* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / global.c
bloba460755c29f8a0a6fe098aed24a7893b6b157997
1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
26 #include "machmode.h"
27 #include "hard-reg-set.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "reload.h"
36 #include "output.h"
37 #include "toplev.h"
39 /* This pass of the compiler performs global register allocation.
40 It assigns hard register numbers to all the pseudo registers
41 that were not handled in local_alloc. Assignments are recorded
42 in the vector reg_renumber, not by changing the rtl code.
43 (Such changes are made by final). The entry point is
44 the function global_alloc.
46 After allocation is complete, the reload pass is run as a subroutine
47 of this pass, so that when a pseudo reg loses its hard reg due to
48 spilling it is possible to make a second attempt to find a hard
49 reg for it. The reload pass is independent in other respects
50 and it is run even when stupid register allocation is in use.
52 1. Assign allocation-numbers (allocnos) to the pseudo-registers
53 still needing allocations and to the pseudo-registers currently
54 allocated by local-alloc which may be spilled by reload.
55 Set up tables reg_allocno and allocno_reg to map
56 reg numbers to allocnos and vice versa.
57 max_allocno gets the number of allocnos in use.
59 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
60 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
61 for conflicts between allocnos and explicit hard register use
62 (which includes use of pseudo-registers allocated by local_alloc).
64 3. For each basic block
65 walk forward through the block, recording which
66 pseudo-registers and which hardware registers are live.
67 Build the conflict matrix between the pseudo-registers
68 and another of pseudo-registers versus hardware registers.
69 Also record the preferred hardware registers
70 for each pseudo-register.
72 4. Sort a table of the allocnos into order of
73 desirability of the variables.
75 5. Allocate the variables in that order; each if possible into
76 a preferred register, else into another register. */
78 /* Number of pseudo-registers which are candidates for allocation. */
80 static int max_allocno;
82 /* Indexed by (pseudo) reg number, gives the allocno, or -1
83 for pseudo registers which are not to be allocated. */
85 static int *reg_allocno;
87 struct allocno
89 int reg;
90 /* Gives the number of consecutive hard registers needed by that
91 pseudo reg. */
92 int size;
94 /* Number of calls crossed by each allocno. */
95 int calls_crossed;
97 /* Number of refs to each allocno. */
98 int n_refs;
100 /* Frequency of uses of each allocno. */
101 int freq;
103 /* Guess at live length of each allocno.
104 This is actually the max of the live lengths of the regs. */
105 int live_length;
107 /* Set of hard regs conflicting with allocno N. */
109 HARD_REG_SET hard_reg_conflicts;
111 /* Set of hard regs preferred by allocno N.
112 This is used to make allocnos go into regs that are copied to or from them,
113 when possible, to reduce register shuffling. */
115 HARD_REG_SET hard_reg_preferences;
117 /* Similar, but just counts register preferences made in simple copy
118 operations, rather than arithmetic. These are given priority because
119 we can always eliminate an insn by using these, but using a register
120 in the above list won't always eliminate an insn. */
122 HARD_REG_SET hard_reg_copy_preferences;
124 /* Similar to hard_reg_preferences, but includes bits for subsequent
125 registers when an allocno is multi-word. The above variable is used for
126 allocation while this is used to build reg_someone_prefers, below. */
128 HARD_REG_SET hard_reg_full_preferences;
130 /* Set of hard registers that some later allocno has a preference for. */
132 HARD_REG_SET regs_someone_prefers;
135 static struct allocno *allocno;
137 /* A vector of the integers from 0 to max_allocno-1,
138 sorted in the order of first-to-be-allocated first. */
140 static int *allocno_order;
142 /* Indexed by (pseudo) reg number, gives the number of another
143 lower-numbered pseudo reg which can share a hard reg with this pseudo
144 *even if the two pseudos would otherwise appear to conflict*. */
146 static int *reg_may_share;
148 /* Define the number of bits in each element of `conflicts' and what
149 type that element has. We use the largest integer format on the
150 host machine. */
152 #define INT_BITS HOST_BITS_PER_WIDE_INT
153 #define INT_TYPE HOST_WIDE_INT
155 /* max_allocno by max_allocno array of bits,
156 recording whether two allocno's conflict (can't go in the same
157 hardware register).
159 `conflicts' is symmetric after the call to mirror_conflicts. */
161 static INT_TYPE *conflicts;
163 /* Number of ints require to hold max_allocno bits.
164 This is the length of a row in `conflicts'. */
166 static int allocno_row_words;
168 /* Two macros to test or store 1 in an element of `conflicts'. */
170 #define CONFLICTP(I, J) \
171 (conflicts[(I) * allocno_row_words + (unsigned)(J) / INT_BITS] \
172 & ((INT_TYPE) 1 << ((unsigned)(J) % INT_BITS)))
174 #define SET_CONFLICT(I, J) \
175 (conflicts[(I) * allocno_row_words + (unsigned)(J) / INT_BITS] \
176 |= ((INT_TYPE) 1 << ((unsigned)(J) % INT_BITS)))
178 /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
179 and execute CODE. */
180 #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \
181 do { \
182 int i_; \
183 int allocno_; \
184 INT_TYPE *p_ = (ALLOCNO_SET); \
186 for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \
187 i_--, allocno_ += INT_BITS) \
189 unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \
191 for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \
193 if (word_ & 1) \
194 {CODE;} \
197 } while (0)
199 /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */
200 #if 0
201 /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
202 the conflicting allocno, and execute CODE. This macro assumes that
203 mirror_conflicts has been run. */
204 #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
205 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
206 OUT_ALLOCNO, (CODE))
207 #endif
209 /* Set of hard regs currently live (during scan of all insns). */
211 static HARD_REG_SET hard_regs_live;
213 /* Set of registers that global-alloc isn't supposed to use. */
215 static HARD_REG_SET no_global_alloc_regs;
217 /* Set of registers used so far. */
219 static HARD_REG_SET regs_used_so_far;
221 /* Number of refs to each hard reg, as used by local alloc.
222 It is zero for a reg that contains global pseudos or is explicitly used. */
224 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
226 /* Frequency of uses of given hard reg. */
227 static int local_reg_freq[FIRST_PSEUDO_REGISTER];
229 /* Guess at live length of each hard reg, as used by local alloc.
230 This is actually the sum of the live lengths of the specific regs. */
232 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
234 /* Test a bit in TABLE, a vector of HARD_REG_SETs,
235 for vector element I, and hard register number J. */
237 #define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (allocno[I].TABLE, J)
239 /* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
241 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J)
243 /* Bit mask for allocnos live at current point in the scan. */
245 static INT_TYPE *allocnos_live;
247 /* Test, set or clear bit number I in allocnos_live,
248 a bit vector indexed by allocno. */
250 #define ALLOCNO_LIVE_P(I) \
251 (allocnos_live[(unsigned)(I) / INT_BITS] \
252 & ((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
254 #define SET_ALLOCNO_LIVE(I) \
255 (allocnos_live[(unsigned)(I) / INT_BITS] \
256 |= ((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
258 #define CLEAR_ALLOCNO_LIVE(I) \
259 (allocnos_live[(unsigned)(I) / INT_BITS] \
260 &= ~((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
262 /* This is turned off because it doesn't work right for DImode.
263 (And it is only used for DImode, so the other cases are worthless.)
264 The problem is that it isn't true that there is NO possibility of conflict;
265 only that there is no conflict if the two pseudos get the exact same regs.
266 If they were allocated with a partial overlap, there would be a conflict.
267 We can't safely turn off the conflict unless we have another way to
268 prevent the partial overlap.
270 Idea: change hard_reg_conflicts so that instead of recording which
271 hard regs the allocno may not overlap, it records where the allocno
272 may not start. Change both where it is used and where it is updated.
273 Then there is a way to record that (reg:DI 108) may start at 10
274 but not at 9 or 11. There is still the question of how to record
275 this semi-conflict between two pseudos. */
276 #if 0
277 /* Reg pairs for which conflict after the current insn
278 is inhibited by a REG_NO_CONFLICT note.
279 If the table gets full, we ignore any other notes--that is conservative. */
280 #define NUM_NO_CONFLICT_PAIRS 4
281 /* Number of pairs in use in this insn. */
282 int n_no_conflict_pairs;
283 static struct { int allocno1, allocno2;}
284 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
285 #endif /* 0 */
287 /* Record all regs that are set in any one insn.
288 Communication from mark_reg_{store,clobber} and global_conflicts. */
290 static rtx *regs_set;
291 static int n_regs_set;
293 /* All registers that can be eliminated. */
295 static HARD_REG_SET eliminable_regset;
297 static int allocno_compare PARAMS ((const PTR, const PTR));
298 static void global_conflicts PARAMS ((void));
299 static void mirror_conflicts PARAMS ((void));
300 static void expand_preferences PARAMS ((void));
301 static void prune_preferences PARAMS ((void));
302 static void find_reg PARAMS ((int, HARD_REG_SET, int, int, int));
303 static void record_one_conflict PARAMS ((int));
304 static void record_conflicts PARAMS ((int *, int));
305 static void mark_reg_store PARAMS ((rtx, rtx, void *));
306 static void mark_reg_clobber PARAMS ((rtx, rtx, void *));
307 static void mark_reg_conflicts PARAMS ((rtx));
308 static void mark_reg_death PARAMS ((rtx));
309 static void mark_reg_live_nc PARAMS ((int, enum machine_mode));
310 static void set_preference PARAMS ((rtx, rtx));
311 static void dump_conflicts PARAMS ((FILE *));
312 static void reg_becomes_live PARAMS ((rtx, rtx, void *));
313 static void reg_dies PARAMS ((int, enum machine_mode,
314 struct insn_chain *));
316 /* Perform allocation of pseudo-registers not allocated by local_alloc.
317 FILE is a file to output debugging information on,
318 or zero if such output is not desired.
320 Return value is nonzero if reload failed
321 and we must not do any more for this function. */
324 global_alloc (file)
325 FILE *file;
327 int retval;
328 #ifdef ELIMINABLE_REGS
329 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
330 #endif
331 int need_fp
332 = (! flag_omit_frame_pointer
333 #ifdef EXIT_IGNORE_STACK
334 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
335 #endif
336 || FRAME_POINTER_REQUIRED);
338 size_t i;
339 rtx x;
341 max_allocno = 0;
343 /* A machine may have certain hard registers that
344 are safe to use only within a basic block. */
346 CLEAR_HARD_REG_SET (no_global_alloc_regs);
348 /* Build the regset of all eliminable registers and show we can't use those
349 that we already know won't be eliminated. */
350 #ifdef ELIMINABLE_REGS
351 for (i = 0; i < ARRAY_SIZE (eliminables); i++)
353 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
355 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
356 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
357 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
359 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
360 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
361 if (need_fp)
362 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
363 #endif
365 #else
366 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
367 if (need_fp)
368 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
369 #endif
371 /* Track which registers have already been used. Start with registers
372 explicitly in the rtl, then registers allocated by local register
373 allocation. */
375 CLEAR_HARD_REG_SET (regs_used_so_far);
376 #ifdef LEAF_REGISTERS
377 /* If we are doing the leaf function optimization, and this is a leaf
378 function, it means that the registers that take work to save are those
379 that need a register window. So prefer the ones that can be used in
380 a leaf function. */
382 char *cheap_regs;
383 char *leaf_regs = LEAF_REGISTERS;
385 if (only_leaf_regs_used () && leaf_function_p ())
386 cheap_regs = leaf_regs;
387 else
388 cheap_regs = call_used_regs;
389 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
390 if (regs_ever_live[i] || cheap_regs[i])
391 SET_HARD_REG_BIT (regs_used_so_far, i);
393 #else
394 /* We consider registers that do not have to be saved over calls as if
395 they were already used since there is no cost in using them. */
396 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
397 if (regs_ever_live[i] || call_used_regs[i])
398 SET_HARD_REG_BIT (regs_used_so_far, i);
399 #endif
401 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
402 if (reg_renumber[i] >= 0)
403 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
405 /* Establish mappings from register number to allocation number
406 and vice versa. In the process, count the allocnos. */
408 reg_allocno = (int *) xmalloc (max_regno * sizeof (int));
410 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
411 reg_allocno[i] = -1;
413 /* Initialize the shared-hard-reg mapping
414 from the list of pairs that may share. */
415 reg_may_share = (int *) xcalloc (max_regno, sizeof (int));
416 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
418 int r1 = REGNO (XEXP (x, 0));
419 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
420 if (r1 > r2)
421 reg_may_share[r1] = r2;
422 else
423 reg_may_share[r2] = r1;
426 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
427 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
428 that we are supposed to refrain from putting in a hard reg.
429 -2 means do make an allocno but don't allocate it. */
430 if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
431 /* Don't allocate pseudos that cross calls,
432 if this function receives a nonlocal goto. */
433 && (! current_function_has_nonlocal_label
434 || REG_N_CALLS_CROSSED (i) == 0))
436 if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
437 reg_allocno[i] = reg_allocno[reg_may_share[i]];
438 else
439 reg_allocno[i] = max_allocno++;
440 if (REG_LIVE_LENGTH (i) == 0)
441 abort ();
443 else
444 reg_allocno[i] = -1;
446 allocno = (struct allocno *) xcalloc (max_allocno, sizeof (struct allocno));
448 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
449 if (reg_allocno[i] >= 0)
451 int num = reg_allocno[i];
452 allocno[num].reg = i;
453 allocno[num].size = PSEUDO_REGNO_SIZE (i);
454 allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i);
455 allocno[num].n_refs += REG_N_REFS (i);
456 allocno[num].freq += REG_FREQ (i);
457 if (allocno[num].live_length < REG_LIVE_LENGTH (i))
458 allocno[num].live_length = REG_LIVE_LENGTH (i);
461 /* Calculate amount of usage of each hard reg by pseudos
462 allocated by local-alloc. This is to see if we want to
463 override it. */
464 memset ((char *) local_reg_live_length, 0, sizeof local_reg_live_length);
465 memset ((char *) local_reg_n_refs, 0, sizeof local_reg_n_refs);
466 memset ((char *) local_reg_freq, 0, sizeof local_reg_freq);
467 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
468 if (reg_renumber[i] >= 0)
470 int regno = reg_renumber[i];
471 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
472 int j;
474 for (j = regno; j < endregno; j++)
476 local_reg_n_refs[j] += REG_N_REFS (i);
477 local_reg_freq[j] += REG_FREQ (i);
478 local_reg_live_length[j] += REG_LIVE_LENGTH (i);
482 /* We can't override local-alloc for a reg used not just by local-alloc. */
483 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 if (regs_ever_live[i])
485 local_reg_n_refs[i] = 0, local_reg_freq[i] = 0;
487 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
489 /* We used to use alloca here, but the size of what it would try to
490 allocate would occasionally cause it to exceed the stack limit and
491 cause unpredictable core dumps. Some examples were > 2Mb in size. */
492 conflicts = (INT_TYPE *) xcalloc (max_allocno * allocno_row_words,
493 sizeof (INT_TYPE));
495 allocnos_live = (INT_TYPE *) xmalloc (allocno_row_words * sizeof (INT_TYPE));
497 /* If there is work to be done (at least one reg to allocate),
498 perform global conflict analysis and allocate the regs. */
500 if (max_allocno > 0)
502 /* Scan all the insns and compute the conflicts among allocnos
503 and between allocnos and hard regs. */
505 global_conflicts ();
507 mirror_conflicts ();
509 /* Eliminate conflicts between pseudos and eliminable registers. If
510 the register is not eliminated, the pseudo won't really be able to
511 live in the eliminable register, so the conflict doesn't matter.
512 If we do eliminate the register, the conflict will no longer exist.
513 So in either case, we can ignore the conflict. Likewise for
514 preferences. */
516 for (i = 0; i < (size_t) max_allocno; i++)
518 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts,
519 eliminable_regset);
520 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences,
521 eliminable_regset);
522 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences,
523 eliminable_regset);
526 /* Try to expand the preferences by merging them between allocnos. */
528 expand_preferences ();
530 /* Determine the order to allocate the remaining pseudo registers. */
532 allocno_order = (int *) xmalloc (max_allocno * sizeof (int));
533 for (i = 0; i < (size_t) max_allocno; i++)
534 allocno_order[i] = i;
536 /* Default the size to 1, since allocno_compare uses it to divide by.
537 Also convert allocno_live_length of zero to -1. A length of zero
538 can occur when all the registers for that allocno have reg_live_length
539 equal to -2. In this case, we want to make an allocno, but not
540 allocate it. So avoid the divide-by-zero and set it to a low
541 priority. */
543 for (i = 0; i < (size_t) max_allocno; i++)
545 if (allocno[i].size == 0)
546 allocno[i].size = 1;
547 if (allocno[i].live_length == 0)
548 allocno[i].live_length = -1;
551 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
553 prune_preferences ();
555 if (file)
556 dump_conflicts (file);
558 /* Try allocating them, one by one, in that order,
559 except for parameters marked with reg_live_length[regno] == -2. */
561 for (i = 0; i < (size_t) max_allocno; i++)
562 if (reg_renumber[allocno[allocno_order[i]].reg] < 0
563 && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0)
565 /* If we have more than one register class,
566 first try allocating in the class that is cheapest
567 for this pseudo-reg. If that fails, try any reg. */
568 if (N_REG_CLASSES > 1)
570 find_reg (allocno_order[i], 0, 0, 0, 0);
571 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
572 continue;
574 if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS)
575 find_reg (allocno_order[i], 0, 1, 0, 0);
578 free (allocno_order);
581 /* Do the reloads now while the allocno data still exist, so that we can
582 try to assign new hard regs to any pseudo regs that are spilled. */
584 #if 0 /* We need to eliminate regs even if there is no rtl code,
585 for the sake of debugging information. */
586 if (n_basic_blocks > 0)
587 #endif
589 build_insn_chain (get_insns ());
590 retval = reload (get_insns (), 1);
593 /* Clean up. */
594 free (reg_allocno);
595 free (reg_may_share);
596 free (allocno);
597 free (conflicts);
598 free (allocnos_live);
600 return retval;
603 /* Sort predicate for ordering the allocnos.
604 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
606 static int
607 allocno_compare (v1p, v2p)
608 const PTR v1p;
609 const PTR v2p;
611 int v1 = *(const int *)v1p, v2 = *(const int *)v2p;
612 /* Note that the quotient will never be bigger than
613 the value of floor_log2 times the maximum number of
614 times a register can occur in one insn (surely less than 100)
615 weighted by the frequency (maximally REG_FREQ_MAX).
616 Multiplying this by 10000/REG_FREQ_MAX can't overflow. */
617 int pri1
618 = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq)
619 / allocno[v1].live_length)
620 * (10000 / REG_FREQ_MAX) * allocno[v1].size);
621 int pri2
622 = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq)
623 / allocno[v2].live_length)
624 * (10000 / REG_FREQ_MAX) * allocno[v2].size);
625 if (pri2 - pri1)
626 return pri2 - pri1;
628 /* If regs are equally good, sort by allocno,
629 so that the results of qsort leave nothing to chance. */
630 return v1 - v2;
633 /* Scan the rtl code and record all conflicts and register preferences in the
634 conflict matrices and preference tables. */
636 static void
637 global_conflicts ()
639 int b, i;
640 rtx insn;
641 int *block_start_allocnos;
643 /* Make a vector that mark_reg_{store,clobber} will store in. */
644 regs_set = (rtx *) xmalloc (max_parallel * sizeof (rtx) * 2);
646 block_start_allocnos = (int *) xmalloc (max_allocno * sizeof (int));
648 for (b = 0; b < n_basic_blocks; b++)
650 memset ((char *) allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE));
652 /* Initialize table of registers currently live
653 to the state at the beginning of this basic block.
654 This also marks the conflicts among hard registers
655 and any allocnos that are live.
657 For pseudo-regs, there is only one bit for each one
658 no matter how many hard regs it occupies.
659 This is ok; we know the size from PSEUDO_REGNO_SIZE.
660 For explicit hard regs, we cannot know the size that way
661 since one hard reg can be used with various sizes.
662 Therefore, we must require that all the hard regs
663 implicitly live as part of a multi-word hard reg
664 are explicitly marked in basic_block_live_at_start. */
667 regset old = BASIC_BLOCK (b)->global_live_at_start;
668 int ax = 0;
670 REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
671 EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i,
673 int a = reg_allocno[i];
674 if (a >= 0)
676 SET_ALLOCNO_LIVE (a);
677 block_start_allocnos[ax++] = a;
679 else if ((a = reg_renumber[i]) >= 0)
680 mark_reg_live_nc
681 (a, PSEUDO_REGNO_MODE (i));
684 /* Record that each allocno now live conflicts with each hard reg
685 now live.
687 It is not necessary to mark any conflicts between pseudos as
688 this point, even for pseudos which are live at the start of
689 the basic block.
691 Given two pseudos X and Y and any point in the CFG P.
693 On any path to point P where X and Y are live one of the
694 following conditions must be true:
696 1. X is live at some instruction on the path that
697 evaluates Y.
699 2. Y is live at some instruction on the path that
700 evaluates X.
702 3. Either X or Y is not evaluted on the path to P
703 (ie it is used uninitialized) and thus the
704 conflict can be ignored.
706 In cases #1 and #2 the conflict will be recorded when we
707 scan the instruction that makes either X or Y become live. */
708 record_conflicts (block_start_allocnos, ax);
710 #ifdef STACK_REGS
712 /* Pseudos can't go in stack regs at the start of a basic block
713 that is reached by an abnormal edge. */
715 edge e;
716 for (e = BASIC_BLOCK (b)->pred; e ; e = e->pred_next)
717 if (e->flags & EDGE_ABNORMAL)
718 break;
719 if (e != NULL)
720 for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
721 record_one_conflict (ax);
723 #endif
726 insn = BLOCK_HEAD (b);
728 /* Scan the code of this basic block, noting which allocnos
729 and hard regs are born or die. When one is born,
730 record a conflict with all others currently live. */
732 while (1)
734 RTX_CODE code = GET_CODE (insn);
735 rtx link;
737 /* Make regs_set an empty set. */
739 n_regs_set = 0;
741 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
744 #if 0
745 int i = 0;
746 for (link = REG_NOTES (insn);
747 link && i < NUM_NO_CONFLICT_PAIRS;
748 link = XEXP (link, 1))
749 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
751 no_conflict_pairs[i].allocno1
752 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
753 no_conflict_pairs[i].allocno2
754 = reg_allocno[REGNO (XEXP (link, 0))];
755 i++;
757 #endif /* 0 */
759 /* Mark any registers clobbered by INSN as live,
760 so they conflict with the inputs. */
762 note_stores (PATTERN (insn), mark_reg_clobber, NULL);
764 /* Mark any registers dead after INSN as dead now. */
766 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
767 if (REG_NOTE_KIND (link) == REG_DEAD)
768 mark_reg_death (XEXP (link, 0));
770 /* Mark any registers set in INSN as live,
771 and mark them as conflicting with all other live regs.
772 Clobbers are processed again, so they conflict with
773 the registers that are set. */
775 note_stores (PATTERN (insn), mark_reg_store, NULL);
777 #ifdef AUTO_INC_DEC
778 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
779 if (REG_NOTE_KIND (link) == REG_INC)
780 mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
781 #endif
783 /* If INSN has multiple outputs, then any reg that dies here
784 and is used inside of an output
785 must conflict with the other outputs.
787 It is unsafe to use !single_set here since it will ignore an
788 unused output. Just because an output is unused does not mean
789 the compiler can assume the side effect will not occur.
790 Consider if REG appears in the address of an output and we
791 reload the output. If we allocate REG to the same hard
792 register as an unused output we could set the hard register
793 before the output reload insn. */
794 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
795 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
796 if (REG_NOTE_KIND (link) == REG_DEAD)
798 int used_in_output = 0;
799 int i;
800 rtx reg = XEXP (link, 0);
802 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
804 rtx set = XVECEXP (PATTERN (insn), 0, i);
805 if (GET_CODE (set) == SET
806 && GET_CODE (SET_DEST (set)) != REG
807 && !rtx_equal_p (reg, SET_DEST (set))
808 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
809 used_in_output = 1;
811 if (used_in_output)
812 mark_reg_conflicts (reg);
815 /* Mark any registers set in INSN and then never used. */
817 while (n_regs_set-- > 0)
819 rtx note = find_regno_note (insn, REG_UNUSED,
820 REGNO (regs_set[n_regs_set]));
821 if (note)
822 mark_reg_death (XEXP (note, 0));
826 if (insn == BLOCK_END (b))
827 break;
828 insn = NEXT_INSN (insn);
832 /* Clean up. */
833 free (block_start_allocnos);
834 free (regs_set);
836 /* Expand the preference information by looking for cases where one allocno
837 dies in an insn that sets an allocno. If those two allocnos don't conflict,
838 merge any preferences between those allocnos. */
840 static void
841 expand_preferences ()
843 rtx insn;
844 rtx link;
845 rtx set;
847 /* We only try to handle the most common cases here. Most of the cases
848 where this wins are reg-reg copies. */
850 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
851 if (INSN_P (insn)
852 && (set = single_set (insn)) != 0
853 && GET_CODE (SET_DEST (set)) == REG
854 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
855 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
856 if (REG_NOTE_KIND (link) == REG_DEAD
857 && GET_CODE (XEXP (link, 0)) == REG
858 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
859 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
860 reg_allocno[REGNO (XEXP (link, 0))]))
862 int a1 = reg_allocno[REGNO (SET_DEST (set))];
863 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
865 if (XEXP (link, 0) == SET_SRC (set))
867 IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences,
868 allocno[a2].hard_reg_copy_preferences);
869 IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences,
870 allocno[a1].hard_reg_copy_preferences);
873 IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences,
874 allocno[a2].hard_reg_preferences);
875 IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences,
876 allocno[a1].hard_reg_preferences);
877 IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences,
878 allocno[a2].hard_reg_full_preferences);
879 IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences,
880 allocno[a1].hard_reg_full_preferences);
884 /* Prune the preferences for global registers to exclude registers that cannot
885 be used.
887 Compute `regs_someone_prefers', which is a bitmask of the hard registers
888 that are preferred by conflicting registers of lower priority. If possible,
889 we will avoid using these registers. */
891 static void
892 prune_preferences ()
894 int i;
895 int num;
896 int *allocno_to_order = (int *) xmalloc (max_allocno * sizeof (int));
898 /* Scan least most important to most important.
899 For each allocno, remove from preferences registers that cannot be used,
900 either because of conflicts or register type. Then compute all registers
901 preferred by each lower-priority register that conflicts. */
903 for (i = max_allocno - 1; i >= 0; i--)
905 HARD_REG_SET temp;
907 num = allocno_order[i];
908 allocno_to_order[num] = i;
909 COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts);
911 if (allocno[num].calls_crossed == 0)
912 IOR_HARD_REG_SET (temp, fixed_reg_set);
913 else
914 IOR_HARD_REG_SET (temp, call_used_reg_set);
916 IOR_COMPL_HARD_REG_SET
917 (temp,
918 reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]);
920 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp);
921 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp);
922 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp);
925 for (i = max_allocno - 1; i >= 0; i--)
927 /* Merge in the preferences of lower-priority registers (they have
928 already been pruned). If we also prefer some of those registers,
929 don't exclude them unless we are of a smaller size (in which case
930 we want to give the lower-priority allocno the first chance for
931 these registers). */
932 HARD_REG_SET temp, temp2;
933 int allocno2;
935 num = allocno_order[i];
937 CLEAR_HARD_REG_SET (temp);
938 CLEAR_HARD_REG_SET (temp2);
940 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words,
941 allocno2,
943 if (allocno_to_order[allocno2] > i)
945 if (allocno[allocno2].size <= allocno[num].size)
946 IOR_HARD_REG_SET (temp,
947 allocno[allocno2].hard_reg_full_preferences);
948 else
949 IOR_HARD_REG_SET (temp2,
950 allocno[allocno2].hard_reg_full_preferences);
954 AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences);
955 IOR_HARD_REG_SET (temp, temp2);
956 COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp);
958 free (allocno_to_order);
961 /* Assign a hard register to allocno NUM; look for one that is the beginning
962 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
963 The registers marked in PREFREGS are tried first.
965 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
966 be used for this allocation.
968 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
969 Otherwise ignore that preferred class and use the alternate class.
971 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
972 will have to be saved and restored at calls.
974 RETRYING is nonzero if this is called from retry_global_alloc.
976 If we find one, record it in reg_renumber.
977 If not, do nothing. */
979 static void
980 find_reg (num, losers, alt_regs_p, accept_call_clobbered, retrying)
981 int num;
982 HARD_REG_SET losers;
983 int alt_regs_p;
984 int accept_call_clobbered;
985 int retrying;
987 int i, best_reg, pass;
988 #ifdef HARD_REG_SET
989 register /* Declare it register if it's a scalar. */
990 #endif
991 HARD_REG_SET used, used1, used2;
993 enum reg_class class = (alt_regs_p
994 ? reg_alternate_class (allocno[num].reg)
995 : reg_preferred_class (allocno[num].reg));
996 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg);
998 if (accept_call_clobbered)
999 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
1000 else if (allocno[num].calls_crossed == 0)
1001 COPY_HARD_REG_SET (used1, fixed_reg_set);
1002 else
1003 COPY_HARD_REG_SET (used1, call_used_reg_set);
1005 /* Some registers should not be allocated in global-alloc. */
1006 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
1007 if (losers)
1008 IOR_HARD_REG_SET (used1, losers);
1010 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1011 COPY_HARD_REG_SET (used2, used1);
1013 IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts);
1015 #ifdef CLASS_CANNOT_CHANGE_MODE
1016 if (REG_CHANGES_MODE (allocno[num].reg))
1017 IOR_HARD_REG_SET (used1,
1018 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
1019 #endif
1021 /* Try each hard reg to see if it fits. Do this in two passes.
1022 In the first pass, skip registers that are preferred by some other pseudo
1023 to give it a better chance of getting one of those registers. Only if
1024 we can't get a register when excluding those do we take one of them.
1025 However, we never allocate a register for the first time in pass 0. */
1027 COPY_HARD_REG_SET (used, used1);
1028 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
1029 IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers);
1031 best_reg = -1;
1032 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
1033 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
1034 pass++)
1036 if (pass == 1)
1037 COPY_HARD_REG_SET (used, used1);
1038 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1040 #ifdef REG_ALLOC_ORDER
1041 int regno = reg_alloc_order[i];
1042 #else
1043 int regno = i;
1044 #endif
1045 if (! TEST_HARD_REG_BIT (used, regno)
1046 && HARD_REGNO_MODE_OK (regno, mode)
1047 && (allocno[num].calls_crossed == 0
1048 || accept_call_clobbered
1049 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
1051 int j;
1052 int lim = regno + HARD_REGNO_NREGS (regno, mode);
1053 for (j = regno + 1;
1054 (j < lim
1055 && ! TEST_HARD_REG_BIT (used, j));
1056 j++);
1057 if (j == lim)
1059 best_reg = regno;
1060 break;
1062 #ifndef REG_ALLOC_ORDER
1063 i = j; /* Skip starting points we know will lose */
1064 #endif
1069 /* See if there is a preferred register with the same class as the register
1070 we allocated above. Making this restriction prevents register
1071 preferencing from creating worse register allocation.
1073 Remove from the preferred registers and conflicting registers. Note that
1074 additional conflicts may have been added after `prune_preferences' was
1075 called.
1077 First do this for those register with copy preferences, then all
1078 preferred registers. */
1080 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used);
1081 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences,
1082 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1084 if (best_reg >= 0)
1086 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1087 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i)
1088 && HARD_REGNO_MODE_OK (i, mode)
1089 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1090 || reg_class_subset_p (REGNO_REG_CLASS (i),
1091 REGNO_REG_CLASS (best_reg))
1092 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1093 REGNO_REG_CLASS (i))))
1095 int j;
1096 int lim = i + HARD_REGNO_NREGS (i, mode);
1097 for (j = i + 1;
1098 (j < lim
1099 && ! TEST_HARD_REG_BIT (used, j)
1100 && (REGNO_REG_CLASS (j)
1101 == REGNO_REG_CLASS (best_reg + (j - i))
1102 || reg_class_subset_p (REGNO_REG_CLASS (j),
1103 REGNO_REG_CLASS (best_reg + (j - i)))
1104 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1105 REGNO_REG_CLASS (j))));
1106 j++);
1107 if (j == lim)
1109 best_reg = i;
1110 goto no_prefs;
1114 no_copy_prefs:
1116 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used);
1117 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences,
1118 reg_class_contents[(int) NO_REGS], no_prefs);
1120 if (best_reg >= 0)
1122 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1123 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i)
1124 && HARD_REGNO_MODE_OK (i, mode)
1125 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1126 || reg_class_subset_p (REGNO_REG_CLASS (i),
1127 REGNO_REG_CLASS (best_reg))
1128 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1129 REGNO_REG_CLASS (i))))
1131 int j;
1132 int lim = i + HARD_REGNO_NREGS (i, mode);
1133 for (j = i + 1;
1134 (j < lim
1135 && ! TEST_HARD_REG_BIT (used, j)
1136 && (REGNO_REG_CLASS (j)
1137 == REGNO_REG_CLASS (best_reg + (j - i))
1138 || reg_class_subset_p (REGNO_REG_CLASS (j),
1139 REGNO_REG_CLASS (best_reg + (j - i)))
1140 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1141 REGNO_REG_CLASS (j))));
1142 j++);
1143 if (j == lim)
1145 best_reg = i;
1146 break;
1150 no_prefs:
1152 /* If we haven't succeeded yet, try with caller-saves.
1153 We need not check to see if the current function has nonlocal
1154 labels because we don't put any pseudos that are live over calls in
1155 registers in that case. */
1157 if (flag_caller_saves && best_reg < 0)
1159 /* Did not find a register. If it would be profitable to
1160 allocate a call-clobbered register and save and restore it
1161 around calls, do that. */
1162 if (! accept_call_clobbered
1163 && allocno[num].calls_crossed != 0
1164 && CALLER_SAVE_PROFITABLE (allocno[num].n_refs,
1165 allocno[num].calls_crossed))
1167 HARD_REG_SET new_losers;
1168 if (! losers)
1169 CLEAR_HARD_REG_SET (new_losers);
1170 else
1171 COPY_HARD_REG_SET (new_losers, losers);
1173 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1174 find_reg (num, new_losers, alt_regs_p, 1, retrying);
1175 if (reg_renumber[allocno[num].reg] >= 0)
1177 caller_save_needed = 1;
1178 return;
1183 /* If we haven't succeeded yet,
1184 see if some hard reg that conflicts with us
1185 was utilized poorly by local-alloc.
1186 If so, kick out the regs that were put there by local-alloc
1187 so we can use it instead. */
1188 if (best_reg < 0 && !retrying
1189 /* Let's not bother with multi-reg allocnos. */
1190 && allocno[num].size == 1)
1192 /* Count from the end, to find the least-used ones first. */
1193 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1195 #ifdef REG_ALLOC_ORDER
1196 int regno = reg_alloc_order[i];
1197 #else
1198 int regno = i;
1199 #endif
1201 if (local_reg_n_refs[regno] != 0
1202 /* Don't use a reg no good for this pseudo. */
1203 && ! TEST_HARD_REG_BIT (used2, regno)
1204 && HARD_REGNO_MODE_OK (regno, mode)
1205 #ifdef CLASS_CANNOT_CHANGE_MODE
1206 && ! (REG_CHANGES_MODE (allocno[num].reg)
1207 && (TEST_HARD_REG_BIT
1208 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1209 regno)))
1210 #endif
1213 /* We explicitly evaluate the divide results into temporary
1214 variables so as to avoid excess precision problems that occur
1215 on an i386-unknown-sysv4.2 (unixware) host. */
1217 double tmp1 = ((double) local_reg_freq[regno]
1218 / local_reg_live_length[regno]);
1219 double tmp2 = ((double) allocno[num].freq
1220 / allocno[num].live_length);
1222 if (tmp1 < tmp2)
1224 /* Hard reg REGNO was used less in total by local regs
1225 than it would be used by this one allocno! */
1226 int k;
1227 for (k = 0; k < max_regno; k++)
1228 if (reg_renumber[k] >= 0)
1230 int r = reg_renumber[k];
1231 int endregno
1232 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
1234 if (regno >= r && regno < endregno)
1235 reg_renumber[k] = -1;
1238 best_reg = regno;
1239 break;
1245 /* Did we find a register? */
1247 if (best_reg >= 0)
1249 int lim, j;
1250 HARD_REG_SET this_reg;
1252 /* Yes. Record it as the hard register of this pseudo-reg. */
1253 reg_renumber[allocno[num].reg] = best_reg;
1254 /* Also of any pseudo-regs that share with it. */
1255 if (reg_may_share[allocno[num].reg])
1256 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1257 if (reg_allocno[j] == num)
1258 reg_renumber[j] = best_reg;
1260 /* Make a set of the hard regs being allocated. */
1261 CLEAR_HARD_REG_SET (this_reg);
1262 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1263 for (j = best_reg; j < lim; j++)
1265 SET_HARD_REG_BIT (this_reg, j);
1266 SET_HARD_REG_BIT (regs_used_so_far, j);
1267 /* This is no longer a reg used just by local regs. */
1268 local_reg_n_refs[j] = 0;
1269 local_reg_freq[j] = 0;
1271 /* For each other pseudo-reg conflicting with this one,
1272 mark it as conflicting with the hard regs this one occupies. */
1273 lim = num;
1274 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j,
1276 IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg);
1281 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1282 Perhaps it had previously seemed not worth a hard reg,
1283 or perhaps its old hard reg has been commandeered for reloads.
1284 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1285 they do not appear to be allocated.
1286 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1288 void
1289 retry_global_alloc (regno, forbidden_regs)
1290 int regno;
1291 HARD_REG_SET forbidden_regs;
1293 int alloc_no = reg_allocno[regno];
1294 if (alloc_no >= 0)
1296 /* If we have more than one register class,
1297 first try allocating in the class that is cheapest
1298 for this pseudo-reg. If that fails, try any reg. */
1299 if (N_REG_CLASSES > 1)
1300 find_reg (alloc_no, forbidden_regs, 0, 0, 1);
1301 if (reg_renumber[regno] < 0
1302 && reg_alternate_class (regno) != NO_REGS)
1303 find_reg (alloc_no, forbidden_regs, 1, 0, 1);
1305 /* If we found a register, modify the RTL for the register to
1306 show the hard register, and mark that register live. */
1307 if (reg_renumber[regno] >= 0)
1309 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1310 mark_home_live (regno);
1315 /* Record a conflict between register REGNO
1316 and everything currently live.
1317 REGNO must not be a pseudo reg that was allocated
1318 by local_alloc; such numbers must be translated through
1319 reg_renumber before calling here. */
1321 static void
1322 record_one_conflict (regno)
1323 int regno;
1325 int j;
1327 if (regno < FIRST_PSEUDO_REGISTER)
1328 /* When a hard register becomes live,
1329 record conflicts with live pseudo regs. */
1330 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j,
1332 SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno);
1334 else
1335 /* When a pseudo-register becomes live,
1336 record conflicts first with hard regs,
1337 then with other pseudo regs. */
1339 int ialloc = reg_allocno[regno];
1340 int ialloc_prod = ialloc * allocno_row_words;
1342 IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live);
1343 for (j = allocno_row_words - 1; j >= 0; j--)
1345 #if 0
1346 int k;
1347 for (k = 0; k < n_no_conflict_pairs; k++)
1348 if (! ((j == no_conflict_pairs[k].allocno1
1349 && ialloc == no_conflict_pairs[k].allocno2)
1351 (j == no_conflict_pairs[k].allocno2
1352 && ialloc == no_conflict_pairs[k].allocno1)))
1353 #endif /* 0 */
1354 conflicts[ialloc_prod + j] |= allocnos_live[j];
1359 /* Record all allocnos currently live as conflicting
1360 with all hard regs currently live.
1362 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1363 are currently live. Their bits are also flagged in allocnos_live. */
1365 static void
1366 record_conflicts (allocno_vec, len)
1367 int *allocno_vec;
1368 int len;
1370 int num;
1371 int ialloc_prod;
1373 while (--len >= 0)
1375 num = allocno_vec[len];
1376 ialloc_prod = num * allocno_row_words;
1377 IOR_HARD_REG_SET (allocno[num].hard_reg_conflicts, hard_regs_live);
1381 /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */
1382 static void
1383 mirror_conflicts ()
1385 int i, j;
1386 int rw = allocno_row_words;
1387 int rwb = rw * INT_BITS;
1388 INT_TYPE *p = conflicts;
1389 INT_TYPE *q0 = conflicts, *q1, *q2;
1390 unsigned INT_TYPE mask;
1392 for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1)
1394 if (! mask)
1396 mask = 1;
1397 q0++;
1399 for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb)
1401 unsigned INT_TYPE word;
1403 for (word = (unsigned INT_TYPE) *p++, q2 = q1; word;
1404 word >>= 1, q2 += rw)
1406 if (word & 1)
1407 *q2 |= mask;
1413 /* Handle the case where REG is set by the insn being scanned,
1414 during the forward scan to accumulate conflicts.
1415 Store a 1 in regs_live or allocnos_live for this register, record how many
1416 consecutive hardware registers it actually needs,
1417 and record a conflict with all other registers already live.
1419 Note that even if REG does not remain alive after this insn,
1420 we must mark it here as live, to ensure a conflict between
1421 REG and any other regs set in this insn that really do live.
1422 This is because those other regs could be considered after this.
1424 REG might actually be something other than a register;
1425 if so, we do nothing.
1427 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1428 a REG_INC note was found for it). */
1430 static void
1431 mark_reg_store (reg, setter, data)
1432 rtx reg, setter;
1433 void *data ATTRIBUTE_UNUSED;
1435 int regno;
1437 if (GET_CODE (reg) == SUBREG)
1438 reg = SUBREG_REG (reg);
1440 if (GET_CODE (reg) != REG)
1441 return;
1443 regs_set[n_regs_set++] = reg;
1445 if (setter && GET_CODE (setter) != CLOBBER)
1446 set_preference (reg, SET_SRC (setter));
1448 regno = REGNO (reg);
1450 /* Either this is one of the max_allocno pseudo regs not allocated,
1451 or it is or has a hardware reg. First handle the pseudo-regs. */
1452 if (regno >= FIRST_PSEUDO_REGISTER)
1454 if (reg_allocno[regno] >= 0)
1456 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1457 record_one_conflict (regno);
1461 if (reg_renumber[regno] >= 0)
1462 regno = reg_renumber[regno];
1464 /* Handle hardware regs (and pseudos allocated to hard regs). */
1465 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1467 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1468 while (regno < last)
1470 record_one_conflict (regno);
1471 SET_HARD_REG_BIT (hard_regs_live, regno);
1472 regno++;
1477 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1479 static void
1480 mark_reg_clobber (reg, setter, data)
1481 rtx reg, setter;
1482 void *data ATTRIBUTE_UNUSED;
1484 if (GET_CODE (setter) == CLOBBER)
1485 mark_reg_store (reg, setter, data);
1488 /* Record that REG has conflicts with all the regs currently live.
1489 Do not mark REG itself as live. */
1491 static void
1492 mark_reg_conflicts (reg)
1493 rtx reg;
1495 int regno;
1497 if (GET_CODE (reg) == SUBREG)
1498 reg = SUBREG_REG (reg);
1500 if (GET_CODE (reg) != REG)
1501 return;
1503 regno = REGNO (reg);
1505 /* Either this is one of the max_allocno pseudo regs not allocated,
1506 or it is or has a hardware reg. First handle the pseudo-regs. */
1507 if (regno >= FIRST_PSEUDO_REGISTER)
1509 if (reg_allocno[regno] >= 0)
1510 record_one_conflict (regno);
1513 if (reg_renumber[regno] >= 0)
1514 regno = reg_renumber[regno];
1516 /* Handle hardware regs (and pseudos allocated to hard regs). */
1517 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1519 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1520 while (regno < last)
1522 record_one_conflict (regno);
1523 regno++;
1528 /* Mark REG as being dead (following the insn being scanned now).
1529 Store a 0 in regs_live or allocnos_live for this register. */
1531 static void
1532 mark_reg_death (reg)
1533 rtx reg;
1535 int regno = REGNO (reg);
1537 /* Either this is one of the max_allocno pseudo regs not allocated,
1538 or it is a hardware reg. First handle the pseudo-regs. */
1539 if (regno >= FIRST_PSEUDO_REGISTER)
1541 if (reg_allocno[regno] >= 0)
1542 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1545 /* For pseudo reg, see if it has been assigned a hardware reg. */
1546 if (reg_renumber[regno] >= 0)
1547 regno = reg_renumber[regno];
1549 /* Handle hardware regs (and pseudos allocated to hard regs). */
1550 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1552 /* Pseudo regs already assigned hardware regs are treated
1553 almost the same as explicit hardware regs. */
1554 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1555 while (regno < last)
1557 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1558 regno++;
1563 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1564 for the value stored in it. MODE determines how many consecutive
1565 registers are actually in use. Do not record conflicts;
1566 it is assumed that the caller will do that. */
1568 static void
1569 mark_reg_live_nc (regno, mode)
1570 int regno;
1571 enum machine_mode mode;
1573 int last = regno + HARD_REGNO_NREGS (regno, mode);
1574 while (regno < last)
1576 SET_HARD_REG_BIT (hard_regs_live, regno);
1577 regno++;
1581 /* Try to set a preference for an allocno to a hard register.
1582 We are passed DEST and SRC which are the operands of a SET. It is known
1583 that SRC is a register. If SRC or the first operand of SRC is a register,
1584 try to set a preference. If one of the two is a hard register and the other
1585 is a pseudo-register, mark the preference.
1587 Note that we are not as aggressive as local-alloc in trying to tie a
1588 pseudo-register to a hard register. */
1590 static void
1591 set_preference (dest, src)
1592 rtx dest, src;
1594 unsigned int src_regno, dest_regno;
1595 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1596 to compensate for subregs in SRC or DEST. */
1597 int offset = 0;
1598 unsigned int i;
1599 int copy = 1;
1601 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1602 src = XEXP (src, 0), copy = 0;
1604 /* Get the reg number for both SRC and DEST.
1605 If neither is a reg, give up. */
1607 if (GET_CODE (src) == REG)
1608 src_regno = REGNO (src);
1609 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1611 src_regno = REGNO (SUBREG_REG (src));
1613 if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER)
1614 offset += subreg_regno_offset (REGNO (SUBREG_REG (src)),
1615 GET_MODE (SUBREG_REG (src)),
1616 SUBREG_BYTE (src),
1617 GET_MODE (src));
1618 else
1619 offset += (SUBREG_BYTE (src)
1620 / REGMODE_NATURAL_SIZE (GET_MODE (src)));
1622 else
1623 return;
1625 if (GET_CODE (dest) == REG)
1626 dest_regno = REGNO (dest);
1627 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1629 dest_regno = REGNO (SUBREG_REG (dest));
1631 if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER)
1632 offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)),
1633 GET_MODE (SUBREG_REG (dest)),
1634 SUBREG_BYTE (dest),
1635 GET_MODE (dest));
1636 else
1637 offset -= (SUBREG_BYTE (dest)
1638 / REGMODE_NATURAL_SIZE (GET_MODE (dest)));
1640 else
1641 return;
1643 /* Convert either or both to hard reg numbers. */
1645 if (reg_renumber[src_regno] >= 0)
1646 src_regno = reg_renumber[src_regno];
1648 if (reg_renumber[dest_regno] >= 0)
1649 dest_regno = reg_renumber[dest_regno];
1651 /* Now if one is a hard reg and the other is a global pseudo
1652 then give the other a preference. */
1654 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1655 && reg_allocno[src_regno] >= 0)
1657 dest_regno -= offset;
1658 if (dest_regno < FIRST_PSEUDO_REGISTER)
1660 if (copy)
1661 SET_REGBIT (hard_reg_copy_preferences,
1662 reg_allocno[src_regno], dest_regno);
1664 SET_REGBIT (hard_reg_preferences,
1665 reg_allocno[src_regno], dest_regno);
1666 for (i = dest_regno;
1667 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1668 i++)
1669 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1673 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1674 && reg_allocno[dest_regno] >= 0)
1676 src_regno += offset;
1677 if (src_regno < FIRST_PSEUDO_REGISTER)
1679 if (copy)
1680 SET_REGBIT (hard_reg_copy_preferences,
1681 reg_allocno[dest_regno], src_regno);
1683 SET_REGBIT (hard_reg_preferences,
1684 reg_allocno[dest_regno], src_regno);
1685 for (i = src_regno;
1686 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1687 i++)
1688 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1693 /* Indicate that hard register number FROM was eliminated and replaced with
1694 an offset from hard register number TO. The status of hard registers live
1695 at the start of a basic block is updated by replacing a use of FROM with
1696 a use of TO. */
1698 void
1699 mark_elimination (from, to)
1700 int from, to;
1702 int i;
1704 for (i = 0; i < n_basic_blocks; i++)
1706 regset r = BASIC_BLOCK (i)->global_live_at_start;
1707 if (REGNO_REG_SET_P (r, from))
1709 CLEAR_REGNO_REG_SET (r, from);
1710 SET_REGNO_REG_SET (r, to);
1715 /* Used for communication between the following functions. Holds the
1716 current life information. */
1717 static regset live_relevant_regs;
1719 /* Record in live_relevant_regs and REGS_SET that register REG became live.
1720 This is called via note_stores. */
1721 static void
1722 reg_becomes_live (reg, setter, regs_set)
1723 rtx reg;
1724 rtx setter ATTRIBUTE_UNUSED;
1725 void *regs_set;
1727 int regno;
1729 if (GET_CODE (reg) == SUBREG)
1730 reg = SUBREG_REG (reg);
1732 if (GET_CODE (reg) != REG)
1733 return;
1735 regno = REGNO (reg);
1736 if (regno < FIRST_PSEUDO_REGISTER)
1738 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1739 while (nregs-- > 0)
1741 SET_REGNO_REG_SET (live_relevant_regs, regno);
1742 if (! fixed_regs[regno])
1743 SET_REGNO_REG_SET ((regset) regs_set, regno);
1744 regno++;
1747 else if (reg_renumber[regno] >= 0)
1749 SET_REGNO_REG_SET (live_relevant_regs, regno);
1750 SET_REGNO_REG_SET ((regset) regs_set, regno);
1754 /* Record in live_relevant_regs that register REGNO died. */
1755 static void
1756 reg_dies (regno, mode, chain)
1757 int regno;
1758 enum machine_mode mode;
1759 struct insn_chain *chain;
1761 if (regno < FIRST_PSEUDO_REGISTER)
1763 int nregs = HARD_REGNO_NREGS (regno, mode);
1764 while (nregs-- > 0)
1766 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1767 if (! fixed_regs[regno])
1768 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1769 regno++;
1772 else
1774 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1775 if (reg_renumber[regno] >= 0)
1776 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1780 /* Walk the insns of the current function and build reload_insn_chain,
1781 and record register life information. */
1782 void
1783 build_insn_chain (first)
1784 rtx first;
1786 struct insn_chain **p = &reload_insn_chain;
1787 struct insn_chain *prev = 0;
1788 int b = 0;
1789 regset_head live_relevant_regs_head;
1791 live_relevant_regs = INITIALIZE_REG_SET (live_relevant_regs_head);
1793 for (; first; first = NEXT_INSN (first))
1795 struct insn_chain *c;
1797 if (first == BLOCK_HEAD (b))
1799 int i;
1801 CLEAR_REG_SET (live_relevant_regs);
1803 EXECUTE_IF_SET_IN_BITMAP
1804 (BASIC_BLOCK (b)->global_live_at_start, 0, i,
1806 if (i < FIRST_PSEUDO_REGISTER
1807 ? ! TEST_HARD_REG_BIT (eliminable_regset, i)
1808 : reg_renumber[i] >= 0)
1809 SET_REGNO_REG_SET (live_relevant_regs, i);
1813 if (GET_CODE (first) != NOTE && GET_CODE (first) != BARRIER)
1815 c = new_insn_chain ();
1816 c->prev = prev;
1817 prev = c;
1818 *p = c;
1819 p = &c->next;
1820 c->insn = first;
1821 c->block = b;
1823 if (INSN_P (first))
1825 rtx link;
1827 /* Mark the death of everything that dies in this instruction. */
1829 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1830 if (REG_NOTE_KIND (link) == REG_DEAD
1831 && GET_CODE (XEXP (link, 0)) == REG)
1832 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1835 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1837 /* Mark everything born in this instruction as live. */
1839 note_stores (PATTERN (first), reg_becomes_live,
1840 &c->dead_or_set);
1842 else
1843 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1845 if (INSN_P (first))
1847 rtx link;
1849 /* Mark anything that is set in this insn and then unused as dying. */
1851 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1852 if (REG_NOTE_KIND (link) == REG_UNUSED
1853 && GET_CODE (XEXP (link, 0)) == REG)
1854 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1859 if (first == BLOCK_END (b))
1860 b++;
1862 /* Stop after we pass the end of the last basic block. Verify that
1863 no real insns are after the end of the last basic block.
1865 We may want to reorganize the loop somewhat since this test should
1866 always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if
1867 the previous real insn is a JUMP_INSN. */
1868 if (b == n_basic_blocks)
1870 for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first))
1871 if (INSN_P (first)
1872 && GET_CODE (PATTERN (first)) != USE
1873 && ! ((GET_CODE (PATTERN (first)) == ADDR_VEC
1874 || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC)
1875 && prev_real_insn (first) != 0
1876 && GET_CODE (prev_real_insn (first)) == JUMP_INSN))
1877 abort ();
1878 break;
1881 FREE_REG_SET (live_relevant_regs);
1882 *p = 0;
1885 /* Print debugging trace information if -dg switch is given,
1886 showing the information on which the allocation decisions are based. */
1888 static void
1889 dump_conflicts (file)
1890 FILE *file;
1892 int i;
1893 int has_preferences;
1894 int nregs;
1895 nregs = 0;
1896 for (i = 0; i < max_allocno; i++)
1898 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1899 continue;
1900 nregs++;
1902 fprintf (file, ";; %d regs to allocate:", nregs);
1903 for (i = 0; i < max_allocno; i++)
1905 int j;
1906 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1907 continue;
1908 fprintf (file, " %d", allocno[allocno_order[i]].reg);
1909 for (j = 0; j < max_regno; j++)
1910 if (reg_allocno[j] == allocno_order[i]
1911 && j != allocno[allocno_order[i]].reg)
1912 fprintf (file, "+%d", j);
1913 if (allocno[allocno_order[i]].size != 1)
1914 fprintf (file, " (%d)", allocno[allocno_order[i]].size);
1916 fprintf (file, "\n");
1918 for (i = 0; i < max_allocno; i++)
1920 int j;
1921 fprintf (file, ";; %d conflicts:", allocno[i].reg);
1922 for (j = 0; j < max_allocno; j++)
1923 if (CONFLICTP (j, i))
1924 fprintf (file, " %d", allocno[j].reg);
1925 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1926 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j))
1927 fprintf (file, " %d", j);
1928 fprintf (file, "\n");
1930 has_preferences = 0;
1931 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1932 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1933 has_preferences = 1;
1935 if (! has_preferences)
1936 continue;
1937 fprintf (file, ";; %d preferences:", allocno[i].reg);
1938 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1939 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1940 fprintf (file, " %d", j);
1941 fprintf (file, "\n");
1943 fprintf (file, "\n");
1946 void
1947 dump_global_regs (file)
1948 FILE *file;
1950 int i, j;
1952 fprintf (file, ";; Register dispositions:\n");
1953 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1954 if (reg_renumber[i] >= 0)
1956 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1957 if (++j % 6 == 0)
1958 fprintf (file, "\n");
1961 fprintf (file, "\n\n;; Hard regs used: ");
1962 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1963 if (regs_ever_live[i])
1964 fprintf (file, " %d", i);
1965 fprintf (file, "\n\n");