* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / explow.c
blob533fe57deeb6916a57c2db654befcbf3da333a9a
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "optabs.h"
33 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "recog.h"
37 static rtx break_out_memory_refs PARAMS ((rtx));
38 static void emit_stack_probe PARAMS ((rtx));
41 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
43 HOST_WIDE_INT
44 trunc_int_for_mode (c, mode)
45 HOST_WIDE_INT c;
46 enum machine_mode mode;
48 int width = GET_MODE_BITSIZE (mode);
50 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
51 if (mode == BImode)
52 return c & 1 ? STORE_FLAG_VALUE : 0;
54 /* Sign-extend for the requested mode. */
56 if (width < HOST_BITS_PER_WIDE_INT)
58 HOST_WIDE_INT sign = 1;
59 sign <<= width - 1;
60 c &= (sign << 1) - 1;
61 c ^= sign;
62 c -= sign;
65 return c;
68 /* Return an rtx for the sum of X and the integer C.
70 This function should be used via the `plus_constant' macro. */
72 rtx
73 plus_constant_wide (x, c)
74 rtx x;
75 HOST_WIDE_INT c;
77 RTX_CODE code;
78 rtx y;
79 enum machine_mode mode;
80 rtx tem;
81 int all_constant = 0;
83 if (c == 0)
84 return x;
86 restart:
88 code = GET_CODE (x);
89 mode = GET_MODE (x);
90 y = x;
92 switch (code)
94 case CONST_INT:
95 return GEN_INT (INTVAL (x) + c);
97 case CONST_DOUBLE:
99 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
100 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
101 unsigned HOST_WIDE_INT l2 = c;
102 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
103 unsigned HOST_WIDE_INT lv;
104 HOST_WIDE_INT hv;
106 add_double (l1, h1, l2, h2, &lv, &hv);
108 return immed_double_const (lv, hv, VOIDmode);
111 case MEM:
112 /* If this is a reference to the constant pool, try replacing it with
113 a reference to a new constant. If the resulting address isn't
114 valid, don't return it because we have no way to validize it. */
115 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
116 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
119 = force_const_mem (GET_MODE (x),
120 plus_constant (get_pool_constant (XEXP (x, 0)),
121 c));
122 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
123 return tem;
125 break;
127 case CONST:
128 /* If adding to something entirely constant, set a flag
129 so that we can add a CONST around the result. */
130 x = XEXP (x, 0);
131 all_constant = 1;
132 goto restart;
134 case SYMBOL_REF:
135 case LABEL_REF:
136 all_constant = 1;
137 break;
139 case PLUS:
140 /* The interesting case is adding the integer to a sum.
141 Look for constant term in the sum and combine
142 with C. For an integer constant term, we make a combined
143 integer. For a constant term that is not an explicit integer,
144 we cannot really combine, but group them together anyway.
146 Restart or use a recursive call in case the remaining operand is
147 something that we handle specially, such as a SYMBOL_REF.
149 We may not immediately return from the recursive call here, lest
150 all_constant gets lost. */
152 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
154 c += INTVAL (XEXP (x, 1));
156 if (GET_MODE (x) != VOIDmode)
157 c = trunc_int_for_mode (c, GET_MODE (x));
159 x = XEXP (x, 0);
160 goto restart;
162 else if (CONSTANT_P (XEXP (x, 1)))
164 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
165 c = 0;
167 else if (find_constant_term_loc (&y))
169 /* We need to be careful since X may be shared and we can't
170 modify it in place. */
171 rtx copy = copy_rtx (x);
172 rtx *const_loc = find_constant_term_loc (&copy);
174 *const_loc = plus_constant (*const_loc, c);
175 x = copy;
176 c = 0;
178 break;
180 default:
181 break;
184 if (c != 0)
185 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
187 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
188 return x;
189 else if (all_constant)
190 return gen_rtx_CONST (mode, x);
191 else
192 return x;
195 /* If X is a sum, return a new sum like X but lacking any constant terms.
196 Add all the removed constant terms into *CONSTPTR.
197 X itself is not altered. The result != X if and only if
198 it is not isomorphic to X. */
201 eliminate_constant_term (x, constptr)
202 rtx x;
203 rtx *constptr;
205 rtx x0, x1;
206 rtx tem;
208 if (GET_CODE (x) != PLUS)
209 return x;
211 /* First handle constants appearing at this level explicitly. */
212 if (GET_CODE (XEXP (x, 1)) == CONST_INT
213 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214 XEXP (x, 1)))
215 && GET_CODE (tem) == CONST_INT)
217 *constptr = tem;
218 return eliminate_constant_term (XEXP (x, 0), constptr);
221 tem = const0_rtx;
222 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226 *constptr, tem))
227 && GET_CODE (tem) == CONST_INT)
229 *constptr = tem;
230 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 return x;
236 /* Returns the insn that next references REG after INSN, or 0
237 if REG is clobbered before next referenced or we cannot find
238 an insn that references REG in a straight-line piece of code. */
241 find_next_ref (reg, insn)
242 rtx reg;
243 rtx insn;
245 rtx next;
247 for (insn = NEXT_INSN (insn); insn; insn = next)
249 next = NEXT_INSN (insn);
250 if (GET_CODE (insn) == NOTE)
251 continue;
252 if (GET_CODE (insn) == CODE_LABEL
253 || GET_CODE (insn) == BARRIER)
254 return 0;
255 if (GET_CODE (insn) == INSN
256 || GET_CODE (insn) == JUMP_INSN
257 || GET_CODE (insn) == CALL_INSN)
259 if (reg_set_p (reg, insn))
260 return 0;
261 if (reg_mentioned_p (reg, PATTERN (insn)))
262 return insn;
263 if (GET_CODE (insn) == JUMP_INSN)
265 if (any_uncondjump_p (insn))
266 next = JUMP_LABEL (insn);
267 else
268 return 0;
270 if (GET_CODE (insn) == CALL_INSN
271 && REGNO (reg) < FIRST_PSEUDO_REGISTER
272 && call_used_regs[REGNO (reg)])
273 return 0;
275 else
276 abort ();
278 return 0;
281 /* Return an rtx for the size in bytes of the value of EXP. */
284 expr_size (exp)
285 tree exp;
287 tree size;
289 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
290 && DECL_SIZE_UNIT (exp) != 0)
291 size = DECL_SIZE_UNIT (exp);
292 else
293 size = size_in_bytes (TREE_TYPE (exp));
295 if (TREE_CODE (size) != INTEGER_CST
296 && contains_placeholder_p (size))
297 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
299 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
300 EXPAND_MEMORY_USE_BAD);
303 /* Return a copy of X in which all memory references
304 and all constants that involve symbol refs
305 have been replaced with new temporary registers.
306 Also emit code to load the memory locations and constants
307 into those registers.
309 If X contains no such constants or memory references,
310 X itself (not a copy) is returned.
312 If a constant is found in the address that is not a legitimate constant
313 in an insn, it is left alone in the hope that it might be valid in the
314 address.
316 X may contain no arithmetic except addition, subtraction and multiplication.
317 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
319 static rtx
320 break_out_memory_refs (x)
321 rtx x;
323 if (GET_CODE (x) == MEM
324 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
325 && GET_MODE (x) != VOIDmode))
326 x = force_reg (GET_MODE (x), x);
327 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
328 || GET_CODE (x) == MULT)
330 rtx op0 = break_out_memory_refs (XEXP (x, 0));
331 rtx op1 = break_out_memory_refs (XEXP (x, 1));
333 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
334 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
337 return x;
340 #ifdef POINTERS_EXTEND_UNSIGNED
342 /* Given X, a memory address in ptr_mode, convert it to an address
343 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
344 the fact that pointers are not allowed to overflow by commuting arithmetic
345 operations over conversions so that address arithmetic insns can be
346 used. */
349 convert_memory_address (to_mode, x)
350 enum machine_mode to_mode;
351 rtx x;
353 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
354 rtx temp;
356 /* Here we handle some special cases. If none of them apply, fall through
357 to the default case. */
358 switch (GET_CODE (x))
360 case CONST_INT:
361 case CONST_DOUBLE:
362 return x;
364 case SUBREG:
365 if (POINTERS_EXTEND_UNSIGNED >= 0
366 && GET_MODE (SUBREG_REG (x)) == to_mode)
367 return SUBREG_REG (x);
368 break;
370 case LABEL_REF:
371 if (POINTERS_EXTEND_UNSIGNED >= 0)
373 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
374 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
375 return temp;
377 break;
379 case SYMBOL_REF:
380 if (POINTERS_EXTEND_UNSIGNED >= 0)
382 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
383 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
384 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
385 STRING_POOL_ADDRESS_P (temp) = STRING_POOL_ADDRESS_P (x);
386 return temp;
388 break;
390 case CONST:
391 if (POINTERS_EXTEND_UNSIGNED >= 0)
392 return gen_rtx_CONST (to_mode,
393 convert_memory_address (to_mode, XEXP (x, 0)));
394 break;
396 case PLUS:
397 case MULT:
398 /* For addition the second operand is a small constant, we can safely
399 permute the conversion and addition operation. We can always safely
400 permute them if we are making the address narrower. In addition,
401 always permute the operations if this is a constant. */
402 if (POINTERS_EXTEND_UNSIGNED >= 0
403 && (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
404 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
405 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
406 || CONSTANT_P (XEXP (x, 0))))))
407 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
408 convert_memory_address (to_mode, XEXP (x, 0)),
409 convert_memory_address (to_mode, XEXP (x, 1)));
410 break;
412 default:
413 break;
416 return convert_modes (to_mode, from_mode,
417 x, POINTERS_EXTEND_UNSIGNED);
419 #endif
421 /* Given a memory address or facsimile X, construct a new address,
422 currently equivalent, that is stable: future stores won't change it.
424 X must be composed of constants, register and memory references
425 combined with addition, subtraction and multiplication:
426 in other words, just what you can get from expand_expr if sum_ok is 1.
428 Works by making copies of all regs and memory locations used
429 by X and combining them the same way X does.
430 You could also stabilize the reference to this address
431 by copying the address to a register with copy_to_reg;
432 but then you wouldn't get indexed addressing in the reference. */
435 copy_all_regs (x)
436 rtx x;
438 if (GET_CODE (x) == REG)
440 if (REGNO (x) != FRAME_POINTER_REGNUM
441 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
442 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
443 #endif
445 x = copy_to_reg (x);
447 else if (GET_CODE (x) == MEM)
448 x = copy_to_reg (x);
449 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
450 || GET_CODE (x) == MULT)
452 rtx op0 = copy_all_regs (XEXP (x, 0));
453 rtx op1 = copy_all_regs (XEXP (x, 1));
454 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
455 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
457 return x;
460 /* Return something equivalent to X but valid as a memory address
461 for something of mode MODE. When X is not itself valid, this
462 works by copying X or subexpressions of it into registers. */
465 memory_address (mode, x)
466 enum machine_mode mode;
467 rtx x;
469 rtx oldx = x;
471 if (GET_CODE (x) == ADDRESSOF)
472 return x;
474 #ifdef POINTERS_EXTEND_UNSIGNED
475 if (GET_MODE (x) == ptr_mode)
476 x = convert_memory_address (Pmode, x);
477 #endif
479 /* By passing constant addresses thru registers
480 we get a chance to cse them. */
481 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
482 x = force_reg (Pmode, x);
484 /* Accept a QUEUED that refers to a REG
485 even though that isn't a valid address.
486 On attempting to put this in an insn we will call protect_from_queue
487 which will turn it into a REG, which is valid. */
488 else if (GET_CODE (x) == QUEUED
489 && GET_CODE (QUEUED_VAR (x)) == REG)
492 /* We get better cse by rejecting indirect addressing at this stage.
493 Let the combiner create indirect addresses where appropriate.
494 For now, generate the code so that the subexpressions useful to share
495 are visible. But not if cse won't be done! */
496 else
498 if (! cse_not_expected && GET_CODE (x) != REG)
499 x = break_out_memory_refs (x);
501 /* At this point, any valid address is accepted. */
502 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
504 /* If it was valid before but breaking out memory refs invalidated it,
505 use it the old way. */
506 if (memory_address_p (mode, oldx))
507 goto win2;
509 /* Perform machine-dependent transformations on X
510 in certain cases. This is not necessary since the code
511 below can handle all possible cases, but machine-dependent
512 transformations can make better code. */
513 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
515 /* PLUS and MULT can appear in special ways
516 as the result of attempts to make an address usable for indexing.
517 Usually they are dealt with by calling force_operand, below.
518 But a sum containing constant terms is special
519 if removing them makes the sum a valid address:
520 then we generate that address in a register
521 and index off of it. We do this because it often makes
522 shorter code, and because the addresses thus generated
523 in registers often become common subexpressions. */
524 if (GET_CODE (x) == PLUS)
526 rtx constant_term = const0_rtx;
527 rtx y = eliminate_constant_term (x, &constant_term);
528 if (constant_term == const0_rtx
529 || ! memory_address_p (mode, y))
530 x = force_operand (x, NULL_RTX);
531 else
533 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
534 if (! memory_address_p (mode, y))
535 x = force_operand (x, NULL_RTX);
536 else
537 x = y;
541 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
542 x = force_operand (x, NULL_RTX);
544 /* If we have a register that's an invalid address,
545 it must be a hard reg of the wrong class. Copy it to a pseudo. */
546 else if (GET_CODE (x) == REG)
547 x = copy_to_reg (x);
549 /* Last resort: copy the value to a register, since
550 the register is a valid address. */
551 else
552 x = force_reg (Pmode, x);
554 goto done;
556 win2:
557 x = oldx;
558 win:
559 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
560 /* Don't copy an addr via a reg if it is one of our stack slots. */
561 && ! (GET_CODE (x) == PLUS
562 && (XEXP (x, 0) == virtual_stack_vars_rtx
563 || XEXP (x, 0) == virtual_incoming_args_rtx)))
565 if (general_operand (x, Pmode))
566 x = force_reg (Pmode, x);
567 else
568 x = force_operand (x, NULL_RTX);
572 done:
574 /* If we didn't change the address, we are done. Otherwise, mark
575 a reg as a pointer if we have REG or REG + CONST_INT. */
576 if (oldx == x)
577 return x;
578 else if (GET_CODE (x) == REG)
579 mark_reg_pointer (x, BITS_PER_UNIT);
580 else if (GET_CODE (x) == PLUS
581 && GET_CODE (XEXP (x, 0)) == REG
582 && GET_CODE (XEXP (x, 1)) == CONST_INT)
583 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
585 /* OLDX may have been the address on a temporary. Update the address
586 to indicate that X is now used. */
587 update_temp_slot_address (oldx, x);
589 return x;
592 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
595 memory_address_noforce (mode, x)
596 enum machine_mode mode;
597 rtx x;
599 int ambient_force_addr = flag_force_addr;
600 rtx val;
602 flag_force_addr = 0;
603 val = memory_address (mode, x);
604 flag_force_addr = ambient_force_addr;
605 return val;
608 /* Convert a mem ref into one with a valid memory address.
609 Pass through anything else unchanged. */
612 validize_mem (ref)
613 rtx ref;
615 if (GET_CODE (ref) != MEM)
616 return ref;
617 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
618 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
619 return ref;
621 /* Don't alter REF itself, since that is probably a stack slot. */
622 return replace_equiv_address (ref, XEXP (ref, 0));
625 /* Given REF, either a MEM or a REG, and T, either the type of X or
626 the expression corresponding to REF, set RTX_UNCHANGING_P if
627 appropriate. */
629 void
630 maybe_set_unchanging (ref, t)
631 rtx ref;
632 tree t;
634 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
635 initialization is only executed once, or whose initializer always
636 has the same value. Currently we simplify this to PARM_DECLs in the
637 first case, and decls with TREE_CONSTANT initializers in the second. */
638 if ((TREE_READONLY (t) && DECL_P (t)
639 && (TREE_CODE (t) == PARM_DECL
640 || DECL_INITIAL (t) == NULL_TREE
641 || TREE_CONSTANT (DECL_INITIAL (t))))
642 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
643 RTX_UNCHANGING_P (ref) = 1;
646 /* Return a modified copy of X with its memory address copied
647 into a temporary register to protect it from side effects.
648 If X is not a MEM, it is returned unchanged (and not copied).
649 Perhaps even if it is a MEM, if there is no need to change it. */
652 stabilize (x)
653 rtx x;
656 if (GET_CODE (x) != MEM
657 || ! rtx_unstable_p (XEXP (x, 0)))
658 return x;
660 return
661 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
664 /* Copy the value or contents of X to a new temp reg and return that reg. */
667 copy_to_reg (x)
668 rtx x;
670 rtx temp = gen_reg_rtx (GET_MODE (x));
672 /* If not an operand, must be an address with PLUS and MULT so
673 do the computation. */
674 if (! general_operand (x, VOIDmode))
675 x = force_operand (x, temp);
677 if (x != temp)
678 emit_move_insn (temp, x);
680 return temp;
683 /* Like copy_to_reg but always give the new register mode Pmode
684 in case X is a constant. */
687 copy_addr_to_reg (x)
688 rtx x;
690 return copy_to_mode_reg (Pmode, x);
693 /* Like copy_to_reg but always give the new register mode MODE
694 in case X is a constant. */
697 copy_to_mode_reg (mode, x)
698 enum machine_mode mode;
699 rtx x;
701 rtx temp = gen_reg_rtx (mode);
703 /* If not an operand, must be an address with PLUS and MULT so
704 do the computation. */
705 if (! general_operand (x, VOIDmode))
706 x = force_operand (x, temp);
708 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
709 abort ();
710 if (x != temp)
711 emit_move_insn (temp, x);
712 return temp;
715 /* Load X into a register if it is not already one.
716 Use mode MODE for the register.
717 X should be valid for mode MODE, but it may be a constant which
718 is valid for all integer modes; that's why caller must specify MODE.
720 The caller must not alter the value in the register we return,
721 since we mark it as a "constant" register. */
724 force_reg (mode, x)
725 enum machine_mode mode;
726 rtx x;
728 rtx temp, insn, set;
730 if (GET_CODE (x) == REG)
731 return x;
733 temp = gen_reg_rtx (mode);
735 if (! general_operand (x, mode))
736 x = force_operand (x, NULL_RTX);
738 insn = emit_move_insn (temp, x);
740 /* Let optimizers know that TEMP's value never changes
741 and that X can be substituted for it. Don't get confused
742 if INSN set something else (such as a SUBREG of TEMP). */
743 if (CONSTANT_P (x)
744 && (set = single_set (insn)) != 0
745 && SET_DEST (set) == temp)
747 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
749 if (note)
750 XEXP (note, 0) = x;
751 else
752 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
754 return temp;
757 /* If X is a memory ref, copy its contents to a new temp reg and return
758 that reg. Otherwise, return X. */
761 force_not_mem (x)
762 rtx x;
764 rtx temp;
766 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
767 return x;
769 temp = gen_reg_rtx (GET_MODE (x));
770 emit_move_insn (temp, x);
771 return temp;
774 /* Copy X to TARGET (if it's nonzero and a reg)
775 or to a new temp reg and return that reg.
776 MODE is the mode to use for X in case it is a constant. */
779 copy_to_suggested_reg (x, target, mode)
780 rtx x, target;
781 enum machine_mode mode;
783 rtx temp;
785 if (target && GET_CODE (target) == REG)
786 temp = target;
787 else
788 temp = gen_reg_rtx (mode);
790 emit_move_insn (temp, x);
791 return temp;
794 /* Return the mode to use to store a scalar of TYPE and MODE.
795 PUNSIGNEDP points to the signedness of the type and may be adjusted
796 to show what signedness to use on extension operations.
798 FOR_CALL is non-zero if this call is promoting args for a call. */
800 enum machine_mode
801 promote_mode (type, mode, punsignedp, for_call)
802 tree type;
803 enum machine_mode mode;
804 int *punsignedp;
805 int for_call ATTRIBUTE_UNUSED;
807 enum tree_code code = TREE_CODE (type);
808 int unsignedp = *punsignedp;
810 #ifdef PROMOTE_FOR_CALL_ONLY
811 if (! for_call)
812 return mode;
813 #endif
815 switch (code)
817 #ifdef PROMOTE_MODE
818 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
819 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
820 PROMOTE_MODE (mode, unsignedp, type);
821 break;
822 #endif
824 #ifdef POINTERS_EXTEND_UNSIGNED
825 case REFERENCE_TYPE:
826 case POINTER_TYPE:
827 mode = Pmode;
828 unsignedp = POINTERS_EXTEND_UNSIGNED;
829 break;
830 #endif
832 default:
833 break;
836 *punsignedp = unsignedp;
837 return mode;
840 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
841 This pops when ADJUST is positive. ADJUST need not be constant. */
843 void
844 adjust_stack (adjust)
845 rtx adjust;
847 rtx temp;
848 adjust = protect_from_queue (adjust, 0);
850 if (adjust == const0_rtx)
851 return;
853 /* We expect all variable sized adjustments to be multiple of
854 PREFERRED_STACK_BOUNDARY. */
855 if (GET_CODE (adjust) == CONST_INT)
856 stack_pointer_delta -= INTVAL (adjust);
858 temp = expand_binop (Pmode,
859 #ifdef STACK_GROWS_DOWNWARD
860 add_optab,
861 #else
862 sub_optab,
863 #endif
864 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
865 OPTAB_LIB_WIDEN);
867 if (temp != stack_pointer_rtx)
868 emit_move_insn (stack_pointer_rtx, temp);
871 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
872 This pushes when ADJUST is positive. ADJUST need not be constant. */
874 void
875 anti_adjust_stack (adjust)
876 rtx adjust;
878 rtx temp;
879 adjust = protect_from_queue (adjust, 0);
881 if (adjust == const0_rtx)
882 return;
884 /* We expect all variable sized adjustments to be multiple of
885 PREFERRED_STACK_BOUNDARY. */
886 if (GET_CODE (adjust) == CONST_INT)
887 stack_pointer_delta += INTVAL (adjust);
889 temp = expand_binop (Pmode,
890 #ifdef STACK_GROWS_DOWNWARD
891 sub_optab,
892 #else
893 add_optab,
894 #endif
895 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
896 OPTAB_LIB_WIDEN);
898 if (temp != stack_pointer_rtx)
899 emit_move_insn (stack_pointer_rtx, temp);
902 /* Round the size of a block to be pushed up to the boundary required
903 by this machine. SIZE is the desired size, which need not be constant. */
906 round_push (size)
907 rtx size;
909 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
910 if (align == 1)
911 return size;
912 if (GET_CODE (size) == CONST_INT)
914 int new = (INTVAL (size) + align - 1) / align * align;
915 if (INTVAL (size) != new)
916 size = GEN_INT (new);
918 else
920 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
921 but we know it can't. So add ourselves and then do
922 TRUNC_DIV_EXPR. */
923 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
924 NULL_RTX, 1, OPTAB_LIB_WIDEN);
925 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
926 NULL_RTX, 1);
927 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
929 return size;
932 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
933 to a previously-created save area. If no save area has been allocated,
934 this function will allocate one. If a save area is specified, it
935 must be of the proper mode.
937 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
938 are emitted at the current position. */
940 void
941 emit_stack_save (save_level, psave, after)
942 enum save_level save_level;
943 rtx *psave;
944 rtx after;
946 rtx sa = *psave;
947 /* The default is that we use a move insn and save in a Pmode object. */
948 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
949 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
951 /* See if this machine has anything special to do for this kind of save. */
952 switch (save_level)
954 #ifdef HAVE_save_stack_block
955 case SAVE_BLOCK:
956 if (HAVE_save_stack_block)
957 fcn = gen_save_stack_block;
958 break;
959 #endif
960 #ifdef HAVE_save_stack_function
961 case SAVE_FUNCTION:
962 if (HAVE_save_stack_function)
963 fcn = gen_save_stack_function;
964 break;
965 #endif
966 #ifdef HAVE_save_stack_nonlocal
967 case SAVE_NONLOCAL:
968 if (HAVE_save_stack_nonlocal)
969 fcn = gen_save_stack_nonlocal;
970 break;
971 #endif
972 default:
973 break;
976 /* If there is no save area and we have to allocate one, do so. Otherwise
977 verify the save area is the proper mode. */
979 if (sa == 0)
981 if (mode != VOIDmode)
983 if (save_level == SAVE_NONLOCAL)
984 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
985 else
986 *psave = sa = gen_reg_rtx (mode);
989 else
991 if (mode == VOIDmode || GET_MODE (sa) != mode)
992 abort ();
995 if (after)
997 rtx seq;
999 start_sequence ();
1000 /* We must validize inside the sequence, to ensure that any instructions
1001 created by the validize call also get moved to the right place. */
1002 if (sa != 0)
1003 sa = validize_mem (sa);
1004 emit_insn (fcn (sa, stack_pointer_rtx));
1005 seq = gen_sequence ();
1006 end_sequence ();
1007 emit_insn_after (seq, after);
1009 else
1011 if (sa != 0)
1012 sa = validize_mem (sa);
1013 emit_insn (fcn (sa, stack_pointer_rtx));
1017 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1018 area made by emit_stack_save. If it is zero, we have nothing to do.
1020 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1021 current position. */
1023 void
1024 emit_stack_restore (save_level, sa, after)
1025 enum save_level save_level;
1026 rtx after;
1027 rtx sa;
1029 /* The default is that we use a move insn. */
1030 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1032 /* See if this machine has anything special to do for this kind of save. */
1033 switch (save_level)
1035 #ifdef HAVE_restore_stack_block
1036 case SAVE_BLOCK:
1037 if (HAVE_restore_stack_block)
1038 fcn = gen_restore_stack_block;
1039 break;
1040 #endif
1041 #ifdef HAVE_restore_stack_function
1042 case SAVE_FUNCTION:
1043 if (HAVE_restore_stack_function)
1044 fcn = gen_restore_stack_function;
1045 break;
1046 #endif
1047 #ifdef HAVE_restore_stack_nonlocal
1048 case SAVE_NONLOCAL:
1049 if (HAVE_restore_stack_nonlocal)
1050 fcn = gen_restore_stack_nonlocal;
1051 break;
1052 #endif
1053 default:
1054 break;
1057 if (sa != 0)
1058 sa = validize_mem (sa);
1060 if (after)
1062 rtx seq;
1064 start_sequence ();
1065 emit_insn (fcn (stack_pointer_rtx, sa));
1066 seq = gen_sequence ();
1067 end_sequence ();
1068 emit_insn_after (seq, after);
1070 else
1071 emit_insn (fcn (stack_pointer_rtx, sa));
1074 #ifdef SETJMP_VIA_SAVE_AREA
1075 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1076 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1077 platforms, the dynamic stack space used can corrupt the original
1078 frame, thus causing a crash if a longjmp unwinds to it. */
1080 void
1081 optimize_save_area_alloca (insns)
1082 rtx insns;
1084 rtx insn;
1086 for (insn = insns; insn; insn = NEXT_INSN(insn))
1088 rtx note;
1090 if (GET_CODE (insn) != INSN)
1091 continue;
1093 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1095 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1096 continue;
1098 if (!current_function_calls_setjmp)
1100 rtx pat = PATTERN (insn);
1102 /* If we do not see the note in a pattern matching
1103 these precise characteristics, we did something
1104 entirely wrong in allocate_dynamic_stack_space.
1106 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1107 was defined on a machine where stacks grow towards higher
1108 addresses.
1110 Right now only supported port with stack that grow upward
1111 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1112 if (GET_CODE (pat) != SET
1113 || SET_DEST (pat) != stack_pointer_rtx
1114 || GET_CODE (SET_SRC (pat)) != MINUS
1115 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1116 abort ();
1118 /* This will now be transformed into a (set REG REG)
1119 so we can just blow away all the other notes. */
1120 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1121 REG_NOTES (insn) = NULL_RTX;
1123 else
1125 /* setjmp was called, we must remove the REG_SAVE_AREA
1126 note so that later passes do not get confused by its
1127 presence. */
1128 if (note == REG_NOTES (insn))
1130 REG_NOTES (insn) = XEXP (note, 1);
1132 else
1134 rtx srch;
1136 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1137 if (XEXP (srch, 1) == note)
1138 break;
1140 if (srch == NULL_RTX)
1141 abort();
1143 XEXP (srch, 1) = XEXP (note, 1);
1146 /* Once we've seen the note of interest, we need not look at
1147 the rest of them. */
1148 break;
1152 #endif /* SETJMP_VIA_SAVE_AREA */
1154 /* Return an rtx representing the address of an area of memory dynamically
1155 pushed on the stack. This region of memory is always aligned to
1156 a multiple of BIGGEST_ALIGNMENT.
1158 Any required stack pointer alignment is preserved.
1160 SIZE is an rtx representing the size of the area.
1161 TARGET is a place in which the address can be placed.
1163 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1166 allocate_dynamic_stack_space (size, target, known_align)
1167 rtx size;
1168 rtx target;
1169 int known_align;
1171 #ifdef SETJMP_VIA_SAVE_AREA
1172 rtx setjmpless_size = NULL_RTX;
1173 #endif
1175 /* If we're asking for zero bytes, it doesn't matter what we point
1176 to since we can't dereference it. But return a reasonable
1177 address anyway. */
1178 if (size == const0_rtx)
1179 return virtual_stack_dynamic_rtx;
1181 /* Otherwise, show we're calling alloca or equivalent. */
1182 current_function_calls_alloca = 1;
1184 /* Ensure the size is in the proper mode. */
1185 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1186 size = convert_to_mode (Pmode, size, 1);
1188 /* We can't attempt to minimize alignment necessary, because we don't
1189 know the final value of preferred_stack_boundary yet while executing
1190 this code. */
1191 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1193 /* We will need to ensure that the address we return is aligned to
1194 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1195 always know its final value at this point in the compilation (it
1196 might depend on the size of the outgoing parameter lists, for
1197 example), so we must align the value to be returned in that case.
1198 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1199 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1200 We must also do an alignment operation on the returned value if
1201 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1203 If we have to align, we must leave space in SIZE for the hole
1204 that might result from the alignment operation. */
1206 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1207 #define MUST_ALIGN 1
1208 #else
1209 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1210 #endif
1212 if (MUST_ALIGN)
1213 size
1214 = force_operand (plus_constant (size,
1215 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1216 NULL_RTX);
1218 #ifdef SETJMP_VIA_SAVE_AREA
1219 /* If setjmp restores regs from a save area in the stack frame,
1220 avoid clobbering the reg save area. Note that the offset of
1221 virtual_incoming_args_rtx includes the preallocated stack args space.
1222 It would be no problem to clobber that, but it's on the wrong side
1223 of the old save area. */
1225 rtx dynamic_offset
1226 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1227 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1229 if (!current_function_calls_setjmp)
1231 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1233 /* See optimize_save_area_alloca to understand what is being
1234 set up here. */
1236 /* ??? Code below assumes that the save area needs maximal
1237 alignment. This constraint may be too strong. */
1238 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1239 abort ();
1241 if (GET_CODE (size) == CONST_INT)
1243 HOST_WIDE_INT new = INTVAL (size) / align * align;
1245 if (INTVAL (size) != new)
1246 setjmpless_size = GEN_INT (new);
1247 else
1248 setjmpless_size = size;
1250 else
1252 /* Since we know overflow is not possible, we avoid using
1253 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1254 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1255 GEN_INT (align), NULL_RTX, 1);
1256 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1257 GEN_INT (align), NULL_RTX, 1);
1259 /* Our optimization works based upon being able to perform a simple
1260 transformation of this RTL into a (set REG REG) so make sure things
1261 did in fact end up in a REG. */
1262 if (!register_operand (setjmpless_size, Pmode))
1263 setjmpless_size = force_reg (Pmode, setjmpless_size);
1266 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1267 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1269 #endif /* SETJMP_VIA_SAVE_AREA */
1271 /* Round the size to a multiple of the required stack alignment.
1272 Since the stack if presumed to be rounded before this allocation,
1273 this will maintain the required alignment.
1275 If the stack grows downward, we could save an insn by subtracting
1276 SIZE from the stack pointer and then aligning the stack pointer.
1277 The problem with this is that the stack pointer may be unaligned
1278 between the execution of the subtraction and alignment insns and
1279 some machines do not allow this. Even on those that do, some
1280 signal handlers malfunction if a signal should occur between those
1281 insns. Since this is an extremely rare event, we have no reliable
1282 way of knowing which systems have this problem. So we avoid even
1283 momentarily mis-aligning the stack. */
1285 /* If we added a variable amount to SIZE,
1286 we can no longer assume it is aligned. */
1287 #if !defined (SETJMP_VIA_SAVE_AREA)
1288 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1289 #endif
1290 size = round_push (size);
1292 do_pending_stack_adjust ();
1294 /* We ought to be called always on the toplevel and stack ought to be aligned
1295 propertly. */
1296 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1297 abort ();
1299 /* If needed, check that we have the required amount of stack. Take into
1300 account what has already been checked. */
1301 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1302 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1304 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1305 if (target == 0 || GET_CODE (target) != REG
1306 || REGNO (target) < FIRST_PSEUDO_REGISTER
1307 || GET_MODE (target) != Pmode)
1308 target = gen_reg_rtx (Pmode);
1310 mark_reg_pointer (target, known_align);
1312 /* Perform the required allocation from the stack. Some systems do
1313 this differently than simply incrementing/decrementing from the
1314 stack pointer, such as acquiring the space by calling malloc(). */
1315 #ifdef HAVE_allocate_stack
1316 if (HAVE_allocate_stack)
1318 enum machine_mode mode = STACK_SIZE_MODE;
1319 insn_operand_predicate_fn pred;
1321 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
1322 if (pred && ! ((*pred) (target, Pmode)))
1323 #ifdef POINTERS_EXTEND_UNSIGNED
1324 target = convert_memory_address (Pmode, target);
1325 #else
1326 target = copy_to_mode_reg (Pmode, target);
1327 #endif
1329 if (mode == VOIDmode)
1330 mode = Pmode;
1332 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1333 if (pred && ! ((*pred) (size, mode)))
1334 size = copy_to_mode_reg (mode, size);
1336 emit_insn (gen_allocate_stack (target, size));
1338 else
1339 #endif
1341 #ifndef STACK_GROWS_DOWNWARD
1342 emit_move_insn (target, virtual_stack_dynamic_rtx);
1343 #endif
1345 /* Check stack bounds if necessary. */
1346 if (current_function_limit_stack)
1348 rtx available;
1349 rtx space_available = gen_label_rtx ();
1350 #ifdef STACK_GROWS_DOWNWARD
1351 available = expand_binop (Pmode, sub_optab,
1352 stack_pointer_rtx, stack_limit_rtx,
1353 NULL_RTX, 1, OPTAB_WIDEN);
1354 #else
1355 available = expand_binop (Pmode, sub_optab,
1356 stack_limit_rtx, stack_pointer_rtx,
1357 NULL_RTX, 1, OPTAB_WIDEN);
1358 #endif
1359 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1360 0, space_available);
1361 #ifdef HAVE_trap
1362 if (HAVE_trap)
1363 emit_insn (gen_trap ());
1364 else
1365 #endif
1366 error ("stack limits not supported on this target");
1367 emit_barrier ();
1368 emit_label (space_available);
1371 anti_adjust_stack (size);
1372 #ifdef SETJMP_VIA_SAVE_AREA
1373 if (setjmpless_size != NULL_RTX)
1375 rtx note_target = get_last_insn ();
1377 REG_NOTES (note_target)
1378 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1379 REG_NOTES (note_target));
1381 #endif /* SETJMP_VIA_SAVE_AREA */
1383 #ifdef STACK_GROWS_DOWNWARD
1384 emit_move_insn (target, virtual_stack_dynamic_rtx);
1385 #endif
1388 if (MUST_ALIGN)
1390 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1391 but we know it can't. So add ourselves and then do
1392 TRUNC_DIV_EXPR. */
1393 target = expand_binop (Pmode, add_optab, target,
1394 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1395 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1396 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1397 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1398 NULL_RTX, 1);
1399 target = expand_mult (Pmode, target,
1400 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1401 NULL_RTX, 1);
1404 /* Some systems require a particular insn to refer to the stack
1405 to make the pages exist. */
1406 #ifdef HAVE_probe
1407 if (HAVE_probe)
1408 emit_insn (gen_probe ());
1409 #endif
1411 /* Record the new stack level for nonlocal gotos. */
1412 if (nonlocal_goto_handler_slots != 0)
1413 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1415 return target;
1418 /* A front end may want to override GCC's stack checking by providing a
1419 run-time routine to call to check the stack, so provide a mechanism for
1420 calling that routine. */
1422 static rtx stack_check_libfunc;
1424 void
1425 set_stack_check_libfunc (libfunc)
1426 rtx libfunc;
1428 stack_check_libfunc = libfunc;
1431 /* Emit one stack probe at ADDRESS, an address within the stack. */
1433 static void
1434 emit_stack_probe (address)
1435 rtx address;
1437 rtx memref = gen_rtx_MEM (word_mode, address);
1439 MEM_VOLATILE_P (memref) = 1;
1441 if (STACK_CHECK_PROBE_LOAD)
1442 emit_move_insn (gen_reg_rtx (word_mode), memref);
1443 else
1444 emit_move_insn (memref, const0_rtx);
1447 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1448 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1449 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1450 subtract from the stack. If SIZE is constant, this is done
1451 with a fixed number of probes. Otherwise, we must make a loop. */
1453 #ifdef STACK_GROWS_DOWNWARD
1454 #define STACK_GROW_OP MINUS
1455 #else
1456 #define STACK_GROW_OP PLUS
1457 #endif
1459 void
1460 probe_stack_range (first, size)
1461 HOST_WIDE_INT first;
1462 rtx size;
1464 /* First see if the front end has set up a function for us to call to
1465 check the stack. */
1466 if (stack_check_libfunc != 0)
1468 rtx addr = memory_address (QImode,
1469 gen_rtx (STACK_GROW_OP, Pmode,
1470 stack_pointer_rtx,
1471 plus_constant (size, first)));
1473 #ifdef POINTERS_EXTEND_UNSIGNED
1474 if (GET_MODE (addr) != ptr_mode)
1475 addr = convert_memory_address (ptr_mode, addr);
1476 #endif
1478 emit_library_call (stack_check_libfunc, 0, VOIDmode, 1, addr,
1479 ptr_mode);
1482 /* Next see if we have an insn to check the stack. Use it if so. */
1483 #ifdef HAVE_check_stack
1484 else if (HAVE_check_stack)
1486 insn_operand_predicate_fn pred;
1487 rtx last_addr
1488 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1489 stack_pointer_rtx,
1490 plus_constant (size, first)),
1491 NULL_RTX);
1493 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1494 if (pred && ! ((*pred) (last_addr, Pmode)))
1495 last_addr = copy_to_mode_reg (Pmode, last_addr);
1497 emit_insn (gen_check_stack (last_addr));
1499 #endif
1501 /* If we have to generate explicit probes, see if we have a constant
1502 small number of them to generate. If so, that's the easy case. */
1503 else if (GET_CODE (size) == CONST_INT
1504 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1506 HOST_WIDE_INT offset;
1508 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1509 for values of N from 1 until it exceeds LAST. If only one
1510 probe is needed, this will not generate any code. Then probe
1511 at LAST. */
1512 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1513 offset < INTVAL (size);
1514 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1515 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1516 stack_pointer_rtx,
1517 GEN_INT (offset)));
1519 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1520 stack_pointer_rtx,
1521 plus_constant (size, first)));
1524 /* In the variable case, do the same as above, but in a loop. We emit loop
1525 notes so that loop optimization can be done. */
1526 else
1528 rtx test_addr
1529 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1530 stack_pointer_rtx,
1531 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1532 NULL_RTX);
1533 rtx last_addr
1534 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1535 stack_pointer_rtx,
1536 plus_constant (size, first)),
1537 NULL_RTX);
1538 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1539 rtx loop_lab = gen_label_rtx ();
1540 rtx test_lab = gen_label_rtx ();
1541 rtx end_lab = gen_label_rtx ();
1542 rtx temp;
1544 if (GET_CODE (test_addr) != REG
1545 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1546 test_addr = force_reg (Pmode, test_addr);
1548 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1549 emit_jump (test_lab);
1551 emit_label (loop_lab);
1552 emit_stack_probe (test_addr);
1554 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1556 #ifdef STACK_GROWS_DOWNWARD
1557 #define CMP_OPCODE GTU
1558 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1559 1, OPTAB_WIDEN);
1560 #else
1561 #define CMP_OPCODE LTU
1562 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1563 1, OPTAB_WIDEN);
1564 #endif
1566 if (temp != test_addr)
1567 abort ();
1569 emit_label (test_lab);
1570 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1571 NULL_RTX, Pmode, 1, 0, loop_lab);
1572 emit_jump (end_lab);
1573 emit_note (NULL, NOTE_INSN_LOOP_END);
1574 emit_label (end_lab);
1576 emit_stack_probe (last_addr);
1580 /* Return an rtx representing the register or memory location
1581 in which a scalar value of data type VALTYPE
1582 was returned by a function call to function FUNC.
1583 FUNC is a FUNCTION_DECL node if the precise function is known,
1584 otherwise 0.
1585 OUTGOING is 1 if on a machine with register windows this function
1586 should return the register in which the function will put its result
1587 and 0 otherwise. */
1590 hard_function_value (valtype, func, outgoing)
1591 tree valtype;
1592 tree func ATTRIBUTE_UNUSED;
1593 int outgoing ATTRIBUTE_UNUSED;
1595 rtx val;
1597 #ifdef FUNCTION_OUTGOING_VALUE
1598 if (outgoing)
1599 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1600 else
1601 #endif
1602 val = FUNCTION_VALUE (valtype, func);
1604 if (GET_CODE (val) == REG
1605 && GET_MODE (val) == BLKmode)
1607 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1608 enum machine_mode tmpmode;
1610 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1611 tmpmode != VOIDmode;
1612 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1614 /* Have we found a large enough mode? */
1615 if (GET_MODE_SIZE (tmpmode) >= bytes)
1616 break;
1619 /* No suitable mode found. */
1620 if (tmpmode == VOIDmode)
1621 abort ();
1623 PUT_MODE (val, tmpmode);
1625 return val;
1628 /* Return an rtx representing the register or memory location
1629 in which a scalar value of mode MODE was returned by a library call. */
1632 hard_libcall_value (mode)
1633 enum machine_mode mode;
1635 return LIBCALL_VALUE (mode);
1638 /* Look up the tree code for a given rtx code
1639 to provide the arithmetic operation for REAL_ARITHMETIC.
1640 The function returns an int because the caller may not know
1641 what `enum tree_code' means. */
1644 rtx_to_tree_code (code)
1645 enum rtx_code code;
1647 enum tree_code tcode;
1649 switch (code)
1651 case PLUS:
1652 tcode = PLUS_EXPR;
1653 break;
1654 case MINUS:
1655 tcode = MINUS_EXPR;
1656 break;
1657 case MULT:
1658 tcode = MULT_EXPR;
1659 break;
1660 case DIV:
1661 tcode = RDIV_EXPR;
1662 break;
1663 case SMIN:
1664 tcode = MIN_EXPR;
1665 break;
1666 case SMAX:
1667 tcode = MAX_EXPR;
1668 break;
1669 default:
1670 tcode = LAST_AND_UNUSED_TREE_CODE;
1671 break;
1673 return ((int) tcode);