_rtx_PLUS (mode,
5759 XEXP (arg0, 1),
5760 arg1)),
5761 ext_val, benefit);
5763 default:
5764 abort ();
5767 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5768 MULT to reduce cases. */
5769 if (GET_CODE (arg0) == REG)
5770 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
5771 if (GET_CODE (arg1) == REG)
5772 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
5774 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5775 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5776 Recurse to associate the second PLUS. */
5777 if (GET_CODE (arg1) == MULT)
5778 tem = arg0, arg0 = arg1, arg1 = tem;
5780 if (GET_CODE (arg1) == PLUS)
5781 return
5782 simplify_giv_expr (loop,
5783 gen_rtx_PLUS (mode,
5784 gen_rtx_PLUS (mode, arg0,
5785 XEXP (arg1, 0)),
5786 XEXP (arg1, 1)),
5787 ext_val, benefit);
5789 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5790 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5791 return NULL_RTX;
5793 if (!rtx_equal_p (arg0, arg1))
5794 return NULL_RTX;
5796 return simplify_giv_expr (loop,
5797 gen_rtx_MULT (mode,
5798 XEXP (arg0, 0),
5799 gen_rtx_PLUS (mode,
5800 XEXP (arg0, 1),
5801 XEXP (arg1, 1))),
5802 ext_val, benefit);
5804 case MINUS:
5805 /* Handle "a - b" as "a + b * (-1)". */
5806 return simplify_giv_expr (loop,
5807 gen_rtx_PLUS (mode,
5808 XEXP (x, 0),
5809 gen_rtx_MULT (mode,
5810 XEXP (x, 1),
5811 constm1_rtx)),
5812 ext_val, benefit);
5814 case MULT:
5815 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
5816 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
5817 if (arg0 == 0 || arg1 == 0)
5818 return NULL_RTX;
5820 /* Put constant last, CONST_INT last if both constant. */
5821 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5822 && GET_CODE (arg1) != CONST_INT)
5823 tem = arg0, arg0 = arg1, arg1 = tem;
5825 /* If second argument is not now constant, not giv. */
5826 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5827 return NULL_RTX;
5829 /* Handle multiply by 0 or 1. */
5830 if (arg1 == const0_rtx)
5831 return const0_rtx;
5833 else if (arg1 == const1_rtx)
5834 return arg0;
5836 switch (GET_CODE (arg0))
5838 case REG:
5839 /* biv * invar. Done. */
5840 return gen_rtx_MULT (mode, arg0, arg1);
5842 case CONST_INT:
5843 /* Product of two constants. */
5844 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5846 case USE:
5847 /* invar * invar is a giv, but attempt to simplify it somehow. */
5848 if (GET_CODE (arg1) != CONST_INT)
5849 return NULL_RTX;
5851 arg0 = XEXP (arg0, 0);
5852 if (GET_CODE (arg0) == MULT)
5854 /* (invar_0 * invar_1) * invar_2. Associate. */
5855 return simplify_giv_expr (loop,
5856 gen_rtx_MULT (mode,
5857 XEXP (arg0, 0),
5858 gen_rtx_MULT (mode,
5859 XEXP (arg0,
5861 arg1)),
5862 ext_val, benefit);
5864 /* Porpagate the MULT expressions to the intermost nodes. */
5865 else if (GET_CODE (arg0) == PLUS)
5867 /* (invar_0 + invar_1) * invar_2. Distribute. */
5868 return simplify_giv_expr (loop,
5869 gen_rtx_PLUS (mode,
5870 gen_rtx_MULT (mode,
5871 XEXP (arg0,
5873 arg1),
5874 gen_rtx_MULT (mode,
5875 XEXP (arg0,
5877 arg1)),
5878 ext_val, benefit);
5880 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
5882 case MULT:
5883 /* (a * invar_1) * invar_2. Associate. */
5884 return simplify_giv_expr (loop,
5885 gen_rtx_MULT (mode,
5886 XEXP (arg0, 0),
5887 gen_rtx_MULT (mode,
5888 XEXP (arg0, 1),
5889 arg1)),
5890 ext_val, benefit);
5892 case PLUS:
5893 /* (a + invar_1) * invar_2. Distribute. */
5894 return simplify_giv_expr (loop,
5895 gen_rtx_PLUS (mode,
5896 gen_rtx_MULT (mode,
5897 XEXP (arg0, 0),
5898 arg1),
5899 gen_rtx_MULT (mode,
5900 XEXP (arg0, 1),
5901 arg1)),
5902 ext_val, benefit);
5904 default:
5905 abort ();
5908 case ASHIFT:
5909 /* Shift by constant is multiply by power of two. */
5910 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5911 return 0;
5913 return
5914 simplify_giv_expr (loop,
5915 gen_rtx_MULT (mode,
5916 XEXP (x, 0),
5917 GEN_INT ((HOST_WIDE_INT) 1
5918 << INTVAL (XEXP (x, 1)))),
5919 ext_val, benefit);
5921 case NEG:
5922 /* "-a" is "a * (-1)" */
5923 return simplify_giv_expr (loop,
5924 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
5925 ext_val, benefit);
5927 case NOT:
5928 /* "~a" is "-a - 1". Silly, but easy. */
5929 return simplify_giv_expr (loop,
5930 gen_rtx_MINUS (mode,
5931 gen_rtx_NEG (mode, XEXP (x, 0)),
5932 const1_rtx),
5933 ext_val, benefit);
5935 case USE:
5936 /* Already in proper form for invariant. */
5937 return x;
5939 case SIGN_EXTEND:
5940 case ZERO_EXTEND:
5941 case TRUNCATE:
5942 /* Conditionally recognize extensions of simple IVs. After we've
5943 computed loop traversal counts and verified the range of the
5944 source IV, we'll reevaluate this as a GIV. */
5945 if (*ext_val == NULL_RTX)
5947 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
5948 if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
5950 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
5951 return arg0;
5954 goto do_default;
5956 case REG:
5957 /* If this is a new register, we can't deal with it. */
5958 if (REGNO (x) >= max_reg_before_loop)
5959 return 0;
5961 /* Check for biv or giv. */
5962 switch (REG_IV_TYPE (ivs, REGNO (x)))
5964 case BASIC_INDUCT:
5965 return x;
5966 case GENERAL_INDUCT:
5968 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
5970 /* Form expression from giv and add benefit. Ensure this giv
5971 can derive another and subtract any needed adjustment if so. */
5973 /* Increasing the benefit here is risky. The only case in which it
5974 is arguably correct is if this is the only use of V. In other
5975 cases, this will artificially inflate the benefit of the current
5976 giv, and lead to suboptimal code. Thus, it is disabled, since
5977 potentially not reducing an only marginally beneficial giv is
5978 less harmful than reducing many givs that are not really
5979 beneficial. */
5981 rtx single_use = regs->array[REGNO (x)].single_usage;
5982 if (single_use && single_use != const0_rtx)
5983 *benefit += v->benefit;
5986 if (v->cant_derive)
5987 return 0;
5989 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
5990 v->src_reg, v->mult_val),
5991 v->add_val);
5993 if (v->derive_adjustment)
5994 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
5995 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
5996 if (*ext_val)
5998 if (!v->ext_dependant)
5999 return arg0;
6001 else
6003 *ext_val = v->ext_dependant;
6004 return arg0;
6006 return 0;
6009 default:
6010 do_default:
6011 /* If it isn't an induction variable, and it is invariant, we
6012 may be able to simplify things further by looking through
6013 the bits we just moved outside the loop. */
6014 if (loop_invariant_p (loop, x) == 1)
6016 struct movable *m;
6017 struct loop_movables *movables = LOOP_MOVABLES (loop);
6019 for (m = movables->head; m; m = m->next)
6020 if (rtx_equal_p (x, m->set_dest))
6022 /* Ok, we found a match. Substitute and simplify. */
6024 /* If we match another movable, we must use that, as
6025 this one is going away. */
6026 if (m->match)
6027 return simplify_giv_expr (loop, m->match->set_dest,
6028 ext_val, benefit);
6030 /* If consec is non-zero, this is a member of a group of
6031 instructions that were moved together. We handle this
6032 case only to the point of seeking to the last insn and
6033 looking for a REG_EQUAL. Fail if we don't find one. */
6034 if (m->consec != 0)
6036 int i = m->consec;
6037 tem = m->insn;
6040 tem = NEXT_INSN (tem);
6042 while (--i > 0);
6044 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6045 if (tem)
6046 tem = XEXP (tem, 0);
6048 else
6050 tem = single_set (m->insn);
6051 if (tem)
6052 tem = SET_SRC (tem);
6055 if (tem)
6057 /* What we are most interested in is pointer
6058 arithmetic on invariants -- only take
6059 patterns we may be able to do something with. */
6060 if (GET_CODE (tem) == PLUS
6061 || GET_CODE (tem) == MULT
6062 || GET_CODE (tem) == ASHIFT
6063 || GET_CODE (tem) == CONST_INT
6064 || GET_CODE (tem) == SYMBOL_REF)
6066 tem = simplify_giv_expr (loop, tem, ext_val,
6067 benefit);
6068 if (tem)
6069 return tem;
6071 else if (GET_CODE (tem) == CONST
6072 && GET_CODE (XEXP (tem, 0)) == PLUS
6073 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6074 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6076 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6077 ext_val, benefit);
6078 if (tem)
6079 return tem;
6082 break;
6085 break;
6088 /* Fall through to general case. */
6089 default:
6090 /* If invariant, return as USE (unless CONST_INT).
6091 Otherwise, not giv. */
6092 if (GET_CODE (x) == USE)
6093 x = XEXP (x, 0);
6095 if (loop_invariant_p (loop, x) == 1)
6097 if (GET_CODE (x) == CONST_INT)
6098 return x;
6099 if (GET_CODE (x) == CONST
6100 && GET_CODE (XEXP (x, 0)) == PLUS
6101 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6102 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6103 x = XEXP (x, 0);
6104 return gen_rtx_USE (mode, x);
6106 else
6107 return 0;
6111 /* This routine folds invariants such that there is only ever one
6112 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6114 static rtx
6115 sge_plus_constant (x, c)
6116 rtx x, c;
6118 if (GET_CODE (x) == CONST_INT)
6119 return GEN_INT (INTVAL (x) + INTVAL (c));
6120 else if (GET_CODE (x) != PLUS)
6121 return gen_rtx_PLUS (GET_MODE (x), x, c);
6122 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6124 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6125 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6127 else if (GET_CODE (XEXP (x, 0)) == PLUS
6128 || GET_CODE (XEXP (x, 1)) != PLUS)
6130 return gen_rtx_PLUS (GET_MODE (x),
6131 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6133 else
6135 return gen_rtx_PLUS (GET_MODE (x),
6136 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6140 static rtx
6141 sge_plus (mode, x, y)
6142 enum machine_mode mode;
6143 rtx x, y;
6145 while (GET_CODE (y) == PLUS)
6147 rtx a = XEXP (y, 0);
6148 if (GET_CODE (a) == CONST_INT)
6149 x = sge_plus_constant (x, a);
6150 else
6151 x = gen_rtx_PLUS (mode, x, a);
6152 y = XEXP (y, 1);
6154 if (GET_CODE (y) == CONST_INT)
6155 x = sge_plus_constant (x, y);
6156 else
6157 x = gen_rtx_PLUS (mode, x, y);
6158 return x;
6161 /* Help detect a giv that is calculated by several consecutive insns;
6162 for example,
6163 giv = biv * M
6164 giv = giv + A
6165 The caller has already identified the first insn P as having a giv as dest;
6166 we check that all other insns that set the same register follow
6167 immediately after P, that they alter nothing else,
6168 and that the result of the last is still a giv.
6170 The value is 0 if the reg set in P is not really a giv.
6171 Otherwise, the value is the amount gained by eliminating
6172 all the consecutive insns that compute the value.
6174 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6175 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6177 The coefficients of the ultimate giv value are stored in
6178 *MULT_VAL and *ADD_VAL. */
6180 static int
6181 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
6182 add_val, mult_val, ext_val, last_consec_insn)
6183 const struct loop *loop;
6184 int first_benefit;
6185 rtx p;
6186 rtx src_reg;
6187 rtx dest_reg;
6188 rtx *add_val;
6189 rtx *mult_val;
6190 rtx *ext_val;
6191 rtx *last_consec_insn;
6193 struct loop_ivs *ivs = LOOP_IVS (loop);
6194 struct loop_regs *regs = LOOP_REGS (loop);
6195 int count;
6196 enum rtx_code code;
6197 int benefit;
6198 rtx temp;
6199 rtx set;
6201 /* Indicate that this is a giv so that we can update the value produced in
6202 each insn of the multi-insn sequence.
6204 This induction structure will be used only by the call to
6205 general_induction_var below, so we can allocate it on our stack.
6206 If this is a giv, our caller will replace the induct var entry with
6207 a new induction structure. */
6208 struct induction *v;
6210 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
6211 return 0;
6213 v = (struct induction *) alloca (sizeof (struct induction));
6214 v->src_reg = src_reg;
6215 v->mult_val = *mult_val;
6216 v->add_val = *add_val;
6217 v->benefit = first_benefit;
6218 v->cant_derive = 0;
6219 v->derive_adjustment = 0;
6220 v->ext_dependant = NULL_RTX;
6222 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
6223 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
6225 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
6227 while (count > 0)
6229 p = NEXT_INSN (p);
6230 code = GET_CODE (p);
6232 /* If libcall, skip to end of call sequence. */
6233 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6234 p = XEXP (temp, 0);
6236 if (code == INSN
6237 && (set = single_set (p))
6238 && GET_CODE (SET_DEST (set)) == REG
6239 && SET_DEST (set) == dest_reg
6240 && (general_induction_var (loop, SET_SRC (set), &src_reg,
6241 add_val, mult_val, ext_val, 0,
6242 &benefit, VOIDmode)
6243 /* Giv created by equivalent expression. */
6244 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6245 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
6246 add_val, mult_val, ext_val, 0,
6247 &benefit, VOIDmode)))
6248 && src_reg == v->src_reg)
6250 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6251 benefit += libcall_benefit (p);
6253 count--;
6254 v->mult_val = *mult_val;
6255 v->add_val = *add_val;
6256 v->benefit += benefit;
6258 else if (code != NOTE)
6260 /* Allow insns that set something other than this giv to a
6261 constant. Such insns are needed on machines which cannot
6262 include long constants and should not disqualify a giv. */
6263 if (code == INSN
6264 && (set = single_set (p))
6265 && SET_DEST (set) != dest_reg
6266 && CONSTANT_P (SET_SRC (set)))
6267 continue;
6269 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
6270 return 0;
6274 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
6275 *last_consec_insn = p;
6276 return v->benefit;
6279 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6280 represented by G1. If no such expression can be found, or it is clear that
6281 it cannot possibly be a valid address, 0 is returned.
6283 To perform the computation, we note that
6284 G1 = x * v + a and
6285 G2 = y * v + b
6286 where `v' is the biv.
6288 So G2 = (y/b) * G1 + (b - a*y/x).
6290 Note that MULT = y/x.
6292 Update: A and B are now allowed to be additive expressions such that
6293 B contains all variables in A. That is, computing B-A will not require
6294 subtracting variables. */
6296 static rtx
6297 express_from_1 (a, b, mult)
6298 rtx a, b, mult;
6300 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6302 if (mult == const0_rtx)
6303 return b;
6305 /* If MULT is not 1, we cannot handle A with non-constants, since we
6306 would then be required to subtract multiples of the registers in A.
6307 This is theoretically possible, and may even apply to some Fortran
6308 constructs, but it is a lot of work and we do not attempt it here. */
6310 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6311 return NULL_RTX;
6313 /* In general these structures are sorted top to bottom (down the PLUS
6314 chain), but not left to right across the PLUS. If B is a higher
6315 order giv than A, we can strip one level and recurse. If A is higher
6316 order, we'll eventually bail out, but won't know that until the end.
6317 If they are the same, we'll strip one level around this loop. */
6319 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6321 rtx ra, rb, oa, ob, tmp;
6323 ra = XEXP (a, 0), oa = XEXP (a, 1);
6324 if (GET_CODE (ra) == PLUS)
6325 tmp = ra, ra = oa, oa = tmp;
6327 rb = XEXP (b, 0), ob = XEXP (b, 1);
6328 if (GET_CODE (rb) == PLUS)
6329 tmp = rb, rb = ob, ob = tmp;
6331 if (rtx_equal_p (ra, rb))
6332 /* We matched: remove one reg completely. */
6333 a = oa, b = ob;
6334 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6335 /* An alternate match. */
6336 a = oa, b = rb;
6337 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6338 /* An alternate match. */
6339 a = ra, b = ob;
6340 else
6342 /* Indicates an extra register in B. Strip one level from B and
6343 recurse, hoping B was the higher order expression. */
6344 ob = express_from_1 (a, ob, mult);
6345 if (ob == NULL_RTX)
6346 return NULL_RTX;
6347 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6351 /* Here we are at the last level of A, go through the cases hoping to
6352 get rid of everything but a constant. */
6354 if (GET_CODE (a) == PLUS)
6356 rtx ra, oa;
6358 ra = XEXP (a, 0), oa = XEXP (a, 1);
6359 if (rtx_equal_p (oa, b))
6360 oa = ra;
6361 else if (!rtx_equal_p (ra, b))
6362 return NULL_RTX;
6364 if (GET_CODE (oa) != CONST_INT)
6365 return NULL_RTX;
6367 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6369 else if (GET_CODE (a) == CONST_INT)
6371 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6373 else if (CONSTANT_P (a))
6375 enum machine_mode mode_a = GET_MODE (a);
6376 enum machine_mode mode_b = GET_MODE (b);
6377 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
6378 return simplify_gen_binary (MINUS, mode, b, a);
6380 else if (GET_CODE (b) == PLUS)
6382 if (rtx_equal_p (a, XEXP (b, 0)))
6383 return XEXP (b, 1);
6384 else if (rtx_equal_p (a, XEXP (b, 1)))
6385 return XEXP (b, 0);
6386 else
6387 return NULL_RTX;
6389 else if (rtx_equal_p (a, b))
6390 return const0_rtx;
6392 return NULL_RTX;
6396 express_from (g1, g2)
6397 struct induction *g1, *g2;
6399 rtx mult, add;
6401 /* The value that G1 will be multiplied by must be a constant integer. Also,
6402 the only chance we have of getting a valid address is if b*c/a (see above
6403 for notation) is also an integer. */
6404 if (GET_CODE (g1->mult_val) == CONST_INT
6405 && GET_CODE (g2->mult_val) == CONST_INT)
6407 if (g1->mult_val == const0_rtx
6408 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6409 return NULL_RTX;
6410 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6412 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6413 mult = const1_rtx;
6414 else
6416 /* ??? Find out if the one is a multiple of the other? */
6417 return NULL_RTX;
6420 add = express_from_1 (g1->add_val, g2->add_val, mult);
6421 if (add == NULL_RTX)
6423 /* Failed. If we've got a multiplication factor between G1 and G2,
6424 scale G1's addend and try again. */
6425 if (INTVAL (mult) > 1)
6427 rtx g1_add_val = g1->add_val;
6428 if (GET_CODE (g1_add_val) == MULT
6429 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
6431 HOST_WIDE_INT m;
6432 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
6433 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
6434 XEXP (g1_add_val, 0), GEN_INT (m));
6436 else
6438 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
6439 mult);
6442 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
6445 if (add == NULL_RTX)
6446 return NULL_RTX;
6448 /* Form simplified final result. */
6449 if (mult == const0_rtx)
6450 return add;
6451 else if (mult == const1_rtx)
6452 mult = g1->dest_reg;
6453 else
6454 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6456 if (add == const0_rtx)
6457 return mult;
6458 else
6460 if (GET_CODE (add) == PLUS
6461 && CONSTANT_P (XEXP (add, 1)))
6463 rtx tem = XEXP (add, 1);
6464 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6465 add = tem;
6468 return gen_rtx_PLUS (g2->mode, mult, add);
6472 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6473 represented by G1. This indicates that G2 should be combined with G1 and
6474 that G2 can use (either directly or via an address expression) a register
6475 used to represent G1. */
6477 static rtx
6478 combine_givs_p (g1, g2)
6479 struct induction *g1, *g2;
6481 rtx comb, ret;
6483 /* With the introduction of ext dependant givs, we must care for modes.
6484 G2 must not use a wider mode than G1. */
6485 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
6486 return NULL_RTX;
6488 ret = comb = express_from (g1, g2);
6489 if (comb == NULL_RTX)
6490 return NULL_RTX;
6491 if (g1->mode != g2->mode)
6492 ret = gen_lowpart (g2->mode, comb);
6494 /* If these givs are identical, they can be combined. We use the results
6495 of express_from because the addends are not in a canonical form, so
6496 rtx_equal_p is a weaker test. */
6497 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6498 combination to be the other way round. */
6499 if (comb == g1->dest_reg
6500 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
6502 return ret;
6505 /* If G2 can be expressed as a function of G1 and that function is valid
6506 as an address and no more expensive than using a register for G2,
6507 the expression of G2 in terms of G1 can be used. */
6508 if (ret != NULL_RTX
6509 && g2->giv_type == DEST_ADDR
6510 && memory_address_p (GET_MODE (g2->mem), ret)
6511 /* ??? Looses, especially with -fforce-addr, where *g2->location
6512 will always be a register, and so anything more complicated
6513 gets discarded. */
6514 #if 0
6515 #ifdef ADDRESS_COST
6516 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6517 #else
6518 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6519 #endif
6520 #endif
6523 return ret;
6526 return NULL_RTX;
6529 /* Check each extension dependant giv in this class to see if its
6530 root biv is safe from wrapping in the interior mode, which would
6531 make the giv illegal. */
6533 static void
6534 check_ext_dependant_givs (bl, loop_info)
6535 struct iv_class *bl;
6536 struct loop_info *loop_info;
6538 int ze_ok = 0, se_ok = 0, info_ok = 0;
6539 enum machine_mode biv_mode = GET_MODE (bl->biv->src_reg);
6540 HOST_WIDE_INT start_val;
6541 unsigned HOST_WIDE_INT u_end_val = 0;
6542 unsigned HOST_WIDE_INT u_start_val = 0;
6543 rtx incr = pc_rtx;
6544 struct induction *v;
6546 /* Make sure the iteration data is available. We must have
6547 constants in order to be certain of no overflow. */
6548 /* ??? An unknown iteration count with an increment of +-1
6549 combined with friendly exit tests of against an invariant
6550 value is also ameanable to optimization. Not implemented. */
6551 if (loop_info->n_iterations > 0
6552 && bl->initial_value
6553 && GET_CODE (bl->initial_value) == CONST_INT
6554 && (incr = biv_total_increment (bl))
6555 && GET_CODE (incr) == CONST_INT
6556 /* Make sure the host can represent the arithmetic. */
6557 && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (biv_mode))
6559 unsigned HOST_WIDE_INT abs_incr, total_incr;
6560 HOST_WIDE_INT s_end_val;
6561 int neg_incr;
6563 info_ok = 1;
6564 start_val = INTVAL (bl->initial_value);
6565 u_start_val = start_val;
6567 neg_incr = 0, abs_incr = INTVAL (incr);
6568 if (INTVAL (incr) < 0)
6569 neg_incr = 1, abs_incr = -abs_incr;
6570 total_incr = abs_incr * loop_info->n_iterations;
6572 /* Check for host arithmatic overflow. */
6573 if (total_incr / loop_info->n_iterations == abs_incr)
6575 unsigned HOST_WIDE_INT u_max;
6576 HOST_WIDE_INT s_max;
6578 u_end_val = start_val + (neg_incr ? -total_incr : total_incr);
6579 s_end_val = u_end_val;
6580 u_max = GET_MODE_MASK (biv_mode);
6581 s_max = u_max >> 1;
6583 /* Check zero extension of biv ok. */
6584 if (start_val >= 0
6585 /* Check for host arithmatic overflow. */
6586 && (neg_incr
6587 ? u_end_val < u_start_val
6588 : u_end_val > u_start_val)
6589 /* Check for target arithmetic overflow. */
6590 && (neg_incr
6591 ? 1 /* taken care of with host overflow */
6592 : u_end_val <= u_max))
6594 ze_ok = 1;
6597 /* Check sign extension of biv ok. */
6598 /* ??? While it is true that overflow with signed and pointer
6599 arithmetic is undefined, I fear too many programmers don't
6600 keep this fact in mind -- myself included on occasion.
6601 So leave alone with the signed overflow optimizations. */
6602 if (start_val >= -s_max - 1
6603 /* Check for host arithmatic overflow. */
6604 && (neg_incr
6605 ? s_end_val < start_val
6606 : s_end_val > start_val)
6607 /* Check for target arithmetic overflow. */
6608 && (neg_incr
6609 ? s_end_val >= -s_max - 1
6610 : s_end_val <= s_max))
6612 se_ok = 1;
6617 /* Invalidate givs that fail the tests. */
6618 for (v = bl->giv; v; v = v->next_iv)
6619 if (v->ext_dependant)
6621 enum rtx_code code = GET_CODE (v->ext_dependant);
6622 int ok = 0;
6624 switch (code)
6626 case SIGN_EXTEND:
6627 ok = se_ok;
6628 break;
6629 case ZERO_EXTEND:
6630 ok = ze_ok;
6631 break;
6633 case TRUNCATE:
6634 /* We don't know whether this value is being used as either
6635 signed or unsigned, so to safely truncate we must satisfy
6636 both. The initial check here verifies the BIV itself;
6637 once that is successful we may check its range wrt the
6638 derived GIV. */
6639 if (se_ok && ze_ok)
6641 enum machine_mode outer_mode = GET_MODE (v->ext_dependant);
6642 unsigned HOST_WIDE_INT max = GET_MODE_MASK (outer_mode) >> 1;
6644 /* We know from the above that both endpoints are nonnegative,
6645 and that there is no wrapping. Verify that both endpoints
6646 are within the (signed) range of the outer mode. */
6647 if (u_start_val <= max && u_end_val <= max)
6648 ok = 1;
6650 break;
6652 default:
6653 abort ();
6656 if (ok)
6658 if (loop_dump_stream)
6660 fprintf (loop_dump_stream,
6661 "Verified ext dependant giv at %d of reg %d\n",
6662 INSN_UID (v->insn), bl->regno);
6665 else
6667 if (loop_dump_stream)
6669 const char *why;
6671 if (info_ok)
6672 why = "biv iteration values overflowed";
6673 else
6675 if (incr == pc_rtx)
6676 incr = biv_total_increment (bl);
6677 if (incr == const1_rtx)
6678 why = "biv iteration info incomplete; incr by 1";
6679 else
6680 why = "biv iteration info incomplete";
6683 fprintf (loop_dump_stream,
6684 "Failed ext dependant giv at %d, %s\n",
6685 INSN_UID (v->insn), why);
6687 v->ignore = 1;
6688 bl->all_reduced = 0;
6693 /* Generate a version of VALUE in a mode appropriate for initializing V. */
6696 extend_value_for_giv (v, value)
6697 struct induction *v;
6698 rtx value;
6700 rtx ext_dep = v->ext_dependant;
6702 if (! ext_dep)
6703 return value;
6705 /* Recall that check_ext_dependant_givs verified that the known bounds
6706 of a biv did not overflow or wrap with respect to the extension for
6707 the giv. Therefore, constants need no additional adjustment. */
6708 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
6709 return value;
6711 /* Otherwise, we must adjust the value to compensate for the
6712 differing modes of the biv and the giv. */
6713 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
6716 struct combine_givs_stats
6718 int giv_number;
6719 int total_benefit;
6722 static int
6723 cmp_combine_givs_stats (xp, yp)
6724 const PTR xp;
6725 const PTR yp;
6727 const struct combine_givs_stats * const x =
6728 (const struct combine_givs_stats *) xp;
6729 const struct combine_givs_stats * const y =
6730 (const struct combine_givs_stats *) yp;
6731 int d;
6732 d = y->total_benefit - x->total_benefit;
6733 /* Stabilize the sort. */
6734 if (!d)
6735 d = x->giv_number - y->giv_number;
6736 return d;
6739 /* Check all pairs of givs for iv_class BL and see if any can be combined with
6740 any other. If so, point SAME to the giv combined with and set NEW_REG to
6741 be an expression (in terms of the other giv's DEST_REG) equivalent to the
6742 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
6744 static void
6745 combine_givs (regs, bl)
6746 struct loop_regs *regs;
6747 struct iv_class *bl;
6749 /* Additional benefit to add for being combined multiple times. */
6750 const int extra_benefit = 3;
6752 struct induction *g1, *g2, **giv_array;
6753 int i, j, k, giv_count;
6754 struct combine_givs_stats *stats;
6755 rtx *can_combine;
6757 /* Count givs, because bl->giv_count is incorrect here. */
6758 giv_count = 0;
6759 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6760 if (!g1->ignore)
6761 giv_count++;
6763 giv_array
6764 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
6765 i = 0;
6766 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6767 if (!g1->ignore)
6768 giv_array[i++] = g1;
6770 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
6771 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof (rtx));
6773 for (i = 0; i < giv_count; i++)
6775 int this_benefit;
6776 rtx single_use;
6778 g1 = giv_array[i];
6779 stats[i].giv_number = i;
6781 /* If a DEST_REG GIV is used only once, do not allow it to combine
6782 with anything, for in doing so we will gain nothing that cannot
6783 be had by simply letting the GIV with which we would have combined
6784 to be reduced on its own. The losage shows up in particular with
6785 DEST_ADDR targets on hosts with reg+reg addressing, though it can
6786 be seen elsewhere as well. */
6787 if (g1->giv_type == DEST_REG
6788 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
6789 && single_use != const0_rtx)
6790 continue;
6792 this_benefit = g1->benefit;
6793 /* Add an additional weight for zero addends. */
6794 if (g1->no_const_addval)
6795 this_benefit += 1;
6797 for (j = 0; j < giv_count; j++)
6799 rtx this_combine;
6801 g2 = giv_array[j];
6802 if (g1 != g2
6803 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
6805 can_combine[i * giv_count + j] = this_combine;
6806 this_benefit += g2->benefit + extra_benefit;
6809 stats[i].total_benefit = this_benefit;
6812 /* Iterate, combining until we can't. */
6813 restart:
6814 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
6816 if (loop_dump_stream)
6818 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
6819 for (k = 0; k < giv_count; k++)
6821 g1 = giv_array[stats[k].giv_number];
6822 if (!g1->combined_with && !g1->same)
6823 fprintf (loop_dump_stream, " {%d, %d}",
6824 INSN_UID (giv_array[stats[k].giv_number]->insn),
6825 stats[k].total_benefit);
6827 putc ('\n', loop_dump_stream);
6830 for (k = 0; k < giv_count; k++)
6832 int g1_add_benefit = 0;
6834 i = stats[k].giv_number;
6835 g1 = giv_array[i];
6837 /* If it has already been combined, skip. */
6838 if (g1->combined_with || g1->same)
6839 continue;
6841 for (j = 0; j < giv_count; j++)
6843 g2 = giv_array[j];
6844 if (g1 != g2 && can_combine[i * giv_count + j]
6845 /* If it has already been combined, skip. */
6846 && ! g2->same && ! g2->combined_with)
6848 int l;
6850 g2->new_reg = can_combine[i * giv_count + j];
6851 g2->same = g1;
6852 /* For destination, we now may replace by mem expression instead
6853 of register. This changes the costs considerably, so add the
6854 compensation. */
6855 if (g2->giv_type == DEST_ADDR)
6856 g2->benefit = (g2->benefit + reg_address_cost
6857 - address_cost (g2->new_reg,
6858 GET_MODE (g2->mem)));
6859 g1->combined_with++;
6860 g1->lifetime += g2->lifetime;
6862 g1_add_benefit += g2->benefit;
6864 /* ??? The new final_[bg]iv_value code does a much better job
6865 of finding replaceable giv's, and hence this code may no
6866 longer be necessary. */
6867 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
6868 g1_add_benefit -= copy_cost;
6870 /* To help optimize the next set of combinations, remove
6871 this giv from the benefits of other potential mates. */
6872 for (l = 0; l < giv_count; ++l)
6874 int m = stats[l].giv_number;
6875 if (can_combine[m * giv_count + j])
6876 stats[l].total_benefit -= g2->benefit + extra_benefit;
6879 if (loop_dump_stream)
6880 fprintf (loop_dump_stream,
6881 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
6882 INSN_UID (g2->insn), INSN_UID (g1->insn),
6883 g1->benefit, g1_add_benefit, g1->lifetime);
6887 /* To help optimize the next set of combinations, remove
6888 this giv from the benefits of other potential mates. */
6889 if (g1->combined_with)
6891 for (j = 0; j < giv_count; ++j)
6893 int m = stats[j].giv_number;
6894 if (can_combine[m * giv_count + i])
6895 stats[j].total_benefit -= g1->benefit + extra_benefit;
6898 g1->benefit += g1_add_benefit;
6900 /* We've finished with this giv, and everything it touched.
6901 Restart the combination so that proper weights for the
6902 rest of the givs are properly taken into account. */
6903 /* ??? Ideally we would compact the arrays at this point, so
6904 as to not cover old ground. But sanely compacting
6905 can_combine is tricky. */
6906 goto restart;
6910 /* Clean up. */
6911 free (stats);
6912 free (can_combine);
6915 /* Generate sequence for REG = B * M + A. */
6917 static rtx
6918 gen_add_mult (b, m, a, reg)
6919 rtx b; /* initial value of basic induction variable */
6920 rtx m; /* multiplicative constant */
6921 rtx a; /* additive constant */
6922 rtx reg; /* destination register */
6924 rtx seq;
6925 rtx result;
6927 start_sequence ();
6928 /* Use unsigned arithmetic. */
6929 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
6930 if (reg != result)
6931 emit_move_insn (reg, result);
6932 seq = gen_sequence ();
6933 end_sequence ();
6935 return seq;
6939 /* Update registers created in insn sequence SEQ. */
6941 static void
6942 loop_regs_update (loop, seq)
6943 const struct loop *loop ATTRIBUTE_UNUSED;
6944 rtx seq;
6946 /* Update register info for alias analysis. */
6948 if (GET_CODE (seq) == SEQUENCE)
6950 int i;
6951 for (i = 0; i < XVECLEN (seq, 0); ++i)
6953 rtx set = single_set (XVECEXP (seq, 0, i));
6954 if (set && GET_CODE (SET_DEST (set)) == REG)
6955 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
6958 else
6960 rtx set = single_set (seq);
6961 if (set && GET_CODE (SET_DEST (set)) == REG)
6962 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
6967 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. */
6969 void
6970 loop_iv_add_mult_emit_before (loop, b, m, a, reg, before_bb, before_insn)
6971 const struct loop *loop;
6972 rtx b; /* initial value of basic induction variable */
6973 rtx m; /* multiplicative constant */
6974 rtx a; /* additive constant */
6975 rtx reg; /* destination register */
6976 basic_block before_bb;
6977 rtx before_insn;
6979 rtx seq;
6981 if (! before_insn)
6983 loop_iv_add_mult_hoist (loop, b, m, a, reg);
6984 return;
6987 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
6988 seq = gen_add_mult (copy_rtx (b), m, copy_rtx (a), reg);
6990 /* Increase the lifetime of any invariants moved further in code. */
6991 update_reg_last_use (a, before_insn);
6992 update_reg_last_use (b, before_insn);
6993 update_reg_last_use (m, before_insn);
6995 loop_insn_emit_before (loop, before_bb, before_insn, seq);
6997 /* It is possible that the expansion created lots of new registers.
6998 Iterate over the sequence we just created and record them all. */
6999 loop_regs_update (loop, seq);
7003 /* Emit insns in loop pre-header to set REG = B * M + A. */
7005 void
7006 loop_iv_add_mult_sink (loop, b, m, a, reg)
7007 const struct loop *loop;
7008 rtx b; /* initial value of basic induction variable */
7009 rtx m; /* multiplicative constant */
7010 rtx a; /* additive constant */
7011 rtx reg; /* destination register */
7013 rtx seq;
7015 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7016 seq = gen_add_mult (copy_rtx (b), m, copy_rtx (a), reg);
7018 /* Increase the lifetime of any invariants moved further in code.
7019 ???? Is this really necessary? */
7020 update_reg_last_use (a, loop->sink);
7021 update_reg_last_use (b, loop->sink);
7022 update_reg_last_use (m, loop->sink);
7024 loop_insn_sink (loop, seq);
7026 /* It is possible that the expansion created lots of new registers.
7027 Iterate over the sequence we just created and record them all. */
7028 loop_regs_update (loop, seq);
7032 /* Emit insns after loop to set REG = B * M + A. */
7034 void
7035 loop_iv_add_mult_hoist (loop, b, m, a, reg)
7036 const struct loop *loop;
7037 rtx b; /* initial value of basic induction variable */
7038 rtx m; /* multiplicative constant */
7039 rtx a; /* additive constant */
7040 rtx reg; /* destination register */
7042 rtx seq;
7044 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7045 seq = gen_add_mult (copy_rtx (b), m, copy_rtx (a), reg);
7047 loop_insn_hoist (loop, seq);
7049 /* It is possible that the expansion created lots of new registers.
7050 Iterate over the sequence we just created and record them all. */
7051 loop_regs_update (loop, seq);
7056 /* Similar to gen_add_mult, but compute cost rather than generating
7057 sequence. */
7059 static int
7060 iv_add_mult_cost (b, m, a, reg)
7061 rtx b; /* initial value of basic induction variable */
7062 rtx m; /* multiplicative constant */
7063 rtx a; /* additive constant */
7064 rtx reg; /* destination register */
7066 int cost = 0;
7067 rtx last, result;
7069 start_sequence ();
7070 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7071 if (reg != result)
7072 emit_move_insn (reg, result);
7073 last = get_last_insn ();
7074 while (last)
7076 rtx t = single_set (last);
7077 if (t)
7078 cost += rtx_cost (SET_SRC (t), SET);
7079 last = PREV_INSN (last);
7081 end_sequence ();
7082 return cost;
7085 /* Test whether A * B can be computed without
7086 an actual multiply insn. Value is 1 if so. */
7088 static int
7089 product_cheap_p (a, b)
7090 rtx a;
7091 rtx b;
7093 int i;
7094 rtx tmp;
7095 int win = 1;
7097 /* If only one is constant, make it B. */
7098 if (GET_CODE (a) == CONST_INT)
7099 tmp = a, a = b, b = tmp;
7101 /* If first constant, both constant, so don't need multiply. */
7102 if (GET_CODE (a) == CONST_INT)
7103 return 1;
7105 /* If second not constant, neither is constant, so would need multiply. */
7106 if (GET_CODE (b) != CONST_INT)
7107 return 0;
7109 /* One operand is constant, so might not need multiply insn. Generate the
7110 code for the multiply and see if a call or multiply, or long sequence
7111 of insns is generated. */
7113 start_sequence ();
7114 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
7115 tmp = gen_sequence ();
7116 end_sequence ();
7118 if (GET_CODE (tmp) == SEQUENCE)
7120 if (XVEC (tmp, 0) == 0)
7121 win = 1;
7122 else if (XVECLEN (tmp, 0) > 3)
7123 win = 0;
7124 else
7125 for (i = 0; i < XVECLEN (tmp, 0); i++)
7127 rtx insn = XVECEXP (tmp, 0, i);
7129 if (GET_CODE (insn) != INSN
7130 || (GET_CODE (PATTERN (insn)) == SET
7131 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7132 || (GET_CODE (PATTERN (insn)) == PARALLEL
7133 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7134 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7136 win = 0;
7137 break;
7141 else if (GET_CODE (tmp) == SET
7142 && GET_CODE (SET_SRC (tmp)) == MULT)
7143 win = 0;
7144 else if (GET_CODE (tmp) == PARALLEL
7145 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7146 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7147 win = 0;
7149 return win;
7152 /* Check to see if loop can be terminated by a "decrement and branch until
7153 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7154 Also try reversing an increment loop to a decrement loop
7155 to see if the optimization can be performed.
7156 Value is nonzero if optimization was performed. */
7158 /* This is useful even if the architecture doesn't have such an insn,
7159 because it might change a loops which increments from 0 to n to a loop
7160 which decrements from n to 0. A loop that decrements to zero is usually
7161 faster than one that increments from zero. */
7163 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7164 such as approx_final_value, biv_total_increment, loop_iterations, and
7165 final_[bg]iv_value. */
7167 static int
7168 check_dbra_loop (loop, insn_count)
7169 struct loop *loop;
7170 int insn_count;
7172 struct loop_info *loop_info = LOOP_INFO (loop);
7173 struct loop_regs *regs = LOOP_REGS (loop);
7174 struct loop_ivs *ivs = LOOP_IVS (loop);
7175 struct iv_class *bl;
7176 rtx reg;
7177 rtx jump_label;
7178 rtx final_value;
7179 rtx start_value;
7180 rtx new_add_val;
7181 rtx comparison;
7182 rtx before_comparison;
7183 rtx p;
7184 rtx jump;
7185 rtx first_compare;
7186 int compare_and_branch;
7187 rtx loop_start = loop->start;
7188 rtx loop_end = loop->end;
7190 /* If last insn is a conditional branch, and the insn before tests a
7191 register value, try to optimize it. Otherwise, we can't do anything. */
7193 jump = PREV_INSN (loop_end);
7194 comparison = get_condition_for_loop (loop, jump);
7195 if (comparison == 0)
7196 return 0;
7197 if (!onlyjump_p (jump))
7198 return 0;
7200 /* Try to compute whether the compare/branch at the loop end is one or
7201 two instructions. */
7202 get_condition (jump, &first_compare);
7203 if (first_compare == jump)
7204 compare_and_branch = 1;
7205 else if (first_compare == prev_nonnote_insn (jump))
7206 compare_and_branch = 2;
7207 else
7208 return 0;
7211 /* If more than one condition is present to control the loop, then
7212 do not proceed, as this function does not know how to rewrite
7213 loop tests with more than one condition.
7215 Look backwards from the first insn in the last comparison
7216 sequence and see if we've got another comparison sequence. */
7218 rtx jump1;
7219 if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
7220 if (GET_CODE (jump1) == JUMP_INSN)
7221 return 0;
7224 /* Check all of the bivs to see if the compare uses one of them.
7225 Skip biv's set more than once because we can't guarantee that
7226 it will be zero on the last iteration. Also skip if the biv is
7227 used between its update and the test insn. */
7229 for (bl = ivs->list; bl; bl = bl->next)
7231 if (bl->biv_count == 1
7232 && ! bl->biv->maybe_multiple
7233 && bl->biv->dest_reg == XEXP (comparison, 0)
7234 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7235 first_compare))
7236 break;
7239 if (! bl)
7240 return 0;
7242 /* Look for the case where the basic induction variable is always
7243 nonnegative, and equals zero on the last iteration.
7244 In this case, add a reg_note REG_NONNEG, which allows the
7245 m68k DBRA instruction to be used. */
7247 if (((GET_CODE (comparison) == GT
7248 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7249 && INTVAL (XEXP (comparison, 1)) == -1)
7250 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7251 && GET_CODE (bl->biv->add_val) == CONST_INT
7252 && INTVAL (bl->biv->add_val) < 0)
7254 /* Initial value must be greater than 0,
7255 init_val % -dec_value == 0 to ensure that it equals zero on
7256 the last iteration */
7258 if (GET_CODE (bl->initial_value) == CONST_INT
7259 && INTVAL (bl->initial_value) > 0
7260 && (INTVAL (bl->initial_value)
7261 % (-INTVAL (bl->biv->add_val))) == 0)
7263 /* register always nonnegative, add REG_NOTE to branch */
7264 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
7265 REG_NOTES (jump)
7266 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
7267 REG_NOTES (jump));
7268 bl->nonneg = 1;
7270 return 1;
7273 /* If the decrement is 1 and the value was tested as >= 0 before
7274 the loop, then we can safely optimize. */
7275 for (p = loop_start; p; p = PREV_INSN (p))
7277 if (GET_CODE (p) == CODE_LABEL)
7278 break;
7279 if (GET_CODE (p) != JUMP_INSN)
7280 continue;
7282 before_comparison = get_condition_for_loop (loop, p);
7283 if (before_comparison
7284 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7285 && GET_CODE (before_comparison) == LT
7286 && XEXP (before_comparison, 1) == const0_rtx
7287 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7288 && INTVAL (bl->biv->add_val) == -1)
7290 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
7291 REG_NOTES (jump)
7292 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
7293 REG_NOTES (jump));
7294 bl->nonneg = 1;
7296 return 1;
7300 else if (GET_CODE (bl->biv->add_val) == CONST_INT
7301 && INTVAL (bl->biv->add_val) > 0)
7303 /* Try to change inc to dec, so can apply above optimization. */
7304 /* Can do this if:
7305 all registers modified are induction variables or invariant,
7306 all memory references have non-overlapping addresses
7307 (obviously true if only one write)
7308 allow 2 insns for the compare/jump at the end of the loop. */
7309 /* Also, we must avoid any instructions which use both the reversed
7310 biv and another biv. Such instructions will fail if the loop is
7311 reversed. We meet this condition by requiring that either
7312 no_use_except_counting is true, or else that there is only
7313 one biv. */
7314 int num_nonfixed_reads = 0;
7315 /* 1 if the iteration var is used only to count iterations. */
7316 int no_use_except_counting = 0;
7317 /* 1 if the loop has no memory store, or it has a single memory store
7318 which is reversible. */
7319 int reversible_mem_store = 1;
7321 if (bl->giv_count == 0 && ! loop->exit_count)
7323 rtx bivreg = regno_reg_rtx[bl->regno];
7324 struct iv_class *blt;
7326 /* If there are no givs for this biv, and the only exit is the
7327 fall through at the end of the loop, then
7328 see if perhaps there are no uses except to count. */
7329 no_use_except_counting = 1;
7330 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7331 if (INSN_P (p))
7333 rtx set = single_set (p);
7335 if (set && GET_CODE (SET_DEST (set)) == REG
7336 && REGNO (SET_DEST (set)) == bl->regno)
7337 /* An insn that sets the biv is okay. */
7339 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
7340 || p == prev_nonnote_insn (loop_end))
7341 && reg_mentioned_p (bivreg, PATTERN (p)))
7343 /* If either of these insns uses the biv and sets a pseudo
7344 that has more than one usage, then the biv has uses
7345 other than counting since it's used to derive a value
7346 that is used more than one time. */
7347 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
7348 regs);
7349 if (regs->multiple_uses)
7351 no_use_except_counting = 0;
7352 break;
7355 else if (reg_mentioned_p (bivreg, PATTERN (p)))
7357 no_use_except_counting = 0;
7358 break;
7362 /* A biv has uses besides counting if it is used to set another biv. */
7363 for (blt = ivs->list; blt; blt = blt->next)
7364 if (blt->init_set && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
7366 no_use_except_counting = 0;
7367 break;
7371 if (no_use_except_counting)
7372 /* No need to worry about MEMs. */
7374 else if (loop_info->num_mem_sets <= 1)
7376 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7377 if (INSN_P (p))
7378 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
7380 /* If the loop has a single store, and the destination address is
7381 invariant, then we can't reverse the loop, because this address
7382 might then have the wrong value at loop exit.
7383 This would work if the source was invariant also, however, in that
7384 case, the insn should have been moved out of the loop. */
7386 if (loop_info->num_mem_sets == 1)
7388 struct induction *v;
7390 /* If we could prove that each of the memory locations
7391 written to was different, then we could reverse the
7392 store -- but we don't presently have any way of
7393 knowing that. */
7394 reversible_mem_store = 0;
7396 /* If the store depends on a register that is set after the
7397 store, it depends on the initial value, and is thus not
7398 reversible. */
7399 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
7401 if (v->giv_type == DEST_REG
7402 && reg_mentioned_p (v->dest_reg,
7403 PATTERN (loop_info->first_loop_store_insn))
7404 && loop_insn_first_p (loop_info->first_loop_store_insn,
7405 v->insn))
7406 reversible_mem_store = 0;
7410 else
7411 return 0;
7413 /* This code only acts for innermost loops. Also it simplifies
7414 the memory address check by only reversing loops with
7415 zero or one memory access.
7416 Two memory accesses could involve parts of the same array,
7417 and that can't be reversed.
7418 If the biv is used only for counting, than we don't need to worry
7419 about all these things. */
7421 if ((num_nonfixed_reads <= 1
7422 && ! loop_info->has_nonconst_call
7423 && ! loop_info->has_volatile
7424 && reversible_mem_store
7425 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
7426 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
7427 && (bl == ivs->list && bl->next == 0))
7428 || no_use_except_counting)
7430 rtx tem;
7432 /* Loop can be reversed. */
7433 if (loop_dump_stream)
7434 fprintf (loop_dump_stream, "Can reverse loop\n");
7436 /* Now check other conditions:
7438 The increment must be a constant, as must the initial value,
7439 and the comparison code must be LT.
7441 This test can probably be improved since +/- 1 in the constant
7442 can be obtained by changing LT to LE and vice versa; this is
7443 confusing. */
7445 if (comparison
7446 /* for constants, LE gets turned into LT */
7447 && (GET_CODE (comparison) == LT
7448 || (GET_CODE (comparison) == LE
7449 && no_use_except_counting)))
7451 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
7452 rtx initial_value, comparison_value;
7453 int nonneg = 0;
7454 enum rtx_code cmp_code;
7455 int comparison_const_width;
7456 unsigned HOST_WIDE_INT comparison_sign_mask;
7458 add_val = INTVAL (bl->biv->add_val);
7459 comparison_value = XEXP (comparison, 1);
7460 if (GET_MODE (comparison_value) == VOIDmode)
7461 comparison_const_width
7462 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
7463 else
7464 comparison_const_width
7465 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
7466 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
7467 comparison_const_width = HOST_BITS_PER_WIDE_INT;
7468 comparison_sign_mask
7469 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
7471 /* If the comparison value is not a loop invariant, then we
7472 can not reverse this loop.
7474 ??? If the insns which initialize the comparison value as
7475 a whole compute an invariant result, then we could move
7476 them out of the loop and proceed with loop reversal. */
7477 if (! loop_invariant_p (loop, comparison_value))
7478 return 0;
7480 if (GET_CODE (comparison_value) == CONST_INT)
7481 comparison_val = INTVAL (comparison_value);
7482 initial_value = bl->initial_value;
7484 /* Normalize the initial value if it is an integer and
7485 has no other use except as a counter. This will allow
7486 a few more loops to be reversed. */
7487 if (no_use_except_counting
7488 && GET_CODE (comparison_value) == CONST_INT
7489 && GET_CODE (initial_value) == CONST_INT)
7491 comparison_val = comparison_val - INTVAL (bl->initial_value);
7492 /* The code below requires comparison_val to be a multiple
7493 of add_val in order to do the loop reversal, so
7494 round up comparison_val to a multiple of add_val.
7495 Since comparison_value is constant, we know that the
7496 current comparison code is LT. */
7497 comparison_val = comparison_val + add_val - 1;
7498 comparison_val
7499 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
7500 /* We postpone overflow checks for COMPARISON_VAL here;
7501 even if there is an overflow, we might still be able to
7502 reverse the loop, if converting the loop exit test to
7503 NE is possible. */
7504 initial_value = const0_rtx;
7507 /* First check if we can do a vanilla loop reversal. */
7508 if (initial_value == const0_rtx
7509 /* If we have a decrement_and_branch_on_count,
7510 prefer the NE test, since this will allow that
7511 instruction to be generated. Note that we must
7512 use a vanilla loop reversal if the biv is used to
7513 calculate a giv or has a non-counting use. */
7514 #if ! defined (HAVE_decrement_and_branch_until_zero) \
7515 && defined (HAVE_decrement_and_branch_on_count)
7516 && (! (add_val == 1 && loop->vtop
7517 && (bl->biv_count == 0
7518 || no_use_except_counting)))
7519 #endif
7520 && GET_CODE (comparison_value) == CONST_INT
7521 /* Now do postponed overflow checks on COMPARISON_VAL. */
7522 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
7523 & comparison_sign_mask))
7525 /* Register will always be nonnegative, with value
7526 0 on last iteration */
7527 add_adjust = add_val;
7528 nonneg = 1;
7529 cmp_code = GE;
7531 else if (add_val == 1 && loop->vtop
7532 && (bl->biv_count == 0
7533 || no_use_except_counting))
7535 add_adjust = 0;
7536 cmp_code = NE;
7538 else
7539 return 0;
7541 if (GET_CODE (comparison) == LE)
7542 add_adjust -= add_val;
7544 /* If the initial value is not zero, or if the comparison
7545 value is not an exact multiple of the increment, then we
7546 can not reverse this loop. */
7547 if (initial_value == const0_rtx
7548 && GET_CODE (comparison_value) == CONST_INT)
7550 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
7551 return 0;
7553 else
7555 if (! no_use_except_counting || add_val != 1)
7556 return 0;
7559 final_value = comparison_value;
7561 /* Reset these in case we normalized the initial value
7562 and comparison value above. */
7563 if (GET_CODE (comparison_value) == CONST_INT
7564 && GET_CODE (initial_value) == CONST_INT)
7566 comparison_value = GEN_INT (comparison_val);
7567 final_value
7568 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
7570 bl->initial_value = initial_value;
7572 /* Save some info needed to produce the new insns. */
7573 reg = bl->biv->dest_reg;
7574 jump_label = condjump_label (PREV_INSN (loop_end));
7575 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
7577 /* Set start_value; if this is not a CONST_INT, we need
7578 to generate a SUB.
7579 Initialize biv to start_value before loop start.
7580 The old initializing insn will be deleted as a
7581 dead store by flow.c. */
7582 if (initial_value == const0_rtx
7583 && GET_CODE (comparison_value) == CONST_INT)
7585 start_value = GEN_INT (comparison_val - add_adjust);
7586 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
7588 else if (GET_CODE (initial_value) == CONST_INT)
7590 enum machine_mode mode = GET_MODE (reg);
7591 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
7592 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
7594 if (add_insn == 0)
7595 return 0;
7597 start_value
7598 = gen_rtx_PLUS (mode, comparison_value, offset);
7599 loop_insn_hoist (loop, add_insn);
7600 if (GET_CODE (comparison) == LE)
7601 final_value = gen_rtx_PLUS (mode, comparison_value,
7602 GEN_INT (add_val));
7604 else if (! add_adjust)
7606 enum machine_mode mode = GET_MODE (reg);
7607 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
7608 initial_value);
7610 if (sub_insn == 0)
7611 return 0;
7612 start_value
7613 = gen_rtx_MINUS (mode, comparison_value, initial_value);
7614 loop_insn_hoist (loop, sub_insn);
7616 else
7617 /* We could handle the other cases too, but it'll be
7618 better to have a testcase first. */
7619 return 0;
7621 /* We may not have a single insn which can increment a reg, so
7622 create a sequence to hold all the insns from expand_inc. */
7623 start_sequence ();
7624 expand_inc (reg, new_add_val);
7625 tem = gen_sequence ();
7626 end_sequence ();
7628 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
7629 delete_insn (bl->biv->insn);
7631 /* Update biv info to reflect its new status. */
7632 bl->biv->insn = p;
7633 bl->initial_value = start_value;
7634 bl->biv->add_val = new_add_val;
7636 /* Update loop info. */
7637 loop_info->initial_value = reg;
7638 loop_info->initial_equiv_value = reg;
7639 loop_info->final_value = const0_rtx;
7640 loop_info->final_equiv_value = const0_rtx;
7641 loop_info->comparison_value = const0_rtx;
7642 loop_info->comparison_code = cmp_code;
7643 loop_info->increment = new_add_val;
7645 /* Inc LABEL_NUSES so that delete_insn will
7646 not delete the label. */
7647 LABEL_NUSES (XEXP (jump_label, 0))++;
7649 /* Emit an insn after the end of the loop to set the biv's
7650 proper exit value if it is used anywhere outside the loop. */
7651 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
7652 || ! bl->init_insn
7653 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
7654 loop_insn_sink (loop, gen_move_insn (reg, final_value));
7656 /* Delete compare/branch at end of loop. */
7657 delete_related_insns (PREV_INSN (loop_end));
7658 if (compare_and_branch == 2)
7659 delete_related_insns (first_compare);
7661 /* Add new compare/branch insn at end of loop. */
7662 start_sequence ();
7663 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
7664 GET_MODE (reg), 0, 0,
7665 XEXP (jump_label, 0));
7666 tem = gen_sequence ();
7667 end_sequence ();
7668 emit_jump_insn_before (tem, loop_end);
7670 for (tem = PREV_INSN (loop_end);
7671 tem && GET_CODE (tem) != JUMP_INSN;
7672 tem = PREV_INSN (tem))
7675 if (tem)
7676 JUMP_LABEL (tem) = XEXP (jump_label, 0);
7678 if (nonneg)
7680 if (tem)
7682 /* Increment of LABEL_NUSES done above. */
7683 /* Register is now always nonnegative,
7684 so add REG_NONNEG note to the branch. */
7685 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
7686 REG_NOTES (tem));
7688 bl->nonneg = 1;
7691 /* No insn may reference both the reversed and another biv or it
7692 will fail (see comment near the top of the loop reversal
7693 code).
7694 Earlier on, we have verified that the biv has no use except
7695 counting, or it is the only biv in this function.
7696 However, the code that computes no_use_except_counting does
7697 not verify reg notes. It's possible to have an insn that
7698 references another biv, and has a REG_EQUAL note with an
7699 expression based on the reversed biv. To avoid this case,
7700 remove all REG_EQUAL notes based on the reversed biv
7701 here. */
7702 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7703 if (INSN_P (p))
7705 rtx *pnote;
7706 rtx set = single_set (p);
7707 /* If this is a set of a GIV based on the reversed biv, any
7708 REG_EQUAL notes should still be correct. */
7709 if (! set
7710 || GET_CODE (SET_DEST (set)) != REG
7711 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
7712 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
7713 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
7714 for (pnote = &REG_NOTES (p); *pnote;)
7716 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
7717 && reg_mentioned_p (regno_reg_rtx[bl->regno],
7718 XEXP (*pnote, 0)))
7719 *pnote = XEXP (*pnote, 1);
7720 else
7721 pnote = &XEXP (*pnote, 1);
7725 /* Mark that this biv has been reversed. Each giv which depends
7726 on this biv, and which is also live past the end of the loop
7727 will have to be fixed up. */
7729 bl->reversed = 1;
7731 if (loop_dump_stream)
7733 fprintf (loop_dump_stream, "Reversed loop");
7734 if (bl->nonneg)
7735 fprintf (loop_dump_stream, " and added reg_nonneg\n");
7736 else
7737 fprintf (loop_dump_stream, "\n");
7740 return 1;
7745 return 0;
7748 /* Verify whether the biv BL appears to be eliminable,
7749 based on the insns in the loop that refer to it.
7751 If ELIMINATE_P is non-zero, actually do the elimination.
7753 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
7754 determine whether invariant insns should be placed inside or at the
7755 start of the loop. */
7757 static int
7758 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
7759 const struct loop *loop;
7760 struct iv_class *bl;
7761 int eliminate_p;
7762 int threshold, insn_count;
7764 struct loop_ivs *ivs = LOOP_IVS (loop);
7765 rtx reg = bl->biv->dest_reg;
7766 rtx p;
7768 /* Scan all insns in the loop, stopping if we find one that uses the
7769 biv in a way that we cannot eliminate. */
7771 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
7773 enum rtx_code code = GET_CODE (p);
7774 basic_block where_bb = 0;
7775 rtx where_insn = threshold >= insn_count ? 0 : p;
7777 /* If this is a libcall that sets a giv, skip ahead to its end. */
7778 if (GET_RTX_CLASS (code) == 'i')
7780 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
7782 if (note)
7784 rtx last = XEXP (note, 0);
7785 rtx set = single_set (last);
7787 if (set && GET_CODE (SET_DEST (set)) == REG)
7789 unsigned int regno = REGNO (SET_DEST (set));
7791 if (regno < ivs->n_regs
7792 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
7793 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
7794 p = last;
7798 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
7799 && reg_mentioned_p (reg, PATTERN (p))
7800 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
7801 eliminate_p, where_bb, where_insn))
7803 if (loop_dump_stream)
7804 fprintf (loop_dump_stream,
7805 "Cannot eliminate biv %d: biv used in insn %d.\n",
7806 bl->regno, INSN_UID (p));
7807 break;
7811 if (p == loop->end)
7813 if (loop_dump_stream)
7814 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
7815 bl->regno, eliminate_p ? "was" : "can be");
7816 return 1;
7819 return 0;
7822 /* INSN and REFERENCE are instructions in the same insn chain.
7823 Return non-zero if INSN is first. */
7826 loop_insn_first_p (insn, reference)
7827 rtx insn, reference;
7829 rtx p, q;
7831 for (p = insn, q = reference;;)
7833 /* Start with test for not first so that INSN == REFERENCE yields not
7834 first. */
7835 if (q == insn || ! p)
7836 return 0;
7837 if (p == reference || ! q)
7838 return 1;
7840 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
7841 previous insn, hence the <= comparison below does not work if
7842 P is a note. */
7843 if (INSN_UID (p) < max_uid_for_loop
7844 && INSN_UID (q) < max_uid_for_loop
7845 && GET_CODE (p) != NOTE)
7846 return INSN_LUID (p) <= INSN_LUID (q);
7848 if (INSN_UID (p) >= max_uid_for_loop
7849 || GET_CODE (p) == NOTE)
7850 p = NEXT_INSN (p);
7851 if (INSN_UID (q) >= max_uid_for_loop)
7852 q = NEXT_INSN (q);
7856 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
7857 the offset that we have to take into account due to auto-increment /
7858 div derivation is zero. */
7859 static int
7860 biv_elimination_giv_has_0_offset (biv, giv, insn)
7861 struct induction *biv, *giv;
7862 rtx insn;
7864 /* If the giv V had the auto-inc address optimization applied
7865 to it, and INSN occurs between the giv insn and the biv
7866 insn, then we'd have to adjust the value used here.
7867 This is rare, so we don't bother to make this possible. */
7868 if (giv->auto_inc_opt
7869 && ((loop_insn_first_p (giv->insn, insn)
7870 && loop_insn_first_p (insn, biv->insn))
7871 || (loop_insn_first_p (biv->insn, insn)
7872 && loop_insn_first_p (insn, giv->insn))))
7873 return 0;
7875 return 1;
7878 /* If BL appears in X (part of the pattern of INSN), see if we can
7879 eliminate its use. If so, return 1. If not, return 0.
7881 If BIV does not appear in X, return 1.
7883 If ELIMINATE_P is non-zero, actually do the elimination.
7884 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
7885 Depending on how many items have been moved out of the loop, it
7886 will either be before INSN (when WHERE_INSN is non-zero) or at the
7887 start of the loop (when WHERE_INSN is zero). */
7889 static int
7890 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where_bb, where_insn)
7891 const struct loop *loop;
7892 rtx x, insn;
7893 struct iv_class *bl;
7894 int eliminate_p;
7895 basic_block where_bb;
7896 rtx where_insn;
7898 enum rtx_code code = GET_CODE (x);
7899 rtx reg = bl->biv->dest_reg;
7900 enum machine_mode mode = GET_MODE (reg);
7901 struct induction *v;
7902 rtx arg, tem;
7903 #ifdef HAVE_cc0
7904 rtx new;
7905 #endif
7906 int arg_operand;
7907 const char *fmt;
7908 int i, j;
7910 switch (code)
7912 case REG:
7913 /* If we haven't already been able to do something with this BIV,
7914 we can't eliminate it. */
7915 if (x == reg)
7916 return 0;
7917 return 1;
7919 case SET:
7920 /* If this sets the BIV, it is not a problem. */
7921 if (SET_DEST (x) == reg)
7922 return 1;
7924 /* If this is an insn that defines a giv, it is also ok because
7925 it will go away when the giv is reduced. */
7926 for (v = bl->giv; v; v = v->next_iv)
7927 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
7928 return 1;
7930 #ifdef HAVE_cc0
7931 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
7933 /* Can replace with any giv that was reduced and
7934 that has (MULT_VAL != 0) and (ADD_VAL == 0).
7935 Require a constant for MULT_VAL, so we know it's nonzero.
7936 ??? We disable this optimization to avoid potential
7937 overflows. */
7939 for (v = bl->giv; v; v = v->next_iv)
7940 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
7941 && v->add_val == const0_rtx
7942 && ! v->ignore && ! v->maybe_dead && v->always_computable
7943 && v->mode == mode
7944 && 0)
7946 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
7947 continue;
7949 if (! eliminate_p)
7950 return 1;
7952 /* If the giv has the opposite direction of change,
7953 then reverse the comparison. */
7954 if (INTVAL (v->mult_val) < 0)
7955 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
7956 const0_rtx, v->new_reg);
7957 else
7958 new = v->new_reg;
7960 /* We can probably test that giv's reduced reg. */
7961 if (validate_change (insn, &SET_SRC (x), new, 0))
7962 return 1;
7965 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
7966 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
7967 Require a constant for MULT_VAL, so we know it's nonzero.
7968 ??? Do this only if ADD_VAL is a pointer to avoid a potential
7969 overflow problem. */
7971 for (v = bl->giv; v; v = v->next_iv)
7972 if (GET_CODE (v->mult_val) == CONST_INT
7973 && v->mult_val != const0_rtx
7974 && ! v->ignore && ! v->maybe_dead && v->always_computable
7975 && v->mode == mode
7976 && (GET_CODE (v->add_val) == SYMBOL_REF
7977 || GET_CODE (v->add_val) == LABEL_REF
7978 || GET_CODE (v->add_val) == CONST
7979 || (GET_CODE (v->add_val) == REG
7980 && REG_POINTER (v->add_val))))
7982 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
7983 continue;
7985 if (! eliminate_p)
7986 return 1;
7988 /* If the giv has the opposite direction of change,
7989 then reverse the comparison. */
7990 if (INTVAL (v->mult_val) < 0)
7991 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
7992 v->new_reg);
7993 else
7994 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
7995 copy_rtx (v->add_val));
7997 /* Replace biv with the giv's reduced register. */
7998 update_reg_last_use (v->add_val, insn);
7999 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8000 return 1;
8002 /* Insn doesn't support that constant or invariant. Copy it
8003 into a register (it will be a loop invariant.) */
8004 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8006 loop_insn_emit_before (loop, 0, where_insn,
8007 gen_move_insn (tem,
8008 copy_rtx (v->add_val)));
8010 /* Substitute the new register for its invariant value in
8011 the compare expression. */
8012 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8013 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8014 return 1;
8017 #endif
8018 break;
8020 case COMPARE:
8021 case EQ: case NE:
8022 case GT: case GE: case GTU: case GEU:
8023 case LT: case LE: case LTU: case LEU:
8024 /* See if either argument is the biv. */
8025 if (XEXP (x, 0) == reg)
8026 arg = XEXP (x, 1), arg_operand = 1;
8027 else if (XEXP (x, 1) == reg)
8028 arg = XEXP (x, 0), arg_operand = 0;
8029 else
8030 break;
8032 if (CONSTANT_P (arg))
8034 /* First try to replace with any giv that has constant positive
8035 mult_val and constant add_val. We might be able to support
8036 negative mult_val, but it seems complex to do it in general. */
8038 for (v = bl->giv; v; v = v->next_iv)
8039 if (GET_CODE (v->mult_val) == CONST_INT
8040 && INTVAL (v->mult_val) > 0
8041 && (GET_CODE (v->add_val) == SYMBOL_REF
8042 || GET_CODE (v->add_val) == LABEL_REF
8043 || GET_CODE (v->add_val) == CONST
8044 || (GET_CODE (v->add_val) == REG
8045 && REG_POINTER (v->add_val)))
8046 && ! v->ignore && ! v->maybe_dead && v->always_computable
8047 && v->mode == mode)
8049 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8050 continue;
8052 if (! eliminate_p)
8053 return 1;
8055 /* Replace biv with the giv's reduced reg. */
8056 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
8058 /* If all constants are actually constant integers and
8059 the derived constant can be directly placed in the COMPARE,
8060 do so. */
8061 if (GET_CODE (arg) == CONST_INT
8062 && GET_CODE (v->mult_val) == CONST_INT
8063 && GET_CODE (v->add_val) == CONST_INT)
8065 validate_change (insn, &XEXP (x, arg_operand),
8066 GEN_INT (INTVAL (arg)
8067 * INTVAL (v->mult_val)
8068 + INTVAL (v->add_val)), 1);
8070 else
8072 /* Otherwise, load it into a register. */
8073 tem = gen_reg_rtx (mode);
8074 loop_iv_add_mult_emit_before (loop, arg,
8075 v->mult_val, v->add_val,
8076 tem, where_bb, where_insn);
8077 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8079 if (apply_change_group ())
8080 return 1;
8083 /* Look for giv with positive constant mult_val and nonconst add_val.
8084 Insert insns to calculate new compare value.
8085 ??? Turn this off due to possible overflow. */
8087 for (v = bl->giv; v; v = v->next_iv)
8088 if (GET_CODE (v->mult_val) == CONST_INT
8089 && INTVAL (v->mult_val) > 0
8090 && ! v->ignore && ! v->maybe_dead && v->always_computable
8091 && v->mode == mode
8092 && 0)
8094 rtx tem;
8096 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8097 continue;
8099 if (! eliminate_p)
8100 return 1;
8102 tem = gen_reg_rtx (mode);
8104 /* Replace biv with giv's reduced register. */
8105 validate_change (insn, &XEXP (x, 1 - arg_operand),
8106 v->new_reg, 1);
8108 /* Compute value to compare against. */
8109 loop_iv_add_mult_emit_before (loop, arg,
8110 v->mult_val, v->add_val,
8111 tem, where_bb, where_insn);
8112 /* Use it in this insn. */
8113 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8114 if (apply_change_group ())
8115 return 1;
8118 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8120 if (loop_invariant_p (loop, arg) == 1)
8122 /* Look for giv with constant positive mult_val and nonconst
8123 add_val. Insert insns to compute new compare value.
8124 ??? Turn this off due to possible overflow. */
8126 for (v = bl->giv; v; v = v->next_iv)
8127 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8128 && ! v->ignore && ! v->maybe_dead && v->always_computable
8129 && v->mode == mode
8130 && 0)
8132 rtx tem;
8134 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8135 continue;
8137 if (! eliminate_p)
8138 return 1;
8140 tem = gen_reg_rtx (mode);
8142 /* Replace biv with giv's reduced register. */
8143 validate_change (insn, &XEXP (x, 1 - arg_operand),
8144 v->new_reg, 1);
8146 /* Compute value to compare against. */
8147 loop_iv_add_mult_emit_before (loop, arg,
8148 v->mult_val, v->add_val,
8149 tem, where_bb, where_insn);
8150 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8151 if (apply_change_group ())
8152 return 1;
8156 /* This code has problems. Basically, you can't know when
8157 seeing if we will eliminate BL, whether a particular giv
8158 of ARG will be reduced. If it isn't going to be reduced,
8159 we can't eliminate BL. We can try forcing it to be reduced,
8160 but that can generate poor code.
8162 The problem is that the benefit of reducing TV, below should
8163 be increased if BL can actually be eliminated, but this means
8164 we might have to do a topological sort of the order in which
8165 we try to process biv. It doesn't seem worthwhile to do
8166 this sort of thing now. */
8168 #if 0
8169 /* Otherwise the reg compared with had better be a biv. */
8170 if (GET_CODE (arg) != REG
8171 || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
8172 return 0;
8174 /* Look for a pair of givs, one for each biv,
8175 with identical coefficients. */
8176 for (v = bl->giv; v; v = v->next_iv)
8178 struct induction *tv;
8180 if (v->ignore || v->maybe_dead || v->mode != mode)
8181 continue;
8183 for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
8184 tv = tv->next_iv)
8185 if (! tv->ignore && ! tv->maybe_dead
8186 && rtx_equal_p (tv->mult_val, v->mult_val)
8187 && rtx_equal_p (tv->add_val, v->add_val)
8188 && tv->mode == mode)
8190 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8191 continue;
8193 if (! eliminate_p)
8194 return 1;
8196 /* Replace biv with its giv's reduced reg. */
8197 XEXP (x, 1 - arg_operand) = v->new_reg;
8198 /* Replace other operand with the other giv's
8199 reduced reg. */
8200 XEXP (x, arg_operand) = tv->new_reg;
8201 return 1;
8204 #endif
8207 /* If we get here, the biv can't be eliminated. */
8208 return 0;
8210 case MEM:
8211 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8212 biv is used in it, since it will be replaced. */
8213 for (v = bl->giv; v; v = v->next_iv)
8214 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8215 return 1;
8216 break;
8218 default:
8219 break;
8222 /* See if any subexpression fails elimination. */
8223 fmt = GET_RTX_FORMAT (code);
8224 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8226 switch (fmt[i])
8228 case 'e':
8229 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
8230 eliminate_p, where_bb, where_insn))
8231 return 0;
8232 break;
8234 case 'E':
8235 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8236 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
8237 eliminate_p, where_bb, where_insn))
8238 return 0;
8239 break;
8243 return 1;
8246 /* Return nonzero if the last use of REG
8247 is in an insn following INSN in the same basic block. */
8249 static int
8250 last_use_this_basic_block (reg, insn)
8251 rtx reg;
8252 rtx insn;
8254 rtx n;
8255 for (n = insn;
8256 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8257 n = NEXT_INSN (n))
8259 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8260 return 1;
8262 return 0;
8265 /* Called via `note_stores' to record the initial value of a biv. Here we
8266 just record the location of the set and process it later. */
8268 static void
8269 record_initial (dest, set, data)
8270 rtx dest;
8271 rtx set;
8272 void *data ATTRIBUTE_UNUSED;
8274 struct loop_ivs *ivs = (struct loop_ivs *) data;
8275 struct iv_class *bl;
8277 if (GET_CODE (dest) != REG
8278 || REGNO (dest) >= ivs->n_regs
8279 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
8280 return;
8282 bl = REG_IV_CLASS (ivs, REGNO (dest));
8284 /* If this is the first set found, record it. */
8285 if (bl->init_insn == 0)
8287 bl->init_insn = note_insn;
8288 bl->init_set = set;
8292 /* If any of the registers in X are "old" and currently have a last use earlier
8293 than INSN, update them to have a last use of INSN. Their actual last use
8294 will be the previous insn but it will not have a valid uid_luid so we can't
8295 use it. X must be a source expression only. */
8297 static void
8298 update_reg_last_use (x, insn)
8299 rtx x;
8300 rtx insn;
8302 /* Check for the case where INSN does not have a valid luid. In this case,
8303 there is no need to modify the regno_last_uid, as this can only happen
8304 when code is inserted after the loop_end to set a pseudo's final value,
8305 and hence this insn will never be the last use of x.
8306 ???? This comment is not correct. See for example loop_givs_reduce.
8307 This may insert an insn before another new insn. */
8308 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8309 && INSN_UID (insn) < max_uid_for_loop
8310 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
8312 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8314 else
8316 int i, j;
8317 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8318 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8320 if (fmt[i] == 'e')
8321 update_reg_last_use (XEXP (x, i), insn);
8322 else if (fmt[i] == 'E')
8323 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8324 update_reg_last_use (XVECEXP (x, i, j), insn);
8329 /* Given an insn INSN and condition COND, return the condition in a
8330 canonical form to simplify testing by callers. Specifically:
8332 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8333 (2) Both operands will be machine operands; (cc0) will have been replaced.
8334 (3) If an operand is a constant, it will be the second operand.
8335 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8336 for GE, GEU, and LEU.
8338 If the condition cannot be understood, or is an inequality floating-point
8339 comparison which needs to be reversed, 0 will be returned.
8341 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
8343 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8344 insn used in locating the condition was found. If a replacement test
8345 of the condition is desired, it should be placed in front of that
8346 insn and we will be sure that the inputs are still valid.
8348 If WANT_REG is non-zero, we wish the condition to be relative to that
8349 register, if possible. Therefore, do not canonicalize the condition
8350 further. */
8353 canonicalize_condition (insn, cond, reverse, earliest, want_reg)
8354 rtx insn;
8355 rtx cond;
8356 int reverse;
8357 rtx *earliest;
8358 rtx want_reg;
8360 enum rtx_code code;
8361 rtx prev = insn;
8362 rtx set;
8363 rtx tem;
8364 rtx op0, op1;
8365 int reverse_code = 0;
8366 enum machine_mode mode;
8368 code = GET_CODE (cond);
8369 mode = GET_MODE (cond);
8370 op0 = XEXP (cond, 0);
8371 op1 = XEXP (cond, 1);
8373 if (reverse)
8374 code = reversed_comparison_code (cond, insn);
8375 if (code == UNKNOWN)
8376 return 0;
8378 if (earliest)
8379 *earliest = insn;
8381 /* If we are comparing a register with zero, see if the register is set
8382 in the previous insn to a COMPARE or a comparison operation. Perform
8383 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8384 in cse.c */
8386 while (GET_RTX_CLASS (code) == '<'
8387 && op1 == CONST0_RTX (GET_MODE (op0))
8388 && op0 != want_reg)
8390 /* Set non-zero when we find something of interest. */
8391 rtx x = 0;
8393 #ifdef HAVE_cc0
8394 /* If comparison with cc0, import actual comparison from compare
8395 insn. */
8396 if (op0 == cc0_rtx)
8398 if ((prev = prev_nonnote_insn (prev)) == 0
8399 || GET_CODE (prev) != INSN
8400 || (set = single_set (prev)) == 0
8401 || SET_DEST (set) != cc0_rtx)
8402 return 0;
8404 op0 = SET_SRC (set);
8405 op1 = CONST0_RTX (GET_MODE (op0));
8406 if (earliest)
8407 *earliest = prev;
8409 #endif
8411 /* If this is a COMPARE, pick up the two things being compared. */
8412 if (GET_CODE (op0) == COMPARE)
8414 op1 = XEXP (op0, 1);
8415 op0 = XEXP (op0, 0);
8416 continue;
8418 else if (GET_CODE (op0) != REG)
8419 break;
8421 /* Go back to the previous insn. Stop if it is not an INSN. We also
8422 stop if it isn't a single set or if it has a REG_INC note because
8423 we don't want to bother dealing with it. */
8425 if ((prev = prev_nonnote_insn (prev)) == 0
8426 || GET_CODE (prev) != INSN
8427 || FIND_REG_INC_NOTE (prev, 0))
8428 break;
8430 set = set_of (op0, prev);
8432 if (set
8433 && (GET_CODE (set) != SET
8434 || !rtx_equal_p (SET_DEST (set), op0)))
8435 break;
8437 /* If this is setting OP0, get what it sets it to if it looks
8438 relevant. */
8439 if (set)
8441 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
8443 /* ??? We may not combine comparisons done in a CCmode with
8444 comparisons not done in a CCmode. This is to aid targets
8445 like Alpha that have an IEEE compliant EQ instruction, and
8446 a non-IEEE compliant BEQ instruction. The use of CCmode is
8447 actually artificial, simply to prevent the combination, but
8448 should not affect other platforms.
8450 However, we must allow VOIDmode comparisons to match either
8451 CCmode or non-CCmode comparison, because some ports have
8452 modeless comparisons inside branch patterns.
8454 ??? This mode check should perhaps look more like the mode check
8455 in simplify_comparison in combine. */
8457 if ((GET_CODE (SET_SRC (set)) == COMPARE
8458 || (((code == NE
8459 || (code == LT
8460 && GET_MODE_CLASS (inner_mode) == MODE_INT
8461 && (GET_MODE_BITSIZE (inner_mode)
8462 <= HOST_BITS_PER_WIDE_INT)
8463 && (STORE_FLAG_VALUE
8464 & ((HOST_WIDE_INT) 1
8465 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8466 #ifdef FLOAT_STORE_FLAG_VALUE
8467 || (code == LT
8468 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8469 && (REAL_VALUE_NEGATIVE
8470 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
8471 #endif
8473 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
8474 && (((GET_MODE_CLASS (mode) == MODE_CC)
8475 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8476 || mode == VOIDmode || inner_mode == VOIDmode))
8477 x = SET_SRC (set);
8478 else if (((code == EQ
8479 || (code == GE
8480 && (GET_MODE_BITSIZE (inner_mode)
8481 <= HOST_BITS_PER_WIDE_INT)
8482 && GET_MODE_CLASS (inner_mode) == MODE_INT
8483 && (STORE_FLAG_VALUE
8484 & ((HOST_WIDE_INT) 1
8485 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8486 #ifdef FLOAT_STORE_FLAG_VALUE
8487 || (code == GE
8488 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8489 && (REAL_VALUE_NEGATIVE
8490 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
8491 #endif
8493 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
8494 && (((GET_MODE_CLASS (mode) == MODE_CC)
8495 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8496 || mode == VOIDmode || inner_mode == VOIDmode))
8499 reverse_code = 1;
8500 x = SET_SRC (set);
8502 else
8503 break;
8506 else if (reg_set_p (op0, prev))
8507 /* If this sets OP0, but not directly, we have to give up. */
8508 break;
8510 if (x)
8512 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
8513 code = GET_CODE (x);
8514 if (reverse_code)
8516 code = reversed_comparison_code (x, prev);
8517 if (code == UNKNOWN)
8518 return 0;
8519 reverse_code = 0;
8522 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
8523 if (earliest)
8524 *earliest = prev;
8528 /* If constant is first, put it last. */
8529 if (CONSTANT_P (op0))
8530 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
8532 /* If OP0 is the result of a comparison, we weren't able to find what
8533 was really being compared, so fail. */
8534 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
8535 return 0;
8537 /* Canonicalize any ordered comparison with integers involving equality
8538 if we can do computations in the relevant mode and we do not
8539 overflow. */
8541 if (GET_CODE (op1) == CONST_INT
8542 && GET_MODE (op0) != VOIDmode
8543 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
8545 HOST_WIDE_INT const_val = INTVAL (op1);
8546 unsigned HOST_WIDE_INT uconst_val = const_val;
8547 unsigned HOST_WIDE_INT max_val
8548 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
8550 switch (code)
8552 case LE:
8553 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
8554 code = LT, op1 = GEN_INT (const_val + 1);
8555 break;
8557 /* When cross-compiling, const_val might be sign-extended from
8558 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
8559 case GE:
8560 if ((HOST_WIDE_INT) (const_val & max_val)
8561 != (((HOST_WIDE_INT) 1
8562 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
8563 code = GT, op1 = GEN_INT (const_val - 1);
8564 break;
8566 case LEU:
8567 if (uconst_val < max_val)
8568 code = LTU, op1 = GEN_INT (uconst_val + 1);
8569 break;
8571 case GEU:
8572 if (uconst_val != 0)
8573 code = GTU, op1 = GEN_INT (uconst_val - 1);
8574 break;
8576 default:
8577 break;
8581 #ifdef HAVE_cc0
8582 /* Never return CC0; return zero instead. */
8583 if (op0 == cc0_rtx)
8584 return 0;
8585 #endif
8587 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
8590 /* Given a jump insn JUMP, return the condition that will cause it to branch
8591 to its JUMP_LABEL. If the condition cannot be understood, or is an
8592 inequality floating-point comparison which needs to be reversed, 0 will
8593 be returned.
8595 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8596 insn used in locating the condition was found. If a replacement test
8597 of the condition is desired, it should be placed in front of that
8598 insn and we will be sure that the inputs are still valid. */
8601 get_condition (jump, earliest)
8602 rtx jump;
8603 rtx *earliest;
8605 rtx cond;
8606 int reverse;
8607 rtx set;
8609 /* If this is not a standard conditional jump, we can't parse it. */
8610 if (GET_CODE (jump) != JUMP_INSN
8611 || ! any_condjump_p (jump))
8612 return 0;
8613 set = pc_set (jump);
8615 cond = XEXP (SET_SRC (set), 0);
8617 /* If this branches to JUMP_LABEL when the condition is false, reverse
8618 the condition. */
8619 reverse
8620 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
8621 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
8623 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
8626 /* Similar to above routine, except that we also put an invariant last
8627 unless both operands are invariants. */
8630 get_condition_for_loop (loop, x)
8631 const struct loop *loop;
8632 rtx x;
8634 rtx comparison = get_condition (x, (rtx*)0);
8636 if (comparison == 0
8637 || ! loop_invariant_p (loop, XEXP (comparison, 0))
8638 || loop_invariant_p (loop, XEXP (comparison, 1)))
8639 return comparison;
8641 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
8642 XEXP (comparison, 1), XEXP (comparison, 0));
8645 /* Scan the function and determine whether it has indirect (computed) jumps.
8647 This is taken mostly from flow.c; similar code exists elsewhere
8648 in the compiler. It may be useful to put this into rtlanal.c. */
8649 static int
8650 indirect_jump_in_function_p (start)
8651 rtx start;
8653 rtx insn;
8655 for (insn = start; insn; insn = NEXT_INSN (insn))
8656 if (computed_jump_p (insn))
8657 return 1;
8659 return 0;
8662 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
8663 documentation for LOOP_MEMS for the definition of `appropriate'.
8664 This function is called from prescan_loop via for_each_rtx. */
8666 static int
8667 insert_loop_mem (mem, data)
8668 rtx *mem;
8669 void *data ATTRIBUTE_UNUSED;
8671 struct loop_info *loop_info = data;
8672 int i;
8673 rtx m = *mem;
8675 if (m == NULL_RTX)
8676 return 0;
8678 switch (GET_CODE (m))
8680 case MEM:
8681 break;
8683 case CLOBBER:
8684 /* We're not interested in MEMs that are only clobbered. */
8685 return -1;
8687 case CONST_DOUBLE:
8688 /* We're not interested in the MEM associated with a
8689 CONST_DOUBLE, so there's no need to traverse into this. */
8690 return -1;
8692 case EXPR_LIST:
8693 /* We're not interested in any MEMs that only appear in notes. */
8694 return -1;
8696 default:
8697 /* This is not a MEM. */
8698 return 0;
8701 /* See if we've already seen this MEM. */
8702 for (i = 0; i < loop_info->mems_idx; ++i)
8703 if (rtx_equal_p (m, loop_info->mems[i].mem))
8705 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
8706 /* The modes of the two memory accesses are different. If
8707 this happens, something tricky is going on, and we just
8708 don't optimize accesses to this MEM. */
8709 loop_info->mems[i].optimize = 0;
8711 return 0;
8714 /* Resize the array, if necessary. */
8715 if (loop_info->mems_idx == loop_info->mems_allocated)
8717 if (loop_info->mems_allocated != 0)
8718 loop_info->mems_allocated *= 2;
8719 else
8720 loop_info->mems_allocated = 32;
8722 loop_info->mems = (loop_mem_info *)
8723 xrealloc (loop_info->mems,
8724 loop_info->mems_allocated * sizeof (loop_mem_info));
8727 /* Actually insert the MEM. */
8728 loop_info->mems[loop_info->mems_idx].mem = m;
8729 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
8730 because we can't put it in a register. We still store it in the
8731 table, though, so that if we see the same address later, but in a
8732 non-BLK mode, we'll not think we can optimize it at that point. */
8733 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
8734 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
8735 ++loop_info->mems_idx;
8737 return 0;
8741 /* Allocate REGS->ARRAY or reallocate it if it is too small.
8743 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
8744 register that is modified by an insn between FROM and TO. If the
8745 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
8746 more, stop incrementing it, to avoid overflow.
8748 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
8749 register I is used, if it is only used once. Otherwise, it is set
8750 to 0 (for no uses) or const0_rtx for more than one use. This
8751 parameter may be zero, in which case this processing is not done.
8753 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
8754 optimize register I. */
8756 static void
8757 loop_regs_scan (loop, extra_size)
8758 const struct loop *loop;
8759 int extra_size;
8761 struct loop_regs *regs = LOOP_REGS (loop);
8762 int old_nregs;
8763 /* last_set[n] is nonzero iff reg n has been set in the current
8764 basic block. In that case, it is the insn that last set reg n. */
8765 rtx *last_set;
8766 rtx insn;
8767 int i;
8769 old_nregs = regs->num;
8770 regs->num = max_reg_num ();
8772 /* Grow the regs array if not allocated or too small. */
8773 if (regs->num >= regs->size)
8775 regs->size = regs->num + extra_size;
8777 regs->array = (struct loop_reg *)
8778 xrealloc (regs->array, regs->size * sizeof (*regs->array));
8780 /* Zero the new elements. */
8781 memset (regs->array + old_nregs, 0,
8782 (regs->size - old_nregs) * sizeof (*regs->array));
8785 /* Clear previously scanned fields but do not clear n_times_set. */
8786 for (i = 0; i < old_nregs; i++)
8788 regs->array[i].set_in_loop = 0;
8789 regs->array[i].may_not_optimize = 0;
8790 regs->array[i].single_usage = NULL_RTX;
8793 last_set = (rtx *) xcalloc (regs->num, sizeof (rtx));
8795 /* Scan the loop, recording register usage. */
8796 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
8797 insn = NEXT_INSN (insn))
8799 if (INSN_P (insn))
8801 /* Record registers that have exactly one use. */
8802 find_single_use_in_loop (regs, insn, PATTERN (insn));
8804 /* Include uses in REG_EQUAL notes. */
8805 if (REG_NOTES (insn))
8806 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
8808 if (GET_CODE (PATTERN (insn)) == SET
8809 || GET_CODE (PATTERN (insn)) == CLOBBER)
8810 count_one_set (regs, insn, PATTERN (insn), last_set);
8811 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
8813 int i;
8814 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
8815 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
8816 last_set);
8820 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
8821 memset (last_set, 0, regs->num * sizeof (rtx));
8824 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8826 regs->array[i].may_not_optimize = 1;
8827 regs->array[i].set_in_loop = 1;
8830 #ifdef AVOID_CCMODE_COPIES
8831 /* Don't try to move insns which set CC registers if we should not
8832 create CCmode register copies. */
8833 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
8834 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
8835 regs->array[i].may_not_optimize = 1;
8836 #endif
8838 /* Set regs->array[I].n_times_set for the new registers. */
8839 for (i = old_nregs; i < regs->num; i++)
8840 regs->array[i].n_times_set = regs->array[i].set_in_loop;
8842 free (last_set);
8845 /* Returns the number of real INSNs in the LOOP. */
8847 static int
8848 count_insns_in_loop (loop)
8849 const struct loop *loop;
8851 int count = 0;
8852 rtx insn;
8854 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
8855 insn = NEXT_INSN (insn))
8856 if (INSN_P (insn))
8857 ++count;
8859 return count;
8862 /* Move MEMs into registers for the duration of the loop. */
8864 static void
8865 load_mems (loop)
8866 const struct loop *loop;
8868 struct loop_info *loop_info = LOOP_INFO (loop);
8869 struct loop_regs *regs = LOOP_REGS (loop);
8870 int maybe_never = 0;
8871 int i;
8872 rtx p, prev_ebb_head;
8873 rtx label = NULL_RTX;
8874 rtx end_label;
8875 /* Nonzero if the next instruction may never be executed. */
8876 int next_maybe_never = 0;
8877 unsigned int last_max_reg = max_reg_num ();
8879 if (loop_info->mems_idx == 0)
8880 return;
8882 /* We cannot use next_label here because it skips over normal insns. */
8883 end_label = next_nonnote_insn (loop->end);
8884 if (end_label && GET_CODE (end_label) != CODE_LABEL)
8885 end_label = NULL_RTX;
8887 /* Check to see if it's possible that some instructions in the loop are
8888 never executed. Also check if there is a goto out of the loop other
8889 than right after the end of the loop. */
8890 for (p = next_insn_in_loop (loop, loop->scan_start);
8891 p != NULL_RTX;
8892 p = next_insn_in_loop (loop, p))
8894 if (GET_CODE (p) == CODE_LABEL)
8895 maybe_never = 1;
8896 else if (GET_CODE (p) == JUMP_INSN
8897 /* If we enter the loop in the middle, and scan
8898 around to the beginning, don't set maybe_never
8899 for that. This must be an unconditional jump,
8900 otherwise the code at the top of the loop might
8901 never be executed. Unconditional jumps are
8902 followed a by barrier then loop end. */
8903 && ! (GET_CODE (p) == JUMP_INSN
8904 && JUMP_LABEL (p) == loop->top
8905 && NEXT_INSN (NEXT_INSN (p)) == loop->end
8906 && any_uncondjump_p (p)))
8908 /* If this is a jump outside of the loop but not right
8909 after the end of the loop, we would have to emit new fixup
8910 sequences for each such label. */
8911 if (/* If we can't tell where control might go when this
8912 JUMP_INSN is executed, we must be conservative. */
8913 !JUMP_LABEL (p)
8914 || (JUMP_LABEL (p) != end_label
8915 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
8916 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
8917 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
8918 return;
8920 if (!any_condjump_p (p))
8921 /* Something complicated. */
8922 maybe_never = 1;
8923 else
8924 /* If there are any more instructions in the loop, they
8925 might not be reached. */
8926 next_maybe_never = 1;
8928 else if (next_maybe_never)
8929 maybe_never = 1;
8932 /* Find start of the extended basic block that enters the loop. */
8933 for (p = loop->start;
8934 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
8935 p = PREV_INSN (p))
8937 prev_ebb_head = p;
8939 cselib_init ();
8941 /* Build table of mems that get set to constant values before the
8942 loop. */
8943 for (; p != loop->start; p = NEXT_INSN (p))
8944 cselib_process_insn (p);
8946 /* Actually move the MEMs. */
8947 for (i = 0; i < loop_info->mems_idx; ++i)
8949 regset_head load_copies;
8950 regset_head store_copies;
8951 int written = 0;
8952 rtx reg;
8953 rtx mem = loop_info->mems[i].mem;
8954 rtx mem_list_entry;
8956 if (MEM_VOLATILE_P (mem)
8957 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
8958 /* There's no telling whether or not MEM is modified. */
8959 loop_info->mems[i].optimize = 0;
8961 /* Go through the MEMs written to in the loop to see if this
8962 one is aliased by one of them. */
8963 mem_list_entry = loop_info->store_mems;
8964 while (mem_list_entry)
8966 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
8967 written = 1;
8968 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
8969 mem, rtx_varies_p))
8971 /* MEM is indeed aliased by this store. */
8972 loop_info->mems[i].optimize = 0;
8973 break;
8975 mem_list_entry = XEXP (mem_list_entry, 1);
8978 if (flag_float_store && written
8979 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
8980 loop_info->mems[i].optimize = 0;
8982 /* If this MEM is written to, we must be sure that there
8983 are no reads from another MEM that aliases this one. */
8984 if (loop_info->mems[i].optimize && written)
8986 int j;
8988 for (j = 0; j < loop_info->mems_idx; ++j)
8990 if (j == i)
8991 continue;
8992 else if (true_dependence (mem,
8993 VOIDmode,
8994 loop_info->mems[j].mem,
8995 rtx_varies_p))
8997 /* It's not safe to hoist loop_info->mems[i] out of
8998 the loop because writes to it might not be
8999 seen by reads from loop_info->mems[j]. */
9000 loop_info->mems[i].optimize = 0;
9001 break;
9006 if (maybe_never && may_trap_p (mem))
9007 /* We can't access the MEM outside the loop; it might
9008 cause a trap that wouldn't have happened otherwise. */
9009 loop_info->mems[i].optimize = 0;
9011 if (!loop_info->mems[i].optimize)
9012 /* We thought we were going to lift this MEM out of the
9013 loop, but later discovered that we could not. */
9014 continue;
9016 INIT_REG_SET (&load_copies);
9017 INIT_REG_SET (&store_copies);
9019 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9020 order to keep scan_loop from moving stores to this MEM
9021 out of the loop just because this REG is neither a
9022 user-variable nor used in the loop test. */
9023 reg = gen_reg_rtx (GET_MODE (mem));
9024 REG_USERVAR_P (reg) = 1;
9025 loop_info->mems[i].reg = reg;
9027 /* Now, replace all references to the MEM with the
9028 corresponding pseudos. */
9029 maybe_never = 0;
9030 for (p = next_insn_in_loop (loop, loop->scan_start);
9031 p != NULL_RTX;
9032 p = next_insn_in_loop (loop, p))
9034 if (INSN_P (p))
9036 rtx set;
9038 set = single_set (p);
9040 /* See if this copies the mem into a register that isn't
9041 modified afterwards. We'll try to do copy propagation
9042 a little further on. */
9043 if (set
9044 /* @@@ This test is _way_ too conservative. */
9045 && ! maybe_never
9046 && GET_CODE (SET_DEST (set)) == REG
9047 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9048 && REGNO (SET_DEST (set)) < last_max_reg
9049 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
9050 && rtx_equal_p (SET_SRC (set), mem))
9051 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
9053 /* See if this copies the mem from a register that isn't
9054 modified afterwards. We'll try to remove the
9055 redundant copy later on by doing a little register
9056 renaming and copy propagation. This will help
9057 to untangle things for the BIV detection code. */
9058 if (set
9059 && ! maybe_never
9060 && GET_CODE (SET_SRC (set)) == REG
9061 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
9062 && REGNO (SET_SRC (set)) < last_max_reg
9063 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
9064 && rtx_equal_p (SET_DEST (set), mem))
9065 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
9067 /* Replace the memory reference with the shadow register. */
9068 replace_loop_mems (p, loop_info->mems[i].mem,
9069 loop_info->mems[i].reg);
9072 if (GET_CODE (p) == CODE_LABEL
9073 || GET_CODE (p) == JUMP_INSN)
9074 maybe_never = 1;
9077 if (! apply_change_group ())
9078 /* We couldn't replace all occurrences of the MEM. */
9079 loop_info->mems[i].optimize = 0;
9080 else
9082 /* Load the memory immediately before LOOP->START, which is
9083 the NOTE_LOOP_BEG. */
9084 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9085 rtx set;
9086 rtx best = mem;
9087 int j;
9088 struct elt_loc_list *const_equiv = 0;
9090 if (e)
9092 struct elt_loc_list *equiv;
9093 struct elt_loc_list *best_equiv = 0;
9094 for (equiv = e->locs; equiv; equiv = equiv->next)
9096 if (CONSTANT_P (equiv->loc))
9097 const_equiv = equiv;
9098 else if (GET_CODE (equiv->loc) == REG
9099 /* Extending hard register lifetimes causes crash
9100 on SRC targets. Doing so on non-SRC is
9101 probably also not good idea, since we most
9102 probably have pseudoregister equivalence as
9103 well. */
9104 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9105 best_equiv = equiv;
9107 /* Use the constant equivalence if that is cheap enough. */
9108 if (! best_equiv)
9109 best_equiv = const_equiv;
9110 else if (const_equiv
9111 && (rtx_cost (const_equiv->loc, SET)
9112 <= rtx_cost (best_equiv->loc, SET)))
9114 best_equiv = const_equiv;
9115 const_equiv = 0;
9118 /* If best_equiv is nonzero, we know that MEM is set to a
9119 constant or register before the loop. We will use this
9120 knowledge to initialize the shadow register with that
9121 constant or reg rather than by loading from MEM. */
9122 if (best_equiv)
9123 best = copy_rtx (best_equiv->loc);
9126 set = gen_move_insn (reg, best);
9127 set = loop_insn_hoist (loop, set);
9128 if (REG_P (best))
9130 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
9131 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
9133 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
9134 break;
9138 if (const_equiv)
9139 REG_NOTES (set) = gen_rtx_EXPR_LIST (REG_EQUAL,
9140 copy_rtx (const_equiv->loc),
9141 REG_NOTES (set));
9143 if (written)
9145 if (label == NULL_RTX)
9147 label = gen_label_rtx ();
9148 emit_label_after (label, loop->end);
9151 /* Store the memory immediately after END, which is
9152 the NOTE_LOOP_END. */
9153 set = gen_move_insn (copy_rtx (mem), reg);
9154 loop_insn_emit_after (loop, 0, label, set);
9157 if (loop_dump_stream)
9159 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9160 REGNO (reg), (written ? "r/w" : "r/o"));
9161 print_rtl (loop_dump_stream, mem);
9162 fputc ('\n', loop_dump_stream);
9165 /* Attempt a bit of copy propagation. This helps untangle the
9166 data flow, and enables {basic,general}_induction_var to find
9167 more bivs/givs. */
9168 EXECUTE_IF_SET_IN_REG_SET
9169 (&load_copies, FIRST_PSEUDO_REGISTER, j,
9171 try_copy_prop (loop, reg, j);
9173 CLEAR_REG_SET (&load_copies);
9175 EXECUTE_IF_SET_IN_REG_SET
9176 (&store_copies, FIRST_PSEUDO_REGISTER, j,
9178 try_swap_copy_prop (loop, reg, j);
9180 CLEAR_REG_SET (&store_copies);
9184 if (label != NULL_RTX && end_label != NULL_RTX)
9186 /* Now, we need to replace all references to the previous exit
9187 label with the new one. */
9188 rtx_pair rr;
9189 rr.r1 = end_label;
9190 rr.r2 = label;
9192 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
9194 for_each_rtx (&p, replace_label, &rr);
9196 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9197 field. This is not handled by for_each_rtx because it doesn't
9198 handle unprinted ('0') fields. We need to update JUMP_LABEL
9199 because the immediately following unroll pass will use it.
9200 replace_label would not work anyways, because that only handles
9201 LABEL_REFs. */
9202 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9203 JUMP_LABEL (p) = label;
9207 cselib_finish ();
9210 /* For communication between note_reg_stored and its caller. */
9211 struct note_reg_stored_arg
9213 int set_seen;
9214 rtx reg;
9217 /* Called via note_stores, record in SET_SEEN whether X, which is written,
9218 is equal to ARG. */
9219 static void
9220 note_reg_stored (x, setter, arg)
9221 rtx x, setter ATTRIBUTE_UNUSED;
9222 void *arg;
9224 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
9225 if (t->reg == x)
9226 t->set_seen = 1;
9229 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
9230 There must be exactly one insn that sets this pseudo; it will be
9231 deleted if all replacements succeed and we can prove that the register
9232 is not used after the loop. */
9234 static void
9235 try_copy_prop (loop, replacement, regno)
9236 const struct loop *loop;
9237 rtx replacement;
9238 unsigned int regno;
9240 /* This is the reg that we are copying from. */
9241 rtx reg_rtx = regno_reg_rtx[regno];
9242 rtx init_insn = 0;
9243 rtx insn;
9244 /* These help keep track of whether we replaced all uses of the reg. */
9245 int replaced_last = 0;
9246 int store_is_first = 0;
9248 for (insn = next_insn_in_loop (loop, loop->scan_start);
9249 insn != NULL_RTX;
9250 insn = next_insn_in_loop (loop, insn))
9252 rtx set;
9254 /* Only substitute within one extended basic block from the initializing
9255 insn. */
9256 if (GET_CODE (insn) == CODE_LABEL && init_insn)
9257 break;
9259 if (! INSN_P (insn))
9260 continue;
9262 /* Is this the initializing insn? */
9263 set = single_set (insn);
9264 if (set
9265 && GET_CODE (SET_DEST (set)) == REG
9266 && REGNO (SET_DEST (set)) == regno)
9268 if (init_insn)
9269 abort ();
9271 init_insn = insn;
9272 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
9273 store_is_first = 1;
9276 /* Only substitute after seeing the initializing insn. */
9277 if (init_insn && insn != init_insn)
9279 struct note_reg_stored_arg arg;
9281 replace_loop_regs (insn, reg_rtx, replacement);
9282 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
9283 replaced_last = 1;
9285 /* Stop replacing when REPLACEMENT is modified. */
9286 arg.reg = replacement;
9287 arg.set_seen = 0;
9288 note_stores (PATTERN (insn), note_reg_stored, &arg);
9289 if (arg.set_seen)
9291 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
9293 /* It is possible that we've turned previously valid REG_EQUAL to
9294 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
9295 REPLACEMENT is modified, we get different meaning. */
9296 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
9297 remove_note (insn, note);
9298 break;
9302 if (! init_insn)
9303 abort ();
9304 if (apply_change_group ())
9306 if (loop_dump_stream)
9307 fprintf (loop_dump_stream, " Replaced reg %d", regno);
9308 if (store_is_first && replaced_last)
9310 rtx first;
9311 rtx retval_note;
9313 /* Assume we're just deleting INIT_INSN. */
9314 first = init_insn;
9315 /* Look for REG_RETVAL note. If we're deleting the end of
9316 the libcall sequence, the whole sequence can go. */
9317 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
9318 /* If we found a REG_RETVAL note, find the first instruction
9319 in the sequence. */
9320 if (retval_note)
9321 first = XEXP (retval_note, 0);
9323 /* Delete the instructions. */
9324 loop_delete_insns (first, init_insn);
9326 if (loop_dump_stream)
9327 fprintf (loop_dump_stream, ".\n");
9331 /* Replace all the instructions from FIRST up to and including LAST
9332 with NOTE_INSN_DELETED notes. */
9334 static void
9335 loop_delete_insns (first, last)
9336 rtx first;
9337 rtx last;
9339 while (1)
9341 if (loop_dump_stream)
9342 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
9343 INSN_UID (first));
9344 delete_insn (first);
9346 /* If this was the LAST instructions we're supposed to delete,
9347 we're done. */
9348 if (first == last)
9349 break;
9351 first = NEXT_INSN (first);
9355 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
9356 loop LOOP if the order of the sets of these registers can be
9357 swapped. There must be exactly one insn within the loop that sets
9358 this pseudo followed immediately by a move insn that sets
9359 REPLACEMENT with REGNO. */
9360 static void
9361 try_swap_copy_prop (loop, replacement, regno)
9362 const struct loop *loop;
9363 rtx replacement;
9364 unsigned int regno;
9366 rtx insn;
9367 rtx set = NULL_RTX;
9368 unsigned int new_regno;
9370 new_regno = REGNO (replacement);
9372 for (insn = next_insn_in_loop (loop, loop->scan_start);
9373 insn != NULL_RTX;
9374 insn = next_insn_in_loop (loop, insn))
9376 /* Search for the insn that copies REGNO to NEW_REGNO? */
9377 if (INSN_P (insn)
9378 && (set = single_set (insn))
9379 && GET_CODE (SET_DEST (set)) == REG
9380 && REGNO (SET_DEST (set)) == new_regno
9381 && GET_CODE (SET_SRC (set)) == REG
9382 && REGNO (SET_SRC (set)) == regno)
9383 break;
9386 if (insn != NULL_RTX)
9388 rtx prev_insn;
9389 rtx prev_set;
9391 /* Some DEF-USE info would come in handy here to make this
9392 function more general. For now, just check the previous insn
9393 which is the most likely candidate for setting REGNO. */
9395 prev_insn = PREV_INSN (insn);
9397 if (INSN_P (insn)
9398 && (prev_set = single_set (prev_insn))
9399 && GET_CODE (SET_DEST (prev_set)) == REG
9400 && REGNO (SET_DEST (prev_set)) == regno)
9402 /* We have:
9403 (set (reg regno) (expr))
9404 (set (reg new_regno) (reg regno))
9406 so try converting this to:
9407 (set (reg new_regno) (expr))
9408 (set (reg regno) (reg new_regno))
9410 The former construct is often generated when a global
9411 variable used for an induction variable is shadowed by a
9412 register (NEW_REGNO). The latter construct improves the
9413 chances of GIV replacement and BIV elimination. */
9415 validate_change (prev_insn, &SET_DEST (prev_set),
9416 replacement, 1);
9417 validate_change (insn, &SET_DEST (set),
9418 SET_SRC (set), 1);
9419 validate_change (insn, &SET_SRC (set),
9420 replacement, 1);
9422 if (apply_change_group ())
9424 if (loop_dump_stream)
9425 fprintf (loop_dump_stream,
9426 " Swapped set of reg %d at %d with reg %d at %d.\n",
9427 regno, INSN_UID (insn),
9428 new_regno, INSN_UID (prev_insn));
9430 /* Update first use of REGNO. */
9431 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
9432 REGNO_FIRST_UID (regno) = INSN_UID (insn);
9434 /* Now perform copy propagation to hopefully
9435 remove all uses of REGNO within the loop. */
9436 try_copy_prop (loop, replacement, regno);
9442 /* Replace MEM with its associated pseudo register. This function is
9443 called from load_mems via for_each_rtx. DATA is actually a pointer
9444 to a structure describing the instruction currently being scanned
9445 and the MEM we are currently replacing. */
9447 static int
9448 replace_loop_mem (mem, data)
9449 rtx *mem;
9450 void *data;
9452 loop_replace_args *args = (loop_replace_args *) data;
9453 rtx m = *mem;
9455 if (m == NULL_RTX)
9456 return 0;
9458 switch (GET_CODE (m))
9460 case MEM:
9461 break;
9463 case CONST_DOUBLE:
9464 /* We're not interested in the MEM associated with a
9465 CONST_DOUBLE, so there's no need to traverse into one. */
9466 return -1;
9468 default:
9469 /* This is not a MEM. */
9470 return 0;
9473 if (!rtx_equal_p (args->match, m))
9474 /* This is not the MEM we are currently replacing. */
9475 return 0;
9477 /* Actually replace the MEM. */
9478 validate_change (args->insn, mem, args->replacement, 1);
9480 return 0;
9483 static void
9484 replace_loop_mems (insn, mem, reg)
9485 rtx insn;
9486 rtx mem;
9487 rtx reg;
9489 loop_replace_args args;
9491 args.insn = insn;
9492 args.match = mem;
9493 args.replacement = reg;
9495 for_each_rtx (&insn, replace_loop_mem, &args);
9498 /* Replace one register with another. Called through for_each_rtx; PX points
9499 to the rtx being scanned. DATA is actually a pointer to
9500 a structure of arguments. */
9502 static int
9503 replace_loop_reg (px, data)
9504 rtx *px;
9505 void *data;
9507 rtx x = *px;
9508 loop_replace_args *args = (loop_replace_args *) data;
9510 if (x == NULL_RTX)
9511 return 0;
9513 if (x == args->match)
9514 validate_change (args->insn, px, args->replacement, 1);
9516 return 0;
9519 static void
9520 replace_loop_regs (insn, reg, replacement)
9521 rtx insn;
9522 rtx reg;
9523 rtx replacement;
9525 loop_replace_args args;
9527 args.insn = insn;
9528 args.match = reg;
9529 args.replacement = replacement;
9531 for_each_rtx (&insn, replace_loop_reg, &args);
9534 /* Replace occurrences of the old exit label for the loop with the new
9535 one. DATA is an rtx_pair containing the old and new labels,
9536 respectively. */
9538 static int
9539 replace_label (x, data)
9540 rtx *x;
9541 void *data;
9543 rtx l = *x;
9544 rtx old_label = ((rtx_pair *) data)->r1;
9545 rtx new_label = ((rtx_pair *) data)->r2;
9547 if (l == NULL_RTX)
9548 return 0;
9550 if (GET_CODE (l) != LABEL_REF)
9551 return 0;
9553 if (XEXP (l, 0) != old_label)
9554 return 0;
9556 XEXP (l, 0) = new_label;
9557 ++LABEL_NUSES (new_label);
9558 --LABEL_NUSES (old_label);
9560 return 0;
9563 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
9564 (ignored in the interim). */
9566 static rtx
9567 loop_insn_emit_after (loop, where_bb, where_insn, pattern)
9568 const struct loop *loop ATTRIBUTE_UNUSED;
9569 basic_block where_bb ATTRIBUTE_UNUSED;
9570 rtx where_insn;
9571 rtx pattern;
9573 return emit_insn_after (pattern, where_insn);
9577 /* If WHERE_INSN is non-zero emit insn for PATTERN before WHERE_INSN
9578 in basic block WHERE_BB (ignored in the interim) within the loop
9579 otherwise hoist PATTERN into the loop pre-header. */
9582 loop_insn_emit_before (loop, where_bb, where_insn, pattern)
9583 const struct loop *loop;
9584 basic_block where_bb ATTRIBUTE_UNUSED;
9585 rtx where_insn;
9586 rtx pattern;
9588 if (! where_insn)
9589 return loop_insn_hoist (loop, pattern);
9590 return emit_insn_before (pattern, where_insn);
9594 /* Emit call insn for PATTERN before WHERE_INSN in basic block
9595 WHERE_BB (ignored in the interim) within the loop. */
9597 static rtx
9598 loop_call_insn_emit_before (loop, where_bb, where_insn, pattern)
9599 const struct loop *loop ATTRIBUTE_UNUSED;
9600 basic_block where_bb ATTRIBUTE_UNUSED;
9601 rtx where_insn;
9602 rtx pattern;
9604 return emit_call_insn_before (pattern, where_insn);
9608 /* Hoist insn for PATTERN into the loop pre-header. */
9611 loop_insn_hoist (loop, pattern)
9612 const struct loop *loop;
9613 rtx pattern;
9615 return loop_insn_emit_before (loop, 0, loop->start, pattern);
9619 /* Hoist call insn for PATTERN into the loop pre-header. */
9621 static rtx
9622 loop_call_insn_hoist (loop, pattern)
9623 const struct loop *loop;
9624 rtx pattern;
9626 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
9630 /* Sink insn for PATTERN after the loop end. */
9633 loop_insn_sink (loop, pattern)
9634 const struct loop *loop;
9635 rtx pattern;
9637 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
9641 /* If the loop has multiple exits, emit insn for PATTERN before the
9642 loop to ensure that it will always be executed no matter how the
9643 loop exits. Otherwise, emit the insn for PATTERN after the loop,
9644 since this is slightly more efficient. */
9646 static rtx
9647 loop_insn_sink_or_swim (loop, pattern)
9648 const struct loop *loop;
9649 rtx pattern;
9651 if (loop->exit_count)
9652 return loop_insn_hoist (loop, pattern);
9653 else
9654 return loop_insn_sink (loop, pattern);
9657 static void
9658 loop_ivs_dump (loop, file, verbose)
9659 const struct loop *loop;
9660 FILE *file;
9661 int verbose;
9663 struct iv_class *bl;
9664 int iv_num = 0;
9666 if (! loop || ! file)
9667 return;
9669 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
9670 iv_num++;
9672 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
9674 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
9676 loop_iv_class_dump (bl, file, verbose);
9677 fputc ('\n', file);
9682 static void
9683 loop_iv_class_dump (bl, file, verbose)
9684 const struct iv_class *bl;
9685 FILE *file;
9686 int verbose ATTRIBUTE_UNUSED;
9688 struct induction *v;
9689 rtx incr;
9690 int i;
9692 if (! bl || ! file)
9693 return;
9695 fprintf (file, "IV class for reg %d, benefit %d\n",
9696 bl->regno, bl->total_benefit);
9698 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
9699 if (bl->initial_value)
9701 fprintf (file, ", init val: ");
9702 print_simple_rtl (file, bl->initial_value);
9704 if (bl->initial_test)
9706 fprintf (file, ", init test: ");
9707 print_simple_rtl (file, bl->initial_test);
9709 fputc ('\n', file);
9711 if (bl->final_value)
9713 fprintf (file, " Final val: ");
9714 print_simple_rtl (file, bl->final_value);
9715 fputc ('\n', file);
9718 if ((incr = biv_total_increment (bl)))
9720 fprintf (file, " Total increment: ");
9721 print_simple_rtl (file, incr);
9722 fputc ('\n', file);
9725 /* List the increments. */
9726 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
9728 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
9729 print_simple_rtl (file, v->add_val);
9730 fputc ('\n', file);
9733 /* List the givs. */
9734 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
9736 fprintf (file, " Giv%d: insn %d, benefit %d, ",
9737 i, INSN_UID (v->insn), v->benefit);
9738 if (v->giv_type == DEST_ADDR)
9739 print_simple_rtl (file, v->mem);
9740 else
9741 print_simple_rtl (file, single_set (v->insn));
9742 fputc ('\n', file);
9747 static void
9748 loop_biv_dump (v, file, verbose)
9749 const struct induction *v;
9750 FILE *file;
9751 int verbose;
9753 if (! v || ! file)
9754 return;
9756 fprintf (file,
9757 "Biv %d: insn %d",
9758 REGNO (v->dest_reg), INSN_UID (v->insn));
9759 fprintf (file, " const ");
9760 print_simple_rtl (file, v->add_val);
9762 if (verbose && v->final_value)
9764 fputc ('\n', file);
9765 fprintf (file, " final ");
9766 print_simple_rtl (file, v->final_value);
9769 fputc ('\n', file);
9773 static void
9774 loop_giv_dump (v, file, verbose)
9775 const struct induction *v;
9776 FILE *file;
9777 int verbose;
9779 if (! v || ! file)
9780 return;
9782 if (v->giv_type == DEST_REG)
9783 fprintf (file, "Giv %d: insn %d",
9784 REGNO (v->dest_reg), INSN_UID (v->insn));
9785 else
9786 fprintf (file, "Dest address: insn %d",
9787 INSN_UID (v->insn));
9789 fprintf (file, " src reg %d benefit %d",
9790 REGNO (v->src_reg), v->benefit);
9791 fprintf (file, " lifetime %d",
9792 v->lifetime);
9794 if (v->replaceable)
9795 fprintf (file, " replaceable");
9797 if (v->no_const_addval)
9798 fprintf (file, " ncav");
9800 if (v->ext_dependant)
9802 switch (GET_CODE (v->ext_dependant))
9804 case SIGN_EXTEND:
9805 fprintf (file, " ext se");
9806 break;
9807 case ZERO_EXTEND:
9808 fprintf (file, " ext ze");
9809 break;
9810 case TRUNCATE:
9811 fprintf (file, " ext tr");
9812 break;
9813 default:
9814 abort ();
9818 fputc ('\n', file);
9819 fprintf (file, " mult ");
9820 print_simple_rtl (file, v->mult_val);
9822 fputc ('\n', file);
9823 fprintf (file, " add ");
9824 print_simple_rtl (file, v->add_val);
9826 if (verbose && v->final_value)
9828 fputc ('\n', file);
9829 fprintf (file, " final ");
9830 print_simple_rtl (file, v->final_value);
9833 fputc ('\n', file);
9837 void
9838 debug_ivs (loop)
9839 const struct loop *loop;
9841 loop_ivs_dump (loop, stderr, 1);
9845 void
9846 debug_iv_class (bl)
9847 const struct iv_class *bl;
9849 loop_iv_class_dump (bl, stderr, 1);
9853 void
9854 debug_biv (v)
9855 const struct induction *v;
9857 loop_biv_dump (v, stderr, 1);
9861 void
9862 debug_giv (v)
9863 const struct induction *v;
9865 loop_giv_dump (v, stderr, 1);
9869 #define LOOP_BLOCK_NUM_1(INSN) \
9870 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
9872 /* The notes do not have an assigned block, so look at the next insn. */
9873 #define LOOP_BLOCK_NUM(INSN) \
9874 ((INSN) ? (GET_CODE (INSN) == NOTE \
9875 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
9876 : LOOP_BLOCK_NUM_1 (INSN)) \
9877 : -1)
9879 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
9881 static void
9882 loop_dump_aux (loop, file, verbose)
9883 const struct loop *loop;
9884 FILE *file;
9885 int verbose ATTRIBUTE_UNUSED;
9887 rtx label;
9889 if (! loop || ! file)
9890 return;
9892 /* Print diagnostics to compare our concept of a loop with
9893 what the loop notes say. */
9894 if (! PREV_INSN (loop->first->head)
9895 || GET_CODE (PREV_INSN (loop->first->head)) != NOTE
9896 || NOTE_LINE_NUMBER (PREV_INSN (loop->first->head))
9897 != NOTE_INSN_LOOP_BEG)
9898 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
9899 INSN_UID (PREV_INSN (loop->first->head)));
9900 if (! NEXT_INSN (loop->last->end)
9901 || GET_CODE (NEXT_INSN (loop->last->end)) != NOTE
9902 || NOTE_LINE_NUMBER (NEXT_INSN (loop->last->end))
9903 != NOTE_INSN_LOOP_END)
9904 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
9905 INSN_UID (NEXT_INSN (loop->last->end)));
9907 if (loop->start)
9909 fprintf (file,
9910 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
9911 LOOP_BLOCK_NUM (loop->start),
9912 LOOP_INSN_UID (loop->start),
9913 LOOP_BLOCK_NUM (loop->cont),
9914 LOOP_INSN_UID (loop->cont),
9915 LOOP_BLOCK_NUM (loop->cont),
9916 LOOP_INSN_UID (loop->cont),
9917 LOOP_BLOCK_NUM (loop->vtop),
9918 LOOP_INSN_UID (loop->vtop),
9919 LOOP_BLOCK_NUM (loop->end),
9920 LOOP_INSN_UID (loop->end));
9921 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
9922 LOOP_BLOCK_NUM (loop->top),
9923 LOOP_INSN_UID (loop->top),
9924 LOOP_BLOCK_NUM (loop->scan_start),
9925 LOOP_INSN_UID (loop->scan_start));
9926 fprintf (file, ";; exit_count %d", loop->exit_count);
9927 if (loop->exit_count)
9929 fputs (", labels:", file);
9930 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
9932 fprintf (file, " %d ",
9933 LOOP_INSN_UID (XEXP (label, 0)));
9936 fputs ("\n", file);
9938 /* This can happen when a marked loop appears as two nested loops,
9939 say from while (a || b) {}. The inner loop won't match
9940 the loop markers but the outer one will. */
9941 if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
9942 fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
9946 /* Call this function from the debugger to dump LOOP. */
9948 void
9949 debug_loop (loop)
9950 const struct loop *loop;
9952 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
9955 /* Call this function from the debugger to dump LOOPS. */
9957 void
9958 debug_loops (loops)
9959 const struct loops *loops;
9961 flow_loops_dump (loops, stderr, loop_dump_aux, 1);