* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / flow.c
blob030a23370521a6a1b8ac860906a884a49029dfb6
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
140 #include "obstack.h"
141 #include "splay-tree.h"
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
171 #ifdef HAVE_conditional_execution
172 #ifndef REVERSE_CONDEXEC_PREDICATES_P
173 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
174 #endif
175 #endif
177 /* Nonzero if the second flow pass has completed. */
178 int flow2_completed;
180 /* Maximum register number used in this function, plus one. */
182 int max_regno;
184 /* Indexed by n, giving various register information */
186 varray_type reg_n_info;
188 /* Size of a regset for the current function,
189 in (1) bytes and (2) elements. */
191 int regset_bytes;
192 int regset_size;
194 /* Regset of regs live when calls to `setjmp'-like functions happen. */
195 /* ??? Does this exist only for the setjmp-clobbered warning message? */
197 regset regs_live_at_setjmp;
199 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
200 that have to go in the same hard reg.
201 The first two regs in the list are a pair, and the next two
202 are another pair, etc. */
203 rtx regs_may_share;
205 /* Callback that determines if it's ok for a function to have no
206 noreturn attribute. */
207 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
209 /* Set of registers that may be eliminable. These are handled specially
210 in updating regs_ever_live. */
212 static HARD_REG_SET elim_reg_set;
214 /* Holds information for tracking conditional register life information. */
215 struct reg_cond_life_info
217 /* A boolean expression of conditions under which a register is dead. */
218 rtx condition;
219 /* Conditions under which a register is dead at the basic block end. */
220 rtx orig_condition;
222 /* A boolean expression of conditions under which a register has been
223 stored into. */
224 rtx stores;
226 /* ??? Could store mask of bytes that are dead, so that we could finally
227 track lifetimes of multi-word registers accessed via subregs. */
230 /* For use in communicating between propagate_block and its subroutines.
231 Holds all information needed to compute life and def-use information. */
233 struct propagate_block_info
235 /* The basic block we're considering. */
236 basic_block bb;
238 /* Bit N is set if register N is conditionally or unconditionally live. */
239 regset reg_live;
241 /* Bit N is set if register N is set this insn. */
242 regset new_set;
244 /* Element N is the next insn that uses (hard or pseudo) register N
245 within the current basic block; or zero, if there is no such insn. */
246 rtx *reg_next_use;
248 /* Contains a list of all the MEMs we are tracking for dead store
249 elimination. */
250 rtx mem_set_list;
252 /* If non-null, record the set of registers set unconditionally in the
253 basic block. */
254 regset local_set;
256 /* If non-null, record the set of registers set conditionally in the
257 basic block. */
258 regset cond_local_set;
260 #ifdef HAVE_conditional_execution
261 /* Indexed by register number, holds a reg_cond_life_info for each
262 register that is not unconditionally live or dead. */
263 splay_tree reg_cond_dead;
265 /* Bit N is set if register N is in an expression in reg_cond_dead. */
266 regset reg_cond_reg;
267 #endif
269 /* The length of mem_set_list. */
270 int mem_set_list_len;
272 /* Non-zero if the value of CC0 is live. */
273 int cc0_live;
275 /* Flags controling the set of information propagate_block collects. */
276 int flags;
279 /* Maximum length of pbi->mem_set_list before we start dropping
280 new elements on the floor. */
281 #define MAX_MEM_SET_LIST_LEN 100
283 /* Have print_rtl_and_abort give the same information that fancy_abort
284 does. */
285 #define print_rtl_and_abort() \
286 print_rtl_and_abort_fcn (__FILE__, __LINE__, __FUNCTION__)
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, rtx, rtx));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 #ifdef HAVE_conditional_execution
310 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
311 int, rtx));
312 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
313 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
314 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
315 int));
316 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
317 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
318 static rtx not_reg_cond PARAMS ((rtx));
319 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
320 #endif
321 #ifdef AUTO_INC_DEC
322 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
323 rtx, rtx, rtx, rtx, rtx));
324 static void find_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx));
326 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
327 rtx));
328 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
329 #endif
330 static void mark_used_reg PARAMS ((struct propagate_block_info *,
331 rtx, rtx, rtx));
332 static void mark_used_regs PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 void dump_flow_info PARAMS ((FILE *));
335 void debug_flow_info PARAMS ((void));
336 static void print_rtl_and_abort_fcn PARAMS ((const char *, int,
337 const char *))
338 ATTRIBUTE_NORETURN;
340 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
341 rtx));
342 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
345 rtx));
346 static void delete_dead_jumptables PARAMS ((void));
349 void
350 check_function_return_warnings ()
352 if (warn_missing_noreturn
353 && !TREE_THIS_VOLATILE (cfun->decl)
354 && EXIT_BLOCK_PTR->pred == NULL
355 && (lang_missing_noreturn_ok_p
356 && !lang_missing_noreturn_ok_p (cfun->decl)))
357 warning ("function might be possible candidate for attribute `noreturn'");
359 /* If we have a path to EXIT, then we do return. */
360 if (TREE_THIS_VOLATILE (cfun->decl)
361 && EXIT_BLOCK_PTR->pred != NULL)
362 warning ("`noreturn' function does return");
364 /* If the clobber_return_insn appears in some basic block, then we
365 do reach the end without returning a value. */
366 else if (warn_return_type
367 && cfun->x_clobber_return_insn != NULL
368 && EXIT_BLOCK_PTR->pred != NULL)
370 int max_uid = get_max_uid ();
372 /* If clobber_return_insn was excised by jump1, then renumber_insns
373 can make max_uid smaller than the number still recorded in our rtx.
374 That's fine, since this is a quick way of verifying that the insn
375 is no longer in the chain. */
376 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
378 /* Recompute insn->block mapping, since the initial mapping is
379 set before we delete unreachable blocks. */
380 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
381 warning ("control reaches end of non-void function");
386 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
387 note associated with the BLOCK. */
390 first_insn_after_basic_block_note (block)
391 basic_block block;
393 rtx insn;
395 /* Get the first instruction in the block. */
396 insn = block->head;
398 if (insn == NULL_RTX)
399 return NULL_RTX;
400 if (GET_CODE (insn) == CODE_LABEL)
401 insn = NEXT_INSN (insn);
402 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
403 abort ();
405 return NEXT_INSN (insn);
408 /* Perform data flow analysis.
409 F is the first insn of the function; FLAGS is a set of PROP_* flags
410 to be used in accumulating flow info. */
412 void
413 life_analysis (f, file, flags)
414 rtx f;
415 FILE *file;
416 int flags;
418 #ifdef ELIMINABLE_REGS
419 int i;
420 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
421 #endif
423 /* Record which registers will be eliminated. We use this in
424 mark_used_regs. */
426 CLEAR_HARD_REG_SET (elim_reg_set);
428 #ifdef ELIMINABLE_REGS
429 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
430 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
431 #else
432 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
433 #endif
435 if (! optimize)
436 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
438 /* The post-reload life analysis have (on a global basis) the same
439 registers live as was computed by reload itself. elimination
440 Otherwise offsets and such may be incorrect.
442 Reload will make some registers as live even though they do not
443 appear in the rtl.
445 We don't want to create new auto-incs after reload, since they
446 are unlikely to be useful and can cause problems with shared
447 stack slots. */
448 if (reload_completed)
449 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
451 /* We want alias analysis information for local dead store elimination. */
452 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
453 init_alias_analysis ();
455 /* Always remove no-op moves. Do this before other processing so
456 that we don't have to keep re-scanning them. */
457 delete_noop_moves (f);
459 /* Some targets can emit simpler epilogues if they know that sp was
460 not ever modified during the function. After reload, of course,
461 we've already emitted the epilogue so there's no sense searching. */
462 if (! reload_completed)
463 notice_stack_pointer_modification (f);
465 /* Allocate and zero out data structures that will record the
466 data from lifetime analysis. */
467 allocate_reg_life_data ();
468 allocate_bb_life_data ();
470 /* Find the set of registers live on function exit. */
471 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
473 /* "Update" life info from zero. It'd be nice to begin the
474 relaxation with just the exit and noreturn blocks, but that set
475 is not immediately handy. */
477 if (flags & PROP_REG_INFO)
478 memset (regs_ever_live, 0, sizeof (regs_ever_live));
479 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
481 /* Clean up. */
482 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
483 end_alias_analysis ();
485 if (file)
486 dump_flow_info (file);
488 free_basic_block_vars (1);
490 #ifdef ENABLE_CHECKING
492 rtx insn;
494 /* Search for any REG_LABEL notes which reference deleted labels. */
495 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
497 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
499 if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
500 abort ();
503 #endif
504 /* Removing dead insns should've made jumptables really dead. */
505 delete_dead_jumptables ();
508 /* A subroutine of verify_wide_reg, called through for_each_rtx.
509 Search for REGNO. If found, abort if it is not wider than word_mode. */
511 static int
512 verify_wide_reg_1 (px, pregno)
513 rtx *px;
514 void *pregno;
516 rtx x = *px;
517 unsigned int regno = *(int *) pregno;
519 if (GET_CODE (x) == REG && REGNO (x) == regno)
521 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
522 abort ();
523 return 1;
525 return 0;
528 /* A subroutine of verify_local_live_at_start. Search through insns
529 between HEAD and END looking for register REGNO. */
531 static void
532 verify_wide_reg (regno, head, end)
533 int regno;
534 rtx head, end;
536 while (1)
538 if (INSN_P (head)
539 && for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno))
540 return;
541 if (head == end)
542 break;
543 head = NEXT_INSN (head);
546 /* We didn't find the register at all. Something's way screwy. */
547 if (rtl_dump_file)
548 fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
549 print_rtl_and_abort ();
552 /* A subroutine of update_life_info. Verify that there are no untoward
553 changes in live_at_start during a local update. */
555 static void
556 verify_local_live_at_start (new_live_at_start, bb)
557 regset new_live_at_start;
558 basic_block bb;
560 if (reload_completed)
562 /* After reload, there are no pseudos, nor subregs of multi-word
563 registers. The regsets should exactly match. */
564 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
566 if (rtl_dump_file)
568 fprintf (rtl_dump_file,
569 "live_at_start mismatch in bb %d, aborting\n",
570 bb->index);
571 debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
572 debug_bitmap_file (rtl_dump_file, new_live_at_start);
574 print_rtl_and_abort ();
577 else
579 int i;
581 /* Find the set of changed registers. */
582 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
584 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
586 /* No registers should die. */
587 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
589 if (rtl_dump_file)
590 fprintf (rtl_dump_file,
591 "Register %d died unexpectedly in block %d\n", i,
592 bb->index);
593 print_rtl_and_abort ();
596 /* Verify that the now-live register is wider than word_mode. */
597 verify_wide_reg (i, bb->head, bb->end);
602 /* Updates life information starting with the basic blocks set in BLOCKS.
603 If BLOCKS is null, consider it to be the universal set.
605 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
606 we are only expecting local modifications to basic blocks. If we find
607 extra registers live at the beginning of a block, then we either killed
608 useful data, or we have a broken split that wants data not provided.
609 If we find registers removed from live_at_start, that means we have
610 a broken peephole that is killing a register it shouldn't.
612 ??? This is not true in one situation -- when a pre-reload splitter
613 generates subregs of a multi-word pseudo, current life analysis will
614 lose the kill. So we _can_ have a pseudo go live. How irritating.
616 Including PROP_REG_INFO does not properly refresh regs_ever_live
617 unless the caller resets it to zero. */
619 void
620 update_life_info (blocks, extent, prop_flags)
621 sbitmap blocks;
622 enum update_life_extent extent;
623 int prop_flags;
625 regset tmp;
626 regset_head tmp_head;
627 int i;
629 tmp = INITIALIZE_REG_SET (tmp_head);
631 /* Changes to the CFG are only allowed when
632 doing a global update for the entire CFG. */
633 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
634 && (extent == UPDATE_LIFE_LOCAL || blocks))
635 abort ();
637 /* For a global update, we go through the relaxation process again. */
638 if (extent != UPDATE_LIFE_LOCAL)
640 for ( ; ; )
642 int changed = 0;
644 calculate_global_regs_live (blocks, blocks,
645 prop_flags & (PROP_SCAN_DEAD_CODE
646 | PROP_ALLOW_CFG_CHANGES));
648 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
649 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
650 break;
652 /* Removing dead code may allow the CFG to be simplified which
653 in turn may allow for further dead code detection / removal. */
654 for (i = n_basic_blocks - 1; i >= 0; --i)
656 basic_block bb = BASIC_BLOCK (i);
658 COPY_REG_SET (tmp, bb->global_live_at_end);
659 changed |= propagate_block (bb, tmp, NULL, NULL,
660 prop_flags & (PROP_SCAN_DEAD_CODE
661 | PROP_KILL_DEAD_CODE));
664 if (! changed || ! cleanup_cfg (CLEANUP_EXPENSIVE))
665 break;
668 /* If asked, remove notes from the blocks we'll update. */
669 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
670 count_or_remove_death_notes (blocks, 1);
673 if (blocks)
675 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
677 basic_block bb = BASIC_BLOCK (i);
679 COPY_REG_SET (tmp, bb->global_live_at_end);
680 propagate_block (bb, tmp, NULL, NULL, prop_flags);
682 if (extent == UPDATE_LIFE_LOCAL)
683 verify_local_live_at_start (tmp, bb);
686 else
688 for (i = n_basic_blocks - 1; i >= 0; --i)
690 basic_block bb = BASIC_BLOCK (i);
692 COPY_REG_SET (tmp, bb->global_live_at_end);
693 propagate_block (bb, tmp, NULL, NULL, prop_flags);
695 if (extent == UPDATE_LIFE_LOCAL)
696 verify_local_live_at_start (tmp, bb);
700 FREE_REG_SET (tmp);
702 if (prop_flags & PROP_REG_INFO)
704 /* The only pseudos that are live at the beginning of the function
705 are those that were not set anywhere in the function. local-alloc
706 doesn't know how to handle these correctly, so mark them as not
707 local to any one basic block. */
708 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
709 FIRST_PSEUDO_REGISTER, i,
710 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
712 /* We have a problem with any pseudoreg that lives across the setjmp.
713 ANSI says that if a user variable does not change in value between
714 the setjmp and the longjmp, then the longjmp preserves it. This
715 includes longjmp from a place where the pseudo appears dead.
716 (In principle, the value still exists if it is in scope.)
717 If the pseudo goes in a hard reg, some other value may occupy
718 that hard reg where this pseudo is dead, thus clobbering the pseudo.
719 Conclusion: such a pseudo must not go in a hard reg. */
720 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
721 FIRST_PSEUDO_REGISTER, i,
723 if (regno_reg_rtx[i] != 0)
725 REG_LIVE_LENGTH (i) = -1;
726 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
732 /* Free the variables allocated by find_basic_blocks.
734 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
736 void
737 free_basic_block_vars (keep_head_end_p)
738 int keep_head_end_p;
740 if (! keep_head_end_p)
742 if (basic_block_info)
744 clear_edges ();
745 VARRAY_FREE (basic_block_info);
747 n_basic_blocks = 0;
749 ENTRY_BLOCK_PTR->aux = NULL;
750 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
751 EXIT_BLOCK_PTR->aux = NULL;
752 EXIT_BLOCK_PTR->global_live_at_start = NULL;
756 /* Delete any insns that copy a register to itself. */
758 void
759 delete_noop_moves (f)
760 rtx f ATTRIBUTE_UNUSED;
762 int i;
763 rtx insn, next;
764 basic_block bb;
766 for (i = 0; i < n_basic_blocks; i++)
768 bb = BASIC_BLOCK (i);
769 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
771 next = NEXT_INSN (insn);
772 if (INSN_P (insn) && noop_move_p (insn))
774 rtx note;
776 /* If we're about to remove the first insn of a libcall
777 then move the libcall note to the next real insn and
778 update the retval note. */
779 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
780 && XEXP (note, 0) != insn)
782 rtx new_libcall_insn = next_real_insn (insn);
783 rtx retval_note = find_reg_note (XEXP (note, 0),
784 REG_RETVAL, NULL_RTX);
785 REG_NOTES (new_libcall_insn)
786 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
787 REG_NOTES (new_libcall_insn));
788 XEXP (retval_note, 0) = new_libcall_insn;
791 /* Do not call delete_insn here since that may change
792 the basic block boundaries which upsets some callers. */
793 PUT_CODE (insn, NOTE);
794 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
795 NOTE_SOURCE_FILE (insn) = 0;
796 if (insn == bb->end)
797 purge_dead_edges (bb);
803 /* Delete any jump tables never referenced. We can't delete them at the
804 time of removing tablejump insn as they are referenced by the preceeding
805 insns computing the destination, so we delay deleting and garbagecollect
806 them once life information is computed. */
807 static void
808 delete_dead_jumptables ()
810 rtx insn, next;
811 for (insn = get_insns (); insn; insn = next)
813 next = NEXT_INSN (insn);
814 if (GET_CODE (insn) == CODE_LABEL
815 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
816 && GET_CODE (next) == JUMP_INSN
817 && (GET_CODE (PATTERN (next)) == ADDR_VEC
818 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
820 if (rtl_dump_file)
821 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
822 delete_insn (NEXT_INSN (insn));
823 delete_insn (insn);
824 next = NEXT_INSN (next);
829 /* Determine if the stack pointer is constant over the life of the function.
830 Only useful before prologues have been emitted. */
832 static void
833 notice_stack_pointer_modification_1 (x, pat, data)
834 rtx x;
835 rtx pat ATTRIBUTE_UNUSED;
836 void *data ATTRIBUTE_UNUSED;
838 if (x == stack_pointer_rtx
839 /* The stack pointer is only modified indirectly as the result
840 of a push until later in flow. See the comments in rtl.texi
841 regarding Embedded Side-Effects on Addresses. */
842 || (GET_CODE (x) == MEM
843 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
844 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
845 current_function_sp_is_unchanging = 0;
848 static void
849 notice_stack_pointer_modification (f)
850 rtx f;
852 rtx insn;
854 /* Assume that the stack pointer is unchanging if alloca hasn't
855 been used. */
856 current_function_sp_is_unchanging = !current_function_calls_alloca;
857 if (! current_function_sp_is_unchanging)
858 return;
860 for (insn = f; insn; insn = NEXT_INSN (insn))
862 if (INSN_P (insn))
864 /* Check if insn modifies the stack pointer. */
865 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
866 NULL);
867 if (! current_function_sp_is_unchanging)
868 return;
873 /* Mark a register in SET. Hard registers in large modes get all
874 of their component registers set as well. */
876 static void
877 mark_reg (reg, xset)
878 rtx reg;
879 void *xset;
881 regset set = (regset) xset;
882 int regno = REGNO (reg);
884 if (GET_MODE (reg) == BLKmode)
885 abort ();
887 SET_REGNO_REG_SET (set, regno);
888 if (regno < FIRST_PSEUDO_REGISTER)
890 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
891 while (--n > 0)
892 SET_REGNO_REG_SET (set, regno + n);
896 /* Mark those regs which are needed at the end of the function as live
897 at the end of the last basic block. */
899 static void
900 mark_regs_live_at_end (set)
901 regset set;
903 unsigned int i;
905 /* If exiting needs the right stack value, consider the stack pointer
906 live at the end of the function. */
907 if ((HAVE_epilogue && reload_completed)
908 || ! EXIT_IGNORE_STACK
909 || (! FRAME_POINTER_REQUIRED
910 && ! current_function_calls_alloca
911 && flag_omit_frame_pointer)
912 || current_function_sp_is_unchanging)
914 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
917 /* Mark the frame pointer if needed at the end of the function. If
918 we end up eliminating it, it will be removed from the live list
919 of each basic block by reload. */
921 if (! reload_completed || frame_pointer_needed)
923 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
924 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
925 /* If they are different, also mark the hard frame pointer as live. */
926 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
927 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
928 #endif
931 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
932 /* Many architectures have a GP register even without flag_pic.
933 Assume the pic register is not in use, or will be handled by
934 other means, if it is not fixed. */
935 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
936 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
937 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
938 #endif
940 /* Mark all global registers, and all registers used by the epilogue
941 as being live at the end of the function since they may be
942 referenced by our caller. */
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
944 if (global_regs[i] || EPILOGUE_USES (i))
945 SET_REGNO_REG_SET (set, i);
947 if (HAVE_epilogue && reload_completed)
949 /* Mark all call-saved registers that we actually used. */
950 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
951 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
952 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
953 SET_REGNO_REG_SET (set, i);
956 #ifdef EH_RETURN_DATA_REGNO
957 /* Mark the registers that will contain data for the handler. */
958 if (reload_completed && current_function_calls_eh_return)
959 for (i = 0; ; ++i)
961 unsigned regno = EH_RETURN_DATA_REGNO(i);
962 if (regno == INVALID_REGNUM)
963 break;
964 SET_REGNO_REG_SET (set, regno);
966 #endif
967 #ifdef EH_RETURN_STACKADJ_RTX
968 if ((! HAVE_epilogue || ! reload_completed)
969 && current_function_calls_eh_return)
971 rtx tmp = EH_RETURN_STACKADJ_RTX;
972 if (tmp && REG_P (tmp))
973 mark_reg (tmp, set);
975 #endif
976 #ifdef EH_RETURN_HANDLER_RTX
977 if ((! HAVE_epilogue || ! reload_completed)
978 && current_function_calls_eh_return)
980 rtx tmp = EH_RETURN_HANDLER_RTX;
981 if (tmp && REG_P (tmp))
982 mark_reg (tmp, set);
984 #endif
986 /* Mark function return value. */
987 diddle_return_value (mark_reg, set);
990 /* Callback function for for_each_successor_phi. DATA is a regset.
991 Sets the SRC_REGNO, the regno of the phi alternative for phi node
992 INSN, in the regset. */
994 static int
995 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
996 rtx insn ATTRIBUTE_UNUSED;
997 int dest_regno ATTRIBUTE_UNUSED;
998 int src_regno;
999 void *data;
1001 regset live = (regset) data;
1002 SET_REGNO_REG_SET (live, src_regno);
1003 return 0;
1006 /* Propagate global life info around the graph of basic blocks. Begin
1007 considering blocks with their corresponding bit set in BLOCKS_IN.
1008 If BLOCKS_IN is null, consider it the universal set.
1010 BLOCKS_OUT is set for every block that was changed. */
1012 static void
1013 calculate_global_regs_live (blocks_in, blocks_out, flags)
1014 sbitmap blocks_in, blocks_out;
1015 int flags;
1017 basic_block *queue, *qhead, *qtail, *qend;
1018 regset tmp, new_live_at_end, call_used;
1019 regset_head tmp_head, call_used_head;
1020 regset_head new_live_at_end_head;
1021 int i;
1023 tmp = INITIALIZE_REG_SET (tmp_head);
1024 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1025 call_used = INITIALIZE_REG_SET (call_used_head);
1027 /* Inconveniently, this is only redily available in hard reg set form. */
1028 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1029 if (call_used_regs[i])
1030 SET_REGNO_REG_SET (call_used, i);
1032 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1033 because the `head == tail' style test for an empty queue doesn't
1034 work with a full queue. */
1035 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1036 qtail = queue;
1037 qhead = qend = queue + n_basic_blocks + 2;
1039 /* Queue the blocks set in the initial mask. Do this in reverse block
1040 number order so that we are more likely for the first round to do
1041 useful work. We use AUX non-null to flag that the block is queued. */
1042 if (blocks_in)
1044 /* Clear out the garbage that might be hanging out in bb->aux. */
1045 for (i = n_basic_blocks - 1; i >= 0; --i)
1046 BASIC_BLOCK (i)->aux = NULL;
1048 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
1050 basic_block bb = BASIC_BLOCK (i);
1051 *--qhead = bb;
1052 bb->aux = bb;
1055 else
1057 for (i = 0; i < n_basic_blocks; ++i)
1059 basic_block bb = BASIC_BLOCK (i);
1060 *--qhead = bb;
1061 bb->aux = bb;
1065 if (blocks_out)
1066 sbitmap_zero (blocks_out);
1068 /* We work through the queue until there are no more blocks. What
1069 is live at the end of this block is precisely the union of what
1070 is live at the beginning of all its successors. So, we set its
1071 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1072 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1073 this block by walking through the instructions in this block in
1074 reverse order and updating as we go. If that changed
1075 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1076 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1078 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1079 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1080 must either be live at the end of the block, or used within the
1081 block. In the latter case, it will certainly never disappear
1082 from GLOBAL_LIVE_AT_START. In the former case, the register
1083 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1084 for one of the successor blocks. By induction, that cannot
1085 occur. */
1086 while (qhead != qtail)
1088 int rescan, changed;
1089 basic_block bb;
1090 edge e;
1092 bb = *qhead++;
1093 if (qhead == qend)
1094 qhead = queue;
1095 bb->aux = NULL;
1097 /* Begin by propagating live_at_start from the successor blocks. */
1098 CLEAR_REG_SET (new_live_at_end);
1099 for (e = bb->succ; e; e = e->succ_next)
1101 basic_block sb = e->dest;
1103 /* Call-clobbered registers die across exception and call edges. */
1104 /* ??? Abnormal call edges ignored for the moment, as this gets
1105 confused by sibling call edges, which crashes reg-stack. */
1106 if (e->flags & EDGE_EH)
1108 bitmap_operation (tmp, sb->global_live_at_start,
1109 call_used, BITMAP_AND_COMPL);
1110 IOR_REG_SET (new_live_at_end, tmp);
1112 else
1113 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1116 /* The all-important stack pointer must always be live. */
1117 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1119 /* Before reload, there are a few registers that must be forced
1120 live everywhere -- which might not already be the case for
1121 blocks within infinite loops. */
1122 if (! reload_completed)
1124 /* Any reference to any pseudo before reload is a potential
1125 reference of the frame pointer. */
1126 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1128 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1129 /* Pseudos with argument area equivalences may require
1130 reloading via the argument pointer. */
1131 if (fixed_regs[ARG_POINTER_REGNUM])
1132 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1133 #endif
1135 /* Any constant, or pseudo with constant equivalences, may
1136 require reloading from memory using the pic register. */
1137 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1138 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1139 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1142 /* Regs used in phi nodes are not included in
1143 global_live_at_start, since they are live only along a
1144 particular edge. Set those regs that are live because of a
1145 phi node alternative corresponding to this particular block. */
1146 if (in_ssa_form)
1147 for_each_successor_phi (bb, &set_phi_alternative_reg,
1148 new_live_at_end);
1150 if (bb == ENTRY_BLOCK_PTR)
1152 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1153 continue;
1156 /* On our first pass through this block, we'll go ahead and continue.
1157 Recognize first pass by local_set NULL. On subsequent passes, we
1158 get to skip out early if live_at_end wouldn't have changed. */
1160 if (bb->local_set == NULL)
1162 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1163 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1164 rescan = 1;
1166 else
1168 /* If any bits were removed from live_at_end, we'll have to
1169 rescan the block. This wouldn't be necessary if we had
1170 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1171 local_live is really dependent on live_at_end. */
1172 CLEAR_REG_SET (tmp);
1173 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1174 new_live_at_end, BITMAP_AND_COMPL);
1176 if (! rescan)
1178 /* If any of the registers in the new live_at_end set are
1179 conditionally set in this basic block, we must rescan.
1180 This is because conditional lifetimes at the end of the
1181 block do not just take the live_at_end set into account,
1182 but also the liveness at the start of each successor
1183 block. We can miss changes in those sets if we only
1184 compare the new live_at_end against the previous one. */
1185 CLEAR_REG_SET (tmp);
1186 rescan = bitmap_operation (tmp, new_live_at_end,
1187 bb->cond_local_set, BITMAP_AND);
1190 if (! rescan)
1192 /* Find the set of changed bits. Take this opportunity
1193 to notice that this set is empty and early out. */
1194 CLEAR_REG_SET (tmp);
1195 changed = bitmap_operation (tmp, bb->global_live_at_end,
1196 new_live_at_end, BITMAP_XOR);
1197 if (! changed)
1198 continue;
1200 /* If any of the changed bits overlap with local_set,
1201 we'll have to rescan the block. Detect overlap by
1202 the AND with ~local_set turning off bits. */
1203 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1204 BITMAP_AND_COMPL);
1208 /* Let our caller know that BB changed enough to require its
1209 death notes updated. */
1210 if (blocks_out)
1211 SET_BIT (blocks_out, bb->index);
1213 if (! rescan)
1215 /* Add to live_at_start the set of all registers in
1216 new_live_at_end that aren't in the old live_at_end. */
1218 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1219 BITMAP_AND_COMPL);
1220 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1222 changed = bitmap_operation (bb->global_live_at_start,
1223 bb->global_live_at_start,
1224 tmp, BITMAP_IOR);
1225 if (! changed)
1226 continue;
1228 else
1230 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1232 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1233 into live_at_start. */
1234 propagate_block (bb, new_live_at_end, bb->local_set,
1235 bb->cond_local_set, flags);
1237 /* If live_at start didn't change, no need to go farther. */
1238 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1239 continue;
1241 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1244 /* Queue all predecessors of BB so that we may re-examine
1245 their live_at_end. */
1246 for (e = bb->pred; e; e = e->pred_next)
1248 basic_block pb = e->src;
1249 if (pb->aux == NULL)
1251 *qtail++ = pb;
1252 if (qtail == qend)
1253 qtail = queue;
1254 pb->aux = pb;
1259 FREE_REG_SET (tmp);
1260 FREE_REG_SET (new_live_at_end);
1261 FREE_REG_SET (call_used);
1263 if (blocks_out)
1265 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1267 basic_block bb = BASIC_BLOCK (i);
1268 FREE_REG_SET (bb->local_set);
1269 FREE_REG_SET (bb->cond_local_set);
1272 else
1274 for (i = n_basic_blocks - 1; i >= 0; --i)
1276 basic_block bb = BASIC_BLOCK (i);
1277 FREE_REG_SET (bb->local_set);
1278 FREE_REG_SET (bb->cond_local_set);
1282 free (queue);
1285 /* Subroutines of life analysis. */
1287 /* Allocate the permanent data structures that represent the results
1288 of life analysis. Not static since used also for stupid life analysis. */
1290 void
1291 allocate_bb_life_data ()
1293 int i;
1295 for (i = 0; i < n_basic_blocks; i++)
1297 basic_block bb = BASIC_BLOCK (i);
1299 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1300 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1303 ENTRY_BLOCK_PTR->global_live_at_end
1304 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1305 EXIT_BLOCK_PTR->global_live_at_start
1306 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1308 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1311 void
1312 allocate_reg_life_data ()
1314 int i;
1316 max_regno = max_reg_num ();
1318 /* Recalculate the register space, in case it has grown. Old style
1319 vector oriented regsets would set regset_{size,bytes} here also. */
1320 allocate_reg_info (max_regno, FALSE, FALSE);
1322 /* Reset all the data we'll collect in propagate_block and its
1323 subroutines. */
1324 for (i = 0; i < max_regno; i++)
1326 REG_N_SETS (i) = 0;
1327 REG_N_REFS (i) = 0;
1328 REG_N_DEATHS (i) = 0;
1329 REG_N_CALLS_CROSSED (i) = 0;
1330 REG_LIVE_LENGTH (i) = 0;
1331 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1335 /* Delete dead instructions for propagate_block. */
1337 static void
1338 propagate_block_delete_insn (bb, insn)
1339 basic_block bb;
1340 rtx insn;
1342 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1343 bool purge = false;
1345 /* If the insn referred to a label, and that label was attached to
1346 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1347 pretty much mandatory to delete it, because the ADDR_VEC may be
1348 referencing labels that no longer exist.
1350 INSN may reference a deleted label, particularly when a jump
1351 table has been optimized into a direct jump. There's no
1352 real good way to fix up the reference to the deleted label
1353 when the label is deleted, so we just allow it here.
1355 After dead code elimination is complete, we do search for
1356 any REG_LABEL notes which reference deleted labels as a
1357 sanity check. */
1359 if (inote && GET_CODE (inote) == CODE_LABEL)
1361 rtx label = XEXP (inote, 0);
1362 rtx next;
1364 /* The label may be forced if it has been put in the constant
1365 pool. If that is the only use we must discard the table
1366 jump following it, but not the label itself. */
1367 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1368 && (next = next_nonnote_insn (label)) != NULL
1369 && GET_CODE (next) == JUMP_INSN
1370 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1371 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1373 rtx pat = PATTERN (next);
1374 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1375 int len = XVECLEN (pat, diff_vec_p);
1376 int i;
1378 for (i = 0; i < len; i++)
1379 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1381 delete_insn (next);
1385 if (bb->end == insn)
1386 purge = true;
1387 delete_insn (insn);
1388 if (purge)
1389 purge_dead_edges (bb);
1392 /* Delete dead libcalls for propagate_block. Return the insn
1393 before the libcall. */
1395 static rtx
1396 propagate_block_delete_libcall ( insn, note)
1397 rtx insn, note;
1399 rtx first = XEXP (note, 0);
1400 rtx before = PREV_INSN (first);
1402 delete_insn_chain (first, insn);
1403 return before;
1406 /* Update the life-status of regs for one insn. Return the previous insn. */
1409 propagate_one_insn (pbi, insn)
1410 struct propagate_block_info *pbi;
1411 rtx insn;
1413 rtx prev = PREV_INSN (insn);
1414 int flags = pbi->flags;
1415 int insn_is_dead = 0;
1416 int libcall_is_dead = 0;
1417 rtx note;
1418 int i;
1420 if (! INSN_P (insn))
1421 return prev;
1423 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1424 if (flags & PROP_SCAN_DEAD_CODE)
1426 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1427 libcall_is_dead = (insn_is_dead && note != 0
1428 && libcall_dead_p (pbi, note, insn));
1431 /* If an instruction consists of just dead store(s) on final pass,
1432 delete it. */
1433 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1435 /* If we're trying to delete a prologue or epilogue instruction
1436 that isn't flagged as possibly being dead, something is wrong.
1437 But if we are keeping the stack pointer depressed, we might well
1438 be deleting insns that are used to compute the amount to update
1439 it by, so they are fine. */
1440 if (reload_completed
1441 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1442 && (TYPE_RETURNS_STACK_DEPRESSED
1443 (TREE_TYPE (current_function_decl))))
1444 && (((HAVE_epilogue || HAVE_prologue)
1445 && prologue_epilogue_contains (insn))
1446 || (HAVE_sibcall_epilogue
1447 && sibcall_epilogue_contains (insn)))
1448 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1449 abort ();
1451 /* Record sets. Do this even for dead instructions, since they
1452 would have killed the values if they hadn't been deleted. */
1453 mark_set_regs (pbi, PATTERN (insn), insn);
1455 /* CC0 is now known to be dead. Either this insn used it,
1456 in which case it doesn't anymore, or clobbered it,
1457 so the next insn can't use it. */
1458 pbi->cc0_live = 0;
1460 if (libcall_is_dead)
1461 prev = propagate_block_delete_libcall ( insn, note);
1462 else
1463 propagate_block_delete_insn (pbi->bb, insn);
1465 return prev;
1468 /* See if this is an increment or decrement that can be merged into
1469 a following memory address. */
1470 #ifdef AUTO_INC_DEC
1472 rtx x = single_set (insn);
1474 /* Does this instruction increment or decrement a register? */
1475 if ((flags & PROP_AUTOINC)
1476 && x != 0
1477 && GET_CODE (SET_DEST (x)) == REG
1478 && (GET_CODE (SET_SRC (x)) == PLUS
1479 || GET_CODE (SET_SRC (x)) == MINUS)
1480 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1481 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1482 /* Ok, look for a following memory ref we can combine with.
1483 If one is found, change the memory ref to a PRE_INC
1484 or PRE_DEC, cancel this insn, and return 1.
1485 Return 0 if nothing has been done. */
1486 && try_pre_increment_1 (pbi, insn))
1487 return prev;
1489 #endif /* AUTO_INC_DEC */
1491 CLEAR_REG_SET (pbi->new_set);
1493 /* If this is not the final pass, and this insn is copying the value of
1494 a library call and it's dead, don't scan the insns that perform the
1495 library call, so that the call's arguments are not marked live. */
1496 if (libcall_is_dead)
1498 /* Record the death of the dest reg. */
1499 mark_set_regs (pbi, PATTERN (insn), insn);
1501 insn = XEXP (note, 0);
1502 return PREV_INSN (insn);
1504 else if (GET_CODE (PATTERN (insn)) == SET
1505 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1506 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1507 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1508 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1509 /* We have an insn to pop a constant amount off the stack.
1510 (Such insns use PLUS regardless of the direction of the stack,
1511 and any insn to adjust the stack by a constant is always a pop.)
1512 These insns, if not dead stores, have no effect on life. */
1514 else
1516 /* Any regs live at the time of a call instruction must not go
1517 in a register clobbered by calls. Find all regs now live and
1518 record this for them. */
1520 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1521 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1522 { REG_N_CALLS_CROSSED (i)++; });
1524 /* Record sets. Do this even for dead instructions, since they
1525 would have killed the values if they hadn't been deleted. */
1526 mark_set_regs (pbi, PATTERN (insn), insn);
1528 if (GET_CODE (insn) == CALL_INSN)
1530 int i;
1531 rtx note, cond;
1533 cond = NULL_RTX;
1534 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1535 cond = COND_EXEC_TEST (PATTERN (insn));
1537 /* Non-constant calls clobber memory. */
1538 if (! CONST_OR_PURE_CALL_P (insn))
1540 free_EXPR_LIST_list (&pbi->mem_set_list);
1541 pbi->mem_set_list_len = 0;
1544 /* There may be extra registers to be clobbered. */
1545 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1546 note;
1547 note = XEXP (note, 1))
1548 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1549 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1550 cond, insn, pbi->flags);
1552 /* Calls change all call-used and global registers. */
1553 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1554 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1556 /* We do not want REG_UNUSED notes for these registers. */
1557 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1558 cond, insn,
1559 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1563 /* If an insn doesn't use CC0, it becomes dead since we assume
1564 that every insn clobbers it. So show it dead here;
1565 mark_used_regs will set it live if it is referenced. */
1566 pbi->cc0_live = 0;
1568 /* Record uses. */
1569 if (! insn_is_dead)
1570 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1572 /* Sometimes we may have inserted something before INSN (such as a move)
1573 when we make an auto-inc. So ensure we will scan those insns. */
1574 #ifdef AUTO_INC_DEC
1575 prev = PREV_INSN (insn);
1576 #endif
1578 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1580 int i;
1581 rtx note, cond;
1583 cond = NULL_RTX;
1584 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1585 cond = COND_EXEC_TEST (PATTERN (insn));
1587 /* Calls use their arguments. */
1588 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1589 note;
1590 note = XEXP (note, 1))
1591 if (GET_CODE (XEXP (note, 0)) == USE)
1592 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1593 cond, insn);
1595 /* The stack ptr is used (honorarily) by a CALL insn. */
1596 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1598 /* Calls may also reference any of the global registers,
1599 so they are made live. */
1600 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1601 if (global_regs[i])
1602 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1603 cond, insn);
1607 /* On final pass, update counts of how many insns in which each reg
1608 is live. */
1609 if (flags & PROP_REG_INFO)
1610 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1611 { REG_LIVE_LENGTH (i)++; });
1613 return prev;
1616 /* Initialize a propagate_block_info struct for public consumption.
1617 Note that the structure itself is opaque to this file, but that
1618 the user can use the regsets provided here. */
1620 struct propagate_block_info *
1621 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1622 basic_block bb;
1623 regset live, local_set, cond_local_set;
1624 int flags;
1626 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1628 pbi->bb = bb;
1629 pbi->reg_live = live;
1630 pbi->mem_set_list = NULL_RTX;
1631 pbi->mem_set_list_len = 0;
1632 pbi->local_set = local_set;
1633 pbi->cond_local_set = cond_local_set;
1634 pbi->cc0_live = 0;
1635 pbi->flags = flags;
1637 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1638 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1639 else
1640 pbi->reg_next_use = NULL;
1642 pbi->new_set = BITMAP_XMALLOC ();
1644 #ifdef HAVE_conditional_execution
1645 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1646 free_reg_cond_life_info);
1647 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1649 /* If this block ends in a conditional branch, for each register live
1650 from one side of the branch and not the other, record the register
1651 as conditionally dead. */
1652 if (GET_CODE (bb->end) == JUMP_INSN
1653 && any_condjump_p (bb->end))
1655 regset_head diff_head;
1656 regset diff = INITIALIZE_REG_SET (diff_head);
1657 basic_block bb_true, bb_false;
1658 rtx cond_true, cond_false, set_src;
1659 int i;
1661 /* Identify the successor blocks. */
1662 bb_true = bb->succ->dest;
1663 if (bb->succ->succ_next != NULL)
1665 bb_false = bb->succ->succ_next->dest;
1667 if (bb->succ->flags & EDGE_FALLTHRU)
1669 basic_block t = bb_false;
1670 bb_false = bb_true;
1671 bb_true = t;
1673 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1674 abort ();
1676 else
1678 /* This can happen with a conditional jump to the next insn. */
1679 if (JUMP_LABEL (bb->end) != bb_true->head)
1680 abort ();
1682 /* Simplest way to do nothing. */
1683 bb_false = bb_true;
1686 /* Extract the condition from the branch. */
1687 set_src = SET_SRC (pc_set (bb->end));
1688 cond_true = XEXP (set_src, 0);
1689 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1690 GET_MODE (cond_true), XEXP (cond_true, 0),
1691 XEXP (cond_true, 1));
1692 if (GET_CODE (XEXP (set_src, 1)) == PC)
1694 rtx t = cond_false;
1695 cond_false = cond_true;
1696 cond_true = t;
1699 /* Compute which register lead different lives in the successors. */
1700 if (bitmap_operation (diff, bb_true->global_live_at_start,
1701 bb_false->global_live_at_start, BITMAP_XOR))
1703 rtx reg = XEXP (cond_true, 0);
1705 if (GET_CODE (reg) == SUBREG)
1706 reg = SUBREG_REG (reg);
1708 if (GET_CODE (reg) != REG)
1709 abort ();
1711 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1713 /* For each such register, mark it conditionally dead. */
1714 EXECUTE_IF_SET_IN_REG_SET
1715 (diff, 0, i,
1717 struct reg_cond_life_info *rcli;
1718 rtx cond;
1720 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1722 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1723 cond = cond_false;
1724 else
1725 cond = cond_true;
1726 rcli->condition = cond;
1727 rcli->stores = const0_rtx;
1728 rcli->orig_condition = cond;
1730 splay_tree_insert (pbi->reg_cond_dead, i,
1731 (splay_tree_value) rcli);
1735 FREE_REG_SET (diff);
1737 #endif
1739 /* If this block has no successors, any stores to the frame that aren't
1740 used later in the block are dead. So make a pass over the block
1741 recording any such that are made and show them dead at the end. We do
1742 a very conservative and simple job here. */
1743 if (optimize
1744 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1745 && (TYPE_RETURNS_STACK_DEPRESSED
1746 (TREE_TYPE (current_function_decl))))
1747 && (flags & PROP_SCAN_DEAD_CODE)
1748 && (bb->succ == NULL
1749 || (bb->succ->succ_next == NULL
1750 && bb->succ->dest == EXIT_BLOCK_PTR
1751 && ! current_function_calls_eh_return)))
1753 rtx insn, set;
1754 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1755 if (GET_CODE (insn) == INSN
1756 && (set = single_set (insn))
1757 && GET_CODE (SET_DEST (set)) == MEM)
1759 rtx mem = SET_DEST (set);
1760 rtx canon_mem = canon_rtx (mem);
1762 /* This optimization is performed by faking a store to the
1763 memory at the end of the block. This doesn't work for
1764 unchanging memories because multiple stores to unchanging
1765 memory is illegal and alias analysis doesn't consider it. */
1766 if (RTX_UNCHANGING_P (canon_mem))
1767 continue;
1769 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1770 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1771 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1772 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1773 add_to_mem_set_list (pbi, canon_mem);
1777 return pbi;
1780 /* Release a propagate_block_info struct. */
1782 void
1783 free_propagate_block_info (pbi)
1784 struct propagate_block_info *pbi;
1786 free_EXPR_LIST_list (&pbi->mem_set_list);
1788 BITMAP_XFREE (pbi->new_set);
1790 #ifdef HAVE_conditional_execution
1791 splay_tree_delete (pbi->reg_cond_dead);
1792 BITMAP_XFREE (pbi->reg_cond_reg);
1793 #endif
1795 if (pbi->reg_next_use)
1796 free (pbi->reg_next_use);
1798 free (pbi);
1801 /* Compute the registers live at the beginning of a basic block BB from
1802 those live at the end.
1804 When called, REG_LIVE contains those live at the end. On return, it
1805 contains those live at the beginning.
1807 LOCAL_SET, if non-null, will be set with all registers killed
1808 unconditionally by this basic block.
1809 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1810 killed conditionally by this basic block. If there is any unconditional
1811 set of a register, then the corresponding bit will be set in LOCAL_SET
1812 and cleared in COND_LOCAL_SET.
1813 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1814 case, the resulting set will be equal to the union of the two sets that
1815 would otherwise be computed.
1817 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
1820 propagate_block (bb, live, local_set, cond_local_set, flags)
1821 basic_block bb;
1822 regset live;
1823 regset local_set;
1824 regset cond_local_set;
1825 int flags;
1827 struct propagate_block_info *pbi;
1828 rtx insn, prev;
1829 int changed;
1831 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
1833 if (flags & PROP_REG_INFO)
1835 int i;
1837 /* Process the regs live at the end of the block.
1838 Mark them as not local to any one basic block. */
1839 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
1840 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
1843 /* Scan the block an insn at a time from end to beginning. */
1845 changed = 0;
1846 for (insn = bb->end;; insn = prev)
1848 /* If this is a call to `setjmp' et al, warn if any
1849 non-volatile datum is live. */
1850 if ((flags & PROP_REG_INFO)
1851 && GET_CODE (insn) == CALL_INSN
1852 && find_reg_note (insn, REG_SETJMP, NULL))
1853 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
1855 prev = propagate_one_insn (pbi, insn);
1856 changed |= NEXT_INSN (prev) != insn;
1858 if (insn == bb->head)
1859 break;
1862 free_propagate_block_info (pbi);
1864 return changed;
1867 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1868 (SET expressions whose destinations are registers dead after the insn).
1869 NEEDED is the regset that says which regs are alive after the insn.
1871 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
1873 If X is the entire body of an insn, NOTES contains the reg notes
1874 pertaining to the insn. */
1876 static int
1877 insn_dead_p (pbi, x, call_ok, notes)
1878 struct propagate_block_info *pbi;
1879 rtx x;
1880 int call_ok;
1881 rtx notes ATTRIBUTE_UNUSED;
1883 enum rtx_code code = GET_CODE (x);
1885 #ifdef AUTO_INC_DEC
1886 /* If flow is invoked after reload, we must take existing AUTO_INC
1887 expresions into account. */
1888 if (reload_completed)
1890 for (; notes; notes = XEXP (notes, 1))
1892 if (REG_NOTE_KIND (notes) == REG_INC)
1894 int regno = REGNO (XEXP (notes, 0));
1896 /* Don't delete insns to set global regs. */
1897 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1898 || REGNO_REG_SET_P (pbi->reg_live, regno))
1899 return 0;
1903 #endif
1905 /* If setting something that's a reg or part of one,
1906 see if that register's altered value will be live. */
1908 if (code == SET)
1910 rtx r = SET_DEST (x);
1912 #ifdef HAVE_cc0
1913 if (GET_CODE (r) == CC0)
1914 return ! pbi->cc0_live;
1915 #endif
1917 /* A SET that is a subroutine call cannot be dead. */
1918 if (GET_CODE (SET_SRC (x)) == CALL)
1920 if (! call_ok)
1921 return 0;
1924 /* Don't eliminate loads from volatile memory or volatile asms. */
1925 else if (volatile_refs_p (SET_SRC (x)))
1926 return 0;
1928 if (GET_CODE (r) == MEM)
1930 rtx temp, canon_r;
1932 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
1933 return 0;
1935 canon_r = canon_rtx (r);
1937 /* Walk the set of memory locations we are currently tracking
1938 and see if one is an identical match to this memory location.
1939 If so, this memory write is dead (remember, we're walking
1940 backwards from the end of the block to the start). Since
1941 rtx_equal_p does not check the alias set or flags, we also
1942 must have the potential for them to conflict (anti_dependence). */
1943 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
1944 if (anti_dependence (r, XEXP (temp, 0)))
1946 rtx mem = XEXP (temp, 0);
1948 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
1949 && (GET_MODE_SIZE (GET_MODE (canon_r))
1950 <= GET_MODE_SIZE (GET_MODE (mem))))
1951 return 1;
1953 #ifdef AUTO_INC_DEC
1954 /* Check if memory reference matches an auto increment. Only
1955 post increment/decrement or modify are valid. */
1956 if (GET_MODE (mem) == GET_MODE (r)
1957 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
1958 || GET_CODE (XEXP (mem, 0)) == POST_INC
1959 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
1960 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
1961 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
1962 return 1;
1963 #endif
1966 else
1968 while (GET_CODE (r) == SUBREG
1969 || GET_CODE (r) == STRICT_LOW_PART
1970 || GET_CODE (r) == ZERO_EXTRACT)
1971 r = XEXP (r, 0);
1973 if (GET_CODE (r) == REG)
1975 int regno = REGNO (r);
1977 /* Obvious. */
1978 if (REGNO_REG_SET_P (pbi->reg_live, regno))
1979 return 0;
1981 /* If this is a hard register, verify that subsequent
1982 words are not needed. */
1983 if (regno < FIRST_PSEUDO_REGISTER)
1985 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1987 while (--n > 0)
1988 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
1989 return 0;
1992 /* Don't delete insns to set global regs. */
1993 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1994 return 0;
1996 /* Make sure insns to set the stack pointer aren't deleted. */
1997 if (regno == STACK_POINTER_REGNUM)
1998 return 0;
2000 /* ??? These bits might be redundant with the force live bits
2001 in calculate_global_regs_live. We would delete from
2002 sequential sets; whether this actually affects real code
2003 for anything but the stack pointer I don't know. */
2004 /* Make sure insns to set the frame pointer aren't deleted. */
2005 if (regno == FRAME_POINTER_REGNUM
2006 && (! reload_completed || frame_pointer_needed))
2007 return 0;
2008 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2009 if (regno == HARD_FRAME_POINTER_REGNUM
2010 && (! reload_completed || frame_pointer_needed))
2011 return 0;
2012 #endif
2014 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2015 /* Make sure insns to set arg pointer are never deleted
2016 (if the arg pointer isn't fixed, there will be a USE
2017 for it, so we can treat it normally). */
2018 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2019 return 0;
2020 #endif
2022 /* Otherwise, the set is dead. */
2023 return 1;
2028 /* If performing several activities, insn is dead if each activity
2029 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2030 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2031 worth keeping. */
2032 else if (code == PARALLEL)
2034 int i = XVECLEN (x, 0);
2036 for (i--; i >= 0; i--)
2037 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2038 && GET_CODE (XVECEXP (x, 0, i)) != USE
2039 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2040 return 0;
2042 return 1;
2045 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2046 is not necessarily true for hard registers. */
2047 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2048 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2049 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2050 return 1;
2052 /* We do not check other CLOBBER or USE here. An insn consisting of just
2053 a CLOBBER or just a USE should not be deleted. */
2054 return 0;
2057 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2058 return 1 if the entire library call is dead.
2059 This is true if INSN copies a register (hard or pseudo)
2060 and if the hard return reg of the call insn is dead.
2061 (The caller should have tested the destination of the SET inside
2062 INSN already for death.)
2064 If this insn doesn't just copy a register, then we don't
2065 have an ordinary libcall. In that case, cse could not have
2066 managed to substitute the source for the dest later on,
2067 so we can assume the libcall is dead.
2069 PBI is the block info giving pseudoregs live before this insn.
2070 NOTE is the REG_RETVAL note of the insn. */
2072 static int
2073 libcall_dead_p (pbi, note, insn)
2074 struct propagate_block_info *pbi;
2075 rtx note;
2076 rtx insn;
2078 rtx x = single_set (insn);
2080 if (x)
2082 rtx r = SET_SRC (x);
2084 if (GET_CODE (r) == REG)
2086 rtx call = XEXP (note, 0);
2087 rtx call_pat;
2088 int i;
2090 /* Find the call insn. */
2091 while (call != insn && GET_CODE (call) != CALL_INSN)
2092 call = NEXT_INSN (call);
2094 /* If there is none, do nothing special,
2095 since ordinary death handling can understand these insns. */
2096 if (call == insn)
2097 return 0;
2099 /* See if the hard reg holding the value is dead.
2100 If this is a PARALLEL, find the call within it. */
2101 call_pat = PATTERN (call);
2102 if (GET_CODE (call_pat) == PARALLEL)
2104 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2105 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2106 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2107 break;
2109 /* This may be a library call that is returning a value
2110 via invisible pointer. Do nothing special, since
2111 ordinary death handling can understand these insns. */
2112 if (i < 0)
2113 return 0;
2115 call_pat = XVECEXP (call_pat, 0, i);
2118 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2121 return 1;
2124 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2125 live at function entry. Don't count global register variables, variables
2126 in registers that can be used for function arg passing, or variables in
2127 fixed hard registers. */
2130 regno_uninitialized (regno)
2131 int regno;
2133 if (n_basic_blocks == 0
2134 || (regno < FIRST_PSEUDO_REGISTER
2135 && (global_regs[regno]
2136 || fixed_regs[regno]
2137 || FUNCTION_ARG_REGNO_P (regno))))
2138 return 0;
2140 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
2143 /* 1 if register REGNO was alive at a place where `setjmp' was called
2144 and was set more than once or is an argument.
2145 Such regs may be clobbered by `longjmp'. */
2148 regno_clobbered_at_setjmp (regno)
2149 int regno;
2151 if (n_basic_blocks == 0)
2152 return 0;
2154 return ((REG_N_SETS (regno) > 1
2155 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
2156 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2159 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2160 maximal list size; look for overlaps in mode and select the largest. */
2161 static void
2162 add_to_mem_set_list (pbi, mem)
2163 struct propagate_block_info *pbi;
2164 rtx mem;
2166 rtx i;
2168 /* We don't know how large a BLKmode store is, so we must not
2169 take them into consideration. */
2170 if (GET_MODE (mem) == BLKmode)
2171 return;
2173 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2175 rtx e = XEXP (i, 0);
2176 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2178 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2180 #ifdef AUTO_INC_DEC
2181 /* If we must store a copy of the mem, we can just modify
2182 the mode of the stored copy. */
2183 if (pbi->flags & PROP_AUTOINC)
2184 PUT_MODE (e, GET_MODE (mem));
2185 else
2186 #endif
2187 XEXP (i, 0) = mem;
2189 return;
2193 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2195 #ifdef AUTO_INC_DEC
2196 /* Store a copy of mem, otherwise the address may be
2197 scrogged by find_auto_inc. */
2198 if (pbi->flags & PROP_AUTOINC)
2199 mem = shallow_copy_rtx (mem);
2200 #endif
2201 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2202 pbi->mem_set_list_len++;
2206 /* INSN references memory, possibly using autoincrement addressing modes.
2207 Find any entries on the mem_set_list that need to be invalidated due
2208 to an address change. */
2210 static void
2211 invalidate_mems_from_autoinc (pbi, insn)
2212 struct propagate_block_info *pbi;
2213 rtx insn;
2215 rtx note = REG_NOTES (insn);
2216 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2217 if (REG_NOTE_KIND (note) == REG_INC)
2218 invalidate_mems_from_set (pbi, XEXP (note, 0));
2221 /* EXP is a REG. Remove any dependant entries from pbi->mem_set_list. */
2223 static void
2224 invalidate_mems_from_set (pbi, exp)
2225 struct propagate_block_info *pbi;
2226 rtx exp;
2228 rtx temp = pbi->mem_set_list;
2229 rtx prev = NULL_RTX;
2230 rtx next;
2232 while (temp)
2234 next = XEXP (temp, 1);
2235 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2237 /* Splice this entry out of the list. */
2238 if (prev)
2239 XEXP (prev, 1) = next;
2240 else
2241 pbi->mem_set_list = next;
2242 free_EXPR_LIST_node (temp);
2243 pbi->mem_set_list_len--;
2245 else
2246 prev = temp;
2247 temp = next;
2251 /* Process the registers that are set within X. Their bits are set to
2252 1 in the regset DEAD, because they are dead prior to this insn.
2254 If INSN is nonzero, it is the insn being processed.
2256 FLAGS is the set of operations to perform. */
2258 static void
2259 mark_set_regs (pbi, x, insn)
2260 struct propagate_block_info *pbi;
2261 rtx x, insn;
2263 rtx cond = NULL_RTX;
2264 rtx link;
2265 enum rtx_code code;
2267 if (insn)
2268 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2270 if (REG_NOTE_KIND (link) == REG_INC)
2271 mark_set_1 (pbi, SET, XEXP (link, 0),
2272 (GET_CODE (x) == COND_EXEC
2273 ? COND_EXEC_TEST (x) : NULL_RTX),
2274 insn, pbi->flags);
2276 retry:
2277 switch (code = GET_CODE (x))
2279 case SET:
2280 case CLOBBER:
2281 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2282 return;
2284 case COND_EXEC:
2285 cond = COND_EXEC_TEST (x);
2286 x = COND_EXEC_CODE (x);
2287 goto retry;
2289 case PARALLEL:
2291 int i;
2293 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2295 rtx sub = XVECEXP (x, 0, i);
2296 switch (code = GET_CODE (sub))
2298 case COND_EXEC:
2299 if (cond != NULL_RTX)
2300 abort ();
2302 cond = COND_EXEC_TEST (sub);
2303 sub = COND_EXEC_CODE (sub);
2304 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2305 break;
2306 /* Fall through. */
2308 case SET:
2309 case CLOBBER:
2310 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2311 break;
2313 default:
2314 break;
2317 break;
2320 default:
2321 break;
2325 /* Process a single set, which appears in INSN. REG (which may not
2326 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2327 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2328 If the set is conditional (because it appear in a COND_EXEC), COND
2329 will be the condition. */
2331 static void
2332 mark_set_1 (pbi, code, reg, cond, insn, flags)
2333 struct propagate_block_info *pbi;
2334 enum rtx_code code;
2335 rtx reg, cond, insn;
2336 int flags;
2338 int regno_first = -1, regno_last = -1;
2339 unsigned long not_dead = 0;
2340 int i;
2342 /* Modifying just one hardware register of a multi-reg value or just a
2343 byte field of a register does not mean the value from before this insn
2344 is now dead. Of course, if it was dead after it's unused now. */
2346 switch (GET_CODE (reg))
2348 case PARALLEL:
2349 /* Some targets place small structures in registers for return values of
2350 functions. We have to detect this case specially here to get correct
2351 flow information. */
2352 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2353 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2354 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2355 flags);
2356 return;
2358 case ZERO_EXTRACT:
2359 case SIGN_EXTRACT:
2360 case STRICT_LOW_PART:
2361 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2363 reg = XEXP (reg, 0);
2364 while (GET_CODE (reg) == SUBREG
2365 || GET_CODE (reg) == ZERO_EXTRACT
2366 || GET_CODE (reg) == SIGN_EXTRACT
2367 || GET_CODE (reg) == STRICT_LOW_PART);
2368 if (GET_CODE (reg) == MEM)
2369 break;
2370 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2371 /* Fall through. */
2373 case REG:
2374 regno_last = regno_first = REGNO (reg);
2375 if (regno_first < FIRST_PSEUDO_REGISTER)
2376 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2377 break;
2379 case SUBREG:
2380 if (GET_CODE (SUBREG_REG (reg)) == REG)
2382 enum machine_mode outer_mode = GET_MODE (reg);
2383 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2385 /* Identify the range of registers affected. This is moderately
2386 tricky for hard registers. See alter_subreg. */
2388 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2389 if (regno_first < FIRST_PSEUDO_REGISTER)
2391 regno_first += subreg_regno_offset (regno_first, inner_mode,
2392 SUBREG_BYTE (reg),
2393 outer_mode);
2394 regno_last = (regno_first
2395 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2397 /* Since we've just adjusted the register number ranges, make
2398 sure REG matches. Otherwise some_was_live will be clear
2399 when it shouldn't have been, and we'll create incorrect
2400 REG_UNUSED notes. */
2401 reg = gen_rtx_REG (outer_mode, regno_first);
2403 else
2405 /* If the number of words in the subreg is less than the number
2406 of words in the full register, we have a well-defined partial
2407 set. Otherwise the high bits are undefined.
2409 This is only really applicable to pseudos, since we just took
2410 care of multi-word hard registers. */
2411 if (((GET_MODE_SIZE (outer_mode)
2412 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2413 < ((GET_MODE_SIZE (inner_mode)
2414 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2415 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2416 regno_first);
2418 reg = SUBREG_REG (reg);
2421 else
2422 reg = SUBREG_REG (reg);
2423 break;
2425 default:
2426 break;
2429 /* If this set is a MEM, then it kills any aliased writes.
2430 If this set is a REG, then it kills any MEMs which use the reg. */
2431 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2433 if (GET_CODE (reg) == REG)
2434 invalidate_mems_from_set (pbi, reg);
2436 /* If the memory reference had embedded side effects (autoincrement
2437 address modes. Then we may need to kill some entries on the
2438 memory set list. */
2439 if (insn && GET_CODE (reg) == MEM)
2440 invalidate_mems_from_autoinc (pbi, insn);
2442 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2443 /* ??? With more effort we could track conditional memory life. */
2444 && ! cond
2445 /* There are no REG_INC notes for SP, so we can't assume we'll see
2446 everything that invalidates it. To be safe, don't eliminate any
2447 stores though SP; none of them should be redundant anyway. */
2448 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2449 add_to_mem_set_list (pbi, canon_rtx (reg));
2452 if (GET_CODE (reg) == REG
2453 && ! (regno_first == FRAME_POINTER_REGNUM
2454 && (! reload_completed || frame_pointer_needed))
2455 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2456 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2457 && (! reload_completed || frame_pointer_needed))
2458 #endif
2459 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2460 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2461 #endif
2464 int some_was_live = 0, some_was_dead = 0;
2466 for (i = regno_first; i <= regno_last; ++i)
2468 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2469 if (pbi->local_set)
2471 /* Order of the set operation matters here since both
2472 sets may be the same. */
2473 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2474 if (cond != NULL_RTX
2475 && ! REGNO_REG_SET_P (pbi->local_set, i))
2476 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2477 else
2478 SET_REGNO_REG_SET (pbi->local_set, i);
2480 if (code != CLOBBER)
2481 SET_REGNO_REG_SET (pbi->new_set, i);
2483 some_was_live |= needed_regno;
2484 some_was_dead |= ! needed_regno;
2487 #ifdef HAVE_conditional_execution
2488 /* Consider conditional death in deciding that the register needs
2489 a death note. */
2490 if (some_was_live && ! not_dead
2491 /* The stack pointer is never dead. Well, not strictly true,
2492 but it's very difficult to tell from here. Hopefully
2493 combine_stack_adjustments will fix up the most egregious
2494 errors. */
2495 && regno_first != STACK_POINTER_REGNUM)
2497 for (i = regno_first; i <= regno_last; ++i)
2498 if (! mark_regno_cond_dead (pbi, i, cond))
2499 not_dead |= ((unsigned long) 1) << (i - regno_first);
2501 #endif
2503 /* Additional data to record if this is the final pass. */
2504 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2505 | PROP_DEATH_NOTES | PROP_AUTOINC))
2507 rtx y;
2508 int blocknum = pbi->bb->index;
2510 y = NULL_RTX;
2511 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2513 y = pbi->reg_next_use[regno_first];
2515 /* The next use is no longer next, since a store intervenes. */
2516 for (i = regno_first; i <= regno_last; ++i)
2517 pbi->reg_next_use[i] = 0;
2520 if (flags & PROP_REG_INFO)
2522 for (i = regno_first; i <= regno_last; ++i)
2524 /* Count (weighted) references, stores, etc. This counts a
2525 register twice if it is modified, but that is correct. */
2526 REG_N_SETS (i) += 1;
2527 REG_N_REFS (i) += 1;
2528 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2530 /* The insns where a reg is live are normally counted
2531 elsewhere, but we want the count to include the insn
2532 where the reg is set, and the normal counting mechanism
2533 would not count it. */
2534 REG_LIVE_LENGTH (i) += 1;
2537 /* If this is a hard reg, record this function uses the reg. */
2538 if (regno_first < FIRST_PSEUDO_REGISTER)
2540 for (i = regno_first; i <= regno_last; i++)
2541 regs_ever_live[i] = 1;
2543 else
2545 /* Keep track of which basic blocks each reg appears in. */
2546 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2547 REG_BASIC_BLOCK (regno_first) = blocknum;
2548 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2549 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2553 if (! some_was_dead)
2555 if (flags & PROP_LOG_LINKS)
2557 /* Make a logical link from the next following insn
2558 that uses this register, back to this insn.
2559 The following insns have already been processed.
2561 We don't build a LOG_LINK for hard registers containing
2562 in ASM_OPERANDs. If these registers get replaced,
2563 we might wind up changing the semantics of the insn,
2564 even if reload can make what appear to be valid
2565 assignments later. */
2566 if (y && (BLOCK_NUM (y) == blocknum)
2567 && (regno_first >= FIRST_PSEUDO_REGISTER
2568 || asm_noperands (PATTERN (y)) < 0))
2569 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2572 else if (not_dead)
2574 else if (! some_was_live)
2576 if (flags & PROP_REG_INFO)
2577 REG_N_DEATHS (regno_first) += 1;
2579 if (flags & PROP_DEATH_NOTES)
2581 /* Note that dead stores have already been deleted
2582 when possible. If we get here, we have found a
2583 dead store that cannot be eliminated (because the
2584 same insn does something useful). Indicate this
2585 by marking the reg being set as dying here. */
2586 REG_NOTES (insn)
2587 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2590 else
2592 if (flags & PROP_DEATH_NOTES)
2594 /* This is a case where we have a multi-word hard register
2595 and some, but not all, of the words of the register are
2596 needed in subsequent insns. Write REG_UNUSED notes
2597 for those parts that were not needed. This case should
2598 be rare. */
2600 for (i = regno_first; i <= regno_last; ++i)
2601 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2602 REG_NOTES (insn)
2603 = alloc_EXPR_LIST (REG_UNUSED,
2604 gen_rtx_REG (reg_raw_mode[i], i),
2605 REG_NOTES (insn));
2610 /* Mark the register as being dead. */
2611 if (some_was_live
2612 /* The stack pointer is never dead. Well, not strictly true,
2613 but it's very difficult to tell from here. Hopefully
2614 combine_stack_adjustments will fix up the most egregious
2615 errors. */
2616 && regno_first != STACK_POINTER_REGNUM)
2618 for (i = regno_first; i <= regno_last; ++i)
2619 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2620 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2623 else if (GET_CODE (reg) == REG)
2625 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2626 pbi->reg_next_use[regno_first] = 0;
2629 /* If this is the last pass and this is a SCRATCH, show it will be dying
2630 here and count it. */
2631 else if (GET_CODE (reg) == SCRATCH)
2633 if (flags & PROP_DEATH_NOTES)
2634 REG_NOTES (insn)
2635 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2639 #ifdef HAVE_conditional_execution
2640 /* Mark REGNO conditionally dead.
2641 Return true if the register is now unconditionally dead. */
2643 static int
2644 mark_regno_cond_dead (pbi, regno, cond)
2645 struct propagate_block_info *pbi;
2646 int regno;
2647 rtx cond;
2649 /* If this is a store to a predicate register, the value of the
2650 predicate is changing, we don't know that the predicate as seen
2651 before is the same as that seen after. Flush all dependent
2652 conditions from reg_cond_dead. This will make all such
2653 conditionally live registers unconditionally live. */
2654 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2655 flush_reg_cond_reg (pbi, regno);
2657 /* If this is an unconditional store, remove any conditional
2658 life that may have existed. */
2659 if (cond == NULL_RTX)
2660 splay_tree_remove (pbi->reg_cond_dead, regno);
2661 else
2663 splay_tree_node node;
2664 struct reg_cond_life_info *rcli;
2665 rtx ncond;
2667 /* Otherwise this is a conditional set. Record that fact.
2668 It may have been conditionally used, or there may be a
2669 subsequent set with a complimentary condition. */
2671 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2672 if (node == NULL)
2674 /* The register was unconditionally live previously.
2675 Record the current condition as the condition under
2676 which it is dead. */
2677 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2678 rcli->condition = cond;
2679 rcli->stores = cond;
2680 rcli->orig_condition = const0_rtx;
2681 splay_tree_insert (pbi->reg_cond_dead, regno,
2682 (splay_tree_value) rcli);
2684 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2686 /* Not unconditionaly dead. */
2687 return 0;
2689 else
2691 /* The register was conditionally live previously.
2692 Add the new condition to the old. */
2693 rcli = (struct reg_cond_life_info *) node->value;
2694 ncond = rcli->condition;
2695 ncond = ior_reg_cond (ncond, cond, 1);
2696 if (rcli->stores == const0_rtx)
2697 rcli->stores = cond;
2698 else if (rcli->stores != const1_rtx)
2699 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2701 /* If the register is now unconditionally dead, remove the entry
2702 in the splay_tree. A register is unconditionally dead if the
2703 dead condition ncond is true. A register is also unconditionally
2704 dead if the sum of all conditional stores is an unconditional
2705 store (stores is true), and the dead condition is identically the
2706 same as the original dead condition initialized at the end of
2707 the block. This is a pointer compare, not an rtx_equal_p
2708 compare. */
2709 if (ncond == const1_rtx
2710 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2711 splay_tree_remove (pbi->reg_cond_dead, regno);
2712 else
2714 rcli->condition = ncond;
2716 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2718 /* Not unconditionaly dead. */
2719 return 0;
2724 return 1;
2727 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2729 static void
2730 free_reg_cond_life_info (value)
2731 splay_tree_value value;
2733 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2734 free (rcli);
2737 /* Helper function for flush_reg_cond_reg. */
2739 static int
2740 flush_reg_cond_reg_1 (node, data)
2741 splay_tree_node node;
2742 void *data;
2744 struct reg_cond_life_info *rcli;
2745 int *xdata = (int *) data;
2746 unsigned int regno = xdata[0];
2748 /* Don't need to search if last flushed value was farther on in
2749 the in-order traversal. */
2750 if (xdata[1] >= (int) node->key)
2751 return 0;
2753 /* Splice out portions of the expression that refer to regno. */
2754 rcli = (struct reg_cond_life_info *) node->value;
2755 rcli->condition = elim_reg_cond (rcli->condition, regno);
2756 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2757 rcli->stores = elim_reg_cond (rcli->stores, regno);
2759 /* If the entire condition is now false, signal the node to be removed. */
2760 if (rcli->condition == const0_rtx)
2762 xdata[1] = node->key;
2763 return -1;
2765 else if (rcli->condition == const1_rtx)
2766 abort ();
2768 return 0;
2771 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2773 static void
2774 flush_reg_cond_reg (pbi, regno)
2775 struct propagate_block_info *pbi;
2776 int regno;
2778 int pair[2];
2780 pair[0] = regno;
2781 pair[1] = -1;
2782 while (splay_tree_foreach (pbi->reg_cond_dead,
2783 flush_reg_cond_reg_1, pair) == -1)
2784 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2786 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2789 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2790 For ior/and, the ADD flag determines whether we want to add the new
2791 condition X to the old one unconditionally. If it is zero, we will
2792 only return a new expression if X allows us to simplify part of
2793 OLD, otherwise we return OLD unchanged to the caller.
2794 If ADD is nonzero, we will return a new condition in all cases. The
2795 toplevel caller of one of these functions should always pass 1 for
2796 ADD. */
2798 static rtx
2799 ior_reg_cond (old, x, add)
2800 rtx old, x;
2801 int add;
2803 rtx op0, op1;
2805 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2807 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2808 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2809 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2810 return const1_rtx;
2811 if (GET_CODE (x) == GET_CODE (old)
2812 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2813 return old;
2814 if (! add)
2815 return old;
2816 return gen_rtx_IOR (0, old, x);
2819 switch (GET_CODE (old))
2821 case IOR:
2822 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
2823 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
2824 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2826 if (op0 == const0_rtx)
2827 return op1;
2828 if (op1 == const0_rtx)
2829 return op0;
2830 if (op0 == const1_rtx || op1 == const1_rtx)
2831 return const1_rtx;
2832 if (op0 == XEXP (old, 0))
2833 op0 = gen_rtx_IOR (0, op0, x);
2834 else
2835 op1 = gen_rtx_IOR (0, op1, x);
2836 return gen_rtx_IOR (0, op0, op1);
2838 if (! add)
2839 return old;
2840 return gen_rtx_IOR (0, old, x);
2842 case AND:
2843 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
2844 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
2845 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2847 if (op0 == const1_rtx)
2848 return op1;
2849 if (op1 == const1_rtx)
2850 return op0;
2851 if (op0 == const0_rtx || op1 == const0_rtx)
2852 return const0_rtx;
2853 if (op0 == XEXP (old, 0))
2854 op0 = gen_rtx_IOR (0, op0, x);
2855 else
2856 op1 = gen_rtx_IOR (0, op1, x);
2857 return gen_rtx_AND (0, op0, op1);
2859 if (! add)
2860 return old;
2861 return gen_rtx_IOR (0, old, x);
2863 case NOT:
2864 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
2865 if (op0 != XEXP (old, 0))
2866 return not_reg_cond (op0);
2867 if (! add)
2868 return old;
2869 return gen_rtx_IOR (0, old, x);
2871 default:
2872 abort ();
2876 static rtx
2877 not_reg_cond (x)
2878 rtx x;
2880 enum rtx_code x_code;
2882 if (x == const0_rtx)
2883 return const1_rtx;
2884 else if (x == const1_rtx)
2885 return const0_rtx;
2886 x_code = GET_CODE (x);
2887 if (x_code == NOT)
2888 return XEXP (x, 0);
2889 if (GET_RTX_CLASS (x_code) == '<'
2890 && GET_CODE (XEXP (x, 0)) == REG)
2892 if (XEXP (x, 1) != const0_rtx)
2893 abort ();
2895 return gen_rtx_fmt_ee (reverse_condition (x_code),
2896 VOIDmode, XEXP (x, 0), const0_rtx);
2898 return gen_rtx_NOT (0, x);
2901 static rtx
2902 and_reg_cond (old, x, add)
2903 rtx old, x;
2904 int add;
2906 rtx op0, op1;
2908 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2910 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2911 && GET_CODE (x) == reverse_condition (GET_CODE (old))
2912 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2913 return const0_rtx;
2914 if (GET_CODE (x) == GET_CODE (old)
2915 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2916 return old;
2917 if (! add)
2918 return old;
2919 return gen_rtx_AND (0, old, x);
2922 switch (GET_CODE (old))
2924 case IOR:
2925 op0 = and_reg_cond (XEXP (old, 0), x, 0);
2926 op1 = and_reg_cond (XEXP (old, 1), x, 0);
2927 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2929 if (op0 == const0_rtx)
2930 return op1;
2931 if (op1 == const0_rtx)
2932 return op0;
2933 if (op0 == const1_rtx || op1 == const1_rtx)
2934 return const1_rtx;
2935 if (op0 == XEXP (old, 0))
2936 op0 = gen_rtx_AND (0, op0, x);
2937 else
2938 op1 = gen_rtx_AND (0, op1, x);
2939 return gen_rtx_IOR (0, op0, op1);
2941 if (! add)
2942 return old;
2943 return gen_rtx_AND (0, old, x);
2945 case AND:
2946 op0 = and_reg_cond (XEXP (old, 0), x, 0);
2947 op1 = and_reg_cond (XEXP (old, 1), x, 0);
2948 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2950 if (op0 == const1_rtx)
2951 return op1;
2952 if (op1 == const1_rtx)
2953 return op0;
2954 if (op0 == const0_rtx || op1 == const0_rtx)
2955 return const0_rtx;
2956 if (op0 == XEXP (old, 0))
2957 op0 = gen_rtx_AND (0, op0, x);
2958 else
2959 op1 = gen_rtx_AND (0, op1, x);
2960 return gen_rtx_AND (0, op0, op1);
2962 if (! add)
2963 return old;
2965 /* If X is identical to one of the existing terms of the AND,
2966 then just return what we already have. */
2967 /* ??? There really should be some sort of recursive check here in
2968 case there are nested ANDs. */
2969 if ((GET_CODE (XEXP (old, 0)) == GET_CODE (x)
2970 && REGNO (XEXP (XEXP (old, 0), 0)) == REGNO (XEXP (x, 0)))
2971 || (GET_CODE (XEXP (old, 1)) == GET_CODE (x)
2972 && REGNO (XEXP (XEXP (old, 1), 0)) == REGNO (XEXP (x, 0))))
2973 return old;
2975 return gen_rtx_AND (0, old, x);
2977 case NOT:
2978 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
2979 if (op0 != XEXP (old, 0))
2980 return not_reg_cond (op0);
2981 if (! add)
2982 return old;
2983 return gen_rtx_AND (0, old, x);
2985 default:
2986 abort ();
2990 /* Given a condition X, remove references to reg REGNO and return the
2991 new condition. The removal will be done so that all conditions
2992 involving REGNO are considered to evaluate to false. This function
2993 is used when the value of REGNO changes. */
2995 static rtx
2996 elim_reg_cond (x, regno)
2997 rtx x;
2998 unsigned int regno;
3000 rtx op0, op1;
3002 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3004 if (REGNO (XEXP (x, 0)) == regno)
3005 return const0_rtx;
3006 return x;
3009 switch (GET_CODE (x))
3011 case AND:
3012 op0 = elim_reg_cond (XEXP (x, 0), regno);
3013 op1 = elim_reg_cond (XEXP (x, 1), regno);
3014 if (op0 == const0_rtx || op1 == const0_rtx)
3015 return const0_rtx;
3016 if (op0 == const1_rtx)
3017 return op1;
3018 if (op1 == const1_rtx)
3019 return op0;
3020 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3021 return x;
3022 return gen_rtx_AND (0, op0, op1);
3024 case IOR:
3025 op0 = elim_reg_cond (XEXP (x, 0), regno);
3026 op1 = elim_reg_cond (XEXP (x, 1), regno);
3027 if (op0 == const1_rtx || op1 == const1_rtx)
3028 return const1_rtx;
3029 if (op0 == const0_rtx)
3030 return op1;
3031 if (op1 == const0_rtx)
3032 return op0;
3033 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3034 return x;
3035 return gen_rtx_IOR (0, op0, op1);
3037 case NOT:
3038 op0 = elim_reg_cond (XEXP (x, 0), regno);
3039 if (op0 == const0_rtx)
3040 return const1_rtx;
3041 if (op0 == const1_rtx)
3042 return const0_rtx;
3043 if (op0 != XEXP (x, 0))
3044 return not_reg_cond (op0);
3045 return x;
3047 default:
3048 abort ();
3051 #endif /* HAVE_conditional_execution */
3053 #ifdef AUTO_INC_DEC
3055 /* Try to substitute the auto-inc expression INC as the address inside
3056 MEM which occurs in INSN. Currently, the address of MEM is an expression
3057 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3058 that has a single set whose source is a PLUS of INCR_REG and something
3059 else. */
3061 static void
3062 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3063 struct propagate_block_info *pbi;
3064 rtx inc, insn, mem, incr, incr_reg;
3066 int regno = REGNO (incr_reg);
3067 rtx set = single_set (incr);
3068 rtx q = SET_DEST (set);
3069 rtx y = SET_SRC (set);
3070 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3072 /* Make sure this reg appears only once in this insn. */
3073 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3074 return;
3076 if (dead_or_set_p (incr, incr_reg)
3077 /* Mustn't autoinc an eliminable register. */
3078 && (regno >= FIRST_PSEUDO_REGISTER
3079 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3081 /* This is the simple case. Try to make the auto-inc. If
3082 we can't, we are done. Otherwise, we will do any
3083 needed updates below. */
3084 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3085 return;
3087 else if (GET_CODE (q) == REG
3088 /* PREV_INSN used here to check the semi-open interval
3089 [insn,incr). */
3090 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3091 /* We must also check for sets of q as q may be
3092 a call clobbered hard register and there may
3093 be a call between PREV_INSN (insn) and incr. */
3094 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3096 /* We have *p followed sometime later by q = p+size.
3097 Both p and q must be live afterward,
3098 and q is not used between INSN and its assignment.
3099 Change it to q = p, ...*q..., q = q+size.
3100 Then fall into the usual case. */
3101 rtx insns, temp;
3103 start_sequence ();
3104 emit_move_insn (q, incr_reg);
3105 insns = get_insns ();
3106 end_sequence ();
3108 /* If we can't make the auto-inc, or can't make the
3109 replacement into Y, exit. There's no point in making
3110 the change below if we can't do the auto-inc and doing
3111 so is not correct in the pre-inc case. */
3113 XEXP (inc, 0) = q;
3114 validate_change (insn, &XEXP (mem, 0), inc, 1);
3115 validate_change (incr, &XEXP (y, opnum), q, 1);
3116 if (! apply_change_group ())
3117 return;
3119 /* We now know we'll be doing this change, so emit the
3120 new insn(s) and do the updates. */
3121 emit_insns_before (insns, insn);
3123 if (pbi->bb->head == insn)
3124 pbi->bb->head = insns;
3126 /* INCR will become a NOTE and INSN won't contain a
3127 use of INCR_REG. If a use of INCR_REG was just placed in
3128 the insn before INSN, make that the next use.
3129 Otherwise, invalidate it. */
3130 if (GET_CODE (PREV_INSN (insn)) == INSN
3131 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3132 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3133 pbi->reg_next_use[regno] = PREV_INSN (insn);
3134 else
3135 pbi->reg_next_use[regno] = 0;
3137 incr_reg = q;
3138 regno = REGNO (q);
3140 /* REGNO is now used in INCR which is below INSN, but
3141 it previously wasn't live here. If we don't mark
3142 it as live, we'll put a REG_DEAD note for it
3143 on this insn, which is incorrect. */
3144 SET_REGNO_REG_SET (pbi->reg_live, regno);
3146 /* If there are any calls between INSN and INCR, show
3147 that REGNO now crosses them. */
3148 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3149 if (GET_CODE (temp) == CALL_INSN)
3150 REG_N_CALLS_CROSSED (regno)++;
3152 /* Invalidate alias info for Q since we just changed its value. */
3153 clear_reg_alias_info (q);
3155 else
3156 return;
3158 /* If we haven't returned, it means we were able to make the
3159 auto-inc, so update the status. First, record that this insn
3160 has an implicit side effect. */
3162 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3164 /* Modify the old increment-insn to simply copy
3165 the already-incremented value of our register. */
3166 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3167 abort ();
3169 /* If that makes it a no-op (copying the register into itself) delete
3170 it so it won't appear to be a "use" and a "set" of this
3171 register. */
3172 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3174 /* If the original source was dead, it's dead now. */
3175 rtx note;
3177 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3179 remove_note (incr, note);
3180 if (XEXP (note, 0) != incr_reg)
3181 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3184 PUT_CODE (incr, NOTE);
3185 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3186 NOTE_SOURCE_FILE (incr) = 0;
3189 if (regno >= FIRST_PSEUDO_REGISTER)
3191 /* Count an extra reference to the reg. When a reg is
3192 incremented, spilling it is worse, so we want to make
3193 that less likely. */
3194 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3196 /* Count the increment as a setting of the register,
3197 even though it isn't a SET in rtl. */
3198 REG_N_SETS (regno)++;
3202 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3203 reference. */
3205 static void
3206 find_auto_inc (pbi, x, insn)
3207 struct propagate_block_info *pbi;
3208 rtx x;
3209 rtx insn;
3211 rtx addr = XEXP (x, 0);
3212 HOST_WIDE_INT offset = 0;
3213 rtx set, y, incr, inc_val;
3214 int regno;
3215 int size = GET_MODE_SIZE (GET_MODE (x));
3217 if (GET_CODE (insn) == JUMP_INSN)
3218 return;
3220 /* Here we detect use of an index register which might be good for
3221 postincrement, postdecrement, preincrement, or predecrement. */
3223 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3224 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3226 if (GET_CODE (addr) != REG)
3227 return;
3229 regno = REGNO (addr);
3231 /* Is the next use an increment that might make auto-increment? */
3232 incr = pbi->reg_next_use[regno];
3233 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3234 return;
3235 set = single_set (incr);
3236 if (set == 0 || GET_CODE (set) != SET)
3237 return;
3238 y = SET_SRC (set);
3240 if (GET_CODE (y) != PLUS)
3241 return;
3243 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3244 inc_val = XEXP (y, 1);
3245 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3246 inc_val = XEXP (y, 0);
3247 else
3248 return;
3250 if (GET_CODE (inc_val) == CONST_INT)
3252 if (HAVE_POST_INCREMENT
3253 && (INTVAL (inc_val) == size && offset == 0))
3254 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3255 incr, addr);
3256 else if (HAVE_POST_DECREMENT
3257 && (INTVAL (inc_val) == -size && offset == 0))
3258 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3259 incr, addr);
3260 else if (HAVE_PRE_INCREMENT
3261 && (INTVAL (inc_val) == size && offset == size))
3262 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3263 incr, addr);
3264 else if (HAVE_PRE_DECREMENT
3265 && (INTVAL (inc_val) == -size && offset == -size))
3266 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3267 incr, addr);
3268 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3269 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3270 gen_rtx_PLUS (Pmode,
3271 addr,
3272 inc_val)),
3273 insn, x, incr, addr);
3275 else if (GET_CODE (inc_val) == REG
3276 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3277 NEXT_INSN (incr)))
3280 if (HAVE_POST_MODIFY_REG && offset == 0)
3281 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3282 gen_rtx_PLUS (Pmode,
3283 addr,
3284 inc_val)),
3285 insn, x, incr, addr);
3289 #endif /* AUTO_INC_DEC */
3291 static void
3292 mark_used_reg (pbi, reg, cond, insn)
3293 struct propagate_block_info *pbi;
3294 rtx reg;
3295 rtx cond ATTRIBUTE_UNUSED;
3296 rtx insn;
3298 unsigned int regno_first, regno_last, i;
3299 int some_was_live, some_was_dead, some_not_set;
3301 regno_last = regno_first = REGNO (reg);
3302 if (regno_first < FIRST_PSEUDO_REGISTER)
3303 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3305 /* Find out if any of this register is live after this instruction. */
3306 some_was_live = some_was_dead = 0;
3307 for (i = regno_first; i <= regno_last; ++i)
3309 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3310 some_was_live |= needed_regno;
3311 some_was_dead |= ! needed_regno;
3314 /* Find out if any of the register was set this insn. */
3315 some_not_set = 0;
3316 for (i = regno_first; i <= regno_last; ++i)
3317 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3319 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3321 /* Record where each reg is used, so when the reg is set we know
3322 the next insn that uses it. */
3323 pbi->reg_next_use[regno_first] = insn;
3326 if (pbi->flags & PROP_REG_INFO)
3328 if (regno_first < FIRST_PSEUDO_REGISTER)
3330 /* If this is a register we are going to try to eliminate,
3331 don't mark it live here. If we are successful in
3332 eliminating it, it need not be live unless it is used for
3333 pseudos, in which case it will have been set live when it
3334 was allocated to the pseudos. If the register will not
3335 be eliminated, reload will set it live at that point.
3337 Otherwise, record that this function uses this register. */
3338 /* ??? The PPC backend tries to "eliminate" on the pic
3339 register to itself. This should be fixed. In the mean
3340 time, hack around it. */
3342 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3343 && (regno_first == FRAME_POINTER_REGNUM
3344 || regno_first == ARG_POINTER_REGNUM)))
3345 for (i = regno_first; i <= regno_last; ++i)
3346 regs_ever_live[i] = 1;
3348 else
3350 /* Keep track of which basic block each reg appears in. */
3352 int blocknum = pbi->bb->index;
3353 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3354 REG_BASIC_BLOCK (regno_first) = blocknum;
3355 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3356 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3358 /* Count (weighted) number of uses of each reg. */
3359 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3360 REG_N_REFS (regno_first)++;
3364 /* Record and count the insns in which a reg dies. If it is used in
3365 this insn and was dead below the insn then it dies in this insn.
3366 If it was set in this insn, we do not make a REG_DEAD note;
3367 likewise if we already made such a note. */
3368 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3369 && some_was_dead
3370 && some_not_set)
3372 /* Check for the case where the register dying partially
3373 overlaps the register set by this insn. */
3374 if (regno_first != regno_last)
3375 for (i = regno_first; i <= regno_last; ++i)
3376 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3378 /* If none of the words in X is needed, make a REG_DEAD note.
3379 Otherwise, we must make partial REG_DEAD notes. */
3380 if (! some_was_live)
3382 if ((pbi->flags & PROP_DEATH_NOTES)
3383 && ! find_regno_note (insn, REG_DEAD, regno_first))
3384 REG_NOTES (insn)
3385 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3387 if (pbi->flags & PROP_REG_INFO)
3388 REG_N_DEATHS (regno_first)++;
3390 else
3392 /* Don't make a REG_DEAD note for a part of a register
3393 that is set in the insn. */
3394 for (i = regno_first; i <= regno_last; ++i)
3395 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3396 && ! dead_or_set_regno_p (insn, i))
3397 REG_NOTES (insn)
3398 = alloc_EXPR_LIST (REG_DEAD,
3399 gen_rtx_REG (reg_raw_mode[i], i),
3400 REG_NOTES (insn));
3404 /* Mark the register as being live. */
3405 for (i = regno_first; i <= regno_last; ++i)
3407 SET_REGNO_REG_SET (pbi->reg_live, i);
3409 #ifdef HAVE_conditional_execution
3410 /* If this is a conditional use, record that fact. If it is later
3411 conditionally set, we'll know to kill the register. */
3412 if (cond != NULL_RTX)
3414 splay_tree_node node;
3415 struct reg_cond_life_info *rcli;
3416 rtx ncond;
3418 if (some_was_live)
3420 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3421 if (node == NULL)
3423 /* The register was unconditionally live previously.
3424 No need to do anything. */
3426 else
3428 /* The register was conditionally live previously.
3429 Subtract the new life cond from the old death cond. */
3430 rcli = (struct reg_cond_life_info *) node->value;
3431 ncond = rcli->condition;
3432 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3434 /* If the register is now unconditionally live,
3435 remove the entry in the splay_tree. */
3436 if (ncond == const0_rtx)
3437 splay_tree_remove (pbi->reg_cond_dead, i);
3438 else
3440 rcli->condition = ncond;
3441 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3442 REGNO (XEXP (cond, 0)));
3446 else
3448 /* The register was not previously live at all. Record
3449 the condition under which it is still dead. */
3450 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3451 rcli->condition = not_reg_cond (cond);
3452 rcli->stores = const0_rtx;
3453 rcli->orig_condition = const0_rtx;
3454 splay_tree_insert (pbi->reg_cond_dead, i,
3455 (splay_tree_value) rcli);
3457 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3460 else if (some_was_live)
3462 /* The register may have been conditionally live previously, but
3463 is now unconditionally live. Remove it from the conditionally
3464 dead list, so that a conditional set won't cause us to think
3465 it dead. */
3466 splay_tree_remove (pbi->reg_cond_dead, i);
3468 #endif
3472 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3473 This is done assuming the registers needed from X are those that
3474 have 1-bits in PBI->REG_LIVE.
3476 INSN is the containing instruction. If INSN is dead, this function
3477 is not called. */
3479 static void
3480 mark_used_regs (pbi, x, cond, insn)
3481 struct propagate_block_info *pbi;
3482 rtx x, cond, insn;
3484 RTX_CODE code;
3485 int regno;
3486 int flags = pbi->flags;
3488 retry:
3489 code = GET_CODE (x);
3490 switch (code)
3492 case LABEL_REF:
3493 case SYMBOL_REF:
3494 case CONST_INT:
3495 case CONST:
3496 case CONST_DOUBLE:
3497 case PC:
3498 case ADDR_VEC:
3499 case ADDR_DIFF_VEC:
3500 return;
3502 #ifdef HAVE_cc0
3503 case CC0:
3504 pbi->cc0_live = 1;
3505 return;
3506 #endif
3508 case CLOBBER:
3509 /* If we are clobbering a MEM, mark any registers inside the address
3510 as being used. */
3511 if (GET_CODE (XEXP (x, 0)) == MEM)
3512 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3513 return;
3515 case MEM:
3516 /* Don't bother watching stores to mems if this is not the
3517 final pass. We'll not be deleting dead stores this round. */
3518 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
3520 /* Invalidate the data for the last MEM stored, but only if MEM is
3521 something that can be stored into. */
3522 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3523 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3524 /* Needn't clear the memory set list. */
3526 else
3528 rtx temp = pbi->mem_set_list;
3529 rtx prev = NULL_RTX;
3530 rtx next;
3532 while (temp)
3534 next = XEXP (temp, 1);
3535 if (anti_dependence (XEXP (temp, 0), x))
3537 /* Splice temp out of the list. */
3538 if (prev)
3539 XEXP (prev, 1) = next;
3540 else
3541 pbi->mem_set_list = next;
3542 free_EXPR_LIST_node (temp);
3543 pbi->mem_set_list_len--;
3545 else
3546 prev = temp;
3547 temp = next;
3551 /* If the memory reference had embedded side effects (autoincrement
3552 address modes. Then we may need to kill some entries on the
3553 memory set list. */
3554 if (insn)
3555 invalidate_mems_from_autoinc (pbi, insn);
3558 #ifdef AUTO_INC_DEC
3559 if (flags & PROP_AUTOINC)
3560 find_auto_inc (pbi, x, insn);
3561 #endif
3562 break;
3564 case SUBREG:
3565 #ifdef CLASS_CANNOT_CHANGE_MODE
3566 if (GET_CODE (SUBREG_REG (x)) == REG
3567 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3568 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3569 GET_MODE (SUBREG_REG (x))))
3570 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3571 #endif
3573 /* While we're here, optimize this case. */
3574 x = SUBREG_REG (x);
3575 if (GET_CODE (x) != REG)
3576 goto retry;
3577 /* Fall through. */
3579 case REG:
3580 /* See a register other than being set => mark it as needed. */
3581 mark_used_reg (pbi, x, cond, insn);
3582 return;
3584 case SET:
3586 rtx testreg = SET_DEST (x);
3587 int mark_dest = 0;
3589 /* If storing into MEM, don't show it as being used. But do
3590 show the address as being used. */
3591 if (GET_CODE (testreg) == MEM)
3593 #ifdef AUTO_INC_DEC
3594 if (flags & PROP_AUTOINC)
3595 find_auto_inc (pbi, testreg, insn);
3596 #endif
3597 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3598 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3599 return;
3602 /* Storing in STRICT_LOW_PART is like storing in a reg
3603 in that this SET might be dead, so ignore it in TESTREG.
3604 but in some other ways it is like using the reg.
3606 Storing in a SUBREG or a bit field is like storing the entire
3607 register in that if the register's value is not used
3608 then this SET is not needed. */
3609 while (GET_CODE (testreg) == STRICT_LOW_PART
3610 || GET_CODE (testreg) == ZERO_EXTRACT
3611 || GET_CODE (testreg) == SIGN_EXTRACT
3612 || GET_CODE (testreg) == SUBREG)
3614 #ifdef CLASS_CANNOT_CHANGE_MODE
3615 if (GET_CODE (testreg) == SUBREG
3616 && GET_CODE (SUBREG_REG (testreg)) == REG
3617 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3618 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3619 GET_MODE (testreg)))
3620 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3621 #endif
3623 /* Modifying a single register in an alternate mode
3624 does not use any of the old value. But these other
3625 ways of storing in a register do use the old value. */
3626 if (GET_CODE (testreg) == SUBREG
3627 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
3629 else
3630 mark_dest = 1;
3632 testreg = XEXP (testreg, 0);
3635 /* If this is a store into a register or group of registers,
3636 recursively scan the value being stored. */
3638 if ((GET_CODE (testreg) == PARALLEL
3639 && GET_MODE (testreg) == BLKmode)
3640 || (GET_CODE (testreg) == REG
3641 && (regno = REGNO (testreg),
3642 ! (regno == FRAME_POINTER_REGNUM
3643 && (! reload_completed || frame_pointer_needed)))
3644 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3645 && ! (regno == HARD_FRAME_POINTER_REGNUM
3646 && (! reload_completed || frame_pointer_needed))
3647 #endif
3648 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3649 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3650 #endif
3653 if (mark_dest)
3654 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3655 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3656 return;
3659 break;
3661 case ASM_OPERANDS:
3662 case UNSPEC_VOLATILE:
3663 case TRAP_IF:
3664 case ASM_INPUT:
3666 /* Traditional and volatile asm instructions must be considered to use
3667 and clobber all hard registers, all pseudo-registers and all of
3668 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3670 Consider for instance a volatile asm that changes the fpu rounding
3671 mode. An insn should not be moved across this even if it only uses
3672 pseudo-regs because it might give an incorrectly rounded result.
3674 ?!? Unfortunately, marking all hard registers as live causes massive
3675 problems for the register allocator and marking all pseudos as live
3676 creates mountains of uninitialized variable warnings.
3678 So for now, just clear the memory set list and mark any regs
3679 we can find in ASM_OPERANDS as used. */
3680 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3682 free_EXPR_LIST_list (&pbi->mem_set_list);
3683 pbi->mem_set_list_len = 0;
3686 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3687 We can not just fall through here since then we would be confused
3688 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3689 traditional asms unlike their normal usage. */
3690 if (code == ASM_OPERANDS)
3692 int j;
3694 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3695 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3697 break;
3700 case COND_EXEC:
3701 if (cond != NULL_RTX)
3702 abort ();
3704 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3706 cond = COND_EXEC_TEST (x);
3707 x = COND_EXEC_CODE (x);
3708 goto retry;
3710 case PHI:
3711 /* We _do_not_ want to scan operands of phi nodes. Operands of
3712 a phi function are evaluated only when control reaches this
3713 block along a particular edge. Therefore, regs that appear
3714 as arguments to phi should not be added to the global live at
3715 start. */
3716 return;
3718 default:
3719 break;
3722 /* Recursively scan the operands of this expression. */
3725 const char * const fmt = GET_RTX_FORMAT (code);
3726 int i;
3728 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3730 if (fmt[i] == 'e')
3732 /* Tail recursive case: save a function call level. */
3733 if (i == 0)
3735 x = XEXP (x, 0);
3736 goto retry;
3738 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3740 else if (fmt[i] == 'E')
3742 int j;
3743 for (j = 0; j < XVECLEN (x, i); j++)
3744 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3750 #ifdef AUTO_INC_DEC
3752 static int
3753 try_pre_increment_1 (pbi, insn)
3754 struct propagate_block_info *pbi;
3755 rtx insn;
3757 /* Find the next use of this reg. If in same basic block,
3758 make it do pre-increment or pre-decrement if appropriate. */
3759 rtx x = single_set (insn);
3760 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3761 * INTVAL (XEXP (SET_SRC (x), 1)));
3762 int regno = REGNO (SET_DEST (x));
3763 rtx y = pbi->reg_next_use[regno];
3764 if (y != 0
3765 && SET_DEST (x) != stack_pointer_rtx
3766 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3767 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3768 mode would be better. */
3769 && ! dead_or_set_p (y, SET_DEST (x))
3770 && try_pre_increment (y, SET_DEST (x), amount))
3772 /* We have found a suitable auto-increment and already changed
3773 insn Y to do it. So flush this increment instruction. */
3774 propagate_block_delete_insn (pbi->bb, insn);
3776 /* Count a reference to this reg for the increment insn we are
3777 deleting. When a reg is incremented, spilling it is worse,
3778 so we want to make that less likely. */
3779 if (regno >= FIRST_PSEUDO_REGISTER)
3781 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3782 REG_N_SETS (regno)++;
3785 /* Flush any remembered memories depending on the value of
3786 the incremented register. */
3787 invalidate_mems_from_set (pbi, SET_DEST (x));
3789 return 1;
3791 return 0;
3794 /* Try to change INSN so that it does pre-increment or pre-decrement
3795 addressing on register REG in order to add AMOUNT to REG.
3796 AMOUNT is negative for pre-decrement.
3797 Returns 1 if the change could be made.
3798 This checks all about the validity of the result of modifying INSN. */
3800 static int
3801 try_pre_increment (insn, reg, amount)
3802 rtx insn, reg;
3803 HOST_WIDE_INT amount;
3805 rtx use;
3807 /* Nonzero if we can try to make a pre-increment or pre-decrement.
3808 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
3809 int pre_ok = 0;
3810 /* Nonzero if we can try to make a post-increment or post-decrement.
3811 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
3812 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
3813 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
3814 int post_ok = 0;
3816 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
3817 int do_post = 0;
3819 /* From the sign of increment, see which possibilities are conceivable
3820 on this target machine. */
3821 if (HAVE_PRE_INCREMENT && amount > 0)
3822 pre_ok = 1;
3823 if (HAVE_POST_INCREMENT && amount > 0)
3824 post_ok = 1;
3826 if (HAVE_PRE_DECREMENT && amount < 0)
3827 pre_ok = 1;
3828 if (HAVE_POST_DECREMENT && amount < 0)
3829 post_ok = 1;
3831 if (! (pre_ok || post_ok))
3832 return 0;
3834 /* It is not safe to add a side effect to a jump insn
3835 because if the incremented register is spilled and must be reloaded
3836 there would be no way to store the incremented value back in memory. */
3838 if (GET_CODE (insn) == JUMP_INSN)
3839 return 0;
3841 use = 0;
3842 if (pre_ok)
3843 use = find_use_as_address (PATTERN (insn), reg, 0);
3844 if (post_ok && (use == 0 || use == (rtx) 1))
3846 use = find_use_as_address (PATTERN (insn), reg, -amount);
3847 do_post = 1;
3850 if (use == 0 || use == (rtx) 1)
3851 return 0;
3853 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
3854 return 0;
3856 /* See if this combination of instruction and addressing mode exists. */
3857 if (! validate_change (insn, &XEXP (use, 0),
3858 gen_rtx_fmt_e (amount > 0
3859 ? (do_post ? POST_INC : PRE_INC)
3860 : (do_post ? POST_DEC : PRE_DEC),
3861 Pmode, reg), 0))
3862 return 0;
3864 /* Record that this insn now has an implicit side effect on X. */
3865 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
3866 return 1;
3869 #endif /* AUTO_INC_DEC */
3871 /* Find the place in the rtx X where REG is used as a memory address.
3872 Return the MEM rtx that so uses it.
3873 If PLUSCONST is nonzero, search instead for a memory address equivalent to
3874 (plus REG (const_int PLUSCONST)).
3876 If such an address does not appear, return 0.
3877 If REG appears more than once, or is used other than in such an address,
3878 return (rtx)1. */
3881 find_use_as_address (x, reg, plusconst)
3882 rtx x;
3883 rtx reg;
3884 HOST_WIDE_INT plusconst;
3886 enum rtx_code code = GET_CODE (x);
3887 const char * const fmt = GET_RTX_FORMAT (code);
3888 int i;
3889 rtx value = 0;
3890 rtx tem;
3892 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
3893 return x;
3895 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
3896 && XEXP (XEXP (x, 0), 0) == reg
3897 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3898 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
3899 return x;
3901 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
3903 /* If REG occurs inside a MEM used in a bit-field reference,
3904 that is unacceptable. */
3905 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
3906 return (rtx) (HOST_WIDE_INT) 1;
3909 if (x == reg)
3910 return (rtx) (HOST_WIDE_INT) 1;
3912 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3914 if (fmt[i] == 'e')
3916 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
3917 if (value == 0)
3918 value = tem;
3919 else if (tem != 0)
3920 return (rtx) (HOST_WIDE_INT) 1;
3922 else if (fmt[i] == 'E')
3924 int j;
3925 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3927 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
3928 if (value == 0)
3929 value = tem;
3930 else if (tem != 0)
3931 return (rtx) (HOST_WIDE_INT) 1;
3936 return value;
3939 /* Write information about registers and basic blocks into FILE.
3940 This is part of making a debugging dump. */
3942 void
3943 dump_regset (r, outf)
3944 regset r;
3945 FILE *outf;
3947 int i;
3948 if (r == NULL)
3950 fputs (" (nil)", outf);
3951 return;
3954 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
3956 fprintf (outf, " %d", i);
3957 if (i < FIRST_PSEUDO_REGISTER)
3958 fprintf (outf, " [%s]",
3959 reg_names[i]);
3963 /* Print a human-reaable representation of R on the standard error
3964 stream. This function is designed to be used from within the
3965 debugger. */
3967 void
3968 debug_regset (r)
3969 regset r;
3971 dump_regset (r, stderr);
3972 putc ('\n', stderr);
3975 /* Dump the rtl into the current debugging dump file, then abort. */
3977 static void
3978 print_rtl_and_abort_fcn (file, line, function)
3979 const char *file;
3980 int line;
3981 const char *function;
3983 if (rtl_dump_file)
3985 print_rtl_with_bb (rtl_dump_file, get_insns ());
3986 fclose (rtl_dump_file);
3989 fancy_abort (file, line, function);
3992 /* Recompute register set/reference counts immediately prior to register
3993 allocation.
3995 This avoids problems with set/reference counts changing to/from values
3996 which have special meanings to the register allocators.
3998 Additionally, the reference counts are the primary component used by the
3999 register allocators to prioritize pseudos for allocation to hard regs.
4000 More accurate reference counts generally lead to better register allocation.
4002 F is the first insn to be scanned.
4004 LOOP_STEP denotes how much loop_depth should be incremented per
4005 loop nesting level in order to increase the ref count more for
4006 references in a loop.
4008 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4009 possibly other information which is used by the register allocators. */
4011 void
4012 recompute_reg_usage (f, loop_step)
4013 rtx f ATTRIBUTE_UNUSED;
4014 int loop_step ATTRIBUTE_UNUSED;
4016 allocate_reg_life_data ();
4017 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4020 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4021 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4022 of the number of registers that died. */
4025 count_or_remove_death_notes (blocks, kill)
4026 sbitmap blocks;
4027 int kill;
4029 int i, count = 0;
4031 for (i = n_basic_blocks - 1; i >= 0; --i)
4033 basic_block bb;
4034 rtx insn;
4036 if (blocks && ! TEST_BIT (blocks, i))
4037 continue;
4039 bb = BASIC_BLOCK (i);
4041 for (insn = bb->head;; insn = NEXT_INSN (insn))
4043 if (INSN_P (insn))
4045 rtx *pprev = &REG_NOTES (insn);
4046 rtx link = *pprev;
4048 while (link)
4050 switch (REG_NOTE_KIND (link))
4052 case REG_DEAD:
4053 if (GET_CODE (XEXP (link, 0)) == REG)
4055 rtx reg = XEXP (link, 0);
4056 int n;
4058 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4059 n = 1;
4060 else
4061 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4062 count += n;
4064 /* Fall through. */
4066 case REG_UNUSED:
4067 if (kill)
4069 rtx next = XEXP (link, 1);
4070 free_EXPR_LIST_node (link);
4071 *pprev = link = next;
4072 break;
4074 /* Fall through. */
4076 default:
4077 pprev = &XEXP (link, 1);
4078 link = *pprev;
4079 break;
4084 if (insn == bb->end)
4085 break;
4089 return count;
4091 /* Clear LOG_LINKS fields of insns in a chain.
4092 Also clear the global_live_at_{start,end} fields of the basic block
4093 structures. */
4095 void
4096 clear_log_links (insns)
4097 rtx insns;
4099 rtx i;
4100 int b;
4102 for (i = insns; i; i = NEXT_INSN (i))
4103 if (INSN_P (i))
4104 LOG_LINKS (i) = 0;
4106 for (b = 0; b < n_basic_blocks; b++)
4108 basic_block bb = BASIC_BLOCK (b);
4110 bb->global_live_at_start = NULL;
4111 bb->global_live_at_end = NULL;
4114 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
4115 EXIT_BLOCK_PTR->global_live_at_start = NULL;
4118 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4119 correspond to the hard registers, if any, set in that map. This
4120 could be done far more efficiently by having all sorts of special-cases
4121 with moving single words, but probably isn't worth the trouble. */
4123 void
4124 reg_set_to_hard_reg_set (to, from)
4125 HARD_REG_SET *to;
4126 bitmap from;
4128 int i;
4130 EXECUTE_IF_SET_IN_BITMAP
4131 (from, 0, i,
4133 if (i >= FIRST_PSEUDO_REGISTER)
4134 return;
4135 SET_HARD_REG_BIT (*to, i);