* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[official-gcc.git] / gcc / combine.c
blobe16cb4d7d03fbcd9798388863a811553462ecdf4
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT)(val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 if (undobuf.frees)
428 buf = undobuf.frees, undobuf.frees = buf->next;
429 else
430 buf = (struct undo *) xmalloc (sizeof (struct undo));
432 buf->is_int = 0;
433 buf->where.r = into;
434 buf->old_contents.r = oldval;
435 *into = newval;
437 buf->next = undobuf.undos, undobuf.undos = buf;
440 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
442 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
443 for the value of a HOST_WIDE_INT value (including CONST_INT) is
444 not safe. */
446 static void
447 do_SUBST_INT (into, newval)
448 unsigned int *into, newval;
450 struct undo *buf;
451 unsigned int oldval = *into;
453 if (oldval == newval)
454 return;
456 if (undobuf.frees)
457 buf = undobuf.frees, undobuf.frees = buf->next;
458 else
459 buf = (struct undo *) xmalloc (sizeof (struct undo));
461 buf->is_int = 1;
462 buf->where.i = into;
463 buf->old_contents.i = oldval;
464 *into = newval;
466 buf->next = undobuf.undos, undobuf.undos = buf;
469 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
471 /* Main entry point for combiner. F is the first insn of the function.
472 NREGS is the first unused pseudo-reg number.
474 Return non-zero if the combiner has turned an indirect jump
475 instruction into a direct jump. */
477 combine_instructions (f, nregs)
478 rtx f;
479 unsigned int nregs;
481 rtx insn, next;
482 #ifdef HAVE_cc0
483 rtx prev;
484 #endif
485 int i;
486 rtx links, nextlinks;
488 int new_direct_jump_p = 0;
490 combine_attempts = 0;
491 combine_merges = 0;
492 combine_extras = 0;
493 combine_successes = 0;
495 combine_max_regno = nregs;
497 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
498 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
499 reg_sign_bit_copies
500 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
502 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
503 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
504 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
505 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
506 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
507 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
508 reg_last_set_mode
509 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
510 reg_last_set_nonzero_bits
511 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
512 reg_last_set_sign_bit_copies
513 = (char *) xmalloc (nregs * sizeof (char));
515 init_reg_last_arrays ();
517 init_recog_no_volatile ();
519 /* Compute maximum uid value so uid_cuid can be allocated. */
521 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
522 if (INSN_UID (insn) > i)
523 i = INSN_UID (insn);
525 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
526 max_uid_cuid = i;
528 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
530 /* Don't use reg_nonzero_bits when computing it. This can cause problems
531 when, for example, we have j <<= 1 in a loop. */
533 nonzero_sign_valid = 0;
535 /* Compute the mapping from uids to cuids.
536 Cuids are numbers assigned to insns, like uids,
537 except that cuids increase monotonically through the code.
539 Scan all SETs and see if we can deduce anything about what
540 bits are known to be zero for some registers and how many copies
541 of the sign bit are known to exist for those registers.
543 Also set any known values so that we can use it while searching
544 for what bits are known to be set. */
546 label_tick = 1;
548 /* We need to initialize it here, because record_dead_and_set_regs may call
549 get_last_value. */
550 subst_prev_insn = NULL_RTX;
552 setup_incoming_promotions ();
554 refresh_blocks = sbitmap_alloc (n_basic_blocks);
555 sbitmap_zero (refresh_blocks);
556 need_refresh = 0;
558 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
560 uid_cuid[INSN_UID (insn)] = ++i;
561 subst_low_cuid = i;
562 subst_insn = insn;
564 if (INSN_P (insn))
566 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
567 NULL);
568 record_dead_and_set_regs (insn);
570 #ifdef AUTO_INC_DEC
571 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
572 if (REG_NOTE_KIND (links) == REG_INC)
573 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
574 NULL);
575 #endif
578 if (GET_CODE (insn) == CODE_LABEL)
579 label_tick++;
582 nonzero_sign_valid = 1;
584 /* Now scan all the insns in forward order. */
586 this_basic_block = -1;
587 label_tick = 1;
588 last_call_cuid = 0;
589 mem_last_set = 0;
590 init_reg_last_arrays ();
591 setup_incoming_promotions ();
593 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
595 next = 0;
597 /* If INSN starts a new basic block, update our basic block number. */
598 if (this_basic_block + 1 < n_basic_blocks
599 && BLOCK_HEAD (this_basic_block + 1) == insn)
600 this_basic_block++;
602 if (GET_CODE (insn) == CODE_LABEL)
603 label_tick++;
605 else if (INSN_P (insn))
607 /* See if we know about function return values before this
608 insn based upon SUBREG flags. */
609 check_promoted_subreg (insn, PATTERN (insn));
611 /* Try this insn with each insn it links back to. */
613 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
614 if ((next = try_combine (insn, XEXP (links, 0),
615 NULL_RTX, &new_direct_jump_p)) != 0)
616 goto retry;
618 /* Try each sequence of three linked insns ending with this one. */
620 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
622 rtx link = XEXP (links, 0);
624 /* If the linked insn has been replaced by a note, then there
625 is no point in persuing this chain any further. */
626 if (GET_CODE (link) == NOTE)
627 break;
629 for (nextlinks = LOG_LINKS (link);
630 nextlinks;
631 nextlinks = XEXP (nextlinks, 1))
632 if ((next = try_combine (insn, XEXP (links, 0),
633 XEXP (nextlinks, 0),
634 &new_direct_jump_p)) != 0)
635 goto retry;
638 #ifdef HAVE_cc0
639 /* Try to combine a jump insn that uses CC0
640 with a preceding insn that sets CC0, and maybe with its
641 logical predecessor as well.
642 This is how we make decrement-and-branch insns.
643 We need this special code because data flow connections
644 via CC0 do not get entered in LOG_LINKS. */
646 if (GET_CODE (insn) == JUMP_INSN
647 && (prev = prev_nonnote_insn (insn)) != 0
648 && GET_CODE (prev) == INSN
649 && sets_cc0_p (PATTERN (prev)))
651 if ((next = try_combine (insn, prev,
652 NULL_RTX, &new_direct_jump_p)) != 0)
653 goto retry;
655 for (nextlinks = LOG_LINKS (prev); nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, prev,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
663 /* Do the same for an insn that explicitly references CC0. */
664 if (GET_CODE (insn) == INSN
665 && (prev = prev_nonnote_insn (insn)) != 0
666 && GET_CODE (prev) == INSN
667 && sets_cc0_p (PATTERN (prev))
668 && GET_CODE (PATTERN (insn)) == SET
669 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
671 if ((next = try_combine (insn, prev,
672 NULL_RTX, &new_direct_jump_p)) != 0)
673 goto retry;
675 for (nextlinks = LOG_LINKS (prev); nextlinks;
676 nextlinks = XEXP (nextlinks, 1))
677 if ((next = try_combine (insn, prev,
678 XEXP (nextlinks, 0),
679 &new_direct_jump_p)) != 0)
680 goto retry;
683 /* Finally, see if any of the insns that this insn links to
684 explicitly references CC0. If so, try this insn, that insn,
685 and its predecessor if it sets CC0. */
686 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
687 if (GET_CODE (XEXP (links, 0)) == INSN
688 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
689 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
690 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && (next = try_combine (insn, XEXP (links, 0),
694 prev, &new_direct_jump_p)) != 0)
695 goto retry;
696 #endif
698 /* Try combining an insn with two different insns whose results it
699 uses. */
700 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
701 for (nextlinks = XEXP (links, 1); nextlinks;
702 nextlinks = XEXP (nextlinks, 1))
703 if ((next = try_combine (insn, XEXP (links, 0),
704 XEXP (nextlinks, 0),
705 &new_direct_jump_p)) != 0)
706 goto retry;
708 if (GET_CODE (insn) != NOTE)
709 record_dead_and_set_regs (insn);
711 retry:
716 delete_noop_moves (f);
718 if (need_refresh)
720 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
721 PROP_DEATH_NOTES);
724 /* Clean up. */
725 sbitmap_free (refresh_blocks);
726 free (reg_nonzero_bits);
727 free (reg_sign_bit_copies);
728 free (reg_last_death);
729 free (reg_last_set);
730 free (reg_last_set_value);
731 free (reg_last_set_table_tick);
732 free (reg_last_set_label);
733 free (reg_last_set_invalid);
734 free (reg_last_set_mode);
735 free (reg_last_set_nonzero_bits);
736 free (reg_last_set_sign_bit_copies);
737 free (uid_cuid);
740 struct undo *undo, *next;
741 for (undo = undobuf.frees; undo; undo = next)
743 next = undo->next;
744 free (undo);
746 undobuf.frees = 0;
749 total_attempts += combine_attempts;
750 total_merges += combine_merges;
751 total_extras += combine_extras;
752 total_successes += combine_successes;
754 nonzero_sign_valid = 0;
756 /* Make recognizer allow volatile MEMs again. */
757 init_recog ();
759 return new_direct_jump_p;
762 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
764 static void
765 init_reg_last_arrays ()
767 unsigned int nregs = combine_max_regno;
769 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
770 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
771 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
772 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
773 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
774 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
775 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
776 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
777 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
780 /* Set up any promoted values for incoming argument registers. */
782 static void
783 setup_incoming_promotions ()
785 #ifdef PROMOTE_FUNCTION_ARGS
786 unsigned int regno;
787 rtx reg;
788 enum machine_mode mode;
789 int unsignedp;
790 rtx first = get_insns ();
792 #ifndef OUTGOING_REGNO
793 #define OUTGOING_REGNO(N) N
794 #endif
795 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
796 /* Check whether this register can hold an incoming pointer
797 argument. FUNCTION_ARG_REGNO_P tests outgoing register
798 numbers, so translate if necessary due to register windows. */
799 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
800 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
802 record_value_for_reg
803 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
804 : SIGN_EXTEND),
805 GET_MODE (reg),
806 gen_rtx_CLOBBER (mode, const0_rtx)));
808 #endif
811 /* Called via note_stores. If X is a pseudo that is narrower than
812 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
814 If we are setting only a portion of X and we can't figure out what
815 portion, assume all bits will be used since we don't know what will
816 be happening.
818 Similarly, set how many bits of X are known to be copies of the sign bit
819 at all locations in the function. This is the smallest number implied
820 by any set of X. */
822 static void
823 set_nonzero_bits_and_sign_copies (x, set, data)
824 rtx x;
825 rtx set;
826 void *data ATTRIBUTE_UNUSED;
828 unsigned int num;
830 if (GET_CODE (x) == REG
831 && REGNO (x) >= FIRST_PSEUDO_REGISTER
832 /* If this register is undefined at the start of the file, we can't
833 say what its contents were. */
834 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
835 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
837 if (set == 0 || GET_CODE (set) == CLOBBER)
839 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
840 reg_sign_bit_copies[REGNO (x)] = 1;
841 return;
844 /* If this is a complex assignment, see if we can convert it into a
845 simple assignment. */
846 set = expand_field_assignment (set);
848 /* If this is a simple assignment, or we have a paradoxical SUBREG,
849 set what we know about X. */
851 if (SET_DEST (set) == x
852 || (GET_CODE (SET_DEST (set)) == SUBREG
853 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
854 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
855 && SUBREG_REG (SET_DEST (set)) == x))
857 rtx src = SET_SRC (set);
859 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
860 /* If X is narrower than a word and SRC is a non-negative
861 constant that would appear negative in the mode of X,
862 sign-extend it for use in reg_nonzero_bits because some
863 machines (maybe most) will actually do the sign-extension
864 and this is the conservative approach.
866 ??? For 2.5, try to tighten up the MD files in this regard
867 instead of this kludge. */
869 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
870 && GET_CODE (src) == CONST_INT
871 && INTVAL (src) > 0
872 && 0 != (INTVAL (src)
873 & ((HOST_WIDE_INT) 1
874 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
875 src = GEN_INT (INTVAL (src)
876 | ((HOST_WIDE_INT) (-1)
877 << GET_MODE_BITSIZE (GET_MODE (x))));
878 #endif
880 reg_nonzero_bits[REGNO (x)]
881 |= nonzero_bits (src, nonzero_bits_mode);
882 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
883 if (reg_sign_bit_copies[REGNO (x)] == 0
884 || reg_sign_bit_copies[REGNO (x)] > num)
885 reg_sign_bit_copies[REGNO (x)] = num;
887 else
889 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
890 reg_sign_bit_copies[REGNO (x)] = 1;
895 /* See if INSN can be combined into I3. PRED and SUCC are optionally
896 insns that were previously combined into I3 or that will be combined
897 into the merger of INSN and I3.
899 Return 0 if the combination is not allowed for any reason.
901 If the combination is allowed, *PDEST will be set to the single
902 destination of INSN and *PSRC to the single source, and this function
903 will return 1. */
905 static int
906 can_combine_p (insn, i3, pred, succ, pdest, psrc)
907 rtx insn;
908 rtx i3;
909 rtx pred ATTRIBUTE_UNUSED;
910 rtx succ;
911 rtx *pdest, *psrc;
913 int i;
914 rtx set = 0, src, dest;
915 rtx p;
916 #ifdef AUTO_INC_DEC
917 rtx link;
918 #endif
919 int all_adjacent = (succ ? (next_active_insn (insn) == succ
920 && next_active_insn (succ) == i3)
921 : next_active_insn (insn) == i3);
923 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
924 or a PARALLEL consisting of such a SET and CLOBBERs.
926 If INSN has CLOBBER parallel parts, ignore them for our processing.
927 By definition, these happen during the execution of the insn. When it
928 is merged with another insn, all bets are off. If they are, in fact,
929 needed and aren't also supplied in I3, they may be added by
930 recog_for_combine. Otherwise, it won't match.
932 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
933 note.
935 Get the source and destination of INSN. If more than one, can't
936 combine. */
938 if (GET_CODE (PATTERN (insn)) == SET)
939 set = PATTERN (insn);
940 else if (GET_CODE (PATTERN (insn)) == PARALLEL
941 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
943 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
945 rtx elt = XVECEXP (PATTERN (insn), 0, i);
947 switch (GET_CODE (elt))
949 /* This is important to combine floating point insns
950 for the SH4 port. */
951 case USE:
952 /* Combining an isolated USE doesn't make sense.
953 We depend here on combinable_i3_pat to reject them. */
954 /* The code below this loop only verifies that the inputs of
955 the SET in INSN do not change. We call reg_set_between_p
956 to verify that the REG in the USE does not change betweeen
957 I3 and INSN.
958 If the USE in INSN was for a pseudo register, the matching
959 insn pattern will likely match any register; combining this
960 with any other USE would only be safe if we knew that the
961 used registers have identical values, or if there was
962 something to tell them apart, e.g. different modes. For
963 now, we forgo such compilcated tests and simply disallow
964 combining of USES of pseudo registers with any other USE. */
965 if (GET_CODE (XEXP (elt, 0)) == REG
966 && GET_CODE (PATTERN (i3)) == PARALLEL)
968 rtx i3pat = PATTERN (i3);
969 int i = XVECLEN (i3pat, 0) - 1;
970 unsigned int regno = REGNO (XEXP (elt, 0));
974 rtx i3elt = XVECEXP (i3pat, 0, i);
976 if (GET_CODE (i3elt) == USE
977 && GET_CODE (XEXP (i3elt, 0)) == REG
978 && (REGNO (XEXP (i3elt, 0)) == regno
979 ? reg_set_between_p (XEXP (elt, 0),
980 PREV_INSN (insn), i3)
981 : regno >= FIRST_PSEUDO_REGISTER))
982 return 0;
984 while (--i >= 0);
986 break;
988 /* We can ignore CLOBBERs. */
989 case CLOBBER:
990 break;
992 case SET:
993 /* Ignore SETs whose result isn't used but not those that
994 have side-effects. */
995 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
996 && ! side_effects_p (elt))
997 break;
999 /* If we have already found a SET, this is a second one and
1000 so we cannot combine with this insn. */
1001 if (set)
1002 return 0;
1004 set = elt;
1005 break;
1007 default:
1008 /* Anything else means we can't combine. */
1009 return 0;
1013 if (set == 0
1014 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1015 so don't do anything with it. */
1016 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1017 return 0;
1019 else
1020 return 0;
1022 if (set == 0)
1023 return 0;
1025 set = expand_field_assignment (set);
1026 src = SET_SRC (set), dest = SET_DEST (set);
1028 /* Don't eliminate a store in the stack pointer. */
1029 if (dest == stack_pointer_rtx
1030 /* If we couldn't eliminate a field assignment, we can't combine. */
1031 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1032 /* Don't combine with an insn that sets a register to itself if it has
1033 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1034 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1035 /* Can't merge an ASM_OPERANDS. */
1036 || GET_CODE (src) == ASM_OPERANDS
1037 /* Can't merge a function call. */
1038 || GET_CODE (src) == CALL
1039 /* Don't eliminate a function call argument. */
1040 || (GET_CODE (i3) == CALL_INSN
1041 && (find_reg_fusage (i3, USE, dest)
1042 || (GET_CODE (dest) == REG
1043 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1044 && global_regs[REGNO (dest)])))
1045 /* Don't substitute into an incremented register. */
1046 || FIND_REG_INC_NOTE (i3, dest)
1047 || (succ && FIND_REG_INC_NOTE (succ, dest))
1048 #if 0
1049 /* Don't combine the end of a libcall into anything. */
1050 /* ??? This gives worse code, and appears to be unnecessary, since no
1051 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1052 use REG_RETVAL notes for noconflict blocks, but other code here
1053 makes sure that those insns don't disappear. */
1054 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1055 #endif
1056 /* Make sure that DEST is not used after SUCC but before I3. */
1057 || (succ && ! all_adjacent
1058 && reg_used_between_p (dest, succ, i3))
1059 /* Make sure that the value that is to be substituted for the register
1060 does not use any registers whose values alter in between. However,
1061 If the insns are adjacent, a use can't cross a set even though we
1062 think it might (this can happen for a sequence of insns each setting
1063 the same destination; reg_last_set of that register might point to
1064 a NOTE). If INSN has a REG_EQUIV note, the register is always
1065 equivalent to the memory so the substitution is valid even if there
1066 are intervening stores. Also, don't move a volatile asm or
1067 UNSPEC_VOLATILE across any other insns. */
1068 || (! all_adjacent
1069 && (((GET_CODE (src) != MEM
1070 || ! find_reg_note (insn, REG_EQUIV, src))
1071 && use_crosses_set_p (src, INSN_CUID (insn)))
1072 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1073 || GET_CODE (src) == UNSPEC_VOLATILE))
1074 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1075 better register allocation by not doing the combine. */
1076 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1077 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1078 /* Don't combine across a CALL_INSN, because that would possibly
1079 change whether the life span of some REGs crosses calls or not,
1080 and it is a pain to update that information.
1081 Exception: if source is a constant, moving it later can't hurt.
1082 Accept that special case, because it helps -fforce-addr a lot. */
1083 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1084 return 0;
1086 /* DEST must either be a REG or CC0. */
1087 if (GET_CODE (dest) == REG)
1089 /* If register alignment is being enforced for multi-word items in all
1090 cases except for parameters, it is possible to have a register copy
1091 insn referencing a hard register that is not allowed to contain the
1092 mode being copied and which would not be valid as an operand of most
1093 insns. Eliminate this problem by not combining with such an insn.
1095 Also, on some machines we don't want to extend the life of a hard
1096 register. */
1098 if (GET_CODE (src) == REG
1099 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1100 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1101 /* Don't extend the life of a hard register unless it is
1102 user variable (if we have few registers) or it can't
1103 fit into the desired register (meaning something special
1104 is going on).
1105 Also avoid substituting a return register into I3, because
1106 reload can't handle a conflict with constraints of other
1107 inputs. */
1108 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1109 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1110 return 0;
1112 else if (GET_CODE (dest) != CC0)
1113 return 0;
1115 /* Don't substitute for a register intended as a clobberable operand.
1116 Similarly, don't substitute an expression containing a register that
1117 will be clobbered in I3. */
1118 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1119 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1120 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1121 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1122 src)
1123 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1124 return 0;
1126 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1127 or not), reject, unless nothing volatile comes between it and I3 */
1129 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1131 /* Make sure succ doesn't contain a volatile reference. */
1132 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1133 return 0;
1135 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1136 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1137 return 0;
1140 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1141 to be an explicit register variable, and was chosen for a reason. */
1143 if (GET_CODE (src) == ASM_OPERANDS
1144 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1145 return 0;
1147 /* If there are any volatile insns between INSN and I3, reject, because
1148 they might affect machine state. */
1150 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1151 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1152 return 0;
1154 /* If INSN or I2 contains an autoincrement or autodecrement,
1155 make sure that register is not used between there and I3,
1156 and not already used in I3 either.
1157 Also insist that I3 not be a jump; if it were one
1158 and the incremented register were spilled, we would lose. */
1160 #ifdef AUTO_INC_DEC
1161 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1162 if (REG_NOTE_KIND (link) == REG_INC
1163 && (GET_CODE (i3) == JUMP_INSN
1164 || reg_used_between_p (XEXP (link, 0), insn, i3)
1165 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1166 return 0;
1167 #endif
1169 #ifdef HAVE_cc0
1170 /* Don't combine an insn that follows a CC0-setting insn.
1171 An insn that uses CC0 must not be separated from the one that sets it.
1172 We do, however, allow I2 to follow a CC0-setting insn if that insn
1173 is passed as I1; in that case it will be deleted also.
1174 We also allow combining in this case if all the insns are adjacent
1175 because that would leave the two CC0 insns adjacent as well.
1176 It would be more logical to test whether CC0 occurs inside I1 or I2,
1177 but that would be much slower, and this ought to be equivalent. */
1179 p = prev_nonnote_insn (insn);
1180 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1181 && ! all_adjacent)
1182 return 0;
1183 #endif
1185 /* If we get here, we have passed all the tests and the combination is
1186 to be allowed. */
1188 *pdest = dest;
1189 *psrc = src;
1191 return 1;
1194 /* Check if PAT is an insn - or a part of it - used to set up an
1195 argument for a function in a hard register. */
1197 static int
1198 sets_function_arg_p (pat)
1199 rtx pat;
1201 int i;
1202 rtx inner_dest;
1204 switch (GET_CODE (pat))
1206 case INSN:
1207 return sets_function_arg_p (PATTERN (pat));
1209 case PARALLEL:
1210 for (i = XVECLEN (pat, 0); --i >= 0;)
1211 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1212 return 1;
1214 break;
1216 case SET:
1217 inner_dest = SET_DEST (pat);
1218 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1219 || GET_CODE (inner_dest) == SUBREG
1220 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1221 inner_dest = XEXP (inner_dest, 0);
1223 return (GET_CODE (inner_dest) == REG
1224 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1225 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1227 default:
1228 break;
1231 return 0;
1234 /* LOC is the location within I3 that contains its pattern or the component
1235 of a PARALLEL of the pattern. We validate that it is valid for combining.
1237 One problem is if I3 modifies its output, as opposed to replacing it
1238 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1239 so would produce an insn that is not equivalent to the original insns.
1241 Consider:
1243 (set (reg:DI 101) (reg:DI 100))
1244 (set (subreg:SI (reg:DI 101) 0) <foo>)
1246 This is NOT equivalent to:
1248 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1249 (set (reg:DI 101) (reg:DI 100))])
1251 Not only does this modify 100 (in which case it might still be valid
1252 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1254 We can also run into a problem if I2 sets a register that I1
1255 uses and I1 gets directly substituted into I3 (not via I2). In that
1256 case, we would be getting the wrong value of I2DEST into I3, so we
1257 must reject the combination. This case occurs when I2 and I1 both
1258 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1259 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1260 of a SET must prevent combination from occurring.
1262 Before doing the above check, we first try to expand a field assignment
1263 into a set of logical operations.
1265 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1266 we place a register that is both set and used within I3. If more than one
1267 such register is detected, we fail.
1269 Return 1 if the combination is valid, zero otherwise. */
1271 static int
1272 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1273 rtx i3;
1274 rtx *loc;
1275 rtx i2dest;
1276 rtx i1dest;
1277 int i1_not_in_src;
1278 rtx *pi3dest_killed;
1280 rtx x = *loc;
1282 if (GET_CODE (x) == SET)
1284 rtx set = expand_field_assignment (x);
1285 rtx dest = SET_DEST (set);
1286 rtx src = SET_SRC (set);
1287 rtx inner_dest = dest;
1289 #if 0
1290 rtx inner_src = src;
1291 #endif
1293 SUBST (*loc, set);
1295 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1296 || GET_CODE (inner_dest) == SUBREG
1297 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1298 inner_dest = XEXP (inner_dest, 0);
1300 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1301 was added. */
1302 #if 0
1303 while (GET_CODE (inner_src) == STRICT_LOW_PART
1304 || GET_CODE (inner_src) == SUBREG
1305 || GET_CODE (inner_src) == ZERO_EXTRACT)
1306 inner_src = XEXP (inner_src, 0);
1308 /* If it is better that two different modes keep two different pseudos,
1309 avoid combining them. This avoids producing the following pattern
1310 on a 386:
1311 (set (subreg:SI (reg/v:QI 21) 0)
1312 (lshiftrt:SI (reg/v:SI 20)
1313 (const_int 24)))
1314 If that were made, reload could not handle the pair of
1315 reg 20/21, since it would try to get any GENERAL_REGS
1316 but some of them don't handle QImode. */
1318 if (rtx_equal_p (inner_src, i2dest)
1319 && GET_CODE (inner_dest) == REG
1320 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1321 return 0;
1322 #endif
1324 /* Check for the case where I3 modifies its output, as
1325 discussed above. */
1326 if ((inner_dest != dest
1327 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1328 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1330 /* This is the same test done in can_combine_p except we can't test
1331 all_adjacent; we don't have to, since this instruction will stay
1332 in place, thus we are not considering increasing the lifetime of
1333 INNER_DEST.
1335 Also, if this insn sets a function argument, combining it with
1336 something that might need a spill could clobber a previous
1337 function argument; the all_adjacent test in can_combine_p also
1338 checks this; here, we do a more specific test for this case. */
1340 || (GET_CODE (inner_dest) == REG
1341 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1342 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1343 GET_MODE (inner_dest))))
1344 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1345 return 0;
1347 /* If DEST is used in I3, it is being killed in this insn,
1348 so record that for later.
1349 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1350 STACK_POINTER_REGNUM, since these are always considered to be
1351 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1352 if (pi3dest_killed && GET_CODE (dest) == REG
1353 && reg_referenced_p (dest, PATTERN (i3))
1354 && REGNO (dest) != FRAME_POINTER_REGNUM
1355 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1356 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1357 #endif
1358 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1359 && (REGNO (dest) != ARG_POINTER_REGNUM
1360 || ! fixed_regs [REGNO (dest)])
1361 #endif
1362 && REGNO (dest) != STACK_POINTER_REGNUM)
1364 if (*pi3dest_killed)
1365 return 0;
1367 *pi3dest_killed = dest;
1371 else if (GET_CODE (x) == PARALLEL)
1373 int i;
1375 for (i = 0; i < XVECLEN (x, 0); i++)
1376 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1377 i1_not_in_src, pi3dest_killed))
1378 return 0;
1381 return 1;
1384 /* Return 1 if X is an arithmetic expression that contains a multiplication
1385 and division. We don't count multiplications by powers of two here. */
1387 static int
1388 contains_muldiv (x)
1389 rtx x;
1391 switch (GET_CODE (x))
1393 case MOD: case DIV: case UMOD: case UDIV:
1394 return 1;
1396 case MULT:
1397 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1398 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1399 default:
1400 switch (GET_RTX_CLASS (GET_CODE (x)))
1402 case 'c': case '<': case '2':
1403 return contains_muldiv (XEXP (x, 0))
1404 || contains_muldiv (XEXP (x, 1));
1406 case '1':
1407 return contains_muldiv (XEXP (x, 0));
1409 default:
1410 return 0;
1415 /* Determine whether INSN can be used in a combination. Return nonzero if
1416 not. This is used in try_combine to detect early some cases where we
1417 can't perform combinations. */
1419 static int
1420 cant_combine_insn_p (insn)
1421 rtx insn;
1423 rtx set;
1424 rtx src, dest;
1426 /* If this isn't really an insn, we can't do anything.
1427 This can occur when flow deletes an insn that it has merged into an
1428 auto-increment address. */
1429 if (! INSN_P (insn))
1430 return 1;
1432 /* Never combine loads and stores involving hard regs. The register
1433 allocator can usually handle such reg-reg moves by tying. If we allow
1434 the combiner to make substitutions of hard regs, we risk aborting in
1435 reload on machines that have SMALL_REGISTER_CLASSES.
1436 As an exception, we allow combinations involving fixed regs; these are
1437 not available to the register allocator so there's no risk involved. */
1439 set = single_set (insn);
1440 if (! set)
1441 return 0;
1442 src = SET_SRC (set);
1443 dest = SET_DEST (set);
1444 if (GET_CODE (src) == SUBREG)
1445 src = SUBREG_REG (src);
1446 if (GET_CODE (dest) == SUBREG)
1447 dest = SUBREG_REG (dest);
1448 if (REG_P (src) && REG_P (dest)
1449 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1450 && ! fixed_regs[REGNO (src)])
1451 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1452 && ! fixed_regs[REGNO (dest)])))
1453 return 1;
1455 return 0;
1458 /* Try to combine the insns I1 and I2 into I3.
1459 Here I1 and I2 appear earlier than I3.
1460 I1 can be zero; then we combine just I2 into I3.
1462 If we are combining three insns and the resulting insn is not recognized,
1463 try splitting it into two insns. If that happens, I2 and I3 are retained
1464 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1465 are pseudo-deleted.
1467 Return 0 if the combination does not work. Then nothing is changed.
1468 If we did the combination, return the insn at which combine should
1469 resume scanning.
1471 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1472 new direct jump instruction. */
1474 static rtx
1475 try_combine (i3, i2, i1, new_direct_jump_p)
1476 rtx i3, i2, i1;
1477 int *new_direct_jump_p;
1479 /* New patterns for I3 and I2, respectively. */
1480 rtx newpat, newi2pat = 0;
1481 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1482 int added_sets_1, added_sets_2;
1483 /* Total number of SETs to put into I3. */
1484 int total_sets;
1485 /* Nonzero is I2's body now appears in I3. */
1486 int i2_is_used;
1487 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1488 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1489 /* Contains I3 if the destination of I3 is used in its source, which means
1490 that the old life of I3 is being killed. If that usage is placed into
1491 I2 and not in I3, a REG_DEAD note must be made. */
1492 rtx i3dest_killed = 0;
1493 /* SET_DEST and SET_SRC of I2 and I1. */
1494 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1495 /* PATTERN (I2), or a copy of it in certain cases. */
1496 rtx i2pat;
1497 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1498 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1499 int i1_feeds_i3 = 0;
1500 /* Notes that must be added to REG_NOTES in I3 and I2. */
1501 rtx new_i3_notes, new_i2_notes;
1502 /* Notes that we substituted I3 into I2 instead of the normal case. */
1503 int i3_subst_into_i2 = 0;
1504 /* Notes that I1, I2 or I3 is a MULT operation. */
1505 int have_mult = 0;
1507 int maxreg;
1508 rtx temp;
1509 rtx link;
1510 int i;
1512 /* Exit early if one of the insns involved can't be used for
1513 combinations. */
1514 if (cant_combine_insn_p (i3)
1515 || cant_combine_insn_p (i2)
1516 || (i1 && cant_combine_insn_p (i1))
1517 /* We also can't do anything if I3 has a
1518 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1519 libcall. */
1520 #if 0
1521 /* ??? This gives worse code, and appears to be unnecessary, since no
1522 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1523 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1524 #endif
1526 return 0;
1528 combine_attempts++;
1529 undobuf.other_insn = 0;
1531 /* Reset the hard register usage information. */
1532 CLEAR_HARD_REG_SET (newpat_used_regs);
1534 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1535 code below, set I1 to be the earlier of the two insns. */
1536 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1537 temp = i1, i1 = i2, i2 = temp;
1539 added_links_insn = 0;
1541 /* First check for one important special-case that the code below will
1542 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1543 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1544 we may be able to replace that destination with the destination of I3.
1545 This occurs in the common code where we compute both a quotient and
1546 remainder into a structure, in which case we want to do the computation
1547 directly into the structure to avoid register-register copies.
1549 Note that this case handles both multiple sets in I2 and also
1550 cases where I2 has a number of CLOBBER or PARALLELs.
1552 We make very conservative checks below and only try to handle the
1553 most common cases of this. For example, we only handle the case
1554 where I2 and I3 are adjacent to avoid making difficult register
1555 usage tests. */
1557 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1558 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1559 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1560 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1561 && GET_CODE (PATTERN (i2)) == PARALLEL
1562 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1563 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1564 below would need to check what is inside (and reg_overlap_mentioned_p
1565 doesn't support those codes anyway). Don't allow those destinations;
1566 the resulting insn isn't likely to be recognized anyway. */
1567 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1568 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1569 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1570 SET_DEST (PATTERN (i3)))
1571 && next_real_insn (i2) == i3)
1573 rtx p2 = PATTERN (i2);
1575 /* Make sure that the destination of I3,
1576 which we are going to substitute into one output of I2,
1577 is not used within another output of I2. We must avoid making this:
1578 (parallel [(set (mem (reg 69)) ...)
1579 (set (reg 69) ...)])
1580 which is not well-defined as to order of actions.
1581 (Besides, reload can't handle output reloads for this.)
1583 The problem can also happen if the dest of I3 is a memory ref,
1584 if another dest in I2 is an indirect memory ref. */
1585 for (i = 0; i < XVECLEN (p2, 0); i++)
1586 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1587 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1588 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1589 SET_DEST (XVECEXP (p2, 0, i))))
1590 break;
1592 if (i == XVECLEN (p2, 0))
1593 for (i = 0; i < XVECLEN (p2, 0); i++)
1594 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1595 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1596 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1598 combine_merges++;
1600 subst_insn = i3;
1601 subst_low_cuid = INSN_CUID (i2);
1603 added_sets_2 = added_sets_1 = 0;
1604 i2dest = SET_SRC (PATTERN (i3));
1606 /* Replace the dest in I2 with our dest and make the resulting
1607 insn the new pattern for I3. Then skip to where we
1608 validate the pattern. Everything was set up above. */
1609 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1610 SET_DEST (PATTERN (i3)));
1612 newpat = p2;
1613 i3_subst_into_i2 = 1;
1614 goto validate_replacement;
1618 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1619 one of those words to another constant, merge them by making a new
1620 constant. */
1621 if (i1 == 0
1622 && (temp = single_set (i2)) != 0
1623 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1624 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1625 && GET_CODE (SET_DEST (temp)) == REG
1626 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1627 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1628 && GET_CODE (PATTERN (i3)) == SET
1629 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1630 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1631 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1632 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1633 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1635 HOST_WIDE_INT lo, hi;
1637 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1638 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1639 else
1641 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1642 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1645 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1647 /* We don't handle the case of the target word being wider
1648 than a host wide int. */
1649 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1650 abort ();
1652 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1653 lo |= INTVAL (SET_SRC (PATTERN (i3)));
1655 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1656 hi = INTVAL (SET_SRC (PATTERN (i3)));
1657 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1659 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1660 >> (HOST_BITS_PER_WIDE_INT - 1));
1662 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1663 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1664 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1665 (INTVAL (SET_SRC (PATTERN (i3)))));
1666 if (hi == sign)
1667 hi = lo < 0 ? -1 : 0;
1669 else
1670 /* We don't handle the case of the higher word not fitting
1671 entirely in either hi or lo. */
1672 abort ();
1674 combine_merges++;
1675 subst_insn = i3;
1676 subst_low_cuid = INSN_CUID (i2);
1677 added_sets_2 = added_sets_1 = 0;
1678 i2dest = SET_DEST (temp);
1680 SUBST (SET_SRC (temp),
1681 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1683 newpat = PATTERN (i2);
1684 goto validate_replacement;
1687 #ifndef HAVE_cc0
1688 /* If we have no I1 and I2 looks like:
1689 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1690 (set Y OP)])
1691 make up a dummy I1 that is
1692 (set Y OP)
1693 and change I2 to be
1694 (set (reg:CC X) (compare:CC Y (const_int 0)))
1696 (We can ignore any trailing CLOBBERs.)
1698 This undoes a previous combination and allows us to match a branch-and-
1699 decrement insn. */
1701 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1702 && XVECLEN (PATTERN (i2), 0) >= 2
1703 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1704 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1705 == MODE_CC)
1706 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1707 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1708 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1709 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1710 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1711 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1713 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1714 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1715 break;
1717 if (i == 1)
1719 /* We make I1 with the same INSN_UID as I2. This gives it
1720 the same INSN_CUID for value tracking. Our fake I1 will
1721 never appear in the insn stream so giving it the same INSN_UID
1722 as I2 will not cause a problem. */
1724 subst_prev_insn = i1
1725 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1726 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1727 NULL_RTX);
1729 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1730 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1731 SET_DEST (PATTERN (i1)));
1734 #endif
1736 /* Verify that I2 and I1 are valid for combining. */
1737 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1738 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1740 undo_all ();
1741 return 0;
1744 /* Record whether I2DEST is used in I2SRC and similarly for the other
1745 cases. Knowing this will help in register status updating below. */
1746 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1747 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1748 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1750 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1751 in I2SRC. */
1752 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1754 /* Ensure that I3's pattern can be the destination of combines. */
1755 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1756 i1 && i2dest_in_i1src && i1_feeds_i3,
1757 &i3dest_killed))
1759 undo_all ();
1760 return 0;
1763 /* See if any of the insns is a MULT operation. Unless one is, we will
1764 reject a combination that is, since it must be slower. Be conservative
1765 here. */
1766 if (GET_CODE (i2src) == MULT
1767 || (i1 != 0 && GET_CODE (i1src) == MULT)
1768 || (GET_CODE (PATTERN (i3)) == SET
1769 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1770 have_mult = 1;
1772 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1773 We used to do this EXCEPT in one case: I3 has a post-inc in an
1774 output operand. However, that exception can give rise to insns like
1775 mov r3,(r3)+
1776 which is a famous insn on the PDP-11 where the value of r3 used as the
1777 source was model-dependent. Avoid this sort of thing. */
1779 #if 0
1780 if (!(GET_CODE (PATTERN (i3)) == SET
1781 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1782 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1783 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1784 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1785 /* It's not the exception. */
1786 #endif
1787 #ifdef AUTO_INC_DEC
1788 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1789 if (REG_NOTE_KIND (link) == REG_INC
1790 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1791 || (i1 != 0
1792 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1794 undo_all ();
1795 return 0;
1797 #endif
1799 /* See if the SETs in I1 or I2 need to be kept around in the merged
1800 instruction: whenever the value set there is still needed past I3.
1801 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1803 For the SET in I1, we have two cases: If I1 and I2 independently
1804 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1805 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1806 in I1 needs to be kept around unless I1DEST dies or is set in either
1807 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1808 I1DEST. If so, we know I1 feeds into I2. */
1810 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1812 added_sets_1
1813 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1814 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1816 /* If the set in I2 needs to be kept around, we must make a copy of
1817 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1818 PATTERN (I2), we are only substituting for the original I1DEST, not into
1819 an already-substituted copy. This also prevents making self-referential
1820 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1821 I2DEST. */
1823 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1824 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1825 : PATTERN (i2));
1827 if (added_sets_2)
1828 i2pat = copy_rtx (i2pat);
1830 combine_merges++;
1832 /* Substitute in the latest insn for the regs set by the earlier ones. */
1834 maxreg = max_reg_num ();
1836 subst_insn = i3;
1838 /* It is possible that the source of I2 or I1 may be performing an
1839 unneeded operation, such as a ZERO_EXTEND of something that is known
1840 to have the high part zero. Handle that case by letting subst look at
1841 the innermost one of them.
1843 Another way to do this would be to have a function that tries to
1844 simplify a single insn instead of merging two or more insns. We don't
1845 do this because of the potential of infinite loops and because
1846 of the potential extra memory required. However, doing it the way
1847 we are is a bit of a kludge and doesn't catch all cases.
1849 But only do this if -fexpensive-optimizations since it slows things down
1850 and doesn't usually win. */
1852 if (flag_expensive_optimizations)
1854 /* Pass pc_rtx so no substitutions are done, just simplifications.
1855 The cases that we are interested in here do not involve the few
1856 cases were is_replaced is checked. */
1857 if (i1)
1859 subst_low_cuid = INSN_CUID (i1);
1860 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1862 else
1864 subst_low_cuid = INSN_CUID (i2);
1865 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1869 #ifndef HAVE_cc0
1870 /* Many machines that don't use CC0 have insns that can both perform an
1871 arithmetic operation and set the condition code. These operations will
1872 be represented as a PARALLEL with the first element of the vector
1873 being a COMPARE of an arithmetic operation with the constant zero.
1874 The second element of the vector will set some pseudo to the result
1875 of the same arithmetic operation. If we simplify the COMPARE, we won't
1876 match such a pattern and so will generate an extra insn. Here we test
1877 for this case, where both the comparison and the operation result are
1878 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1879 I2SRC. Later we will make the PARALLEL that contains I2. */
1881 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1882 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1883 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1884 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1886 #ifdef EXTRA_CC_MODES
1887 rtx *cc_use;
1888 enum machine_mode compare_mode;
1889 #endif
1891 newpat = PATTERN (i3);
1892 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1894 i2_is_used = 1;
1896 #ifdef EXTRA_CC_MODES
1897 /* See if a COMPARE with the operand we substituted in should be done
1898 with the mode that is currently being used. If not, do the same
1899 processing we do in `subst' for a SET; namely, if the destination
1900 is used only once, try to replace it with a register of the proper
1901 mode and also replace the COMPARE. */
1902 if (undobuf.other_insn == 0
1903 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1904 &undobuf.other_insn))
1905 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1906 i2src, const0_rtx))
1907 != GET_MODE (SET_DEST (newpat))))
1909 unsigned int regno = REGNO (SET_DEST (newpat));
1910 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1912 if (regno < FIRST_PSEUDO_REGISTER
1913 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1914 && ! REG_USERVAR_P (SET_DEST (newpat))))
1916 if (regno >= FIRST_PSEUDO_REGISTER)
1917 SUBST (regno_reg_rtx[regno], new_dest);
1919 SUBST (SET_DEST (newpat), new_dest);
1920 SUBST (XEXP (*cc_use, 0), new_dest);
1921 SUBST (SET_SRC (newpat),
1922 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1924 else
1925 undobuf.other_insn = 0;
1927 #endif
1929 else
1930 #endif
1932 n_occurrences = 0; /* `subst' counts here */
1934 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1935 need to make a unique copy of I2SRC each time we substitute it
1936 to avoid self-referential rtl. */
1938 subst_low_cuid = INSN_CUID (i2);
1939 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1940 ! i1_feeds_i3 && i1dest_in_i1src);
1942 /* Record whether i2's body now appears within i3's body. */
1943 i2_is_used = n_occurrences;
1946 /* If we already got a failure, don't try to do more. Otherwise,
1947 try to substitute in I1 if we have it. */
1949 if (i1 && GET_CODE (newpat) != CLOBBER)
1951 /* Before we can do this substitution, we must redo the test done
1952 above (see detailed comments there) that ensures that I1DEST
1953 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1955 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1956 0, (rtx*)0))
1958 undo_all ();
1959 return 0;
1962 n_occurrences = 0;
1963 subst_low_cuid = INSN_CUID (i1);
1964 newpat = subst (newpat, i1dest, i1src, 0, 0);
1967 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1968 to count all the ways that I2SRC and I1SRC can be used. */
1969 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1970 && i2_is_used + added_sets_2 > 1)
1971 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1972 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1973 > 1))
1974 /* Fail if we tried to make a new register (we used to abort, but there's
1975 really no reason to). */
1976 || max_reg_num () != maxreg
1977 /* Fail if we couldn't do something and have a CLOBBER. */
1978 || GET_CODE (newpat) == CLOBBER
1979 /* Fail if this new pattern is a MULT and we didn't have one before
1980 at the outer level. */
1981 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1982 && ! have_mult))
1984 undo_all ();
1985 return 0;
1988 /* If the actions of the earlier insns must be kept
1989 in addition to substituting them into the latest one,
1990 we must make a new PARALLEL for the latest insn
1991 to hold additional the SETs. */
1993 if (added_sets_1 || added_sets_2)
1995 combine_extras++;
1997 if (GET_CODE (newpat) == PARALLEL)
1999 rtvec old = XVEC (newpat, 0);
2000 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2001 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2002 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2003 sizeof (old->elem[0]) * old->num_elem);
2005 else
2007 rtx old = newpat;
2008 total_sets = 1 + added_sets_1 + added_sets_2;
2009 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2010 XVECEXP (newpat, 0, 0) = old;
2013 if (added_sets_1)
2014 XVECEXP (newpat, 0, --total_sets)
2015 = (GET_CODE (PATTERN (i1)) == PARALLEL
2016 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2018 if (added_sets_2)
2020 /* If there is no I1, use I2's body as is. We used to also not do
2021 the subst call below if I2 was substituted into I3,
2022 but that could lose a simplification. */
2023 if (i1 == 0)
2024 XVECEXP (newpat, 0, --total_sets) = i2pat;
2025 else
2026 /* See comment where i2pat is assigned. */
2027 XVECEXP (newpat, 0, --total_sets)
2028 = subst (i2pat, i1dest, i1src, 0, 0);
2032 /* We come here when we are replacing a destination in I2 with the
2033 destination of I3. */
2034 validate_replacement:
2036 /* Note which hard regs this insn has as inputs. */
2037 mark_used_regs_combine (newpat);
2039 /* Is the result of combination a valid instruction? */
2040 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2042 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2043 the second SET's destination is a register that is unused. In that case,
2044 we just need the first SET. This can occur when simplifying a divmod
2045 insn. We *must* test for this case here because the code below that
2046 splits two independent SETs doesn't handle this case correctly when it
2047 updates the register status. Also check the case where the first
2048 SET's destination is unused. That would not cause incorrect code, but
2049 does cause an unneeded insn to remain. */
2051 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2052 && XVECLEN (newpat, 0) == 2
2053 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2054 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2055 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2056 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2057 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2058 && asm_noperands (newpat) < 0)
2060 newpat = XVECEXP (newpat, 0, 0);
2061 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2064 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2065 && XVECLEN (newpat, 0) == 2
2066 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2067 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2068 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2069 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2070 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2071 && asm_noperands (newpat) < 0)
2073 newpat = XVECEXP (newpat, 0, 1);
2074 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2077 /* If we were combining three insns and the result is a simple SET
2078 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2079 insns. There are two ways to do this. It can be split using a
2080 machine-specific method (like when you have an addition of a large
2081 constant) or by combine in the function find_split_point. */
2083 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2084 && asm_noperands (newpat) < 0)
2086 rtx m_split, *split;
2087 rtx ni2dest = i2dest;
2089 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2090 use I2DEST as a scratch register will help. In the latter case,
2091 convert I2DEST to the mode of the source of NEWPAT if we can. */
2093 m_split = split_insns (newpat, i3);
2095 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2096 inputs of NEWPAT. */
2098 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2099 possible to try that as a scratch reg. This would require adding
2100 more code to make it work though. */
2102 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2104 /* If I2DEST is a hard register or the only use of a pseudo,
2105 we can change its mode. */
2106 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2107 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2108 && GET_CODE (i2dest) == REG
2109 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2110 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2111 && ! REG_USERVAR_P (i2dest))))
2112 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2113 REGNO (i2dest));
2115 m_split = split_insns (gen_rtx_PARALLEL
2116 (VOIDmode,
2117 gen_rtvec (2, newpat,
2118 gen_rtx_CLOBBER (VOIDmode,
2119 ni2dest))),
2120 i3);
2121 /* If the split with the mode-changed register didn't work, try
2122 the original register. */
2123 if (! m_split && ni2dest != i2dest)
2125 ni2dest = i2dest;
2126 m_split = split_insns (gen_rtx_PARALLEL
2127 (VOIDmode,
2128 gen_rtvec (2, newpat,
2129 gen_rtx_CLOBBER (VOIDmode,
2130 i2dest))),
2131 i3);
2135 /* If we've split a jump pattern, we'll wind up with a sequence even
2136 with one instruction. We can handle that below, so extract it. */
2137 if (m_split && GET_CODE (m_split) == SEQUENCE
2138 && XVECLEN (m_split, 0) == 1)
2139 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2141 if (m_split && GET_CODE (m_split) != SEQUENCE)
2143 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2144 if (insn_code_number >= 0)
2145 newpat = m_split;
2147 else if (m_split && GET_CODE (m_split) == SEQUENCE
2148 && XVECLEN (m_split, 0) == 2
2149 && (next_real_insn (i2) == i3
2150 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2151 INSN_CUID (i2))))
2153 rtx i2set, i3set;
2154 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2155 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2157 i3set = single_set (XVECEXP (m_split, 0, 1));
2158 i2set = single_set (XVECEXP (m_split, 0, 0));
2160 /* In case we changed the mode of I2DEST, replace it in the
2161 pseudo-register table here. We can't do it above in case this
2162 code doesn't get executed and we do a split the other way. */
2164 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2165 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2167 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2169 /* If I2 or I3 has multiple SETs, we won't know how to track
2170 register status, so don't use these insns. If I2's destination
2171 is used between I2 and I3, we also can't use these insns. */
2173 if (i2_code_number >= 0 && i2set && i3set
2174 && (next_real_insn (i2) == i3
2175 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2176 insn_code_number = recog_for_combine (&newi3pat, i3,
2177 &new_i3_notes);
2178 if (insn_code_number >= 0)
2179 newpat = newi3pat;
2181 /* It is possible that both insns now set the destination of I3.
2182 If so, we must show an extra use of it. */
2184 if (insn_code_number >= 0)
2186 rtx new_i3_dest = SET_DEST (i3set);
2187 rtx new_i2_dest = SET_DEST (i2set);
2189 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2190 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2191 || GET_CODE (new_i3_dest) == SUBREG)
2192 new_i3_dest = XEXP (new_i3_dest, 0);
2194 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2195 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2196 || GET_CODE (new_i2_dest) == SUBREG)
2197 new_i2_dest = XEXP (new_i2_dest, 0);
2199 if (GET_CODE (new_i3_dest) == REG
2200 && GET_CODE (new_i2_dest) == REG
2201 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2202 REG_N_SETS (REGNO (new_i2_dest))++;
2206 /* If we can split it and use I2DEST, go ahead and see if that
2207 helps things be recognized. Verify that none of the registers
2208 are set between I2 and I3. */
2209 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2210 #ifdef HAVE_cc0
2211 && GET_CODE (i2dest) == REG
2212 #endif
2213 /* We need I2DEST in the proper mode. If it is a hard register
2214 or the only use of a pseudo, we can change its mode. */
2215 && (GET_MODE (*split) == GET_MODE (i2dest)
2216 || GET_MODE (*split) == VOIDmode
2217 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2218 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2219 && ! REG_USERVAR_P (i2dest)))
2220 && (next_real_insn (i2) == i3
2221 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2222 /* We can't overwrite I2DEST if its value is still used by
2223 NEWPAT. */
2224 && ! reg_referenced_p (i2dest, newpat))
2226 rtx newdest = i2dest;
2227 enum rtx_code split_code = GET_CODE (*split);
2228 enum machine_mode split_mode = GET_MODE (*split);
2230 /* Get NEWDEST as a register in the proper mode. We have already
2231 validated that we can do this. */
2232 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2234 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2236 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2237 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2240 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2241 an ASHIFT. This can occur if it was inside a PLUS and hence
2242 appeared to be a memory address. This is a kludge. */
2243 if (split_code == MULT
2244 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2245 && INTVAL (XEXP (*split, 1)) > 0
2246 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2248 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2249 XEXP (*split, 0), GEN_INT (i)));
2250 /* Update split_code because we may not have a multiply
2251 anymore. */
2252 split_code = GET_CODE (*split);
2255 #ifdef INSN_SCHEDULING
2256 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2257 be written as a ZERO_EXTEND. */
2258 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2259 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2260 SUBREG_REG (*split)));
2261 #endif
2263 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2264 SUBST (*split, newdest);
2265 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2267 /* If the split point was a MULT and we didn't have one before,
2268 don't use one now. */
2269 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2270 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2274 /* Check for a case where we loaded from memory in a narrow mode and
2275 then sign extended it, but we need both registers. In that case,
2276 we have a PARALLEL with both loads from the same memory location.
2277 We can split this into a load from memory followed by a register-register
2278 copy. This saves at least one insn, more if register allocation can
2279 eliminate the copy.
2281 We cannot do this if the destination of the second assignment is
2282 a register that we have already assumed is zero-extended. Similarly
2283 for a SUBREG of such a register. */
2285 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2286 && GET_CODE (newpat) == PARALLEL
2287 && XVECLEN (newpat, 0) == 2
2288 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2289 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2290 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2291 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2292 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2293 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2294 INSN_CUID (i2))
2295 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2296 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2297 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2298 (GET_CODE (temp) == REG
2299 && reg_nonzero_bits[REGNO (temp)] != 0
2300 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2301 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2302 && (reg_nonzero_bits[REGNO (temp)]
2303 != GET_MODE_MASK (word_mode))))
2304 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2305 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2306 (GET_CODE (temp) == REG
2307 && reg_nonzero_bits[REGNO (temp)] != 0
2308 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2309 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2310 && (reg_nonzero_bits[REGNO (temp)]
2311 != GET_MODE_MASK (word_mode)))))
2312 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2313 SET_SRC (XVECEXP (newpat, 0, 1)))
2314 && ! find_reg_note (i3, REG_UNUSED,
2315 SET_DEST (XVECEXP (newpat, 0, 0))))
2317 rtx ni2dest;
2319 newi2pat = XVECEXP (newpat, 0, 0);
2320 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2321 newpat = XVECEXP (newpat, 0, 1);
2322 SUBST (SET_SRC (newpat),
2323 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2324 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2326 if (i2_code_number >= 0)
2327 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2329 if (insn_code_number >= 0)
2331 rtx insn;
2332 rtx link;
2334 /* If we will be able to accept this, we have made a change to the
2335 destination of I3. This can invalidate a LOG_LINKS pointing
2336 to I3. No other part of combine.c makes such a transformation.
2338 The new I3 will have a destination that was previously the
2339 destination of I1 or I2 and which was used in i2 or I3. Call
2340 distribute_links to make a LOG_LINK from the next use of
2341 that destination. */
2343 PATTERN (i3) = newpat;
2344 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2346 /* I3 now uses what used to be its destination and which is
2347 now I2's destination. That means we need a LOG_LINK from
2348 I3 to I2. But we used to have one, so we still will.
2350 However, some later insn might be using I2's dest and have
2351 a LOG_LINK pointing at I3. We must remove this link.
2352 The simplest way to remove the link is to point it at I1,
2353 which we know will be a NOTE. */
2355 for (insn = NEXT_INSN (i3);
2356 insn && (this_basic_block == n_basic_blocks - 1
2357 || insn != BLOCK_HEAD (this_basic_block + 1));
2358 insn = NEXT_INSN (insn))
2360 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2362 for (link = LOG_LINKS (insn); link;
2363 link = XEXP (link, 1))
2364 if (XEXP (link, 0) == i3)
2365 XEXP (link, 0) = i1;
2367 break;
2373 /* Similarly, check for a case where we have a PARALLEL of two independent
2374 SETs but we started with three insns. In this case, we can do the sets
2375 as two separate insns. This case occurs when some SET allows two
2376 other insns to combine, but the destination of that SET is still live. */
2378 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2379 && GET_CODE (newpat) == PARALLEL
2380 && XVECLEN (newpat, 0) == 2
2381 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2382 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2384 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2387 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2388 INSN_CUID (i2))
2389 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2390 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2391 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2392 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2393 XVECEXP (newpat, 0, 0))
2394 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2395 XVECEXP (newpat, 0, 1))
2396 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2397 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2399 /* Normally, it doesn't matter which of the two is done first,
2400 but it does if one references cc0. In that case, it has to
2401 be first. */
2402 #ifdef HAVE_cc0
2403 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2405 newi2pat = XVECEXP (newpat, 0, 0);
2406 newpat = XVECEXP (newpat, 0, 1);
2408 else
2409 #endif
2411 newi2pat = XVECEXP (newpat, 0, 1);
2412 newpat = XVECEXP (newpat, 0, 0);
2415 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2417 if (i2_code_number >= 0)
2418 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2421 /* If it still isn't recognized, fail and change things back the way they
2422 were. */
2423 if ((insn_code_number < 0
2424 /* Is the result a reasonable ASM_OPERANDS? */
2425 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2427 undo_all ();
2428 return 0;
2431 /* If we had to change another insn, make sure it is valid also. */
2432 if (undobuf.other_insn)
2434 rtx other_pat = PATTERN (undobuf.other_insn);
2435 rtx new_other_notes;
2436 rtx note, next;
2438 CLEAR_HARD_REG_SET (newpat_used_regs);
2440 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2441 &new_other_notes);
2443 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2445 undo_all ();
2446 return 0;
2449 PATTERN (undobuf.other_insn) = other_pat;
2451 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2452 are still valid. Then add any non-duplicate notes added by
2453 recog_for_combine. */
2454 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2456 next = XEXP (note, 1);
2458 if (REG_NOTE_KIND (note) == REG_UNUSED
2459 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2461 if (GET_CODE (XEXP (note, 0)) == REG)
2462 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2464 remove_note (undobuf.other_insn, note);
2468 for (note = new_other_notes; note; note = XEXP (note, 1))
2469 if (GET_CODE (XEXP (note, 0)) == REG)
2470 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2472 distribute_notes (new_other_notes, undobuf.other_insn,
2473 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2475 #ifdef HAVE_cc0
2476 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2477 they are adjacent to each other or not. */
2479 rtx p = prev_nonnote_insn (i3);
2480 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2481 && sets_cc0_p (newi2pat))
2483 undo_all ();
2484 return 0;
2487 #endif
2489 /* We now know that we can do this combination. Merge the insns and
2490 update the status of registers and LOG_LINKS. */
2493 rtx i3notes, i2notes, i1notes = 0;
2494 rtx i3links, i2links, i1links = 0;
2495 rtx midnotes = 0;
2496 unsigned int regno;
2497 /* Compute which registers we expect to eliminate. newi2pat may be setting
2498 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2499 same as i3dest, in which case newi2pat may be setting i1dest. */
2500 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2501 || i2dest_in_i2src || i2dest_in_i1src
2502 ? 0 : i2dest);
2503 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2504 || (newi2pat && reg_set_p (i1dest, newi2pat))
2505 ? 0 : i1dest);
2507 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2508 clear them. */
2509 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2510 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2511 if (i1)
2512 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2514 /* Ensure that we do not have something that should not be shared but
2515 occurs multiple times in the new insns. Check this by first
2516 resetting all the `used' flags and then copying anything is shared. */
2518 reset_used_flags (i3notes);
2519 reset_used_flags (i2notes);
2520 reset_used_flags (i1notes);
2521 reset_used_flags (newpat);
2522 reset_used_flags (newi2pat);
2523 if (undobuf.other_insn)
2524 reset_used_flags (PATTERN (undobuf.other_insn));
2526 i3notes = copy_rtx_if_shared (i3notes);
2527 i2notes = copy_rtx_if_shared (i2notes);
2528 i1notes = copy_rtx_if_shared (i1notes);
2529 newpat = copy_rtx_if_shared (newpat);
2530 newi2pat = copy_rtx_if_shared (newi2pat);
2531 if (undobuf.other_insn)
2532 reset_used_flags (PATTERN (undobuf.other_insn));
2534 INSN_CODE (i3) = insn_code_number;
2535 PATTERN (i3) = newpat;
2536 if (undobuf.other_insn)
2537 INSN_CODE (undobuf.other_insn) = other_code_number;
2539 /* We had one special case above where I2 had more than one set and
2540 we replaced a destination of one of those sets with the destination
2541 of I3. In that case, we have to update LOG_LINKS of insns later
2542 in this basic block. Note that this (expensive) case is rare.
2544 Also, in this case, we must pretend that all REG_NOTEs for I2
2545 actually came from I3, so that REG_UNUSED notes from I2 will be
2546 properly handled. */
2548 if (i3_subst_into_i2)
2550 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2551 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2552 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2553 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2554 && ! find_reg_note (i2, REG_UNUSED,
2555 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2556 for (temp = NEXT_INSN (i2);
2557 temp && (this_basic_block == n_basic_blocks - 1
2558 || BLOCK_HEAD (this_basic_block) != temp);
2559 temp = NEXT_INSN (temp))
2560 if (temp != i3 && INSN_P (temp))
2561 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2562 if (XEXP (link, 0) == i2)
2563 XEXP (link, 0) = i3;
2565 if (i3notes)
2567 rtx link = i3notes;
2568 while (XEXP (link, 1))
2569 link = XEXP (link, 1);
2570 XEXP (link, 1) = i2notes;
2572 else
2573 i3notes = i2notes;
2574 i2notes = 0;
2577 LOG_LINKS (i3) = 0;
2578 REG_NOTES (i3) = 0;
2579 LOG_LINKS (i2) = 0;
2580 REG_NOTES (i2) = 0;
2582 if (newi2pat)
2584 INSN_CODE (i2) = i2_code_number;
2585 PATTERN (i2) = newi2pat;
2587 else
2589 PUT_CODE (i2, NOTE);
2590 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2591 NOTE_SOURCE_FILE (i2) = 0;
2594 if (i1)
2596 LOG_LINKS (i1) = 0;
2597 REG_NOTES (i1) = 0;
2598 PUT_CODE (i1, NOTE);
2599 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2600 NOTE_SOURCE_FILE (i1) = 0;
2603 /* Get death notes for everything that is now used in either I3 or
2604 I2 and used to die in a previous insn. If we built two new
2605 patterns, move from I1 to I2 then I2 to I3 so that we get the
2606 proper movement on registers that I2 modifies. */
2608 if (newi2pat)
2610 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2611 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2613 else
2614 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2615 i3, &midnotes);
2617 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2618 if (i3notes)
2619 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2620 elim_i2, elim_i1);
2621 if (i2notes)
2622 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2623 elim_i2, elim_i1);
2624 if (i1notes)
2625 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2626 elim_i2, elim_i1);
2627 if (midnotes)
2628 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2629 elim_i2, elim_i1);
2631 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2632 know these are REG_UNUSED and want them to go to the desired insn,
2633 so we always pass it as i3. We have not counted the notes in
2634 reg_n_deaths yet, so we need to do so now. */
2636 if (newi2pat && new_i2_notes)
2638 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2639 if (GET_CODE (XEXP (temp, 0)) == REG)
2640 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2642 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2645 if (new_i3_notes)
2647 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2648 if (GET_CODE (XEXP (temp, 0)) == REG)
2649 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2651 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2654 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2655 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2656 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2657 in that case, it might delete I2. Similarly for I2 and I1.
2658 Show an additional death due to the REG_DEAD note we make here. If
2659 we discard it in distribute_notes, we will decrement it again. */
2661 if (i3dest_killed)
2663 if (GET_CODE (i3dest_killed) == REG)
2664 REG_N_DEATHS (REGNO (i3dest_killed))++;
2666 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2667 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2668 NULL_RTX),
2669 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2670 else
2671 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2672 NULL_RTX),
2673 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2677 if (i2dest_in_i2src)
2679 if (GET_CODE (i2dest) == REG)
2680 REG_N_DEATHS (REGNO (i2dest))++;
2682 if (newi2pat && reg_set_p (i2dest, newi2pat))
2683 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2684 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2685 else
2686 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2687 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2688 NULL_RTX, NULL_RTX);
2691 if (i1dest_in_i1src)
2693 if (GET_CODE (i1dest) == REG)
2694 REG_N_DEATHS (REGNO (i1dest))++;
2696 if (newi2pat && reg_set_p (i1dest, newi2pat))
2697 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2698 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2699 else
2700 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2701 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2702 NULL_RTX, NULL_RTX);
2705 distribute_links (i3links);
2706 distribute_links (i2links);
2707 distribute_links (i1links);
2709 if (GET_CODE (i2dest) == REG)
2711 rtx link;
2712 rtx i2_insn = 0, i2_val = 0, set;
2714 /* The insn that used to set this register doesn't exist, and
2715 this life of the register may not exist either. See if one of
2716 I3's links points to an insn that sets I2DEST. If it does,
2717 that is now the last known value for I2DEST. If we don't update
2718 this and I2 set the register to a value that depended on its old
2719 contents, we will get confused. If this insn is used, thing
2720 will be set correctly in combine_instructions. */
2722 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2723 if ((set = single_set (XEXP (link, 0))) != 0
2724 && rtx_equal_p (i2dest, SET_DEST (set)))
2725 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2727 record_value_for_reg (i2dest, i2_insn, i2_val);
2729 /* If the reg formerly set in I2 died only once and that was in I3,
2730 zero its use count so it won't make `reload' do any work. */
2731 if (! added_sets_2
2732 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2733 && ! i2dest_in_i2src)
2735 regno = REGNO (i2dest);
2736 REG_N_SETS (regno)--;
2740 if (i1 && GET_CODE (i1dest) == REG)
2742 rtx link;
2743 rtx i1_insn = 0, i1_val = 0, set;
2745 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2746 if ((set = single_set (XEXP (link, 0))) != 0
2747 && rtx_equal_p (i1dest, SET_DEST (set)))
2748 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2750 record_value_for_reg (i1dest, i1_insn, i1_val);
2752 regno = REGNO (i1dest);
2753 if (! added_sets_1 && ! i1dest_in_i1src)
2754 REG_N_SETS (regno)--;
2757 /* Update reg_nonzero_bits et al for any changes that may have been made
2758 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2759 important. Because newi2pat can affect nonzero_bits of newpat */
2760 if (newi2pat)
2761 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2762 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2764 /* Set new_direct_jump_p if a new return or simple jump instruction
2765 has been created.
2767 If I3 is now an unconditional jump, ensure that it has a
2768 BARRIER following it since it may have initially been a
2769 conditional jump. It may also be the last nonnote insn. */
2771 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2773 *new_direct_jump_p = 1;
2775 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2776 || GET_CODE (temp) != BARRIER)
2777 emit_barrier_after (i3);
2779 /* An NOOP jump does not need barrier, but it does need cleaning up
2780 of CFG. */
2781 if (GET_CODE (newpat) == SET
2782 && SET_SRC (newpat) == pc_rtx
2783 && SET_DEST (newpat) == pc_rtx)
2784 *new_direct_jump_p = 1;
2787 combine_successes++;
2788 undo_commit ();
2790 /* Clear this here, so that subsequent get_last_value calls are not
2791 affected. */
2792 subst_prev_insn = NULL_RTX;
2794 if (added_links_insn
2795 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2796 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2797 return added_links_insn;
2798 else
2799 return newi2pat ? i2 : i3;
2802 /* Undo all the modifications recorded in undobuf. */
2804 static void
2805 undo_all ()
2807 struct undo *undo, *next;
2809 for (undo = undobuf.undos; undo; undo = next)
2811 next = undo->next;
2812 if (undo->is_int)
2813 *undo->where.i = undo->old_contents.i;
2814 else
2815 *undo->where.r = undo->old_contents.r;
2817 undo->next = undobuf.frees;
2818 undobuf.frees = undo;
2821 undobuf.undos = 0;
2823 /* Clear this here, so that subsequent get_last_value calls are not
2824 affected. */
2825 subst_prev_insn = NULL_RTX;
2828 /* We've committed to accepting the changes we made. Move all
2829 of the undos to the free list. */
2831 static void
2832 undo_commit ()
2834 struct undo *undo, *next;
2836 for (undo = undobuf.undos; undo; undo = next)
2838 next = undo->next;
2839 undo->next = undobuf.frees;
2840 undobuf.frees = undo;
2842 undobuf.undos = 0;
2846 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2847 where we have an arithmetic expression and return that point. LOC will
2848 be inside INSN.
2850 try_combine will call this function to see if an insn can be split into
2851 two insns. */
2853 static rtx *
2854 find_split_point (loc, insn)
2855 rtx *loc;
2856 rtx insn;
2858 rtx x = *loc;
2859 enum rtx_code code = GET_CODE (x);
2860 rtx *split;
2861 unsigned HOST_WIDE_INT len = 0;
2862 HOST_WIDE_INT pos = 0;
2863 int unsignedp = 0;
2864 rtx inner = NULL_RTX;
2866 /* First special-case some codes. */
2867 switch (code)
2869 case SUBREG:
2870 #ifdef INSN_SCHEDULING
2871 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2872 point. */
2873 if (GET_CODE (SUBREG_REG (x)) == MEM)
2874 return loc;
2875 #endif
2876 return find_split_point (&SUBREG_REG (x), insn);
2878 case MEM:
2879 #ifdef HAVE_lo_sum
2880 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2881 using LO_SUM and HIGH. */
2882 if (GET_CODE (XEXP (x, 0)) == CONST
2883 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2885 SUBST (XEXP (x, 0),
2886 gen_rtx_LO_SUM (Pmode,
2887 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2888 XEXP (x, 0)));
2889 return &XEXP (XEXP (x, 0), 0);
2891 #endif
2893 /* If we have a PLUS whose second operand is a constant and the
2894 address is not valid, perhaps will can split it up using
2895 the machine-specific way to split large constants. We use
2896 the first pseudo-reg (one of the virtual regs) as a placeholder;
2897 it will not remain in the result. */
2898 if (GET_CODE (XEXP (x, 0)) == PLUS
2899 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2900 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2902 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2903 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2904 subst_insn);
2906 /* This should have produced two insns, each of which sets our
2907 placeholder. If the source of the second is a valid address,
2908 we can make put both sources together and make a split point
2909 in the middle. */
2911 if (seq && XVECLEN (seq, 0) == 2
2912 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2913 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2914 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2915 && ! reg_mentioned_p (reg,
2916 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2917 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2918 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2919 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2920 && memory_address_p (GET_MODE (x),
2921 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2923 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2924 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2926 /* Replace the placeholder in SRC2 with SRC1. If we can
2927 find where in SRC2 it was placed, that can become our
2928 split point and we can replace this address with SRC2.
2929 Just try two obvious places. */
2931 src2 = replace_rtx (src2, reg, src1);
2932 split = 0;
2933 if (XEXP (src2, 0) == src1)
2934 split = &XEXP (src2, 0);
2935 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2936 && XEXP (XEXP (src2, 0), 0) == src1)
2937 split = &XEXP (XEXP (src2, 0), 0);
2939 if (split)
2941 SUBST (XEXP (x, 0), src2);
2942 return split;
2946 /* If that didn't work, perhaps the first operand is complex and
2947 needs to be computed separately, so make a split point there.
2948 This will occur on machines that just support REG + CONST
2949 and have a constant moved through some previous computation. */
2951 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2952 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2953 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2954 == 'o')))
2955 return &XEXP (XEXP (x, 0), 0);
2957 break;
2959 case SET:
2960 #ifdef HAVE_cc0
2961 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2962 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2963 we need to put the operand into a register. So split at that
2964 point. */
2966 if (SET_DEST (x) == cc0_rtx
2967 && GET_CODE (SET_SRC (x)) != COMPARE
2968 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2969 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2970 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2971 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2972 return &SET_SRC (x);
2973 #endif
2975 /* See if we can split SET_SRC as it stands. */
2976 split = find_split_point (&SET_SRC (x), insn);
2977 if (split && split != &SET_SRC (x))
2978 return split;
2980 /* See if we can split SET_DEST as it stands. */
2981 split = find_split_point (&SET_DEST (x), insn);
2982 if (split && split != &SET_DEST (x))
2983 return split;
2985 /* See if this is a bitfield assignment with everything constant. If
2986 so, this is an IOR of an AND, so split it into that. */
2987 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2988 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2989 <= HOST_BITS_PER_WIDE_INT)
2990 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2991 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2992 && GET_CODE (SET_SRC (x)) == CONST_INT
2993 && ((INTVAL (XEXP (SET_DEST (x), 1))
2994 + INTVAL (XEXP (SET_DEST (x), 2)))
2995 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2996 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2998 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2999 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3000 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3001 rtx dest = XEXP (SET_DEST (x), 0);
3002 enum machine_mode mode = GET_MODE (dest);
3003 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3005 if (BITS_BIG_ENDIAN)
3006 pos = GET_MODE_BITSIZE (mode) - len - pos;
3008 if (src == mask)
3009 SUBST (SET_SRC (x),
3010 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3011 else
3012 SUBST (SET_SRC (x),
3013 gen_binary (IOR, mode,
3014 gen_binary (AND, mode, dest,
3015 GEN_INT (~(mask << pos)
3016 & GET_MODE_MASK (mode))),
3017 GEN_INT (src << pos)));
3019 SUBST (SET_DEST (x), dest);
3021 split = find_split_point (&SET_SRC (x), insn);
3022 if (split && split != &SET_SRC (x))
3023 return split;
3026 /* Otherwise, see if this is an operation that we can split into two.
3027 If so, try to split that. */
3028 code = GET_CODE (SET_SRC (x));
3030 switch (code)
3032 case AND:
3033 /* If we are AND'ing with a large constant that is only a single
3034 bit and the result is only being used in a context where we
3035 need to know if it is zero or non-zero, replace it with a bit
3036 extraction. This will avoid the large constant, which might
3037 have taken more than one insn to make. If the constant were
3038 not a valid argument to the AND but took only one insn to make,
3039 this is no worse, but if it took more than one insn, it will
3040 be better. */
3042 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3043 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3044 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3045 && GET_CODE (SET_DEST (x)) == REG
3046 && (split = find_single_use (SET_DEST (x), insn, (rtx*)0)) != 0
3047 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3048 && XEXP (*split, 0) == SET_DEST (x)
3049 && XEXP (*split, 1) == const0_rtx)
3051 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3052 XEXP (SET_SRC (x), 0),
3053 pos, NULL_RTX, 1, 1, 0, 0);
3054 if (extraction != 0)
3056 SUBST (SET_SRC (x), extraction);
3057 return find_split_point (loc, insn);
3060 break;
3062 case NE:
3063 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3064 is known to be on, this can be converted into a NEG of a shift. */
3065 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3066 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3067 && 1 <= (pos = exact_log2
3068 (nonzero_bits (XEXP (SET_SRC (x), 0),
3069 GET_MODE (XEXP (SET_SRC (x), 0))))))
3071 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3073 SUBST (SET_SRC (x),
3074 gen_rtx_NEG (mode,
3075 gen_rtx_LSHIFTRT (mode,
3076 XEXP (SET_SRC (x), 0),
3077 GEN_INT (pos))));
3079 split = find_split_point (&SET_SRC (x), insn);
3080 if (split && split != &SET_SRC (x))
3081 return split;
3083 break;
3085 case SIGN_EXTEND:
3086 inner = XEXP (SET_SRC (x), 0);
3088 /* We can't optimize if either mode is a partial integer
3089 mode as we don't know how many bits are significant
3090 in those modes. */
3091 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3092 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3093 break;
3095 pos = 0;
3096 len = GET_MODE_BITSIZE (GET_MODE (inner));
3097 unsignedp = 0;
3098 break;
3100 case SIGN_EXTRACT:
3101 case ZERO_EXTRACT:
3102 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3103 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3105 inner = XEXP (SET_SRC (x), 0);
3106 len = INTVAL (XEXP (SET_SRC (x), 1));
3107 pos = INTVAL (XEXP (SET_SRC (x), 2));
3109 if (BITS_BIG_ENDIAN)
3110 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3111 unsignedp = (code == ZERO_EXTRACT);
3113 break;
3115 default:
3116 break;
3119 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3121 enum machine_mode mode = GET_MODE (SET_SRC (x));
3123 /* For unsigned, we have a choice of a shift followed by an
3124 AND or two shifts. Use two shifts for field sizes where the
3125 constant might be too large. We assume here that we can
3126 always at least get 8-bit constants in an AND insn, which is
3127 true for every current RISC. */
3129 if (unsignedp && len <= 8)
3131 SUBST (SET_SRC (x),
3132 gen_rtx_AND (mode,
3133 gen_rtx_LSHIFTRT
3134 (mode, gen_lowpart_for_combine (mode, inner),
3135 GEN_INT (pos)),
3136 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3138 split = find_split_point (&SET_SRC (x), insn);
3139 if (split && split != &SET_SRC (x))
3140 return split;
3142 else
3144 SUBST (SET_SRC (x),
3145 gen_rtx_fmt_ee
3146 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3147 gen_rtx_ASHIFT (mode,
3148 gen_lowpart_for_combine (mode, inner),
3149 GEN_INT (GET_MODE_BITSIZE (mode)
3150 - len - pos)),
3151 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3153 split = find_split_point (&SET_SRC (x), insn);
3154 if (split && split != &SET_SRC (x))
3155 return split;
3159 /* See if this is a simple operation with a constant as the second
3160 operand. It might be that this constant is out of range and hence
3161 could be used as a split point. */
3162 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3163 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3164 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3165 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3166 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3167 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3168 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3169 == 'o'))))
3170 return &XEXP (SET_SRC (x), 1);
3172 /* Finally, see if this is a simple operation with its first operand
3173 not in a register. The operation might require this operand in a
3174 register, so return it as a split point. We can always do this
3175 because if the first operand were another operation, we would have
3176 already found it as a split point. */
3177 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3178 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3179 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3180 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3181 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3182 return &XEXP (SET_SRC (x), 0);
3184 return 0;
3186 case AND:
3187 case IOR:
3188 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3189 it is better to write this as (not (ior A B)) so we can split it.
3190 Similarly for IOR. */
3191 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3193 SUBST (*loc,
3194 gen_rtx_NOT (GET_MODE (x),
3195 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3196 GET_MODE (x),
3197 XEXP (XEXP (x, 0), 0),
3198 XEXP (XEXP (x, 1), 0))));
3199 return find_split_point (loc, insn);
3202 /* Many RISC machines have a large set of logical insns. If the
3203 second operand is a NOT, put it first so we will try to split the
3204 other operand first. */
3205 if (GET_CODE (XEXP (x, 1)) == NOT)
3207 rtx tem = XEXP (x, 0);
3208 SUBST (XEXP (x, 0), XEXP (x, 1));
3209 SUBST (XEXP (x, 1), tem);
3211 break;
3213 default:
3214 break;
3217 /* Otherwise, select our actions depending on our rtx class. */
3218 switch (GET_RTX_CLASS (code))
3220 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3221 case '3':
3222 split = find_split_point (&XEXP (x, 2), insn);
3223 if (split)
3224 return split;
3225 /* ... fall through ... */
3226 case '2':
3227 case 'c':
3228 case '<':
3229 split = find_split_point (&XEXP (x, 1), insn);
3230 if (split)
3231 return split;
3232 /* ... fall through ... */
3233 case '1':
3234 /* Some machines have (and (shift ...) ...) insns. If X is not
3235 an AND, but XEXP (X, 0) is, use it as our split point. */
3236 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3237 return &XEXP (x, 0);
3239 split = find_split_point (&XEXP (x, 0), insn);
3240 if (split)
3241 return split;
3242 return loc;
3245 /* Otherwise, we don't have a split point. */
3246 return 0;
3249 /* Throughout X, replace FROM with TO, and return the result.
3250 The result is TO if X is FROM;
3251 otherwise the result is X, but its contents may have been modified.
3252 If they were modified, a record was made in undobuf so that
3253 undo_all will (among other things) return X to its original state.
3255 If the number of changes necessary is too much to record to undo,
3256 the excess changes are not made, so the result is invalid.
3257 The changes already made can still be undone.
3258 undobuf.num_undo is incremented for such changes, so by testing that
3259 the caller can tell whether the result is valid.
3261 `n_occurrences' is incremented each time FROM is replaced.
3263 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3265 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3266 by copying if `n_occurrences' is non-zero. */
3268 static rtx
3269 subst (x, from, to, in_dest, unique_copy)
3270 rtx x, from, to;
3271 int in_dest;
3272 int unique_copy;
3274 enum rtx_code code = GET_CODE (x);
3275 enum machine_mode op0_mode = VOIDmode;
3276 const char *fmt;
3277 int len, i;
3278 rtx new;
3280 /* Two expressions are equal if they are identical copies of a shared
3281 RTX or if they are both registers with the same register number
3282 and mode. */
3284 #define COMBINE_RTX_EQUAL_P(X,Y) \
3285 ((X) == (Y) \
3286 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3287 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3289 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3291 n_occurrences++;
3292 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3295 /* If X and FROM are the same register but different modes, they will
3296 not have been seen as equal above. However, flow.c will make a
3297 LOG_LINKS entry for that case. If we do nothing, we will try to
3298 rerecognize our original insn and, when it succeeds, we will
3299 delete the feeding insn, which is incorrect.
3301 So force this insn not to match in this (rare) case. */
3302 if (! in_dest && code == REG && GET_CODE (from) == REG
3303 && REGNO (x) == REGNO (from))
3304 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3306 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3307 of which may contain things that can be combined. */
3308 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3309 return x;
3311 /* It is possible to have a subexpression appear twice in the insn.
3312 Suppose that FROM is a register that appears within TO.
3313 Then, after that subexpression has been scanned once by `subst',
3314 the second time it is scanned, TO may be found. If we were
3315 to scan TO here, we would find FROM within it and create a
3316 self-referent rtl structure which is completely wrong. */
3317 if (COMBINE_RTX_EQUAL_P (x, to))
3318 return to;
3320 /* Parallel asm_operands need special attention because all of the
3321 inputs are shared across the arms. Furthermore, unsharing the
3322 rtl results in recognition failures. Failure to handle this case
3323 specially can result in circular rtl.
3325 Solve this by doing a normal pass across the first entry of the
3326 parallel, and only processing the SET_DESTs of the subsequent
3327 entries. Ug. */
3329 if (code == PARALLEL
3330 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3331 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3333 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3335 /* If this substitution failed, this whole thing fails. */
3336 if (GET_CODE (new) == CLOBBER
3337 && XEXP (new, 0) == const0_rtx)
3338 return new;
3340 SUBST (XVECEXP (x, 0, 0), new);
3342 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3344 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3346 if (GET_CODE (dest) != REG
3347 && GET_CODE (dest) != CC0
3348 && GET_CODE (dest) != PC)
3350 new = subst (dest, from, to, 0, unique_copy);
3352 /* If this substitution failed, this whole thing fails. */
3353 if (GET_CODE (new) == CLOBBER
3354 && XEXP (new, 0) == const0_rtx)
3355 return new;
3357 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3361 else
3363 len = GET_RTX_LENGTH (code);
3364 fmt = GET_RTX_FORMAT (code);
3366 /* We don't need to process a SET_DEST that is a register, CC0,
3367 or PC, so set up to skip this common case. All other cases
3368 where we want to suppress replacing something inside a
3369 SET_SRC are handled via the IN_DEST operand. */
3370 if (code == SET
3371 && (GET_CODE (SET_DEST (x)) == REG
3372 || GET_CODE (SET_DEST (x)) == CC0
3373 || GET_CODE (SET_DEST (x)) == PC))
3374 fmt = "ie";
3376 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3377 constant. */
3378 if (fmt[0] == 'e')
3379 op0_mode = GET_MODE (XEXP (x, 0));
3381 for (i = 0; i < len; i++)
3383 if (fmt[i] == 'E')
3385 int j;
3386 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3388 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3390 new = (unique_copy && n_occurrences
3391 ? copy_rtx (to) : to);
3392 n_occurrences++;
3394 else
3396 new = subst (XVECEXP (x, i, j), from, to, 0,
3397 unique_copy);
3399 /* If this substitution failed, this whole thing
3400 fails. */
3401 if (GET_CODE (new) == CLOBBER
3402 && XEXP (new, 0) == const0_rtx)
3403 return new;
3406 SUBST (XVECEXP (x, i, j), new);
3409 else if (fmt[i] == 'e')
3411 /* If this is a register being set, ignore it. */
3412 new = XEXP (x, i);
3413 if (in_dest
3414 && (code == SUBREG || code == STRICT_LOW_PART
3415 || code == ZERO_EXTRACT)
3416 && i == 0
3417 && GET_CODE (new) == REG)
3420 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3422 /* In general, don't install a subreg involving two
3423 modes not tieable. It can worsen register
3424 allocation, and can even make invalid reload
3425 insns, since the reg inside may need to be copied
3426 from in the outside mode, and that may be invalid
3427 if it is an fp reg copied in integer mode.
3429 We allow two exceptions to this: It is valid if
3430 it is inside another SUBREG and the mode of that
3431 SUBREG and the mode of the inside of TO is
3432 tieable and it is valid if X is a SET that copies
3433 FROM to CC0. */
3435 if (GET_CODE (to) == SUBREG
3436 && ! MODES_TIEABLE_P (GET_MODE (to),
3437 GET_MODE (SUBREG_REG (to)))
3438 && ! (code == SUBREG
3439 && MODES_TIEABLE_P (GET_MODE (x),
3440 GET_MODE (SUBREG_REG (to))))
3441 #ifdef HAVE_cc0
3442 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3443 #endif
3445 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3447 #ifdef CLASS_CANNOT_CHANGE_MODE
3448 if (code == SUBREG
3449 && GET_CODE (to) == REG
3450 && REGNO (to) < FIRST_PSEUDO_REGISTER
3451 && (TEST_HARD_REG_BIT
3452 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3453 REGNO (to)))
3454 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3455 GET_MODE (x)))
3456 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3457 #endif
3459 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3460 n_occurrences++;
3462 else
3463 /* If we are in a SET_DEST, suppress most cases unless we
3464 have gone inside a MEM, in which case we want to
3465 simplify the address. We assume here that things that
3466 are actually part of the destination have their inner
3467 parts in the first expression. This is true for SUBREG,
3468 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3469 things aside from REG and MEM that should appear in a
3470 SET_DEST. */
3471 new = subst (XEXP (x, i), from, to,
3472 (((in_dest
3473 && (code == SUBREG || code == STRICT_LOW_PART
3474 || code == ZERO_EXTRACT))
3475 || code == SET)
3476 && i == 0), unique_copy);
3478 /* If we found that we will have to reject this combination,
3479 indicate that by returning the CLOBBER ourselves, rather than
3480 an expression containing it. This will speed things up as
3481 well as prevent accidents where two CLOBBERs are considered
3482 to be equal, thus producing an incorrect simplification. */
3484 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3485 return new;
3487 SUBST (XEXP (x, i), new);
3492 /* Try to simplify X. If the simplification changed the code, it is likely
3493 that further simplification will help, so loop, but limit the number
3494 of repetitions that will be performed. */
3496 for (i = 0; i < 4; i++)
3498 /* If X is sufficiently simple, don't bother trying to do anything
3499 with it. */
3500 if (code != CONST_INT && code != REG && code != CLOBBER)
3501 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3503 if (GET_CODE (x) == code)
3504 break;
3506 code = GET_CODE (x);
3508 /* We no longer know the original mode of operand 0 since we
3509 have changed the form of X) */
3510 op0_mode = VOIDmode;
3513 return x;
3516 /* Simplify X, a piece of RTL. We just operate on the expression at the
3517 outer level; call `subst' to simplify recursively. Return the new
3518 expression.
3520 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3521 will be the iteration even if an expression with a code different from
3522 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3524 static rtx
3525 combine_simplify_rtx (x, op0_mode, last, in_dest)
3526 rtx x;
3527 enum machine_mode op0_mode;
3528 int last;
3529 int in_dest;
3531 enum rtx_code code = GET_CODE (x);
3532 enum machine_mode mode = GET_MODE (x);
3533 rtx temp;
3534 rtx reversed;
3535 int i;
3537 /* If this is a commutative operation, put a constant last and a complex
3538 expression first. We don't need to do this for comparisons here. */
3539 if (GET_RTX_CLASS (code) == 'c'
3540 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3542 temp = XEXP (x, 0);
3543 SUBST (XEXP (x, 0), XEXP (x, 1));
3544 SUBST (XEXP (x, 1), temp);
3547 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3548 sign extension of a PLUS with a constant, reverse the order of the sign
3549 extension and the addition. Note that this not the same as the original
3550 code, but overflow is undefined for signed values. Also note that the
3551 PLUS will have been partially moved "inside" the sign-extension, so that
3552 the first operand of X will really look like:
3553 (ashiftrt (plus (ashift A C4) C5) C4).
3554 We convert this to
3555 (plus (ashiftrt (ashift A C4) C2) C4)
3556 and replace the first operand of X with that expression. Later parts
3557 of this function may simplify the expression further.
3559 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3560 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3561 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3563 We do this to simplify address expressions. */
3565 if ((code == PLUS || code == MINUS || code == MULT)
3566 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3567 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3568 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3569 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3570 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3571 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3572 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3573 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3574 XEXP (XEXP (XEXP (x, 0), 0), 1),
3575 XEXP (XEXP (x, 0), 1))) != 0)
3577 rtx new
3578 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3579 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3580 INTVAL (XEXP (XEXP (x, 0), 1)));
3582 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3583 INTVAL (XEXP (XEXP (x, 0), 1)));
3585 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3588 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3589 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3590 things. Check for cases where both arms are testing the same
3591 condition.
3593 Don't do anything if all operands are very simple. */
3595 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3596 || GET_RTX_CLASS (code) == '<')
3597 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3598 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3599 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3600 == 'o')))
3601 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3602 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3603 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3604 == 'o')))))
3605 || (GET_RTX_CLASS (code) == '1'
3606 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3607 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3608 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3609 == 'o'))))))
3611 rtx cond, true_rtx, false_rtx;
3613 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3614 if (cond != 0
3615 /* If everything is a comparison, what we have is highly unlikely
3616 to be simpler, so don't use it. */
3617 && ! (GET_RTX_CLASS (code) == '<'
3618 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3619 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3621 rtx cop1 = const0_rtx;
3622 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3624 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3625 return x;
3627 /* Simplify the alternative arms; this may collapse the true and
3628 false arms to store-flag values. */
3629 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3630 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3632 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3633 is unlikely to be simpler. */
3634 if (general_operand (true_rtx, VOIDmode)
3635 && general_operand (false_rtx, VOIDmode))
3637 /* Restarting if we generate a store-flag expression will cause
3638 us to loop. Just drop through in this case. */
3640 /* If the result values are STORE_FLAG_VALUE and zero, we can
3641 just make the comparison operation. */
3642 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3643 x = gen_binary (cond_code, mode, cond, cop1);
3644 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3645 && reverse_condition (cond_code) != UNKNOWN)
3646 x = gen_binary (reverse_condition (cond_code),
3647 mode, cond, cop1);
3649 /* Likewise, we can make the negate of a comparison operation
3650 if the result values are - STORE_FLAG_VALUE and zero. */
3651 else if (GET_CODE (true_rtx) == CONST_INT
3652 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3653 && false_rtx == const0_rtx)
3654 x = simplify_gen_unary (NEG, mode,
3655 gen_binary (cond_code, mode, cond,
3656 cop1),
3657 mode);
3658 else if (GET_CODE (false_rtx) == CONST_INT
3659 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3660 && true_rtx == const0_rtx)
3661 x = simplify_gen_unary (NEG, mode,
3662 gen_binary (reverse_condition
3663 (cond_code),
3664 mode, cond, cop1),
3665 mode);
3666 else
3667 return gen_rtx_IF_THEN_ELSE (mode,
3668 gen_binary (cond_code, VOIDmode,
3669 cond, cop1),
3670 true_rtx, false_rtx);
3672 code = GET_CODE (x);
3673 op0_mode = VOIDmode;
3678 /* Try to fold this expression in case we have constants that weren't
3679 present before. */
3680 temp = 0;
3681 switch (GET_RTX_CLASS (code))
3683 case '1':
3684 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3685 break;
3686 case '<':
3688 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3689 if (cmp_mode == VOIDmode)
3691 cmp_mode = GET_MODE (XEXP (x, 1));
3692 if (cmp_mode == VOIDmode)
3693 cmp_mode = op0_mode;
3695 temp = simplify_relational_operation (code, cmp_mode,
3696 XEXP (x, 0), XEXP (x, 1));
3698 #ifdef FLOAT_STORE_FLAG_VALUE
3699 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3701 if (temp == const0_rtx)
3702 temp = CONST0_RTX (mode);
3703 else
3704 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3706 #endif
3707 break;
3708 case 'c':
3709 case '2':
3710 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3711 break;
3712 case 'b':
3713 case '3':
3714 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3715 XEXP (x, 1), XEXP (x, 2));
3716 break;
3719 if (temp)
3721 x = temp;
3722 code = GET_CODE (temp);
3723 op0_mode = VOIDmode;
3724 mode = GET_MODE (temp);
3727 /* First see if we can apply the inverse distributive law. */
3728 if (code == PLUS || code == MINUS
3729 || code == AND || code == IOR || code == XOR)
3731 x = apply_distributive_law (x);
3732 code = GET_CODE (x);
3733 op0_mode = VOIDmode;
3736 /* If CODE is an associative operation not otherwise handled, see if we
3737 can associate some operands. This can win if they are constants or
3738 if they are logically related (i.e. (a & b) & a). */
3739 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3740 || code == AND || code == IOR || code == XOR
3741 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3742 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3743 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3745 if (GET_CODE (XEXP (x, 0)) == code)
3747 rtx other = XEXP (XEXP (x, 0), 0);
3748 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3749 rtx inner_op1 = XEXP (x, 1);
3750 rtx inner;
3752 /* Make sure we pass the constant operand if any as the second
3753 one if this is a commutative operation. */
3754 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3756 rtx tem = inner_op0;
3757 inner_op0 = inner_op1;
3758 inner_op1 = tem;
3760 inner = simplify_binary_operation (code == MINUS ? PLUS
3761 : code == DIV ? MULT
3762 : code,
3763 mode, inner_op0, inner_op1);
3765 /* For commutative operations, try the other pair if that one
3766 didn't simplify. */
3767 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3769 other = XEXP (XEXP (x, 0), 1);
3770 inner = simplify_binary_operation (code, mode,
3771 XEXP (XEXP (x, 0), 0),
3772 XEXP (x, 1));
3775 if (inner)
3776 return gen_binary (code, mode, other, inner);
3780 /* A little bit of algebraic simplification here. */
3781 switch (code)
3783 case MEM:
3784 /* Ensure that our address has any ASHIFTs converted to MULT in case
3785 address-recognizing predicates are called later. */
3786 temp = make_compound_operation (XEXP (x, 0), MEM);
3787 SUBST (XEXP (x, 0), temp);
3788 break;
3790 case SUBREG:
3791 if (op0_mode == VOIDmode)
3792 op0_mode = GET_MODE (SUBREG_REG (x));
3794 /* simplify_subreg can't use gen_lowpart_for_combine. */
3795 if (CONSTANT_P (SUBREG_REG (x))
3796 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3797 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3800 rtx temp;
3801 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3802 SUBREG_BYTE (x));
3803 if (temp)
3804 return temp;
3807 /* Note that we cannot do any narrowing for non-constants since
3808 we might have been counting on using the fact that some bits were
3809 zero. We now do this in the SET. */
3811 break;
3813 case NOT:
3814 /* (not (plus X -1)) can become (neg X). */
3815 if (GET_CODE (XEXP (x, 0)) == PLUS
3816 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3817 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3819 /* Similarly, (not (neg X)) is (plus X -1). */
3820 if (GET_CODE (XEXP (x, 0)) == NEG)
3821 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3823 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3824 if (GET_CODE (XEXP (x, 0)) == XOR
3825 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3826 && (temp = simplify_unary_operation (NOT, mode,
3827 XEXP (XEXP (x, 0), 1),
3828 mode)) != 0)
3829 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3831 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3832 other than 1, but that is not valid. We could do a similar
3833 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3834 but this doesn't seem common enough to bother with. */
3835 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3836 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3837 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3838 const1_rtx, mode),
3839 XEXP (XEXP (x, 0), 1));
3841 if (GET_CODE (XEXP (x, 0)) == SUBREG
3842 && subreg_lowpart_p (XEXP (x, 0))
3843 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3844 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3845 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3846 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3848 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3850 x = gen_rtx_ROTATE (inner_mode,
3851 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3852 inner_mode),
3853 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3854 return gen_lowpart_for_combine (mode, x);
3857 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3858 reversing the comparison code if valid. */
3859 if (STORE_FLAG_VALUE == -1
3860 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3861 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3862 XEXP (XEXP (x, 0), 1))))
3863 return reversed;
3865 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3866 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3867 perform the above simplification. */
3869 if (STORE_FLAG_VALUE == -1
3870 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3871 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3872 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3873 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3875 /* Apply De Morgan's laws to reduce number of patterns for machines
3876 with negating logical insns (and-not, nand, etc.). If result has
3877 only one NOT, put it first, since that is how the patterns are
3878 coded. */
3880 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3882 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3883 enum machine_mode op_mode;
3885 op_mode = GET_MODE (in1);
3886 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3888 op_mode = GET_MODE (in2);
3889 if (op_mode == VOIDmode)
3890 op_mode = mode;
3891 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3893 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3895 rtx tem = in2;
3896 in2 = in1; in1 = tem;
3899 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3900 mode, in1, in2);
3902 break;
3904 case NEG:
3905 /* (neg (plus X 1)) can become (not X). */
3906 if (GET_CODE (XEXP (x, 0)) == PLUS
3907 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3908 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3910 /* Similarly, (neg (not X)) is (plus X 1). */
3911 if (GET_CODE (XEXP (x, 0)) == NOT)
3912 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3914 /* (neg (minus X Y)) can become (minus Y X). */
3915 if (GET_CODE (XEXP (x, 0)) == MINUS
3916 && (! FLOAT_MODE_P (mode)
3917 /* x-y != -(y-x) with IEEE floating point. */
3918 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3919 || flag_unsafe_math_optimizations))
3920 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3921 XEXP (XEXP (x, 0), 0));
3923 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3924 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3925 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3926 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3928 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3929 if we can then eliminate the NEG (e.g.,
3930 if the operand is a constant). */
3932 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3934 temp = simplify_unary_operation (NEG, mode,
3935 XEXP (XEXP (x, 0), 0), mode);
3936 if (temp)
3937 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3940 temp = expand_compound_operation (XEXP (x, 0));
3942 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3943 replaced by (lshiftrt X C). This will convert
3944 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3946 if (GET_CODE (temp) == ASHIFTRT
3947 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3948 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3949 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3950 INTVAL (XEXP (temp, 1)));
3952 /* If X has only a single bit that might be nonzero, say, bit I, convert
3953 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3954 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3955 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3956 or a SUBREG of one since we'd be making the expression more
3957 complex if it was just a register. */
3959 if (GET_CODE (temp) != REG
3960 && ! (GET_CODE (temp) == SUBREG
3961 && GET_CODE (SUBREG_REG (temp)) == REG)
3962 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3964 rtx temp1 = simplify_shift_const
3965 (NULL_RTX, ASHIFTRT, mode,
3966 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3967 GET_MODE_BITSIZE (mode) - 1 - i),
3968 GET_MODE_BITSIZE (mode) - 1 - i);
3970 /* If all we did was surround TEMP with the two shifts, we
3971 haven't improved anything, so don't use it. Otherwise,
3972 we are better off with TEMP1. */
3973 if (GET_CODE (temp1) != ASHIFTRT
3974 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3975 || XEXP (XEXP (temp1, 0), 0) != temp)
3976 return temp1;
3978 break;
3980 case TRUNCATE:
3981 /* We can't handle truncation to a partial integer mode here
3982 because we don't know the real bitsize of the partial
3983 integer mode. */
3984 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3985 break;
3987 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3988 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3989 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3990 SUBST (XEXP (x, 0),
3991 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3992 GET_MODE_MASK (mode), NULL_RTX, 0));
3994 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3995 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3996 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3997 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3998 return XEXP (XEXP (x, 0), 0);
4000 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4001 (OP:SI foo:SI) if OP is NEG or ABS. */
4002 if ((GET_CODE (XEXP (x, 0)) == ABS
4003 || GET_CODE (XEXP (x, 0)) == NEG)
4004 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4005 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4006 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4007 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4008 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4010 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4011 (truncate:SI x). */
4012 if (GET_CODE (XEXP (x, 0)) == SUBREG
4013 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4014 && subreg_lowpart_p (XEXP (x, 0)))
4015 return SUBREG_REG (XEXP (x, 0));
4017 /* If we know that the value is already truncated, we can
4018 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4019 is nonzero for the corresponding modes. But don't do this
4020 for an (LSHIFTRT (MULT ...)) since this will cause problems
4021 with the umulXi3_highpart patterns. */
4022 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4023 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4024 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4025 >= GET_MODE_BITSIZE (mode) + 1
4026 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4027 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4028 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4030 /* A truncate of a comparison can be replaced with a subreg if
4031 STORE_FLAG_VALUE permits. This is like the previous test,
4032 but it works even if the comparison is done in a mode larger
4033 than HOST_BITS_PER_WIDE_INT. */
4034 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4035 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4036 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4037 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4039 /* Similarly, a truncate of a register whose value is a
4040 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4041 permits. */
4042 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4043 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4044 && (temp = get_last_value (XEXP (x, 0)))
4045 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4046 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4048 break;
4050 case FLOAT_TRUNCATE:
4051 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4052 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4053 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4054 return XEXP (XEXP (x, 0), 0);
4056 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4057 (OP:SF foo:SF) if OP is NEG or ABS. */
4058 if ((GET_CODE (XEXP (x, 0)) == ABS
4059 || GET_CODE (XEXP (x, 0)) == NEG)
4060 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4061 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4062 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4063 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4065 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4066 is (float_truncate:SF x). */
4067 if (GET_CODE (XEXP (x, 0)) == SUBREG
4068 && subreg_lowpart_p (XEXP (x, 0))
4069 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4070 return SUBREG_REG (XEXP (x, 0));
4071 break;
4073 #ifdef HAVE_cc0
4074 case COMPARE:
4075 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4076 using cc0, in which case we want to leave it as a COMPARE
4077 so we can distinguish it from a register-register-copy. */
4078 if (XEXP (x, 1) == const0_rtx)
4079 return XEXP (x, 0);
4081 /* In IEEE floating point, x-0 is not the same as x. */
4082 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4083 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4084 || flag_unsafe_math_optimizations)
4085 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4086 return XEXP (x, 0);
4087 break;
4088 #endif
4090 case CONST:
4091 /* (const (const X)) can become (const X). Do it this way rather than
4092 returning the inner CONST since CONST can be shared with a
4093 REG_EQUAL note. */
4094 if (GET_CODE (XEXP (x, 0)) == CONST)
4095 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4096 break;
4098 #ifdef HAVE_lo_sum
4099 case LO_SUM:
4100 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4101 can add in an offset. find_split_point will split this address up
4102 again if it doesn't match. */
4103 if (GET_CODE (XEXP (x, 0)) == HIGH
4104 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4105 return XEXP (x, 1);
4106 break;
4107 #endif
4109 case PLUS:
4110 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4111 outermost. That's because that's the way indexed addresses are
4112 supposed to appear. This code used to check many more cases, but
4113 they are now checked elsewhere. */
4114 if (GET_CODE (XEXP (x, 0)) == PLUS
4115 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4116 return gen_binary (PLUS, mode,
4117 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4118 XEXP (x, 1)),
4119 XEXP (XEXP (x, 0), 1));
4121 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4122 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4123 bit-field and can be replaced by either a sign_extend or a
4124 sign_extract. The `and' may be a zero_extend and the two
4125 <c>, -<c> constants may be reversed. */
4126 if (GET_CODE (XEXP (x, 0)) == XOR
4127 && GET_CODE (XEXP (x, 1)) == CONST_INT
4128 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4129 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4130 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4131 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4132 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4133 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4134 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4135 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4136 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4137 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4138 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4139 == (unsigned int) i + 1))))
4140 return simplify_shift_const
4141 (NULL_RTX, ASHIFTRT, mode,
4142 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4143 XEXP (XEXP (XEXP (x, 0), 0), 0),
4144 GET_MODE_BITSIZE (mode) - (i + 1)),
4145 GET_MODE_BITSIZE (mode) - (i + 1));
4147 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4148 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4149 is 1. This produces better code than the alternative immediately
4150 below. */
4151 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4152 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4153 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4154 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4155 XEXP (XEXP (x, 0), 0),
4156 XEXP (XEXP (x, 0), 1))))
4157 return
4158 simplify_gen_unary (NEG, mode, reversed, mode);
4160 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4161 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4162 the bitsize of the mode - 1. This allows simplification of
4163 "a = (b & 8) == 0;" */
4164 if (XEXP (x, 1) == constm1_rtx
4165 && GET_CODE (XEXP (x, 0)) != REG
4166 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4167 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4168 && nonzero_bits (XEXP (x, 0), mode) == 1)
4169 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4170 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4171 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4172 GET_MODE_BITSIZE (mode) - 1),
4173 GET_MODE_BITSIZE (mode) - 1);
4175 /* If we are adding two things that have no bits in common, convert
4176 the addition into an IOR. This will often be further simplified,
4177 for example in cases like ((a & 1) + (a & 2)), which can
4178 become a & 3. */
4180 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4181 && (nonzero_bits (XEXP (x, 0), mode)
4182 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4184 /* Try to simplify the expression further. */
4185 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4186 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4188 /* If we could, great. If not, do not go ahead with the IOR
4189 replacement, since PLUS appears in many special purpose
4190 address arithmetic instructions. */
4191 if (GET_CODE (temp) != CLOBBER && temp != tor)
4192 return temp;
4194 break;
4196 case MINUS:
4197 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4198 by reversing the comparison code if valid. */
4199 if (STORE_FLAG_VALUE == 1
4200 && XEXP (x, 0) == const1_rtx
4201 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4202 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4203 XEXP (XEXP (x, 1), 0),
4204 XEXP (XEXP (x, 1), 1))))
4205 return reversed;
4207 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4208 (and <foo> (const_int pow2-1)) */
4209 if (GET_CODE (XEXP (x, 1)) == AND
4210 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4211 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4212 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4213 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4214 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4216 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4217 integers. */
4218 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4219 return gen_binary (MINUS, mode,
4220 gen_binary (MINUS, mode, XEXP (x, 0),
4221 XEXP (XEXP (x, 1), 0)),
4222 XEXP (XEXP (x, 1), 1));
4223 break;
4225 case MULT:
4226 /* If we have (mult (plus A B) C), apply the distributive law and then
4227 the inverse distributive law to see if things simplify. This
4228 occurs mostly in addresses, often when unrolling loops. */
4230 if (GET_CODE (XEXP (x, 0)) == PLUS)
4232 x = apply_distributive_law
4233 (gen_binary (PLUS, mode,
4234 gen_binary (MULT, mode,
4235 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4236 gen_binary (MULT, mode,
4237 XEXP (XEXP (x, 0), 1),
4238 copy_rtx (XEXP (x, 1)))));
4240 if (GET_CODE (x) != MULT)
4241 return x;
4243 /* Try simplify a*(b/c) as (a*b)/c. */
4244 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4245 && GET_CODE (XEXP (x, 0)) == DIV)
4247 rtx tem = simplify_binary_operation (MULT, mode,
4248 XEXP (XEXP (x, 0), 0),
4249 XEXP (x, 1));
4250 if (tem)
4251 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4253 break;
4255 case UDIV:
4256 /* If this is a divide by a power of two, treat it as a shift if
4257 its first operand is a shift. */
4258 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4259 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4260 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4261 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4262 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4263 || GET_CODE (XEXP (x, 0)) == ROTATE
4264 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4265 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4266 break;
4268 case EQ: case NE:
4269 case GT: case GTU: case GE: case GEU:
4270 case LT: case LTU: case LE: case LEU:
4271 case UNEQ: case LTGT:
4272 case UNGT: case UNGE:
4273 case UNLT: case UNLE:
4274 case UNORDERED: case ORDERED:
4275 /* If the first operand is a condition code, we can't do anything
4276 with it. */
4277 if (GET_CODE (XEXP (x, 0)) == COMPARE
4278 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4279 #ifdef HAVE_cc0
4280 && XEXP (x, 0) != cc0_rtx
4281 #endif
4284 rtx op0 = XEXP (x, 0);
4285 rtx op1 = XEXP (x, 1);
4286 enum rtx_code new_code;
4288 if (GET_CODE (op0) == COMPARE)
4289 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4291 /* Simplify our comparison, if possible. */
4292 new_code = simplify_comparison (code, &op0, &op1);
4294 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4295 if only the low-order bit is possibly nonzero in X (such as when
4296 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4297 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4298 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4299 (plus X 1).
4301 Remove any ZERO_EXTRACT we made when thinking this was a
4302 comparison. It may now be simpler to use, e.g., an AND. If a
4303 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4304 the call to make_compound_operation in the SET case. */
4306 if (STORE_FLAG_VALUE == 1
4307 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4308 && op1 == const0_rtx
4309 && mode == GET_MODE (op0)
4310 && nonzero_bits (op0, mode) == 1)
4311 return gen_lowpart_for_combine (mode,
4312 expand_compound_operation (op0));
4314 else if (STORE_FLAG_VALUE == 1
4315 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4316 && op1 == const0_rtx
4317 && mode == GET_MODE (op0)
4318 && (num_sign_bit_copies (op0, mode)
4319 == GET_MODE_BITSIZE (mode)))
4321 op0 = expand_compound_operation (op0);
4322 return simplify_gen_unary (NEG, mode,
4323 gen_lowpart_for_combine (mode, op0),
4324 mode);
4327 else if (STORE_FLAG_VALUE == 1
4328 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4329 && op1 == const0_rtx
4330 && mode == GET_MODE (op0)
4331 && nonzero_bits (op0, mode) == 1)
4333 op0 = expand_compound_operation (op0);
4334 return gen_binary (XOR, mode,
4335 gen_lowpart_for_combine (mode, op0),
4336 const1_rtx);
4339 else if (STORE_FLAG_VALUE == 1
4340 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4341 && op1 == const0_rtx
4342 && mode == GET_MODE (op0)
4343 && (num_sign_bit_copies (op0, mode)
4344 == GET_MODE_BITSIZE (mode)))
4346 op0 = expand_compound_operation (op0);
4347 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4350 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4351 those above. */
4352 if (STORE_FLAG_VALUE == -1
4353 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4354 && op1 == const0_rtx
4355 && (num_sign_bit_copies (op0, mode)
4356 == GET_MODE_BITSIZE (mode)))
4357 return gen_lowpart_for_combine (mode,
4358 expand_compound_operation (op0));
4360 else if (STORE_FLAG_VALUE == -1
4361 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4362 && op1 == const0_rtx
4363 && mode == GET_MODE (op0)
4364 && nonzero_bits (op0, mode) == 1)
4366 op0 = expand_compound_operation (op0);
4367 return simplify_gen_unary (NEG, mode,
4368 gen_lowpart_for_combine (mode, op0),
4369 mode);
4372 else if (STORE_FLAG_VALUE == -1
4373 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4374 && op1 == const0_rtx
4375 && mode == GET_MODE (op0)
4376 && (num_sign_bit_copies (op0, mode)
4377 == GET_MODE_BITSIZE (mode)))
4379 op0 = expand_compound_operation (op0);
4380 return simplify_gen_unary (NOT, mode,
4381 gen_lowpart_for_combine (mode, op0),
4382 mode);
4385 /* If X is 0/1, (eq X 0) is X-1. */
4386 else if (STORE_FLAG_VALUE == -1
4387 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4388 && op1 == const0_rtx
4389 && mode == GET_MODE (op0)
4390 && nonzero_bits (op0, mode) == 1)
4392 op0 = expand_compound_operation (op0);
4393 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4396 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4397 one bit that might be nonzero, we can convert (ne x 0) to
4398 (ashift x c) where C puts the bit in the sign bit. Remove any
4399 AND with STORE_FLAG_VALUE when we are done, since we are only
4400 going to test the sign bit. */
4401 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4402 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4403 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4404 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4405 && op1 == const0_rtx
4406 && mode == GET_MODE (op0)
4407 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4409 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4410 expand_compound_operation (op0),
4411 GET_MODE_BITSIZE (mode) - 1 - i);
4412 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4413 return XEXP (x, 0);
4414 else
4415 return x;
4418 /* If the code changed, return a whole new comparison. */
4419 if (new_code != code)
4420 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4422 /* Otherwise, keep this operation, but maybe change its operands.
4423 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4424 SUBST (XEXP (x, 0), op0);
4425 SUBST (XEXP (x, 1), op1);
4427 break;
4429 case IF_THEN_ELSE:
4430 return simplify_if_then_else (x);
4432 case ZERO_EXTRACT:
4433 case SIGN_EXTRACT:
4434 case ZERO_EXTEND:
4435 case SIGN_EXTEND:
4436 /* If we are processing SET_DEST, we are done. */
4437 if (in_dest)
4438 return x;
4440 return expand_compound_operation (x);
4442 case SET:
4443 return simplify_set (x);
4445 case AND:
4446 case IOR:
4447 case XOR:
4448 return simplify_logical (x, last);
4450 case ABS:
4451 /* (abs (neg <foo>)) -> (abs <foo>) */
4452 if (GET_CODE (XEXP (x, 0)) == NEG)
4453 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4455 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4456 do nothing. */
4457 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4458 break;
4460 /* If operand is something known to be positive, ignore the ABS. */
4461 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4462 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4463 <= HOST_BITS_PER_WIDE_INT)
4464 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4465 & ((HOST_WIDE_INT) 1
4466 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4467 == 0)))
4468 return XEXP (x, 0);
4470 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4471 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4472 return gen_rtx_NEG (mode, XEXP (x, 0));
4474 break;
4476 case FFS:
4477 /* (ffs (*_extend <X>)) = (ffs <X>) */
4478 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4479 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4480 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4481 break;
4483 case FLOAT:
4484 /* (float (sign_extend <X>)) = (float <X>). */
4485 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4486 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4487 break;
4489 case ASHIFT:
4490 case LSHIFTRT:
4491 case ASHIFTRT:
4492 case ROTATE:
4493 case ROTATERT:
4494 /* If this is a shift by a constant amount, simplify it. */
4495 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4496 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4497 INTVAL (XEXP (x, 1)));
4499 #ifdef SHIFT_COUNT_TRUNCATED
4500 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4501 SUBST (XEXP (x, 1),
4502 force_to_mode (XEXP (x, 1), GET_MODE (x),
4503 ((HOST_WIDE_INT) 1
4504 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4505 - 1,
4506 NULL_RTX, 0));
4507 #endif
4509 break;
4511 case VEC_SELECT:
4513 rtx op0 = XEXP (x, 0);
4514 rtx op1 = XEXP (x, 1);
4515 int len;
4517 if (GET_CODE (op1) != PARALLEL)
4518 abort ();
4519 len = XVECLEN (op1, 0);
4520 if (len == 1
4521 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4522 && GET_CODE (op0) == VEC_CONCAT)
4524 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4526 /* Try to find the element in the VEC_CONCAT. */
4527 for (;;)
4529 if (GET_MODE (op0) == GET_MODE (x))
4530 return op0;
4531 if (GET_CODE (op0) == VEC_CONCAT)
4533 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4534 if (op0_size < offset)
4535 op0 = XEXP (op0, 0);
4536 else
4538 offset -= op0_size;
4539 op0 = XEXP (op0, 1);
4542 else
4543 break;
4548 break;
4550 default:
4551 break;
4554 return x;
4557 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4559 static rtx
4560 simplify_if_then_else (x)
4561 rtx x;
4563 enum machine_mode mode = GET_MODE (x);
4564 rtx cond = XEXP (x, 0);
4565 rtx true_rtx = XEXP (x, 1);
4566 rtx false_rtx = XEXP (x, 2);
4567 enum rtx_code true_code = GET_CODE (cond);
4568 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4569 rtx temp;
4570 int i;
4571 enum rtx_code false_code;
4572 rtx reversed;
4574 /* Simplify storing of the truth value. */
4575 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4576 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4578 /* Also when the truth value has to be reversed. */
4579 if (comparison_p
4580 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4581 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4582 XEXP (cond, 1))))
4583 return reversed;
4585 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4586 in it is being compared against certain values. Get the true and false
4587 comparisons and see if that says anything about the value of each arm. */
4589 if (comparison_p
4590 && ((false_code = combine_reversed_comparison_code (cond))
4591 != UNKNOWN)
4592 && GET_CODE (XEXP (cond, 0)) == REG)
4594 HOST_WIDE_INT nzb;
4595 rtx from = XEXP (cond, 0);
4596 rtx true_val = XEXP (cond, 1);
4597 rtx false_val = true_val;
4598 int swapped = 0;
4600 /* If FALSE_CODE is EQ, swap the codes and arms. */
4602 if (false_code == EQ)
4604 swapped = 1, true_code = EQ, false_code = NE;
4605 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4608 /* If we are comparing against zero and the expression being tested has
4609 only a single bit that might be nonzero, that is its value when it is
4610 not equal to zero. Similarly if it is known to be -1 or 0. */
4612 if (true_code == EQ && true_val == const0_rtx
4613 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4614 false_code = EQ, false_val = GEN_INT (nzb);
4615 else if (true_code == EQ && true_val == const0_rtx
4616 && (num_sign_bit_copies (from, GET_MODE (from))
4617 == GET_MODE_BITSIZE (GET_MODE (from))))
4618 false_code = EQ, false_val = constm1_rtx;
4620 /* Now simplify an arm if we know the value of the register in the
4621 branch and it is used in the arm. Be careful due to the potential
4622 of locally-shared RTL. */
4624 if (reg_mentioned_p (from, true_rtx))
4625 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4626 from, true_val),
4627 pc_rtx, pc_rtx, 0, 0);
4628 if (reg_mentioned_p (from, false_rtx))
4629 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4630 from, false_val),
4631 pc_rtx, pc_rtx, 0, 0);
4633 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4634 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4636 true_rtx = XEXP (x, 1);
4637 false_rtx = XEXP (x, 2);
4638 true_code = GET_CODE (cond);
4641 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4642 reversed, do so to avoid needing two sets of patterns for
4643 subtract-and-branch insns. Similarly if we have a constant in the true
4644 arm, the false arm is the same as the first operand of the comparison, or
4645 the false arm is more complicated than the true arm. */
4647 if (comparison_p
4648 && combine_reversed_comparison_code (cond) != UNKNOWN
4649 && (true_rtx == pc_rtx
4650 || (CONSTANT_P (true_rtx)
4651 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4652 || true_rtx == const0_rtx
4653 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4654 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4655 || (GET_CODE (true_rtx) == SUBREG
4656 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4657 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4658 || reg_mentioned_p (true_rtx, false_rtx)
4659 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4661 true_code = reversed_comparison_code (cond, NULL);
4662 SUBST (XEXP (x, 0),
4663 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4664 XEXP (cond, 1)));
4666 SUBST (XEXP (x, 1), false_rtx);
4667 SUBST (XEXP (x, 2), true_rtx);
4669 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4670 cond = XEXP (x, 0);
4672 /* It is possible that the conditional has been simplified out. */
4673 true_code = GET_CODE (cond);
4674 comparison_p = GET_RTX_CLASS (true_code) == '<';
4677 /* If the two arms are identical, we don't need the comparison. */
4679 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4680 return true_rtx;
4682 /* Convert a == b ? b : a to "a". */
4683 if (true_code == EQ && ! side_effects_p (cond)
4684 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4685 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4686 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4687 return false_rtx;
4688 else if (true_code == NE && ! side_effects_p (cond)
4689 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4690 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4691 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4692 return true_rtx;
4694 /* Look for cases where we have (abs x) or (neg (abs X)). */
4696 if (GET_MODE_CLASS (mode) == MODE_INT
4697 && GET_CODE (false_rtx) == NEG
4698 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4699 && comparison_p
4700 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4701 && ! side_effects_p (true_rtx))
4702 switch (true_code)
4704 case GT:
4705 case GE:
4706 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4707 case LT:
4708 case LE:
4709 return
4710 simplify_gen_unary (NEG, mode,
4711 simplify_gen_unary (ABS, mode, true_rtx, mode),
4712 mode);
4713 default:
4714 break;
4717 /* Look for MIN or MAX. */
4719 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4720 && comparison_p
4721 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4722 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4723 && ! side_effects_p (cond))
4724 switch (true_code)
4726 case GE:
4727 case GT:
4728 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4729 case LE:
4730 case LT:
4731 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4732 case GEU:
4733 case GTU:
4734 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4735 case LEU:
4736 case LTU:
4737 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4738 default:
4739 break;
4742 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4743 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4744 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4745 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4746 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4747 neither 1 or -1, but it isn't worth checking for. */
4749 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4750 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4752 rtx t = make_compound_operation (true_rtx, SET);
4753 rtx f = make_compound_operation (false_rtx, SET);
4754 rtx cond_op0 = XEXP (cond, 0);
4755 rtx cond_op1 = XEXP (cond, 1);
4756 enum rtx_code op = NIL, extend_op = NIL;
4757 enum machine_mode m = mode;
4758 rtx z = 0, c1 = NULL_RTX;
4760 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4761 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4762 || GET_CODE (t) == ASHIFT
4763 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4764 && rtx_equal_p (XEXP (t, 0), f))
4765 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4767 /* If an identity-zero op is commutative, check whether there
4768 would be a match if we swapped the operands. */
4769 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4770 || GET_CODE (t) == XOR)
4771 && rtx_equal_p (XEXP (t, 1), f))
4772 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4773 else if (GET_CODE (t) == SIGN_EXTEND
4774 && (GET_CODE (XEXP (t, 0)) == PLUS
4775 || GET_CODE (XEXP (t, 0)) == MINUS
4776 || GET_CODE (XEXP (t, 0)) == IOR
4777 || GET_CODE (XEXP (t, 0)) == XOR
4778 || GET_CODE (XEXP (t, 0)) == ASHIFT
4779 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4780 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4781 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4782 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4783 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4784 && (num_sign_bit_copies (f, GET_MODE (f))
4785 > (GET_MODE_BITSIZE (mode)
4786 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4788 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4789 extend_op = SIGN_EXTEND;
4790 m = GET_MODE (XEXP (t, 0));
4792 else if (GET_CODE (t) == SIGN_EXTEND
4793 && (GET_CODE (XEXP (t, 0)) == PLUS
4794 || GET_CODE (XEXP (t, 0)) == IOR
4795 || GET_CODE (XEXP (t, 0)) == XOR)
4796 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4797 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4798 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4799 && (num_sign_bit_copies (f, GET_MODE (f))
4800 > (GET_MODE_BITSIZE (mode)
4801 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4803 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4804 extend_op = SIGN_EXTEND;
4805 m = GET_MODE (XEXP (t, 0));
4807 else if (GET_CODE (t) == ZERO_EXTEND
4808 && (GET_CODE (XEXP (t, 0)) == PLUS
4809 || GET_CODE (XEXP (t, 0)) == MINUS
4810 || GET_CODE (XEXP (t, 0)) == IOR
4811 || GET_CODE (XEXP (t, 0)) == XOR
4812 || GET_CODE (XEXP (t, 0)) == ASHIFT
4813 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4814 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4815 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4816 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4817 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4818 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4819 && ((nonzero_bits (f, GET_MODE (f))
4820 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4821 == 0))
4823 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4824 extend_op = ZERO_EXTEND;
4825 m = GET_MODE (XEXP (t, 0));
4827 else if (GET_CODE (t) == ZERO_EXTEND
4828 && (GET_CODE (XEXP (t, 0)) == PLUS
4829 || GET_CODE (XEXP (t, 0)) == IOR
4830 || GET_CODE (XEXP (t, 0)) == XOR)
4831 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4832 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4833 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4834 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4835 && ((nonzero_bits (f, GET_MODE (f))
4836 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4837 == 0))
4839 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4840 extend_op = ZERO_EXTEND;
4841 m = GET_MODE (XEXP (t, 0));
4844 if (z)
4846 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4847 pc_rtx, pc_rtx, 0, 0);
4848 temp = gen_binary (MULT, m, temp,
4849 gen_binary (MULT, m, c1, const_true_rtx));
4850 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4851 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4853 if (extend_op != NIL)
4854 temp = simplify_gen_unary (extend_op, mode, temp, m);
4856 return temp;
4860 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4861 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4862 negation of a single bit, we can convert this operation to a shift. We
4863 can actually do this more generally, but it doesn't seem worth it. */
4865 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4866 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4867 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4868 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4869 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4870 == GET_MODE_BITSIZE (mode))
4871 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4872 return
4873 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4874 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4876 return x;
4879 /* Simplify X, a SET expression. Return the new expression. */
4881 static rtx
4882 simplify_set (x)
4883 rtx x;
4885 rtx src = SET_SRC (x);
4886 rtx dest = SET_DEST (x);
4887 enum machine_mode mode
4888 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4889 rtx other_insn;
4890 rtx *cc_use;
4892 /* (set (pc) (return)) gets written as (return). */
4893 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4894 return src;
4896 /* Now that we know for sure which bits of SRC we are using, see if we can
4897 simplify the expression for the object knowing that we only need the
4898 low-order bits. */
4900 if (GET_MODE_CLASS (mode) == MODE_INT)
4902 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4903 SUBST (SET_SRC (x), src);
4906 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4907 the comparison result and try to simplify it unless we already have used
4908 undobuf.other_insn. */
4909 if ((GET_CODE (src) == COMPARE
4910 #ifdef HAVE_cc0
4911 || dest == cc0_rtx
4912 #endif
4914 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4915 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4916 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4917 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4919 enum rtx_code old_code = GET_CODE (*cc_use);
4920 enum rtx_code new_code;
4921 rtx op0, op1;
4922 int other_changed = 0;
4923 enum machine_mode compare_mode = GET_MODE (dest);
4925 if (GET_CODE (src) == COMPARE)
4926 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4927 else
4928 op0 = src, op1 = const0_rtx;
4930 /* Simplify our comparison, if possible. */
4931 new_code = simplify_comparison (old_code, &op0, &op1);
4933 #ifdef EXTRA_CC_MODES
4934 /* If this machine has CC modes other than CCmode, check to see if we
4935 need to use a different CC mode here. */
4936 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4937 #endif /* EXTRA_CC_MODES */
4939 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4940 /* If the mode changed, we have to change SET_DEST, the mode in the
4941 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4942 a hard register, just build new versions with the proper mode. If it
4943 is a pseudo, we lose unless it is only time we set the pseudo, in
4944 which case we can safely change its mode. */
4945 if (compare_mode != GET_MODE (dest))
4947 unsigned int regno = REGNO (dest);
4948 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4950 if (regno < FIRST_PSEUDO_REGISTER
4951 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4953 if (regno >= FIRST_PSEUDO_REGISTER)
4954 SUBST (regno_reg_rtx[regno], new_dest);
4956 SUBST (SET_DEST (x), new_dest);
4957 SUBST (XEXP (*cc_use, 0), new_dest);
4958 other_changed = 1;
4960 dest = new_dest;
4963 #endif
4965 /* If the code changed, we have to build a new comparison in
4966 undobuf.other_insn. */
4967 if (new_code != old_code)
4969 unsigned HOST_WIDE_INT mask;
4971 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
4972 dest, const0_rtx));
4974 /* If the only change we made was to change an EQ into an NE or
4975 vice versa, OP0 has only one bit that might be nonzero, and OP1
4976 is zero, check if changing the user of the condition code will
4977 produce a valid insn. If it won't, we can keep the original code
4978 in that insn by surrounding our operation with an XOR. */
4980 if (((old_code == NE && new_code == EQ)
4981 || (old_code == EQ && new_code == NE))
4982 && ! other_changed && op1 == const0_rtx
4983 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4984 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4986 rtx pat = PATTERN (other_insn), note = 0;
4988 if ((recog_for_combine (&pat, other_insn, &note) < 0
4989 && ! check_asm_operands (pat)))
4991 PUT_CODE (*cc_use, old_code);
4992 other_insn = 0;
4994 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4998 other_changed = 1;
5001 if (other_changed)
5002 undobuf.other_insn = other_insn;
5004 #ifdef HAVE_cc0
5005 /* If we are now comparing against zero, change our source if
5006 needed. If we do not use cc0, we always have a COMPARE. */
5007 if (op1 == const0_rtx && dest == cc0_rtx)
5009 SUBST (SET_SRC (x), op0);
5010 src = op0;
5012 else
5013 #endif
5015 /* Otherwise, if we didn't previously have a COMPARE in the
5016 correct mode, we need one. */
5017 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5019 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5020 src = SET_SRC (x);
5022 else
5024 /* Otherwise, update the COMPARE if needed. */
5025 SUBST (XEXP (src, 0), op0);
5026 SUBST (XEXP (src, 1), op1);
5029 else
5031 /* Get SET_SRC in a form where we have placed back any
5032 compound expressions. Then do the checks below. */
5033 src = make_compound_operation (src, SET);
5034 SUBST (SET_SRC (x), src);
5037 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5038 and X being a REG or (subreg (reg)), we may be able to convert this to
5039 (set (subreg:m2 x) (op)).
5041 We can always do this if M1 is narrower than M2 because that means that
5042 we only care about the low bits of the result.
5044 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5045 perform a narrower operation than requested since the high-order bits will
5046 be undefined. On machine where it is defined, this transformation is safe
5047 as long as M1 and M2 have the same number of words. */
5049 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5050 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5051 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5052 / UNITS_PER_WORD)
5053 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5054 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5055 #ifndef WORD_REGISTER_OPERATIONS
5056 && (GET_MODE_SIZE (GET_MODE (src))
5057 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5058 #endif
5059 #ifdef CLASS_CANNOT_CHANGE_MODE
5060 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5061 && (TEST_HARD_REG_BIT
5062 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5063 REGNO (dest)))
5064 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5065 GET_MODE (SUBREG_REG (src))))
5066 #endif
5067 && (GET_CODE (dest) == REG
5068 || (GET_CODE (dest) == SUBREG
5069 && GET_CODE (SUBREG_REG (dest)) == REG)))
5071 SUBST (SET_DEST (x),
5072 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5073 dest));
5074 SUBST (SET_SRC (x), SUBREG_REG (src));
5076 src = SET_SRC (x), dest = SET_DEST (x);
5079 #ifdef LOAD_EXTEND_OP
5080 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5081 would require a paradoxical subreg. Replace the subreg with a
5082 zero_extend to avoid the reload that would otherwise be required. */
5084 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5085 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5086 && SUBREG_BYTE (src) == 0
5087 && (GET_MODE_SIZE (GET_MODE (src))
5088 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5089 && GET_CODE (SUBREG_REG (src)) == MEM)
5091 SUBST (SET_SRC (x),
5092 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5093 GET_MODE (src), SUBREG_REG (src)));
5095 src = SET_SRC (x);
5097 #endif
5099 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5100 are comparing an item known to be 0 or -1 against 0, use a logical
5101 operation instead. Check for one of the arms being an IOR of the other
5102 arm with some value. We compute three terms to be IOR'ed together. In
5103 practice, at most two will be nonzero. Then we do the IOR's. */
5105 if (GET_CODE (dest) != PC
5106 && GET_CODE (src) == IF_THEN_ELSE
5107 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5108 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5109 && XEXP (XEXP (src, 0), 1) == const0_rtx
5110 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5111 #ifdef HAVE_conditional_move
5112 && ! can_conditionally_move_p (GET_MODE (src))
5113 #endif
5114 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5115 GET_MODE (XEXP (XEXP (src, 0), 0)))
5116 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5117 && ! side_effects_p (src))
5119 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5120 ? XEXP (src, 1) : XEXP (src, 2));
5121 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5122 ? XEXP (src, 2) : XEXP (src, 1));
5123 rtx term1 = const0_rtx, term2, term3;
5125 if (GET_CODE (true_rtx) == IOR
5126 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5127 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5128 else if (GET_CODE (true_rtx) == IOR
5129 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5130 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5131 else if (GET_CODE (false_rtx) == IOR
5132 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5133 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5134 else if (GET_CODE (false_rtx) == IOR
5135 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5136 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5138 term2 = gen_binary (AND, GET_MODE (src),
5139 XEXP (XEXP (src, 0), 0), true_rtx);
5140 term3 = gen_binary (AND, GET_MODE (src),
5141 simplify_gen_unary (NOT, GET_MODE (src),
5142 XEXP (XEXP (src, 0), 0),
5143 GET_MODE (src)),
5144 false_rtx);
5146 SUBST (SET_SRC (x),
5147 gen_binary (IOR, GET_MODE (src),
5148 gen_binary (IOR, GET_MODE (src), term1, term2),
5149 term3));
5151 src = SET_SRC (x);
5154 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5155 whole thing fail. */
5156 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5157 return src;
5158 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5159 return dest;
5160 else
5161 /* Convert this into a field assignment operation, if possible. */
5162 return make_field_assignment (x);
5165 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5166 result. LAST is nonzero if this is the last retry. */
5168 static rtx
5169 simplify_logical (x, last)
5170 rtx x;
5171 int last;
5173 enum machine_mode mode = GET_MODE (x);
5174 rtx op0 = XEXP (x, 0);
5175 rtx op1 = XEXP (x, 1);
5176 rtx reversed;
5178 switch (GET_CODE (x))
5180 case AND:
5181 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5182 insn (and may simplify more). */
5183 if (GET_CODE (op0) == XOR
5184 && rtx_equal_p (XEXP (op0, 0), op1)
5185 && ! side_effects_p (op1))
5186 x = gen_binary (AND, mode,
5187 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5188 op1);
5190 if (GET_CODE (op0) == XOR
5191 && rtx_equal_p (XEXP (op0, 1), op1)
5192 && ! side_effects_p (op1))
5193 x = gen_binary (AND, mode,
5194 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5195 op1);
5197 /* Similarly for (~(A ^ B)) & A. */
5198 if (GET_CODE (op0) == NOT
5199 && GET_CODE (XEXP (op0, 0)) == XOR
5200 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5201 && ! side_effects_p (op1))
5202 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5204 if (GET_CODE (op0) == NOT
5205 && GET_CODE (XEXP (op0, 0)) == XOR
5206 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5207 && ! side_effects_p (op1))
5208 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5210 /* We can call simplify_and_const_int only if we don't lose
5211 any (sign) bits when converting INTVAL (op1) to
5212 "unsigned HOST_WIDE_INT". */
5213 if (GET_CODE (op1) == CONST_INT
5214 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5215 || INTVAL (op1) > 0))
5217 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5219 /* If we have (ior (and (X C1) C2)) and the next restart would be
5220 the last, simplify this by making C1 as small as possible
5221 and then exit. */
5222 if (last
5223 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5224 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5225 && GET_CODE (op1) == CONST_INT)
5226 return gen_binary (IOR, mode,
5227 gen_binary (AND, mode, XEXP (op0, 0),
5228 GEN_INT (INTVAL (XEXP (op0, 1))
5229 & ~INTVAL (op1))), op1);
5231 if (GET_CODE (x) != AND)
5232 return x;
5234 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5235 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5236 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5239 /* Convert (A | B) & A to A. */
5240 if (GET_CODE (op0) == IOR
5241 && (rtx_equal_p (XEXP (op0, 0), op1)
5242 || rtx_equal_p (XEXP (op0, 1), op1))
5243 && ! side_effects_p (XEXP (op0, 0))
5244 && ! side_effects_p (XEXP (op0, 1)))
5245 return op1;
5247 /* In the following group of tests (and those in case IOR below),
5248 we start with some combination of logical operations and apply
5249 the distributive law followed by the inverse distributive law.
5250 Most of the time, this results in no change. However, if some of
5251 the operands are the same or inverses of each other, simplifications
5252 will result.
5254 For example, (and (ior A B) (not B)) can occur as the result of
5255 expanding a bit field assignment. When we apply the distributive
5256 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5257 which then simplifies to (and (A (not B))).
5259 If we have (and (ior A B) C), apply the distributive law and then
5260 the inverse distributive law to see if things simplify. */
5262 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5264 x = apply_distributive_law
5265 (gen_binary (GET_CODE (op0), mode,
5266 gen_binary (AND, mode, XEXP (op0, 0), op1),
5267 gen_binary (AND, mode, XEXP (op0, 1),
5268 copy_rtx (op1))));
5269 if (GET_CODE (x) != AND)
5270 return x;
5273 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5274 return apply_distributive_law
5275 (gen_binary (GET_CODE (op1), mode,
5276 gen_binary (AND, mode, XEXP (op1, 0), op0),
5277 gen_binary (AND, mode, XEXP (op1, 1),
5278 copy_rtx (op0))));
5280 /* Similarly, taking advantage of the fact that
5281 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5283 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5284 return apply_distributive_law
5285 (gen_binary (XOR, mode,
5286 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5287 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5288 XEXP (op1, 1))));
5290 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5291 return apply_distributive_law
5292 (gen_binary (XOR, mode,
5293 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5294 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5295 break;
5297 case IOR:
5298 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5299 if (GET_CODE (op1) == CONST_INT
5300 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5301 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5302 return op1;
5304 /* Convert (A & B) | A to A. */
5305 if (GET_CODE (op0) == AND
5306 && (rtx_equal_p (XEXP (op0, 0), op1)
5307 || rtx_equal_p (XEXP (op0, 1), op1))
5308 && ! side_effects_p (XEXP (op0, 0))
5309 && ! side_effects_p (XEXP (op0, 1)))
5310 return op1;
5312 /* If we have (ior (and A B) C), apply the distributive law and then
5313 the inverse distributive law to see if things simplify. */
5315 if (GET_CODE (op0) == AND)
5317 x = apply_distributive_law
5318 (gen_binary (AND, mode,
5319 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5320 gen_binary (IOR, mode, XEXP (op0, 1),
5321 copy_rtx (op1))));
5323 if (GET_CODE (x) != IOR)
5324 return x;
5327 if (GET_CODE (op1) == AND)
5329 x = apply_distributive_law
5330 (gen_binary (AND, mode,
5331 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5332 gen_binary (IOR, mode, XEXP (op1, 1),
5333 copy_rtx (op0))));
5335 if (GET_CODE (x) != IOR)
5336 return x;
5339 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5340 mode size to (rotate A CX). */
5342 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5343 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5344 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5345 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5346 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5347 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5348 == GET_MODE_BITSIZE (mode)))
5349 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5350 (GET_CODE (op0) == ASHIFT
5351 ? XEXP (op0, 1) : XEXP (op1, 1)));
5353 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5354 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5355 does not affect any of the bits in OP1, it can really be done
5356 as a PLUS and we can associate. We do this by seeing if OP1
5357 can be safely shifted left C bits. */
5358 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5359 && GET_CODE (XEXP (op0, 0)) == PLUS
5360 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5361 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5362 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5364 int count = INTVAL (XEXP (op0, 1));
5365 HOST_WIDE_INT mask = INTVAL (op1) << count;
5367 if (mask >> count == INTVAL (op1)
5368 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5370 SUBST (XEXP (XEXP (op0, 0), 1),
5371 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5372 return op0;
5375 break;
5377 case XOR:
5378 /* If we are XORing two things that have no bits in common,
5379 convert them into an IOR. This helps to detect rotation encoded
5380 using those methods and possibly other simplifications. */
5382 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5383 && (nonzero_bits (op0, mode)
5384 & nonzero_bits (op1, mode)) == 0)
5385 return (gen_binary (IOR, mode, op0, op1));
5387 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5388 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5389 (NOT y). */
5391 int num_negated = 0;
5393 if (GET_CODE (op0) == NOT)
5394 num_negated++, op0 = XEXP (op0, 0);
5395 if (GET_CODE (op1) == NOT)
5396 num_negated++, op1 = XEXP (op1, 0);
5398 if (num_negated == 2)
5400 SUBST (XEXP (x, 0), op0);
5401 SUBST (XEXP (x, 1), op1);
5403 else if (num_negated == 1)
5404 return
5405 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5406 mode);
5409 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5410 correspond to a machine insn or result in further simplifications
5411 if B is a constant. */
5413 if (GET_CODE (op0) == AND
5414 && rtx_equal_p (XEXP (op0, 1), op1)
5415 && ! side_effects_p (op1))
5416 return gen_binary (AND, mode,
5417 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5418 op1);
5420 else if (GET_CODE (op0) == AND
5421 && rtx_equal_p (XEXP (op0, 0), op1)
5422 && ! side_effects_p (op1))
5423 return gen_binary (AND, mode,
5424 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5425 op1);
5427 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5428 comparison if STORE_FLAG_VALUE is 1. */
5429 if (STORE_FLAG_VALUE == 1
5430 && op1 == const1_rtx
5431 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5432 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5433 XEXP (op0, 1))))
5434 return reversed;
5436 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5437 is (lt foo (const_int 0)), so we can perform the above
5438 simplification if STORE_FLAG_VALUE is 1. */
5440 if (STORE_FLAG_VALUE == 1
5441 && op1 == const1_rtx
5442 && GET_CODE (op0) == LSHIFTRT
5443 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5444 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5445 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5447 /* (xor (comparison foo bar) (const_int sign-bit))
5448 when STORE_FLAG_VALUE is the sign bit. */
5449 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5450 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5451 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5452 && op1 == const_true_rtx
5453 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5454 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5455 XEXP (op0, 1))))
5456 return reversed;
5458 break;
5460 default:
5461 abort ();
5464 return x;
5467 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5468 operations" because they can be replaced with two more basic operations.
5469 ZERO_EXTEND is also considered "compound" because it can be replaced with
5470 an AND operation, which is simpler, though only one operation.
5472 The function expand_compound_operation is called with an rtx expression
5473 and will convert it to the appropriate shifts and AND operations,
5474 simplifying at each stage.
5476 The function make_compound_operation is called to convert an expression
5477 consisting of shifts and ANDs into the equivalent compound expression.
5478 It is the inverse of this function, loosely speaking. */
5480 static rtx
5481 expand_compound_operation (x)
5482 rtx x;
5484 unsigned HOST_WIDE_INT pos = 0, len;
5485 int unsignedp = 0;
5486 unsigned int modewidth;
5487 rtx tem;
5489 switch (GET_CODE (x))
5491 case ZERO_EXTEND:
5492 unsignedp = 1;
5493 case SIGN_EXTEND:
5494 /* We can't necessarily use a const_int for a multiword mode;
5495 it depends on implicitly extending the value.
5496 Since we don't know the right way to extend it,
5497 we can't tell whether the implicit way is right.
5499 Even for a mode that is no wider than a const_int,
5500 we can't win, because we need to sign extend one of its bits through
5501 the rest of it, and we don't know which bit. */
5502 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5503 return x;
5505 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5506 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5507 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5508 reloaded. If not for that, MEM's would very rarely be safe.
5510 Reject MODEs bigger than a word, because we might not be able
5511 to reference a two-register group starting with an arbitrary register
5512 (and currently gen_lowpart might crash for a SUBREG). */
5514 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5515 return x;
5517 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5518 /* If the inner object has VOIDmode (the only way this can happen
5519 is if it is a ASM_OPERANDS), we can't do anything since we don't
5520 know how much masking to do. */
5521 if (len == 0)
5522 return x;
5524 break;
5526 case ZERO_EXTRACT:
5527 unsignedp = 1;
5528 case SIGN_EXTRACT:
5529 /* If the operand is a CLOBBER, just return it. */
5530 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5531 return XEXP (x, 0);
5533 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5534 || GET_CODE (XEXP (x, 2)) != CONST_INT
5535 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5536 return x;
5538 len = INTVAL (XEXP (x, 1));
5539 pos = INTVAL (XEXP (x, 2));
5541 /* If this goes outside the object being extracted, replace the object
5542 with a (use (mem ...)) construct that only combine understands
5543 and is used only for this purpose. */
5544 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5545 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5547 if (BITS_BIG_ENDIAN)
5548 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5550 break;
5552 default:
5553 return x;
5555 /* Convert sign extension to zero extension, if we know that the high
5556 bit is not set, as this is easier to optimize. It will be converted
5557 back to cheaper alternative in make_extraction. */
5558 if (GET_CODE (x) == SIGN_EXTEND
5559 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5560 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5561 & ~(((unsigned HOST_WIDE_INT)
5562 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5563 >> 1))
5564 == 0)))
5566 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5567 return expand_compound_operation (temp);
5570 /* We can optimize some special cases of ZERO_EXTEND. */
5571 if (GET_CODE (x) == ZERO_EXTEND)
5573 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5574 know that the last value didn't have any inappropriate bits
5575 set. */
5576 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5577 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5578 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5579 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5580 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5581 return XEXP (XEXP (x, 0), 0);
5583 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5584 if (GET_CODE (XEXP (x, 0)) == SUBREG
5585 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5586 && subreg_lowpart_p (XEXP (x, 0))
5587 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5588 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5589 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5590 return SUBREG_REG (XEXP (x, 0));
5592 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5593 is a comparison and STORE_FLAG_VALUE permits. This is like
5594 the first case, but it works even when GET_MODE (x) is larger
5595 than HOST_WIDE_INT. */
5596 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5597 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5598 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5599 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5600 <= HOST_BITS_PER_WIDE_INT)
5601 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5602 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5603 return XEXP (XEXP (x, 0), 0);
5605 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5606 if (GET_CODE (XEXP (x, 0)) == SUBREG
5607 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5608 && subreg_lowpart_p (XEXP (x, 0))
5609 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5610 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5611 <= HOST_BITS_PER_WIDE_INT)
5612 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5613 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5614 return SUBREG_REG (XEXP (x, 0));
5618 /* If we reach here, we want to return a pair of shifts. The inner
5619 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5620 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5621 logical depending on the value of UNSIGNEDP.
5623 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5624 converted into an AND of a shift.
5626 We must check for the case where the left shift would have a negative
5627 count. This can happen in a case like (x >> 31) & 255 on machines
5628 that can't shift by a constant. On those machines, we would first
5629 combine the shift with the AND to produce a variable-position
5630 extraction. Then the constant of 31 would be substituted in to produce
5631 a such a position. */
5633 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5634 if (modewidth + len >= pos)
5635 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5636 GET_MODE (x),
5637 simplify_shift_const (NULL_RTX, ASHIFT,
5638 GET_MODE (x),
5639 XEXP (x, 0),
5640 modewidth - pos - len),
5641 modewidth - len);
5643 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5644 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5645 simplify_shift_const (NULL_RTX, LSHIFTRT,
5646 GET_MODE (x),
5647 XEXP (x, 0), pos),
5648 ((HOST_WIDE_INT) 1 << len) - 1);
5649 else
5650 /* Any other cases we can't handle. */
5651 return x;
5653 /* If we couldn't do this for some reason, return the original
5654 expression. */
5655 if (GET_CODE (tem) == CLOBBER)
5656 return x;
5658 return tem;
5661 /* X is a SET which contains an assignment of one object into
5662 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5663 or certain SUBREGS). If possible, convert it into a series of
5664 logical operations.
5666 We half-heartedly support variable positions, but do not at all
5667 support variable lengths. */
5669 static rtx
5670 expand_field_assignment (x)
5671 rtx x;
5673 rtx inner;
5674 rtx pos; /* Always counts from low bit. */
5675 int len;
5676 rtx mask;
5677 enum machine_mode compute_mode;
5679 /* Loop until we find something we can't simplify. */
5680 while (1)
5682 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5683 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5685 int byte_offset = SUBREG_BYTE (XEXP (SET_DEST (x), 0));
5687 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5688 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5689 pos = GEN_INT (BITS_PER_WORD * (byte_offset / UNITS_PER_WORD));
5691 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5692 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5694 inner = XEXP (SET_DEST (x), 0);
5695 len = INTVAL (XEXP (SET_DEST (x), 1));
5696 pos = XEXP (SET_DEST (x), 2);
5698 /* If the position is constant and spans the width of INNER,
5699 surround INNER with a USE to indicate this. */
5700 if (GET_CODE (pos) == CONST_INT
5701 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5702 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5704 if (BITS_BIG_ENDIAN)
5706 if (GET_CODE (pos) == CONST_INT)
5707 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5708 - INTVAL (pos));
5709 else if (GET_CODE (pos) == MINUS
5710 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5711 && (INTVAL (XEXP (pos, 1))
5712 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5713 /* If position is ADJUST - X, new position is X. */
5714 pos = XEXP (pos, 0);
5715 else
5716 pos = gen_binary (MINUS, GET_MODE (pos),
5717 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5718 - len),
5719 pos);
5723 /* A SUBREG between two modes that occupy the same numbers of words
5724 can be done by moving the SUBREG to the source. */
5725 else if (GET_CODE (SET_DEST (x)) == SUBREG
5726 /* We need SUBREGs to compute nonzero_bits properly. */
5727 && nonzero_sign_valid
5728 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5729 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5730 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5731 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5733 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5734 gen_lowpart_for_combine
5735 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5736 SET_SRC (x)));
5737 continue;
5739 else
5740 break;
5742 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5743 inner = SUBREG_REG (inner);
5745 compute_mode = GET_MODE (inner);
5747 /* Don't attempt bitwise arithmetic on non-integral modes. */
5748 if (! INTEGRAL_MODE_P (compute_mode))
5750 enum machine_mode imode;
5752 /* Something is probably seriously wrong if this matches. */
5753 if (! FLOAT_MODE_P (compute_mode))
5754 break;
5756 /* Try to find an integral mode to pun with. */
5757 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5758 if (imode == BLKmode)
5759 break;
5761 compute_mode = imode;
5762 inner = gen_lowpart_for_combine (imode, inner);
5765 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5766 if (len < HOST_BITS_PER_WIDE_INT)
5767 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5768 else
5769 break;
5771 /* Now compute the equivalent expression. Make a copy of INNER
5772 for the SET_DEST in case it is a MEM into which we will substitute;
5773 we don't want shared RTL in that case. */
5774 x = gen_rtx_SET
5775 (VOIDmode, copy_rtx (inner),
5776 gen_binary (IOR, compute_mode,
5777 gen_binary (AND, compute_mode,
5778 simplify_gen_unary (NOT, compute_mode,
5779 gen_binary (ASHIFT,
5780 compute_mode,
5781 mask, pos),
5782 compute_mode),
5783 inner),
5784 gen_binary (ASHIFT, compute_mode,
5785 gen_binary (AND, compute_mode,
5786 gen_lowpart_for_combine
5787 (compute_mode, SET_SRC (x)),
5788 mask),
5789 pos)));
5792 return x;
5795 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5796 it is an RTX that represents a variable starting position; otherwise,
5797 POS is the (constant) starting bit position (counted from the LSB).
5799 INNER may be a USE. This will occur when we started with a bitfield
5800 that went outside the boundary of the object in memory, which is
5801 allowed on most machines. To isolate this case, we produce a USE
5802 whose mode is wide enough and surround the MEM with it. The only
5803 code that understands the USE is this routine. If it is not removed,
5804 it will cause the resulting insn not to match.
5806 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5807 signed reference.
5809 IN_DEST is non-zero if this is a reference in the destination of a
5810 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5811 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5812 be used.
5814 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5815 ZERO_EXTRACT should be built even for bits starting at bit 0.
5817 MODE is the desired mode of the result (if IN_DEST == 0).
5819 The result is an RTX for the extraction or NULL_RTX if the target
5820 can't handle it. */
5822 static rtx
5823 make_extraction (mode, inner, pos, pos_rtx, len,
5824 unsignedp, in_dest, in_compare)
5825 enum machine_mode mode;
5826 rtx inner;
5827 HOST_WIDE_INT pos;
5828 rtx pos_rtx;
5829 unsigned HOST_WIDE_INT len;
5830 int unsignedp;
5831 int in_dest, in_compare;
5833 /* This mode describes the size of the storage area
5834 to fetch the overall value from. Within that, we
5835 ignore the POS lowest bits, etc. */
5836 enum machine_mode is_mode = GET_MODE (inner);
5837 enum machine_mode inner_mode;
5838 enum machine_mode wanted_inner_mode = byte_mode;
5839 enum machine_mode wanted_inner_reg_mode = word_mode;
5840 enum machine_mode pos_mode = word_mode;
5841 enum machine_mode extraction_mode = word_mode;
5842 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5843 int spans_byte = 0;
5844 rtx new = 0;
5845 rtx orig_pos_rtx = pos_rtx;
5846 HOST_WIDE_INT orig_pos;
5848 /* Get some information about INNER and get the innermost object. */
5849 if (GET_CODE (inner) == USE)
5850 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5851 /* We don't need to adjust the position because we set up the USE
5852 to pretend that it was a full-word object. */
5853 spans_byte = 1, inner = XEXP (inner, 0);
5854 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5856 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5857 consider just the QI as the memory to extract from.
5858 The subreg adds or removes high bits; its mode is
5859 irrelevant to the meaning of this extraction,
5860 since POS and LEN count from the lsb. */
5861 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5862 is_mode = GET_MODE (SUBREG_REG (inner));
5863 inner = SUBREG_REG (inner);
5866 inner_mode = GET_MODE (inner);
5868 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5869 pos = INTVAL (pos_rtx), pos_rtx = 0;
5871 /* See if this can be done without an extraction. We never can if the
5872 width of the field is not the same as that of some integer mode. For
5873 registers, we can only avoid the extraction if the position is at the
5874 low-order bit and this is either not in the destination or we have the
5875 appropriate STRICT_LOW_PART operation available.
5877 For MEM, we can avoid an extract if the field starts on an appropriate
5878 boundary and we can change the mode of the memory reference. However,
5879 we cannot directly access the MEM if we have a USE and the underlying
5880 MEM is not TMODE. This combination means that MEM was being used in a
5881 context where bits outside its mode were being referenced; that is only
5882 valid in bit-field insns. */
5884 if (tmode != BLKmode
5885 && ! (spans_byte && inner_mode != tmode)
5886 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5887 && GET_CODE (inner) != MEM
5888 && (! in_dest
5889 || (GET_CODE (inner) == REG
5890 && have_insn_for (STRICT_LOW_PART, tmode))))
5891 || (GET_CODE (inner) == MEM && pos_rtx == 0
5892 && (pos
5893 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5894 : BITS_PER_UNIT)) == 0
5895 /* We can't do this if we are widening INNER_MODE (it
5896 may not be aligned, for one thing). */
5897 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5898 && (inner_mode == tmode
5899 || (! mode_dependent_address_p (XEXP (inner, 0))
5900 && ! MEM_VOLATILE_P (inner))))))
5902 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5903 field. If the original and current mode are the same, we need not
5904 adjust the offset. Otherwise, we do if bytes big endian.
5906 If INNER is not a MEM, get a piece consisting of just the field
5907 of interest (in this case POS % BITS_PER_WORD must be 0). */
5909 if (GET_CODE (inner) == MEM)
5911 HOST_WIDE_INT offset;
5913 /* POS counts from lsb, but make OFFSET count in memory order. */
5914 if (BYTES_BIG_ENDIAN)
5915 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5916 else
5917 offset = pos / BITS_PER_UNIT;
5919 new = adjust_address_nv (inner, tmode, offset);
5921 else if (GET_CODE (inner) == REG)
5923 /* We can't call gen_lowpart_for_combine here since we always want
5924 a SUBREG and it would sometimes return a new hard register. */
5925 if (tmode != inner_mode)
5927 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
5929 if (WORDS_BIG_ENDIAN
5930 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
5931 final_word = ((GET_MODE_SIZE (inner_mode)
5932 - GET_MODE_SIZE (tmode))
5933 / UNITS_PER_WORD) - final_word;
5935 final_word *= UNITS_PER_WORD;
5936 if (BYTES_BIG_ENDIAN &&
5937 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
5938 final_word += (GET_MODE_SIZE (inner_mode)
5939 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
5941 new = gen_rtx_SUBREG (tmode, inner, final_word);
5943 else
5944 new = inner;
5946 else
5947 new = force_to_mode (inner, tmode,
5948 len >= HOST_BITS_PER_WIDE_INT
5949 ? ~(unsigned HOST_WIDE_INT) 0
5950 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5951 NULL_RTX, 0);
5953 /* If this extraction is going into the destination of a SET,
5954 make a STRICT_LOW_PART unless we made a MEM. */
5956 if (in_dest)
5957 return (GET_CODE (new) == MEM ? new
5958 : (GET_CODE (new) != SUBREG
5959 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5960 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
5962 if (mode == tmode)
5963 return new;
5965 /* If we know that no extraneous bits are set, and that the high
5966 bit is not set, convert the extraction to the cheaper of
5967 sign and zero extension, that are equivalent in these cases. */
5968 if (flag_expensive_optimizations
5969 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5970 && ((nonzero_bits (new, tmode)
5971 & ~(((unsigned HOST_WIDE_INT)
5972 GET_MODE_MASK (tmode))
5973 >> 1))
5974 == 0)))
5976 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
5977 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
5979 /* Prefer ZERO_EXTENSION, since it gives more information to
5980 backends. */
5981 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
5982 return temp;
5983 return temp1;
5986 /* Otherwise, sign- or zero-extend unless we already are in the
5987 proper mode. */
5989 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5990 mode, new));
5993 /* Unless this is a COMPARE or we have a funny memory reference,
5994 don't do anything with zero-extending field extracts starting at
5995 the low-order bit since they are simple AND operations. */
5996 if (pos_rtx == 0 && pos == 0 && ! in_dest
5997 && ! in_compare && ! spans_byte && unsignedp)
5998 return 0;
6000 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6001 we would be spanning bytes or if the position is not a constant and the
6002 length is not 1. In all other cases, we would only be going outside
6003 our object in cases when an original shift would have been
6004 undefined. */
6005 if (! spans_byte && GET_CODE (inner) == MEM
6006 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6007 || (pos_rtx != 0 && len != 1)))
6008 return 0;
6010 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6011 and the mode for the result. */
6012 if (in_dest && mode_for_extraction(EP_insv, -1) != MAX_MACHINE_MODE)
6014 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6015 pos_mode = mode_for_extraction (EP_insv, 2);
6016 extraction_mode = mode_for_extraction (EP_insv, 3);
6019 if (! in_dest && unsignedp
6020 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6022 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6023 pos_mode = mode_for_extraction (EP_extzv, 3);
6024 extraction_mode = mode_for_extraction (EP_extzv, 0);
6027 if (! in_dest && ! unsignedp
6028 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6030 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6031 pos_mode = mode_for_extraction (EP_extv, 3);
6032 extraction_mode = mode_for_extraction (EP_extv, 0);
6035 /* Never narrow an object, since that might not be safe. */
6037 if (mode != VOIDmode
6038 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6039 extraction_mode = mode;
6041 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6042 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6043 pos_mode = GET_MODE (pos_rtx);
6045 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6046 if we have to change the mode of memory and cannot, the desired mode is
6047 EXTRACTION_MODE. */
6048 if (GET_CODE (inner) != MEM)
6049 wanted_inner_mode = wanted_inner_reg_mode;
6050 else if (inner_mode != wanted_inner_mode
6051 && (mode_dependent_address_p (XEXP (inner, 0))
6052 || MEM_VOLATILE_P (inner)))
6053 wanted_inner_mode = extraction_mode;
6055 orig_pos = pos;
6057 if (BITS_BIG_ENDIAN)
6059 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6060 BITS_BIG_ENDIAN style. If position is constant, compute new
6061 position. Otherwise, build subtraction.
6062 Note that POS is relative to the mode of the original argument.
6063 If it's a MEM we need to recompute POS relative to that.
6064 However, if we're extracting from (or inserting into) a register,
6065 we want to recompute POS relative to wanted_inner_mode. */
6066 int width = (GET_CODE (inner) == MEM
6067 ? GET_MODE_BITSIZE (is_mode)
6068 : GET_MODE_BITSIZE (wanted_inner_mode));
6070 if (pos_rtx == 0)
6071 pos = width - len - pos;
6072 else
6073 pos_rtx
6074 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6075 /* POS may be less than 0 now, but we check for that below.
6076 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6079 /* If INNER has a wider mode, make it smaller. If this is a constant
6080 extract, try to adjust the byte to point to the byte containing
6081 the value. */
6082 if (wanted_inner_mode != VOIDmode
6083 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6084 && ((GET_CODE (inner) == MEM
6085 && (inner_mode == wanted_inner_mode
6086 || (! mode_dependent_address_p (XEXP (inner, 0))
6087 && ! MEM_VOLATILE_P (inner))))))
6089 int offset = 0;
6091 /* The computations below will be correct if the machine is big
6092 endian in both bits and bytes or little endian in bits and bytes.
6093 If it is mixed, we must adjust. */
6095 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6096 adjust OFFSET to compensate. */
6097 if (BYTES_BIG_ENDIAN
6098 && ! spans_byte
6099 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6100 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6102 /* If this is a constant position, we can move to the desired byte. */
6103 if (pos_rtx == 0)
6105 offset += pos / BITS_PER_UNIT;
6106 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6109 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6110 && ! spans_byte
6111 && is_mode != wanted_inner_mode)
6112 offset = (GET_MODE_SIZE (is_mode)
6113 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6115 if (offset != 0 || inner_mode != wanted_inner_mode)
6116 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6119 /* If INNER is not memory, we can always get it into the proper mode. If we
6120 are changing its mode, POS must be a constant and smaller than the size
6121 of the new mode. */
6122 else if (GET_CODE (inner) != MEM)
6124 if (GET_MODE (inner) != wanted_inner_mode
6125 && (pos_rtx != 0
6126 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6127 return 0;
6129 inner = force_to_mode (inner, wanted_inner_mode,
6130 pos_rtx
6131 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6132 ? ~(unsigned HOST_WIDE_INT) 0
6133 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6134 << orig_pos),
6135 NULL_RTX, 0);
6138 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6139 have to zero extend. Otherwise, we can just use a SUBREG. */
6140 if (pos_rtx != 0
6141 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6143 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6145 /* If we know that no extraneous bits are set, and that the high
6146 bit is not set, convert extraction to cheaper one - eighter
6147 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6148 cases. */
6149 if (flag_expensive_optimizations
6150 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6151 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6152 & ~(((unsigned HOST_WIDE_INT)
6153 GET_MODE_MASK (GET_MODE (pos_rtx)))
6154 >> 1))
6155 == 0)))
6157 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6159 /* Prefer ZERO_EXTENSION, since it gives more information to
6160 backends. */
6161 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6162 temp = temp1;
6164 pos_rtx = temp;
6166 else if (pos_rtx != 0
6167 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6168 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6170 /* Make POS_RTX unless we already have it and it is correct. If we don't
6171 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6172 be a CONST_INT. */
6173 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6174 pos_rtx = orig_pos_rtx;
6176 else if (pos_rtx == 0)
6177 pos_rtx = GEN_INT (pos);
6179 /* Make the required operation. See if we can use existing rtx. */
6180 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6181 extraction_mode, inner, GEN_INT (len), pos_rtx);
6182 if (! in_dest)
6183 new = gen_lowpart_for_combine (mode, new);
6185 return new;
6188 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6189 with any other operations in X. Return X without that shift if so. */
6191 static rtx
6192 extract_left_shift (x, count)
6193 rtx x;
6194 int count;
6196 enum rtx_code code = GET_CODE (x);
6197 enum machine_mode mode = GET_MODE (x);
6198 rtx tem;
6200 switch (code)
6202 case ASHIFT:
6203 /* This is the shift itself. If it is wide enough, we will return
6204 either the value being shifted if the shift count is equal to
6205 COUNT or a shift for the difference. */
6206 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6207 && INTVAL (XEXP (x, 1)) >= count)
6208 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6209 INTVAL (XEXP (x, 1)) - count);
6210 break;
6212 case NEG: case NOT:
6213 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6214 return simplify_gen_unary (code, mode, tem, mode);
6216 break;
6218 case PLUS: case IOR: case XOR: case AND:
6219 /* If we can safely shift this constant and we find the inner shift,
6220 make a new operation. */
6221 if (GET_CODE (XEXP (x,1)) == CONST_INT
6222 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6223 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6224 return gen_binary (code, mode, tem,
6225 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6227 break;
6229 default:
6230 break;
6233 return 0;
6236 /* Look at the expression rooted at X. Look for expressions
6237 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6238 Form these expressions.
6240 Return the new rtx, usually just X.
6242 Also, for machines like the VAX that don't have logical shift insns,
6243 try to convert logical to arithmetic shift operations in cases where
6244 they are equivalent. This undoes the canonicalizations to logical
6245 shifts done elsewhere.
6247 We try, as much as possible, to re-use rtl expressions to save memory.
6249 IN_CODE says what kind of expression we are processing. Normally, it is
6250 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6251 being kludges), it is MEM. When processing the arguments of a comparison
6252 or a COMPARE against zero, it is COMPARE. */
6254 static rtx
6255 make_compound_operation (x, in_code)
6256 rtx x;
6257 enum rtx_code in_code;
6259 enum rtx_code code = GET_CODE (x);
6260 enum machine_mode mode = GET_MODE (x);
6261 int mode_width = GET_MODE_BITSIZE (mode);
6262 rtx rhs, lhs;
6263 enum rtx_code next_code;
6264 int i;
6265 rtx new = 0;
6266 rtx tem;
6267 const char *fmt;
6269 /* Select the code to be used in recursive calls. Once we are inside an
6270 address, we stay there. If we have a comparison, set to COMPARE,
6271 but once inside, go back to our default of SET. */
6273 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6274 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6275 && XEXP (x, 1) == const0_rtx) ? COMPARE
6276 : in_code == COMPARE ? SET : in_code);
6278 /* Process depending on the code of this operation. If NEW is set
6279 non-zero, it will be returned. */
6281 switch (code)
6283 case ASHIFT:
6284 /* Convert shifts by constants into multiplications if inside
6285 an address. */
6286 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6287 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6288 && INTVAL (XEXP (x, 1)) >= 0)
6290 new = make_compound_operation (XEXP (x, 0), next_code);
6291 new = gen_rtx_MULT (mode, new,
6292 GEN_INT ((HOST_WIDE_INT) 1
6293 << INTVAL (XEXP (x, 1))));
6295 break;
6297 case AND:
6298 /* If the second operand is not a constant, we can't do anything
6299 with it. */
6300 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6301 break;
6303 /* If the constant is a power of two minus one and the first operand
6304 is a logical right shift, make an extraction. */
6305 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6306 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6308 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6309 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6310 0, in_code == COMPARE);
6313 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6314 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6315 && subreg_lowpart_p (XEXP (x, 0))
6316 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6317 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6319 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6320 next_code);
6321 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6322 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6323 0, in_code == COMPARE);
6325 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6326 else if ((GET_CODE (XEXP (x, 0)) == XOR
6327 || GET_CODE (XEXP (x, 0)) == IOR)
6328 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6329 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6330 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6332 /* Apply the distributive law, and then try to make extractions. */
6333 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6334 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6335 XEXP (x, 1)),
6336 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6337 XEXP (x, 1)));
6338 new = make_compound_operation (new, in_code);
6341 /* If we are have (and (rotate X C) M) and C is larger than the number
6342 of bits in M, this is an extraction. */
6344 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6345 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6346 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6347 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6349 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6350 new = make_extraction (mode, new,
6351 (GET_MODE_BITSIZE (mode)
6352 - INTVAL (XEXP (XEXP (x, 0), 1))),
6353 NULL_RTX, i, 1, 0, in_code == COMPARE);
6356 /* On machines without logical shifts, if the operand of the AND is
6357 a logical shift and our mask turns off all the propagated sign
6358 bits, we can replace the logical shift with an arithmetic shift. */
6359 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6360 && !have_insn_for (LSHIFTRT, mode)
6361 && have_insn_for (ASHIFTRT, mode)
6362 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6363 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6364 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6365 && mode_width <= HOST_BITS_PER_WIDE_INT)
6367 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6369 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6370 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6371 SUBST (XEXP (x, 0),
6372 gen_rtx_ASHIFTRT (mode,
6373 make_compound_operation
6374 (XEXP (XEXP (x, 0), 0), next_code),
6375 XEXP (XEXP (x, 0), 1)));
6378 /* If the constant is one less than a power of two, this might be
6379 representable by an extraction even if no shift is present.
6380 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6381 we are in a COMPARE. */
6382 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6383 new = make_extraction (mode,
6384 make_compound_operation (XEXP (x, 0),
6385 next_code),
6386 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6388 /* If we are in a comparison and this is an AND with a power of two,
6389 convert this into the appropriate bit extract. */
6390 else if (in_code == COMPARE
6391 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6392 new = make_extraction (mode,
6393 make_compound_operation (XEXP (x, 0),
6394 next_code),
6395 i, NULL_RTX, 1, 1, 0, 1);
6397 break;
6399 case LSHIFTRT:
6400 /* If the sign bit is known to be zero, replace this with an
6401 arithmetic shift. */
6402 if (have_insn_for (ASHIFTRT, mode)
6403 && ! have_insn_for (LSHIFTRT, mode)
6404 && mode_width <= HOST_BITS_PER_WIDE_INT
6405 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6407 new = gen_rtx_ASHIFTRT (mode,
6408 make_compound_operation (XEXP (x, 0),
6409 next_code),
6410 XEXP (x, 1));
6411 break;
6414 /* ... fall through ... */
6416 case ASHIFTRT:
6417 lhs = XEXP (x, 0);
6418 rhs = XEXP (x, 1);
6420 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6421 this is a SIGN_EXTRACT. */
6422 if (GET_CODE (rhs) == CONST_INT
6423 && GET_CODE (lhs) == ASHIFT
6424 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6425 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6427 new = make_compound_operation (XEXP (lhs, 0), next_code);
6428 new = make_extraction (mode, new,
6429 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6430 NULL_RTX, mode_width - INTVAL (rhs),
6431 code == LSHIFTRT, 0, in_code == COMPARE);
6432 break;
6435 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6436 If so, try to merge the shifts into a SIGN_EXTEND. We could
6437 also do this for some cases of SIGN_EXTRACT, but it doesn't
6438 seem worth the effort; the case checked for occurs on Alpha. */
6440 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6441 && ! (GET_CODE (lhs) == SUBREG
6442 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6443 && GET_CODE (rhs) == CONST_INT
6444 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6445 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6446 new = make_extraction (mode, make_compound_operation (new, next_code),
6447 0, NULL_RTX, mode_width - INTVAL (rhs),
6448 code == LSHIFTRT, 0, in_code == COMPARE);
6450 break;
6452 case SUBREG:
6453 /* Call ourselves recursively on the inner expression. If we are
6454 narrowing the object and it has a different RTL code from
6455 what it originally did, do this SUBREG as a force_to_mode. */
6457 tem = make_compound_operation (SUBREG_REG (x), in_code);
6458 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6459 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6460 && subreg_lowpart_p (x))
6462 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6463 NULL_RTX, 0);
6465 /* If we have something other than a SUBREG, we might have
6466 done an expansion, so rerun outselves. */
6467 if (GET_CODE (newer) != SUBREG)
6468 newer = make_compound_operation (newer, in_code);
6470 return newer;
6473 /* If this is a paradoxical subreg, and the new code is a sign or
6474 zero extension, omit the subreg and widen the extension. If it
6475 is a regular subreg, we can still get rid of the subreg by not
6476 widening so much, or in fact removing the extension entirely. */
6477 if ((GET_CODE (tem) == SIGN_EXTEND
6478 || GET_CODE (tem) == ZERO_EXTEND)
6479 && subreg_lowpart_p (x))
6481 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6482 || (GET_MODE_SIZE (mode) >
6483 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6484 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6485 else
6486 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6487 return tem;
6489 break;
6491 default:
6492 break;
6495 if (new)
6497 x = gen_lowpart_for_combine (mode, new);
6498 code = GET_CODE (x);
6501 /* Now recursively process each operand of this operation. */
6502 fmt = GET_RTX_FORMAT (code);
6503 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6504 if (fmt[i] == 'e')
6506 new = make_compound_operation (XEXP (x, i), next_code);
6507 SUBST (XEXP (x, i), new);
6510 return x;
6513 /* Given M see if it is a value that would select a field of bits
6514 within an item, but not the entire word. Return -1 if not.
6515 Otherwise, return the starting position of the field, where 0 is the
6516 low-order bit.
6518 *PLEN is set to the length of the field. */
6520 static int
6521 get_pos_from_mask (m, plen)
6522 unsigned HOST_WIDE_INT m;
6523 unsigned HOST_WIDE_INT *plen;
6525 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6526 int pos = exact_log2 (m & -m);
6527 int len;
6529 if (pos < 0)
6530 return -1;
6532 /* Now shift off the low-order zero bits and see if we have a power of
6533 two minus 1. */
6534 len = exact_log2 ((m >> pos) + 1);
6536 if (len <= 0)
6537 return -1;
6539 *plen = len;
6540 return pos;
6543 /* See if X can be simplified knowing that we will only refer to it in
6544 MODE and will only refer to those bits that are nonzero in MASK.
6545 If other bits are being computed or if masking operations are done
6546 that select a superset of the bits in MASK, they can sometimes be
6547 ignored.
6549 Return a possibly simplified expression, but always convert X to
6550 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6552 Also, if REG is non-zero and X is a register equal in value to REG,
6553 replace X with REG.
6555 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6556 are all off in X. This is used when X will be complemented, by either
6557 NOT, NEG, or XOR. */
6559 static rtx
6560 force_to_mode (x, mode, mask, reg, just_select)
6561 rtx x;
6562 enum machine_mode mode;
6563 unsigned HOST_WIDE_INT mask;
6564 rtx reg;
6565 int just_select;
6567 enum rtx_code code = GET_CODE (x);
6568 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6569 enum machine_mode op_mode;
6570 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6571 rtx op0, op1, temp;
6573 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6574 code below will do the wrong thing since the mode of such an
6575 expression is VOIDmode.
6577 Also do nothing if X is a CLOBBER; this can happen if X was
6578 the return value from a call to gen_lowpart_for_combine. */
6579 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6580 return x;
6582 /* We want to perform the operation is its present mode unless we know
6583 that the operation is valid in MODE, in which case we do the operation
6584 in MODE. */
6585 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6586 && have_insn_for (code, mode))
6587 ? mode : GET_MODE (x));
6589 /* It is not valid to do a right-shift in a narrower mode
6590 than the one it came in with. */
6591 if ((code == LSHIFTRT || code == ASHIFTRT)
6592 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6593 op_mode = GET_MODE (x);
6595 /* Truncate MASK to fit OP_MODE. */
6596 if (op_mode)
6597 mask &= GET_MODE_MASK (op_mode);
6599 /* When we have an arithmetic operation, or a shift whose count we
6600 do not know, we need to assume that all bit the up to the highest-order
6601 bit in MASK will be needed. This is how we form such a mask. */
6602 if (op_mode)
6603 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6604 ? GET_MODE_MASK (op_mode)
6605 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6606 - 1));
6607 else
6608 fuller_mask = ~(HOST_WIDE_INT) 0;
6610 /* Determine what bits of X are guaranteed to be (non)zero. */
6611 nonzero = nonzero_bits (x, mode);
6613 /* If none of the bits in X are needed, return a zero. */
6614 if (! just_select && (nonzero & mask) == 0)
6615 return const0_rtx;
6617 /* If X is a CONST_INT, return a new one. Do this here since the
6618 test below will fail. */
6619 if (GET_CODE (x) == CONST_INT)
6621 HOST_WIDE_INT cval = INTVAL (x) & mask;
6622 int width = GET_MODE_BITSIZE (mode);
6624 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6625 number, sign extend it. */
6626 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6627 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6628 cval |= (HOST_WIDE_INT) -1 << width;
6630 return GEN_INT (cval);
6633 /* If X is narrower than MODE and we want all the bits in X's mode, just
6634 get X in the proper mode. */
6635 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6636 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6637 return gen_lowpart_for_combine (mode, x);
6639 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6640 MASK are already known to be zero in X, we need not do anything. */
6641 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6642 return x;
6644 switch (code)
6646 case CLOBBER:
6647 /* If X is a (clobber (const_int)), return it since we know we are
6648 generating something that won't match. */
6649 return x;
6651 case USE:
6652 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6653 spanned the boundary of the MEM. If we are now masking so it is
6654 within that boundary, we don't need the USE any more. */
6655 if (! BITS_BIG_ENDIAN
6656 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6657 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6658 break;
6660 case SIGN_EXTEND:
6661 case ZERO_EXTEND:
6662 case ZERO_EXTRACT:
6663 case SIGN_EXTRACT:
6664 x = expand_compound_operation (x);
6665 if (GET_CODE (x) != code)
6666 return force_to_mode (x, mode, mask, reg, next_select);
6667 break;
6669 case REG:
6670 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6671 || rtx_equal_p (reg, get_last_value (x))))
6672 x = reg;
6673 break;
6675 case SUBREG:
6676 if (subreg_lowpart_p (x)
6677 /* We can ignore the effect of this SUBREG if it narrows the mode or
6678 if the constant masks to zero all the bits the mode doesn't
6679 have. */
6680 && ((GET_MODE_SIZE (GET_MODE (x))
6681 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6682 || (0 == (mask
6683 & GET_MODE_MASK (GET_MODE (x))
6684 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6685 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6686 break;
6688 case AND:
6689 /* If this is an AND with a constant, convert it into an AND
6690 whose constant is the AND of that constant with MASK. If it
6691 remains an AND of MASK, delete it since it is redundant. */
6693 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6695 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6696 mask & INTVAL (XEXP (x, 1)));
6698 /* If X is still an AND, see if it is an AND with a mask that
6699 is just some low-order bits. If so, and it is MASK, we don't
6700 need it. */
6702 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6703 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6704 x = XEXP (x, 0);
6706 /* If it remains an AND, try making another AND with the bits
6707 in the mode mask that aren't in MASK turned on. If the
6708 constant in the AND is wide enough, this might make a
6709 cheaper constant. */
6711 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6712 && GET_MODE_MASK (GET_MODE (x)) != mask
6713 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6715 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6716 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6717 int width = GET_MODE_BITSIZE (GET_MODE (x));
6718 rtx y;
6720 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6721 number, sign extend it. */
6722 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6723 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6724 cval |= (HOST_WIDE_INT) -1 << width;
6726 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6727 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6728 x = y;
6731 break;
6734 goto binop;
6736 case PLUS:
6737 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6738 low-order bits (as in an alignment operation) and FOO is already
6739 aligned to that boundary, mask C1 to that boundary as well.
6740 This may eliminate that PLUS and, later, the AND. */
6743 unsigned int width = GET_MODE_BITSIZE (mode);
6744 unsigned HOST_WIDE_INT smask = mask;
6746 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6747 number, sign extend it. */
6749 if (width < HOST_BITS_PER_WIDE_INT
6750 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6751 smask |= (HOST_WIDE_INT) -1 << width;
6753 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6754 && exact_log2 (- smask) >= 0)
6756 #ifdef STACK_BIAS
6757 if (STACK_BIAS
6758 && (XEXP (x, 0) == stack_pointer_rtx
6759 || XEXP (x, 0) == frame_pointer_rtx))
6761 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6762 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6764 sp_mask &= ~(sp_alignment - 1);
6765 if ((sp_mask & ~smask) == 0
6766 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6767 return force_to_mode (plus_constant (XEXP (x, 0),
6768 ((INTVAL (XEXP (x, 1)) -
6769 STACK_BIAS) & smask)
6770 + STACK_BIAS),
6771 mode, smask, reg, next_select);
6773 #endif
6774 if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6775 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6776 return force_to_mode (plus_constant (XEXP (x, 0),
6777 (INTVAL (XEXP (x, 1))
6778 & smask)),
6779 mode, smask, reg, next_select);
6783 /* ... fall through ... */
6785 case MULT:
6786 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6787 most significant bit in MASK since carries from those bits will
6788 affect the bits we are interested in. */
6789 mask = fuller_mask;
6790 goto binop;
6792 case MINUS:
6793 /* If X is (minus C Y) where C's least set bit is larger than any bit
6794 in the mask, then we may replace with (neg Y). */
6795 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6796 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6797 & -INTVAL (XEXP (x, 0))))
6798 > mask))
6800 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6801 GET_MODE (x));
6802 return force_to_mode (x, mode, mask, reg, next_select);
6805 /* Similarly, if C contains every bit in the mask, then we may
6806 replace with (not Y). */
6807 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6808 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6809 == INTVAL (XEXP (x, 0))))
6811 x = simplify_gen_unary (NOT, GET_MODE (x),
6812 XEXP (x, 1), GET_MODE (x));
6813 return force_to_mode (x, mode, mask, reg, next_select);
6816 mask = fuller_mask;
6817 goto binop;
6819 case IOR:
6820 case XOR:
6821 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6822 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6823 operation which may be a bitfield extraction. Ensure that the
6824 constant we form is not wider than the mode of X. */
6826 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6827 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6828 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6829 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6830 && GET_CODE (XEXP (x, 1)) == CONST_INT
6831 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6832 + floor_log2 (INTVAL (XEXP (x, 1))))
6833 < GET_MODE_BITSIZE (GET_MODE (x)))
6834 && (INTVAL (XEXP (x, 1))
6835 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6837 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6838 << INTVAL (XEXP (XEXP (x, 0), 1)));
6839 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6840 XEXP (XEXP (x, 0), 0), temp);
6841 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6842 XEXP (XEXP (x, 0), 1));
6843 return force_to_mode (x, mode, mask, reg, next_select);
6846 binop:
6847 /* For most binary operations, just propagate into the operation and
6848 change the mode if we have an operation of that mode. */
6850 op0 = gen_lowpart_for_combine (op_mode,
6851 force_to_mode (XEXP (x, 0), mode, mask,
6852 reg, next_select));
6853 op1 = gen_lowpart_for_combine (op_mode,
6854 force_to_mode (XEXP (x, 1), mode, mask,
6855 reg, next_select));
6857 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6858 MASK since OP1 might have been sign-extended but we never want
6859 to turn on extra bits, since combine might have previously relied
6860 on them being off. */
6861 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6862 && (INTVAL (op1) & mask) != 0)
6863 op1 = GEN_INT (INTVAL (op1) & mask);
6865 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6866 x = gen_binary (code, op_mode, op0, op1);
6867 break;
6869 case ASHIFT:
6870 /* For left shifts, do the same, but just for the first operand.
6871 However, we cannot do anything with shifts where we cannot
6872 guarantee that the counts are smaller than the size of the mode
6873 because such a count will have a different meaning in a
6874 wider mode. */
6876 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6877 && INTVAL (XEXP (x, 1)) >= 0
6878 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6879 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6880 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6881 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6882 break;
6884 /* If the shift count is a constant and we can do arithmetic in
6885 the mode of the shift, refine which bits we need. Otherwise, use the
6886 conservative form of the mask. */
6887 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6888 && INTVAL (XEXP (x, 1)) >= 0
6889 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6890 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6891 mask >>= INTVAL (XEXP (x, 1));
6892 else
6893 mask = fuller_mask;
6895 op0 = gen_lowpart_for_combine (op_mode,
6896 force_to_mode (XEXP (x, 0), op_mode,
6897 mask, reg, next_select));
6899 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6900 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6901 break;
6903 case LSHIFTRT:
6904 /* Here we can only do something if the shift count is a constant,
6905 this shift constant is valid for the host, and we can do arithmetic
6906 in OP_MODE. */
6908 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6909 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6910 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6912 rtx inner = XEXP (x, 0);
6913 unsigned HOST_WIDE_INT inner_mask;
6915 /* Select the mask of the bits we need for the shift operand. */
6916 inner_mask = mask << INTVAL (XEXP (x, 1));
6918 /* We can only change the mode of the shift if we can do arithmetic
6919 in the mode of the shift and INNER_MASK is no wider than the
6920 width of OP_MODE. */
6921 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6922 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6923 op_mode = GET_MODE (x);
6925 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6927 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6928 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6931 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6932 shift and AND produces only copies of the sign bit (C2 is one less
6933 than a power of two), we can do this with just a shift. */
6935 if (GET_CODE (x) == LSHIFTRT
6936 && GET_CODE (XEXP (x, 1)) == CONST_INT
6937 /* The shift puts one of the sign bit copies in the least significant
6938 bit. */
6939 && ((INTVAL (XEXP (x, 1))
6940 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6941 >= GET_MODE_BITSIZE (GET_MODE (x)))
6942 && exact_log2 (mask + 1) >= 0
6943 /* Number of bits left after the shift must be more than the mask
6944 needs. */
6945 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6946 <= GET_MODE_BITSIZE (GET_MODE (x)))
6947 /* Must be more sign bit copies than the mask needs. */
6948 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6949 >= exact_log2 (mask + 1)))
6950 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6951 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6952 - exact_log2 (mask + 1)));
6954 goto shiftrt;
6956 case ASHIFTRT:
6957 /* If we are just looking for the sign bit, we don't need this shift at
6958 all, even if it has a variable count. */
6959 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6960 && (mask == ((unsigned HOST_WIDE_INT) 1
6961 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6962 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6964 /* If this is a shift by a constant, get a mask that contains those bits
6965 that are not copies of the sign bit. We then have two cases: If
6966 MASK only includes those bits, this can be a logical shift, which may
6967 allow simplifications. If MASK is a single-bit field not within
6968 those bits, we are requesting a copy of the sign bit and hence can
6969 shift the sign bit to the appropriate location. */
6971 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6972 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6974 int i = -1;
6976 /* If the considered data is wider then HOST_WIDE_INT, we can't
6977 represent a mask for all its bits in a single scalar.
6978 But we only care about the lower bits, so calculate these. */
6980 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6982 nonzero = ~(HOST_WIDE_INT) 0;
6984 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6985 is the number of bits a full-width mask would have set.
6986 We need only shift if these are fewer than nonzero can
6987 hold. If not, we must keep all bits set in nonzero. */
6989 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6990 < HOST_BITS_PER_WIDE_INT)
6991 nonzero >>= INTVAL (XEXP (x, 1))
6992 + HOST_BITS_PER_WIDE_INT
6993 - GET_MODE_BITSIZE (GET_MODE (x)) ;
6995 else
6997 nonzero = GET_MODE_MASK (GET_MODE (x));
6998 nonzero >>= INTVAL (XEXP (x, 1));
7001 if ((mask & ~nonzero) == 0
7002 || (i = exact_log2 (mask)) >= 0)
7004 x = simplify_shift_const
7005 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7006 i < 0 ? INTVAL (XEXP (x, 1))
7007 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7009 if (GET_CODE (x) != ASHIFTRT)
7010 return force_to_mode (x, mode, mask, reg, next_select);
7014 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7015 even if the shift count isn't a constant. */
7016 if (mask == 1)
7017 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7019 shiftrt:
7021 /* If this is a zero- or sign-extension operation that just affects bits
7022 we don't care about, remove it. Be sure the call above returned
7023 something that is still a shift. */
7025 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7026 && GET_CODE (XEXP (x, 1)) == CONST_INT
7027 && INTVAL (XEXP (x, 1)) >= 0
7028 && (INTVAL (XEXP (x, 1))
7029 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7030 && GET_CODE (XEXP (x, 0)) == ASHIFT
7031 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7032 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7033 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7034 reg, next_select);
7036 break;
7038 case ROTATE:
7039 case ROTATERT:
7040 /* If the shift count is constant and we can do computations
7041 in the mode of X, compute where the bits we care about are.
7042 Otherwise, we can't do anything. Don't change the mode of
7043 the shift or propagate MODE into the shift, though. */
7044 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7045 && INTVAL (XEXP (x, 1)) >= 0)
7047 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7048 GET_MODE (x), GEN_INT (mask),
7049 XEXP (x, 1));
7050 if (temp && GET_CODE(temp) == CONST_INT)
7051 SUBST (XEXP (x, 0),
7052 force_to_mode (XEXP (x, 0), GET_MODE (x),
7053 INTVAL (temp), reg, next_select));
7055 break;
7057 case NEG:
7058 /* If we just want the low-order bit, the NEG isn't needed since it
7059 won't change the low-order bit. */
7060 if (mask == 1)
7061 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7063 /* We need any bits less significant than the most significant bit in
7064 MASK since carries from those bits will affect the bits we are
7065 interested in. */
7066 mask = fuller_mask;
7067 goto unop;
7069 case NOT:
7070 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7071 same as the XOR case above. Ensure that the constant we form is not
7072 wider than the mode of X. */
7074 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7075 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7076 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7077 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7078 < GET_MODE_BITSIZE (GET_MODE (x)))
7079 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7081 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7082 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7083 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7085 return force_to_mode (x, mode, mask, reg, next_select);
7088 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7089 use the full mask inside the NOT. */
7090 mask = fuller_mask;
7092 unop:
7093 op0 = gen_lowpart_for_combine (op_mode,
7094 force_to_mode (XEXP (x, 0), mode, mask,
7095 reg, next_select));
7096 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7097 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7098 break;
7100 case NE:
7101 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7102 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7103 which is equal to STORE_FLAG_VALUE. */
7104 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7105 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7106 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7107 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7109 break;
7111 case IF_THEN_ELSE:
7112 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7113 written in a narrower mode. We play it safe and do not do so. */
7115 SUBST (XEXP (x, 1),
7116 gen_lowpart_for_combine (GET_MODE (x),
7117 force_to_mode (XEXP (x, 1), mode,
7118 mask, reg, next_select)));
7119 SUBST (XEXP (x, 2),
7120 gen_lowpart_for_combine (GET_MODE (x),
7121 force_to_mode (XEXP (x, 2), mode,
7122 mask, reg,next_select)));
7123 break;
7125 default:
7126 break;
7129 /* Ensure we return a value of the proper mode. */
7130 return gen_lowpart_for_combine (mode, x);
7133 /* Return nonzero if X is an expression that has one of two values depending on
7134 whether some other value is zero or nonzero. In that case, we return the
7135 value that is being tested, *PTRUE is set to the value if the rtx being
7136 returned has a nonzero value, and *PFALSE is set to the other alternative.
7138 If we return zero, we set *PTRUE and *PFALSE to X. */
7140 static rtx
7141 if_then_else_cond (x, ptrue, pfalse)
7142 rtx x;
7143 rtx *ptrue, *pfalse;
7145 enum machine_mode mode = GET_MODE (x);
7146 enum rtx_code code = GET_CODE (x);
7147 rtx cond0, cond1, true0, true1, false0, false1;
7148 unsigned HOST_WIDE_INT nz;
7150 /* If we are comparing a value against zero, we are done. */
7151 if ((code == NE || code == EQ)
7152 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7154 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7155 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7156 return XEXP (x, 0);
7159 /* If this is a unary operation whose operand has one of two values, apply
7160 our opcode to compute those values. */
7161 else if (GET_RTX_CLASS (code) == '1'
7162 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7164 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7165 *pfalse = simplify_gen_unary (code, mode, false0,
7166 GET_MODE (XEXP (x, 0)));
7167 return cond0;
7170 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7171 make can't possibly match and would suppress other optimizations. */
7172 else if (code == COMPARE)
7175 /* If this is a binary operation, see if either side has only one of two
7176 values. If either one does or if both do and they are conditional on
7177 the same value, compute the new true and false values. */
7178 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7179 || GET_RTX_CLASS (code) == '<')
7181 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7182 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7184 if ((cond0 != 0 || cond1 != 0)
7185 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7187 /* If if_then_else_cond returned zero, then true/false are the
7188 same rtl. We must copy one of them to prevent invalid rtl
7189 sharing. */
7190 if (cond0 == 0)
7191 true0 = copy_rtx (true0);
7192 else if (cond1 == 0)
7193 true1 = copy_rtx (true1);
7195 *ptrue = gen_binary (code, mode, true0, true1);
7196 *pfalse = gen_binary (code, mode, false0, false1);
7197 return cond0 ? cond0 : cond1;
7200 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7201 operands is zero when the other is non-zero, and vice-versa,
7202 and STORE_FLAG_VALUE is 1 or -1. */
7204 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7205 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7206 || code == UMAX)
7207 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7209 rtx op0 = XEXP (XEXP (x, 0), 1);
7210 rtx op1 = XEXP (XEXP (x, 1), 1);
7212 cond0 = XEXP (XEXP (x, 0), 0);
7213 cond1 = XEXP (XEXP (x, 1), 0);
7215 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7216 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7217 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7218 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7219 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7220 || ((swap_condition (GET_CODE (cond0))
7221 == combine_reversed_comparison_code (cond1))
7222 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7223 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7224 && ! side_effects_p (x))
7226 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7227 *pfalse = gen_binary (MULT, mode,
7228 (code == MINUS
7229 ? simplify_gen_unary (NEG, mode, op1,
7230 mode)
7231 : op1),
7232 const_true_rtx);
7233 return cond0;
7237 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7238 is always zero. */
7239 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7240 && (code == MULT || code == AND || code == UMIN)
7241 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7243 cond0 = XEXP (XEXP (x, 0), 0);
7244 cond1 = XEXP (XEXP (x, 1), 0);
7246 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7247 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7248 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7249 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7250 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7251 || ((swap_condition (GET_CODE (cond0))
7252 == combine_reversed_comparison_code (cond1))
7253 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7254 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7255 && ! side_effects_p (x))
7257 *ptrue = *pfalse = const0_rtx;
7258 return cond0;
7263 else if (code == IF_THEN_ELSE)
7265 /* If we have IF_THEN_ELSE already, extract the condition and
7266 canonicalize it if it is NE or EQ. */
7267 cond0 = XEXP (x, 0);
7268 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7269 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7270 return XEXP (cond0, 0);
7271 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7273 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7274 return XEXP (cond0, 0);
7276 else
7277 return cond0;
7280 /* If X is a SUBREG, we can narrow both the true and false values
7281 if the inner expression, if there is a condition. */
7282 else if (code == SUBREG
7283 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7284 &true0, &false0)))
7286 *ptrue = simplify_gen_subreg (mode, true0,
7287 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7288 *pfalse = simplify_gen_subreg (mode, false0,
7289 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7291 return cond0;
7294 /* If X is a constant, this isn't special and will cause confusions
7295 if we treat it as such. Likewise if it is equivalent to a constant. */
7296 else if (CONSTANT_P (x)
7297 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7300 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7301 will be least confusing to the rest of the compiler. */
7302 else if (mode == BImode)
7304 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7305 return x;
7308 /* If X is known to be either 0 or -1, those are the true and
7309 false values when testing X. */
7310 else if (x == constm1_rtx || x == const0_rtx
7311 || (mode != VOIDmode
7312 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7314 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7315 return x;
7318 /* Likewise for 0 or a single bit. */
7319 else if (mode != VOIDmode
7320 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7321 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7323 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7324 return x;
7327 /* Otherwise fail; show no condition with true and false values the same. */
7328 *ptrue = *pfalse = x;
7329 return 0;
7332 /* Return the value of expression X given the fact that condition COND
7333 is known to be true when applied to REG as its first operand and VAL
7334 as its second. X is known to not be shared and so can be modified in
7335 place.
7337 We only handle the simplest cases, and specifically those cases that
7338 arise with IF_THEN_ELSE expressions. */
7340 static rtx
7341 known_cond (x, cond, reg, val)
7342 rtx x;
7343 enum rtx_code cond;
7344 rtx reg, val;
7346 enum rtx_code code = GET_CODE (x);
7347 rtx temp;
7348 const char *fmt;
7349 int i, j;
7351 if (side_effects_p (x))
7352 return x;
7354 if (cond == EQ && rtx_equal_p (x, reg) && !FLOAT_MODE_P (cond))
7355 return val;
7356 if (cond == UNEQ && rtx_equal_p (x, reg))
7357 return val;
7359 /* If X is (abs REG) and we know something about REG's relationship
7360 with zero, we may be able to simplify this. */
7362 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7363 switch (cond)
7365 case GE: case GT: case EQ:
7366 return XEXP (x, 0);
7367 case LT: case LE:
7368 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7369 XEXP (x, 0),
7370 GET_MODE (XEXP (x, 0)));
7371 default:
7372 break;
7375 /* The only other cases we handle are MIN, MAX, and comparisons if the
7376 operands are the same as REG and VAL. */
7378 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7380 if (rtx_equal_p (XEXP (x, 0), val))
7381 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7383 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7385 if (GET_RTX_CLASS (code) == '<')
7387 if (comparison_dominates_p (cond, code))
7388 return const_true_rtx;
7390 code = combine_reversed_comparison_code (x);
7391 if (code != UNKNOWN
7392 && comparison_dominates_p (cond, code))
7393 return const0_rtx;
7394 else
7395 return x;
7397 else if (code == SMAX || code == SMIN
7398 || code == UMIN || code == UMAX)
7400 int unsignedp = (code == UMIN || code == UMAX);
7402 /* Do not reverse the condition when it is NE or EQ.
7403 This is because we cannot conclude anything about
7404 the value of 'SMAX (x, y)' when x is not equal to y,
7405 but we can when x equals y. */
7406 if ((code == SMAX || code == UMAX)
7407 && ! (cond == EQ || cond == NE))
7408 cond = reverse_condition (cond);
7410 switch (cond)
7412 case GE: case GT:
7413 return unsignedp ? x : XEXP (x, 1);
7414 case LE: case LT:
7415 return unsignedp ? x : XEXP (x, 0);
7416 case GEU: case GTU:
7417 return unsignedp ? XEXP (x, 1) : x;
7418 case LEU: case LTU:
7419 return unsignedp ? XEXP (x, 0) : x;
7420 default:
7421 break;
7427 fmt = GET_RTX_FORMAT (code);
7428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7430 if (fmt[i] == 'e')
7431 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7432 else if (fmt[i] == 'E')
7433 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7434 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7435 cond, reg, val));
7438 return x;
7441 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7442 assignment as a field assignment. */
7444 static int
7445 rtx_equal_for_field_assignment_p (x, y)
7446 rtx x;
7447 rtx y;
7449 if (x == y || rtx_equal_p (x, y))
7450 return 1;
7452 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7453 return 0;
7455 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7456 Note that all SUBREGs of MEM are paradoxical; otherwise they
7457 would have been rewritten. */
7458 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7459 && GET_CODE (SUBREG_REG (y)) == MEM
7460 && rtx_equal_p (SUBREG_REG (y),
7461 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7462 return 1;
7464 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7465 && GET_CODE (SUBREG_REG (x)) == MEM
7466 && rtx_equal_p (SUBREG_REG (x),
7467 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7468 return 1;
7470 /* We used to see if get_last_value of X and Y were the same but that's
7471 not correct. In one direction, we'll cause the assignment to have
7472 the wrong destination and in the case, we'll import a register into this
7473 insn that might have already have been dead. So fail if none of the
7474 above cases are true. */
7475 return 0;
7478 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7479 Return that assignment if so.
7481 We only handle the most common cases. */
7483 static rtx
7484 make_field_assignment (x)
7485 rtx x;
7487 rtx dest = SET_DEST (x);
7488 rtx src = SET_SRC (x);
7489 rtx assign;
7490 rtx rhs, lhs;
7491 HOST_WIDE_INT c1;
7492 HOST_WIDE_INT pos;
7493 unsigned HOST_WIDE_INT len;
7494 rtx other;
7495 enum machine_mode mode;
7497 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7498 a clear of a one-bit field. We will have changed it to
7499 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7500 for a SUBREG. */
7502 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7503 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7504 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7505 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7507 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7508 1, 1, 1, 0);
7509 if (assign != 0)
7510 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7511 return x;
7514 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7515 && subreg_lowpart_p (XEXP (src, 0))
7516 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7517 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7518 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7519 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7520 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7522 assign = make_extraction (VOIDmode, dest, 0,
7523 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7524 1, 1, 1, 0);
7525 if (assign != 0)
7526 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7527 return x;
7530 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7531 one-bit field. */
7532 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7533 && XEXP (XEXP (src, 0), 0) == const1_rtx
7534 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7536 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7537 1, 1, 1, 0);
7538 if (assign != 0)
7539 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7540 return x;
7543 /* The other case we handle is assignments into a constant-position
7544 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7545 a mask that has all one bits except for a group of zero bits and
7546 OTHER is known to have zeros where C1 has ones, this is such an
7547 assignment. Compute the position and length from C1. Shift OTHER
7548 to the appropriate position, force it to the required mode, and
7549 make the extraction. Check for the AND in both operands. */
7551 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7552 return x;
7554 rhs = expand_compound_operation (XEXP (src, 0));
7555 lhs = expand_compound_operation (XEXP (src, 1));
7557 if (GET_CODE (rhs) == AND
7558 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7559 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7560 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7561 else if (GET_CODE (lhs) == AND
7562 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7563 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7564 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7565 else
7566 return x;
7568 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7569 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7570 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7571 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7572 return x;
7574 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7575 if (assign == 0)
7576 return x;
7578 /* The mode to use for the source is the mode of the assignment, or of
7579 what is inside a possible STRICT_LOW_PART. */
7580 mode = (GET_CODE (assign) == STRICT_LOW_PART
7581 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7583 /* Shift OTHER right POS places and make it the source, restricting it
7584 to the proper length and mode. */
7586 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7587 GET_MODE (src), other, pos),
7588 mode,
7589 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7590 ? ~(unsigned HOST_WIDE_INT) 0
7591 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7592 dest, 0);
7594 return gen_rtx_SET (VOIDmode, assign, src);
7597 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7598 if so. */
7600 static rtx
7601 apply_distributive_law (x)
7602 rtx x;
7604 enum rtx_code code = GET_CODE (x);
7605 rtx lhs, rhs, other;
7606 rtx tem;
7607 enum rtx_code inner_code;
7609 /* Distributivity is not true for floating point.
7610 It can change the value. So don't do it.
7611 -- rms and moshier@world.std.com. */
7612 if (FLOAT_MODE_P (GET_MODE (x)))
7613 return x;
7615 /* The outer operation can only be one of the following: */
7616 if (code != IOR && code != AND && code != XOR
7617 && code != PLUS && code != MINUS)
7618 return x;
7620 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7622 /* If either operand is a primitive we can't do anything, so get out
7623 fast. */
7624 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7625 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7626 return x;
7628 lhs = expand_compound_operation (lhs);
7629 rhs = expand_compound_operation (rhs);
7630 inner_code = GET_CODE (lhs);
7631 if (inner_code != GET_CODE (rhs))
7632 return x;
7634 /* See if the inner and outer operations distribute. */
7635 switch (inner_code)
7637 case LSHIFTRT:
7638 case ASHIFTRT:
7639 case AND:
7640 case IOR:
7641 /* These all distribute except over PLUS. */
7642 if (code == PLUS || code == MINUS)
7643 return x;
7644 break;
7646 case MULT:
7647 if (code != PLUS && code != MINUS)
7648 return x;
7649 break;
7651 case ASHIFT:
7652 /* This is also a multiply, so it distributes over everything. */
7653 break;
7655 case SUBREG:
7656 /* Non-paradoxical SUBREGs distributes over all operations, provided
7657 the inner modes and byte offsets are the same, this is an extraction
7658 of a low-order part, we don't convert an fp operation to int or
7659 vice versa, and we would not be converting a single-word
7660 operation into a multi-word operation. The latter test is not
7661 required, but it prevents generating unneeded multi-word operations.
7662 Some of the previous tests are redundant given the latter test, but
7663 are retained because they are required for correctness.
7665 We produce the result slightly differently in this case. */
7667 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7668 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7669 || ! subreg_lowpart_p (lhs)
7670 || (GET_MODE_CLASS (GET_MODE (lhs))
7671 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7672 || (GET_MODE_SIZE (GET_MODE (lhs))
7673 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7674 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7675 return x;
7677 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7678 SUBREG_REG (lhs), SUBREG_REG (rhs));
7679 return gen_lowpart_for_combine (GET_MODE (x), tem);
7681 default:
7682 return x;
7685 /* Set LHS and RHS to the inner operands (A and B in the example
7686 above) and set OTHER to the common operand (C in the example).
7687 These is only one way to do this unless the inner operation is
7688 commutative. */
7689 if (GET_RTX_CLASS (inner_code) == 'c'
7690 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7691 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7692 else if (GET_RTX_CLASS (inner_code) == 'c'
7693 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7694 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7695 else if (GET_RTX_CLASS (inner_code) == 'c'
7696 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7697 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7698 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7699 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7700 else
7701 return x;
7703 /* Form the new inner operation, seeing if it simplifies first. */
7704 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7706 /* There is one exception to the general way of distributing:
7707 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7708 if (code == XOR && inner_code == IOR)
7710 inner_code = AND;
7711 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7714 /* We may be able to continuing distributing the result, so call
7715 ourselves recursively on the inner operation before forming the
7716 outer operation, which we return. */
7717 return gen_binary (inner_code, GET_MODE (x),
7718 apply_distributive_law (tem), other);
7721 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7722 in MODE.
7724 Return an equivalent form, if different from X. Otherwise, return X. If
7725 X is zero, we are to always construct the equivalent form. */
7727 static rtx
7728 simplify_and_const_int (x, mode, varop, constop)
7729 rtx x;
7730 enum machine_mode mode;
7731 rtx varop;
7732 unsigned HOST_WIDE_INT constop;
7734 unsigned HOST_WIDE_INT nonzero;
7735 int i;
7737 /* Simplify VAROP knowing that we will be only looking at some of the
7738 bits in it. */
7739 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7741 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7742 CONST_INT, we are done. */
7743 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7744 return varop;
7746 /* See what bits may be nonzero in VAROP. Unlike the general case of
7747 a call to nonzero_bits, here we don't care about bits outside
7748 MODE. */
7750 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7751 nonzero = trunc_int_for_mode (nonzero, mode);
7753 /* Turn off all bits in the constant that are known to already be zero.
7754 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7755 which is tested below. */
7757 constop &= nonzero;
7759 /* If we don't have any bits left, return zero. */
7760 if (constop == 0)
7761 return const0_rtx;
7763 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7764 a power of two, we can replace this with a ASHIFT. */
7765 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7766 && (i = exact_log2 (constop)) >= 0)
7767 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7769 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7770 or XOR, then try to apply the distributive law. This may eliminate
7771 operations if either branch can be simplified because of the AND.
7772 It may also make some cases more complex, but those cases probably
7773 won't match a pattern either with or without this. */
7775 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7776 return
7777 gen_lowpart_for_combine
7778 (mode,
7779 apply_distributive_law
7780 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7781 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7782 XEXP (varop, 0), constop),
7783 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7784 XEXP (varop, 1), constop))));
7786 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7787 if we already had one (just check for the simplest cases). */
7788 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7789 && GET_MODE (XEXP (x, 0)) == mode
7790 && SUBREG_REG (XEXP (x, 0)) == varop)
7791 varop = XEXP (x, 0);
7792 else
7793 varop = gen_lowpart_for_combine (mode, varop);
7795 /* If we can't make the SUBREG, try to return what we were given. */
7796 if (GET_CODE (varop) == CLOBBER)
7797 return x ? x : varop;
7799 /* If we are only masking insignificant bits, return VAROP. */
7800 if (constop == nonzero)
7801 x = varop;
7803 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7804 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7805 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7807 else
7809 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7810 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7811 SUBST (XEXP (x, 1), GEN_INT (constop));
7813 SUBST (XEXP (x, 0), varop);
7816 return x;
7819 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7820 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7821 is less useful. We can't allow both, because that results in exponential
7822 run time recursion. There is a nullstone testcase that triggered
7823 this. This macro avoids accidental uses of num_sign_bit_copies. */
7824 #define num_sign_bit_copies()
7826 /* Given an expression, X, compute which bits in X can be non-zero.
7827 We don't care about bits outside of those defined in MODE.
7829 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7830 a shift, AND, or zero_extract, we can do better. */
7832 static unsigned HOST_WIDE_INT
7833 nonzero_bits (x, mode)
7834 rtx x;
7835 enum machine_mode mode;
7837 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7838 unsigned HOST_WIDE_INT inner_nz;
7839 enum rtx_code code;
7840 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7841 rtx tem;
7843 /* For floating-point values, assume all bits are needed. */
7844 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7845 return nonzero;
7847 /* If X is wider than MODE, use its mode instead. */
7848 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7850 mode = GET_MODE (x);
7851 nonzero = GET_MODE_MASK (mode);
7852 mode_width = GET_MODE_BITSIZE (mode);
7855 if (mode_width > HOST_BITS_PER_WIDE_INT)
7856 /* Our only callers in this case look for single bit values. So
7857 just return the mode mask. Those tests will then be false. */
7858 return nonzero;
7860 #ifndef WORD_REGISTER_OPERATIONS
7861 /* If MODE is wider than X, but both are a single word for both the host
7862 and target machines, we can compute this from which bits of the
7863 object might be nonzero in its own mode, taking into account the fact
7864 that on many CISC machines, accessing an object in a wider mode
7865 causes the high-order bits to become undefined. So they are
7866 not known to be zero. */
7868 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7869 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7870 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7871 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7873 nonzero &= nonzero_bits (x, GET_MODE (x));
7874 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7875 return nonzero;
7877 #endif
7879 code = GET_CODE (x);
7880 switch (code)
7882 case REG:
7883 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
7884 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7885 all the bits above ptr_mode are known to be zero. */
7886 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7887 && REG_POINTER (x))
7888 nonzero &= GET_MODE_MASK (ptr_mode);
7889 #endif
7891 #ifdef STACK_BOUNDARY
7892 /* If this is the stack pointer, we may know something about its
7893 alignment. If PUSH_ROUNDING is defined, it is possible for the
7894 stack to be momentarily aligned only to that amount, so we pick
7895 the least alignment. */
7897 /* We can't check for arg_pointer_rtx here, because it is not
7898 guaranteed to have as much alignment as the stack pointer.
7899 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7900 alignment but the argument pointer has only 64 bit alignment. */
7902 if ((x == frame_pointer_rtx
7903 || x == stack_pointer_rtx
7904 || x == hard_frame_pointer_rtx
7905 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7906 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7907 #ifdef STACK_BIAS
7908 && !STACK_BIAS
7909 #endif
7912 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7914 #ifdef PUSH_ROUNDING
7915 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7916 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7917 #endif
7919 /* We must return here, otherwise we may get a worse result from
7920 one of the choices below. There is nothing useful below as
7921 far as the stack pointer is concerned. */
7922 return nonzero &= ~(sp_alignment - 1);
7924 #endif
7926 /* If X is a register whose nonzero bits value is current, use it.
7927 Otherwise, if X is a register whose value we can find, use that
7928 value. Otherwise, use the previously-computed global nonzero bits
7929 for this register. */
7931 if (reg_last_set_value[REGNO (x)] != 0
7932 && reg_last_set_mode[REGNO (x)] == mode
7933 && (reg_last_set_label[REGNO (x)] == label_tick
7934 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7935 && REG_N_SETS (REGNO (x)) == 1
7936 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7937 REGNO (x))))
7938 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7939 return reg_last_set_nonzero_bits[REGNO (x)];
7941 tem = get_last_value (x);
7943 if (tem)
7945 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7946 /* If X is narrower than MODE and TEM is a non-negative
7947 constant that would appear negative in the mode of X,
7948 sign-extend it for use in reg_nonzero_bits because some
7949 machines (maybe most) will actually do the sign-extension
7950 and this is the conservative approach.
7952 ??? For 2.5, try to tighten up the MD files in this regard
7953 instead of this kludge. */
7955 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7956 && GET_CODE (tem) == CONST_INT
7957 && INTVAL (tem) > 0
7958 && 0 != (INTVAL (tem)
7959 & ((HOST_WIDE_INT) 1
7960 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7961 tem = GEN_INT (INTVAL (tem)
7962 | ((HOST_WIDE_INT) (-1)
7963 << GET_MODE_BITSIZE (GET_MODE (x))));
7964 #endif
7965 return nonzero_bits (tem, mode);
7967 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7968 return reg_nonzero_bits[REGNO (x)] & nonzero;
7969 else
7970 return nonzero;
7972 case CONST_INT:
7973 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7974 /* If X is negative in MODE, sign-extend the value. */
7975 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
7976 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
7977 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
7978 #endif
7980 return INTVAL (x);
7982 case MEM:
7983 #ifdef LOAD_EXTEND_OP
7984 /* In many, if not most, RISC machines, reading a byte from memory
7985 zeros the rest of the register. Noticing that fact saves a lot
7986 of extra zero-extends. */
7987 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
7988 nonzero &= GET_MODE_MASK (GET_MODE (x));
7989 #endif
7990 break;
7992 case EQ: case NE:
7993 case UNEQ: case LTGT:
7994 case GT: case GTU: case UNGT:
7995 case LT: case LTU: case UNLT:
7996 case GE: case GEU: case UNGE:
7997 case LE: case LEU: case UNLE:
7998 case UNORDERED: case ORDERED:
8000 /* If this produces an integer result, we know which bits are set.
8001 Code here used to clear bits outside the mode of X, but that is
8002 now done above. */
8004 if (GET_MODE_CLASS (mode) == MODE_INT
8005 && mode_width <= HOST_BITS_PER_WIDE_INT)
8006 nonzero = STORE_FLAG_VALUE;
8007 break;
8009 case NEG:
8010 #if 0
8011 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8012 and num_sign_bit_copies. */
8013 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8014 == GET_MODE_BITSIZE (GET_MODE (x)))
8015 nonzero = 1;
8016 #endif
8018 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8019 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8020 break;
8022 case ABS:
8023 #if 0
8024 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8025 and num_sign_bit_copies. */
8026 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8027 == GET_MODE_BITSIZE (GET_MODE (x)))
8028 nonzero = 1;
8029 #endif
8030 break;
8032 case TRUNCATE:
8033 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8034 break;
8036 case ZERO_EXTEND:
8037 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8038 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8039 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8040 break;
8042 case SIGN_EXTEND:
8043 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8044 Otherwise, show all the bits in the outer mode but not the inner
8045 may be non-zero. */
8046 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8047 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8049 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8050 if (inner_nz
8051 & (((HOST_WIDE_INT) 1
8052 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8053 inner_nz |= (GET_MODE_MASK (mode)
8054 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8057 nonzero &= inner_nz;
8058 break;
8060 case AND:
8061 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8062 & nonzero_bits (XEXP (x, 1), mode));
8063 break;
8065 case XOR: case IOR:
8066 case UMIN: case UMAX: case SMIN: case SMAX:
8067 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8068 | nonzero_bits (XEXP (x, 1), mode));
8069 break;
8071 case PLUS: case MINUS:
8072 case MULT:
8073 case DIV: case UDIV:
8074 case MOD: case UMOD:
8075 /* We can apply the rules of arithmetic to compute the number of
8076 high- and low-order zero bits of these operations. We start by
8077 computing the width (position of the highest-order non-zero bit)
8078 and the number of low-order zero bits for each value. */
8080 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8081 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8082 int width0 = floor_log2 (nz0) + 1;
8083 int width1 = floor_log2 (nz1) + 1;
8084 int low0 = floor_log2 (nz0 & -nz0);
8085 int low1 = floor_log2 (nz1 & -nz1);
8086 HOST_WIDE_INT op0_maybe_minusp
8087 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8088 HOST_WIDE_INT op1_maybe_minusp
8089 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8090 unsigned int result_width = mode_width;
8091 int result_low = 0;
8093 switch (code)
8095 case PLUS:
8096 #ifdef STACK_BIAS
8097 if (STACK_BIAS
8098 && (XEXP (x, 0) == stack_pointer_rtx
8099 || XEXP (x, 0) == frame_pointer_rtx)
8100 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8102 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8104 nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8105 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8106 width0 = floor_log2 (nz0) + 1;
8107 width1 = floor_log2 (nz1) + 1;
8108 low0 = floor_log2 (nz0 & -nz0);
8109 low1 = floor_log2 (nz1 & -nz1);
8111 #endif
8112 result_width = MAX (width0, width1) + 1;
8113 result_low = MIN (low0, low1);
8114 break;
8115 case MINUS:
8116 result_low = MIN (low0, low1);
8117 break;
8118 case MULT:
8119 result_width = width0 + width1;
8120 result_low = low0 + low1;
8121 break;
8122 case DIV:
8123 if (width1 == 0)
8124 break;
8125 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8126 result_width = width0;
8127 break;
8128 case UDIV:
8129 if (width1 == 0)
8130 break;
8131 result_width = width0;
8132 break;
8133 case MOD:
8134 if (width1 == 0)
8135 break;
8136 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8137 result_width = MIN (width0, width1);
8138 result_low = MIN (low0, low1);
8139 break;
8140 case UMOD:
8141 if (width1 == 0)
8142 break;
8143 result_width = MIN (width0, width1);
8144 result_low = MIN (low0, low1);
8145 break;
8146 default:
8147 abort ();
8150 if (result_width < mode_width)
8151 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8153 if (result_low > 0)
8154 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8156 #ifdef POINTERS_EXTEND_UNSIGNED
8157 /* If pointers extend unsigned and this is an addition or subtraction
8158 to a pointer in Pmode, all the bits above ptr_mode are known to be
8159 zero. */
8160 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8161 && (code == PLUS || code == MINUS)
8162 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8163 nonzero &= GET_MODE_MASK (ptr_mode);
8164 #endif
8166 break;
8168 case ZERO_EXTRACT:
8169 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8170 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8171 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8172 break;
8174 case SUBREG:
8175 /* If this is a SUBREG formed for a promoted variable that has
8176 been zero-extended, we know that at least the high-order bits
8177 are zero, though others might be too. */
8179 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8180 nonzero = (GET_MODE_MASK (GET_MODE (x))
8181 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8183 /* If the inner mode is a single word for both the host and target
8184 machines, we can compute this from which bits of the inner
8185 object might be nonzero. */
8186 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8187 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8188 <= HOST_BITS_PER_WIDE_INT))
8190 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8192 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8193 /* If this is a typical RISC machine, we only have to worry
8194 about the way loads are extended. */
8195 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8196 ? (((nonzero
8197 & (((unsigned HOST_WIDE_INT) 1
8198 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8199 != 0))
8200 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8201 #endif
8203 /* On many CISC machines, accessing an object in a wider mode
8204 causes the high-order bits to become undefined. So they are
8205 not known to be zero. */
8206 if (GET_MODE_SIZE (GET_MODE (x))
8207 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8208 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8209 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8212 break;
8214 case ASHIFTRT:
8215 case LSHIFTRT:
8216 case ASHIFT:
8217 case ROTATE:
8218 /* The nonzero bits are in two classes: any bits within MODE
8219 that aren't in GET_MODE (x) are always significant. The rest of the
8220 nonzero bits are those that are significant in the operand of
8221 the shift when shifted the appropriate number of bits. This
8222 shows that high-order bits are cleared by the right shift and
8223 low-order bits by left shifts. */
8224 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8225 && INTVAL (XEXP (x, 1)) >= 0
8226 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8228 enum machine_mode inner_mode = GET_MODE (x);
8229 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8230 int count = INTVAL (XEXP (x, 1));
8231 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8232 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8233 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8234 unsigned HOST_WIDE_INT outer = 0;
8236 if (mode_width > width)
8237 outer = (op_nonzero & nonzero & ~mode_mask);
8239 if (code == LSHIFTRT)
8240 inner >>= count;
8241 else if (code == ASHIFTRT)
8243 inner >>= count;
8245 /* If the sign bit may have been nonzero before the shift, we
8246 need to mark all the places it could have been copied to
8247 by the shift as possibly nonzero. */
8248 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8249 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8251 else if (code == ASHIFT)
8252 inner <<= count;
8253 else
8254 inner = ((inner << (count % width)
8255 | (inner >> (width - (count % width)))) & mode_mask);
8257 nonzero &= (outer | inner);
8259 break;
8261 case FFS:
8262 /* This is at most the number of bits in the mode. */
8263 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8264 break;
8266 case IF_THEN_ELSE:
8267 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8268 | nonzero_bits (XEXP (x, 2), mode));
8269 break;
8271 default:
8272 break;
8275 return nonzero;
8278 /* See the macro definition above. */
8279 #undef num_sign_bit_copies
8281 /* Return the number of bits at the high-order end of X that are known to
8282 be equal to the sign bit. X will be used in mode MODE; if MODE is
8283 VOIDmode, X will be used in its own mode. The returned value will always
8284 be between 1 and the number of bits in MODE. */
8286 static unsigned int
8287 num_sign_bit_copies (x, mode)
8288 rtx x;
8289 enum machine_mode mode;
8291 enum rtx_code code = GET_CODE (x);
8292 unsigned int bitwidth;
8293 int num0, num1, result;
8294 unsigned HOST_WIDE_INT nonzero;
8295 rtx tem;
8297 /* If we weren't given a mode, use the mode of X. If the mode is still
8298 VOIDmode, we don't know anything. Likewise if one of the modes is
8299 floating-point. */
8301 if (mode == VOIDmode)
8302 mode = GET_MODE (x);
8304 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8305 return 1;
8307 bitwidth = GET_MODE_BITSIZE (mode);
8309 /* For a smaller object, just ignore the high bits. */
8310 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8312 num0 = num_sign_bit_copies (x, GET_MODE (x));
8313 return MAX (1,
8314 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8317 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8319 #ifndef WORD_REGISTER_OPERATIONS
8320 /* If this machine does not do all register operations on the entire
8321 register and MODE is wider than the mode of X, we can say nothing
8322 at all about the high-order bits. */
8323 return 1;
8324 #else
8325 /* Likewise on machines that do, if the mode of the object is smaller
8326 than a word and loads of that size don't sign extend, we can say
8327 nothing about the high order bits. */
8328 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8329 #ifdef LOAD_EXTEND_OP
8330 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8331 #endif
8333 return 1;
8334 #endif
8337 switch (code)
8339 case REG:
8341 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8342 /* If pointers extend signed and this is a pointer in Pmode, say that
8343 all the bits above ptr_mode are known to be sign bit copies. */
8344 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8345 && REG_POINTER (x))
8346 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8347 #endif
8349 if (reg_last_set_value[REGNO (x)] != 0
8350 && reg_last_set_mode[REGNO (x)] == mode
8351 && (reg_last_set_label[REGNO (x)] == label_tick
8352 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8353 && REG_N_SETS (REGNO (x)) == 1
8354 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8355 REGNO (x))))
8356 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8357 return reg_last_set_sign_bit_copies[REGNO (x)];
8359 tem = get_last_value (x);
8360 if (tem != 0)
8361 return num_sign_bit_copies (tem, mode);
8363 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
8364 return reg_sign_bit_copies[REGNO (x)];
8365 break;
8367 case MEM:
8368 #ifdef LOAD_EXTEND_OP
8369 /* Some RISC machines sign-extend all loads of smaller than a word. */
8370 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8371 return MAX (1, ((int) bitwidth
8372 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8373 #endif
8374 break;
8376 case CONST_INT:
8377 /* If the constant is negative, take its 1's complement and remask.
8378 Then see how many zero bits we have. */
8379 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8380 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8381 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8382 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8384 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8386 case SUBREG:
8387 /* If this is a SUBREG for a promoted object that is sign-extended
8388 and we are looking at it in a wider mode, we know that at least the
8389 high-order bits are known to be sign bit copies. */
8391 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8393 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8394 return MAX ((int) bitwidth
8395 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8396 num0);
8399 /* For a smaller object, just ignore the high bits. */
8400 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8402 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8403 return MAX (1, (num0
8404 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8405 - bitwidth)));
8408 #ifdef WORD_REGISTER_OPERATIONS
8409 #ifdef LOAD_EXTEND_OP
8410 /* For paradoxical SUBREGs on machines where all register operations
8411 affect the entire register, just look inside. Note that we are
8412 passing MODE to the recursive call, so the number of sign bit copies
8413 will remain relative to that mode, not the inner mode. */
8415 /* This works only if loads sign extend. Otherwise, if we get a
8416 reload for the inner part, it may be loaded from the stack, and
8417 then we lose all sign bit copies that existed before the store
8418 to the stack. */
8420 if ((GET_MODE_SIZE (GET_MODE (x))
8421 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8422 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8423 return num_sign_bit_copies (SUBREG_REG (x), mode);
8424 #endif
8425 #endif
8426 break;
8428 case SIGN_EXTRACT:
8429 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8430 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8431 break;
8433 case SIGN_EXTEND:
8434 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8435 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8437 case TRUNCATE:
8438 /* For a smaller object, just ignore the high bits. */
8439 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8440 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8441 - bitwidth)));
8443 case NOT:
8444 return num_sign_bit_copies (XEXP (x, 0), mode);
8446 case ROTATE: case ROTATERT:
8447 /* If we are rotating left by a number of bits less than the number
8448 of sign bit copies, we can just subtract that amount from the
8449 number. */
8450 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8451 && INTVAL (XEXP (x, 1)) >= 0
8452 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8454 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8455 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8456 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8458 break;
8460 case NEG:
8461 /* In general, this subtracts one sign bit copy. But if the value
8462 is known to be positive, the number of sign bit copies is the
8463 same as that of the input. Finally, if the input has just one bit
8464 that might be nonzero, all the bits are copies of the sign bit. */
8465 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8466 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8467 return num0 > 1 ? num0 - 1 : 1;
8469 nonzero = nonzero_bits (XEXP (x, 0), mode);
8470 if (nonzero == 1)
8471 return bitwidth;
8473 if (num0 > 1
8474 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8475 num0--;
8477 return num0;
8479 case IOR: case AND: case XOR:
8480 case SMIN: case SMAX: case UMIN: case UMAX:
8481 /* Logical operations will preserve the number of sign-bit copies.
8482 MIN and MAX operations always return one of the operands. */
8483 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8484 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8485 return MIN (num0, num1);
8487 case PLUS: case MINUS:
8488 /* For addition and subtraction, we can have a 1-bit carry. However,
8489 if we are subtracting 1 from a positive number, there will not
8490 be such a carry. Furthermore, if the positive number is known to
8491 be 0 or 1, we know the result is either -1 or 0. */
8493 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8494 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8496 nonzero = nonzero_bits (XEXP (x, 0), mode);
8497 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8498 return (nonzero == 1 || nonzero == 0 ? bitwidth
8499 : bitwidth - floor_log2 (nonzero) - 1);
8502 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8503 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8504 result = MAX (1, MIN (num0, num1) - 1);
8506 #ifdef POINTERS_EXTEND_UNSIGNED
8507 /* If pointers extend signed and this is an addition or subtraction
8508 to a pointer in Pmode, all the bits above ptr_mode are known to be
8509 sign bit copies. */
8510 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8511 && (code == PLUS || code == MINUS)
8512 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8513 result = MAX ((GET_MODE_BITSIZE (Pmode)
8514 - GET_MODE_BITSIZE (ptr_mode) + 1),
8515 result);
8516 #endif
8517 return result;
8519 case MULT:
8520 /* The number of bits of the product is the sum of the number of
8521 bits of both terms. However, unless one of the terms if known
8522 to be positive, we must allow for an additional bit since negating
8523 a negative number can remove one sign bit copy. */
8525 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8526 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8528 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8529 if (result > 0
8530 && (bitwidth > HOST_BITS_PER_WIDE_INT
8531 || (((nonzero_bits (XEXP (x, 0), mode)
8532 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8533 && ((nonzero_bits (XEXP (x, 1), mode)
8534 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8535 result--;
8537 return MAX (1, result);
8539 case UDIV:
8540 /* The result must be <= the first operand. If the first operand
8541 has the high bit set, we know nothing about the number of sign
8542 bit copies. */
8543 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8544 return 1;
8545 else if ((nonzero_bits (XEXP (x, 0), mode)
8546 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8547 return 1;
8548 else
8549 return num_sign_bit_copies (XEXP (x, 0), mode);
8551 case UMOD:
8552 /* The result must be <= the scond operand. */
8553 return num_sign_bit_copies (XEXP (x, 1), mode);
8555 case DIV:
8556 /* Similar to unsigned division, except that we have to worry about
8557 the case where the divisor is negative, in which case we have
8558 to add 1. */
8559 result = num_sign_bit_copies (XEXP (x, 0), mode);
8560 if (result > 1
8561 && (bitwidth > HOST_BITS_PER_WIDE_INT
8562 || (nonzero_bits (XEXP (x, 1), mode)
8563 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8564 result--;
8566 return result;
8568 case MOD:
8569 result = num_sign_bit_copies (XEXP (x, 1), mode);
8570 if (result > 1
8571 && (bitwidth > HOST_BITS_PER_WIDE_INT
8572 || (nonzero_bits (XEXP (x, 1), mode)
8573 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8574 result--;
8576 return result;
8578 case ASHIFTRT:
8579 /* Shifts by a constant add to the number of bits equal to the
8580 sign bit. */
8581 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8582 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8583 && INTVAL (XEXP (x, 1)) > 0)
8584 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8586 return num0;
8588 case ASHIFT:
8589 /* Left shifts destroy copies. */
8590 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8591 || INTVAL (XEXP (x, 1)) < 0
8592 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8593 return 1;
8595 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8596 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8598 case IF_THEN_ELSE:
8599 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8600 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8601 return MIN (num0, num1);
8603 case EQ: case NE: case GE: case GT: case LE: case LT:
8604 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8605 case GEU: case GTU: case LEU: case LTU:
8606 case UNORDERED: case ORDERED:
8607 /* If the constant is negative, take its 1's complement and remask.
8608 Then see how many zero bits we have. */
8609 nonzero = STORE_FLAG_VALUE;
8610 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8611 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8612 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8614 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8615 break;
8617 default:
8618 break;
8621 /* If we haven't been able to figure it out by one of the above rules,
8622 see if some of the high-order bits are known to be zero. If so,
8623 count those bits and return one less than that amount. If we can't
8624 safely compute the mask for this mode, always return BITWIDTH. */
8626 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8627 return 1;
8629 nonzero = nonzero_bits (x, mode);
8630 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8631 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8634 /* Return the number of "extended" bits there are in X, when interpreted
8635 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8636 unsigned quantities, this is the number of high-order zero bits.
8637 For signed quantities, this is the number of copies of the sign bit
8638 minus 1. In both case, this function returns the number of "spare"
8639 bits. For example, if two quantities for which this function returns
8640 at least 1 are added, the addition is known not to overflow.
8642 This function will always return 0 unless called during combine, which
8643 implies that it must be called from a define_split. */
8645 unsigned int
8646 extended_count (x, mode, unsignedp)
8647 rtx x;
8648 enum machine_mode mode;
8649 int unsignedp;
8651 if (nonzero_sign_valid == 0)
8652 return 0;
8654 return (unsignedp
8655 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8656 ? (GET_MODE_BITSIZE (mode) - 1
8657 - floor_log2 (nonzero_bits (x, mode)))
8658 : 0)
8659 : num_sign_bit_copies (x, mode) - 1);
8662 /* This function is called from `simplify_shift_const' to merge two
8663 outer operations. Specifically, we have already found that we need
8664 to perform operation *POP0 with constant *PCONST0 at the outermost
8665 position. We would now like to also perform OP1 with constant CONST1
8666 (with *POP0 being done last).
8668 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8669 the resulting operation. *PCOMP_P is set to 1 if we would need to
8670 complement the innermost operand, otherwise it is unchanged.
8672 MODE is the mode in which the operation will be done. No bits outside
8673 the width of this mode matter. It is assumed that the width of this mode
8674 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8676 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8677 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8678 result is simply *PCONST0.
8680 If the resulting operation cannot be expressed as one operation, we
8681 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8683 static int
8684 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8685 enum rtx_code *pop0;
8686 HOST_WIDE_INT *pconst0;
8687 enum rtx_code op1;
8688 HOST_WIDE_INT const1;
8689 enum machine_mode mode;
8690 int *pcomp_p;
8692 enum rtx_code op0 = *pop0;
8693 HOST_WIDE_INT const0 = *pconst0;
8695 const0 &= GET_MODE_MASK (mode);
8696 const1 &= GET_MODE_MASK (mode);
8698 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8699 if (op0 == AND)
8700 const1 &= const0;
8702 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8703 if OP0 is SET. */
8705 if (op1 == NIL || op0 == SET)
8706 return 1;
8708 else if (op0 == NIL)
8709 op0 = op1, const0 = const1;
8711 else if (op0 == op1)
8713 switch (op0)
8715 case AND:
8716 const0 &= const1;
8717 break;
8718 case IOR:
8719 const0 |= const1;
8720 break;
8721 case XOR:
8722 const0 ^= const1;
8723 break;
8724 case PLUS:
8725 const0 += const1;
8726 break;
8727 case NEG:
8728 op0 = NIL;
8729 break;
8730 default:
8731 break;
8735 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8736 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8737 return 0;
8739 /* If the two constants aren't the same, we can't do anything. The
8740 remaining six cases can all be done. */
8741 else if (const0 != const1)
8742 return 0;
8744 else
8745 switch (op0)
8747 case IOR:
8748 if (op1 == AND)
8749 /* (a & b) | b == b */
8750 op0 = SET;
8751 else /* op1 == XOR */
8752 /* (a ^ b) | b == a | b */
8754 break;
8756 case XOR:
8757 if (op1 == AND)
8758 /* (a & b) ^ b == (~a) & b */
8759 op0 = AND, *pcomp_p = 1;
8760 else /* op1 == IOR */
8761 /* (a | b) ^ b == a & ~b */
8762 op0 = AND, *pconst0 = ~const0;
8763 break;
8765 case AND:
8766 if (op1 == IOR)
8767 /* (a | b) & b == b */
8768 op0 = SET;
8769 else /* op1 == XOR */
8770 /* (a ^ b) & b) == (~a) & b */
8771 *pcomp_p = 1;
8772 break;
8773 default:
8774 break;
8777 /* Check for NO-OP cases. */
8778 const0 &= GET_MODE_MASK (mode);
8779 if (const0 == 0
8780 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8781 op0 = NIL;
8782 else if (const0 == 0 && op0 == AND)
8783 op0 = SET;
8784 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8785 && op0 == AND)
8786 op0 = NIL;
8788 /* ??? Slightly redundant with the above mask, but not entirely.
8789 Moving this above means we'd have to sign-extend the mode mask
8790 for the final test. */
8791 const0 = trunc_int_for_mode (const0, mode);
8793 *pop0 = op0;
8794 *pconst0 = const0;
8796 return 1;
8799 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8800 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8801 that we started with.
8803 The shift is normally computed in the widest mode we find in VAROP, as
8804 long as it isn't a different number of words than RESULT_MODE. Exceptions
8805 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8807 static rtx
8808 simplify_shift_const (x, code, result_mode, varop, input_count)
8809 rtx x;
8810 enum rtx_code code;
8811 enum machine_mode result_mode;
8812 rtx varop;
8813 int input_count;
8815 enum rtx_code orig_code = code;
8816 int orig_count = input_count;
8817 unsigned int count;
8818 int signed_count;
8819 enum machine_mode mode = result_mode;
8820 enum machine_mode shift_mode, tmode;
8821 unsigned int mode_words
8822 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8823 /* We form (outer_op (code varop count) (outer_const)). */
8824 enum rtx_code outer_op = NIL;
8825 HOST_WIDE_INT outer_const = 0;
8826 rtx const_rtx;
8827 int complement_p = 0;
8828 rtx new;
8830 /* If we were given an invalid count, don't do anything except exactly
8831 what was requested. */
8833 if (input_count < 0 || input_count >= (int) GET_MODE_BITSIZE (mode))
8835 if (x)
8836 return x;
8838 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (input_count));
8841 count = input_count;
8843 /* Make sure and truncate the "natural" shift on the way in. We don't
8844 want to do this inside the loop as it makes it more difficult to
8845 combine shifts. */
8846 #ifdef SHIFT_COUNT_TRUNCATED
8847 if (SHIFT_COUNT_TRUNCATED)
8848 count %= GET_MODE_BITSIZE (mode);
8849 #endif
8851 /* Unless one of the branches of the `if' in this loop does a `continue',
8852 we will `break' the loop after the `if'. */
8854 while (count != 0)
8856 /* If we have an operand of (clobber (const_int 0)), just return that
8857 value. */
8858 if (GET_CODE (varop) == CLOBBER)
8859 return varop;
8861 /* If we discovered we had to complement VAROP, leave. Making a NOT
8862 here would cause an infinite loop. */
8863 if (complement_p)
8864 break;
8866 /* Convert ROTATERT to ROTATE. */
8867 if (code == ROTATERT)
8868 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8870 /* We need to determine what mode we will do the shift in. If the
8871 shift is a right shift or a ROTATE, we must always do it in the mode
8872 it was originally done in. Otherwise, we can do it in MODE, the
8873 widest mode encountered. */
8874 shift_mode
8875 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8876 ? result_mode : mode);
8878 /* Handle cases where the count is greater than the size of the mode
8879 minus 1. For ASHIFT, use the size minus one as the count (this can
8880 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8881 take the count modulo the size. For other shifts, the result is
8882 zero.
8884 Since these shifts are being produced by the compiler by combining
8885 multiple operations, each of which are defined, we know what the
8886 result is supposed to be. */
8888 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8890 if (code == ASHIFTRT)
8891 count = GET_MODE_BITSIZE (shift_mode) - 1;
8892 else if (code == ROTATE || code == ROTATERT)
8893 count %= GET_MODE_BITSIZE (shift_mode);
8894 else
8896 /* We can't simply return zero because there may be an
8897 outer op. */
8898 varop = const0_rtx;
8899 count = 0;
8900 break;
8904 /* An arithmetic right shift of a quantity known to be -1 or 0
8905 is a no-op. */
8906 if (code == ASHIFTRT
8907 && (num_sign_bit_copies (varop, shift_mode)
8908 == GET_MODE_BITSIZE (shift_mode)))
8910 count = 0;
8911 break;
8914 /* If we are doing an arithmetic right shift and discarding all but
8915 the sign bit copies, this is equivalent to doing a shift by the
8916 bitsize minus one. Convert it into that shift because it will often
8917 allow other simplifications. */
8919 if (code == ASHIFTRT
8920 && (count + num_sign_bit_copies (varop, shift_mode)
8921 >= GET_MODE_BITSIZE (shift_mode)))
8922 count = GET_MODE_BITSIZE (shift_mode) - 1;
8924 /* We simplify the tests below and elsewhere by converting
8925 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8926 `make_compound_operation' will convert it to a ASHIFTRT for
8927 those machines (such as VAX) that don't have a LSHIFTRT. */
8928 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8929 && code == ASHIFTRT
8930 && ((nonzero_bits (varop, shift_mode)
8931 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8932 == 0))
8933 code = LSHIFTRT;
8935 switch (GET_CODE (varop))
8937 case SIGN_EXTEND:
8938 case ZERO_EXTEND:
8939 case SIGN_EXTRACT:
8940 case ZERO_EXTRACT:
8941 new = expand_compound_operation (varop);
8942 if (new != varop)
8944 varop = new;
8945 continue;
8947 break;
8949 case MEM:
8950 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8951 minus the width of a smaller mode, we can do this with a
8952 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8953 if ((code == ASHIFTRT || code == LSHIFTRT)
8954 && ! mode_dependent_address_p (XEXP (varop, 0))
8955 && ! MEM_VOLATILE_P (varop)
8956 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8957 MODE_INT, 1)) != BLKmode)
8959 new = adjust_address_nv (varop, tmode,
8960 BYTES_BIG_ENDIAN ? 0
8961 : count / BITS_PER_UNIT);
8963 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8964 : ZERO_EXTEND, mode, new);
8965 count = 0;
8966 continue;
8968 break;
8970 case USE:
8971 /* Similar to the case above, except that we can only do this if
8972 the resulting mode is the same as that of the underlying
8973 MEM and adjust the address depending on the *bits* endianness
8974 because of the way that bit-field extract insns are defined. */
8975 if ((code == ASHIFTRT || code == LSHIFTRT)
8976 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8977 MODE_INT, 1)) != BLKmode
8978 && tmode == GET_MODE (XEXP (varop, 0)))
8980 if (BITS_BIG_ENDIAN)
8981 new = XEXP (varop, 0);
8982 else
8984 new = copy_rtx (XEXP (varop, 0));
8985 SUBST (XEXP (new, 0),
8986 plus_constant (XEXP (new, 0),
8987 count / BITS_PER_UNIT));
8990 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8991 : ZERO_EXTEND, mode, new);
8992 count = 0;
8993 continue;
8995 break;
8997 case SUBREG:
8998 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8999 the same number of words as what we've seen so far. Then store
9000 the widest mode in MODE. */
9001 if (subreg_lowpart_p (varop)
9002 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9003 > GET_MODE_SIZE (GET_MODE (varop)))
9004 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9005 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9006 == mode_words))
9008 varop = SUBREG_REG (varop);
9009 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9010 mode = GET_MODE (varop);
9011 continue;
9013 break;
9015 case MULT:
9016 /* Some machines use MULT instead of ASHIFT because MULT
9017 is cheaper. But it is still better on those machines to
9018 merge two shifts into one. */
9019 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9020 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9022 varop
9023 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9024 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9025 continue;
9027 break;
9029 case UDIV:
9030 /* Similar, for when divides are cheaper. */
9031 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9032 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9034 varop
9035 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9036 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9037 continue;
9039 break;
9041 case ASHIFTRT:
9042 /* If we are extracting just the sign bit of an arithmetic
9043 right shift, that shift is not needed. However, the sign
9044 bit of a wider mode may be different from what would be
9045 interpreted as the sign bit in a narrower mode, so, if
9046 the result is narrower, don't discard the shift. */
9047 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9048 && (GET_MODE_BITSIZE (result_mode)
9049 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9051 varop = XEXP (varop, 0);
9052 continue;
9055 /* ... fall through ... */
9057 case LSHIFTRT:
9058 case ASHIFT:
9059 case ROTATE:
9060 /* Here we have two nested shifts. The result is usually the
9061 AND of a new shift with a mask. We compute the result below. */
9062 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9063 && INTVAL (XEXP (varop, 1)) >= 0
9064 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9065 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9066 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9068 enum rtx_code first_code = GET_CODE (varop);
9069 unsigned int first_count = INTVAL (XEXP (varop, 1));
9070 unsigned HOST_WIDE_INT mask;
9071 rtx mask_rtx;
9073 /* We have one common special case. We can't do any merging if
9074 the inner code is an ASHIFTRT of a smaller mode. However, if
9075 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9076 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9077 we can convert it to
9078 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9079 This simplifies certain SIGN_EXTEND operations. */
9080 if (code == ASHIFT && first_code == ASHIFTRT
9081 && (GET_MODE_BITSIZE (result_mode)
9082 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9084 /* C3 has the low-order C1 bits zero. */
9086 mask = (GET_MODE_MASK (mode)
9087 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9089 varop = simplify_and_const_int (NULL_RTX, result_mode,
9090 XEXP (varop, 0), mask);
9091 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9092 varop, count);
9093 count = first_count;
9094 code = ASHIFTRT;
9095 continue;
9098 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9099 than C1 high-order bits equal to the sign bit, we can convert
9100 this to either an ASHIFT or a ASHIFTRT depending on the
9101 two counts.
9103 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9105 if (code == ASHIFTRT && first_code == ASHIFT
9106 && GET_MODE (varop) == shift_mode
9107 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9108 > first_count))
9110 varop = XEXP (varop, 0);
9112 signed_count = count - first_count;
9113 if (signed_count < 0)
9114 count = -signed_count, code = ASHIFT;
9115 else
9116 count = signed_count;
9118 continue;
9121 /* There are some cases we can't do. If CODE is ASHIFTRT,
9122 we can only do this if FIRST_CODE is also ASHIFTRT.
9124 We can't do the case when CODE is ROTATE and FIRST_CODE is
9125 ASHIFTRT.
9127 If the mode of this shift is not the mode of the outer shift,
9128 we can't do this if either shift is a right shift or ROTATE.
9130 Finally, we can't do any of these if the mode is too wide
9131 unless the codes are the same.
9133 Handle the case where the shift codes are the same
9134 first. */
9136 if (code == first_code)
9138 if (GET_MODE (varop) != result_mode
9139 && (code == ASHIFTRT || code == LSHIFTRT
9140 || code == ROTATE))
9141 break;
9143 count += first_count;
9144 varop = XEXP (varop, 0);
9145 continue;
9148 if (code == ASHIFTRT
9149 || (code == ROTATE && first_code == ASHIFTRT)
9150 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9151 || (GET_MODE (varop) != result_mode
9152 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9153 || first_code == ROTATE
9154 || code == ROTATE)))
9155 break;
9157 /* To compute the mask to apply after the shift, shift the
9158 nonzero bits of the inner shift the same way the
9159 outer shift will. */
9161 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9163 mask_rtx
9164 = simplify_binary_operation (code, result_mode, mask_rtx,
9165 GEN_INT (count));
9167 /* Give up if we can't compute an outer operation to use. */
9168 if (mask_rtx == 0
9169 || GET_CODE (mask_rtx) != CONST_INT
9170 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9171 INTVAL (mask_rtx),
9172 result_mode, &complement_p))
9173 break;
9175 /* If the shifts are in the same direction, we add the
9176 counts. Otherwise, we subtract them. */
9177 signed_count = count;
9178 if ((code == ASHIFTRT || code == LSHIFTRT)
9179 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9180 signed_count += first_count;
9181 else
9182 signed_count -= first_count;
9184 /* If COUNT is positive, the new shift is usually CODE,
9185 except for the two exceptions below, in which case it is
9186 FIRST_CODE. If the count is negative, FIRST_CODE should
9187 always be used */
9188 if (signed_count > 0
9189 && ((first_code == ROTATE && code == ASHIFT)
9190 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9191 code = first_code, count = signed_count;
9192 else if (signed_count < 0)
9193 code = first_code, count = -signed_count;
9194 else
9195 count = signed_count;
9197 varop = XEXP (varop, 0);
9198 continue;
9201 /* If we have (A << B << C) for any shift, we can convert this to
9202 (A << C << B). This wins if A is a constant. Only try this if
9203 B is not a constant. */
9205 else if (GET_CODE (varop) == code
9206 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9207 && 0 != (new
9208 = simplify_binary_operation (code, mode,
9209 XEXP (varop, 0),
9210 GEN_INT (count))))
9212 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9213 count = 0;
9214 continue;
9216 break;
9218 case NOT:
9219 /* Make this fit the case below. */
9220 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9221 GEN_INT (GET_MODE_MASK (mode)));
9222 continue;
9224 case IOR:
9225 case AND:
9226 case XOR:
9227 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9228 with C the size of VAROP - 1 and the shift is logical if
9229 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9230 we have an (le X 0) operation. If we have an arithmetic shift
9231 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9232 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9234 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9235 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9236 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9237 && (code == LSHIFTRT || code == ASHIFTRT)
9238 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9239 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9241 count = 0;
9242 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9243 const0_rtx);
9245 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9246 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9248 continue;
9251 /* If we have (shift (logical)), move the logical to the outside
9252 to allow it to possibly combine with another logical and the
9253 shift to combine with another shift. This also canonicalizes to
9254 what a ZERO_EXTRACT looks like. Also, some machines have
9255 (and (shift)) insns. */
9257 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9258 && (new = simplify_binary_operation (code, result_mode,
9259 XEXP (varop, 1),
9260 GEN_INT (count))) != 0
9261 && GET_CODE (new) == CONST_INT
9262 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9263 INTVAL (new), result_mode, &complement_p))
9265 varop = XEXP (varop, 0);
9266 continue;
9269 /* If we can't do that, try to simplify the shift in each arm of the
9270 logical expression, make a new logical expression, and apply
9271 the inverse distributive law. */
9273 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9274 XEXP (varop, 0), count);
9275 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9276 XEXP (varop, 1), count);
9278 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9279 varop = apply_distributive_law (varop);
9281 count = 0;
9283 break;
9285 case EQ:
9286 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9287 says that the sign bit can be tested, FOO has mode MODE, C is
9288 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9289 that may be nonzero. */
9290 if (code == LSHIFTRT
9291 && XEXP (varop, 1) == const0_rtx
9292 && GET_MODE (XEXP (varop, 0)) == result_mode
9293 && count == GET_MODE_BITSIZE (result_mode) - 1
9294 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9295 && ((STORE_FLAG_VALUE
9296 & ((HOST_WIDE_INT) 1
9297 < (GET_MODE_BITSIZE (result_mode) - 1))))
9298 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9299 && merge_outer_ops (&outer_op, &outer_const, XOR,
9300 (HOST_WIDE_INT) 1, result_mode,
9301 &complement_p))
9303 varop = XEXP (varop, 0);
9304 count = 0;
9305 continue;
9307 break;
9309 case NEG:
9310 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9311 than the number of bits in the mode is equivalent to A. */
9312 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9313 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9315 varop = XEXP (varop, 0);
9316 count = 0;
9317 continue;
9320 /* NEG commutes with ASHIFT since it is multiplication. Move the
9321 NEG outside to allow shifts to combine. */
9322 if (code == ASHIFT
9323 && merge_outer_ops (&outer_op, &outer_const, NEG,
9324 (HOST_WIDE_INT) 0, result_mode,
9325 &complement_p))
9327 varop = XEXP (varop, 0);
9328 continue;
9330 break;
9332 case PLUS:
9333 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9334 is one less than the number of bits in the mode is
9335 equivalent to (xor A 1). */
9336 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9337 && XEXP (varop, 1) == constm1_rtx
9338 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9339 && merge_outer_ops (&outer_op, &outer_const, XOR,
9340 (HOST_WIDE_INT) 1, result_mode,
9341 &complement_p))
9343 count = 0;
9344 varop = XEXP (varop, 0);
9345 continue;
9348 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9349 that might be nonzero in BAR are those being shifted out and those
9350 bits are known zero in FOO, we can replace the PLUS with FOO.
9351 Similarly in the other operand order. This code occurs when
9352 we are computing the size of a variable-size array. */
9354 if ((code == ASHIFTRT || code == LSHIFTRT)
9355 && count < HOST_BITS_PER_WIDE_INT
9356 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9357 && (nonzero_bits (XEXP (varop, 1), result_mode)
9358 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9360 varop = XEXP (varop, 0);
9361 continue;
9363 else if ((code == ASHIFTRT || code == LSHIFTRT)
9364 && count < HOST_BITS_PER_WIDE_INT
9365 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9366 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9367 >> count)
9368 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9369 & nonzero_bits (XEXP (varop, 1),
9370 result_mode)))
9372 varop = XEXP (varop, 1);
9373 continue;
9376 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9377 if (code == ASHIFT
9378 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9379 && (new = simplify_binary_operation (ASHIFT, result_mode,
9380 XEXP (varop, 1),
9381 GEN_INT (count))) != 0
9382 && GET_CODE (new) == CONST_INT
9383 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9384 INTVAL (new), result_mode, &complement_p))
9386 varop = XEXP (varop, 0);
9387 continue;
9389 break;
9391 case MINUS:
9392 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9393 with C the size of VAROP - 1 and the shift is logical if
9394 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9395 we have a (gt X 0) operation. If the shift is arithmetic with
9396 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9397 we have a (neg (gt X 0)) operation. */
9399 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9400 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9401 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9402 && (code == LSHIFTRT || code == ASHIFTRT)
9403 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9404 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9405 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9407 count = 0;
9408 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9409 const0_rtx);
9411 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9412 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9414 continue;
9416 break;
9418 case TRUNCATE:
9419 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9420 if the truncate does not affect the value. */
9421 if (code == LSHIFTRT
9422 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9423 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9424 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9425 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9426 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9428 rtx varop_inner = XEXP (varop, 0);
9430 varop_inner
9431 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9432 XEXP (varop_inner, 0),
9433 GEN_INT
9434 (count + INTVAL (XEXP (varop_inner, 1))));
9435 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9436 count = 0;
9437 continue;
9439 break;
9441 default:
9442 break;
9445 break;
9448 /* We need to determine what mode to do the shift in. If the shift is
9449 a right shift or ROTATE, we must always do it in the mode it was
9450 originally done in. Otherwise, we can do it in MODE, the widest mode
9451 encountered. The code we care about is that of the shift that will
9452 actually be done, not the shift that was originally requested. */
9453 shift_mode
9454 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9455 ? result_mode : mode);
9457 /* We have now finished analyzing the shift. The result should be
9458 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9459 OUTER_OP is non-NIL, it is an operation that needs to be applied
9460 to the result of the shift. OUTER_CONST is the relevant constant,
9461 but we must turn off all bits turned off in the shift.
9463 If we were passed a value for X, see if we can use any pieces of
9464 it. If not, make new rtx. */
9466 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9467 && GET_CODE (XEXP (x, 1)) == CONST_INT
9468 && INTVAL (XEXP (x, 1)) == count)
9469 const_rtx = XEXP (x, 1);
9470 else
9471 const_rtx = GEN_INT (count);
9473 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9474 && GET_MODE (XEXP (x, 0)) == shift_mode
9475 && SUBREG_REG (XEXP (x, 0)) == varop)
9476 varop = XEXP (x, 0);
9477 else if (GET_MODE (varop) != shift_mode)
9478 varop = gen_lowpart_for_combine (shift_mode, varop);
9480 /* If we can't make the SUBREG, try to return what we were given. */
9481 if (GET_CODE (varop) == CLOBBER)
9482 return x ? x : varop;
9484 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9485 if (new != 0)
9486 x = new;
9487 else
9489 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9490 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9492 SUBST (XEXP (x, 0), varop);
9493 SUBST (XEXP (x, 1), const_rtx);
9496 /* If we have an outer operation and we just made a shift, it is
9497 possible that we could have simplified the shift were it not
9498 for the outer operation. So try to do the simplification
9499 recursively. */
9501 if (outer_op != NIL && GET_CODE (x) == code
9502 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9503 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9504 INTVAL (XEXP (x, 1)));
9506 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9507 turn off all the bits that the shift would have turned off. */
9508 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9509 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9510 GET_MODE_MASK (result_mode) >> orig_count);
9512 /* Do the remainder of the processing in RESULT_MODE. */
9513 x = gen_lowpart_for_combine (result_mode, x);
9515 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9516 operation. */
9517 if (complement_p)
9518 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9520 if (outer_op != NIL)
9522 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9523 outer_const = trunc_int_for_mode (outer_const, result_mode);
9525 if (outer_op == AND)
9526 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9527 else if (outer_op == SET)
9528 /* This means that we have determined that the result is
9529 equivalent to a constant. This should be rare. */
9530 x = GEN_INT (outer_const);
9531 else if (GET_RTX_CLASS (outer_op) == '1')
9532 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9533 else
9534 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9537 return x;
9540 /* Like recog, but we receive the address of a pointer to a new pattern.
9541 We try to match the rtx that the pointer points to.
9542 If that fails, we may try to modify or replace the pattern,
9543 storing the replacement into the same pointer object.
9545 Modifications include deletion or addition of CLOBBERs.
9547 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9548 the CLOBBERs are placed.
9550 The value is the final insn code from the pattern ultimately matched,
9551 or -1. */
9553 static int
9554 recog_for_combine (pnewpat, insn, pnotes)
9555 rtx *pnewpat;
9556 rtx insn;
9557 rtx *pnotes;
9559 rtx pat = *pnewpat;
9560 int insn_code_number;
9561 int num_clobbers_to_add = 0;
9562 int i;
9563 rtx notes = 0;
9564 rtx old_notes;
9566 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9567 we use to indicate that something didn't match. If we find such a
9568 thing, force rejection. */
9569 if (GET_CODE (pat) == PARALLEL)
9570 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9571 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9572 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9573 return -1;
9575 /* Remove the old notes prior to trying to recognize the new pattern. */
9576 old_notes = REG_NOTES (insn);
9577 REG_NOTES (insn) = 0;
9579 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9581 /* If it isn't, there is the possibility that we previously had an insn
9582 that clobbered some register as a side effect, but the combined
9583 insn doesn't need to do that. So try once more without the clobbers
9584 unless this represents an ASM insn. */
9586 if (insn_code_number < 0 && ! check_asm_operands (pat)
9587 && GET_CODE (pat) == PARALLEL)
9589 int pos;
9591 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9592 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9594 if (i != pos)
9595 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9596 pos++;
9599 SUBST_INT (XVECLEN (pat, 0), pos);
9601 if (pos == 1)
9602 pat = XVECEXP (pat, 0, 0);
9604 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9607 /* Recognize all noop sets, these will be killed by followup pass. */
9608 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9609 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9611 REG_NOTES (insn) = old_notes;
9613 /* If we had any clobbers to add, make a new pattern than contains
9614 them. Then check to make sure that all of them are dead. */
9615 if (num_clobbers_to_add)
9617 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9618 rtvec_alloc (GET_CODE (pat) == PARALLEL
9619 ? (XVECLEN (pat, 0)
9620 + num_clobbers_to_add)
9621 : num_clobbers_to_add + 1));
9623 if (GET_CODE (pat) == PARALLEL)
9624 for (i = 0; i < XVECLEN (pat, 0); i++)
9625 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9626 else
9627 XVECEXP (newpat, 0, 0) = pat;
9629 add_clobbers (newpat, insn_code_number);
9631 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9632 i < XVECLEN (newpat, 0); i++)
9634 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9635 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9636 return -1;
9637 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9638 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9640 pat = newpat;
9643 *pnewpat = pat;
9644 *pnotes = notes;
9646 return insn_code_number;
9649 /* Like gen_lowpart but for use by combine. In combine it is not possible
9650 to create any new pseudoregs. However, it is safe to create
9651 invalid memory addresses, because combine will try to recognize
9652 them and all they will do is make the combine attempt fail.
9654 If for some reason this cannot do its job, an rtx
9655 (clobber (const_int 0)) is returned.
9656 An insn containing that will not be recognized. */
9658 #undef gen_lowpart
9660 static rtx
9661 gen_lowpart_for_combine (mode, x)
9662 enum machine_mode mode;
9663 rtx x;
9665 rtx result;
9667 if (GET_MODE (x) == mode)
9668 return x;
9670 /* We can only support MODE being wider than a word if X is a
9671 constant integer or has a mode the same size. */
9673 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9674 && ! ((GET_MODE (x) == VOIDmode
9675 && (GET_CODE (x) == CONST_INT
9676 || GET_CODE (x) == CONST_DOUBLE))
9677 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9678 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9680 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9681 won't know what to do. So we will strip off the SUBREG here and
9682 process normally. */
9683 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9685 x = SUBREG_REG (x);
9686 if (GET_MODE (x) == mode)
9687 return x;
9690 result = gen_lowpart_common (mode, x);
9691 #ifdef CLASS_CANNOT_CHANGE_MODE
9692 if (result != 0
9693 && GET_CODE (result) == SUBREG
9694 && GET_CODE (SUBREG_REG (result)) == REG
9695 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9696 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9697 GET_MODE (SUBREG_REG (result))))
9698 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9699 #endif
9701 if (result)
9702 return result;
9704 if (GET_CODE (x) == MEM)
9706 int offset = 0;
9708 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9709 address. */
9710 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9711 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9713 /* If we want to refer to something bigger than the original memref,
9714 generate a perverse subreg instead. That will force a reload
9715 of the original memref X. */
9716 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9717 return gen_rtx_SUBREG (mode, x, 0);
9719 if (WORDS_BIG_ENDIAN)
9720 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9721 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9723 if (BYTES_BIG_ENDIAN)
9725 /* Adjust the address so that the address-after-the-data is
9726 unchanged. */
9727 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9728 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9731 return adjust_address_nv (x, mode, offset);
9734 /* If X is a comparison operator, rewrite it in a new mode. This
9735 probably won't match, but may allow further simplifications. */
9736 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9737 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9739 /* If we couldn't simplify X any other way, just enclose it in a
9740 SUBREG. Normally, this SUBREG won't match, but some patterns may
9741 include an explicit SUBREG or we may simplify it further in combine. */
9742 else
9744 int offset = 0;
9745 rtx res;
9747 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9748 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9749 if (res)
9750 return res;
9751 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9755 /* These routines make binary and unary operations by first seeing if they
9756 fold; if not, a new expression is allocated. */
9758 static rtx
9759 gen_binary (code, mode, op0, op1)
9760 enum rtx_code code;
9761 enum machine_mode mode;
9762 rtx op0, op1;
9764 rtx result;
9765 rtx tem;
9767 if (GET_RTX_CLASS (code) == 'c'
9768 && swap_commutative_operands_p (op0, op1))
9769 tem = op0, op0 = op1, op1 = tem;
9771 if (GET_RTX_CLASS (code) == '<')
9773 enum machine_mode op_mode = GET_MODE (op0);
9775 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9776 just (REL_OP X Y). */
9777 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9779 op1 = XEXP (op0, 1);
9780 op0 = XEXP (op0, 0);
9781 op_mode = GET_MODE (op0);
9784 if (op_mode == VOIDmode)
9785 op_mode = GET_MODE (op1);
9786 result = simplify_relational_operation (code, op_mode, op0, op1);
9788 else
9789 result = simplify_binary_operation (code, mode, op0, op1);
9791 if (result)
9792 return result;
9794 /* Put complex operands first and constants second. */
9795 if (GET_RTX_CLASS (code) == 'c'
9796 && swap_commutative_operands_p (op0, op1))
9797 return gen_rtx_fmt_ee (code, mode, op1, op0);
9799 /* If we are turning off bits already known off in OP0, we need not do
9800 an AND. */
9801 else if (code == AND && GET_CODE (op1) == CONST_INT
9802 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9803 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9804 return op0;
9806 return gen_rtx_fmt_ee (code, mode, op0, op1);
9809 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9810 comparison code that will be tested.
9812 The result is a possibly different comparison code to use. *POP0 and
9813 *POP1 may be updated.
9815 It is possible that we might detect that a comparison is either always
9816 true or always false. However, we do not perform general constant
9817 folding in combine, so this knowledge isn't useful. Such tautologies
9818 should have been detected earlier. Hence we ignore all such cases. */
9820 static enum rtx_code
9821 simplify_comparison (code, pop0, pop1)
9822 enum rtx_code code;
9823 rtx *pop0;
9824 rtx *pop1;
9826 rtx op0 = *pop0;
9827 rtx op1 = *pop1;
9828 rtx tem, tem1;
9829 int i;
9830 enum machine_mode mode, tmode;
9832 /* Try a few ways of applying the same transformation to both operands. */
9833 while (1)
9835 #ifndef WORD_REGISTER_OPERATIONS
9836 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9837 so check specially. */
9838 if (code != GTU && code != GEU && code != LTU && code != LEU
9839 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9840 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9841 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9842 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9843 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9844 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9845 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9846 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9847 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9848 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9849 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9850 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9851 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9852 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9853 && (INTVAL (XEXP (op0, 1))
9854 == (GET_MODE_BITSIZE (GET_MODE (op0))
9855 - (GET_MODE_BITSIZE
9856 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9858 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9859 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9861 #endif
9863 /* If both operands are the same constant shift, see if we can ignore the
9864 shift. We can if the shift is a rotate or if the bits shifted out of
9865 this shift are known to be zero for both inputs and if the type of
9866 comparison is compatible with the shift. */
9867 if (GET_CODE (op0) == GET_CODE (op1)
9868 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9869 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9870 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9871 && (code != GT && code != LT && code != GE && code != LE))
9872 || (GET_CODE (op0) == ASHIFTRT
9873 && (code != GTU && code != LTU
9874 && code != GEU && code != LEU)))
9875 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9876 && INTVAL (XEXP (op0, 1)) >= 0
9877 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9878 && XEXP (op0, 1) == XEXP (op1, 1))
9880 enum machine_mode mode = GET_MODE (op0);
9881 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9882 int shift_count = INTVAL (XEXP (op0, 1));
9884 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9885 mask &= (mask >> shift_count) << shift_count;
9886 else if (GET_CODE (op0) == ASHIFT)
9887 mask = (mask & (mask << shift_count)) >> shift_count;
9889 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9890 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9891 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9892 else
9893 break;
9896 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9897 SUBREGs are of the same mode, and, in both cases, the AND would
9898 be redundant if the comparison was done in the narrower mode,
9899 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9900 and the operand's possibly nonzero bits are 0xffffff01; in that case
9901 if we only care about QImode, we don't need the AND). This case
9902 occurs if the output mode of an scc insn is not SImode and
9903 STORE_FLAG_VALUE == 1 (e.g., the 386).
9905 Similarly, check for a case where the AND's are ZERO_EXTEND
9906 operations from some narrower mode even though a SUBREG is not
9907 present. */
9909 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9910 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9911 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9913 rtx inner_op0 = XEXP (op0, 0);
9914 rtx inner_op1 = XEXP (op1, 0);
9915 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9916 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9917 int changed = 0;
9919 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9920 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9921 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9922 && (GET_MODE (SUBREG_REG (inner_op0))
9923 == GET_MODE (SUBREG_REG (inner_op1)))
9924 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9925 <= HOST_BITS_PER_WIDE_INT)
9926 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9927 GET_MODE (SUBREG_REG (inner_op0)))))
9928 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9929 GET_MODE (SUBREG_REG (inner_op1))))))
9931 op0 = SUBREG_REG (inner_op0);
9932 op1 = SUBREG_REG (inner_op1);
9934 /* The resulting comparison is always unsigned since we masked
9935 off the original sign bit. */
9936 code = unsigned_condition (code);
9938 changed = 1;
9941 else if (c0 == c1)
9942 for (tmode = GET_CLASS_NARROWEST_MODE
9943 (GET_MODE_CLASS (GET_MODE (op0)));
9944 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9945 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9947 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9948 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9949 code = unsigned_condition (code);
9950 changed = 1;
9951 break;
9954 if (! changed)
9955 break;
9958 /* If both operands are NOT, we can strip off the outer operation
9959 and adjust the comparison code for swapped operands; similarly for
9960 NEG, except that this must be an equality comparison. */
9961 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9962 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9963 && (code == EQ || code == NE)))
9964 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9966 else
9967 break;
9970 /* If the first operand is a constant, swap the operands and adjust the
9971 comparison code appropriately, but don't do this if the second operand
9972 is already a constant integer. */
9973 if (swap_commutative_operands_p (op0, op1))
9975 tem = op0, op0 = op1, op1 = tem;
9976 code = swap_condition (code);
9979 /* We now enter a loop during which we will try to simplify the comparison.
9980 For the most part, we only are concerned with comparisons with zero,
9981 but some things may really be comparisons with zero but not start
9982 out looking that way. */
9984 while (GET_CODE (op1) == CONST_INT)
9986 enum machine_mode mode = GET_MODE (op0);
9987 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9988 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9989 int equality_comparison_p;
9990 int sign_bit_comparison_p;
9991 int unsigned_comparison_p;
9992 HOST_WIDE_INT const_op;
9994 /* We only want to handle integral modes. This catches VOIDmode,
9995 CCmode, and the floating-point modes. An exception is that we
9996 can handle VOIDmode if OP0 is a COMPARE or a comparison
9997 operation. */
9999 if (GET_MODE_CLASS (mode) != MODE_INT
10000 && ! (mode == VOIDmode
10001 && (GET_CODE (op0) == COMPARE
10002 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10003 break;
10005 /* Get the constant we are comparing against and turn off all bits
10006 not on in our mode. */
10007 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10008 op1 = GEN_INT (const_op);
10010 /* If we are comparing against a constant power of two and the value
10011 being compared can only have that single bit nonzero (e.g., it was
10012 `and'ed with that bit), we can replace this with a comparison
10013 with zero. */
10014 if (const_op
10015 && (code == EQ || code == NE || code == GE || code == GEU
10016 || code == LT || code == LTU)
10017 && mode_width <= HOST_BITS_PER_WIDE_INT
10018 && exact_log2 (const_op) >= 0
10019 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10021 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10022 op1 = const0_rtx, const_op = 0;
10025 /* Similarly, if we are comparing a value known to be either -1 or
10026 0 with -1, change it to the opposite comparison against zero. */
10028 if (const_op == -1
10029 && (code == EQ || code == NE || code == GT || code == LE
10030 || code == GEU || code == LTU)
10031 && num_sign_bit_copies (op0, mode) == mode_width)
10033 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10034 op1 = const0_rtx, const_op = 0;
10037 /* Do some canonicalizations based on the comparison code. We prefer
10038 comparisons against zero and then prefer equality comparisons.
10039 If we can reduce the size of a constant, we will do that too. */
10041 switch (code)
10043 case LT:
10044 /* < C is equivalent to <= (C - 1) */
10045 if (const_op > 0)
10047 const_op -= 1;
10048 op1 = GEN_INT (const_op);
10049 code = LE;
10050 /* ... fall through to LE case below. */
10052 else
10053 break;
10055 case LE:
10056 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10057 if (const_op < 0)
10059 const_op += 1;
10060 op1 = GEN_INT (const_op);
10061 code = LT;
10064 /* If we are doing a <= 0 comparison on a value known to have
10065 a zero sign bit, we can replace this with == 0. */
10066 else if (const_op == 0
10067 && mode_width <= HOST_BITS_PER_WIDE_INT
10068 && (nonzero_bits (op0, mode)
10069 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10070 code = EQ;
10071 break;
10073 case GE:
10074 /* >= C is equivalent to > (C - 1). */
10075 if (const_op > 0)
10077 const_op -= 1;
10078 op1 = GEN_INT (const_op);
10079 code = GT;
10080 /* ... fall through to GT below. */
10082 else
10083 break;
10085 case GT:
10086 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10087 if (const_op < 0)
10089 const_op += 1;
10090 op1 = GEN_INT (const_op);
10091 code = GE;
10094 /* If we are doing a > 0 comparison on a value known to have
10095 a zero sign bit, we can replace this with != 0. */
10096 else if (const_op == 0
10097 && mode_width <= HOST_BITS_PER_WIDE_INT
10098 && (nonzero_bits (op0, mode)
10099 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10100 code = NE;
10101 break;
10103 case LTU:
10104 /* < C is equivalent to <= (C - 1). */
10105 if (const_op > 0)
10107 const_op -= 1;
10108 op1 = GEN_INT (const_op);
10109 code = LEU;
10110 /* ... fall through ... */
10113 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10114 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10115 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10117 const_op = 0, op1 = const0_rtx;
10118 code = GE;
10119 break;
10121 else
10122 break;
10124 case LEU:
10125 /* unsigned <= 0 is equivalent to == 0 */
10126 if (const_op == 0)
10127 code = EQ;
10129 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10130 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10131 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10133 const_op = 0, op1 = const0_rtx;
10134 code = GE;
10136 break;
10138 case GEU:
10139 /* >= C is equivalent to < (C - 1). */
10140 if (const_op > 1)
10142 const_op -= 1;
10143 op1 = GEN_INT (const_op);
10144 code = GTU;
10145 /* ... fall through ... */
10148 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10149 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10150 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10152 const_op = 0, op1 = const0_rtx;
10153 code = LT;
10154 break;
10156 else
10157 break;
10159 case GTU:
10160 /* unsigned > 0 is equivalent to != 0 */
10161 if (const_op == 0)
10162 code = NE;
10164 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10165 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10166 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10168 const_op = 0, op1 = const0_rtx;
10169 code = LT;
10171 break;
10173 default:
10174 break;
10177 /* Compute some predicates to simplify code below. */
10179 equality_comparison_p = (code == EQ || code == NE);
10180 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10181 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10182 || code == GEU);
10184 /* If this is a sign bit comparison and we can do arithmetic in
10185 MODE, say that we will only be needing the sign bit of OP0. */
10186 if (sign_bit_comparison_p
10187 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10188 op0 = force_to_mode (op0, mode,
10189 ((HOST_WIDE_INT) 1
10190 << (GET_MODE_BITSIZE (mode) - 1)),
10191 NULL_RTX, 0);
10193 /* Now try cases based on the opcode of OP0. If none of the cases
10194 does a "continue", we exit this loop immediately after the
10195 switch. */
10197 switch (GET_CODE (op0))
10199 case ZERO_EXTRACT:
10200 /* If we are extracting a single bit from a variable position in
10201 a constant that has only a single bit set and are comparing it
10202 with zero, we can convert this into an equality comparison
10203 between the position and the location of the single bit. */
10205 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10206 && XEXP (op0, 1) == const1_rtx
10207 && equality_comparison_p && const_op == 0
10208 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10210 if (BITS_BIG_ENDIAN)
10212 enum machine_mode new_mode
10213 = mode_for_extraction (EP_extzv, 1);
10214 if (new_mode == MAX_MACHINE_MODE)
10215 i = BITS_PER_WORD - 1 - i;
10216 else
10218 mode = new_mode;
10219 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10223 op0 = XEXP (op0, 2);
10224 op1 = GEN_INT (i);
10225 const_op = i;
10227 /* Result is nonzero iff shift count is equal to I. */
10228 code = reverse_condition (code);
10229 continue;
10232 /* ... fall through ... */
10234 case SIGN_EXTRACT:
10235 tem = expand_compound_operation (op0);
10236 if (tem != op0)
10238 op0 = tem;
10239 continue;
10241 break;
10243 case NOT:
10244 /* If testing for equality, we can take the NOT of the constant. */
10245 if (equality_comparison_p
10246 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10248 op0 = XEXP (op0, 0);
10249 op1 = tem;
10250 continue;
10253 /* If just looking at the sign bit, reverse the sense of the
10254 comparison. */
10255 if (sign_bit_comparison_p)
10257 op0 = XEXP (op0, 0);
10258 code = (code == GE ? LT : GE);
10259 continue;
10261 break;
10263 case NEG:
10264 /* If testing for equality, we can take the NEG of the constant. */
10265 if (equality_comparison_p
10266 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10268 op0 = XEXP (op0, 0);
10269 op1 = tem;
10270 continue;
10273 /* The remaining cases only apply to comparisons with zero. */
10274 if (const_op != 0)
10275 break;
10277 /* When X is ABS or is known positive,
10278 (neg X) is < 0 if and only if X != 0. */
10280 if (sign_bit_comparison_p
10281 && (GET_CODE (XEXP (op0, 0)) == ABS
10282 || (mode_width <= HOST_BITS_PER_WIDE_INT
10283 && (nonzero_bits (XEXP (op0, 0), mode)
10284 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10286 op0 = XEXP (op0, 0);
10287 code = (code == LT ? NE : EQ);
10288 continue;
10291 /* If we have NEG of something whose two high-order bits are the
10292 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10293 if (num_sign_bit_copies (op0, mode) >= 2)
10295 op0 = XEXP (op0, 0);
10296 code = swap_condition (code);
10297 continue;
10299 break;
10301 case ROTATE:
10302 /* If we are testing equality and our count is a constant, we
10303 can perform the inverse operation on our RHS. */
10304 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10305 && (tem = simplify_binary_operation (ROTATERT, mode,
10306 op1, XEXP (op0, 1))) != 0)
10308 op0 = XEXP (op0, 0);
10309 op1 = tem;
10310 continue;
10313 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10314 a particular bit. Convert it to an AND of a constant of that
10315 bit. This will be converted into a ZERO_EXTRACT. */
10316 if (const_op == 0 && sign_bit_comparison_p
10317 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10318 && mode_width <= HOST_BITS_PER_WIDE_INT)
10320 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10321 ((HOST_WIDE_INT) 1
10322 << (mode_width - 1
10323 - INTVAL (XEXP (op0, 1)))));
10324 code = (code == LT ? NE : EQ);
10325 continue;
10328 /* Fall through. */
10330 case ABS:
10331 /* ABS is ignorable inside an equality comparison with zero. */
10332 if (const_op == 0 && equality_comparison_p)
10334 op0 = XEXP (op0, 0);
10335 continue;
10337 break;
10339 case SIGN_EXTEND:
10340 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10341 to (compare FOO CONST) if CONST fits in FOO's mode and we
10342 are either testing inequality or have an unsigned comparison
10343 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10344 if (! unsigned_comparison_p
10345 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10346 <= HOST_BITS_PER_WIDE_INT)
10347 && ((unsigned HOST_WIDE_INT) const_op
10348 < (((unsigned HOST_WIDE_INT) 1
10349 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10351 op0 = XEXP (op0, 0);
10352 continue;
10354 break;
10356 case SUBREG:
10357 /* Check for the case where we are comparing A - C1 with C2,
10358 both constants are smaller than 1/2 the maximum positive
10359 value in MODE, and the comparison is equality or unsigned.
10360 In that case, if A is either zero-extended to MODE or has
10361 sufficient sign bits so that the high-order bit in MODE
10362 is a copy of the sign in the inner mode, we can prove that it is
10363 safe to do the operation in the wider mode. This simplifies
10364 many range checks. */
10366 if (mode_width <= HOST_BITS_PER_WIDE_INT
10367 && subreg_lowpart_p (op0)
10368 && GET_CODE (SUBREG_REG (op0)) == PLUS
10369 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10370 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10371 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10372 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10373 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10374 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10375 GET_MODE (SUBREG_REG (op0)))
10376 & ~GET_MODE_MASK (mode))
10377 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10378 GET_MODE (SUBREG_REG (op0)))
10379 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10380 - GET_MODE_BITSIZE (mode)))))
10382 op0 = SUBREG_REG (op0);
10383 continue;
10386 /* If the inner mode is narrower and we are extracting the low part,
10387 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10388 if (subreg_lowpart_p (op0)
10389 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10390 /* Fall through */ ;
10391 else
10392 break;
10394 /* ... fall through ... */
10396 case ZERO_EXTEND:
10397 if ((unsigned_comparison_p || equality_comparison_p)
10398 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10399 <= HOST_BITS_PER_WIDE_INT)
10400 && ((unsigned HOST_WIDE_INT) const_op
10401 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10403 op0 = XEXP (op0, 0);
10404 continue;
10406 break;
10408 case PLUS:
10409 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10410 this for equality comparisons due to pathological cases involving
10411 overflows. */
10412 if (equality_comparison_p
10413 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10414 op1, XEXP (op0, 1))))
10416 op0 = XEXP (op0, 0);
10417 op1 = tem;
10418 continue;
10421 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10422 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10423 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10425 op0 = XEXP (XEXP (op0, 0), 0);
10426 code = (code == LT ? EQ : NE);
10427 continue;
10429 break;
10431 case MINUS:
10432 /* We used to optimize signed comparisons against zero, but that
10433 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10434 arrive here as equality comparisons, or (GEU, LTU) are
10435 optimized away. No need to special-case them. */
10437 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10438 (eq B (minus A C)), whichever simplifies. We can only do
10439 this for equality comparisons due to pathological cases involving
10440 overflows. */
10441 if (equality_comparison_p
10442 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10443 XEXP (op0, 1), op1)))
10445 op0 = XEXP (op0, 0);
10446 op1 = tem;
10447 continue;
10450 if (equality_comparison_p
10451 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10452 XEXP (op0, 0), op1)))
10454 op0 = XEXP (op0, 1);
10455 op1 = tem;
10456 continue;
10459 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10460 of bits in X minus 1, is one iff X > 0. */
10461 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10462 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10463 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10464 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10466 op0 = XEXP (op0, 1);
10467 code = (code == GE ? LE : GT);
10468 continue;
10470 break;
10472 case XOR:
10473 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10474 if C is zero or B is a constant. */
10475 if (equality_comparison_p
10476 && 0 != (tem = simplify_binary_operation (XOR, mode,
10477 XEXP (op0, 1), op1)))
10479 op0 = XEXP (op0, 0);
10480 op1 = tem;
10481 continue;
10483 break;
10485 case EQ: case NE:
10486 case UNEQ: case LTGT:
10487 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10488 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10489 case UNORDERED: case ORDERED:
10490 /* We can't do anything if OP0 is a condition code value, rather
10491 than an actual data value. */
10492 if (const_op != 0
10493 #ifdef HAVE_cc0
10494 || XEXP (op0, 0) == cc0_rtx
10495 #endif
10496 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10497 break;
10499 /* Get the two operands being compared. */
10500 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10501 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10502 else
10503 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10505 /* Check for the cases where we simply want the result of the
10506 earlier test or the opposite of that result. */
10507 if (code == NE || code == EQ
10508 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10509 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10510 && (STORE_FLAG_VALUE
10511 & (((HOST_WIDE_INT) 1
10512 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10513 && (code == LT || code == GE)))
10515 enum rtx_code new_code;
10516 if (code == LT || code == NE)
10517 new_code = GET_CODE (op0);
10518 else
10519 new_code = combine_reversed_comparison_code (op0);
10521 if (new_code != UNKNOWN)
10523 code = new_code;
10524 op0 = tem;
10525 op1 = tem1;
10526 continue;
10529 break;
10531 case IOR:
10532 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10533 iff X <= 0. */
10534 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10535 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10536 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10538 op0 = XEXP (op0, 1);
10539 code = (code == GE ? GT : LE);
10540 continue;
10542 break;
10544 case AND:
10545 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10546 will be converted to a ZERO_EXTRACT later. */
10547 if (const_op == 0 && equality_comparison_p
10548 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10549 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10551 op0 = simplify_and_const_int
10552 (op0, mode, gen_rtx_LSHIFTRT (mode,
10553 XEXP (op0, 1),
10554 XEXP (XEXP (op0, 0), 1)),
10555 (HOST_WIDE_INT) 1);
10556 continue;
10559 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10560 zero and X is a comparison and C1 and C2 describe only bits set
10561 in STORE_FLAG_VALUE, we can compare with X. */
10562 if (const_op == 0 && equality_comparison_p
10563 && mode_width <= HOST_BITS_PER_WIDE_INT
10564 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10565 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10566 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10567 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10568 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10570 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10571 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10572 if ((~STORE_FLAG_VALUE & mask) == 0
10573 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10574 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10575 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10577 op0 = XEXP (XEXP (op0, 0), 0);
10578 continue;
10582 /* If we are doing an equality comparison of an AND of a bit equal
10583 to the sign bit, replace this with a LT or GE comparison of
10584 the underlying value. */
10585 if (equality_comparison_p
10586 && const_op == 0
10587 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10588 && mode_width <= HOST_BITS_PER_WIDE_INT
10589 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10590 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10592 op0 = XEXP (op0, 0);
10593 code = (code == EQ ? GE : LT);
10594 continue;
10597 /* If this AND operation is really a ZERO_EXTEND from a narrower
10598 mode, the constant fits within that mode, and this is either an
10599 equality or unsigned comparison, try to do this comparison in
10600 the narrower mode. */
10601 if ((equality_comparison_p || unsigned_comparison_p)
10602 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10603 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10604 & GET_MODE_MASK (mode))
10605 + 1)) >= 0
10606 && const_op >> i == 0
10607 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10609 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10610 continue;
10613 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10614 in both M1 and M2 and the SUBREG is either paradoxical or
10615 represents the low part, permute the SUBREG and the AND and
10616 try again. */
10617 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10618 && (0
10619 #ifdef WORD_REGISTER_OPERATIONS
10620 || ((mode_width
10621 > (GET_MODE_BITSIZE
10622 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10623 && mode_width <= BITS_PER_WORD)
10624 #endif
10625 || ((mode_width
10626 <= (GET_MODE_BITSIZE
10627 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10628 && subreg_lowpart_p (XEXP (op0, 0))))
10629 #ifndef WORD_REGISTER_OPERATIONS
10630 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10631 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10632 As originally written the upper bits have a defined value
10633 due to the AND operation. However, if we commute the AND
10634 inside the SUBREG then they no longer have defined values
10635 and the meaning of the code has been changed. */
10636 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10637 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10638 #endif
10639 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10640 && mode_width <= HOST_BITS_PER_WIDE_INT
10641 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10642 <= HOST_BITS_PER_WIDE_INT)
10643 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10644 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10645 & INTVAL (XEXP (op0, 1)))
10646 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10647 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10648 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10652 = gen_lowpart_for_combine
10653 (mode,
10654 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10655 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10656 continue;
10659 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10660 (eq (and (lshiftrt X) 1) 0). */
10661 if (const_op == 0 && equality_comparison_p
10662 && XEXP (op0, 1) == const1_rtx
10663 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10664 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10666 op0 = simplify_and_const_int
10667 (op0, mode,
10668 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10669 XEXP (XEXP (op0, 0), 1)),
10670 (HOST_WIDE_INT) 1);
10671 code = (code == NE ? EQ : NE);
10672 continue;
10674 break;
10676 case ASHIFT:
10677 /* If we have (compare (ashift FOO N) (const_int C)) and
10678 the high order N bits of FOO (N+1 if an inequality comparison)
10679 are known to be zero, we can do this by comparing FOO with C
10680 shifted right N bits so long as the low-order N bits of C are
10681 zero. */
10682 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10683 && INTVAL (XEXP (op0, 1)) >= 0
10684 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10685 < HOST_BITS_PER_WIDE_INT)
10686 && ((const_op
10687 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10688 && mode_width <= HOST_BITS_PER_WIDE_INT
10689 && (nonzero_bits (XEXP (op0, 0), mode)
10690 & ~(mask >> (INTVAL (XEXP (op0, 1))
10691 + ! equality_comparison_p))) == 0)
10693 /* We must perform a logical shift, not an arithmetic one,
10694 as we want the top N bits of C to be zero. */
10695 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10697 temp >>= INTVAL (XEXP (op0, 1));
10698 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10699 op0 = XEXP (op0, 0);
10700 continue;
10703 /* If we are doing a sign bit comparison, it means we are testing
10704 a particular bit. Convert it to the appropriate AND. */
10705 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10706 && mode_width <= HOST_BITS_PER_WIDE_INT)
10708 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10709 ((HOST_WIDE_INT) 1
10710 << (mode_width - 1
10711 - INTVAL (XEXP (op0, 1)))));
10712 code = (code == LT ? NE : EQ);
10713 continue;
10716 /* If this an equality comparison with zero and we are shifting
10717 the low bit to the sign bit, we can convert this to an AND of the
10718 low-order bit. */
10719 if (const_op == 0 && equality_comparison_p
10720 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10721 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10723 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10724 (HOST_WIDE_INT) 1);
10725 continue;
10727 break;
10729 case ASHIFTRT:
10730 /* If this is an equality comparison with zero, we can do this
10731 as a logical shift, which might be much simpler. */
10732 if (equality_comparison_p && const_op == 0
10733 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10735 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10736 XEXP (op0, 0),
10737 INTVAL (XEXP (op0, 1)));
10738 continue;
10741 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10742 do the comparison in a narrower mode. */
10743 if (! unsigned_comparison_p
10744 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10745 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10746 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10747 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10748 MODE_INT, 1)) != BLKmode
10749 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10750 || ((unsigned HOST_WIDE_INT) -const_op
10751 <= GET_MODE_MASK (tmode))))
10753 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10754 continue;
10757 /* Likewise if OP0 is a PLUS of a sign extension with a
10758 constant, which is usually represented with the PLUS
10759 between the shifts. */
10760 if (! unsigned_comparison_p
10761 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10762 && GET_CODE (XEXP (op0, 0)) == PLUS
10763 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10764 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10765 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10766 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10767 MODE_INT, 1)) != BLKmode
10768 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10769 || ((unsigned HOST_WIDE_INT) -const_op
10770 <= GET_MODE_MASK (tmode))))
10772 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10773 rtx add_const = XEXP (XEXP (op0, 0), 1);
10774 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10775 XEXP (op0, 1));
10777 op0 = gen_binary (PLUS, tmode,
10778 gen_lowpart_for_combine (tmode, inner),
10779 new_const);
10780 continue;
10783 /* ... fall through ... */
10784 case LSHIFTRT:
10785 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10786 the low order N bits of FOO are known to be zero, we can do this
10787 by comparing FOO with C shifted left N bits so long as no
10788 overflow occurs. */
10789 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10790 && INTVAL (XEXP (op0, 1)) >= 0
10791 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10792 && mode_width <= HOST_BITS_PER_WIDE_INT
10793 && (nonzero_bits (XEXP (op0, 0), mode)
10794 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10795 && (const_op == 0
10796 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10797 < mode_width)))
10799 const_op <<= INTVAL (XEXP (op0, 1));
10800 op1 = GEN_INT (const_op);
10801 op0 = XEXP (op0, 0);
10802 continue;
10805 /* If we are using this shift to extract just the sign bit, we
10806 can replace this with an LT or GE comparison. */
10807 if (const_op == 0
10808 && (equality_comparison_p || sign_bit_comparison_p)
10809 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10810 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10812 op0 = XEXP (op0, 0);
10813 code = (code == NE || code == GT ? LT : GE);
10814 continue;
10816 break;
10818 default:
10819 break;
10822 break;
10825 /* Now make any compound operations involved in this comparison. Then,
10826 check for an outmost SUBREG on OP0 that is not doing anything or is
10827 paradoxical. The latter case can only occur when it is known that the
10828 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10829 We can never remove a SUBREG for a non-equality comparison because the
10830 sign bit is in a different place in the underlying object. */
10832 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10833 op1 = make_compound_operation (op1, SET);
10835 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10836 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10837 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10838 && (code == NE || code == EQ)
10839 && ((GET_MODE_SIZE (GET_MODE (op0))
10840 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10842 op0 = SUBREG_REG (op0);
10843 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10846 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10847 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10848 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10849 && (code == NE || code == EQ)
10850 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10851 <= HOST_BITS_PER_WIDE_INT)
10852 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10853 & ~GET_MODE_MASK (GET_MODE (op0))) == 0
10854 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10855 op1),
10856 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10857 & ~GET_MODE_MASK (GET_MODE (op0))) == 0))
10858 op0 = SUBREG_REG (op0), op1 = tem;
10860 /* We now do the opposite procedure: Some machines don't have compare
10861 insns in all modes. If OP0's mode is an integer mode smaller than a
10862 word and we can't do a compare in that mode, see if there is a larger
10863 mode for which we can do the compare. There are a number of cases in
10864 which we can use the wider mode. */
10866 mode = GET_MODE (op0);
10867 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10868 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10869 && ! have_insn_for (COMPARE, mode))
10870 for (tmode = GET_MODE_WIDER_MODE (mode);
10871 (tmode != VOIDmode
10872 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10873 tmode = GET_MODE_WIDER_MODE (tmode))
10874 if (have_insn_for (COMPARE, tmode))
10876 /* If the only nonzero bits in OP0 and OP1 are those in the
10877 narrower mode and this is an equality or unsigned comparison,
10878 we can use the wider mode. Similarly for sign-extended
10879 values, in which case it is true for all comparisons. */
10880 if (((code == EQ || code == NE
10881 || code == GEU || code == GTU || code == LEU || code == LTU)
10882 && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
10883 && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
10884 || ((num_sign_bit_copies (op0, tmode)
10885 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10886 && (num_sign_bit_copies (op1, tmode)
10887 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10889 /* If OP0 is an AND and we don't have an AND in MODE either,
10890 make a new AND in the proper mode. */
10891 if (GET_CODE (op0) == AND
10892 && !have_insn_for (AND, mode))
10893 op0 = gen_binary (AND, tmode,
10894 gen_lowpart_for_combine (tmode,
10895 XEXP (op0, 0)),
10896 gen_lowpart_for_combine (tmode,
10897 XEXP (op0, 1)));
10899 op0 = gen_lowpart_for_combine (tmode, op0);
10900 op1 = gen_lowpart_for_combine (tmode, op1);
10901 break;
10904 /* If this is a test for negative, we can make an explicit
10905 test of the sign bit. */
10907 if (op1 == const0_rtx && (code == LT || code == GE)
10908 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10910 op0 = gen_binary (AND, tmode,
10911 gen_lowpart_for_combine (tmode, op0),
10912 GEN_INT ((HOST_WIDE_INT) 1
10913 << (GET_MODE_BITSIZE (mode) - 1)));
10914 code = (code == LT) ? NE : EQ;
10915 break;
10919 #ifdef CANONICALIZE_COMPARISON
10920 /* If this machine only supports a subset of valid comparisons, see if we
10921 can convert an unsupported one into a supported one. */
10922 CANONICALIZE_COMPARISON (code, op0, op1);
10923 #endif
10925 *pop0 = op0;
10926 *pop1 = op1;
10928 return code;
10931 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10932 searching backward. */
10933 static enum rtx_code
10934 combine_reversed_comparison_code (exp)
10935 rtx exp;
10937 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10938 rtx x;
10940 if (code1 != UNKNOWN
10941 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10942 return code1;
10943 /* Otherwise try and find where the condition codes were last set and
10944 use that. */
10945 x = get_last_value (XEXP (exp, 0));
10946 if (!x || GET_CODE (x) != COMPARE)
10947 return UNKNOWN;
10948 return reversed_comparison_code_parts (GET_CODE (exp),
10949 XEXP (x, 0), XEXP (x, 1), NULL);
10951 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10952 Return NULL_RTX in case we fail to do the reversal. */
10953 static rtx
10954 reversed_comparison (exp, mode, op0, op1)
10955 rtx exp, op0, op1;
10956 enum machine_mode mode;
10958 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10959 if (reversed_code == UNKNOWN)
10960 return NULL_RTX;
10961 else
10962 return gen_binary (reversed_code, mode, op0, op1);
10965 /* Utility function for following routine. Called when X is part of a value
10966 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10967 for each register mentioned. Similar to mention_regs in cse.c */
10969 static void
10970 update_table_tick (x)
10971 rtx x;
10973 enum rtx_code code = GET_CODE (x);
10974 const char *fmt = GET_RTX_FORMAT (code);
10975 int i;
10977 if (code == REG)
10979 unsigned int regno = REGNO (x);
10980 unsigned int endregno
10981 = regno + (regno < FIRST_PSEUDO_REGISTER
10982 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10983 unsigned int r;
10985 for (r = regno; r < endregno; r++)
10986 reg_last_set_table_tick[r] = label_tick;
10988 return;
10991 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10992 /* Note that we can't have an "E" in values stored; see
10993 get_last_value_validate. */
10994 if (fmt[i] == 'e')
10995 update_table_tick (XEXP (x, i));
10998 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10999 are saying that the register is clobbered and we no longer know its
11000 value. If INSN is zero, don't update reg_last_set; this is only permitted
11001 with VALUE also zero and is used to invalidate the register. */
11003 static void
11004 record_value_for_reg (reg, insn, value)
11005 rtx reg;
11006 rtx insn;
11007 rtx value;
11009 unsigned int regno = REGNO (reg);
11010 unsigned int endregno
11011 = regno + (regno < FIRST_PSEUDO_REGISTER
11012 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11013 unsigned int i;
11015 /* If VALUE contains REG and we have a previous value for REG, substitute
11016 the previous value. */
11017 if (value && insn && reg_overlap_mentioned_p (reg, value))
11019 rtx tem;
11021 /* Set things up so get_last_value is allowed to see anything set up to
11022 our insn. */
11023 subst_low_cuid = INSN_CUID (insn);
11024 tem = get_last_value (reg);
11026 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11027 it isn't going to be useful and will take a lot of time to process,
11028 so just use the CLOBBER. */
11030 if (tem)
11032 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11033 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11034 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11035 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11036 tem = XEXP (tem, 0);
11038 value = replace_rtx (copy_rtx (value), reg, tem);
11042 /* For each register modified, show we don't know its value, that
11043 we don't know about its bitwise content, that its value has been
11044 updated, and that we don't know the location of the death of the
11045 register. */
11046 for (i = regno; i < endregno; i++)
11048 if (insn)
11049 reg_last_set[i] = insn;
11051 reg_last_set_value[i] = 0;
11052 reg_last_set_mode[i] = 0;
11053 reg_last_set_nonzero_bits[i] = 0;
11054 reg_last_set_sign_bit_copies[i] = 0;
11055 reg_last_death[i] = 0;
11058 /* Mark registers that are being referenced in this value. */
11059 if (value)
11060 update_table_tick (value);
11062 /* Now update the status of each register being set.
11063 If someone is using this register in this block, set this register
11064 to invalid since we will get confused between the two lives in this
11065 basic block. This makes using this register always invalid. In cse, we
11066 scan the table to invalidate all entries using this register, but this
11067 is too much work for us. */
11069 for (i = regno; i < endregno; i++)
11071 reg_last_set_label[i] = label_tick;
11072 if (value && reg_last_set_table_tick[i] == label_tick)
11073 reg_last_set_invalid[i] = 1;
11074 else
11075 reg_last_set_invalid[i] = 0;
11078 /* The value being assigned might refer to X (like in "x++;"). In that
11079 case, we must replace it with (clobber (const_int 0)) to prevent
11080 infinite loops. */
11081 if (value && ! get_last_value_validate (&value, insn,
11082 reg_last_set_label[regno], 0))
11084 value = copy_rtx (value);
11085 if (! get_last_value_validate (&value, insn,
11086 reg_last_set_label[regno], 1))
11087 value = 0;
11090 /* For the main register being modified, update the value, the mode, the
11091 nonzero bits, and the number of sign bit copies. */
11093 reg_last_set_value[regno] = value;
11095 if (value)
11097 subst_low_cuid = INSN_CUID (insn);
11098 reg_last_set_mode[regno] = GET_MODE (reg);
11099 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11100 reg_last_set_sign_bit_copies[regno]
11101 = num_sign_bit_copies (value, GET_MODE (reg));
11105 /* Called via note_stores from record_dead_and_set_regs to handle one
11106 SET or CLOBBER in an insn. DATA is the instruction in which the
11107 set is occurring. */
11109 static void
11110 record_dead_and_set_regs_1 (dest, setter, data)
11111 rtx dest, setter;
11112 void *data;
11114 rtx record_dead_insn = (rtx) data;
11116 if (GET_CODE (dest) == SUBREG)
11117 dest = SUBREG_REG (dest);
11119 if (GET_CODE (dest) == REG)
11121 /* If we are setting the whole register, we know its value. Otherwise
11122 show that we don't know the value. We can handle SUBREG in
11123 some cases. */
11124 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11125 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11126 else if (GET_CODE (setter) == SET
11127 && GET_CODE (SET_DEST (setter)) == SUBREG
11128 && SUBREG_REG (SET_DEST (setter)) == dest
11129 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11130 && subreg_lowpart_p (SET_DEST (setter)))
11131 record_value_for_reg (dest, record_dead_insn,
11132 gen_lowpart_for_combine (GET_MODE (dest),
11133 SET_SRC (setter)));
11134 else
11135 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11137 else if (GET_CODE (dest) == MEM
11138 /* Ignore pushes, they clobber nothing. */
11139 && ! push_operand (dest, GET_MODE (dest)))
11140 mem_last_set = INSN_CUID (record_dead_insn);
11143 /* Update the records of when each REG was most recently set or killed
11144 for the things done by INSN. This is the last thing done in processing
11145 INSN in the combiner loop.
11147 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11148 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11149 and also the similar information mem_last_set (which insn most recently
11150 modified memory) and last_call_cuid (which insn was the most recent
11151 subroutine call). */
11153 static void
11154 record_dead_and_set_regs (insn)
11155 rtx insn;
11157 rtx link;
11158 unsigned int i;
11160 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11162 if (REG_NOTE_KIND (link) == REG_DEAD
11163 && GET_CODE (XEXP (link, 0)) == REG)
11165 unsigned int regno = REGNO (XEXP (link, 0));
11166 unsigned int endregno
11167 = regno + (regno < FIRST_PSEUDO_REGISTER
11168 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11169 : 1);
11171 for (i = regno; i < endregno; i++)
11172 reg_last_death[i] = insn;
11174 else if (REG_NOTE_KIND (link) == REG_INC)
11175 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11178 if (GET_CODE (insn) == CALL_INSN)
11180 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11181 if (call_used_regs[i])
11183 reg_last_set_value[i] = 0;
11184 reg_last_set_mode[i] = 0;
11185 reg_last_set_nonzero_bits[i] = 0;
11186 reg_last_set_sign_bit_copies[i] = 0;
11187 reg_last_death[i] = 0;
11190 last_call_cuid = mem_last_set = INSN_CUID (insn);
11193 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11196 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11197 register present in the SUBREG, so for each such SUBREG go back and
11198 adjust nonzero and sign bit information of the registers that are
11199 known to have some zero/sign bits set.
11201 This is needed because when combine blows the SUBREGs away, the
11202 information on zero/sign bits is lost and further combines can be
11203 missed because of that. */
11205 static void
11206 record_promoted_value (insn, subreg)
11207 rtx insn;
11208 rtx subreg;
11210 rtx links, set;
11211 unsigned int regno = REGNO (SUBREG_REG (subreg));
11212 enum machine_mode mode = GET_MODE (subreg);
11214 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11215 return;
11217 for (links = LOG_LINKS (insn); links;)
11219 insn = XEXP (links, 0);
11220 set = single_set (insn);
11222 if (! set || GET_CODE (SET_DEST (set)) != REG
11223 || REGNO (SET_DEST (set)) != regno
11224 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11226 links = XEXP (links, 1);
11227 continue;
11230 if (reg_last_set[regno] == insn)
11232 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11233 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11236 if (GET_CODE (SET_SRC (set)) == REG)
11238 regno = REGNO (SET_SRC (set));
11239 links = LOG_LINKS (insn);
11241 else
11242 break;
11246 /* Scan X for promoted SUBREGs. For each one found,
11247 note what it implies to the registers used in it. */
11249 static void
11250 check_promoted_subreg (insn, x)
11251 rtx insn;
11252 rtx x;
11254 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11255 && GET_CODE (SUBREG_REG (x)) == REG)
11256 record_promoted_value (insn, x);
11257 else
11259 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11260 int i, j;
11262 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11263 switch (format[i])
11265 case 'e':
11266 check_promoted_subreg (insn, XEXP (x, i));
11267 break;
11268 case 'V':
11269 case 'E':
11270 if (XVEC (x, i) != 0)
11271 for (j = 0; j < XVECLEN (x, i); j++)
11272 check_promoted_subreg (insn, XVECEXP (x, i, j));
11273 break;
11278 /* Utility routine for the following function. Verify that all the registers
11279 mentioned in *LOC are valid when *LOC was part of a value set when
11280 label_tick == TICK. Return 0 if some are not.
11282 If REPLACE is non-zero, replace the invalid reference with
11283 (clobber (const_int 0)) and return 1. This replacement is useful because
11284 we often can get useful information about the form of a value (e.g., if
11285 it was produced by a shift that always produces -1 or 0) even though
11286 we don't know exactly what registers it was produced from. */
11288 static int
11289 get_last_value_validate (loc, insn, tick, replace)
11290 rtx *loc;
11291 rtx insn;
11292 int tick;
11293 int replace;
11295 rtx x = *loc;
11296 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11297 int len = GET_RTX_LENGTH (GET_CODE (x));
11298 int i;
11300 if (GET_CODE (x) == REG)
11302 unsigned int regno = REGNO (x);
11303 unsigned int endregno
11304 = regno + (regno < FIRST_PSEUDO_REGISTER
11305 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11306 unsigned int j;
11308 for (j = regno; j < endregno; j++)
11309 if (reg_last_set_invalid[j]
11310 /* If this is a pseudo-register that was only set once and not
11311 live at the beginning of the function, it is always valid. */
11312 || (! (regno >= FIRST_PSEUDO_REGISTER
11313 && REG_N_SETS (regno) == 1
11314 && (! REGNO_REG_SET_P
11315 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11316 && reg_last_set_label[j] > tick))
11318 if (replace)
11319 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11320 return replace;
11323 return 1;
11325 /* If this is a memory reference, make sure that there were
11326 no stores after it that might have clobbered the value. We don't
11327 have alias info, so we assume any store invalidates it. */
11328 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11329 && INSN_CUID (insn) <= mem_last_set)
11331 if (replace)
11332 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11333 return replace;
11336 for (i = 0; i < len; i++)
11337 if ((fmt[i] == 'e'
11338 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11339 /* Don't bother with these. They shouldn't occur anyway. */
11340 || fmt[i] == 'E')
11341 return 0;
11343 /* If we haven't found a reason for it to be invalid, it is valid. */
11344 return 1;
11347 /* Get the last value assigned to X, if known. Some registers
11348 in the value may be replaced with (clobber (const_int 0)) if their value
11349 is known longer known reliably. */
11351 static rtx
11352 get_last_value (x)
11353 rtx x;
11355 unsigned int regno;
11356 rtx value;
11358 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11359 then convert it to the desired mode. If this is a paradoxical SUBREG,
11360 we cannot predict what values the "extra" bits might have. */
11361 if (GET_CODE (x) == SUBREG
11362 && subreg_lowpart_p (x)
11363 && (GET_MODE_SIZE (GET_MODE (x))
11364 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11365 && (value = get_last_value (SUBREG_REG (x))) != 0)
11366 return gen_lowpart_for_combine (GET_MODE (x), value);
11368 if (GET_CODE (x) != REG)
11369 return 0;
11371 regno = REGNO (x);
11372 value = reg_last_set_value[regno];
11374 /* If we don't have a value, or if it isn't for this basic block and
11375 it's either a hard register, set more than once, or it's a live
11376 at the beginning of the function, return 0.
11378 Because if it's not live at the beginnning of the function then the reg
11379 is always set before being used (is never used without being set).
11380 And, if it's set only once, and it's always set before use, then all
11381 uses must have the same last value, even if it's not from this basic
11382 block. */
11384 if (value == 0
11385 || (reg_last_set_label[regno] != label_tick
11386 && (regno < FIRST_PSEUDO_REGISTER
11387 || REG_N_SETS (regno) != 1
11388 || (REGNO_REG_SET_P
11389 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11390 return 0;
11392 /* If the value was set in a later insn than the ones we are processing,
11393 we can't use it even if the register was only set once. */
11394 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11395 return 0;
11397 /* If the value has all its registers valid, return it. */
11398 if (get_last_value_validate (&value, reg_last_set[regno],
11399 reg_last_set_label[regno], 0))
11400 return value;
11402 /* Otherwise, make a copy and replace any invalid register with
11403 (clobber (const_int 0)). If that fails for some reason, return 0. */
11405 value = copy_rtx (value);
11406 if (get_last_value_validate (&value, reg_last_set[regno],
11407 reg_last_set_label[regno], 1))
11408 return value;
11410 return 0;
11413 /* Return nonzero if expression X refers to a REG or to memory
11414 that is set in an instruction more recent than FROM_CUID. */
11416 static int
11417 use_crosses_set_p (x, from_cuid)
11418 rtx x;
11419 int from_cuid;
11421 const char *fmt;
11422 int i;
11423 enum rtx_code code = GET_CODE (x);
11425 if (code == REG)
11427 unsigned int regno = REGNO (x);
11428 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11429 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11431 #ifdef PUSH_ROUNDING
11432 /* Don't allow uses of the stack pointer to be moved,
11433 because we don't know whether the move crosses a push insn. */
11434 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11435 return 1;
11436 #endif
11437 for (; regno < endreg; regno++)
11438 if (reg_last_set[regno]
11439 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11440 return 1;
11441 return 0;
11444 if (code == MEM && mem_last_set > from_cuid)
11445 return 1;
11447 fmt = GET_RTX_FORMAT (code);
11449 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11451 if (fmt[i] == 'E')
11453 int j;
11454 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11455 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11456 return 1;
11458 else if (fmt[i] == 'e'
11459 && use_crosses_set_p (XEXP (x, i), from_cuid))
11460 return 1;
11462 return 0;
11465 /* Define three variables used for communication between the following
11466 routines. */
11468 static unsigned int reg_dead_regno, reg_dead_endregno;
11469 static int reg_dead_flag;
11471 /* Function called via note_stores from reg_dead_at_p.
11473 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11474 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11476 static void
11477 reg_dead_at_p_1 (dest, x, data)
11478 rtx dest;
11479 rtx x;
11480 void *data ATTRIBUTE_UNUSED;
11482 unsigned int regno, endregno;
11484 if (GET_CODE (dest) != REG)
11485 return;
11487 regno = REGNO (dest);
11488 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11489 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11491 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11492 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11495 /* Return non-zero if REG is known to be dead at INSN.
11497 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11498 referencing REG, it is dead. If we hit a SET referencing REG, it is
11499 live. Otherwise, see if it is live or dead at the start of the basic
11500 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11501 must be assumed to be always live. */
11503 static int
11504 reg_dead_at_p (reg, insn)
11505 rtx reg;
11506 rtx insn;
11508 int block;
11509 unsigned int i;
11511 /* Set variables for reg_dead_at_p_1. */
11512 reg_dead_regno = REGNO (reg);
11513 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11514 ? HARD_REGNO_NREGS (reg_dead_regno,
11515 GET_MODE (reg))
11516 : 1);
11518 reg_dead_flag = 0;
11520 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11521 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11523 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11524 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11525 return 0;
11528 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11529 beginning of function. */
11530 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11531 insn = prev_nonnote_insn (insn))
11533 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11534 if (reg_dead_flag)
11535 return reg_dead_flag == 1 ? 1 : 0;
11537 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11538 return 1;
11541 /* Get the basic block number that we were in. */
11542 if (insn == 0)
11543 block = 0;
11544 else
11546 for (block = 0; block < n_basic_blocks; block++)
11547 if (insn == BLOCK_HEAD (block))
11548 break;
11550 if (block == n_basic_blocks)
11551 return 0;
11554 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11555 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11556 return 0;
11558 return 1;
11561 /* Note hard registers in X that are used. This code is similar to
11562 that in flow.c, but much simpler since we don't care about pseudos. */
11564 static void
11565 mark_used_regs_combine (x)
11566 rtx x;
11568 RTX_CODE code = GET_CODE (x);
11569 unsigned int regno;
11570 int i;
11572 switch (code)
11574 case LABEL_REF:
11575 case SYMBOL_REF:
11576 case CONST_INT:
11577 case CONST:
11578 case CONST_DOUBLE:
11579 case PC:
11580 case ADDR_VEC:
11581 case ADDR_DIFF_VEC:
11582 case ASM_INPUT:
11583 #ifdef HAVE_cc0
11584 /* CC0 must die in the insn after it is set, so we don't need to take
11585 special note of it here. */
11586 case CC0:
11587 #endif
11588 return;
11590 case CLOBBER:
11591 /* If we are clobbering a MEM, mark any hard registers inside the
11592 address as used. */
11593 if (GET_CODE (XEXP (x, 0)) == MEM)
11594 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11595 return;
11597 case REG:
11598 regno = REGNO (x);
11599 /* A hard reg in a wide mode may really be multiple registers.
11600 If so, mark all of them just like the first. */
11601 if (regno < FIRST_PSEUDO_REGISTER)
11603 unsigned int endregno, r;
11605 /* None of this applies to the stack, frame or arg pointers */
11606 if (regno == STACK_POINTER_REGNUM
11607 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11608 || regno == HARD_FRAME_POINTER_REGNUM
11609 #endif
11610 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11611 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11612 #endif
11613 || regno == FRAME_POINTER_REGNUM)
11614 return;
11616 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11617 for (r = regno; r < endregno; r++)
11618 SET_HARD_REG_BIT (newpat_used_regs, r);
11620 return;
11622 case SET:
11624 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11625 the address. */
11626 rtx testreg = SET_DEST (x);
11628 while (GET_CODE (testreg) == SUBREG
11629 || GET_CODE (testreg) == ZERO_EXTRACT
11630 || GET_CODE (testreg) == SIGN_EXTRACT
11631 || GET_CODE (testreg) == STRICT_LOW_PART)
11632 testreg = XEXP (testreg, 0);
11634 if (GET_CODE (testreg) == MEM)
11635 mark_used_regs_combine (XEXP (testreg, 0));
11637 mark_used_regs_combine (SET_SRC (x));
11639 return;
11641 default:
11642 break;
11645 /* Recursively scan the operands of this expression. */
11648 const char *fmt = GET_RTX_FORMAT (code);
11650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11652 if (fmt[i] == 'e')
11653 mark_used_regs_combine (XEXP (x, i));
11654 else if (fmt[i] == 'E')
11656 int j;
11658 for (j = 0; j < XVECLEN (x, i); j++)
11659 mark_used_regs_combine (XVECEXP (x, i, j));
11665 /* Remove register number REGNO from the dead registers list of INSN.
11667 Return the note used to record the death, if there was one. */
11670 remove_death (regno, insn)
11671 unsigned int regno;
11672 rtx insn;
11674 rtx note = find_regno_note (insn, REG_DEAD, regno);
11676 if (note)
11678 REG_N_DEATHS (regno)--;
11679 remove_note (insn, note);
11682 return note;
11685 /* For each register (hardware or pseudo) used within expression X, if its
11686 death is in an instruction with cuid between FROM_CUID (inclusive) and
11687 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11688 list headed by PNOTES.
11690 That said, don't move registers killed by maybe_kill_insn.
11692 This is done when X is being merged by combination into TO_INSN. These
11693 notes will then be distributed as needed. */
11695 static void
11696 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11697 rtx x;
11698 rtx maybe_kill_insn;
11699 int from_cuid;
11700 rtx to_insn;
11701 rtx *pnotes;
11703 const char *fmt;
11704 int len, i;
11705 enum rtx_code code = GET_CODE (x);
11707 if (code == REG)
11709 unsigned int regno = REGNO (x);
11710 rtx where_dead = reg_last_death[regno];
11711 rtx before_dead, after_dead;
11713 /* Don't move the register if it gets killed in between from and to */
11714 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11715 && ! reg_referenced_p (x, maybe_kill_insn))
11716 return;
11718 /* WHERE_DEAD could be a USE insn made by combine, so first we
11719 make sure that we have insns with valid INSN_CUID values. */
11720 before_dead = where_dead;
11721 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11722 before_dead = PREV_INSN (before_dead);
11724 after_dead = where_dead;
11725 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11726 after_dead = NEXT_INSN (after_dead);
11728 if (before_dead && after_dead
11729 && INSN_CUID (before_dead) >= from_cuid
11730 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11731 || (where_dead != after_dead
11732 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11734 rtx note = remove_death (regno, where_dead);
11736 /* It is possible for the call above to return 0. This can occur
11737 when reg_last_death points to I2 or I1 that we combined with.
11738 In that case make a new note.
11740 We must also check for the case where X is a hard register
11741 and NOTE is a death note for a range of hard registers
11742 including X. In that case, we must put REG_DEAD notes for
11743 the remaining registers in place of NOTE. */
11745 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11746 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11747 > GET_MODE_SIZE (GET_MODE (x))))
11749 unsigned int deadregno = REGNO (XEXP (note, 0));
11750 unsigned int deadend
11751 = (deadregno + HARD_REGNO_NREGS (deadregno,
11752 GET_MODE (XEXP (note, 0))));
11753 unsigned int ourend
11754 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11755 unsigned int i;
11757 for (i = deadregno; i < deadend; i++)
11758 if (i < regno || i >= ourend)
11759 REG_NOTES (where_dead)
11760 = gen_rtx_EXPR_LIST (REG_DEAD,
11761 gen_rtx_REG (reg_raw_mode[i], i),
11762 REG_NOTES (where_dead));
11765 /* If we didn't find any note, or if we found a REG_DEAD note that
11766 covers only part of the given reg, and we have a multi-reg hard
11767 register, then to be safe we must check for REG_DEAD notes
11768 for each register other than the first. They could have
11769 their own REG_DEAD notes lying around. */
11770 else if ((note == 0
11771 || (note != 0
11772 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11773 < GET_MODE_SIZE (GET_MODE (x)))))
11774 && regno < FIRST_PSEUDO_REGISTER
11775 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11777 unsigned int ourend
11778 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11779 unsigned int i, offset;
11780 rtx oldnotes = 0;
11782 if (note)
11783 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11784 else
11785 offset = 1;
11787 for (i = regno + offset; i < ourend; i++)
11788 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11789 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11792 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11794 XEXP (note, 1) = *pnotes;
11795 *pnotes = note;
11797 else
11798 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11800 REG_N_DEATHS (regno)++;
11803 return;
11806 else if (GET_CODE (x) == SET)
11808 rtx dest = SET_DEST (x);
11810 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11812 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11813 that accesses one word of a multi-word item, some
11814 piece of everything register in the expression is used by
11815 this insn, so remove any old death. */
11816 /* ??? So why do we test for equality of the sizes? */
11818 if (GET_CODE (dest) == ZERO_EXTRACT
11819 || GET_CODE (dest) == STRICT_LOW_PART
11820 || (GET_CODE (dest) == SUBREG
11821 && (((GET_MODE_SIZE (GET_MODE (dest))
11822 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11823 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11824 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11826 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11827 return;
11830 /* If this is some other SUBREG, we know it replaces the entire
11831 value, so use that as the destination. */
11832 if (GET_CODE (dest) == SUBREG)
11833 dest = SUBREG_REG (dest);
11835 /* If this is a MEM, adjust deaths of anything used in the address.
11836 For a REG (the only other possibility), the entire value is
11837 being replaced so the old value is not used in this insn. */
11839 if (GET_CODE (dest) == MEM)
11840 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11841 to_insn, pnotes);
11842 return;
11845 else if (GET_CODE (x) == CLOBBER)
11846 return;
11848 len = GET_RTX_LENGTH (code);
11849 fmt = GET_RTX_FORMAT (code);
11851 for (i = 0; i < len; i++)
11853 if (fmt[i] == 'E')
11855 int j;
11856 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11857 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11858 to_insn, pnotes);
11860 else if (fmt[i] == 'e')
11861 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11865 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11866 pattern of an insn. X must be a REG. */
11868 static int
11869 reg_bitfield_target_p (x, body)
11870 rtx x;
11871 rtx body;
11873 int i;
11875 if (GET_CODE (body) == SET)
11877 rtx dest = SET_DEST (body);
11878 rtx target;
11879 unsigned int regno, tregno, endregno, endtregno;
11881 if (GET_CODE (dest) == ZERO_EXTRACT)
11882 target = XEXP (dest, 0);
11883 else if (GET_CODE (dest) == STRICT_LOW_PART)
11884 target = SUBREG_REG (XEXP (dest, 0));
11885 else
11886 return 0;
11888 if (GET_CODE (target) == SUBREG)
11889 target = SUBREG_REG (target);
11891 if (GET_CODE (target) != REG)
11892 return 0;
11894 tregno = REGNO (target), regno = REGNO (x);
11895 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11896 return target == x;
11898 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11899 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11901 return endregno > tregno && regno < endtregno;
11904 else if (GET_CODE (body) == PARALLEL)
11905 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11906 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11907 return 1;
11909 return 0;
11912 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11913 as appropriate. I3 and I2 are the insns resulting from the combination
11914 insns including FROM (I2 may be zero).
11916 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11917 not need REG_DEAD notes because they are being substituted for. This
11918 saves searching in the most common cases.
11920 Each note in the list is either ignored or placed on some insns, depending
11921 on the type of note. */
11923 static void
11924 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11925 rtx notes;
11926 rtx from_insn;
11927 rtx i3, i2;
11928 rtx elim_i2, elim_i1;
11930 rtx note, next_note;
11931 rtx tem;
11933 for (note = notes; note; note = next_note)
11935 rtx place = 0, place2 = 0;
11937 /* If this NOTE references a pseudo register, ensure it references
11938 the latest copy of that register. */
11939 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11940 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11941 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11943 next_note = XEXP (note, 1);
11944 switch (REG_NOTE_KIND (note))
11946 case REG_BR_PROB:
11947 case REG_BR_PRED:
11948 case REG_EXEC_COUNT:
11949 /* Doesn't matter much where we put this, as long as it's somewhere.
11950 It is preferable to keep these notes on branches, which is most
11951 likely to be i3. */
11952 place = i3;
11953 break;
11955 case REG_VTABLE_REF:
11956 /* ??? Should remain with *a particular* memory load. Given the
11957 nature of vtable data, the last insn seems relatively safe. */
11958 place = i3;
11959 break;
11961 case REG_NON_LOCAL_GOTO:
11962 if (GET_CODE (i3) == JUMP_INSN)
11963 place = i3;
11964 else if (i2 && GET_CODE (i2) == JUMP_INSN)
11965 place = i2;
11966 else
11967 abort();
11968 break;
11970 case REG_EH_REGION:
11971 /* These notes must remain with the call or trapping instruction. */
11972 if (GET_CODE (i3) == CALL_INSN)
11973 place = i3;
11974 else if (i2 && GET_CODE (i2) == CALL_INSN)
11975 place = i2;
11976 else if (flag_non_call_exceptions)
11978 if (may_trap_p (i3))
11979 place = i3;
11980 else if (i2 && may_trap_p (i2))
11981 place = i2;
11982 /* ??? Otherwise assume we've combined things such that we
11983 can now prove that the instructions can't trap. Drop the
11984 note in this case. */
11986 else
11987 abort ();
11988 break;
11990 case REG_NORETURN:
11991 case REG_SETJMP:
11992 /* These notes must remain with the call. It should not be
11993 possible for both I2 and I3 to be a call. */
11994 if (GET_CODE (i3) == CALL_INSN)
11995 place = i3;
11996 else if (i2 && GET_CODE (i2) == CALL_INSN)
11997 place = i2;
11998 else
11999 abort ();
12000 break;
12002 case REG_UNUSED:
12003 /* Any clobbers for i3 may still exist, and so we must process
12004 REG_UNUSED notes from that insn.
12006 Any clobbers from i2 or i1 can only exist if they were added by
12007 recog_for_combine. In that case, recog_for_combine created the
12008 necessary REG_UNUSED notes. Trying to keep any original
12009 REG_UNUSED notes from these insns can cause incorrect output
12010 if it is for the same register as the original i3 dest.
12011 In that case, we will notice that the register is set in i3,
12012 and then add a REG_UNUSED note for the destination of i3, which
12013 is wrong. However, it is possible to have REG_UNUSED notes from
12014 i2 or i1 for register which were both used and clobbered, so
12015 we keep notes from i2 or i1 if they will turn into REG_DEAD
12016 notes. */
12018 /* If this register is set or clobbered in I3, put the note there
12019 unless there is one already. */
12020 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12022 if (from_insn != i3)
12023 break;
12025 if (! (GET_CODE (XEXP (note, 0)) == REG
12026 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12027 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12028 place = i3;
12030 /* Otherwise, if this register is used by I3, then this register
12031 now dies here, so we must put a REG_DEAD note here unless there
12032 is one already. */
12033 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12034 && ! (GET_CODE (XEXP (note, 0)) == REG
12035 ? find_regno_note (i3, REG_DEAD,
12036 REGNO (XEXP (note, 0)))
12037 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12039 PUT_REG_NOTE_KIND (note, REG_DEAD);
12040 place = i3;
12042 break;
12044 case REG_EQUAL:
12045 case REG_EQUIV:
12046 case REG_NOALIAS:
12047 /* These notes say something about results of an insn. We can
12048 only support them if they used to be on I3 in which case they
12049 remain on I3. Otherwise they are ignored.
12051 If the note refers to an expression that is not a constant, we
12052 must also ignore the note since we cannot tell whether the
12053 equivalence is still true. It might be possible to do
12054 slightly better than this (we only have a problem if I2DEST
12055 or I1DEST is present in the expression), but it doesn't
12056 seem worth the trouble. */
12058 if (from_insn == i3
12059 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12060 place = i3;
12061 break;
12063 case REG_INC:
12064 case REG_NO_CONFLICT:
12065 /* These notes say something about how a register is used. They must
12066 be present on any use of the register in I2 or I3. */
12067 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12068 place = i3;
12070 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12072 if (place)
12073 place2 = i2;
12074 else
12075 place = i2;
12077 break;
12079 case REG_LABEL:
12080 /* This can show up in several ways -- either directly in the
12081 pattern, or hidden off in the constant pool with (or without?)
12082 a REG_EQUAL note. */
12083 /* ??? Ignore the without-reg_equal-note problem for now. */
12084 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12085 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12086 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12087 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12088 place = i3;
12090 if (i2
12091 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12092 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12093 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12094 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12096 if (place)
12097 place2 = i2;
12098 else
12099 place = i2;
12101 break;
12103 case REG_NONNEG:
12104 case REG_WAS_0:
12105 /* These notes say something about the value of a register prior
12106 to the execution of an insn. It is too much trouble to see
12107 if the note is still correct in all situations. It is better
12108 to simply delete it. */
12109 break;
12111 case REG_RETVAL:
12112 /* If the insn previously containing this note still exists,
12113 put it back where it was. Otherwise move it to the previous
12114 insn. Adjust the corresponding REG_LIBCALL note. */
12115 if (GET_CODE (from_insn) != NOTE)
12116 place = from_insn;
12117 else
12119 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12120 place = prev_real_insn (from_insn);
12121 if (tem && place)
12122 XEXP (tem, 0) = place;
12123 /* If we're deleting the last remaining instruction of a
12124 libcall sequence, don't add the notes. */
12125 else if (XEXP (note, 0) == from_insn)
12126 tem = place = 0;
12128 break;
12130 case REG_LIBCALL:
12131 /* This is handled similarly to REG_RETVAL. */
12132 if (GET_CODE (from_insn) != NOTE)
12133 place = from_insn;
12134 else
12136 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12137 place = next_real_insn (from_insn);
12138 if (tem && place)
12139 XEXP (tem, 0) = place;
12140 /* If we're deleting the last remaining instruction of a
12141 libcall sequence, don't add the notes. */
12142 else if (XEXP (note, 0) == from_insn)
12143 tem = place = 0;
12145 break;
12147 case REG_DEAD:
12148 /* If the register is used as an input in I3, it dies there.
12149 Similarly for I2, if it is non-zero and adjacent to I3.
12151 If the register is not used as an input in either I3 or I2
12152 and it is not one of the registers we were supposed to eliminate,
12153 there are two possibilities. We might have a non-adjacent I2
12154 or we might have somehow eliminated an additional register
12155 from a computation. For example, we might have had A & B where
12156 we discover that B will always be zero. In this case we will
12157 eliminate the reference to A.
12159 In both cases, we must search to see if we can find a previous
12160 use of A and put the death note there. */
12162 if (from_insn
12163 && GET_CODE (from_insn) == CALL_INSN
12164 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12165 place = from_insn;
12166 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12167 place = i3;
12168 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12169 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12170 place = i2;
12172 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12173 || rtx_equal_p (XEXP (note, 0), elim_i1))
12174 break;
12176 if (place == 0)
12178 basic_block bb = BASIC_BLOCK (this_basic_block);
12180 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12182 if (! INSN_P (tem))
12184 if (tem == bb->head)
12185 break;
12186 continue;
12189 /* If the register is being set at TEM, see if that is all
12190 TEM is doing. If so, delete TEM. Otherwise, make this
12191 into a REG_UNUSED note instead. */
12192 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12194 rtx set = single_set (tem);
12195 rtx inner_dest = 0;
12196 #ifdef HAVE_cc0
12197 rtx cc0_setter = NULL_RTX;
12198 #endif
12200 if (set != 0)
12201 for (inner_dest = SET_DEST (set);
12202 (GET_CODE (inner_dest) == STRICT_LOW_PART
12203 || GET_CODE (inner_dest) == SUBREG
12204 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12205 inner_dest = XEXP (inner_dest, 0))
12208 /* Verify that it was the set, and not a clobber that
12209 modified the register.
12211 CC0 targets must be careful to maintain setter/user
12212 pairs. If we cannot delete the setter due to side
12213 effects, mark the user with an UNUSED note instead
12214 of deleting it. */
12216 if (set != 0 && ! side_effects_p (SET_SRC (set))
12217 && rtx_equal_p (XEXP (note, 0), inner_dest)
12218 #ifdef HAVE_cc0
12219 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12220 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12221 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12222 #endif
12225 /* Move the notes and links of TEM elsewhere.
12226 This might delete other dead insns recursively.
12227 First set the pattern to something that won't use
12228 any register. */
12230 PATTERN (tem) = pc_rtx;
12232 distribute_notes (REG_NOTES (tem), tem, tem,
12233 NULL_RTX, NULL_RTX, NULL_RTX);
12234 distribute_links (LOG_LINKS (tem));
12236 PUT_CODE (tem, NOTE);
12237 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12238 NOTE_SOURCE_FILE (tem) = 0;
12240 #ifdef HAVE_cc0
12241 /* Delete the setter too. */
12242 if (cc0_setter)
12244 PATTERN (cc0_setter) = pc_rtx;
12246 distribute_notes (REG_NOTES (cc0_setter),
12247 cc0_setter, cc0_setter,
12248 NULL_RTX, NULL_RTX, NULL_RTX);
12249 distribute_links (LOG_LINKS (cc0_setter));
12251 PUT_CODE (cc0_setter, NOTE);
12252 NOTE_LINE_NUMBER (cc0_setter)
12253 = NOTE_INSN_DELETED;
12254 NOTE_SOURCE_FILE (cc0_setter) = 0;
12256 #endif
12258 /* If the register is both set and used here, put the
12259 REG_DEAD note here, but place a REG_UNUSED note
12260 here too unless there already is one. */
12261 else if (reg_referenced_p (XEXP (note, 0),
12262 PATTERN (tem)))
12264 place = tem;
12266 if (! find_regno_note (tem, REG_UNUSED,
12267 REGNO (XEXP (note, 0))))
12268 REG_NOTES (tem)
12269 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12270 REG_NOTES (tem));
12272 else
12274 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12276 /* If there isn't already a REG_UNUSED note, put one
12277 here. */
12278 if (! find_regno_note (tem, REG_UNUSED,
12279 REGNO (XEXP (note, 0))))
12280 place = tem;
12281 break;
12284 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12285 || (GET_CODE (tem) == CALL_INSN
12286 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12288 place = tem;
12290 /* If we are doing a 3->2 combination, and we have a
12291 register which formerly died in i3 and was not used
12292 by i2, which now no longer dies in i3 and is used in
12293 i2 but does not die in i2, and place is between i2
12294 and i3, then we may need to move a link from place to
12295 i2. */
12296 if (i2 && INSN_UID (place) <= max_uid_cuid
12297 && INSN_CUID (place) > INSN_CUID (i2)
12298 && from_insn
12299 && INSN_CUID (from_insn) > INSN_CUID (i2)
12300 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12302 rtx links = LOG_LINKS (place);
12303 LOG_LINKS (place) = 0;
12304 distribute_links (links);
12306 break;
12309 if (tem == bb->head)
12310 break;
12313 /* We haven't found an insn for the death note and it
12314 is still a REG_DEAD note, but we have hit the beginning
12315 of the block. If the existing life info says the reg
12316 was dead, there's nothing left to do. Otherwise, we'll
12317 need to do a global life update after combine. */
12318 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12319 && REGNO_REG_SET_P (bb->global_live_at_start,
12320 REGNO (XEXP (note, 0))))
12322 SET_BIT (refresh_blocks, this_basic_block);
12323 need_refresh = 1;
12327 /* If the register is set or already dead at PLACE, we needn't do
12328 anything with this note if it is still a REG_DEAD note.
12329 We can here if it is set at all, not if is it totally replace,
12330 which is what `dead_or_set_p' checks, so also check for it being
12331 set partially. */
12333 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12335 unsigned int regno = REGNO (XEXP (note, 0));
12337 /* Similarly, if the instruction on which we want to place
12338 the note is a noop, we'll need do a global live update
12339 after we remove them in delete_noop_moves. */
12340 if (noop_move_p (place))
12342 SET_BIT (refresh_blocks, this_basic_block);
12343 need_refresh = 1;
12346 if (dead_or_set_p (place, XEXP (note, 0))
12347 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12349 /* Unless the register previously died in PLACE, clear
12350 reg_last_death. [I no longer understand why this is
12351 being done.] */
12352 if (reg_last_death[regno] != place)
12353 reg_last_death[regno] = 0;
12354 place = 0;
12356 else
12357 reg_last_death[regno] = place;
12359 /* If this is a death note for a hard reg that is occupying
12360 multiple registers, ensure that we are still using all
12361 parts of the object. If we find a piece of the object
12362 that is unused, we must arrange for an appropriate REG_DEAD
12363 note to be added for it. However, we can't just emit a USE
12364 and tag the note to it, since the register might actually
12365 be dead; so we recourse, and the recursive call then finds
12366 the previous insn that used this register. */
12368 if (place && regno < FIRST_PSEUDO_REGISTER
12369 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12371 unsigned int endregno
12372 = regno + HARD_REGNO_NREGS (regno,
12373 GET_MODE (XEXP (note, 0)));
12374 int all_used = 1;
12375 unsigned int i;
12377 for (i = regno; i < endregno; i++)
12378 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12379 && ! find_regno_fusage (place, USE, i))
12380 || dead_or_set_regno_p (place, i))
12381 all_used = 0;
12383 if (! all_used)
12385 /* Put only REG_DEAD notes for pieces that are
12386 not already dead or set. */
12388 for (i = regno; i < endregno;
12389 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12391 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12392 basic_block bb = BASIC_BLOCK (this_basic_block);
12394 if (! dead_or_set_p (place, piece)
12395 && ! reg_bitfield_target_p (piece,
12396 PATTERN (place)))
12398 rtx new_note
12399 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12401 distribute_notes (new_note, place, place,
12402 NULL_RTX, NULL_RTX, NULL_RTX);
12404 else if (! refers_to_regno_p (i, i + 1,
12405 PATTERN (place), 0)
12406 && ! find_regno_fusage (place, USE, i))
12407 for (tem = PREV_INSN (place); ;
12408 tem = PREV_INSN (tem))
12410 if (! INSN_P (tem))
12412 if (tem == bb->head)
12414 SET_BIT (refresh_blocks,
12415 this_basic_block);
12416 need_refresh = 1;
12417 break;
12419 continue;
12421 if (dead_or_set_p (tem, piece)
12422 || reg_bitfield_target_p (piece,
12423 PATTERN (tem)))
12425 REG_NOTES (tem)
12426 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12427 REG_NOTES (tem));
12428 break;
12434 place = 0;
12438 break;
12440 default:
12441 /* Any other notes should not be present at this point in the
12442 compilation. */
12443 abort ();
12446 if (place)
12448 XEXP (note, 1) = REG_NOTES (place);
12449 REG_NOTES (place) = note;
12451 else if ((REG_NOTE_KIND (note) == REG_DEAD
12452 || REG_NOTE_KIND (note) == REG_UNUSED)
12453 && GET_CODE (XEXP (note, 0)) == REG)
12454 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12456 if (place2)
12458 if ((REG_NOTE_KIND (note) == REG_DEAD
12459 || REG_NOTE_KIND (note) == REG_UNUSED)
12460 && GET_CODE (XEXP (note, 0)) == REG)
12461 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12463 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12464 REG_NOTE_KIND (note),
12465 XEXP (note, 0),
12466 REG_NOTES (place2));
12471 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12472 I3, I2, and I1 to new locations. This is also called in one case to
12473 add a link pointing at I3 when I3's destination is changed. */
12475 static void
12476 distribute_links (links)
12477 rtx links;
12479 rtx link, next_link;
12481 for (link = links; link; link = next_link)
12483 rtx place = 0;
12484 rtx insn;
12485 rtx set, reg;
12487 next_link = XEXP (link, 1);
12489 /* If the insn that this link points to is a NOTE or isn't a single
12490 set, ignore it. In the latter case, it isn't clear what we
12491 can do other than ignore the link, since we can't tell which
12492 register it was for. Such links wouldn't be used by combine
12493 anyway.
12495 It is not possible for the destination of the target of the link to
12496 have been changed by combine. The only potential of this is if we
12497 replace I3, I2, and I1 by I3 and I2. But in that case the
12498 destination of I2 also remains unchanged. */
12500 if (GET_CODE (XEXP (link, 0)) == NOTE
12501 || (set = single_set (XEXP (link, 0))) == 0)
12502 continue;
12504 reg = SET_DEST (set);
12505 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12506 || GET_CODE (reg) == SIGN_EXTRACT
12507 || GET_CODE (reg) == STRICT_LOW_PART)
12508 reg = XEXP (reg, 0);
12510 /* A LOG_LINK is defined as being placed on the first insn that uses
12511 a register and points to the insn that sets the register. Start
12512 searching at the next insn after the target of the link and stop
12513 when we reach a set of the register or the end of the basic block.
12515 Note that this correctly handles the link that used to point from
12516 I3 to I2. Also note that not much searching is typically done here
12517 since most links don't point very far away. */
12519 for (insn = NEXT_INSN (XEXP (link, 0));
12520 (insn && (this_basic_block == n_basic_blocks - 1
12521 || BLOCK_HEAD (this_basic_block + 1) != insn));
12522 insn = NEXT_INSN (insn))
12523 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12525 if (reg_referenced_p (reg, PATTERN (insn)))
12526 place = insn;
12527 break;
12529 else if (GET_CODE (insn) == CALL_INSN
12530 && find_reg_fusage (insn, USE, reg))
12532 place = insn;
12533 break;
12536 /* If we found a place to put the link, place it there unless there
12537 is already a link to the same insn as LINK at that point. */
12539 if (place)
12541 rtx link2;
12543 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12544 if (XEXP (link2, 0) == XEXP (link, 0))
12545 break;
12547 if (link2 == 0)
12549 XEXP (link, 1) = LOG_LINKS (place);
12550 LOG_LINKS (place) = link;
12552 /* Set added_links_insn to the earliest insn we added a
12553 link to. */
12554 if (added_links_insn == 0
12555 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12556 added_links_insn = place;
12562 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12564 static int
12565 insn_cuid (insn)
12566 rtx insn;
12568 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12569 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12570 insn = NEXT_INSN (insn);
12572 if (INSN_UID (insn) > max_uid_cuid)
12573 abort ();
12575 return INSN_CUID (insn);
12578 void
12579 dump_combine_stats (file)
12580 FILE *file;
12582 fnotice
12583 (file,
12584 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12585 combine_attempts, combine_merges, combine_extras, combine_successes);
12588 void
12589 dump_combine_total_stats (file)
12590 FILE *file;
12592 fnotice
12593 (file,
12594 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12595 total_attempts, total_merges, total_extras, total_successes);