* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / genrecog.c
blob4a3198b7ff28748786d2515ebbce6b519be2e512
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl in a SEQUENCE.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "hconfig.h"
54 #include "system.h"
55 #include "rtl.h"
56 #include "errors.h"
57 #include "gensupport.h"
60 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63 /* Holds an array of names indexed by insn_code_number. */
64 static char **insn_name_ptr = 0;
65 static int insn_name_ptr_size = 0;
67 /* A listhead of decision trees. The alternatives to a node are kept
68 in a doublely-linked list so we can easily add nodes to the proper
69 place when merging. */
71 struct decision_head
73 struct decision *first;
74 struct decision *last;
77 /* A single test. The two accept types aren't tests per-se, but
78 their equality (or lack thereof) does affect tree merging so
79 it is convenient to keep them here. */
81 struct decision_test
83 /* A linked list through the tests attached to a node. */
84 struct decision_test *next;
86 /* These types are roughly in the order in which we'd like to test them. */
87 enum decision_type
89 DT_mode, DT_code, DT_veclen,
90 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
91 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
92 DT_accept_op, DT_accept_insn
93 } type;
95 union
97 enum machine_mode mode; /* Machine mode of node. */
98 RTX_CODE code; /* Code to test. */
100 struct
102 const char *name; /* Predicate to call. */
103 int index; /* Index into `preds' or -1. */
104 enum machine_mode mode; /* Machine mode for node. */
105 } pred;
107 const char *c_test; /* Additional test to perform. */
108 int veclen; /* Length of vector. */
109 int dup; /* Number of operand to compare against. */
110 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
111 int opno; /* Operand number matched. */
113 struct {
114 int code_number; /* Insn number matched. */
115 int lineno; /* Line number of the insn. */
116 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
117 } insn;
118 } u;
121 /* Data structure for decision tree for recognizing legitimate insns. */
123 struct decision
125 struct decision_head success; /* Nodes to test on success. */
126 struct decision *next; /* Node to test on failure. */
127 struct decision *prev; /* Node whose failure tests us. */
128 struct decision *afterward; /* Node to test on success,
129 but failure of successor nodes. */
131 const char *position; /* String denoting position in pattern. */
133 struct decision_test *tests; /* The tests for this node. */
135 int number; /* Node number, used for labels */
136 int subroutine_number; /* Number of subroutine this node starts */
137 int need_label; /* Label needs to be output. */
140 #define SUBROUTINE_THRESHOLD 100
142 static int next_subroutine_number;
144 /* We can write three types of subroutines: One for insn recognition,
145 one to split insns, and one for peephole-type optimizations. This
146 defines which type is being written. */
148 enum routine_type {
149 RECOG, SPLIT, PEEPHOLE2
152 #define IS_SPLIT(X) ((X) != RECOG)
154 /* Next available node number for tree nodes. */
156 static int next_number;
158 /* Next number to use as an insn_code. */
160 static int next_insn_code;
162 /* Similar, but counts all expressions in the MD file; used for
163 error messages. */
165 static int next_index;
167 /* Record the highest depth we ever have so we know how many variables to
168 allocate in each subroutine we make. */
170 static int max_depth;
172 /* The line number of the start of the pattern currently being processed. */
173 static int pattern_lineno;
175 /* Count of errors. */
176 static int error_count;
178 /* This table contains a list of the rtl codes that can possibly match a
179 predicate defined in recog.c. The function `maybe_both_true' uses it to
180 deduce that there are no expressions that can be matches by certain pairs
181 of tree nodes. Also, if a predicate can match only one code, we can
182 hardwire that code into the node testing the predicate. */
184 static const struct pred_table
186 const char *const name;
187 const RTX_CODE codes[NUM_RTX_CODE];
188 } preds[] = {
189 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
190 LABEL_REF, SUBREG, REG, MEM}},
191 #ifdef PREDICATE_CODES
192 PREDICATE_CODES
193 #endif
194 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
195 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
196 {"register_operand", {SUBREG, REG}},
197 {"pmode_register_operand", {SUBREG, REG}},
198 {"scratch_operand", {SCRATCH, REG}},
199 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
200 LABEL_REF}},
201 {"const_int_operand", {CONST_INT}},
202 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
203 {"nonimmediate_operand", {SUBREG, REG, MEM}},
204 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
205 LABEL_REF, SUBREG, REG}},
206 {"push_operand", {MEM}},
207 {"pop_operand", {MEM}},
208 {"memory_operand", {SUBREG, MEM}},
209 {"indirect_operand", {SUBREG, MEM}},
210 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
211 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
212 UNLT, LTGT}},
213 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
214 LABEL_REF, SUBREG, REG, MEM}}
217 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
219 static const char *const special_mode_pred_table[] = {
220 #ifdef SPECIAL_MODE_PREDICATES
221 SPECIAL_MODE_PREDICATES
222 #endif
223 "pmode_register_operand"
226 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
228 static struct decision *new_decision
229 PARAMS ((const char *, struct decision_head *));
230 static struct decision_test *new_decision_test
231 PARAMS ((enum decision_type, struct decision_test ***));
232 static rtx find_operand
233 PARAMS ((rtx, int));
234 static rtx find_matching_operand
235 PARAMS ((rtx, int));
236 static void validate_pattern
237 PARAMS ((rtx, rtx, rtx, int));
238 static struct decision *add_to_sequence
239 PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int));
241 static int maybe_both_true_mode
242 PARAMS ((enum machine_mode, enum machine_mode));
243 static int maybe_both_true_2
244 PARAMS ((struct decision_test *, struct decision_test *));
245 static int maybe_both_true_1
246 PARAMS ((struct decision_test *, struct decision_test *));
247 static int maybe_both_true
248 PARAMS ((struct decision *, struct decision *, int));
250 static int nodes_identical_1
251 PARAMS ((struct decision_test *, struct decision_test *));
252 static int nodes_identical
253 PARAMS ((struct decision *, struct decision *));
254 static void merge_accept_insn
255 PARAMS ((struct decision *, struct decision *));
256 static void merge_trees
257 PARAMS ((struct decision_head *, struct decision_head *));
259 static void factor_tests
260 PARAMS ((struct decision_head *));
261 static void simplify_tests
262 PARAMS ((struct decision_head *));
263 static int break_out_subroutines
264 PARAMS ((struct decision_head *, int));
265 static void find_afterward
266 PARAMS ((struct decision_head *, struct decision *));
268 static void change_state
269 PARAMS ((const char *, const char *, struct decision *, const char *));
270 static void print_code
271 PARAMS ((enum rtx_code));
272 static void write_afterward
273 PARAMS ((struct decision *, struct decision *, const char *));
274 static struct decision *write_switch
275 PARAMS ((struct decision *, int));
276 static void write_cond
277 PARAMS ((struct decision_test *, int, enum routine_type));
278 static void write_action
279 PARAMS ((struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type));
281 static int is_unconditional
282 PARAMS ((struct decision_test *, enum routine_type));
283 static int write_node
284 PARAMS ((struct decision *, int, enum routine_type));
285 static void write_tree_1
286 PARAMS ((struct decision_head *, int, enum routine_type));
287 static void write_tree
288 PARAMS ((struct decision_head *, const char *, enum routine_type, int));
289 static void write_subroutine
290 PARAMS ((struct decision_head *, enum routine_type));
291 static void write_subroutines
292 PARAMS ((struct decision_head *, enum routine_type));
293 static void write_header
294 PARAMS ((void));
296 static struct decision_head make_insn_sequence
297 PARAMS ((rtx, enum routine_type));
298 static void process_tree
299 PARAMS ((struct decision_head *, enum routine_type));
301 static void record_insn_name
302 PARAMS ((int, const char *));
304 static void debug_decision_0
305 PARAMS ((struct decision *, int, int));
306 static void debug_decision_1
307 PARAMS ((struct decision *, int));
308 static void debug_decision_2
309 PARAMS ((struct decision_test *));
310 extern void debug_decision
311 PARAMS ((struct decision *));
312 extern void debug_decision_list
313 PARAMS ((struct decision *));
315 /* Create a new node in sequence after LAST. */
317 static struct decision *
318 new_decision (position, last)
319 const char *position;
320 struct decision_head *last;
322 struct decision *new
323 = (struct decision *) xmalloc (sizeof (struct decision));
325 memset (new, 0, sizeof (*new));
326 new->success = *last;
327 new->position = xstrdup (position);
328 new->number = next_number++;
330 last->first = last->last = new;
331 return new;
334 /* Create a new test and link it in at PLACE. */
336 static struct decision_test *
337 new_decision_test (type, pplace)
338 enum decision_type type;
339 struct decision_test ***pplace;
341 struct decision_test **place = *pplace;
342 struct decision_test *test;
344 test = (struct decision_test *) xmalloc (sizeof (*test));
345 test->next = *place;
346 test->type = type;
347 *place = test;
349 place = &test->next;
350 *pplace = place;
352 return test;
355 /* Search for and return operand N. */
357 static rtx
358 find_operand (pattern, n)
359 rtx pattern;
360 int n;
362 const char *fmt;
363 RTX_CODE code;
364 int i, j, len;
365 rtx r;
367 code = GET_CODE (pattern);
368 if ((code == MATCH_SCRATCH
369 || code == MATCH_INSN
370 || code == MATCH_OPERAND
371 || code == MATCH_OPERATOR
372 || code == MATCH_PARALLEL)
373 && XINT (pattern, 0) == n)
374 return pattern;
376 fmt = GET_RTX_FORMAT (code);
377 len = GET_RTX_LENGTH (code);
378 for (i = 0; i < len; i++)
380 switch (fmt[i])
382 case 'e': case 'u':
383 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
384 return r;
385 break;
387 case 'V':
388 if (! XVEC (pattern, i))
389 break;
390 /* FALLTHRU */
392 case 'E':
393 for (j = 0; j < XVECLEN (pattern, i); j++)
394 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
395 return r;
396 break;
398 case 'i': case 'w': case '0': case 's':
399 break;
401 default:
402 abort ();
406 return NULL;
409 /* Search for and return operand M, such that it has a matching
410 constraint for operand N. */
412 static rtx
413 find_matching_operand (pattern, n)
414 rtx pattern;
415 int n;
417 const char *fmt;
418 RTX_CODE code;
419 int i, j, len;
420 rtx r;
422 code = GET_CODE (pattern);
423 if (code == MATCH_OPERAND
424 && (XSTR (pattern, 2)[0] == '0' + n
425 || (XSTR (pattern, 2)[0] == '%'
426 && XSTR (pattern, 2)[1] == '0' + n)))
427 return pattern;
429 fmt = GET_RTX_FORMAT (code);
430 len = GET_RTX_LENGTH (code);
431 for (i = 0; i < len; i++)
433 switch (fmt[i])
435 case 'e': case 'u':
436 if ((r = find_matching_operand (XEXP (pattern, i), n)))
437 return r;
438 break;
440 case 'V':
441 if (! XVEC (pattern, i))
442 break;
443 /* FALLTHRU */
445 case 'E':
446 for (j = 0; j < XVECLEN (pattern, i); j++)
447 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
448 return r;
449 break;
451 case 'i': case 'w': case '0': case 's':
452 break;
454 default:
455 abort ();
459 return NULL;
463 /* Check for various errors in patterns. SET is nonnull for a destination,
464 and is the complete set pattern. SET_CODE is '=' for normal sets, and
465 '+' within a context that requires in-out constraints. */
467 static void
468 validate_pattern (pattern, insn, set, set_code)
469 rtx pattern;
470 rtx insn;
471 rtx set;
472 int set_code;
474 const char *fmt;
475 RTX_CODE code;
476 size_t i, len;
477 int j;
479 code = GET_CODE (pattern);
480 switch (code)
482 case MATCH_SCRATCH:
483 return;
485 case MATCH_INSN:
486 case MATCH_OPERAND:
487 case MATCH_OPERATOR:
489 const char *pred_name = XSTR (pattern, 1);
490 int allows_non_lvalue = 1, allows_non_const = 1;
491 int special_mode_pred = 0;
492 const char *c_test;
494 if (GET_CODE (insn) == DEFINE_INSN)
495 c_test = XSTR (insn, 2);
496 else
497 c_test = XSTR (insn, 1);
499 if (pred_name[0] != 0)
501 for (i = 0; i < NUM_KNOWN_PREDS; i++)
502 if (! strcmp (preds[i].name, pred_name))
503 break;
505 if (i < NUM_KNOWN_PREDS)
507 int j;
509 allows_non_lvalue = allows_non_const = 0;
510 for (j = 0; preds[i].codes[j] != 0; j++)
512 RTX_CODE c = preds[i].codes[j];
513 if (c != LABEL_REF
514 && c != SYMBOL_REF
515 && c != CONST_INT
516 && c != CONST_DOUBLE
517 && c != CONST
518 && c != HIGH
519 && c != CONSTANT_P_RTX)
520 allows_non_const = 1;
522 if (c != REG
523 && c != SUBREG
524 && c != MEM
525 && c != CONCAT
526 && c != PARALLEL
527 && c != STRICT_LOW_PART)
528 allows_non_lvalue = 1;
531 else
533 #ifdef PREDICATE_CODES
534 /* If the port has a list of the predicates it uses but
535 omits one, warn. */
536 message_with_line (pattern_lineno,
537 "warning: `%s' not in PREDICATE_CODES",
538 pred_name);
539 #endif
542 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
543 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
545 special_mode_pred = 1;
546 break;
550 if (code == MATCH_OPERAND)
552 const char constraints0 = XSTR (pattern, 2)[0];
554 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
555 don't use the MATCH_OPERAND constraint, only the predicate.
556 This is confusing to folks doing new ports, so help them
557 not make the mistake. */
558 if (GET_CODE (insn) == DEFINE_EXPAND
559 || GET_CODE (insn) == DEFINE_SPLIT
560 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
562 if (constraints0)
563 message_with_line (pattern_lineno,
564 "warning: constraints not supported in %s",
565 rtx_name[GET_CODE (insn)]);
568 /* A MATCH_OPERAND that is a SET should have an output reload. */
569 else if (set && constraints0)
571 if (set_code == '+')
573 if (constraints0 == '+')
575 /* If we've only got an output reload for this operand,
576 we'd better have a matching input operand. */
577 else if (constraints0 == '='
578 && find_matching_operand (insn, XINT (pattern, 0)))
580 else
582 message_with_line (pattern_lineno,
583 "operand %d missing in-out reload",
584 XINT (pattern, 0));
585 error_count++;
588 else if (constraints0 != '=' && constraints0 != '+')
590 message_with_line (pattern_lineno,
591 "operand %d missing output reload",
592 XINT (pattern, 0));
593 error_count++;
598 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
599 while not likely to occur at runtime, results in less efficient
600 code from insn-recog.c. */
601 if (set
602 && pred_name[0] != '\0'
603 && allows_non_lvalue)
605 message_with_line (pattern_lineno,
606 "warning: destination operand %d allows non-lvalue",
607 XINT (pattern, 0));
610 /* A modeless MATCH_OPERAND can be handy when we can
611 check for multiple modes in the c_test. In most other cases,
612 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
613 and PEEP2 can FAIL within the output pattern. Exclude
614 address_operand, since its mode is related to the mode of
615 the memory not the operand. Exclude the SET_DEST of a call
616 instruction, as that is a common idiom. */
618 if (GET_MODE (pattern) == VOIDmode
619 && code == MATCH_OPERAND
620 && GET_CODE (insn) == DEFINE_INSN
621 && allows_non_const
622 && ! special_mode_pred
623 && pred_name[0] != '\0'
624 && strcmp (pred_name, "address_operand") != 0
625 && strstr (c_test, "operands") == NULL
626 && ! (set
627 && GET_CODE (set) == SET
628 && GET_CODE (SET_SRC (set)) == CALL))
630 message_with_line (pattern_lineno,
631 "warning: operand %d missing mode?",
632 XINT (pattern, 0));
634 return;
637 case SET:
639 enum machine_mode dmode, smode;
640 rtx dest, src;
642 dest = SET_DEST (pattern);
643 src = SET_SRC (pattern);
645 /* STRICT_LOW_PART is a wrapper. Its argument is the real
646 destination, and it's mode should match the source. */
647 if (GET_CODE (dest) == STRICT_LOW_PART)
648 dest = XEXP (dest, 0);
650 /* Find the referant for a DUP. */
652 if (GET_CODE (dest) == MATCH_DUP
653 || GET_CODE (dest) == MATCH_OP_DUP
654 || GET_CODE (dest) == MATCH_PAR_DUP)
655 dest = find_operand (insn, XINT (dest, 0));
657 if (GET_CODE (src) == MATCH_DUP
658 || GET_CODE (src) == MATCH_OP_DUP
659 || GET_CODE (src) == MATCH_PAR_DUP)
660 src = find_operand (insn, XINT (src, 0));
662 dmode = GET_MODE (dest);
663 smode = GET_MODE (src);
665 /* The mode of an ADDRESS_OPERAND is the mode of the memory
666 reference, not the mode of the address. */
667 if (GET_CODE (src) == MATCH_OPERAND
668 && ! strcmp (XSTR (src, 1), "address_operand"))
671 /* The operands of a SET must have the same mode unless one
672 is VOIDmode. */
673 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
675 message_with_line (pattern_lineno,
676 "mode mismatch in set: %smode vs %smode",
677 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
678 error_count++;
681 /* If only one of the operands is VOIDmode, and PC or CC0 is
682 not involved, it's probably a mistake. */
683 else if (dmode != smode
684 && GET_CODE (dest) != PC
685 && GET_CODE (dest) != CC0
686 && GET_CODE (src) != PC
687 && GET_CODE (src) != CC0
688 && GET_CODE (src) != CONST_INT)
690 const char *which;
691 which = (dmode == VOIDmode ? "destination" : "source");
692 message_with_line (pattern_lineno,
693 "warning: %s missing a mode?", which);
696 if (dest != SET_DEST (pattern))
697 validate_pattern (dest, insn, pattern, '=');
698 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
699 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
700 return;
703 case CLOBBER:
704 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
705 return;
707 case ZERO_EXTRACT:
708 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
709 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
710 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
711 return;
713 case STRICT_LOW_PART:
714 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
715 return;
717 case LABEL_REF:
718 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
720 message_with_line (pattern_lineno,
721 "operand to label_ref %smode not VOIDmode",
722 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
723 error_count++;
725 break;
727 default:
728 break;
731 fmt = GET_RTX_FORMAT (code);
732 len = GET_RTX_LENGTH (code);
733 for (i = 0; i < len; i++)
735 switch (fmt[i])
737 case 'e': case 'u':
738 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
739 break;
741 case 'E':
742 for (j = 0; j < XVECLEN (pattern, i); j++)
743 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
744 break;
746 case 'i': case 'w': case '0': case 's':
747 break;
749 default:
750 abort ();
755 /* Create a chain of nodes to verify that an rtl expression matches
756 PATTERN.
758 LAST is a pointer to the listhead in the previous node in the chain (or
759 in the calling function, for the first node).
761 POSITION is the string representing the current position in the insn.
763 INSN_TYPE is the type of insn for which we are emitting code.
765 A pointer to the final node in the chain is returned. */
767 static struct decision *
768 add_to_sequence (pattern, last, position, insn_type, top)
769 rtx pattern;
770 struct decision_head *last;
771 const char *position;
772 enum routine_type insn_type;
773 int top;
775 RTX_CODE code;
776 struct decision *this, *sub;
777 struct decision_test *test;
778 struct decision_test **place;
779 char *subpos;
780 size_t i;
781 const char *fmt;
782 int depth = strlen (position);
783 int len;
784 enum machine_mode mode;
786 if (depth > max_depth)
787 max_depth = depth;
789 subpos = (char *) xmalloc (depth + 2);
790 strcpy (subpos, position);
791 subpos[depth + 1] = 0;
793 sub = this = new_decision (position, last);
794 place = &this->tests;
796 restart:
797 mode = GET_MODE (pattern);
798 code = GET_CODE (pattern);
800 switch (code)
802 case PARALLEL:
803 /* Toplevel peephole pattern. */
804 if (insn_type == PEEPHOLE2 && top)
806 /* We don't need the node we just created -- unlink it. */
807 last->first = last->last = NULL;
809 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
811 /* Which insn we're looking at is represented by A-Z. We don't
812 ever use 'A', however; it is always implied. */
814 subpos[depth] = (i > 0 ? 'A' + i : 0);
815 sub = add_to_sequence (XVECEXP (pattern, 0, i),
816 last, subpos, insn_type, 0);
817 last = &sub->success;
819 goto ret;
822 /* Else nothing special. */
823 break;
825 case MATCH_PARALLEL:
826 /* The explicit patterns within a match_parallel enforce a minimum
827 length on the vector. The match_parallel predicate may allow
828 for more elements. We do need to check for this minimum here
829 or the code generated to match the internals may reference data
830 beyond the end of the vector. */
831 test = new_decision_test (DT_veclen_ge, &place);
832 test->u.veclen = XVECLEN (pattern, 2);
833 /* FALLTHRU */
835 case MATCH_OPERAND:
836 case MATCH_SCRATCH:
837 case MATCH_OPERATOR:
838 case MATCH_INSN:
840 const char *pred_name;
841 RTX_CODE was_code = code;
842 int allows_const_int = 1;
844 if (code == MATCH_SCRATCH)
846 pred_name = "scratch_operand";
847 code = UNKNOWN;
849 else
851 pred_name = XSTR (pattern, 1);
852 if (code == MATCH_PARALLEL)
853 code = PARALLEL;
854 else
855 code = UNKNOWN;
858 if (pred_name[0] != 0)
860 test = new_decision_test (DT_pred, &place);
861 test->u.pred.name = pred_name;
862 test->u.pred.mode = mode;
864 /* See if we know about this predicate and save its number.
865 If we do, and it only accepts one code, note that fact.
867 If we know that the predicate does not allow CONST_INT,
868 we know that the only way the predicate can match is if
869 the modes match (here we use the kludge of relying on the
870 fact that "address_operand" accepts CONST_INT; otherwise,
871 it would have to be a special case), so we can test the
872 mode (but we need not). This fact should considerably
873 simplify the generated code. */
875 for (i = 0; i < NUM_KNOWN_PREDS; i++)
876 if (! strcmp (preds[i].name, pred_name))
877 break;
879 if (i < NUM_KNOWN_PREDS)
881 int j;
883 test->u.pred.index = i;
885 if (preds[i].codes[1] == 0 && code == UNKNOWN)
886 code = preds[i].codes[0];
888 allows_const_int = 0;
889 for (j = 0; preds[i].codes[j] != 0; j++)
890 if (preds[i].codes[j] == CONST_INT)
892 allows_const_int = 1;
893 break;
896 else
897 test->u.pred.index = -1;
900 /* Can't enforce a mode if we allow const_int. */
901 if (allows_const_int)
902 mode = VOIDmode;
904 /* Accept the operand, ie. record it in `operands'. */
905 test = new_decision_test (DT_accept_op, &place);
906 test->u.opno = XINT (pattern, 0);
908 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
910 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
911 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
913 subpos[depth] = i + base;
914 sub = add_to_sequence (XVECEXP (pattern, 2, i),
915 &sub->success, subpos, insn_type, 0);
918 goto fini;
921 case MATCH_OP_DUP:
922 code = UNKNOWN;
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
927 test = new_decision_test (DT_accept_op, &place);
928 test->u.opno = XINT (pattern, 0);
930 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
932 subpos[depth] = i + '0';
933 sub = add_to_sequence (XVECEXP (pattern, 1, i),
934 &sub->success, subpos, insn_type, 0);
936 goto fini;
938 case MATCH_DUP:
939 case MATCH_PAR_DUP:
940 code = UNKNOWN;
942 test = new_decision_test (DT_dup, &place);
943 test->u.dup = XINT (pattern, 0);
944 goto fini;
946 case ADDRESS:
947 pattern = XEXP (pattern, 0);
948 goto restart;
950 default:
951 break;
954 fmt = GET_RTX_FORMAT (code);
955 len = GET_RTX_LENGTH (code);
957 /* Do tests against the current node first. */
958 for (i = 0; i < (size_t) len; i++)
960 if (fmt[i] == 'i')
962 if (i == 0)
964 test = new_decision_test (DT_elt_zero_int, &place);
965 test->u.intval = XINT (pattern, i);
967 else if (i == 1)
969 test = new_decision_test (DT_elt_one_int, &place);
970 test->u.intval = XINT (pattern, i);
972 else
973 abort ();
975 else if (fmt[i] == 'w')
977 /* If this value actually fits in an int, we can use a switch
978 statement here, so indicate that. */
979 enum decision_type type
980 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
981 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
983 if (i != 0)
984 abort ();
986 test = new_decision_test (type, &place);
987 test->u.intval = XWINT (pattern, i);
989 else if (fmt[i] == 'E')
991 if (i != 0)
992 abort ();
994 test = new_decision_test (DT_veclen, &place);
995 test->u.veclen = XVECLEN (pattern, i);
999 /* Now test our sub-patterns. */
1000 for (i = 0; i < (size_t) len; i++)
1002 switch (fmt[i])
1004 case 'e': case 'u':
1005 subpos[depth] = '0' + i;
1006 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1007 subpos, insn_type, 0);
1008 break;
1010 case 'E':
1012 int j;
1013 for (j = 0; j < XVECLEN (pattern, i); j++)
1015 subpos[depth] = 'a' + j;
1016 sub = add_to_sequence (XVECEXP (pattern, i, j),
1017 &sub->success, subpos, insn_type, 0);
1019 break;
1022 case 'i': case 'w':
1023 /* Handled above. */
1024 break;
1025 case '0':
1026 break;
1028 default:
1029 abort ();
1033 fini:
1034 /* Insert nodes testing mode and code, if they're still relevant,
1035 before any of the nodes we may have added above. */
1036 if (code != UNKNOWN)
1038 place = &this->tests;
1039 test = new_decision_test (DT_code, &place);
1040 test->u.code = code;
1043 if (mode != VOIDmode)
1045 place = &this->tests;
1046 test = new_decision_test (DT_mode, &place);
1047 test->u.mode = mode;
1050 /* If we didn't insert any tests or accept nodes, hork. */
1051 if (this->tests == NULL)
1052 abort ();
1054 ret:
1055 free (subpos);
1056 return sub;
1059 /* A subroutine of maybe_both_true; compares two modes.
1060 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1062 static int
1063 maybe_both_true_mode (m1, m2)
1064 enum machine_mode m1, m2;
1066 enum mode_class other_mode_class;
1068 /* Pmode is not a distinct mode. We do know that it is
1069 either MODE_INT or MODE_PARTIAL_INT though. */
1070 if (m1 == Pmode)
1071 other_mode_class = GET_MODE_CLASS (m2);
1072 else if (m2 == Pmode)
1073 other_mode_class = GET_MODE_CLASS (m1);
1074 else
1075 return m1 == m2;
1077 return (other_mode_class == MODE_INT
1078 || other_mode_class == MODE_PARTIAL_INT
1079 ? -1 : 0);
1082 /* A subroutine of maybe_both_true; examines only one test.
1083 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1085 static int
1086 maybe_both_true_2 (d1, d2)
1087 struct decision_test *d1, *d2;
1089 if (d1->type == d2->type)
1091 switch (d1->type)
1093 case DT_mode:
1094 return maybe_both_true_mode (d1->u.mode, d2->u.mode);
1096 case DT_code:
1097 return d1->u.code == d2->u.code;
1099 case DT_veclen:
1100 return d1->u.veclen == d2->u.veclen;
1102 case DT_elt_zero_int:
1103 case DT_elt_one_int:
1104 case DT_elt_zero_wide:
1105 case DT_elt_zero_wide_safe:
1106 return d1->u.intval == d2->u.intval;
1108 default:
1109 break;
1113 /* If either has a predicate that we know something about, set
1114 things up so that D1 is the one that always has a known
1115 predicate. Then see if they have any codes in common. */
1117 if (d1->type == DT_pred || d2->type == DT_pred)
1119 if (d2->type == DT_pred)
1121 struct decision_test *tmp;
1122 tmp = d1, d1 = d2, d2 = tmp;
1125 /* If D2 tests a mode, see if it matches D1. */
1126 if (d1->u.pred.mode != VOIDmode)
1128 if (d2->type == DT_mode)
1130 if (maybe_both_true_mode (d1->u.pred.mode, d2->u.mode) == 0
1131 /* The mode of an address_operand predicate is the
1132 mode of the memory, not the operand. It can only
1133 be used for testing the predicate, so we must
1134 ignore it here. */
1135 && strcmp (d1->u.pred.name, "address_operand") != 0)
1136 return 0;
1138 /* Don't check two predicate modes here, because if both predicates
1139 accept CONST_INT, then both can still be true even if the modes
1140 are different. If they don't accept CONST_INT, there will be a
1141 separate DT_mode that will make maybe_both_true_1 return 0. */
1144 if (d1->u.pred.index >= 0)
1146 /* If D2 tests a code, see if it is in the list of valid
1147 codes for D1's predicate. */
1148 if (d2->type == DT_code)
1150 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1151 while (*c != 0)
1153 if (*c == d2->u.code)
1154 break;
1155 ++c;
1157 if (*c == 0)
1158 return 0;
1161 /* Otherwise see if the predicates have any codes in common. */
1162 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1164 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1165 int common = 0;
1167 while (*c1 != 0 && !common)
1169 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1170 while (*c2 != 0 && !common)
1172 common = (*c1 == *c2);
1173 ++c2;
1175 ++c1;
1178 if (!common)
1179 return 0;
1184 /* Tests vs veclen may be known when strict equality is involved. */
1185 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1186 return d1->u.veclen >= d2->u.veclen;
1187 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1188 return d2->u.veclen >= d1->u.veclen;
1190 return -1;
1193 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1194 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1196 static int
1197 maybe_both_true_1 (d1, d2)
1198 struct decision_test *d1, *d2;
1200 struct decision_test *t1, *t2;
1202 /* A match_operand with no predicate can match anything. Recognize
1203 this by the existance of a lone DT_accept_op test. */
1204 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1205 return 1;
1207 /* Eliminate pairs of tests while they can exactly match. */
1208 while (d1 && d2 && d1->type == d2->type)
1210 if (maybe_both_true_2 (d1, d2) == 0)
1211 return 0;
1212 d1 = d1->next, d2 = d2->next;
1215 /* After that, consider all pairs. */
1216 for (t1 = d1; t1 ; t1 = t1->next)
1217 for (t2 = d2; t2 ; t2 = t2->next)
1218 if (maybe_both_true_2 (t1, t2) == 0)
1219 return 0;
1221 return -1;
1224 /* Return 0 if we can prove that there is no RTL that can match both
1225 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1226 can match both or just that we couldn't prove there wasn't such an RTL).
1228 TOPLEVEL is non-zero if we are to only look at the top level and not
1229 recursively descend. */
1231 static int
1232 maybe_both_true (d1, d2, toplevel)
1233 struct decision *d1, *d2;
1234 int toplevel;
1236 struct decision *p1, *p2;
1237 int cmp;
1239 /* Don't compare strings on the different positions in insn. Doing so
1240 is incorrect and results in false matches from constructs like
1242 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1243 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1245 [(set (match_operand:HI "register_operand" "r")
1246 (match_operand:HI "register_operand" "r"))]
1248 If we are presented with such, we are recursing through the remainder
1249 of a node's success nodes (from the loop at the end of this function).
1250 Skip forward until we come to a position that matches.
1252 Due to the way position strings are constructed, we know that iterating
1253 forward from the lexically lower position (e.g. "00") will run into
1254 the lexically higher position (e.g. "1") and not the other way around.
1255 This saves a bit of effort. */
1257 cmp = strcmp (d1->position, d2->position);
1258 if (cmp != 0)
1260 if (toplevel)
1261 abort();
1263 /* If the d2->position was lexically lower, swap. */
1264 if (cmp > 0)
1265 p1 = d1, d1 = d2, d2 = p1;
1267 if (d1->success.first == 0)
1268 return 1;
1269 for (p1 = d1->success.first; p1; p1 = p1->next)
1270 if (maybe_both_true (p1, d2, 0))
1271 return 1;
1273 return 0;
1276 /* Test the current level. */
1277 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1278 if (cmp >= 0)
1279 return cmp;
1281 /* We can't prove that D1 and D2 cannot both be true. If we are only
1282 to check the top level, return 1. Otherwise, see if we can prove
1283 that all choices in both successors are mutually exclusive. If
1284 either does not have any successors, we can't prove they can't both
1285 be true. */
1287 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1288 return 1;
1290 for (p1 = d1->success.first; p1; p1 = p1->next)
1291 for (p2 = d2->success.first; p2; p2 = p2->next)
1292 if (maybe_both_true (p1, p2, 0))
1293 return 1;
1295 return 0;
1298 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1300 static int
1301 nodes_identical_1 (d1, d2)
1302 struct decision_test *d1, *d2;
1304 switch (d1->type)
1306 case DT_mode:
1307 return d1->u.mode == d2->u.mode;
1309 case DT_code:
1310 return d1->u.code == d2->u.code;
1312 case DT_pred:
1313 return (d1->u.pred.mode == d2->u.pred.mode
1314 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1316 case DT_c_test:
1317 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1319 case DT_veclen:
1320 case DT_veclen_ge:
1321 return d1->u.veclen == d2->u.veclen;
1323 case DT_dup:
1324 return d1->u.dup == d2->u.dup;
1326 case DT_elt_zero_int:
1327 case DT_elt_one_int:
1328 case DT_elt_zero_wide:
1329 case DT_elt_zero_wide_safe:
1330 return d1->u.intval == d2->u.intval;
1332 case DT_accept_op:
1333 return d1->u.opno == d2->u.opno;
1335 case DT_accept_insn:
1336 /* Differences will be handled in merge_accept_insn. */
1337 return 1;
1339 default:
1340 abort ();
1344 /* True iff the two nodes are identical (on one level only). Due
1345 to the way these lists are constructed, we shouldn't have to
1346 consider different orderings on the tests. */
1348 static int
1349 nodes_identical (d1, d2)
1350 struct decision *d1, *d2;
1352 struct decision_test *t1, *t2;
1354 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1356 if (t1->type != t2->type)
1357 return 0;
1358 if (! nodes_identical_1 (t1, t2))
1359 return 0;
1362 /* For success, they should now both be null. */
1363 if (t1 != t2)
1364 return 0;
1366 /* Check that their subnodes are at the same position, as any one set
1367 of sibling decisions must be at the same position. Allowing this
1368 requires complications to find_afterward and when change_state is
1369 invoked. */
1370 if (d1->success.first
1371 && d2->success.first
1372 && strcmp (d1->success.first->position, d2->success.first->position))
1373 return 0;
1375 return 1;
1378 /* A subroutine of merge_trees; given two nodes that have been declared
1379 identical, cope with two insn accept states. If they differ in the
1380 number of clobbers, then the conflict was created by make_insn_sequence
1381 and we can drop the with-clobbers version on the floor. If both
1382 nodes have no additional clobbers, we have found an ambiguity in the
1383 source machine description. */
1385 static void
1386 merge_accept_insn (oldd, addd)
1387 struct decision *oldd, *addd;
1389 struct decision_test *old, *add;
1391 for (old = oldd->tests; old; old = old->next)
1392 if (old->type == DT_accept_insn)
1393 break;
1394 if (old == NULL)
1395 return;
1397 for (add = addd->tests; add; add = add->next)
1398 if (add->type == DT_accept_insn)
1399 break;
1400 if (add == NULL)
1401 return;
1403 /* If one node is for a normal insn and the second is for the base
1404 insn with clobbers stripped off, the second node should be ignored. */
1406 if (old->u.insn.num_clobbers_to_add == 0
1407 && add->u.insn.num_clobbers_to_add > 0)
1409 /* Nothing to do here. */
1411 else if (old->u.insn.num_clobbers_to_add > 0
1412 && add->u.insn.num_clobbers_to_add == 0)
1414 /* In this case, replace OLD with ADD. */
1415 old->u.insn = add->u.insn;
1417 else
1419 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1420 get_insn_name (add->u.insn.code_number),
1421 get_insn_name (old->u.insn.code_number));
1422 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1423 get_insn_name (old->u.insn.code_number));
1424 error_count++;
1428 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1430 static void
1431 merge_trees (oldh, addh)
1432 struct decision_head *oldh, *addh;
1434 struct decision *next, *add;
1436 if (addh->first == 0)
1437 return;
1438 if (oldh->first == 0)
1440 *oldh = *addh;
1441 return;
1444 /* Trying to merge bits at different positions isn't possible. */
1445 if (strcmp (oldh->first->position, addh->first->position))
1446 abort ();
1448 for (add = addh->first; add ; add = next)
1450 struct decision *old, *insert_before = NULL;
1452 next = add->next;
1454 /* The semantics of pattern matching state that the tests are
1455 done in the order given in the MD file so that if an insn
1456 matches two patterns, the first one will be used. However,
1457 in practice, most, if not all, patterns are unambiguous so
1458 that their order is independent. In that case, we can merge
1459 identical tests and group all similar modes and codes together.
1461 Scan starting from the end of OLDH until we reach a point
1462 where we reach the head of the list or where we pass a
1463 pattern that could also be true if NEW is true. If we find
1464 an identical pattern, we can merge them. Also, record the
1465 last node that tests the same code and mode and the last one
1466 that tests just the same mode.
1468 If we have no match, place NEW after the closest match we found. */
1470 for (old = oldh->last; old; old = old->prev)
1472 if (nodes_identical (old, add))
1474 merge_accept_insn (old, add);
1475 merge_trees (&old->success, &add->success);
1476 goto merged_nodes;
1479 if (maybe_both_true (old, add, 0))
1480 break;
1482 /* Insert the nodes in DT test type order, which is roughly
1483 how expensive/important the test is. Given that the tests
1484 are also ordered within the list, examining the first is
1485 sufficient. */
1486 if ((int) add->tests->type < (int) old->tests->type)
1487 insert_before = old;
1490 if (insert_before == NULL)
1492 add->next = NULL;
1493 add->prev = oldh->last;
1494 oldh->last->next = add;
1495 oldh->last = add;
1497 else
1499 if ((add->prev = insert_before->prev) != NULL)
1500 add->prev->next = add;
1501 else
1502 oldh->first = add;
1503 add->next = insert_before;
1504 insert_before->prev = add;
1507 merged_nodes:;
1511 /* Walk the tree looking for sub-nodes that perform common tests.
1512 Factor out the common test into a new node. This enables us
1513 (depending on the test type) to emit switch statements later. */
1515 static void
1516 factor_tests (head)
1517 struct decision_head *head;
1519 struct decision *first, *next;
1521 for (first = head->first; first && first->next; first = next)
1523 enum decision_type type;
1524 struct decision *new, *old_last;
1526 type = first->tests->type;
1527 next = first->next;
1529 /* Want at least two compatible sequential nodes. */
1530 if (next->tests->type != type)
1531 continue;
1533 /* Don't want all node types, just those we can turn into
1534 switch statements. */
1535 if (type != DT_mode
1536 && type != DT_code
1537 && type != DT_veclen
1538 && type != DT_elt_zero_int
1539 && type != DT_elt_one_int
1540 && type != DT_elt_zero_wide_safe)
1541 continue;
1543 /* If we'd been performing more than one test, create a new node
1544 below our first test. */
1545 if (first->tests->next != NULL)
1547 new = new_decision (first->position, &first->success);
1548 new->tests = first->tests->next;
1549 first->tests->next = NULL;
1552 /* Crop the node tree off after our first test. */
1553 first->next = NULL;
1554 old_last = head->last;
1555 head->last = first;
1557 /* For each compatible test, adjust to perform only one test in
1558 the top level node, then merge the node back into the tree. */
1561 struct decision_head h;
1563 if (next->tests->next != NULL)
1565 new = new_decision (next->position, &next->success);
1566 new->tests = next->tests->next;
1567 next->tests->next = NULL;
1569 new = next;
1570 next = next->next;
1571 new->next = NULL;
1572 h.first = h.last = new;
1574 merge_trees (head, &h);
1576 while (next && next->tests->type == type);
1578 /* After we run out of compatible tests, graft the remaining nodes
1579 back onto the tree. */
1580 if (next)
1582 next->prev = head->last;
1583 head->last->next = next;
1584 head->last = old_last;
1588 /* Recurse. */
1589 for (first = head->first; first; first = first->next)
1590 factor_tests (&first->success);
1593 /* After factoring, try to simplify the tests on any one node.
1594 Tests that are useful for switch statements are recognizable
1595 by having only a single test on a node -- we'll be manipulating
1596 nodes with multiple tests:
1598 If we have mode tests or code tests that are redundant with
1599 predicates, remove them. */
1601 static void
1602 simplify_tests (head)
1603 struct decision_head *head;
1605 struct decision *tree;
1607 for (tree = head->first; tree; tree = tree->next)
1609 struct decision_test *a, *b;
1611 a = tree->tests;
1612 b = a->next;
1613 if (b == NULL)
1614 continue;
1616 /* Find a predicate node. */
1617 while (b && b->type != DT_pred)
1618 b = b->next;
1619 if (b)
1621 /* Due to how these tests are constructed, we don't even need
1622 to check that the mode and code are compatible -- they were
1623 generated from the predicate in the first place. */
1624 while (a->type == DT_mode || a->type == DT_code)
1625 a = a->next;
1626 tree->tests = a;
1630 /* Recurse. */
1631 for (tree = head->first; tree; tree = tree->next)
1632 simplify_tests (&tree->success);
1635 /* Count the number of subnodes of HEAD. If the number is high enough,
1636 make the first node in HEAD start a separate subroutine in the C code
1637 that is generated. */
1639 static int
1640 break_out_subroutines (head, initial)
1641 struct decision_head *head;
1642 int initial;
1644 int size = 0;
1645 struct decision *sub;
1647 for (sub = head->first; sub; sub = sub->next)
1648 size += 1 + break_out_subroutines (&sub->success, 0);
1650 if (size > SUBROUTINE_THRESHOLD && ! initial)
1652 head->first->subroutine_number = ++next_subroutine_number;
1653 size = 1;
1655 return size;
1658 /* For each node p, find the next alternative that might be true
1659 when p is true. */
1661 static void
1662 find_afterward (head, real_afterward)
1663 struct decision_head *head;
1664 struct decision *real_afterward;
1666 struct decision *p, *q, *afterward;
1668 /* We can't propogate alternatives across subroutine boundaries.
1669 This is not incorrect, merely a minor optimization loss. */
1671 p = head->first;
1672 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1674 for ( ; p ; p = p->next)
1676 /* Find the next node that might be true if this one fails. */
1677 for (q = p->next; q ; q = q->next)
1678 if (maybe_both_true (p, q, 1))
1679 break;
1681 /* If we reached the end of the list without finding one,
1682 use the incoming afterward position. */
1683 if (!q)
1684 q = afterward;
1685 p->afterward = q;
1686 if (q)
1687 q->need_label = 1;
1690 /* Recurse. */
1691 for (p = head->first; p ; p = p->next)
1692 if (p->success.first)
1693 find_afterward (&p->success, p->afterward);
1695 /* When we are generating a subroutine, record the real afterward
1696 position in the first node where write_tree can find it, and we
1697 can do the right thing at the subroutine call site. */
1698 p = head->first;
1699 if (p->subroutine_number > 0)
1700 p->afterward = real_afterward;
1703 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1704 actions are necessary to move to NEWPOS. If we fail to move to the
1705 new state, branch to node AFTERWARD if non-zero, otherwise return.
1707 Failure to move to the new state can only occur if we are trying to
1708 match multiple insns and we try to step past the end of the stream. */
1710 static void
1711 change_state (oldpos, newpos, afterward, indent)
1712 const char *oldpos;
1713 const char *newpos;
1714 struct decision *afterward;
1715 const char *indent;
1717 int odepth = strlen (oldpos);
1718 int ndepth = strlen (newpos);
1719 int depth;
1720 int old_has_insn, new_has_insn;
1722 /* Pop up as many levels as necessary. */
1723 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1724 continue;
1726 /* Hunt for the last [A-Z] in both strings. */
1727 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1728 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1729 break;
1730 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1731 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1732 break;
1734 /* Go down to desired level. */
1735 while (depth < ndepth)
1737 /* It's a different insn from the first one. */
1738 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
1740 /* We can only fail if we're moving down the tree. */
1741 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1743 printf ("%stem = peep2_next_insn (%d);\n",
1744 indent, newpos[depth] - 'A');
1746 else
1748 printf ("%stem = peep2_next_insn (%d);\n",
1749 indent, newpos[depth] - 'A');
1750 printf ("%sif (tem == NULL_RTX)\n", indent);
1751 if (afterward)
1752 printf ("%s goto L%d;\n", indent, afterward->number);
1753 else
1754 printf ("%s goto ret0;\n", indent);
1756 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1758 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1759 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1760 indent, depth + 1, depth, newpos[depth] - 'a');
1761 else
1762 printf ("%sx%d = XEXP (x%d, %c);\n",
1763 indent, depth + 1, depth, newpos[depth]);
1764 ++depth;
1768 /* Print the enumerator constant for CODE -- the upcase version of
1769 the name. */
1771 static void
1772 print_code (code)
1773 enum rtx_code code;
1775 const char *p;
1776 for (p = GET_RTX_NAME (code); *p; p++)
1777 putchar (TOUPPER (*p));
1780 /* Emit code to cross an afterward link -- change state and branch. */
1782 static void
1783 write_afterward (start, afterward, indent)
1784 struct decision *start;
1785 struct decision *afterward;
1786 const char *indent;
1788 if (!afterward || start->subroutine_number > 0)
1789 printf("%sgoto ret0;\n", indent);
1790 else
1792 change_state (start->position, afterward->position, NULL, indent);
1793 printf ("%sgoto L%d;\n", indent, afterward->number);
1797 /* Emit a switch statement, if possible, for an initial sequence of
1798 nodes at START. Return the first node yet untested. */
1800 static struct decision *
1801 write_switch (start, depth)
1802 struct decision *start;
1803 int depth;
1805 struct decision *p = start;
1806 enum decision_type type = p->tests->type;
1807 struct decision *needs_label = NULL;
1809 /* If we have two or more nodes in sequence that test the same one
1810 thing, we may be able to use a switch statement. */
1812 if (!p->next
1813 || p->tests->next
1814 || p->next->tests->type != type
1815 || p->next->tests->next
1816 || nodes_identical_1 (p->tests, p->next->tests))
1817 return p;
1819 /* DT_code is special in that we can do interesting things with
1820 known predicates at the same time. */
1821 if (type == DT_code)
1823 char codemap[NUM_RTX_CODE];
1824 struct decision *ret;
1825 RTX_CODE code;
1827 memset (codemap, 0, sizeof(codemap));
1829 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1830 code = p->tests->u.code;
1833 if (p != start && p->need_label && needs_label == NULL)
1834 needs_label = p;
1836 printf (" case ");
1837 print_code (code);
1838 printf (":\n goto L%d;\n", p->success.first->number);
1839 p->success.first->need_label = 1;
1841 codemap[code] = 1;
1842 p = p->next;
1844 while (p
1845 && ! p->tests->next
1846 && p->tests->type == DT_code
1847 && ! codemap[code = p->tests->u.code]);
1849 /* If P is testing a predicate that we know about and we haven't
1850 seen any of the codes that are valid for the predicate, we can
1851 write a series of "case" statement, one for each possible code.
1852 Since we are already in a switch, these redundant tests are very
1853 cheap and will reduce the number of predicates called. */
1855 /* Note that while we write out cases for these predicates here,
1856 we don't actually write the test here, as it gets kinda messy.
1857 It is trivial to leave this to later by telling our caller that
1858 we only processed the CODE tests. */
1859 if (needs_label != NULL)
1860 ret = needs_label;
1861 else
1862 ret = p;
1864 while (p && p->tests->type == DT_pred
1865 && p->tests->u.pred.index >= 0)
1867 const RTX_CODE *c;
1869 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1870 if (codemap[(int) *c] != 0)
1871 goto pred_done;
1873 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1875 printf (" case ");
1876 print_code (*c);
1877 printf (":\n");
1878 codemap[(int) *c] = 1;
1881 printf (" goto L%d;\n", p->number);
1882 p->need_label = 1;
1883 p = p->next;
1886 pred_done:
1887 /* Make the default case skip the predicates we managed to match. */
1889 printf (" default:\n");
1890 if (p != ret)
1892 if (p)
1894 printf (" goto L%d;\n", p->number);
1895 p->need_label = 1;
1897 else
1898 write_afterward (start, start->afterward, " ");
1900 else
1901 printf (" break;\n");
1902 printf (" }\n");
1904 return ret;
1906 else if (type == DT_mode
1907 || type == DT_veclen
1908 || type == DT_elt_zero_int
1909 || type == DT_elt_one_int
1910 || type == DT_elt_zero_wide_safe)
1912 /* Pmode may not be a compile-time constant. */
1913 if (type == DT_mode && p->tests->u.mode == Pmode)
1914 return p;
1916 printf (" switch (");
1917 switch (type)
1919 case DT_mode:
1920 printf ("GET_MODE (x%d)", depth);
1921 break;
1922 case DT_veclen:
1923 printf ("XVECLEN (x%d, 0)", depth);
1924 break;
1925 case DT_elt_zero_int:
1926 printf ("XINT (x%d, 0)", depth);
1927 break;
1928 case DT_elt_one_int:
1929 printf ("XINT (x%d, 1)", depth);
1930 break;
1931 case DT_elt_zero_wide_safe:
1932 /* Convert result of XWINT to int for portability since some C
1933 compilers won't do it and some will. */
1934 printf ("(int) XWINT (x%d, 0)", depth);
1935 break;
1936 default:
1937 abort ();
1939 printf (")\n {\n");
1943 /* Merge trees will not unify identical nodes if their
1944 sub-nodes are at different levels. Thus we must check
1945 for duplicate cases. */
1946 struct decision *q;
1947 for (q = start; q != p; q = q->next)
1948 if (nodes_identical_1 (p->tests, q->tests))
1949 goto case_done;
1951 /* Pmode may not be a compile-time constant. */
1952 if (type == DT_mode && p->tests->u.mode == Pmode)
1953 goto case_done;
1955 if (p != start && p->need_label && needs_label == NULL)
1956 needs_label = p;
1958 printf (" case ");
1959 switch (type)
1961 case DT_mode:
1962 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1963 break;
1964 case DT_veclen:
1965 printf ("%d", p->tests->u.veclen);
1966 break;
1967 case DT_elt_zero_int:
1968 case DT_elt_one_int:
1969 case DT_elt_zero_wide:
1970 case DT_elt_zero_wide_safe:
1971 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1972 break;
1973 default:
1974 abort ();
1976 printf (":\n goto L%d;\n", p->success.first->number);
1977 p->success.first->need_label = 1;
1979 p = p->next;
1981 while (p && p->tests->type == type && !p->tests->next);
1983 case_done:
1984 printf (" default:\n break;\n }\n");
1986 return needs_label != NULL ? needs_label : p;
1988 else
1990 /* None of the other tests are ameanable. */
1991 return p;
1995 /* Emit code for one test. */
1997 static void
1998 write_cond (p, depth, subroutine_type)
1999 struct decision_test *p;
2000 int depth;
2001 enum routine_type subroutine_type;
2003 switch (p->type)
2005 case DT_mode:
2006 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2007 break;
2009 case DT_code:
2010 printf ("GET_CODE (x%d) == ", depth);
2011 print_code (p->u.code);
2012 break;
2014 case DT_veclen:
2015 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2016 break;
2018 case DT_elt_zero_int:
2019 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2020 break;
2022 case DT_elt_one_int:
2023 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2024 break;
2026 case DT_elt_zero_wide:
2027 case DT_elt_zero_wide_safe:
2028 printf ("XWINT (x%d, 0) == ", depth);
2029 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
2030 break;
2032 case DT_veclen_ge:
2033 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2034 break;
2036 case DT_dup:
2037 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2038 break;
2040 case DT_pred:
2041 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2042 GET_MODE_NAME (p->u.pred.mode));
2043 break;
2045 case DT_c_test:
2046 printf ("(%s)", p->u.c_test);
2047 break;
2049 case DT_accept_insn:
2050 switch (subroutine_type)
2052 case RECOG:
2053 if (p->u.insn.num_clobbers_to_add == 0)
2054 abort ();
2055 printf ("pnum_clobbers != NULL");
2056 break;
2058 default:
2059 abort ();
2061 break;
2063 default:
2064 abort ();
2068 /* Emit code for one action. The previous tests have succeeded;
2069 TEST is the last of the chain. In the normal case we simply
2070 perform a state change. For the `accept' tests we must do more work. */
2072 static void
2073 write_action (p, test, depth, uncond, success, subroutine_type)
2074 struct decision *p;
2075 struct decision_test *test;
2076 int depth, uncond;
2077 struct decision *success;
2078 enum routine_type subroutine_type;
2080 const char *indent;
2081 int want_close = 0;
2083 if (uncond)
2084 indent = " ";
2085 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2087 fputs (" {\n", stdout);
2088 indent = " ";
2089 want_close = 1;
2091 else
2092 indent = " ";
2094 if (test->type == DT_accept_op)
2096 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2098 /* Only allow DT_accept_insn to follow. */
2099 if (test->next)
2101 test = test->next;
2102 if (test->type != DT_accept_insn)
2103 abort ();
2107 /* Sanity check that we're now at the end of the list of tests. */
2108 if (test->next)
2109 abort ();
2111 if (test->type == DT_accept_insn)
2113 switch (subroutine_type)
2115 case RECOG:
2116 if (test->u.insn.num_clobbers_to_add != 0)
2117 printf ("%s*pnum_clobbers = %d;\n",
2118 indent, test->u.insn.num_clobbers_to_add);
2119 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2120 break;
2122 case SPLIT:
2123 printf ("%sreturn gen_split_%d (operands);\n",
2124 indent, test->u.insn.code_number);
2125 break;
2127 case PEEPHOLE2:
2129 int match_len = 0, i;
2131 for (i = strlen (p->position) - 1; i >= 0; --i)
2132 if (p->position[i] >= 'A' && p->position[i] <= 'Z')
2134 match_len = p->position[i] - 'A';
2135 break;
2137 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2138 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2139 indent, test->u.insn.code_number);
2140 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2142 break;
2144 default:
2145 abort ();
2148 else
2150 printf("%sgoto L%d;\n", indent, success->number);
2151 success->need_label = 1;
2154 if (want_close)
2155 fputs (" }\n", stdout);
2158 /* Return 1 if the test is always true and has no fallthru path. Return -1
2159 if the test does have a fallthru path, but requires that the condition be
2160 terminated. Otherwise return 0 for a normal test. */
2161 /* ??? is_unconditional is a stupid name for a tri-state function. */
2163 static int
2164 is_unconditional (t, subroutine_type)
2165 struct decision_test *t;
2166 enum routine_type subroutine_type;
2168 if (t->type == DT_accept_op)
2169 return 1;
2171 if (t->type == DT_accept_insn)
2173 switch (subroutine_type)
2175 case RECOG:
2176 return (t->u.insn.num_clobbers_to_add == 0);
2177 case SPLIT:
2178 return 1;
2179 case PEEPHOLE2:
2180 return -1;
2181 default:
2182 abort ();
2186 return 0;
2189 /* Emit code for one node -- the conditional and the accompanying action.
2190 Return true if there is no fallthru path. */
2192 static int
2193 write_node (p, depth, subroutine_type)
2194 struct decision *p;
2195 int depth;
2196 enum routine_type subroutine_type;
2198 struct decision_test *test, *last_test;
2199 int uncond;
2201 last_test = test = p->tests;
2202 uncond = is_unconditional (test, subroutine_type);
2203 if (uncond == 0)
2205 printf (" if (");
2206 write_cond (test, depth, subroutine_type);
2208 while ((test = test->next) != NULL)
2210 int uncond2;
2212 last_test = test;
2213 uncond2 = is_unconditional (test, subroutine_type);
2214 if (uncond2 != 0)
2215 break;
2217 printf ("\n && ");
2218 write_cond (test, depth, subroutine_type);
2221 printf (")\n");
2224 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2226 return uncond > 0;
2229 /* Emit code for all of the sibling nodes of HEAD. */
2231 static void
2232 write_tree_1 (head, depth, subroutine_type)
2233 struct decision_head *head;
2234 int depth;
2235 enum routine_type subroutine_type;
2237 struct decision *p, *next;
2238 int uncond = 0;
2240 for (p = head->first; p ; p = next)
2242 /* The label for the first element was printed in write_tree. */
2243 if (p != head->first && p->need_label)
2244 OUTPUT_LABEL (" ", p->number);
2246 /* Attempt to write a switch statement for a whole sequence. */
2247 next = write_switch (p, depth);
2248 if (p != next)
2249 uncond = 0;
2250 else
2252 /* Failed -- fall back and write one node. */
2253 uncond = write_node (p, depth, subroutine_type);
2254 next = p->next;
2258 /* Finished with this chain. Close a fallthru path by branching
2259 to the afterward node. */
2260 if (! uncond)
2261 write_afterward (head->last, head->last->afterward, " ");
2264 /* Write out the decision tree starting at HEAD. PREVPOS is the
2265 position at the node that branched to this node. */
2267 static void
2268 write_tree (head, prevpos, type, initial)
2269 struct decision_head *head;
2270 const char *prevpos;
2271 enum routine_type type;
2272 int initial;
2274 struct decision *p = head->first;
2276 putchar ('\n');
2277 if (p->need_label)
2278 OUTPUT_LABEL (" ", p->number);
2280 if (! initial && p->subroutine_number > 0)
2282 static const char * const name_prefix[] = {
2283 "recog", "split", "peephole2"
2286 static const char * const call_suffix[] = {
2287 ", pnum_clobbers", "", ", _pmatch_len"
2290 /* This node has been broken out into a separate subroutine.
2291 Call it, test the result, and branch accordingly. */
2293 if (p->afterward)
2295 printf (" tem = %s_%d (x0, insn%s);\n",
2296 name_prefix[type], p->subroutine_number, call_suffix[type]);
2297 if (IS_SPLIT (type))
2298 printf (" if (tem != 0)\n return tem;\n");
2299 else
2300 printf (" if (tem >= 0)\n return tem;\n");
2302 change_state (p->position, p->afterward->position, NULL, " ");
2303 printf (" goto L%d;\n", p->afterward->number);
2305 else
2307 printf (" return %s_%d (x0, insn%s);\n",
2308 name_prefix[type], p->subroutine_number, call_suffix[type]);
2311 else
2313 int depth = strlen (p->position);
2315 change_state (prevpos, p->position, head->last->afterward, " ");
2316 write_tree_1 (head, depth, type);
2318 for (p = head->first; p; p = p->next)
2319 if (p->success.first)
2320 write_tree (&p->success, p->position, type, 0);
2324 /* Write out a subroutine of type TYPE to do comparisons starting at
2325 node TREE. */
2327 static void
2328 write_subroutine (head, type)
2329 struct decision_head *head;
2330 enum routine_type type;
2332 int subfunction = head->first ? head->first->subroutine_number : 0;
2333 const char *s_or_e;
2334 char extension[32];
2335 int i;
2337 s_or_e = subfunction ? "static " : "";
2339 if (subfunction)
2340 sprintf (extension, "_%d", subfunction);
2341 else if (type == RECOG)
2342 extension[0] = '\0';
2343 else
2344 strcpy (extension, "_insns");
2346 switch (type)
2348 case RECOG:
2349 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension);
2350 printf ("%sint\n\
2351 recog%s (x0, insn, pnum_clobbers)\n\
2352 rtx x0 ATTRIBUTE_UNUSED;\n\
2353 rtx insn ATTRIBUTE_UNUSED;\n\
2354 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2355 break;
2356 case SPLIT:
2357 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension);
2358 printf ("%srtx\n\
2359 split%s (x0, insn)\n\
2360 rtx x0 ATTRIBUTE_UNUSED;\n\
2361 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2362 break;
2363 case PEEPHOLE2:
2364 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n",
2365 s_or_e, extension);
2366 printf ("%srtx\n\
2367 peephole2%s (x0, insn, _pmatch_len)\n\
2368 rtx x0 ATTRIBUTE_UNUSED;\n\
2369 rtx insn ATTRIBUTE_UNUSED;\n\
2370 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2371 break;
2374 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2375 for (i = 1; i <= max_depth; i++)
2376 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2378 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2380 if (!subfunction)
2381 printf (" recog_data.insn = NULL_RTX;\n");
2383 if (head->first)
2384 write_tree (head, "", type, 1);
2385 else
2386 printf (" goto ret0;\n");
2388 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2391 /* In break_out_subroutines, we discovered the boundaries for the
2392 subroutines, but did not write them out. Do so now. */
2394 static void
2395 write_subroutines (head, type)
2396 struct decision_head *head;
2397 enum routine_type type;
2399 struct decision *p;
2401 for (p = head->first; p ; p = p->next)
2402 if (p->success.first)
2403 write_subroutines (&p->success, type);
2405 if (head->first->subroutine_number > 0)
2406 write_subroutine (head, type);
2409 /* Begin the output file. */
2411 static void
2412 write_header ()
2414 puts ("\
2415 /* Generated automatically by the program `genrecog' from the target\n\
2416 machine description file. */\n\
2418 #include \"config.h\"\n\
2419 #include \"system.h\"\n\
2420 #include \"rtl.h\"\n\
2421 #include \"tm_p.h\"\n\
2422 #include \"function.h\"\n\
2423 #include \"insn-config.h\"\n\
2424 #include \"recog.h\"\n\
2425 #include \"real.h\"\n\
2426 #include \"output.h\"\n\
2427 #include \"flags.h\"\n\
2428 #include \"hard-reg-set.h\"\n\
2429 #include \"resource.h\"\n\
2430 #include \"toplev.h\"\n\
2431 #include \"reload.h\"\n\
2432 \n");
2434 puts ("\n\
2435 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2436 X0 is a valid instruction.\n\
2438 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2439 returns a nonnegative number which is the insn code number for the\n\
2440 pattern that matched. This is the same as the order in the machine\n\
2441 description of the entry that matched. This number can be used as an\n\
2442 index into `insn_data' and other tables.\n");
2443 puts ("\
2444 The third argument to recog is an optional pointer to an int. If\n\
2445 present, recog will accept a pattern if it matches except for missing\n\
2446 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2447 the optional pointer will be set to the number of CLOBBERs that need\n\
2448 to be added (it should be initialized to zero by the caller). If it");
2449 puts ("\
2450 is set nonzero, the caller should allocate a PARALLEL of the\n\
2451 appropriate size, copy the initial entries, and call add_clobbers\n\
2452 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2455 puts ("\n\
2456 The function split_insns returns 0 if the rtl could not\n\
2457 be split or the split rtl in a SEQUENCE if it can be.\n\
2459 The function peephole2_insns returns 0 if the rtl could not\n\
2460 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2461 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2462 */\n\n");
2466 /* Construct and return a sequence of decisions
2467 that will recognize INSN.
2469 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2471 static struct decision_head
2472 make_insn_sequence (insn, type)
2473 rtx insn;
2474 enum routine_type type;
2476 rtx x;
2477 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2478 struct decision *last;
2479 struct decision_test *test, **place;
2480 struct decision_head head;
2481 char c_test_pos[2];
2483 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2485 c_test_pos[0] = '\0';
2486 if (type == PEEPHOLE2)
2488 int i, j;
2490 /* peephole2 gets special treatment:
2491 - X always gets an outer parallel even if it's only one entry
2492 - we remove all traces of outer-level match_scratch and match_dup
2493 expressions here. */
2494 x = rtx_alloc (PARALLEL);
2495 PUT_MODE (x, VOIDmode);
2496 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2497 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2499 rtx tmp = XVECEXP (insn, 0, i);
2500 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2502 XVECEXP (x, 0, j) = tmp;
2503 j++;
2506 XVECLEN (x, 0) = j;
2508 c_test_pos[0] = 'A' + j - 1;
2509 c_test_pos[1] = '\0';
2511 else if (XVECLEN (insn, type == RECOG) == 1)
2512 x = XVECEXP (insn, type == RECOG, 0);
2513 else
2515 x = rtx_alloc (PARALLEL);
2516 XVEC (x, 0) = XVEC (insn, type == RECOG);
2517 PUT_MODE (x, VOIDmode);
2520 validate_pattern (x, insn, NULL_RTX, 0);
2522 memset(&head, 0, sizeof(head));
2523 last = add_to_sequence (x, &head, "", type, 1);
2525 /* Find the end of the test chain on the last node. */
2526 for (test = last->tests; test->next; test = test->next)
2527 continue;
2528 place = &test->next;
2530 if (c_test[0])
2532 /* Need a new node if we have another test to add. */
2533 if (test->type == DT_accept_op)
2535 last = new_decision (c_test_pos, &last->success);
2536 place = &last->tests;
2538 test = new_decision_test (DT_c_test, &place);
2539 test->u.c_test = c_test;
2542 test = new_decision_test (DT_accept_insn, &place);
2543 test->u.insn.code_number = next_insn_code;
2544 test->u.insn.lineno = pattern_lineno;
2545 test->u.insn.num_clobbers_to_add = 0;
2547 switch (type)
2549 case RECOG:
2550 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2551 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2552 If so, set up to recognize the pattern without these CLOBBERs. */
2554 if (GET_CODE (x) == PARALLEL)
2556 int i;
2558 /* Find the last non-clobber in the parallel. */
2559 for (i = XVECLEN (x, 0); i > 0; i--)
2561 rtx y = XVECEXP (x, 0, i - 1);
2562 if (GET_CODE (y) != CLOBBER
2563 || (GET_CODE (XEXP (y, 0)) != REG
2564 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2565 break;
2568 if (i != XVECLEN (x, 0))
2570 rtx new;
2571 struct decision_head clobber_head;
2573 /* Build a similar insn without the clobbers. */
2574 if (i == 1)
2575 new = XVECEXP (x, 0, 0);
2576 else
2578 int j;
2580 new = rtx_alloc (PARALLEL);
2581 XVEC (new, 0) = rtvec_alloc (i);
2582 for (j = i - 1; j >= 0; j--)
2583 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2586 /* Recognize it. */
2587 memset (&clobber_head, 0, sizeof(clobber_head));
2588 last = add_to_sequence (new, &clobber_head, "", type, 1);
2590 /* Find the end of the test chain on the last node. */
2591 for (test = last->tests; test->next; test = test->next)
2592 continue;
2594 /* We definitely have a new test to add -- create a new
2595 node if needed. */
2596 place = &test->next;
2597 if (test->type == DT_accept_op)
2599 last = new_decision ("", &last->success);
2600 place = &last->tests;
2603 if (c_test[0])
2605 test = new_decision_test (DT_c_test, &place);
2606 test->u.c_test = c_test;
2609 test = new_decision_test (DT_accept_insn, &place);
2610 test->u.insn.code_number = next_insn_code;
2611 test->u.insn.lineno = pattern_lineno;
2612 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2614 merge_trees (&head, &clobber_head);
2617 break;
2619 case SPLIT:
2620 /* Define the subroutine we will call below and emit in genemit. */
2621 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code);
2622 break;
2624 case PEEPHOLE2:
2625 /* Define the subroutine we will call below and emit in genemit. */
2626 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
2627 next_insn_code);
2628 break;
2631 return head;
2634 static void
2635 process_tree (head, subroutine_type)
2636 struct decision_head *head;
2637 enum routine_type subroutine_type;
2639 if (head->first == NULL)
2641 /* We can elide peephole2_insns, but not recog or split_insns. */
2642 if (subroutine_type == PEEPHOLE2)
2643 return;
2645 else
2647 factor_tests (head);
2649 next_subroutine_number = 0;
2650 break_out_subroutines (head, 1);
2651 find_afterward (head, NULL);
2653 /* We run this after find_afterward, because find_afterward needs
2654 the redundant DT_mode tests on predicates to determine whether
2655 two tests can both be true or not. */
2656 simplify_tests(head);
2658 write_subroutines (head, subroutine_type);
2661 write_subroutine (head, subroutine_type);
2664 extern int main PARAMS ((int, char **));
2667 main (argc, argv)
2668 int argc;
2669 char **argv;
2671 rtx desc;
2672 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2674 progname = "genrecog";
2676 memset (&recog_tree, 0, sizeof recog_tree);
2677 memset (&split_tree, 0, sizeof split_tree);
2678 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2680 if (argc <= 1)
2681 fatal ("No input file name.");
2683 if (init_md_reader (argv[1]) != SUCCESS_EXIT_CODE)
2684 return (FATAL_EXIT_CODE);
2686 next_insn_code = 0;
2687 next_index = 0;
2689 write_header ();
2691 /* Read the machine description. */
2693 while (1)
2695 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2696 if (desc == NULL)
2697 break;
2699 if (GET_CODE (desc) == DEFINE_INSN)
2701 h = make_insn_sequence (desc, RECOG);
2702 merge_trees (&recog_tree, &h);
2704 else if (GET_CODE (desc) == DEFINE_SPLIT)
2706 h = make_insn_sequence (desc, SPLIT);
2707 merge_trees (&split_tree, &h);
2709 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2711 h = make_insn_sequence (desc, PEEPHOLE2);
2712 merge_trees (&peephole2_tree, &h);
2715 next_index++;
2718 if (error_count)
2719 return FATAL_EXIT_CODE;
2721 puts ("\n\n");
2723 process_tree (&recog_tree, RECOG);
2724 process_tree (&split_tree, SPLIT);
2725 process_tree (&peephole2_tree, PEEPHOLE2);
2727 fflush (stdout);
2728 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2731 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2732 const char *
2733 get_insn_name (code)
2734 int code;
2736 if (code < insn_name_ptr_size)
2737 return insn_name_ptr[code];
2738 else
2739 return NULL;
2742 static void
2743 record_insn_name (code, name)
2744 int code;
2745 const char *name;
2747 static const char *last_real_name = "insn";
2748 static int last_real_code = 0;
2749 char *new;
2751 if (insn_name_ptr_size <= code)
2753 int new_size;
2754 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2755 insn_name_ptr =
2756 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2757 memset (insn_name_ptr + insn_name_ptr_size, 0,
2758 sizeof(char *) * (new_size - insn_name_ptr_size));
2759 insn_name_ptr_size = new_size;
2762 if (!name || name[0] == '\0')
2764 new = xmalloc (strlen (last_real_name) + 10);
2765 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2767 else
2769 last_real_name = new = xstrdup (name);
2770 last_real_code = code;
2773 insn_name_ptr[code] = new;
2776 static void
2777 debug_decision_2 (test)
2778 struct decision_test *test;
2780 switch (test->type)
2782 case DT_mode:
2783 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2784 break;
2785 case DT_code:
2786 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2787 break;
2788 case DT_veclen:
2789 fprintf (stderr, "veclen=%d", test->u.veclen);
2790 break;
2791 case DT_elt_zero_int:
2792 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2793 break;
2794 case DT_elt_one_int:
2795 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2796 break;
2797 case DT_elt_zero_wide:
2798 fprintf (stderr, "elt0_w=");
2799 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2800 break;
2801 case DT_elt_zero_wide_safe:
2802 fprintf (stderr, "elt0_ws=");
2803 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2804 break;
2805 case DT_veclen_ge:
2806 fprintf (stderr, "veclen>=%d", test->u.veclen);
2807 break;
2808 case DT_dup:
2809 fprintf (stderr, "dup=%d", test->u.dup);
2810 break;
2811 case DT_pred:
2812 fprintf (stderr, "pred=(%s,%s)",
2813 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2814 break;
2815 case DT_c_test:
2817 char sub[16+4];
2818 strncpy (sub, test->u.c_test, sizeof(sub));
2819 memcpy (sub+16, "...", 4);
2820 fprintf (stderr, "c_test=\"%s\"", sub);
2822 break;
2823 case DT_accept_op:
2824 fprintf (stderr, "A_op=%d", test->u.opno);
2825 break;
2826 case DT_accept_insn:
2827 fprintf (stderr, "A_insn=(%d,%d)",
2828 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2829 break;
2831 default:
2832 abort ();
2836 static void
2837 debug_decision_1 (d, indent)
2838 struct decision *d;
2839 int indent;
2841 int i;
2842 struct decision_test *test;
2844 if (d == NULL)
2846 for (i = 0; i < indent; ++i)
2847 putc (' ', stderr);
2848 fputs ("(nil)\n", stderr);
2849 return;
2852 for (i = 0; i < indent; ++i)
2853 putc (' ', stderr);
2855 putc ('{', stderr);
2856 test = d->tests;
2857 if (test)
2859 debug_decision_2 (test);
2860 while ((test = test->next) != NULL)
2862 fputs (" + ", stderr);
2863 debug_decision_2 (test);
2866 fprintf (stderr, "} %d n %d a %d\n", d->number,
2867 (d->next ? d->next->number : -1),
2868 (d->afterward ? d->afterward->number : -1));
2871 static void
2872 debug_decision_0 (d, indent, maxdepth)
2873 struct decision *d;
2874 int indent, maxdepth;
2876 struct decision *n;
2877 int i;
2879 if (maxdepth < 0)
2880 return;
2881 if (d == NULL)
2883 for (i = 0; i < indent; ++i)
2884 putc (' ', stderr);
2885 fputs ("(nil)\n", stderr);
2886 return;
2889 debug_decision_1 (d, indent);
2890 for (n = d->success.first; n ; n = n->next)
2891 debug_decision_0 (n, indent + 2, maxdepth - 1);
2894 void
2895 debug_decision (d)
2896 struct decision *d;
2898 debug_decision_0 (d, 0, 1000000);
2901 void
2902 debug_decision_list (d)
2903 struct decision *d;
2905 while (d)
2907 debug_decision_0 (d, 0, 0);
2908 d = d->next;