dumping cleanup phase 1 -- Removing TODO_dump_func
[official-gcc.git] / gcc / var-tracking.c
blob1828d1f7e2544f87212efaade319156f1bb07c9a
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
118 #include "tm_p.h"
120 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
121 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
122 Currently the value is the same as IDENTIFIER_NODE, which has such
123 a property. If this compile time assertion ever fails, make sure that
124 the new tree code that equals (int) VALUE has the same property. */
125 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
127 /* Type of micro operation. */
128 enum micro_operation_type
130 MO_USE, /* Use location (REG or MEM). */
131 MO_USE_NO_VAR,/* Use location which is not associated with a variable
132 or the variable is not trackable. */
133 MO_VAL_USE, /* Use location which is associated with a value. */
134 MO_VAL_LOC, /* Use location which appears in a debug insn. */
135 MO_VAL_SET, /* Set location associated with a value. */
136 MO_SET, /* Set location. */
137 MO_COPY, /* Copy the same portion of a variable from one
138 location to another. */
139 MO_CLOBBER, /* Clobber location. */
140 MO_CALL, /* Call insn. */
141 MO_ADJUST /* Adjust stack pointer. */
145 static const char * const ATTRIBUTE_UNUSED
146 micro_operation_type_name[] = {
147 "MO_USE",
148 "MO_USE_NO_VAR",
149 "MO_VAL_USE",
150 "MO_VAL_LOC",
151 "MO_VAL_SET",
152 "MO_SET",
153 "MO_COPY",
154 "MO_CLOBBER",
155 "MO_CALL",
156 "MO_ADJUST"
159 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
160 Notes emitted as AFTER_CALL are to take effect during the call,
161 rather than after the call. */
162 enum emit_note_where
164 EMIT_NOTE_BEFORE_INSN,
165 EMIT_NOTE_AFTER_INSN,
166 EMIT_NOTE_AFTER_CALL_INSN
169 /* Structure holding information about micro operation. */
170 typedef struct micro_operation_def
172 /* Type of micro operation. */
173 enum micro_operation_type type;
175 /* The instruction which the micro operation is in, for MO_USE,
176 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
177 instruction or note in the original flow (before any var-tracking
178 notes are inserted, to simplify emission of notes), for MO_SET
179 and MO_CLOBBER. */
180 rtx insn;
182 union {
183 /* Location. For MO_SET and MO_COPY, this is the SET that
184 performs the assignment, if known, otherwise it is the target
185 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
186 CONCAT of the VALUE and the LOC associated with it. For
187 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
188 associated with it. */
189 rtx loc;
191 /* Stack adjustment. */
192 HOST_WIDE_INT adjust;
193 } u;
194 } micro_operation;
196 DEF_VEC_O(micro_operation);
197 DEF_VEC_ALLOC_O(micro_operation,heap);
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Structure for passing some other parameters to function
204 emit_note_insn_var_location. */
205 typedef struct emit_note_data_def
207 /* The instruction which the note will be emitted before/after. */
208 rtx insn;
210 /* Where the note will be emitted (before/after insn)? */
211 enum emit_note_where where;
213 /* The variables and values active at this point. */
214 htab_t vars;
215 } emit_note_data;
217 /* Description of location of a part of a variable. The content of a physical
218 register is described by a chain of these structures.
219 The chains are pretty short (usually 1 or 2 elements) and thus
220 chain is the best data structure. */
221 typedef struct attrs_def
223 /* Pointer to next member of the list. */
224 struct attrs_def *next;
226 /* The rtx of register. */
227 rtx loc;
229 /* The declaration corresponding to LOC. */
230 decl_or_value dv;
232 /* Offset from start of DECL. */
233 HOST_WIDE_INT offset;
234 } *attrs;
236 /* Structure holding a refcounted hash table. If refcount > 1,
237 it must be first unshared before modified. */
238 typedef struct shared_hash_def
240 /* Reference count. */
241 int refcount;
243 /* Actual hash table. */
244 htab_t htab;
245 } *shared_hash;
247 /* Structure holding the IN or OUT set for a basic block. */
248 typedef struct dataflow_set_def
250 /* Adjustment of stack offset. */
251 HOST_WIDE_INT stack_adjust;
253 /* Attributes for registers (lists of attrs). */
254 attrs regs[FIRST_PSEUDO_REGISTER];
256 /* Variable locations. */
257 shared_hash vars;
259 /* Vars that is being traversed. */
260 shared_hash traversed_vars;
261 } dataflow_set;
263 /* The structure (one for each basic block) containing the information
264 needed for variable tracking. */
265 typedef struct variable_tracking_info_def
267 /* The vector of micro operations. */
268 VEC(micro_operation, heap) *mos;
270 /* The IN and OUT set for dataflow analysis. */
271 dataflow_set in;
272 dataflow_set out;
274 /* The permanent-in dataflow set for this block. This is used to
275 hold values for which we had to compute entry values. ??? This
276 should probably be dynamically allocated, to avoid using more
277 memory in non-debug builds. */
278 dataflow_set *permp;
280 /* Has the block been visited in DFS? */
281 bool visited;
283 /* Has the block been flooded in VTA? */
284 bool flooded;
286 } *variable_tracking_info;
288 /* Structure for chaining the locations. */
289 typedef struct location_chain_def
291 /* Next element in the chain. */
292 struct location_chain_def *next;
294 /* The location (REG, MEM or VALUE). */
295 rtx loc;
297 /* The "value" stored in this location. */
298 rtx set_src;
300 /* Initialized? */
301 enum var_init_status init;
302 } *location_chain;
304 /* Structure describing one part of variable. */
305 typedef struct variable_part_def
307 /* Chain of locations of the part. */
308 location_chain loc_chain;
310 /* Location which was last emitted to location list. */
311 rtx cur_loc;
313 /* The offset in the variable. */
314 HOST_WIDE_INT offset;
315 } variable_part;
317 /* Maximum number of location parts. */
318 #define MAX_VAR_PARTS 16
320 /* Structure describing where the variable is located. */
321 typedef struct variable_def
323 /* The declaration of the variable, or an RTL value being handled
324 like a declaration. */
325 decl_or_value dv;
327 /* Reference count. */
328 int refcount;
330 /* Number of variable parts. */
331 char n_var_parts;
333 /* True if this variable changed (any of its) cur_loc fields
334 during the current emit_notes_for_changes resp.
335 emit_notes_for_differences call. */
336 bool cur_loc_changed;
338 /* True if this variable_def struct is currently in the
339 changed_variables hash table. */
340 bool in_changed_variables;
342 /* The variable parts. */
343 variable_part var_part[1];
344 } *variable;
345 typedef const struct variable_def *const_variable;
347 /* Structure for chaining backlinks from referenced VALUEs to
348 DVs that are referencing them. */
349 typedef struct value_chain_def
351 /* Next value_chain entry. */
352 struct value_chain_def *next;
354 /* The declaration of the variable, or an RTL value
355 being handled like a declaration, whose var_parts[0].loc_chain
356 references the VALUE owning this value_chain. */
357 decl_or_value dv;
359 /* Reference count. */
360 int refcount;
361 } *value_chain;
362 typedef const struct value_chain_def *const_value_chain;
364 /* Pointer to the BB's information specific to variable tracking pass. */
365 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
367 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
368 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
370 /* Alloc pool for struct attrs_def. */
371 static alloc_pool attrs_pool;
373 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
374 static alloc_pool var_pool;
376 /* Alloc pool for struct variable_def with a single var_part entry. */
377 static alloc_pool valvar_pool;
379 /* Alloc pool for struct location_chain_def. */
380 static alloc_pool loc_chain_pool;
382 /* Alloc pool for struct shared_hash_def. */
383 static alloc_pool shared_hash_pool;
385 /* Alloc pool for struct value_chain_def. */
386 static alloc_pool value_chain_pool;
388 /* Changed variables, notes will be emitted for them. */
389 static htab_t changed_variables;
391 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
392 static htab_t value_chains;
394 /* Shall notes be emitted? */
395 static bool emit_notes;
397 /* Empty shared hashtable. */
398 static shared_hash empty_shared_hash;
400 /* Scratch register bitmap used by cselib_expand_value_rtx. */
401 static bitmap scratch_regs = NULL;
403 /* Variable used to tell whether cselib_process_insn called our hook. */
404 static bool cselib_hook_called;
406 /* Local function prototypes. */
407 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
408 HOST_WIDE_INT *);
409 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
410 HOST_WIDE_INT *);
411 static bool vt_stack_adjustments (void);
412 static void note_register_arguments (rtx);
413 static hashval_t variable_htab_hash (const void *);
414 static int variable_htab_eq (const void *, const void *);
415 static void variable_htab_free (void *);
417 static void init_attrs_list_set (attrs *);
418 static void attrs_list_clear (attrs *);
419 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
420 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
421 static void attrs_list_copy (attrs *, attrs);
422 static void attrs_list_union (attrs *, attrs);
424 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
425 enum var_init_status);
426 static void vars_copy (htab_t, htab_t);
427 static tree var_debug_decl (tree);
428 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
429 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
430 enum var_init_status, rtx);
431 static void var_reg_delete (dataflow_set *, rtx, bool);
432 static void var_regno_delete (dataflow_set *, int);
433 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
434 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
435 enum var_init_status, rtx);
436 static void var_mem_delete (dataflow_set *, rtx, bool);
438 static void dataflow_set_init (dataflow_set *);
439 static void dataflow_set_clear (dataflow_set *);
440 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
441 static int variable_union_info_cmp_pos (const void *, const void *);
442 static void dataflow_set_union (dataflow_set *, dataflow_set *);
443 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
444 static bool canon_value_cmp (rtx, rtx);
445 static int loc_cmp (rtx, rtx);
446 static bool variable_part_different_p (variable_part *, variable_part *);
447 static bool onepart_variable_different_p (variable, variable);
448 static bool variable_different_p (variable, variable);
449 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
450 static void dataflow_set_destroy (dataflow_set *);
452 static bool contains_symbol_ref (rtx);
453 static bool track_expr_p (tree, bool);
454 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
455 static int add_uses (rtx *, void *);
456 static void add_uses_1 (rtx *, void *);
457 static void add_stores (rtx, const_rtx, void *);
458 static bool compute_bb_dataflow (basic_block);
459 static bool vt_find_locations (void);
461 static void dump_attrs_list (attrs);
462 static int dump_var_slot (void **, void *);
463 static void dump_var (variable);
464 static void dump_vars (htab_t);
465 static void dump_dataflow_set (dataflow_set *);
466 static void dump_dataflow_sets (void);
468 static void variable_was_changed (variable, dataflow_set *);
469 static void **set_slot_part (dataflow_set *, rtx, void **,
470 decl_or_value, HOST_WIDE_INT,
471 enum var_init_status, rtx);
472 static void set_variable_part (dataflow_set *, rtx,
473 decl_or_value, HOST_WIDE_INT,
474 enum var_init_status, rtx, enum insert_option);
475 static void **clobber_slot_part (dataflow_set *, rtx,
476 void **, HOST_WIDE_INT, rtx);
477 static void clobber_variable_part (dataflow_set *, rtx,
478 decl_or_value, HOST_WIDE_INT, rtx);
479 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
480 static void delete_variable_part (dataflow_set *, rtx,
481 decl_or_value, HOST_WIDE_INT);
482 static int emit_note_insn_var_location (void **, void *);
483 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
484 static int emit_notes_for_differences_1 (void **, void *);
485 static int emit_notes_for_differences_2 (void **, void *);
486 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
487 static void emit_notes_in_bb (basic_block, dataflow_set *);
488 static void vt_emit_notes (void);
490 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
491 static void vt_add_function_parameters (void);
492 static bool vt_initialize (void);
493 static void vt_finalize (void);
495 /* Given a SET, calculate the amount of stack adjustment it contains
496 PRE- and POST-modifying stack pointer.
497 This function is similar to stack_adjust_offset. */
499 static void
500 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
501 HOST_WIDE_INT *post)
503 rtx src = SET_SRC (pattern);
504 rtx dest = SET_DEST (pattern);
505 enum rtx_code code;
507 if (dest == stack_pointer_rtx)
509 /* (set (reg sp) (plus (reg sp) (const_int))) */
510 code = GET_CODE (src);
511 if (! (code == PLUS || code == MINUS)
512 || XEXP (src, 0) != stack_pointer_rtx
513 || !CONST_INT_P (XEXP (src, 1)))
514 return;
516 if (code == MINUS)
517 *post += INTVAL (XEXP (src, 1));
518 else
519 *post -= INTVAL (XEXP (src, 1));
521 else if (MEM_P (dest))
523 /* (set (mem (pre_dec (reg sp))) (foo)) */
524 src = XEXP (dest, 0);
525 code = GET_CODE (src);
527 switch (code)
529 case PRE_MODIFY:
530 case POST_MODIFY:
531 if (XEXP (src, 0) == stack_pointer_rtx)
533 rtx val = XEXP (XEXP (src, 1), 1);
534 /* We handle only adjustments by constant amount. */
535 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
536 CONST_INT_P (val));
538 if (code == PRE_MODIFY)
539 *pre -= INTVAL (val);
540 else
541 *post -= INTVAL (val);
542 break;
544 return;
546 case PRE_DEC:
547 if (XEXP (src, 0) == stack_pointer_rtx)
549 *pre += GET_MODE_SIZE (GET_MODE (dest));
550 break;
552 return;
554 case POST_DEC:
555 if (XEXP (src, 0) == stack_pointer_rtx)
557 *post += GET_MODE_SIZE (GET_MODE (dest));
558 break;
560 return;
562 case PRE_INC:
563 if (XEXP (src, 0) == stack_pointer_rtx)
565 *pre -= GET_MODE_SIZE (GET_MODE (dest));
566 break;
568 return;
570 case POST_INC:
571 if (XEXP (src, 0) == stack_pointer_rtx)
573 *post -= GET_MODE_SIZE (GET_MODE (dest));
574 break;
576 return;
578 default:
579 return;
584 /* Given an INSN, calculate the amount of stack adjustment it contains
585 PRE- and POST-modifying stack pointer. */
587 static void
588 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
589 HOST_WIDE_INT *post)
591 rtx pattern;
593 *pre = 0;
594 *post = 0;
596 pattern = PATTERN (insn);
597 if (RTX_FRAME_RELATED_P (insn))
599 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
600 if (expr)
601 pattern = XEXP (expr, 0);
604 if (GET_CODE (pattern) == SET)
605 stack_adjust_offset_pre_post (pattern, pre, post);
606 else if (GET_CODE (pattern) == PARALLEL
607 || GET_CODE (pattern) == SEQUENCE)
609 int i;
611 /* There may be stack adjustments inside compound insns. Search
612 for them. */
613 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
614 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
615 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
619 /* Compute stack adjustments for all blocks by traversing DFS tree.
620 Return true when the adjustments on all incoming edges are consistent.
621 Heavily borrowed from pre_and_rev_post_order_compute. */
623 static bool
624 vt_stack_adjustments (void)
626 edge_iterator *stack;
627 int sp;
629 /* Initialize entry block. */
630 VTI (ENTRY_BLOCK_PTR)->visited = true;
631 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
632 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
634 /* Allocate stack for back-tracking up CFG. */
635 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
636 sp = 0;
638 /* Push the first edge on to the stack. */
639 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
641 while (sp)
643 edge_iterator ei;
644 basic_block src;
645 basic_block dest;
647 /* Look at the edge on the top of the stack. */
648 ei = stack[sp - 1];
649 src = ei_edge (ei)->src;
650 dest = ei_edge (ei)->dest;
652 /* Check if the edge destination has been visited yet. */
653 if (!VTI (dest)->visited)
655 rtx insn;
656 HOST_WIDE_INT pre, post, offset;
657 VTI (dest)->visited = true;
658 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
660 if (dest != EXIT_BLOCK_PTR)
661 for (insn = BB_HEAD (dest);
662 insn != NEXT_INSN (BB_END (dest));
663 insn = NEXT_INSN (insn))
665 if (INSN_P (insn))
667 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
668 offset += pre + post;
670 if (CALL_P (insn))
671 note_register_arguments (insn);
674 VTI (dest)->out.stack_adjust = offset;
676 if (EDGE_COUNT (dest->succs) > 0)
677 /* Since the DEST node has been visited for the first
678 time, check its successors. */
679 stack[sp++] = ei_start (dest->succs);
681 else
683 /* Check whether the adjustments on the edges are the same. */
684 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
686 free (stack);
687 return false;
690 if (! ei_one_before_end_p (ei))
691 /* Go to the next edge. */
692 ei_next (&stack[sp - 1]);
693 else
694 /* Return to previous level if there are no more edges. */
695 sp--;
699 free (stack);
700 return true;
703 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
704 hard_frame_pointer_rtx is being mapped to it and offset for it. */
705 static rtx cfa_base_rtx;
706 static HOST_WIDE_INT cfa_base_offset;
708 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
709 or hard_frame_pointer_rtx. */
711 static inline rtx
712 compute_cfa_pointer (HOST_WIDE_INT adjustment)
714 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
717 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
718 or -1 if the replacement shouldn't be done. */
719 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
721 /* Data for adjust_mems callback. */
723 struct adjust_mem_data
725 bool store;
726 enum machine_mode mem_mode;
727 HOST_WIDE_INT stack_adjust;
728 rtx side_effects;
731 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
732 transformation of wider mode arithmetics to narrower mode,
733 -1 if it is suitable and subexpressions shouldn't be
734 traversed and 0 if it is suitable and subexpressions should
735 be traversed. Called through for_each_rtx. */
737 static int
738 use_narrower_mode_test (rtx *loc, void *data)
740 rtx subreg = (rtx) data;
742 if (CONSTANT_P (*loc))
743 return -1;
744 switch (GET_CODE (*loc))
746 case REG:
747 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
748 return 1;
749 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
750 *loc, subreg_lowpart_offset (GET_MODE (subreg),
751 GET_MODE (*loc))))
752 return 1;
753 return -1;
754 case PLUS:
755 case MINUS:
756 case MULT:
757 return 0;
758 case ASHIFT:
759 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
760 return 1;
761 else
762 return -1;
763 default:
764 return 1;
768 /* Transform X into narrower mode MODE from wider mode WMODE. */
770 static rtx
771 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
773 rtx op0, op1;
774 if (CONSTANT_P (x))
775 return lowpart_subreg (mode, x, wmode);
776 switch (GET_CODE (x))
778 case REG:
779 return lowpart_subreg (mode, x, wmode);
780 case PLUS:
781 case MINUS:
782 case MULT:
783 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
784 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
785 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
786 case ASHIFT:
787 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
788 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
789 default:
790 gcc_unreachable ();
794 /* Helper function for adjusting used MEMs. */
796 static rtx
797 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
799 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
800 rtx mem, addr = loc, tem;
801 enum machine_mode mem_mode_save;
802 bool store_save;
803 switch (GET_CODE (loc))
805 case REG:
806 /* Don't do any sp or fp replacements outside of MEM addresses
807 on the LHS. */
808 if (amd->mem_mode == VOIDmode && amd->store)
809 return loc;
810 if (loc == stack_pointer_rtx
811 && !frame_pointer_needed
812 && cfa_base_rtx)
813 return compute_cfa_pointer (amd->stack_adjust);
814 else if (loc == hard_frame_pointer_rtx
815 && frame_pointer_needed
816 && hard_frame_pointer_adjustment != -1
817 && cfa_base_rtx)
818 return compute_cfa_pointer (hard_frame_pointer_adjustment);
819 gcc_checking_assert (loc != virtual_incoming_args_rtx);
820 return loc;
821 case MEM:
822 mem = loc;
823 if (!amd->store)
825 mem = targetm.delegitimize_address (mem);
826 if (mem != loc && !MEM_P (mem))
827 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
830 addr = XEXP (mem, 0);
831 mem_mode_save = amd->mem_mode;
832 amd->mem_mode = GET_MODE (mem);
833 store_save = amd->store;
834 amd->store = false;
835 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
836 amd->store = store_save;
837 amd->mem_mode = mem_mode_save;
838 if (mem == loc)
839 addr = targetm.delegitimize_address (addr);
840 if (addr != XEXP (mem, 0))
841 mem = replace_equiv_address_nv (mem, addr);
842 if (!amd->store)
843 mem = avoid_constant_pool_reference (mem);
844 return mem;
845 case PRE_INC:
846 case PRE_DEC:
847 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
848 GEN_INT (GET_CODE (loc) == PRE_INC
849 ? GET_MODE_SIZE (amd->mem_mode)
850 : -GET_MODE_SIZE (amd->mem_mode)));
851 case POST_INC:
852 case POST_DEC:
853 if (addr == loc)
854 addr = XEXP (loc, 0);
855 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
856 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
857 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
858 GEN_INT ((GET_CODE (loc) == PRE_INC
859 || GET_CODE (loc) == POST_INC)
860 ? GET_MODE_SIZE (amd->mem_mode)
861 : -GET_MODE_SIZE (amd->mem_mode)));
862 amd->side_effects = alloc_EXPR_LIST (0,
863 gen_rtx_SET (VOIDmode,
864 XEXP (loc, 0),
865 tem),
866 amd->side_effects);
867 return addr;
868 case PRE_MODIFY:
869 addr = XEXP (loc, 1);
870 case POST_MODIFY:
871 if (addr == loc)
872 addr = XEXP (loc, 0);
873 gcc_assert (amd->mem_mode != VOIDmode);
874 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
875 amd->side_effects = alloc_EXPR_LIST (0,
876 gen_rtx_SET (VOIDmode,
877 XEXP (loc, 0),
878 XEXP (loc, 1)),
879 amd->side_effects);
880 return addr;
881 case SUBREG:
882 /* First try without delegitimization of whole MEMs and
883 avoid_constant_pool_reference, which is more likely to succeed. */
884 store_save = amd->store;
885 amd->store = true;
886 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
887 data);
888 amd->store = store_save;
889 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
890 if (mem == SUBREG_REG (loc))
892 tem = loc;
893 goto finish_subreg;
895 tem = simplify_gen_subreg (GET_MODE (loc), mem,
896 GET_MODE (SUBREG_REG (loc)),
897 SUBREG_BYTE (loc));
898 if (tem)
899 goto finish_subreg;
900 tem = simplify_gen_subreg (GET_MODE (loc), addr,
901 GET_MODE (SUBREG_REG (loc)),
902 SUBREG_BYTE (loc));
903 if (tem == NULL_RTX)
904 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
905 finish_subreg:
906 if (MAY_HAVE_DEBUG_INSNS
907 && GET_CODE (tem) == SUBREG
908 && (GET_CODE (SUBREG_REG (tem)) == PLUS
909 || GET_CODE (SUBREG_REG (tem)) == MINUS
910 || GET_CODE (SUBREG_REG (tem)) == MULT
911 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
912 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
913 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
914 && GET_MODE_SIZE (GET_MODE (tem))
915 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
916 && subreg_lowpart_p (tem)
917 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
918 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
919 GET_MODE (SUBREG_REG (tem)));
920 return tem;
921 case ASM_OPERANDS:
922 /* Don't do any replacements in second and following
923 ASM_OPERANDS of inline-asm with multiple sets.
924 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
925 and ASM_OPERANDS_LABEL_VEC need to be equal between
926 all the ASM_OPERANDs in the insn and adjust_insn will
927 fix this up. */
928 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
929 return loc;
930 break;
931 default:
932 break;
934 return NULL_RTX;
937 /* Helper function for replacement of uses. */
939 static void
940 adjust_mem_uses (rtx *x, void *data)
942 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
943 if (new_x != *x)
944 validate_change (NULL_RTX, x, new_x, true);
947 /* Helper function for replacement of stores. */
949 static void
950 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
952 if (MEM_P (loc))
954 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
955 adjust_mems, data);
956 if (new_dest != SET_DEST (expr))
958 rtx xexpr = CONST_CAST_RTX (expr);
959 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
964 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
965 replace them with their value in the insn and add the side-effects
966 as other sets to the insn. */
968 static void
969 adjust_insn (basic_block bb, rtx insn)
971 struct adjust_mem_data amd;
972 rtx set;
973 amd.mem_mode = VOIDmode;
974 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
975 amd.side_effects = NULL_RTX;
977 amd.store = true;
978 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
980 amd.store = false;
981 if (GET_CODE (PATTERN (insn)) == PARALLEL
982 && asm_noperands (PATTERN (insn)) > 0
983 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
985 rtx body, set0;
986 int i;
988 /* inline-asm with multiple sets is tiny bit more complicated,
989 because the 3 vectors in ASM_OPERANDS need to be shared between
990 all ASM_OPERANDS in the instruction. adjust_mems will
991 not touch ASM_OPERANDS other than the first one, asm_noperands
992 test above needs to be called before that (otherwise it would fail)
993 and afterwards this code fixes it up. */
994 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
995 body = PATTERN (insn);
996 set0 = XVECEXP (body, 0, 0);
997 gcc_checking_assert (GET_CODE (set0) == SET
998 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
999 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1000 for (i = 1; i < XVECLEN (body, 0); i++)
1001 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1002 break;
1003 else
1005 set = XVECEXP (body, 0, i);
1006 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1007 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1008 == i);
1009 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1010 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1011 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1012 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1013 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1014 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1016 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1017 ASM_OPERANDS_INPUT_VEC (newsrc)
1018 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1019 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1020 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1021 ASM_OPERANDS_LABEL_VEC (newsrc)
1022 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1023 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1027 else
1028 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1030 /* For read-only MEMs containing some constant, prefer those
1031 constants. */
1032 set = single_set (insn);
1033 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1035 rtx note = find_reg_equal_equiv_note (insn);
1037 if (note && CONSTANT_P (XEXP (note, 0)))
1038 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1041 if (amd.side_effects)
1043 rtx *pat, new_pat, s;
1044 int i, oldn, newn;
1046 pat = &PATTERN (insn);
1047 if (GET_CODE (*pat) == COND_EXEC)
1048 pat = &COND_EXEC_CODE (*pat);
1049 if (GET_CODE (*pat) == PARALLEL)
1050 oldn = XVECLEN (*pat, 0);
1051 else
1052 oldn = 1;
1053 for (s = amd.side_effects, newn = 0; s; newn++)
1054 s = XEXP (s, 1);
1055 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1056 if (GET_CODE (*pat) == PARALLEL)
1057 for (i = 0; i < oldn; i++)
1058 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1059 else
1060 XVECEXP (new_pat, 0, 0) = *pat;
1061 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1062 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1063 free_EXPR_LIST_list (&amd.side_effects);
1064 validate_change (NULL_RTX, pat, new_pat, true);
1068 /* Return true if a decl_or_value DV is a DECL or NULL. */
1069 static inline bool
1070 dv_is_decl_p (decl_or_value dv)
1072 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1075 /* Return true if a decl_or_value is a VALUE rtl. */
1076 static inline bool
1077 dv_is_value_p (decl_or_value dv)
1079 return dv && !dv_is_decl_p (dv);
1082 /* Return the decl in the decl_or_value. */
1083 static inline tree
1084 dv_as_decl (decl_or_value dv)
1086 gcc_checking_assert (dv_is_decl_p (dv));
1087 return (tree) dv;
1090 /* Return the value in the decl_or_value. */
1091 static inline rtx
1092 dv_as_value (decl_or_value dv)
1094 gcc_checking_assert (dv_is_value_p (dv));
1095 return (rtx)dv;
1098 /* Return the opaque pointer in the decl_or_value. */
1099 static inline void *
1100 dv_as_opaque (decl_or_value dv)
1102 return dv;
1105 /* Return true if a decl_or_value must not have more than one variable
1106 part. */
1107 static inline bool
1108 dv_onepart_p (decl_or_value dv)
1110 tree decl;
1112 if (!MAY_HAVE_DEBUG_INSNS)
1113 return false;
1115 if (dv_is_value_p (dv))
1116 return true;
1118 decl = dv_as_decl (dv);
1120 if (!decl)
1121 return true;
1123 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1124 return true;
1126 return (target_for_debug_bind (decl) != NULL_TREE);
1129 /* Return the variable pool to be used for dv, depending on whether it
1130 can have multiple parts or not. */
1131 static inline alloc_pool
1132 dv_pool (decl_or_value dv)
1134 return dv_onepart_p (dv) ? valvar_pool : var_pool;
1137 /* Build a decl_or_value out of a decl. */
1138 static inline decl_or_value
1139 dv_from_decl (tree decl)
1141 decl_or_value dv;
1142 dv = decl;
1143 gcc_checking_assert (dv_is_decl_p (dv));
1144 return dv;
1147 /* Build a decl_or_value out of a value. */
1148 static inline decl_or_value
1149 dv_from_value (rtx value)
1151 decl_or_value dv;
1152 dv = value;
1153 gcc_checking_assert (dv_is_value_p (dv));
1154 return dv;
1157 extern void debug_dv (decl_or_value dv);
1159 DEBUG_FUNCTION void
1160 debug_dv (decl_or_value dv)
1162 if (dv_is_value_p (dv))
1163 debug_rtx (dv_as_value (dv));
1164 else
1165 debug_generic_stmt (dv_as_decl (dv));
1168 typedef unsigned int dvuid;
1170 /* Return the uid of DV. */
1172 static inline dvuid
1173 dv_uid (decl_or_value dv)
1175 if (dv_is_value_p (dv))
1176 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1177 else
1178 return DECL_UID (dv_as_decl (dv));
1181 /* Compute the hash from the uid. */
1183 static inline hashval_t
1184 dv_uid2hash (dvuid uid)
1186 return uid;
1189 /* The hash function for a mask table in a shared_htab chain. */
1191 static inline hashval_t
1192 dv_htab_hash (decl_or_value dv)
1194 return dv_uid2hash (dv_uid (dv));
1197 /* The hash function for variable_htab, computes the hash value
1198 from the declaration of variable X. */
1200 static hashval_t
1201 variable_htab_hash (const void *x)
1203 const_variable const v = (const_variable) x;
1205 return dv_htab_hash (v->dv);
1208 /* Compare the declaration of variable X with declaration Y. */
1210 static int
1211 variable_htab_eq (const void *x, const void *y)
1213 const_variable const v = (const_variable) x;
1214 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1216 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1219 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1221 static void
1222 variable_htab_free (void *elem)
1224 int i;
1225 variable var = (variable) elem;
1226 location_chain node, next;
1228 gcc_checking_assert (var->refcount > 0);
1230 var->refcount--;
1231 if (var->refcount > 0)
1232 return;
1234 for (i = 0; i < var->n_var_parts; i++)
1236 for (node = var->var_part[i].loc_chain; node; node = next)
1238 next = node->next;
1239 pool_free (loc_chain_pool, node);
1241 var->var_part[i].loc_chain = NULL;
1243 pool_free (dv_pool (var->dv), var);
1246 /* The hash function for value_chains htab, computes the hash value
1247 from the VALUE. */
1249 static hashval_t
1250 value_chain_htab_hash (const void *x)
1252 const_value_chain const v = (const_value_chain) x;
1254 return dv_htab_hash (v->dv);
1257 /* Compare the VALUE X with VALUE Y. */
1259 static int
1260 value_chain_htab_eq (const void *x, const void *y)
1262 const_value_chain const v = (const_value_chain) x;
1263 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1265 return dv_as_opaque (v->dv) == dv_as_opaque (dv);
1268 /* Initialize the set (array) SET of attrs to empty lists. */
1270 static void
1271 init_attrs_list_set (attrs *set)
1273 int i;
1275 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1276 set[i] = NULL;
1279 /* Make the list *LISTP empty. */
1281 static void
1282 attrs_list_clear (attrs *listp)
1284 attrs list, next;
1286 for (list = *listp; list; list = next)
1288 next = list->next;
1289 pool_free (attrs_pool, list);
1291 *listp = NULL;
1294 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1296 static attrs
1297 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1299 for (; list; list = list->next)
1300 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1301 return list;
1302 return NULL;
1305 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1307 static void
1308 attrs_list_insert (attrs *listp, decl_or_value dv,
1309 HOST_WIDE_INT offset, rtx loc)
1311 attrs list;
1313 list = (attrs) pool_alloc (attrs_pool);
1314 list->loc = loc;
1315 list->dv = dv;
1316 list->offset = offset;
1317 list->next = *listp;
1318 *listp = list;
1321 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1323 static void
1324 attrs_list_copy (attrs *dstp, attrs src)
1326 attrs n;
1328 attrs_list_clear (dstp);
1329 for (; src; src = src->next)
1331 n = (attrs) pool_alloc (attrs_pool);
1332 n->loc = src->loc;
1333 n->dv = src->dv;
1334 n->offset = src->offset;
1335 n->next = *dstp;
1336 *dstp = n;
1340 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1342 static void
1343 attrs_list_union (attrs *dstp, attrs src)
1345 for (; src; src = src->next)
1347 if (!attrs_list_member (*dstp, src->dv, src->offset))
1348 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1352 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1353 *DSTP. */
1355 static void
1356 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1358 gcc_assert (!*dstp);
1359 for (; src; src = src->next)
1361 if (!dv_onepart_p (src->dv))
1362 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1364 for (src = src2; src; src = src->next)
1366 if (!dv_onepart_p (src->dv)
1367 && !attrs_list_member (*dstp, src->dv, src->offset))
1368 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1372 /* Shared hashtable support. */
1374 /* Return true if VARS is shared. */
1376 static inline bool
1377 shared_hash_shared (shared_hash vars)
1379 return vars->refcount > 1;
1382 /* Return the hash table for VARS. */
1384 static inline htab_t
1385 shared_hash_htab (shared_hash vars)
1387 return vars->htab;
1390 /* Return true if VAR is shared, or maybe because VARS is shared. */
1392 static inline bool
1393 shared_var_p (variable var, shared_hash vars)
1395 /* Don't count an entry in the changed_variables table as a duplicate. */
1396 return ((var->refcount > 1 + (int) var->in_changed_variables)
1397 || shared_hash_shared (vars));
1400 /* Copy variables into a new hash table. */
1402 static shared_hash
1403 shared_hash_unshare (shared_hash vars)
1405 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1406 gcc_assert (vars->refcount > 1);
1407 new_vars->refcount = 1;
1408 new_vars->htab
1409 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1410 variable_htab_eq, variable_htab_free);
1411 vars_copy (new_vars->htab, vars->htab);
1412 vars->refcount--;
1413 return new_vars;
1416 /* Increment reference counter on VARS and return it. */
1418 static inline shared_hash
1419 shared_hash_copy (shared_hash vars)
1421 vars->refcount++;
1422 return vars;
1425 /* Decrement reference counter and destroy hash table if not shared
1426 anymore. */
1428 static void
1429 shared_hash_destroy (shared_hash vars)
1431 gcc_checking_assert (vars->refcount > 0);
1432 if (--vars->refcount == 0)
1434 htab_delete (vars->htab);
1435 pool_free (shared_hash_pool, vars);
1439 /* Unshare *PVARS if shared and return slot for DV. If INS is
1440 INSERT, insert it if not already present. */
1442 static inline void **
1443 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1444 hashval_t dvhash, enum insert_option ins)
1446 if (shared_hash_shared (*pvars))
1447 *pvars = shared_hash_unshare (*pvars);
1448 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1451 static inline void **
1452 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1453 enum insert_option ins)
1455 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1458 /* Return slot for DV, if it is already present in the hash table.
1459 If it is not present, insert it only VARS is not shared, otherwise
1460 return NULL. */
1462 static inline void **
1463 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1465 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1466 shared_hash_shared (vars)
1467 ? NO_INSERT : INSERT);
1470 static inline void **
1471 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1473 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1476 /* Return slot for DV only if it is already present in the hash table. */
1478 static inline void **
1479 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1480 hashval_t dvhash)
1482 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1483 NO_INSERT);
1486 static inline void **
1487 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1489 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1492 /* Return variable for DV or NULL if not already present in the hash
1493 table. */
1495 static inline variable
1496 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1498 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1501 static inline variable
1502 shared_hash_find (shared_hash vars, decl_or_value dv)
1504 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1507 /* Return true if TVAL is better than CVAL as a canonival value. We
1508 choose lowest-numbered VALUEs, using the RTX address as a
1509 tie-breaker. The idea is to arrange them into a star topology,
1510 such that all of them are at most one step away from the canonical
1511 value, and the canonical value has backlinks to all of them, in
1512 addition to all the actual locations. We don't enforce this
1513 topology throughout the entire dataflow analysis, though.
1516 static inline bool
1517 canon_value_cmp (rtx tval, rtx cval)
1519 return !cval
1520 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1523 static bool dst_can_be_shared;
1525 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1527 static void **
1528 unshare_variable (dataflow_set *set, void **slot, variable var,
1529 enum var_init_status initialized)
1531 variable new_var;
1532 int i;
1534 new_var = (variable) pool_alloc (dv_pool (var->dv));
1535 new_var->dv = var->dv;
1536 new_var->refcount = 1;
1537 var->refcount--;
1538 new_var->n_var_parts = var->n_var_parts;
1539 new_var->cur_loc_changed = var->cur_loc_changed;
1540 var->cur_loc_changed = false;
1541 new_var->in_changed_variables = false;
1543 if (! flag_var_tracking_uninit)
1544 initialized = VAR_INIT_STATUS_INITIALIZED;
1546 for (i = 0; i < var->n_var_parts; i++)
1548 location_chain node;
1549 location_chain *nextp;
1551 new_var->var_part[i].offset = var->var_part[i].offset;
1552 nextp = &new_var->var_part[i].loc_chain;
1553 for (node = var->var_part[i].loc_chain; node; node = node->next)
1555 location_chain new_lc;
1557 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1558 new_lc->next = NULL;
1559 if (node->init > initialized)
1560 new_lc->init = node->init;
1561 else
1562 new_lc->init = initialized;
1563 if (node->set_src && !(MEM_P (node->set_src)))
1564 new_lc->set_src = node->set_src;
1565 else
1566 new_lc->set_src = NULL;
1567 new_lc->loc = node->loc;
1569 *nextp = new_lc;
1570 nextp = &new_lc->next;
1573 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1576 dst_can_be_shared = false;
1577 if (shared_hash_shared (set->vars))
1578 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1579 else if (set->traversed_vars && set->vars != set->traversed_vars)
1580 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1581 *slot = new_var;
1582 if (var->in_changed_variables)
1584 void **cslot
1585 = htab_find_slot_with_hash (changed_variables, var->dv,
1586 dv_htab_hash (var->dv), NO_INSERT);
1587 gcc_assert (*cslot == (void *) var);
1588 var->in_changed_variables = false;
1589 variable_htab_free (var);
1590 *cslot = new_var;
1591 new_var->in_changed_variables = true;
1593 return slot;
1596 /* Copy all variables from hash table SRC to hash table DST. */
1598 static void
1599 vars_copy (htab_t dst, htab_t src)
1601 htab_iterator hi;
1602 variable var;
1604 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1606 void **dstp;
1607 var->refcount++;
1608 dstp = htab_find_slot_with_hash (dst, var->dv,
1609 dv_htab_hash (var->dv),
1610 INSERT);
1611 *dstp = var;
1615 /* Map a decl to its main debug decl. */
1617 static inline tree
1618 var_debug_decl (tree decl)
1620 if (decl && DECL_P (decl)
1621 && DECL_DEBUG_EXPR_IS_FROM (decl))
1623 tree debugdecl = DECL_DEBUG_EXPR (decl);
1624 if (debugdecl && DECL_P (debugdecl))
1625 decl = debugdecl;
1628 return decl;
1631 /* Set the register LOC to contain DV, OFFSET. */
1633 static void
1634 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1635 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1636 enum insert_option iopt)
1638 attrs node;
1639 bool decl_p = dv_is_decl_p (dv);
1641 if (decl_p)
1642 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1644 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1645 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1646 && node->offset == offset)
1647 break;
1648 if (!node)
1649 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1650 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1653 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1655 static void
1656 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1657 rtx set_src)
1659 tree decl = REG_EXPR (loc);
1660 HOST_WIDE_INT offset = REG_OFFSET (loc);
1662 var_reg_decl_set (set, loc, initialized,
1663 dv_from_decl (decl), offset, set_src, INSERT);
1666 static enum var_init_status
1667 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1669 variable var;
1670 int i;
1671 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1673 if (! flag_var_tracking_uninit)
1674 return VAR_INIT_STATUS_INITIALIZED;
1676 var = shared_hash_find (set->vars, dv);
1677 if (var)
1679 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1681 location_chain nextp;
1682 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1683 if (rtx_equal_p (nextp->loc, loc))
1685 ret_val = nextp->init;
1686 break;
1691 return ret_val;
1694 /* Delete current content of register LOC in dataflow set SET and set
1695 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1696 MODIFY is true, any other live copies of the same variable part are
1697 also deleted from the dataflow set, otherwise the variable part is
1698 assumed to be copied from another location holding the same
1699 part. */
1701 static void
1702 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1703 enum var_init_status initialized, rtx set_src)
1705 tree decl = REG_EXPR (loc);
1706 HOST_WIDE_INT offset = REG_OFFSET (loc);
1707 attrs node, next;
1708 attrs *nextp;
1710 decl = var_debug_decl (decl);
1712 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1713 initialized = get_init_value (set, loc, dv_from_decl (decl));
1715 nextp = &set->regs[REGNO (loc)];
1716 for (node = *nextp; node; node = next)
1718 next = node->next;
1719 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1721 delete_variable_part (set, node->loc, node->dv, node->offset);
1722 pool_free (attrs_pool, node);
1723 *nextp = next;
1725 else
1727 node->loc = loc;
1728 nextp = &node->next;
1731 if (modify)
1732 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1733 var_reg_set (set, loc, initialized, set_src);
1736 /* Delete the association of register LOC in dataflow set SET with any
1737 variables that aren't onepart. If CLOBBER is true, also delete any
1738 other live copies of the same variable part, and delete the
1739 association with onepart dvs too. */
1741 static void
1742 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1744 attrs *nextp = &set->regs[REGNO (loc)];
1745 attrs node, next;
1747 if (clobber)
1749 tree decl = REG_EXPR (loc);
1750 HOST_WIDE_INT offset = REG_OFFSET (loc);
1752 decl = var_debug_decl (decl);
1754 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1757 for (node = *nextp; node; node = next)
1759 next = node->next;
1760 if (clobber || !dv_onepart_p (node->dv))
1762 delete_variable_part (set, node->loc, node->dv, node->offset);
1763 pool_free (attrs_pool, node);
1764 *nextp = next;
1766 else
1767 nextp = &node->next;
1771 /* Delete content of register with number REGNO in dataflow set SET. */
1773 static void
1774 var_regno_delete (dataflow_set *set, int regno)
1776 attrs *reg = &set->regs[regno];
1777 attrs node, next;
1779 for (node = *reg; node; node = next)
1781 next = node->next;
1782 delete_variable_part (set, node->loc, node->dv, node->offset);
1783 pool_free (attrs_pool, node);
1785 *reg = NULL;
1788 /* Set the location of DV, OFFSET as the MEM LOC. */
1790 static void
1791 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1792 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1793 enum insert_option iopt)
1795 if (dv_is_decl_p (dv))
1796 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1798 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1801 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1802 SET to LOC.
1803 Adjust the address first if it is stack pointer based. */
1805 static void
1806 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1807 rtx set_src)
1809 tree decl = MEM_EXPR (loc);
1810 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1812 var_mem_decl_set (set, loc, initialized,
1813 dv_from_decl (decl), offset, set_src, INSERT);
1816 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1817 dataflow set SET to LOC. If MODIFY is true, any other live copies
1818 of the same variable part are also deleted from the dataflow set,
1819 otherwise the variable part is assumed to be copied from another
1820 location holding the same part.
1821 Adjust the address first if it is stack pointer based. */
1823 static void
1824 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1825 enum var_init_status initialized, rtx set_src)
1827 tree decl = MEM_EXPR (loc);
1828 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1830 decl = var_debug_decl (decl);
1832 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1833 initialized = get_init_value (set, loc, dv_from_decl (decl));
1835 if (modify)
1836 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1837 var_mem_set (set, loc, initialized, set_src);
1840 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1841 true, also delete any other live copies of the same variable part.
1842 Adjust the address first if it is stack pointer based. */
1844 static void
1845 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1847 tree decl = MEM_EXPR (loc);
1848 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1850 decl = var_debug_decl (decl);
1851 if (clobber)
1852 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1853 delete_variable_part (set, loc, dv_from_decl (decl), offset);
1856 /* Bind a value to a location it was just stored in. If MODIFIED
1857 holds, assume the location was modified, detaching it from any
1858 values bound to it. */
1860 static void
1861 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
1863 cselib_val *v = CSELIB_VAL_PTR (val);
1865 gcc_assert (cselib_preserved_value_p (v));
1867 if (dump_file)
1869 fprintf (dump_file, "%i: ", INSN_UID (insn));
1870 print_inline_rtx (dump_file, val, 0);
1871 fprintf (dump_file, " stored in ");
1872 print_inline_rtx (dump_file, loc, 0);
1873 if (v->locs)
1875 struct elt_loc_list *l;
1876 for (l = v->locs; l; l = l->next)
1878 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
1879 print_inline_rtx (dump_file, l->loc, 0);
1882 fprintf (dump_file, "\n");
1885 if (REG_P (loc))
1887 if (modified)
1888 var_regno_delete (set, REGNO (loc));
1889 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1890 dv_from_value (val), 0, NULL_RTX, INSERT);
1892 else if (MEM_P (loc))
1893 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1894 dv_from_value (val), 0, NULL_RTX, INSERT);
1895 else
1896 set_variable_part (set, loc, dv_from_value (val), 0,
1897 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1900 /* Reset this node, detaching all its equivalences. Return the slot
1901 in the variable hash table that holds dv, if there is one. */
1903 static void
1904 val_reset (dataflow_set *set, decl_or_value dv)
1906 variable var = shared_hash_find (set->vars, dv) ;
1907 location_chain node;
1908 rtx cval;
1910 if (!var || !var->n_var_parts)
1911 return;
1913 gcc_assert (var->n_var_parts == 1);
1915 cval = NULL;
1916 for (node = var->var_part[0].loc_chain; node; node = node->next)
1917 if (GET_CODE (node->loc) == VALUE
1918 && canon_value_cmp (node->loc, cval))
1919 cval = node->loc;
1921 for (node = var->var_part[0].loc_chain; node; node = node->next)
1922 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
1924 /* Redirect the equivalence link to the new canonical
1925 value, or simply remove it if it would point at
1926 itself. */
1927 if (cval)
1928 set_variable_part (set, cval, dv_from_value (node->loc),
1929 0, node->init, node->set_src, NO_INSERT);
1930 delete_variable_part (set, dv_as_value (dv),
1931 dv_from_value (node->loc), 0);
1934 if (cval)
1936 decl_or_value cdv = dv_from_value (cval);
1938 /* Keep the remaining values connected, accummulating links
1939 in the canonical value. */
1940 for (node = var->var_part[0].loc_chain; node; node = node->next)
1942 if (node->loc == cval)
1943 continue;
1944 else if (GET_CODE (node->loc) == REG)
1945 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
1946 node->set_src, NO_INSERT);
1947 else if (GET_CODE (node->loc) == MEM)
1948 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
1949 node->set_src, NO_INSERT);
1950 else
1951 set_variable_part (set, node->loc, cdv, 0,
1952 node->init, node->set_src, NO_INSERT);
1956 /* We remove this last, to make sure that the canonical value is not
1957 removed to the point of requiring reinsertion. */
1958 if (cval)
1959 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
1961 clobber_variable_part (set, NULL, dv, 0, NULL);
1963 /* ??? Should we make sure there aren't other available values or
1964 variables whose values involve this one other than by
1965 equivalence? E.g., at the very least we should reset MEMs, those
1966 shouldn't be too hard to find cselib-looking up the value as an
1967 address, then locating the resulting value in our own hash
1968 table. */
1971 /* Find the values in a given location and map the val to another
1972 value, if it is unique, or add the location as one holding the
1973 value. */
1975 static void
1976 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
1978 decl_or_value dv = dv_from_value (val);
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1982 if (insn)
1983 fprintf (dump_file, "%i: ", INSN_UID (insn));
1984 else
1985 fprintf (dump_file, "head: ");
1986 print_inline_rtx (dump_file, val, 0);
1987 fputs (" is at ", dump_file);
1988 print_inline_rtx (dump_file, loc, 0);
1989 fputc ('\n', dump_file);
1992 val_reset (set, dv);
1994 if (REG_P (loc))
1996 attrs node, found = NULL;
1998 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1999 if (dv_is_value_p (node->dv)
2000 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2002 found = node;
2004 /* Map incoming equivalences. ??? Wouldn't it be nice if
2005 we just started sharing the location lists? Maybe a
2006 circular list ending at the value itself or some
2007 such. */
2008 set_variable_part (set, dv_as_value (node->dv),
2009 dv_from_value (val), node->offset,
2010 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2011 set_variable_part (set, val, node->dv, node->offset,
2012 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2015 /* If we didn't find any equivalence, we need to remember that
2016 this value is held in the named register. */
2017 if (!found)
2018 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2019 dv_from_value (val), 0, NULL_RTX, INSERT);
2021 else if (MEM_P (loc))
2022 /* ??? Merge equivalent MEMs. */
2023 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2024 dv_from_value (val), 0, NULL_RTX, INSERT);
2025 else
2026 /* ??? Merge equivalent expressions. */
2027 set_variable_part (set, loc, dv_from_value (val), 0,
2028 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2031 /* Initialize dataflow set SET to be empty.
2032 VARS_SIZE is the initial size of hash table VARS. */
2034 static void
2035 dataflow_set_init (dataflow_set *set)
2037 init_attrs_list_set (set->regs);
2038 set->vars = shared_hash_copy (empty_shared_hash);
2039 set->stack_adjust = 0;
2040 set->traversed_vars = NULL;
2043 /* Delete the contents of dataflow set SET. */
2045 static void
2046 dataflow_set_clear (dataflow_set *set)
2048 int i;
2050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2051 attrs_list_clear (&set->regs[i]);
2053 shared_hash_destroy (set->vars);
2054 set->vars = shared_hash_copy (empty_shared_hash);
2057 /* Copy the contents of dataflow set SRC to DST. */
2059 static void
2060 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2062 int i;
2064 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2065 attrs_list_copy (&dst->regs[i], src->regs[i]);
2067 shared_hash_destroy (dst->vars);
2068 dst->vars = shared_hash_copy (src->vars);
2069 dst->stack_adjust = src->stack_adjust;
2072 /* Information for merging lists of locations for a given offset of variable.
2074 struct variable_union_info
2076 /* Node of the location chain. */
2077 location_chain lc;
2079 /* The sum of positions in the input chains. */
2080 int pos;
2082 /* The position in the chain of DST dataflow set. */
2083 int pos_dst;
2086 /* Buffer for location list sorting and its allocated size. */
2087 static struct variable_union_info *vui_vec;
2088 static int vui_allocated;
2090 /* Compare function for qsort, order the structures by POS element. */
2092 static int
2093 variable_union_info_cmp_pos (const void *n1, const void *n2)
2095 const struct variable_union_info *const i1 =
2096 (const struct variable_union_info *) n1;
2097 const struct variable_union_info *const i2 =
2098 ( const struct variable_union_info *) n2;
2100 if (i1->pos != i2->pos)
2101 return i1->pos - i2->pos;
2103 return (i1->pos_dst - i2->pos_dst);
2106 /* Compute union of location parts of variable *SLOT and the same variable
2107 from hash table DATA. Compute "sorted" union of the location chains
2108 for common offsets, i.e. the locations of a variable part are sorted by
2109 a priority where the priority is the sum of the positions in the 2 chains
2110 (if a location is only in one list the position in the second list is
2111 defined to be larger than the length of the chains).
2112 When we are updating the location parts the newest location is in the
2113 beginning of the chain, so when we do the described "sorted" union
2114 we keep the newest locations in the beginning. */
2116 static int
2117 variable_union (variable src, dataflow_set *set)
2119 variable dst;
2120 void **dstp;
2121 int i, j, k;
2123 dstp = shared_hash_find_slot (set->vars, src->dv);
2124 if (!dstp || !*dstp)
2126 src->refcount++;
2128 dst_can_be_shared = false;
2129 if (!dstp)
2130 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2132 *dstp = src;
2134 /* Continue traversing the hash table. */
2135 return 1;
2137 else
2138 dst = (variable) *dstp;
2140 gcc_assert (src->n_var_parts);
2142 /* We can combine one-part variables very efficiently, because their
2143 entries are in canonical order. */
2144 if (dv_onepart_p (src->dv))
2146 location_chain *nodep, dnode, snode;
2148 gcc_assert (src->n_var_parts == 1
2149 && dst->n_var_parts == 1);
2151 snode = src->var_part[0].loc_chain;
2152 gcc_assert (snode);
2154 restart_onepart_unshared:
2155 nodep = &dst->var_part[0].loc_chain;
2156 dnode = *nodep;
2157 gcc_assert (dnode);
2159 while (snode)
2161 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2163 if (r > 0)
2165 location_chain nnode;
2167 if (shared_var_p (dst, set->vars))
2169 dstp = unshare_variable (set, dstp, dst,
2170 VAR_INIT_STATUS_INITIALIZED);
2171 dst = (variable)*dstp;
2172 goto restart_onepart_unshared;
2175 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2176 nnode->loc = snode->loc;
2177 nnode->init = snode->init;
2178 if (!snode->set_src || MEM_P (snode->set_src))
2179 nnode->set_src = NULL;
2180 else
2181 nnode->set_src = snode->set_src;
2182 nnode->next = dnode;
2183 dnode = nnode;
2185 else if (r == 0)
2186 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2188 if (r >= 0)
2189 snode = snode->next;
2191 nodep = &dnode->next;
2192 dnode = *nodep;
2195 return 1;
2198 /* Count the number of location parts, result is K. */
2199 for (i = 0, j = 0, k = 0;
2200 i < src->n_var_parts && j < dst->n_var_parts; k++)
2202 if (src->var_part[i].offset == dst->var_part[j].offset)
2204 i++;
2205 j++;
2207 else if (src->var_part[i].offset < dst->var_part[j].offset)
2208 i++;
2209 else
2210 j++;
2212 k += src->n_var_parts - i;
2213 k += dst->n_var_parts - j;
2215 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2216 thus there are at most MAX_VAR_PARTS different offsets. */
2217 gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
2219 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2221 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2222 dst = (variable)*dstp;
2225 i = src->n_var_parts - 1;
2226 j = dst->n_var_parts - 1;
2227 dst->n_var_parts = k;
2229 for (k--; k >= 0; k--)
2231 location_chain node, node2;
2233 if (i >= 0 && j >= 0
2234 && src->var_part[i].offset == dst->var_part[j].offset)
2236 /* Compute the "sorted" union of the chains, i.e. the locations which
2237 are in both chains go first, they are sorted by the sum of
2238 positions in the chains. */
2239 int dst_l, src_l;
2240 int ii, jj, n;
2241 struct variable_union_info *vui;
2243 /* If DST is shared compare the location chains.
2244 If they are different we will modify the chain in DST with
2245 high probability so make a copy of DST. */
2246 if (shared_var_p (dst, set->vars))
2248 for (node = src->var_part[i].loc_chain,
2249 node2 = dst->var_part[j].loc_chain; node && node2;
2250 node = node->next, node2 = node2->next)
2252 if (!((REG_P (node2->loc)
2253 && REG_P (node->loc)
2254 && REGNO (node2->loc) == REGNO (node->loc))
2255 || rtx_equal_p (node2->loc, node->loc)))
2257 if (node2->init < node->init)
2258 node2->init = node->init;
2259 break;
2262 if (node || node2)
2264 dstp = unshare_variable (set, dstp, dst,
2265 VAR_INIT_STATUS_UNKNOWN);
2266 dst = (variable)*dstp;
2270 src_l = 0;
2271 for (node = src->var_part[i].loc_chain; node; node = node->next)
2272 src_l++;
2273 dst_l = 0;
2274 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2275 dst_l++;
2277 if (dst_l == 1)
2279 /* The most common case, much simpler, no qsort is needed. */
2280 location_chain dstnode = dst->var_part[j].loc_chain;
2281 dst->var_part[k].loc_chain = dstnode;
2282 dst->var_part[k].offset = dst->var_part[j].offset;
2283 node2 = dstnode;
2284 for (node = src->var_part[i].loc_chain; node; node = node->next)
2285 if (!((REG_P (dstnode->loc)
2286 && REG_P (node->loc)
2287 && REGNO (dstnode->loc) == REGNO (node->loc))
2288 || rtx_equal_p (dstnode->loc, node->loc)))
2290 location_chain new_node;
2292 /* Copy the location from SRC. */
2293 new_node = (location_chain) pool_alloc (loc_chain_pool);
2294 new_node->loc = node->loc;
2295 new_node->init = node->init;
2296 if (!node->set_src || MEM_P (node->set_src))
2297 new_node->set_src = NULL;
2298 else
2299 new_node->set_src = node->set_src;
2300 node2->next = new_node;
2301 node2 = new_node;
2303 node2->next = NULL;
2305 else
2307 if (src_l + dst_l > vui_allocated)
2309 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2310 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2311 vui_allocated);
2313 vui = vui_vec;
2315 /* Fill in the locations from DST. */
2316 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2317 node = node->next, jj++)
2319 vui[jj].lc = node;
2320 vui[jj].pos_dst = jj;
2322 /* Pos plus value larger than a sum of 2 valid positions. */
2323 vui[jj].pos = jj + src_l + dst_l;
2326 /* Fill in the locations from SRC. */
2327 n = dst_l;
2328 for (node = src->var_part[i].loc_chain, ii = 0; node;
2329 node = node->next, ii++)
2331 /* Find location from NODE. */
2332 for (jj = 0; jj < dst_l; jj++)
2334 if ((REG_P (vui[jj].lc->loc)
2335 && REG_P (node->loc)
2336 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2337 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2339 vui[jj].pos = jj + ii;
2340 break;
2343 if (jj >= dst_l) /* The location has not been found. */
2345 location_chain new_node;
2347 /* Copy the location from SRC. */
2348 new_node = (location_chain) pool_alloc (loc_chain_pool);
2349 new_node->loc = node->loc;
2350 new_node->init = node->init;
2351 if (!node->set_src || MEM_P (node->set_src))
2352 new_node->set_src = NULL;
2353 else
2354 new_node->set_src = node->set_src;
2355 vui[n].lc = new_node;
2356 vui[n].pos_dst = src_l + dst_l;
2357 vui[n].pos = ii + src_l + dst_l;
2358 n++;
2362 if (dst_l == 2)
2364 /* Special case still very common case. For dst_l == 2
2365 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2366 vui[i].pos == i + src_l + dst_l. */
2367 if (vui[0].pos > vui[1].pos)
2369 /* Order should be 1, 0, 2... */
2370 dst->var_part[k].loc_chain = vui[1].lc;
2371 vui[1].lc->next = vui[0].lc;
2372 if (n >= 3)
2374 vui[0].lc->next = vui[2].lc;
2375 vui[n - 1].lc->next = NULL;
2377 else
2378 vui[0].lc->next = NULL;
2379 ii = 3;
2381 else
2383 dst->var_part[k].loc_chain = vui[0].lc;
2384 if (n >= 3 && vui[2].pos < vui[1].pos)
2386 /* Order should be 0, 2, 1, 3... */
2387 vui[0].lc->next = vui[2].lc;
2388 vui[2].lc->next = vui[1].lc;
2389 if (n >= 4)
2391 vui[1].lc->next = vui[3].lc;
2392 vui[n - 1].lc->next = NULL;
2394 else
2395 vui[1].lc->next = NULL;
2396 ii = 4;
2398 else
2400 /* Order should be 0, 1, 2... */
2401 ii = 1;
2402 vui[n - 1].lc->next = NULL;
2405 for (; ii < n; ii++)
2406 vui[ii - 1].lc->next = vui[ii].lc;
2408 else
2410 qsort (vui, n, sizeof (struct variable_union_info),
2411 variable_union_info_cmp_pos);
2413 /* Reconnect the nodes in sorted order. */
2414 for (ii = 1; ii < n; ii++)
2415 vui[ii - 1].lc->next = vui[ii].lc;
2416 vui[n - 1].lc->next = NULL;
2417 dst->var_part[k].loc_chain = vui[0].lc;
2420 dst->var_part[k].offset = dst->var_part[j].offset;
2422 i--;
2423 j--;
2425 else if ((i >= 0 && j >= 0
2426 && src->var_part[i].offset < dst->var_part[j].offset)
2427 || i < 0)
2429 dst->var_part[k] = dst->var_part[j];
2430 j--;
2432 else if ((i >= 0 && j >= 0
2433 && src->var_part[i].offset > dst->var_part[j].offset)
2434 || j < 0)
2436 location_chain *nextp;
2438 /* Copy the chain from SRC. */
2439 nextp = &dst->var_part[k].loc_chain;
2440 for (node = src->var_part[i].loc_chain; node; node = node->next)
2442 location_chain new_lc;
2444 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2445 new_lc->next = NULL;
2446 new_lc->init = node->init;
2447 if (!node->set_src || MEM_P (node->set_src))
2448 new_lc->set_src = NULL;
2449 else
2450 new_lc->set_src = node->set_src;
2451 new_lc->loc = node->loc;
2453 *nextp = new_lc;
2454 nextp = &new_lc->next;
2457 dst->var_part[k].offset = src->var_part[i].offset;
2458 i--;
2460 dst->var_part[k].cur_loc = NULL;
2463 if (flag_var_tracking_uninit)
2464 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2466 location_chain node, node2;
2467 for (node = src->var_part[i].loc_chain; node; node = node->next)
2468 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2469 if (rtx_equal_p (node->loc, node2->loc))
2471 if (node->init > node2->init)
2472 node2->init = node->init;
2476 /* Continue traversing the hash table. */
2477 return 1;
2480 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2482 static void
2483 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2485 int i;
2487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2488 attrs_list_union (&dst->regs[i], src->regs[i]);
2490 if (dst->vars == empty_shared_hash)
2492 shared_hash_destroy (dst->vars);
2493 dst->vars = shared_hash_copy (src->vars);
2495 else
2497 htab_iterator hi;
2498 variable var;
2500 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2501 variable_union (var, dst);
2505 /* Whether the value is currently being expanded. */
2506 #define VALUE_RECURSED_INTO(x) \
2507 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2508 /* Whether the value is in changed_variables hash table. */
2509 #define VALUE_CHANGED(x) \
2510 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2511 /* Whether the decl is in changed_variables hash table. */
2512 #define DECL_CHANGED(x) TREE_VISITED (x)
2514 /* Record that DV has been added into resp. removed from changed_variables
2515 hashtable. */
2517 static inline void
2518 set_dv_changed (decl_or_value dv, bool newv)
2520 if (dv_is_value_p (dv))
2521 VALUE_CHANGED (dv_as_value (dv)) = newv;
2522 else
2523 DECL_CHANGED (dv_as_decl (dv)) = newv;
2526 /* Return true if DV is present in changed_variables hash table. */
2528 static inline bool
2529 dv_changed_p (decl_or_value dv)
2531 return (dv_is_value_p (dv)
2532 ? VALUE_CHANGED (dv_as_value (dv))
2533 : DECL_CHANGED (dv_as_decl (dv)));
2536 /* Return a location list node whose loc is rtx_equal to LOC, in the
2537 location list of a one-part variable or value VAR, or in that of
2538 any values recursively mentioned in the location lists. VARS must
2539 be in star-canonical form. */
2541 static location_chain
2542 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2544 location_chain node;
2545 enum rtx_code loc_code;
2547 if (!var)
2548 return NULL;
2550 gcc_checking_assert (dv_onepart_p (var->dv));
2552 if (!var->n_var_parts)
2553 return NULL;
2555 gcc_checking_assert (var->var_part[0].offset == 0);
2556 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2558 loc_code = GET_CODE (loc);
2559 for (node = var->var_part[0].loc_chain; node; node = node->next)
2561 decl_or_value dv;
2562 variable rvar;
2564 if (GET_CODE (node->loc) != loc_code)
2566 if (GET_CODE (node->loc) != VALUE)
2567 continue;
2569 else if (loc == node->loc)
2570 return node;
2571 else if (loc_code != VALUE)
2573 if (rtx_equal_p (loc, node->loc))
2574 return node;
2575 continue;
2578 /* Since we're in star-canonical form, we don't need to visit
2579 non-canonical nodes: one-part variables and non-canonical
2580 values would only point back to the canonical node. */
2581 if (dv_is_value_p (var->dv)
2582 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2584 /* Skip all subsequent VALUEs. */
2585 while (node->next && GET_CODE (node->next->loc) == VALUE)
2587 node = node->next;
2588 gcc_checking_assert (!canon_value_cmp (node->loc,
2589 dv_as_value (var->dv)));
2590 if (loc == node->loc)
2591 return node;
2593 continue;
2596 gcc_checking_assert (node == var->var_part[0].loc_chain);
2597 gcc_checking_assert (!node->next);
2599 dv = dv_from_value (node->loc);
2600 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2601 return find_loc_in_1pdv (loc, rvar, vars);
2604 return NULL;
2607 /* Hash table iteration argument passed to variable_merge. */
2608 struct dfset_merge
2610 /* The set in which the merge is to be inserted. */
2611 dataflow_set *dst;
2612 /* The set that we're iterating in. */
2613 dataflow_set *cur;
2614 /* The set that may contain the other dv we are to merge with. */
2615 dataflow_set *src;
2616 /* Number of onepart dvs in src. */
2617 int src_onepart_cnt;
2620 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2621 loc_cmp order, and it is maintained as such. */
2623 static void
2624 insert_into_intersection (location_chain *nodep, rtx loc,
2625 enum var_init_status status)
2627 location_chain node;
2628 int r;
2630 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2631 if ((r = loc_cmp (node->loc, loc)) == 0)
2633 node->init = MIN (node->init, status);
2634 return;
2636 else if (r > 0)
2637 break;
2639 node = (location_chain) pool_alloc (loc_chain_pool);
2641 node->loc = loc;
2642 node->set_src = NULL;
2643 node->init = status;
2644 node->next = *nodep;
2645 *nodep = node;
2648 /* Insert in DEST the intersection the locations present in both
2649 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2650 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2651 DSM->dst. */
2653 static void
2654 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2655 location_chain s1node, variable s2var)
2657 dataflow_set *s1set = dsm->cur;
2658 dataflow_set *s2set = dsm->src;
2659 location_chain found;
2661 if (s2var)
2663 location_chain s2node;
2665 gcc_checking_assert (dv_onepart_p (s2var->dv));
2667 if (s2var->n_var_parts)
2669 gcc_checking_assert (s2var->var_part[0].offset == 0);
2670 s2node = s2var->var_part[0].loc_chain;
2672 for (; s1node && s2node;
2673 s1node = s1node->next, s2node = s2node->next)
2674 if (s1node->loc != s2node->loc)
2675 break;
2676 else if (s1node->loc == val)
2677 continue;
2678 else
2679 insert_into_intersection (dest, s1node->loc,
2680 MIN (s1node->init, s2node->init));
2684 for (; s1node; s1node = s1node->next)
2686 if (s1node->loc == val)
2687 continue;
2689 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2690 shared_hash_htab (s2set->vars))))
2692 insert_into_intersection (dest, s1node->loc,
2693 MIN (s1node->init, found->init));
2694 continue;
2697 if (GET_CODE (s1node->loc) == VALUE
2698 && !VALUE_RECURSED_INTO (s1node->loc))
2700 decl_or_value dv = dv_from_value (s1node->loc);
2701 variable svar = shared_hash_find (s1set->vars, dv);
2702 if (svar)
2704 if (svar->n_var_parts == 1)
2706 VALUE_RECURSED_INTO (s1node->loc) = true;
2707 intersect_loc_chains (val, dest, dsm,
2708 svar->var_part[0].loc_chain,
2709 s2var);
2710 VALUE_RECURSED_INTO (s1node->loc) = false;
2715 /* ??? if the location is equivalent to any location in src,
2716 searched recursively
2718 add to dst the values needed to represent the equivalence
2720 telling whether locations S is equivalent to another dv's
2721 location list:
2723 for each location D in the list
2725 if S and D satisfy rtx_equal_p, then it is present
2727 else if D is a value, recurse without cycles
2729 else if S and D have the same CODE and MODE
2731 for each operand oS and the corresponding oD
2733 if oS and oD are not equivalent, then S an D are not equivalent
2735 else if they are RTX vectors
2737 if any vector oS element is not equivalent to its respective oD,
2738 then S and D are not equivalent
2746 /* Return -1 if X should be before Y in a location list for a 1-part
2747 variable, 1 if Y should be before X, and 0 if they're equivalent
2748 and should not appear in the list. */
2750 static int
2751 loc_cmp (rtx x, rtx y)
2753 int i, j, r;
2754 RTX_CODE code = GET_CODE (x);
2755 const char *fmt;
2757 if (x == y)
2758 return 0;
2760 if (REG_P (x))
2762 if (!REG_P (y))
2763 return -1;
2764 gcc_assert (GET_MODE (x) == GET_MODE (y));
2765 if (REGNO (x) == REGNO (y))
2766 return 0;
2767 else if (REGNO (x) < REGNO (y))
2768 return -1;
2769 else
2770 return 1;
2773 if (REG_P (y))
2774 return 1;
2776 if (MEM_P (x))
2778 if (!MEM_P (y))
2779 return -1;
2780 gcc_assert (GET_MODE (x) == GET_MODE (y));
2781 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
2784 if (MEM_P (y))
2785 return 1;
2787 if (GET_CODE (x) == VALUE)
2789 if (GET_CODE (y) != VALUE)
2790 return -1;
2791 /* Don't assert the modes are the same, that is true only
2792 when not recursing. (subreg:QI (value:SI 1:1) 0)
2793 and (subreg:QI (value:DI 2:2) 0) can be compared,
2794 even when the modes are different. */
2795 if (canon_value_cmp (x, y))
2796 return -1;
2797 else
2798 return 1;
2801 if (GET_CODE (y) == VALUE)
2802 return 1;
2804 if (GET_CODE (x) == GET_CODE (y))
2805 /* Compare operands below. */;
2806 else if (GET_CODE (x) < GET_CODE (y))
2807 return -1;
2808 else
2809 return 1;
2811 gcc_assert (GET_MODE (x) == GET_MODE (y));
2813 if (GET_CODE (x) == DEBUG_EXPR)
2815 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2816 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
2817 return -1;
2818 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2819 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
2820 return 1;
2823 fmt = GET_RTX_FORMAT (code);
2824 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2825 switch (fmt[i])
2827 case 'w':
2828 if (XWINT (x, i) == XWINT (y, i))
2829 break;
2830 else if (XWINT (x, i) < XWINT (y, i))
2831 return -1;
2832 else
2833 return 1;
2835 case 'n':
2836 case 'i':
2837 if (XINT (x, i) == XINT (y, i))
2838 break;
2839 else if (XINT (x, i) < XINT (y, i))
2840 return -1;
2841 else
2842 return 1;
2844 case 'V':
2845 case 'E':
2846 /* Compare the vector length first. */
2847 if (XVECLEN (x, i) == XVECLEN (y, i))
2848 /* Compare the vectors elements. */;
2849 else if (XVECLEN (x, i) < XVECLEN (y, i))
2850 return -1;
2851 else
2852 return 1;
2854 for (j = 0; j < XVECLEN (x, i); j++)
2855 if ((r = loc_cmp (XVECEXP (x, i, j),
2856 XVECEXP (y, i, j))))
2857 return r;
2858 break;
2860 case 'e':
2861 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
2862 return r;
2863 break;
2865 case 'S':
2866 case 's':
2867 if (XSTR (x, i) == XSTR (y, i))
2868 break;
2869 if (!XSTR (x, i))
2870 return -1;
2871 if (!XSTR (y, i))
2872 return 1;
2873 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
2874 break;
2875 else if (r < 0)
2876 return -1;
2877 else
2878 return 1;
2880 case 'u':
2881 /* These are just backpointers, so they don't matter. */
2882 break;
2884 case '0':
2885 case 't':
2886 break;
2888 /* It is believed that rtx's at this level will never
2889 contain anything but integers and other rtx's,
2890 except for within LABEL_REFs and SYMBOL_REFs. */
2891 default:
2892 gcc_unreachable ();
2895 return 0;
2898 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2899 from VALUE to DVP. */
2901 static int
2902 add_value_chain (rtx *loc, void *dvp)
2904 decl_or_value dv, ldv;
2905 value_chain vc, nvc;
2906 void **slot;
2908 if (GET_CODE (*loc) == VALUE)
2909 ldv = dv_from_value (*loc);
2910 else if (GET_CODE (*loc) == DEBUG_EXPR)
2911 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2912 else
2913 return 0;
2915 if (dv_as_opaque (ldv) == dvp)
2916 return 0;
2918 dv = (decl_or_value) dvp;
2919 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2920 INSERT);
2921 if (!*slot)
2923 vc = (value_chain) pool_alloc (value_chain_pool);
2924 vc->dv = ldv;
2925 vc->next = NULL;
2926 vc->refcount = 0;
2927 *slot = (void *) vc;
2929 else
2931 for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
2932 if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
2933 break;
2934 if (vc)
2936 vc->refcount++;
2937 return 0;
2940 vc = (value_chain) *slot;
2941 nvc = (value_chain) pool_alloc (value_chain_pool);
2942 nvc->dv = dv;
2943 nvc->next = vc->next;
2944 nvc->refcount = 1;
2945 vc->next = nvc;
2946 return 0;
2949 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2950 from those VALUEs to DVP. */
2952 static void
2953 add_value_chains (decl_or_value dv, rtx loc)
2955 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2957 add_value_chain (&loc, dv_as_opaque (dv));
2958 return;
2960 if (REG_P (loc))
2961 return;
2962 if (MEM_P (loc))
2963 loc = XEXP (loc, 0);
2964 for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
2967 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2968 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2969 that is something we never can express in .debug_info and can prevent
2970 reverse ops from being used. */
2972 static void
2973 add_cselib_value_chains (decl_or_value dv)
2975 struct elt_loc_list **l;
2977 for (l = &CSELIB_VAL_PTR (dv_as_value (dv))->locs; *l;)
2978 if (GET_CODE ((*l)->loc) == ASM_OPERANDS)
2979 *l = (*l)->next;
2980 else
2982 for_each_rtx (&(*l)->loc, add_value_chain, dv_as_opaque (dv));
2983 l = &(*l)->next;
2987 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2988 from VALUE to DVP. */
2990 static int
2991 remove_value_chain (rtx *loc, void *dvp)
2993 decl_or_value dv, ldv;
2994 value_chain vc;
2995 void **slot;
2997 if (GET_CODE (*loc) == VALUE)
2998 ldv = dv_from_value (*loc);
2999 else if (GET_CODE (*loc) == DEBUG_EXPR)
3000 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
3001 else
3002 return 0;
3004 if (dv_as_opaque (ldv) == dvp)
3005 return 0;
3007 dv = (decl_or_value) dvp;
3008 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
3009 NO_INSERT);
3010 for (vc = (value_chain) *slot; vc->next; vc = vc->next)
3011 if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
3013 value_chain dvc = vc->next;
3014 gcc_assert (dvc->refcount > 0);
3015 if (--dvc->refcount == 0)
3017 vc->next = dvc->next;
3018 pool_free (value_chain_pool, dvc);
3019 if (vc->next == NULL && vc == (value_chain) *slot)
3021 pool_free (value_chain_pool, vc);
3022 htab_clear_slot (value_chains, slot);
3025 return 0;
3027 gcc_unreachable ();
3030 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
3031 from those VALUEs to DVP. */
3033 static void
3034 remove_value_chains (decl_or_value dv, rtx loc)
3036 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
3038 remove_value_chain (&loc, dv_as_opaque (dv));
3039 return;
3041 if (REG_P (loc))
3042 return;
3043 if (MEM_P (loc))
3044 loc = XEXP (loc, 0);
3045 for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
3048 #if ENABLE_CHECKING
3049 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
3050 VALUEs to DV. */
3052 static void
3053 remove_cselib_value_chains (decl_or_value dv)
3055 struct elt_loc_list *l;
3057 for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
3058 for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
3061 /* Check the order of entries in one-part variables. */
3063 static int
3064 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3066 variable var = (variable) *slot;
3067 decl_or_value dv = var->dv;
3068 location_chain node, next;
3070 #ifdef ENABLE_RTL_CHECKING
3071 int i;
3072 for (i = 0; i < var->n_var_parts; i++)
3073 gcc_assert (var->var_part[0].cur_loc == NULL);
3074 gcc_assert (!var->cur_loc_changed && !var->in_changed_variables);
3075 #endif
3077 if (!dv_onepart_p (dv))
3078 return 1;
3080 gcc_assert (var->n_var_parts == 1);
3081 node = var->var_part[0].loc_chain;
3082 gcc_assert (node);
3084 while ((next = node->next))
3086 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3087 node = next;
3090 return 1;
3092 #endif
3094 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3095 more likely to be chosen as canonical for an equivalence set.
3096 Ensure less likely values can reach more likely neighbors, making
3097 the connections bidirectional. */
3099 static int
3100 canonicalize_values_mark (void **slot, void *data)
3102 dataflow_set *set = (dataflow_set *)data;
3103 variable var = (variable) *slot;
3104 decl_or_value dv = var->dv;
3105 rtx val;
3106 location_chain node;
3108 if (!dv_is_value_p (dv))
3109 return 1;
3111 gcc_checking_assert (var->n_var_parts == 1);
3113 val = dv_as_value (dv);
3115 for (node = var->var_part[0].loc_chain; node; node = node->next)
3116 if (GET_CODE (node->loc) == VALUE)
3118 if (canon_value_cmp (node->loc, val))
3119 VALUE_RECURSED_INTO (val) = true;
3120 else
3122 decl_or_value odv = dv_from_value (node->loc);
3123 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3125 set_slot_part (set, val, oslot, odv, 0,
3126 node->init, NULL_RTX);
3128 VALUE_RECURSED_INTO (node->loc) = true;
3132 return 1;
3135 /* Remove redundant entries from equivalence lists in onepart
3136 variables, canonicalizing equivalence sets into star shapes. */
3138 static int
3139 canonicalize_values_star (void **slot, void *data)
3141 dataflow_set *set = (dataflow_set *)data;
3142 variable var = (variable) *slot;
3143 decl_or_value dv = var->dv;
3144 location_chain node;
3145 decl_or_value cdv;
3146 rtx val, cval;
3147 void **cslot;
3148 bool has_value;
3149 bool has_marks;
3151 if (!dv_onepart_p (dv))
3152 return 1;
3154 gcc_checking_assert (var->n_var_parts == 1);
3156 if (dv_is_value_p (dv))
3158 cval = dv_as_value (dv);
3159 if (!VALUE_RECURSED_INTO (cval))
3160 return 1;
3161 VALUE_RECURSED_INTO (cval) = false;
3163 else
3164 cval = NULL_RTX;
3166 restart:
3167 val = cval;
3168 has_value = false;
3169 has_marks = false;
3171 gcc_assert (var->n_var_parts == 1);
3173 for (node = var->var_part[0].loc_chain; node; node = node->next)
3174 if (GET_CODE (node->loc) == VALUE)
3176 has_value = true;
3177 if (VALUE_RECURSED_INTO (node->loc))
3178 has_marks = true;
3179 if (canon_value_cmp (node->loc, cval))
3180 cval = node->loc;
3183 if (!has_value)
3184 return 1;
3186 if (cval == val)
3188 if (!has_marks || dv_is_decl_p (dv))
3189 return 1;
3191 /* Keep it marked so that we revisit it, either after visiting a
3192 child node, or after visiting a new parent that might be
3193 found out. */
3194 VALUE_RECURSED_INTO (val) = true;
3196 for (node = var->var_part[0].loc_chain; node; node = node->next)
3197 if (GET_CODE (node->loc) == VALUE
3198 && VALUE_RECURSED_INTO (node->loc))
3200 cval = node->loc;
3201 restart_with_cval:
3202 VALUE_RECURSED_INTO (cval) = false;
3203 dv = dv_from_value (cval);
3204 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3205 if (!slot)
3207 gcc_assert (dv_is_decl_p (var->dv));
3208 /* The canonical value was reset and dropped.
3209 Remove it. */
3210 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3211 return 1;
3213 var = (variable)*slot;
3214 gcc_assert (dv_is_value_p (var->dv));
3215 if (var->n_var_parts == 0)
3216 return 1;
3217 gcc_assert (var->n_var_parts == 1);
3218 goto restart;
3221 VALUE_RECURSED_INTO (val) = false;
3223 return 1;
3226 /* Push values to the canonical one. */
3227 cdv = dv_from_value (cval);
3228 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3230 for (node = var->var_part[0].loc_chain; node; node = node->next)
3231 if (node->loc != cval)
3233 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3234 node->init, NULL_RTX);
3235 if (GET_CODE (node->loc) == VALUE)
3237 decl_or_value ndv = dv_from_value (node->loc);
3239 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3240 NO_INSERT);
3242 if (canon_value_cmp (node->loc, val))
3244 /* If it could have been a local minimum, it's not any more,
3245 since it's now neighbor to cval, so it may have to push
3246 to it. Conversely, if it wouldn't have prevailed over
3247 val, then whatever mark it has is fine: if it was to
3248 push, it will now push to a more canonical node, but if
3249 it wasn't, then it has already pushed any values it might
3250 have to. */
3251 VALUE_RECURSED_INTO (node->loc) = true;
3252 /* Make sure we visit node->loc by ensuring we cval is
3253 visited too. */
3254 VALUE_RECURSED_INTO (cval) = true;
3256 else if (!VALUE_RECURSED_INTO (node->loc))
3257 /* If we have no need to "recurse" into this node, it's
3258 already "canonicalized", so drop the link to the old
3259 parent. */
3260 clobber_variable_part (set, cval, ndv, 0, NULL);
3262 else if (GET_CODE (node->loc) == REG)
3264 attrs list = set->regs[REGNO (node->loc)], *listp;
3266 /* Change an existing attribute referring to dv so that it
3267 refers to cdv, removing any duplicate this might
3268 introduce, and checking that no previous duplicates
3269 existed, all in a single pass. */
3271 while (list)
3273 if (list->offset == 0
3274 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3275 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3276 break;
3278 list = list->next;
3281 gcc_assert (list);
3282 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3284 list->dv = cdv;
3285 for (listp = &list->next; (list = *listp); listp = &list->next)
3287 if (list->offset)
3288 continue;
3290 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3292 *listp = list->next;
3293 pool_free (attrs_pool, list);
3294 list = *listp;
3295 break;
3298 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3301 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3303 for (listp = &list->next; (list = *listp); listp = &list->next)
3305 if (list->offset)
3306 continue;
3308 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3310 *listp = list->next;
3311 pool_free (attrs_pool, list);
3312 list = *listp;
3313 break;
3316 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3319 else
3320 gcc_unreachable ();
3322 #if ENABLE_CHECKING
3323 while (list)
3325 if (list->offset == 0
3326 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3327 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3328 gcc_unreachable ();
3330 list = list->next;
3332 #endif
3336 if (val)
3337 set_slot_part (set, val, cslot, cdv, 0,
3338 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3340 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3342 /* Variable may have been unshared. */
3343 var = (variable)*slot;
3344 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3345 && var->var_part[0].loc_chain->next == NULL);
3347 if (VALUE_RECURSED_INTO (cval))
3348 goto restart_with_cval;
3350 return 1;
3353 /* Bind one-part variables to the canonical value in an equivalence
3354 set. Not doing this causes dataflow convergence failure in rare
3355 circumstances, see PR42873. Unfortunately we can't do this
3356 efficiently as part of canonicalize_values_star, since we may not
3357 have determined or even seen the canonical value of a set when we
3358 get to a variable that references another member of the set. */
3360 static int
3361 canonicalize_vars_star (void **slot, void *data)
3363 dataflow_set *set = (dataflow_set *)data;
3364 variable var = (variable) *slot;
3365 decl_or_value dv = var->dv;
3366 location_chain node;
3367 rtx cval;
3368 decl_or_value cdv;
3369 void **cslot;
3370 variable cvar;
3371 location_chain cnode;
3373 if (!dv_onepart_p (dv) || dv_is_value_p (dv))
3374 return 1;
3376 gcc_assert (var->n_var_parts == 1);
3378 node = var->var_part[0].loc_chain;
3380 if (GET_CODE (node->loc) != VALUE)
3381 return 1;
3383 gcc_assert (!node->next);
3384 cval = node->loc;
3386 /* Push values to the canonical one. */
3387 cdv = dv_from_value (cval);
3388 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3389 if (!cslot)
3390 return 1;
3391 cvar = (variable)*cslot;
3392 gcc_assert (cvar->n_var_parts == 1);
3394 cnode = cvar->var_part[0].loc_chain;
3396 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3397 that are not “more canonical” than it. */
3398 if (GET_CODE (cnode->loc) != VALUE
3399 || !canon_value_cmp (cnode->loc, cval))
3400 return 1;
3402 /* CVAL was found to be non-canonical. Change the variable to point
3403 to the canonical VALUE. */
3404 gcc_assert (!cnode->next);
3405 cval = cnode->loc;
3407 slot = set_slot_part (set, cval, slot, dv, 0,
3408 node->init, node->set_src);
3409 clobber_slot_part (set, cval, slot, 0, node->set_src);
3411 return 1;
3414 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3415 corresponding entry in DSM->src. Multi-part variables are combined
3416 with variable_union, whereas onepart dvs are combined with
3417 intersection. */
3419 static int
3420 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3422 dataflow_set *dst = dsm->dst;
3423 void **dstslot;
3424 variable s2var, dvar = NULL;
3425 decl_or_value dv = s1var->dv;
3426 bool onepart = dv_onepart_p (dv);
3427 rtx val;
3428 hashval_t dvhash;
3429 location_chain node, *nodep;
3431 /* If the incoming onepart variable has an empty location list, then
3432 the intersection will be just as empty. For other variables,
3433 it's always union. */
3434 gcc_checking_assert (s1var->n_var_parts
3435 && s1var->var_part[0].loc_chain);
3437 if (!onepart)
3438 return variable_union (s1var, dst);
3440 gcc_checking_assert (s1var->n_var_parts == 1
3441 && s1var->var_part[0].offset == 0);
3443 dvhash = dv_htab_hash (dv);
3444 if (dv_is_value_p (dv))
3445 val = dv_as_value (dv);
3446 else
3447 val = NULL;
3449 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3450 if (!s2var)
3452 dst_can_be_shared = false;
3453 return 1;
3456 dsm->src_onepart_cnt--;
3457 gcc_assert (s2var->var_part[0].loc_chain
3458 && s2var->n_var_parts == 1
3459 && s2var->var_part[0].offset == 0);
3461 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3462 if (dstslot)
3464 dvar = (variable)*dstslot;
3465 gcc_assert (dvar->refcount == 1
3466 && dvar->n_var_parts == 1
3467 && dvar->var_part[0].offset == 0);
3468 nodep = &dvar->var_part[0].loc_chain;
3470 else
3472 nodep = &node;
3473 node = NULL;
3476 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3478 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3479 dvhash, INSERT);
3480 *dstslot = dvar = s2var;
3481 dvar->refcount++;
3483 else
3485 dst_can_be_shared = false;
3487 intersect_loc_chains (val, nodep, dsm,
3488 s1var->var_part[0].loc_chain, s2var);
3490 if (!dstslot)
3492 if (node)
3494 dvar = (variable) pool_alloc (dv_pool (dv));
3495 dvar->dv = dv;
3496 dvar->refcount = 1;
3497 dvar->n_var_parts = 1;
3498 dvar->cur_loc_changed = false;
3499 dvar->in_changed_variables = false;
3500 dvar->var_part[0].offset = 0;
3501 dvar->var_part[0].loc_chain = node;
3502 dvar->var_part[0].cur_loc = NULL;
3504 dstslot
3505 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3506 INSERT);
3507 gcc_assert (!*dstslot);
3508 *dstslot = dvar;
3510 else
3511 return 1;
3515 nodep = &dvar->var_part[0].loc_chain;
3516 while ((node = *nodep))
3518 location_chain *nextp = &node->next;
3520 if (GET_CODE (node->loc) == REG)
3522 attrs list;
3524 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3525 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3526 && dv_is_value_p (list->dv))
3527 break;
3529 if (!list)
3530 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3531 dv, 0, node->loc);
3532 /* If this value became canonical for another value that had
3533 this register, we want to leave it alone. */
3534 else if (dv_as_value (list->dv) != val)
3536 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3537 dstslot, dv, 0,
3538 node->init, NULL_RTX);
3539 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3541 /* Since nextp points into the removed node, we can't
3542 use it. The pointer to the next node moved to nodep.
3543 However, if the variable we're walking is unshared
3544 during our walk, we'll keep walking the location list
3545 of the previously-shared variable, in which case the
3546 node won't have been removed, and we'll want to skip
3547 it. That's why we test *nodep here. */
3548 if (*nodep != node)
3549 nextp = nodep;
3552 else
3553 /* Canonicalization puts registers first, so we don't have to
3554 walk it all. */
3555 break;
3556 nodep = nextp;
3559 if (dvar != (variable)*dstslot)
3560 dvar = (variable)*dstslot;
3561 nodep = &dvar->var_part[0].loc_chain;
3563 if (val)
3565 /* Mark all referenced nodes for canonicalization, and make sure
3566 we have mutual equivalence links. */
3567 VALUE_RECURSED_INTO (val) = true;
3568 for (node = *nodep; node; node = node->next)
3569 if (GET_CODE (node->loc) == VALUE)
3571 VALUE_RECURSED_INTO (node->loc) = true;
3572 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3573 node->init, NULL, INSERT);
3576 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3577 gcc_assert (*dstslot == dvar);
3578 canonicalize_values_star (dstslot, dst);
3579 gcc_checking_assert (dstslot
3580 == shared_hash_find_slot_noinsert_1 (dst->vars,
3581 dv, dvhash));
3582 dvar = (variable)*dstslot;
3584 else
3586 bool has_value = false, has_other = false;
3588 /* If we have one value and anything else, we're going to
3589 canonicalize this, so make sure all values have an entry in
3590 the table and are marked for canonicalization. */
3591 for (node = *nodep; node; node = node->next)
3593 if (GET_CODE (node->loc) == VALUE)
3595 /* If this was marked during register canonicalization,
3596 we know we have to canonicalize values. */
3597 if (has_value)
3598 has_other = true;
3599 has_value = true;
3600 if (has_other)
3601 break;
3603 else
3605 has_other = true;
3606 if (has_value)
3607 break;
3611 if (has_value && has_other)
3613 for (node = *nodep; node; node = node->next)
3615 if (GET_CODE (node->loc) == VALUE)
3617 decl_or_value dv = dv_from_value (node->loc);
3618 void **slot = NULL;
3620 if (shared_hash_shared (dst->vars))
3621 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3622 if (!slot)
3623 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3624 INSERT);
3625 if (!*slot)
3627 variable var = (variable) pool_alloc (dv_pool (dv));
3628 var->dv = dv;
3629 var->refcount = 1;
3630 var->n_var_parts = 1;
3631 var->cur_loc_changed = false;
3632 var->in_changed_variables = false;
3633 var->var_part[0].offset = 0;
3634 var->var_part[0].loc_chain = NULL;
3635 var->var_part[0].cur_loc = NULL;
3636 *slot = var;
3639 VALUE_RECURSED_INTO (node->loc) = true;
3643 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3644 gcc_assert (*dstslot == dvar);
3645 canonicalize_values_star (dstslot, dst);
3646 gcc_checking_assert (dstslot
3647 == shared_hash_find_slot_noinsert_1 (dst->vars,
3648 dv, dvhash));
3649 dvar = (variable)*dstslot;
3653 if (!onepart_variable_different_p (dvar, s2var))
3655 variable_htab_free (dvar);
3656 *dstslot = dvar = s2var;
3657 dvar->refcount++;
3659 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3661 variable_htab_free (dvar);
3662 *dstslot = dvar = s1var;
3663 dvar->refcount++;
3664 dst_can_be_shared = false;
3666 else
3667 dst_can_be_shared = false;
3669 return 1;
3672 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3673 multi-part variable. Unions of multi-part variables and
3674 intersections of one-part ones will be handled in
3675 variable_merge_over_cur(). */
3677 static int
3678 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3680 dataflow_set *dst = dsm->dst;
3681 decl_or_value dv = s2var->dv;
3682 bool onepart = dv_onepart_p (dv);
3684 if (!onepart)
3686 void **dstp = shared_hash_find_slot (dst->vars, dv);
3687 *dstp = s2var;
3688 s2var->refcount++;
3689 return 1;
3692 dsm->src_onepart_cnt++;
3693 return 1;
3696 /* Combine dataflow set information from SRC2 into DST, using PDST
3697 to carry over information across passes. */
3699 static void
3700 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3702 dataflow_set cur = *dst;
3703 dataflow_set *src1 = &cur;
3704 struct dfset_merge dsm;
3705 int i;
3706 size_t src1_elems, src2_elems;
3707 htab_iterator hi;
3708 variable var;
3710 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3711 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3712 dataflow_set_init (dst);
3713 dst->stack_adjust = cur.stack_adjust;
3714 shared_hash_destroy (dst->vars);
3715 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3716 dst->vars->refcount = 1;
3717 dst->vars->htab
3718 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3719 variable_htab_eq, variable_htab_free);
3721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3722 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3724 dsm.dst = dst;
3725 dsm.src = src2;
3726 dsm.cur = src1;
3727 dsm.src_onepart_cnt = 0;
3729 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3730 variable_merge_over_src (var, &dsm);
3731 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3732 variable_merge_over_cur (var, &dsm);
3734 if (dsm.src_onepart_cnt)
3735 dst_can_be_shared = false;
3737 dataflow_set_destroy (src1);
3740 /* Mark register equivalences. */
3742 static void
3743 dataflow_set_equiv_regs (dataflow_set *set)
3745 int i;
3746 attrs list, *listp;
3748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3750 rtx canon[NUM_MACHINE_MODES];
3752 /* If the list is empty or one entry, no need to canonicalize
3753 anything. */
3754 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3755 continue;
3757 memset (canon, 0, sizeof (canon));
3759 for (list = set->regs[i]; list; list = list->next)
3760 if (list->offset == 0 && dv_is_value_p (list->dv))
3762 rtx val = dv_as_value (list->dv);
3763 rtx *cvalp = &canon[(int)GET_MODE (val)];
3764 rtx cval = *cvalp;
3766 if (canon_value_cmp (val, cval))
3767 *cvalp = val;
3770 for (list = set->regs[i]; list; list = list->next)
3771 if (list->offset == 0 && dv_onepart_p (list->dv))
3773 rtx cval = canon[(int)GET_MODE (list->loc)];
3775 if (!cval)
3776 continue;
3778 if (dv_is_value_p (list->dv))
3780 rtx val = dv_as_value (list->dv);
3782 if (val == cval)
3783 continue;
3785 VALUE_RECURSED_INTO (val) = true;
3786 set_variable_part (set, val, dv_from_value (cval), 0,
3787 VAR_INIT_STATUS_INITIALIZED,
3788 NULL, NO_INSERT);
3791 VALUE_RECURSED_INTO (cval) = true;
3792 set_variable_part (set, cval, list->dv, 0,
3793 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3796 for (listp = &set->regs[i]; (list = *listp);
3797 listp = list ? &list->next : listp)
3798 if (list->offset == 0 && dv_onepart_p (list->dv))
3800 rtx cval = canon[(int)GET_MODE (list->loc)];
3801 void **slot;
3803 if (!cval)
3804 continue;
3806 if (dv_is_value_p (list->dv))
3808 rtx val = dv_as_value (list->dv);
3809 if (!VALUE_RECURSED_INTO (val))
3810 continue;
3813 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3814 canonicalize_values_star (slot, set);
3815 if (*listp != list)
3816 list = NULL;
3821 /* Remove any redundant values in the location list of VAR, which must
3822 be unshared and 1-part. */
3824 static void
3825 remove_duplicate_values (variable var)
3827 location_chain node, *nodep;
3829 gcc_assert (dv_onepart_p (var->dv));
3830 gcc_assert (var->n_var_parts == 1);
3831 gcc_assert (var->refcount == 1);
3833 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3835 if (GET_CODE (node->loc) == VALUE)
3837 if (VALUE_RECURSED_INTO (node->loc))
3839 /* Remove duplicate value node. */
3840 *nodep = node->next;
3841 pool_free (loc_chain_pool, node);
3842 continue;
3844 else
3845 VALUE_RECURSED_INTO (node->loc) = true;
3847 nodep = &node->next;
3850 for (node = var->var_part[0].loc_chain; node; node = node->next)
3851 if (GET_CODE (node->loc) == VALUE)
3853 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3854 VALUE_RECURSED_INTO (node->loc) = false;
3859 /* Hash table iteration argument passed to variable_post_merge. */
3860 struct dfset_post_merge
3862 /* The new input set for the current block. */
3863 dataflow_set *set;
3864 /* Pointer to the permanent input set for the current block, or
3865 NULL. */
3866 dataflow_set **permp;
3869 /* Create values for incoming expressions associated with one-part
3870 variables that don't have value numbers for them. */
3872 static int
3873 variable_post_merge_new_vals (void **slot, void *info)
3875 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3876 dataflow_set *set = dfpm->set;
3877 variable var = (variable)*slot;
3878 location_chain node;
3880 if (!dv_onepart_p (var->dv) || !var->n_var_parts)
3881 return 1;
3883 gcc_assert (var->n_var_parts == 1);
3885 if (dv_is_decl_p (var->dv))
3887 bool check_dupes = false;
3889 restart:
3890 for (node = var->var_part[0].loc_chain; node; node = node->next)
3892 if (GET_CODE (node->loc) == VALUE)
3893 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3894 else if (GET_CODE (node->loc) == REG)
3896 attrs att, *attp, *curp = NULL;
3898 if (var->refcount != 1)
3900 slot = unshare_variable (set, slot, var,
3901 VAR_INIT_STATUS_INITIALIZED);
3902 var = (variable)*slot;
3903 goto restart;
3906 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3907 attp = &att->next)
3908 if (att->offset == 0
3909 && GET_MODE (att->loc) == GET_MODE (node->loc))
3911 if (dv_is_value_p (att->dv))
3913 rtx cval = dv_as_value (att->dv);
3914 node->loc = cval;
3915 check_dupes = true;
3916 break;
3918 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3919 curp = attp;
3922 if (!curp)
3924 curp = attp;
3925 while (*curp)
3926 if ((*curp)->offset == 0
3927 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
3928 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
3929 break;
3930 else
3931 curp = &(*curp)->next;
3932 gcc_assert (*curp);
3935 if (!att)
3937 decl_or_value cdv;
3938 rtx cval;
3940 if (!*dfpm->permp)
3942 *dfpm->permp = XNEW (dataflow_set);
3943 dataflow_set_init (*dfpm->permp);
3946 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
3947 att; att = att->next)
3948 if (GET_MODE (att->loc) == GET_MODE (node->loc))
3950 gcc_assert (att->offset == 0
3951 && dv_is_value_p (att->dv));
3952 val_reset (set, att->dv);
3953 break;
3956 if (att)
3958 cdv = att->dv;
3959 cval = dv_as_value (cdv);
3961 else
3963 /* Create a unique value to hold this register,
3964 that ought to be found and reused in
3965 subsequent rounds. */
3966 cselib_val *v;
3967 gcc_assert (!cselib_lookup (node->loc,
3968 GET_MODE (node->loc), 0,
3969 VOIDmode));
3970 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
3971 VOIDmode);
3972 cselib_preserve_value (v);
3973 cselib_invalidate_rtx (node->loc);
3974 cval = v->val_rtx;
3975 cdv = dv_from_value (cval);
3976 if (dump_file)
3977 fprintf (dump_file,
3978 "Created new value %u:%u for reg %i\n",
3979 v->uid, v->hash, REGNO (node->loc));
3982 var_reg_decl_set (*dfpm->permp, node->loc,
3983 VAR_INIT_STATUS_INITIALIZED,
3984 cdv, 0, NULL, INSERT);
3986 node->loc = cval;
3987 check_dupes = true;
3990 /* Remove attribute referring to the decl, which now
3991 uses the value for the register, already existing or
3992 to be added when we bring perm in. */
3993 att = *curp;
3994 *curp = att->next;
3995 pool_free (attrs_pool, att);
3999 if (check_dupes)
4000 remove_duplicate_values (var);
4003 return 1;
4006 /* Reset values in the permanent set that are not associated with the
4007 chosen expression. */
4009 static int
4010 variable_post_merge_perm_vals (void **pslot, void *info)
4012 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4013 dataflow_set *set = dfpm->set;
4014 variable pvar = (variable)*pslot, var;
4015 location_chain pnode;
4016 decl_or_value dv;
4017 attrs att;
4019 gcc_assert (dv_is_value_p (pvar->dv)
4020 && pvar->n_var_parts == 1);
4021 pnode = pvar->var_part[0].loc_chain;
4022 gcc_assert (pnode
4023 && !pnode->next
4024 && REG_P (pnode->loc));
4026 dv = pvar->dv;
4028 var = shared_hash_find (set->vars, dv);
4029 if (var)
4031 /* Although variable_post_merge_new_vals may have made decls
4032 non-star-canonical, values that pre-existed in canonical form
4033 remain canonical, and newly-created values reference a single
4034 REG, so they are canonical as well. Since VAR has the
4035 location list for a VALUE, using find_loc_in_1pdv for it is
4036 fine, since VALUEs don't map back to DECLs. */
4037 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4038 return 1;
4039 val_reset (set, dv);
4042 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4043 if (att->offset == 0
4044 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4045 && dv_is_value_p (att->dv))
4046 break;
4048 /* If there is a value associated with this register already, create
4049 an equivalence. */
4050 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4052 rtx cval = dv_as_value (att->dv);
4053 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4054 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4055 NULL, INSERT);
4057 else if (!att)
4059 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4060 dv, 0, pnode->loc);
4061 variable_union (pvar, set);
4064 return 1;
4067 /* Just checking stuff and registering register attributes for
4068 now. */
4070 static void
4071 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4073 struct dfset_post_merge dfpm;
4075 dfpm.set = set;
4076 dfpm.permp = permp;
4078 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4079 &dfpm);
4080 if (*permp)
4081 htab_traverse (shared_hash_htab ((*permp)->vars),
4082 variable_post_merge_perm_vals, &dfpm);
4083 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4084 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4087 /* Return a node whose loc is a MEM that refers to EXPR in the
4088 location list of a one-part variable or value VAR, or in that of
4089 any values recursively mentioned in the location lists. */
4091 static location_chain
4092 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4094 location_chain node;
4095 decl_or_value dv;
4096 variable var;
4097 location_chain where = NULL;
4099 if (!val)
4100 return NULL;
4102 gcc_assert (GET_CODE (val) == VALUE
4103 && !VALUE_RECURSED_INTO (val));
4105 dv = dv_from_value (val);
4106 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4108 if (!var)
4109 return NULL;
4111 gcc_assert (dv_onepart_p (var->dv));
4113 if (!var->n_var_parts)
4114 return NULL;
4116 gcc_assert (var->var_part[0].offset == 0);
4118 VALUE_RECURSED_INTO (val) = true;
4120 for (node = var->var_part[0].loc_chain; node; node = node->next)
4121 if (MEM_P (node->loc)
4122 && MEM_EXPR (node->loc) == expr
4123 && INT_MEM_OFFSET (node->loc) == 0)
4125 where = node;
4126 break;
4128 else if (GET_CODE (node->loc) == VALUE
4129 && !VALUE_RECURSED_INTO (node->loc)
4130 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4131 break;
4133 VALUE_RECURSED_INTO (val) = false;
4135 return where;
4138 /* Return TRUE if the value of MEM may vary across a call. */
4140 static bool
4141 mem_dies_at_call (rtx mem)
4143 tree expr = MEM_EXPR (mem);
4144 tree decl;
4146 if (!expr)
4147 return true;
4149 decl = get_base_address (expr);
4151 if (!decl)
4152 return true;
4154 if (!DECL_P (decl))
4155 return true;
4157 return (may_be_aliased (decl)
4158 || (!TREE_READONLY (decl) && is_global_var (decl)));
4161 /* Remove all MEMs from the location list of a hash table entry for a
4162 one-part variable, except those whose MEM attributes map back to
4163 the variable itself, directly or within a VALUE. */
4165 static int
4166 dataflow_set_preserve_mem_locs (void **slot, void *data)
4168 dataflow_set *set = (dataflow_set *) data;
4169 variable var = (variable) *slot;
4171 if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
4173 tree decl = dv_as_decl (var->dv);
4174 location_chain loc, *locp;
4175 bool changed = false;
4177 if (!var->n_var_parts)
4178 return 1;
4180 gcc_assert (var->n_var_parts == 1);
4182 if (shared_var_p (var, set->vars))
4184 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4186 /* We want to remove dying MEMs that doesn't refer to DECL. */
4187 if (GET_CODE (loc->loc) == MEM
4188 && (MEM_EXPR (loc->loc) != decl
4189 || INT_MEM_OFFSET (loc->loc) != 0)
4190 && !mem_dies_at_call (loc->loc))
4191 break;
4192 /* We want to move here MEMs that do refer to DECL. */
4193 else if (GET_CODE (loc->loc) == VALUE
4194 && find_mem_expr_in_1pdv (decl, loc->loc,
4195 shared_hash_htab (set->vars)))
4196 break;
4199 if (!loc)
4200 return 1;
4202 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4203 var = (variable)*slot;
4204 gcc_assert (var->n_var_parts == 1);
4207 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4208 loc; loc = *locp)
4210 rtx old_loc = loc->loc;
4211 if (GET_CODE (old_loc) == VALUE)
4213 location_chain mem_node
4214 = find_mem_expr_in_1pdv (decl, loc->loc,
4215 shared_hash_htab (set->vars));
4217 /* ??? This picks up only one out of multiple MEMs that
4218 refer to the same variable. Do we ever need to be
4219 concerned about dealing with more than one, or, given
4220 that they should all map to the same variable
4221 location, their addresses will have been merged and
4222 they will be regarded as equivalent? */
4223 if (mem_node)
4225 loc->loc = mem_node->loc;
4226 loc->set_src = mem_node->set_src;
4227 loc->init = MIN (loc->init, mem_node->init);
4231 if (GET_CODE (loc->loc) != MEM
4232 || (MEM_EXPR (loc->loc) == decl
4233 && INT_MEM_OFFSET (loc->loc) == 0)
4234 || !mem_dies_at_call (loc->loc))
4236 if (old_loc != loc->loc && emit_notes)
4238 if (old_loc == var->var_part[0].cur_loc)
4240 changed = true;
4241 var->var_part[0].cur_loc = NULL;
4242 var->cur_loc_changed = true;
4244 add_value_chains (var->dv, loc->loc);
4245 remove_value_chains (var->dv, old_loc);
4247 locp = &loc->next;
4248 continue;
4251 if (emit_notes)
4253 remove_value_chains (var->dv, old_loc);
4254 if (old_loc == var->var_part[0].cur_loc)
4256 changed = true;
4257 var->var_part[0].cur_loc = NULL;
4258 var->cur_loc_changed = true;
4261 *locp = loc->next;
4262 pool_free (loc_chain_pool, loc);
4265 if (!var->var_part[0].loc_chain)
4267 var->n_var_parts--;
4268 changed = true;
4270 if (changed)
4271 variable_was_changed (var, set);
4274 return 1;
4277 /* Remove all MEMs from the location list of a hash table entry for a
4278 value. */
4280 static int
4281 dataflow_set_remove_mem_locs (void **slot, void *data)
4283 dataflow_set *set = (dataflow_set *) data;
4284 variable var = (variable) *slot;
4286 if (dv_is_value_p (var->dv))
4288 location_chain loc, *locp;
4289 bool changed = false;
4291 gcc_assert (var->n_var_parts == 1);
4293 if (shared_var_p (var, set->vars))
4295 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4296 if (GET_CODE (loc->loc) == MEM
4297 && mem_dies_at_call (loc->loc))
4298 break;
4300 if (!loc)
4301 return 1;
4303 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4304 var = (variable)*slot;
4305 gcc_assert (var->n_var_parts == 1);
4308 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4309 loc; loc = *locp)
4311 if (GET_CODE (loc->loc) != MEM
4312 || !mem_dies_at_call (loc->loc))
4314 locp = &loc->next;
4315 continue;
4318 if (emit_notes)
4319 remove_value_chains (var->dv, loc->loc);
4320 *locp = loc->next;
4321 /* If we have deleted the location which was last emitted
4322 we have to emit new location so add the variable to set
4323 of changed variables. */
4324 if (var->var_part[0].cur_loc == loc->loc)
4326 changed = true;
4327 var->var_part[0].cur_loc = NULL;
4328 var->cur_loc_changed = true;
4330 pool_free (loc_chain_pool, loc);
4333 if (!var->var_part[0].loc_chain)
4335 var->n_var_parts--;
4336 changed = true;
4338 if (changed)
4339 variable_was_changed (var, set);
4342 return 1;
4345 /* Remove all variable-location information about call-clobbered
4346 registers, as well as associations between MEMs and VALUEs. */
4348 static void
4349 dataflow_set_clear_at_call (dataflow_set *set)
4351 int r;
4353 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4354 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4355 var_regno_delete (set, r);
4357 if (MAY_HAVE_DEBUG_INSNS)
4359 set->traversed_vars = set->vars;
4360 htab_traverse (shared_hash_htab (set->vars),
4361 dataflow_set_preserve_mem_locs, set);
4362 set->traversed_vars = set->vars;
4363 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4364 set);
4365 set->traversed_vars = NULL;
4369 static bool
4370 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4372 location_chain lc1, lc2;
4374 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4376 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4378 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4380 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4381 break;
4383 if (rtx_equal_p (lc1->loc, lc2->loc))
4384 break;
4386 if (!lc2)
4387 return true;
4389 return false;
4392 /* Return true if one-part variables VAR1 and VAR2 are different.
4393 They must be in canonical order. */
4395 static bool
4396 onepart_variable_different_p (variable var1, variable var2)
4398 location_chain lc1, lc2;
4400 if (var1 == var2)
4401 return false;
4403 gcc_assert (var1->n_var_parts == 1
4404 && var2->n_var_parts == 1);
4406 lc1 = var1->var_part[0].loc_chain;
4407 lc2 = var2->var_part[0].loc_chain;
4409 gcc_assert (lc1 && lc2);
4411 while (lc1 && lc2)
4413 if (loc_cmp (lc1->loc, lc2->loc))
4414 return true;
4415 lc1 = lc1->next;
4416 lc2 = lc2->next;
4419 return lc1 != lc2;
4422 /* Return true if variables VAR1 and VAR2 are different. */
4424 static bool
4425 variable_different_p (variable var1, variable var2)
4427 int i;
4429 if (var1 == var2)
4430 return false;
4432 if (var1->n_var_parts != var2->n_var_parts)
4433 return true;
4435 for (i = 0; i < var1->n_var_parts; i++)
4437 if (var1->var_part[i].offset != var2->var_part[i].offset)
4438 return true;
4439 /* One-part values have locations in a canonical order. */
4440 if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
4442 gcc_assert (var1->n_var_parts == 1
4443 && dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4444 return onepart_variable_different_p (var1, var2);
4446 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4447 return true;
4448 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4449 return true;
4451 return false;
4454 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4456 static bool
4457 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4459 htab_iterator hi;
4460 variable var1;
4462 if (old_set->vars == new_set->vars)
4463 return false;
4465 if (htab_elements (shared_hash_htab (old_set->vars))
4466 != htab_elements (shared_hash_htab (new_set->vars)))
4467 return true;
4469 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4471 htab_t htab = shared_hash_htab (new_set->vars);
4472 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4473 dv_htab_hash (var1->dv));
4474 if (!var2)
4476 if (dump_file && (dump_flags & TDF_DETAILS))
4478 fprintf (dump_file, "dataflow difference found: removal of:\n");
4479 dump_var (var1);
4481 return true;
4484 if (variable_different_p (var1, var2))
4486 if (dump_file && (dump_flags & TDF_DETAILS))
4488 fprintf (dump_file, "dataflow difference found: "
4489 "old and new follow:\n");
4490 dump_var (var1);
4491 dump_var (var2);
4493 return true;
4497 /* No need to traverse the second hashtab, if both have the same number
4498 of elements and the second one had all entries found in the first one,
4499 then it can't have any extra entries. */
4500 return false;
4503 /* Free the contents of dataflow set SET. */
4505 static void
4506 dataflow_set_destroy (dataflow_set *set)
4508 int i;
4510 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4511 attrs_list_clear (&set->regs[i]);
4513 shared_hash_destroy (set->vars);
4514 set->vars = NULL;
4517 /* Return true if RTL X contains a SYMBOL_REF. */
4519 static bool
4520 contains_symbol_ref (rtx x)
4522 const char *fmt;
4523 RTX_CODE code;
4524 int i;
4526 if (!x)
4527 return false;
4529 code = GET_CODE (x);
4530 if (code == SYMBOL_REF)
4531 return true;
4533 fmt = GET_RTX_FORMAT (code);
4534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4536 if (fmt[i] == 'e')
4538 if (contains_symbol_ref (XEXP (x, i)))
4539 return true;
4541 else if (fmt[i] == 'E')
4543 int j;
4544 for (j = 0; j < XVECLEN (x, i); j++)
4545 if (contains_symbol_ref (XVECEXP (x, i, j)))
4546 return true;
4550 return false;
4553 /* Shall EXPR be tracked? */
4555 static bool
4556 track_expr_p (tree expr, bool need_rtl)
4558 rtx decl_rtl;
4559 tree realdecl;
4561 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4562 return DECL_RTL_SET_P (expr);
4564 /* If EXPR is not a parameter or a variable do not track it. */
4565 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4566 return 0;
4568 /* It also must have a name... */
4569 if (!DECL_NAME (expr) && need_rtl)
4570 return 0;
4572 /* ... and a RTL assigned to it. */
4573 decl_rtl = DECL_RTL_IF_SET (expr);
4574 if (!decl_rtl && need_rtl)
4575 return 0;
4577 /* If this expression is really a debug alias of some other declaration, we
4578 don't need to track this expression if the ultimate declaration is
4579 ignored. */
4580 realdecl = expr;
4581 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4583 realdecl = DECL_DEBUG_EXPR (realdecl);
4584 if (realdecl == NULL_TREE)
4585 realdecl = expr;
4586 else if (!DECL_P (realdecl))
4588 if (handled_component_p (realdecl))
4590 HOST_WIDE_INT bitsize, bitpos, maxsize;
4591 tree innerdecl
4592 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4593 &maxsize);
4594 if (!DECL_P (innerdecl)
4595 || DECL_IGNORED_P (innerdecl)
4596 || TREE_STATIC (innerdecl)
4597 || bitsize <= 0
4598 || bitpos + bitsize > 256
4599 || bitsize != maxsize)
4600 return 0;
4601 else
4602 realdecl = expr;
4604 else
4605 return 0;
4609 /* Do not track EXPR if REALDECL it should be ignored for debugging
4610 purposes. */
4611 if (DECL_IGNORED_P (realdecl))
4612 return 0;
4614 /* Do not track global variables until we are able to emit correct location
4615 list for them. */
4616 if (TREE_STATIC (realdecl))
4617 return 0;
4619 /* When the EXPR is a DECL for alias of some variable (see example)
4620 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4621 DECL_RTL contains SYMBOL_REF.
4623 Example:
4624 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4625 char **_dl_argv;
4627 if (decl_rtl && MEM_P (decl_rtl)
4628 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4629 return 0;
4631 /* If RTX is a memory it should not be very large (because it would be
4632 an array or struct). */
4633 if (decl_rtl && MEM_P (decl_rtl))
4635 /* Do not track structures and arrays. */
4636 if (GET_MODE (decl_rtl) == BLKmode
4637 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4638 return 0;
4639 if (MEM_SIZE (decl_rtl)
4640 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
4641 return 0;
4644 DECL_CHANGED (expr) = 0;
4645 DECL_CHANGED (realdecl) = 0;
4646 return 1;
4649 /* Determine whether a given LOC refers to the same variable part as
4650 EXPR+OFFSET. */
4652 static bool
4653 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4655 tree expr2;
4656 HOST_WIDE_INT offset2;
4658 if (! DECL_P (expr))
4659 return false;
4661 if (REG_P (loc))
4663 expr2 = REG_EXPR (loc);
4664 offset2 = REG_OFFSET (loc);
4666 else if (MEM_P (loc))
4668 expr2 = MEM_EXPR (loc);
4669 offset2 = INT_MEM_OFFSET (loc);
4671 else
4672 return false;
4674 if (! expr2 || ! DECL_P (expr2))
4675 return false;
4677 expr = var_debug_decl (expr);
4678 expr2 = var_debug_decl (expr2);
4680 return (expr == expr2 && offset == offset2);
4683 /* LOC is a REG or MEM that we would like to track if possible.
4684 If EXPR is null, we don't know what expression LOC refers to,
4685 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4686 LOC is an lvalue register.
4688 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4689 is something we can track. When returning true, store the mode of
4690 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4691 from EXPR in *OFFSET_OUT (if nonnull). */
4693 static bool
4694 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4695 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4697 enum machine_mode mode;
4699 if (expr == NULL || !track_expr_p (expr, true))
4700 return false;
4702 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4703 whole subreg, but only the old inner part is really relevant. */
4704 mode = GET_MODE (loc);
4705 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4707 enum machine_mode pseudo_mode;
4709 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4710 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4712 offset += byte_lowpart_offset (pseudo_mode, mode);
4713 mode = pseudo_mode;
4717 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4718 Do the same if we are storing to a register and EXPR occupies
4719 the whole of register LOC; in that case, the whole of EXPR is
4720 being changed. We exclude complex modes from the second case
4721 because the real and imaginary parts are represented as separate
4722 pseudo registers, even if the whole complex value fits into one
4723 hard register. */
4724 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4725 || (store_reg_p
4726 && !COMPLEX_MODE_P (DECL_MODE (expr))
4727 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4728 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4730 mode = DECL_MODE (expr);
4731 offset = 0;
4734 if (offset < 0 || offset >= MAX_VAR_PARTS)
4735 return false;
4737 if (mode_out)
4738 *mode_out = mode;
4739 if (offset_out)
4740 *offset_out = offset;
4741 return true;
4744 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4745 want to track. When returning nonnull, make sure that the attributes
4746 on the returned value are updated. */
4748 static rtx
4749 var_lowpart (enum machine_mode mode, rtx loc)
4751 unsigned int offset, reg_offset, regno;
4753 if (!REG_P (loc) && !MEM_P (loc))
4754 return NULL;
4756 if (GET_MODE (loc) == mode)
4757 return loc;
4759 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4761 if (MEM_P (loc))
4762 return adjust_address_nv (loc, mode, offset);
4764 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4765 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4766 reg_offset, mode);
4767 return gen_rtx_REG_offset (loc, mode, regno, offset);
4770 /* Carry information about uses and stores while walking rtx. */
4772 struct count_use_info
4774 /* The insn where the RTX is. */
4775 rtx insn;
4777 /* The basic block where insn is. */
4778 basic_block bb;
4780 /* The array of n_sets sets in the insn, as determined by cselib. */
4781 struct cselib_set *sets;
4782 int n_sets;
4784 /* True if we're counting stores, false otherwise. */
4785 bool store_p;
4788 /* Find a VALUE corresponding to X. */
4790 static inline cselib_val *
4791 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4793 int i;
4795 if (cui->sets)
4797 /* This is called after uses are set up and before stores are
4798 processed by cselib, so it's safe to look up srcs, but not
4799 dsts. So we look up expressions that appear in srcs or in
4800 dest expressions, but we search the sets array for dests of
4801 stores. */
4802 if (cui->store_p)
4804 /* Some targets represent memset and memcpy patterns
4805 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
4806 (set (mem:BLK ...) (const_int ...)) or
4807 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
4808 in that case, otherwise we end up with mode mismatches. */
4809 if (mode == BLKmode && MEM_P (x))
4810 return NULL;
4811 for (i = 0; i < cui->n_sets; i++)
4812 if (cui->sets[i].dest == x)
4813 return cui->sets[i].src_elt;
4815 else
4816 return cselib_lookup (x, mode, 0, VOIDmode);
4819 return NULL;
4822 /* Helper function to get mode of MEM's address. */
4824 static inline enum machine_mode
4825 get_address_mode (rtx mem)
4827 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4828 if (mode != VOIDmode)
4829 return mode;
4830 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4833 /* Replace all registers and addresses in an expression with VALUE
4834 expressions that map back to them, unless the expression is a
4835 register. If no mapping is or can be performed, returns NULL. */
4837 static rtx
4838 replace_expr_with_values (rtx loc)
4840 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
4841 return NULL;
4842 else if (MEM_P (loc))
4844 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4845 get_address_mode (loc), 0,
4846 GET_MODE (loc));
4847 if (addr)
4848 return replace_equiv_address_nv (loc, addr->val_rtx);
4849 else
4850 return NULL;
4852 else
4853 return cselib_subst_to_values (loc, VOIDmode);
4856 /* Determine what kind of micro operation to choose for a USE. Return
4857 MO_CLOBBER if no micro operation is to be generated. */
4859 static enum micro_operation_type
4860 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4862 tree expr;
4864 if (cui && cui->sets)
4866 if (GET_CODE (loc) == VAR_LOCATION)
4868 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4870 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4871 if (! VAR_LOC_UNKNOWN_P (ploc))
4873 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
4874 VOIDmode);
4876 /* ??? flag_float_store and volatile mems are never
4877 given values, but we could in theory use them for
4878 locations. */
4879 gcc_assert (val || 1);
4881 return MO_VAL_LOC;
4883 else
4884 return MO_CLOBBER;
4887 if (REG_P (loc) || MEM_P (loc))
4889 if (modep)
4890 *modep = GET_MODE (loc);
4891 if (cui->store_p)
4893 if (REG_P (loc)
4894 || (find_use_val (loc, GET_MODE (loc), cui)
4895 && cselib_lookup (XEXP (loc, 0),
4896 get_address_mode (loc), 0,
4897 GET_MODE (loc))))
4898 return MO_VAL_SET;
4900 else
4902 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4904 if (val && !cselib_preserved_value_p (val))
4905 return MO_VAL_USE;
4910 if (REG_P (loc))
4912 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
4914 if (loc == cfa_base_rtx)
4915 return MO_CLOBBER;
4916 expr = REG_EXPR (loc);
4918 if (!expr)
4919 return MO_USE_NO_VAR;
4920 else if (target_for_debug_bind (var_debug_decl (expr)))
4921 return MO_CLOBBER;
4922 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
4923 false, modep, NULL))
4924 return MO_USE;
4925 else
4926 return MO_USE_NO_VAR;
4928 else if (MEM_P (loc))
4930 expr = MEM_EXPR (loc);
4932 if (!expr)
4933 return MO_CLOBBER;
4934 else if (target_for_debug_bind (var_debug_decl (expr)))
4935 return MO_CLOBBER;
4936 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
4937 false, modep, NULL))
4938 return MO_USE;
4939 else
4940 return MO_CLOBBER;
4943 return MO_CLOBBER;
4946 /* Log to OUT information about micro-operation MOPT involving X in
4947 INSN of BB. */
4949 static inline void
4950 log_op_type (rtx x, basic_block bb, rtx insn,
4951 enum micro_operation_type mopt, FILE *out)
4953 fprintf (out, "bb %i op %i insn %i %s ",
4954 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
4955 INSN_UID (insn), micro_operation_type_name[mopt]);
4956 print_inline_rtx (out, x, 2);
4957 fputc ('\n', out);
4960 /* Tell whether the CONCAT used to holds a VALUE and its location
4961 needs value resolution, i.e., an attempt of mapping the location
4962 back to other incoming values. */
4963 #define VAL_NEEDS_RESOLUTION(x) \
4964 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4965 /* Whether the location in the CONCAT is a tracked expression, that
4966 should also be handled like a MO_USE. */
4967 #define VAL_HOLDS_TRACK_EXPR(x) \
4968 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4969 /* Whether the location in the CONCAT should be handled like a MO_COPY
4970 as well. */
4971 #define VAL_EXPR_IS_COPIED(x) \
4972 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4973 /* Whether the location in the CONCAT should be handled like a
4974 MO_CLOBBER as well. */
4975 #define VAL_EXPR_IS_CLOBBERED(x) \
4976 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4977 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4978 a reverse operation that should be handled afterwards. */
4979 #define VAL_EXPR_HAS_REVERSE(x) \
4980 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4982 /* All preserved VALUEs. */
4983 static VEC (rtx, heap) *preserved_values;
4985 /* Registers used in the current function for passing parameters. */
4986 static HARD_REG_SET argument_reg_set;
4988 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4990 static void
4991 preserve_value (cselib_val *val)
4993 cselib_preserve_value (val);
4994 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
4997 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4998 any rtxes not suitable for CONST use not replaced by VALUEs
4999 are discovered. */
5001 static int
5002 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5004 if (*x == NULL_RTX)
5005 return 0;
5007 switch (GET_CODE (*x))
5009 case REG:
5010 case DEBUG_EXPR:
5011 case PC:
5012 case SCRATCH:
5013 case CC0:
5014 case ASM_INPUT:
5015 case ASM_OPERANDS:
5016 return 1;
5017 case MEM:
5018 return !MEM_READONLY_P (*x);
5019 default:
5020 return 0;
5024 /* Add uses (register and memory references) LOC which will be tracked
5025 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5027 static int
5028 add_uses (rtx *ploc, void *data)
5030 rtx loc = *ploc;
5031 enum machine_mode mode = VOIDmode;
5032 struct count_use_info *cui = (struct count_use_info *)data;
5033 enum micro_operation_type type = use_type (loc, cui, &mode);
5035 if (type != MO_CLOBBER)
5037 basic_block bb = cui->bb;
5038 micro_operation mo;
5040 mo.type = type;
5041 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5042 mo.insn = cui->insn;
5044 if (type == MO_VAL_LOC)
5046 rtx oloc = loc;
5047 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5048 cselib_val *val;
5050 gcc_assert (cui->sets);
5052 if (MEM_P (vloc)
5053 && !REG_P (XEXP (vloc, 0))
5054 && !MEM_P (XEXP (vloc, 0))
5055 && GET_CODE (XEXP (vloc, 0)) != ENTRY_VALUE
5056 && (GET_CODE (XEXP (vloc, 0)) != PLUS
5057 || XEXP (XEXP (vloc, 0), 0) != cfa_base_rtx
5058 || !CONST_INT_P (XEXP (XEXP (vloc, 0), 1))))
5060 rtx mloc = vloc;
5061 enum machine_mode address_mode = get_address_mode (mloc);
5062 cselib_val *val
5063 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5064 GET_MODE (mloc));
5066 if (val && !cselib_preserved_value_p (val))
5068 micro_operation moa;
5069 preserve_value (val);
5070 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5071 GET_MODE (mloc));
5072 moa.type = MO_VAL_USE;
5073 moa.insn = cui->insn;
5074 moa.u.loc = gen_rtx_CONCAT (address_mode,
5075 val->val_rtx, mloc);
5076 if (dump_file && (dump_flags & TDF_DETAILS))
5077 log_op_type (moa.u.loc, cui->bb, cui->insn,
5078 moa.type, dump_file);
5079 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5083 if (CONSTANT_P (vloc)
5084 && (GET_CODE (vloc) != CONST
5085 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5086 /* For constants don't look up any value. */;
5087 else if (!VAR_LOC_UNKNOWN_P (vloc)
5088 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5090 enum machine_mode mode2;
5091 enum micro_operation_type type2;
5092 rtx nloc = replace_expr_with_values (vloc);
5094 if (nloc)
5096 oloc = shallow_copy_rtx (oloc);
5097 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5100 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5102 type2 = use_type (vloc, 0, &mode2);
5104 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5105 || type2 == MO_CLOBBER);
5107 if (type2 == MO_CLOBBER
5108 && !cselib_preserved_value_p (val))
5110 VAL_NEEDS_RESOLUTION (oloc) = 1;
5111 preserve_value (val);
5114 else if (!VAR_LOC_UNKNOWN_P (vloc))
5116 oloc = shallow_copy_rtx (oloc);
5117 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5120 mo.u.loc = oloc;
5122 else if (type == MO_VAL_USE)
5124 enum machine_mode mode2 = VOIDmode;
5125 enum micro_operation_type type2;
5126 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5127 rtx vloc, oloc = loc, nloc;
5129 gcc_assert (cui->sets);
5131 if (MEM_P (oloc)
5132 && !REG_P (XEXP (oloc, 0))
5133 && !MEM_P (XEXP (oloc, 0))
5134 && GET_CODE (XEXP (oloc, 0)) != ENTRY_VALUE
5135 && (GET_CODE (XEXP (oloc, 0)) != PLUS
5136 || XEXP (XEXP (oloc, 0), 0) != cfa_base_rtx
5137 || !CONST_INT_P (XEXP (XEXP (oloc, 0), 1))))
5139 rtx mloc = oloc;
5140 enum machine_mode address_mode = get_address_mode (mloc);
5141 cselib_val *val
5142 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5143 GET_MODE (mloc));
5145 if (val && !cselib_preserved_value_p (val))
5147 micro_operation moa;
5148 preserve_value (val);
5149 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5150 GET_MODE (mloc));
5151 moa.type = MO_VAL_USE;
5152 moa.insn = cui->insn;
5153 moa.u.loc = gen_rtx_CONCAT (address_mode,
5154 val->val_rtx, mloc);
5155 if (dump_file && (dump_flags & TDF_DETAILS))
5156 log_op_type (moa.u.loc, cui->bb, cui->insn,
5157 moa.type, dump_file);
5158 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5162 type2 = use_type (loc, 0, &mode2);
5164 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5165 || type2 == MO_CLOBBER);
5167 if (type2 == MO_USE)
5168 vloc = var_lowpart (mode2, loc);
5169 else
5170 vloc = oloc;
5172 /* The loc of a MO_VAL_USE may have two forms:
5174 (concat val src): val is at src, a value-based
5175 representation.
5177 (concat (concat val use) src): same as above, with use as
5178 the MO_USE tracked value, if it differs from src.
5182 nloc = replace_expr_with_values (loc);
5183 if (!nloc)
5184 nloc = oloc;
5186 if (vloc != nloc)
5187 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5188 else
5189 oloc = val->val_rtx;
5191 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5193 if (type2 == MO_USE)
5194 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5195 if (!cselib_preserved_value_p (val))
5197 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5198 preserve_value (val);
5201 else
5202 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5204 if (dump_file && (dump_flags & TDF_DETAILS))
5205 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5206 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5209 return 0;
5212 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5214 static void
5215 add_uses_1 (rtx *x, void *cui)
5217 for_each_rtx (x, add_uses, cui);
5220 #define EXPR_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5222 /* Attempt to reverse the EXPR operation in the debug info. Say for
5223 reg1 = reg2 + 6 even when reg2 is no longer live we
5224 can express its value as VAL - 6. */
5226 static rtx
5227 reverse_op (rtx val, const_rtx expr)
5229 rtx src, arg, ret;
5230 cselib_val *v;
5231 enum rtx_code code;
5233 if (GET_CODE (expr) != SET)
5234 return NULL_RTX;
5236 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5237 return NULL_RTX;
5239 src = SET_SRC (expr);
5240 switch (GET_CODE (src))
5242 case PLUS:
5243 case MINUS:
5244 case XOR:
5245 case NOT:
5246 case NEG:
5247 if (!REG_P (XEXP (src, 0)))
5248 return NULL_RTX;
5249 break;
5250 case SIGN_EXTEND:
5251 case ZERO_EXTEND:
5252 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5253 return NULL_RTX;
5254 break;
5255 default:
5256 return NULL_RTX;
5259 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5260 return NULL_RTX;
5262 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5263 if (!v || !cselib_preserved_value_p (v))
5264 return NULL_RTX;
5266 switch (GET_CODE (src))
5268 case NOT:
5269 case NEG:
5270 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5271 return NULL_RTX;
5272 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5273 break;
5274 case SIGN_EXTEND:
5275 case ZERO_EXTEND:
5276 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5277 break;
5278 case XOR:
5279 code = XOR;
5280 goto binary;
5281 case PLUS:
5282 code = MINUS;
5283 goto binary;
5284 case MINUS:
5285 code = PLUS;
5286 goto binary;
5287 binary:
5288 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5289 return NULL_RTX;
5290 arg = XEXP (src, 1);
5291 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5293 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5294 if (arg == NULL_RTX)
5295 return NULL_RTX;
5296 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5297 return NULL_RTX;
5299 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5300 if (ret == val)
5301 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5302 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5303 breaks a lot of routines during var-tracking. */
5304 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5305 break;
5306 default:
5307 gcc_unreachable ();
5310 return gen_rtx_CONCAT (GET_MODE (v->val_rtx), v->val_rtx, ret);
5313 /* Add stores (register and memory references) LOC which will be tracked
5314 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5315 CUIP->insn is instruction which the LOC is part of. */
5317 static void
5318 add_stores (rtx loc, const_rtx expr, void *cuip)
5320 enum machine_mode mode = VOIDmode, mode2;
5321 struct count_use_info *cui = (struct count_use_info *)cuip;
5322 basic_block bb = cui->bb;
5323 micro_operation mo;
5324 rtx oloc = loc, nloc, src = NULL;
5325 enum micro_operation_type type = use_type (loc, cui, &mode);
5326 bool track_p = false;
5327 cselib_val *v;
5328 bool resolve, preserve;
5329 rtx reverse;
5331 if (type == MO_CLOBBER)
5332 return;
5334 mode2 = mode;
5336 if (REG_P (loc))
5338 gcc_assert (loc != cfa_base_rtx);
5339 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5340 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5341 || GET_CODE (expr) == CLOBBER)
5343 mo.type = MO_CLOBBER;
5344 mo.u.loc = loc;
5345 if (GET_CODE (expr) == SET
5346 && SET_DEST (expr) == loc
5347 && REGNO (loc) < FIRST_PSEUDO_REGISTER
5348 && TEST_HARD_REG_BIT (argument_reg_set, REGNO (loc))
5349 && find_use_val (loc, mode, cui)
5350 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5352 gcc_checking_assert (type == MO_VAL_SET);
5353 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5356 else
5358 if (GET_CODE (expr) == SET
5359 && SET_DEST (expr) == loc
5360 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5361 src = var_lowpart (mode2, SET_SRC (expr));
5362 loc = var_lowpart (mode2, loc);
5364 if (src == NULL)
5366 mo.type = MO_SET;
5367 mo.u.loc = loc;
5369 else
5371 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5372 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5373 mo.type = MO_COPY;
5374 else
5375 mo.type = MO_SET;
5376 mo.u.loc = xexpr;
5379 mo.insn = cui->insn;
5381 else if (MEM_P (loc)
5382 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5383 || cui->sets))
5385 if (MEM_P (loc) && type == MO_VAL_SET
5386 && !REG_P (XEXP (loc, 0))
5387 && !MEM_P (XEXP (loc, 0))
5388 && GET_CODE (XEXP (loc, 0)) != ENTRY_VALUE
5389 && (GET_CODE (XEXP (loc, 0)) != PLUS
5390 || XEXP (XEXP (loc, 0), 0) != cfa_base_rtx
5391 || !CONST_INT_P (XEXP (XEXP (loc, 0), 1))))
5393 rtx mloc = loc;
5394 enum machine_mode address_mode = get_address_mode (mloc);
5395 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5396 address_mode, 0,
5397 GET_MODE (mloc));
5399 if (val && !cselib_preserved_value_p (val))
5401 preserve_value (val);
5402 mo.type = MO_VAL_USE;
5403 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5404 GET_MODE (mloc));
5405 mo.u.loc = gen_rtx_CONCAT (address_mode, val->val_rtx, mloc);
5406 mo.insn = cui->insn;
5407 if (dump_file && (dump_flags & TDF_DETAILS))
5408 log_op_type (mo.u.loc, cui->bb, cui->insn,
5409 mo.type, dump_file);
5410 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5414 if (GET_CODE (expr) == CLOBBER || !track_p)
5416 mo.type = MO_CLOBBER;
5417 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5419 else
5421 if (GET_CODE (expr) == SET
5422 && SET_DEST (expr) == loc
5423 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5424 src = var_lowpart (mode2, SET_SRC (expr));
5425 loc = var_lowpart (mode2, loc);
5427 if (src == NULL)
5429 mo.type = MO_SET;
5430 mo.u.loc = loc;
5432 else
5434 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5435 if (same_variable_part_p (SET_SRC (xexpr),
5436 MEM_EXPR (loc),
5437 INT_MEM_OFFSET (loc)))
5438 mo.type = MO_COPY;
5439 else
5440 mo.type = MO_SET;
5441 mo.u.loc = xexpr;
5444 mo.insn = cui->insn;
5446 else
5447 return;
5449 if (type != MO_VAL_SET)
5450 goto log_and_return;
5452 v = find_use_val (oloc, mode, cui);
5454 if (!v)
5455 goto log_and_return;
5457 resolve = preserve = !cselib_preserved_value_p (v);
5459 nloc = replace_expr_with_values (oloc);
5460 if (nloc)
5461 oloc = nloc;
5463 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5465 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5467 gcc_assert (oval != v);
5468 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5470 if (!cselib_preserved_value_p (oval))
5472 micro_operation moa;
5474 preserve_value (oval);
5476 moa.type = MO_VAL_USE;
5477 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5478 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5479 moa.insn = cui->insn;
5481 if (dump_file && (dump_flags & TDF_DETAILS))
5482 log_op_type (moa.u.loc, cui->bb, cui->insn,
5483 moa.type, dump_file);
5484 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5487 resolve = false;
5489 else if (resolve && GET_CODE (mo.u.loc) == SET)
5491 nloc = replace_expr_with_values (SET_SRC (expr));
5493 /* Avoid the mode mismatch between oexpr and expr. */
5494 if (!nloc && mode != mode2)
5496 nloc = SET_SRC (expr);
5497 gcc_assert (oloc == SET_DEST (expr));
5500 if (nloc)
5501 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5502 else
5504 if (oloc == SET_DEST (mo.u.loc))
5505 /* No point in duplicating. */
5506 oloc = mo.u.loc;
5507 if (!REG_P (SET_SRC (mo.u.loc)))
5508 resolve = false;
5511 else if (!resolve)
5513 if (GET_CODE (mo.u.loc) == SET
5514 && oloc == SET_DEST (mo.u.loc))
5515 /* No point in duplicating. */
5516 oloc = mo.u.loc;
5518 else
5519 resolve = false;
5521 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5523 if (mo.u.loc != oloc)
5524 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5526 /* The loc of a MO_VAL_SET may have various forms:
5528 (concat val dst): dst now holds val
5530 (concat val (set dst src)): dst now holds val, copied from src
5532 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5533 after replacing mems and non-top-level regs with values.
5535 (concat (concat val dstv) (set dst src)): dst now holds val,
5536 copied from src. dstv is a value-based representation of dst, if
5537 it differs from dst. If resolution is needed, src is a REG, and
5538 its mode is the same as that of val.
5540 (concat (concat val (set dstv srcv)) (set dst src)): src
5541 copied to dst, holding val. dstv and srcv are value-based
5542 representations of dst and src, respectively.
5546 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5548 reverse = reverse_op (v->val_rtx, expr);
5549 if (reverse)
5551 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, reverse);
5552 VAL_EXPR_HAS_REVERSE (loc) = 1;
5556 mo.u.loc = loc;
5558 if (track_p)
5559 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5560 if (preserve)
5562 VAL_NEEDS_RESOLUTION (loc) = resolve;
5563 preserve_value (v);
5565 if (mo.type == MO_CLOBBER)
5566 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5567 if (mo.type == MO_COPY)
5568 VAL_EXPR_IS_COPIED (loc) = 1;
5570 mo.type = MO_VAL_SET;
5572 log_and_return:
5573 if (dump_file && (dump_flags & TDF_DETAILS))
5574 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5575 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5578 /* Arguments to the call. */
5579 static rtx call_arguments;
5581 /* Compute call_arguments. */
5583 static void
5584 prepare_call_arguments (basic_block bb, rtx insn)
5586 rtx link, x;
5587 rtx prev, cur, next;
5588 rtx call = PATTERN (insn);
5589 rtx this_arg = NULL_RTX;
5590 tree type = NULL_TREE, t, fndecl = NULL_TREE;
5591 tree obj_type_ref = NULL_TREE;
5592 CUMULATIVE_ARGS args_so_far;
5594 memset (&args_so_far, 0, sizeof (args_so_far));
5595 if (GET_CODE (call) == PARALLEL)
5596 call = XVECEXP (call, 0, 0);
5597 if (GET_CODE (call) == SET)
5598 call = SET_SRC (call);
5599 if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)))
5601 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
5603 rtx symbol = XEXP (XEXP (call, 0), 0);
5604 if (SYMBOL_REF_DECL (symbol))
5605 fndecl = SYMBOL_REF_DECL (symbol);
5607 if (fndecl == NULL_TREE)
5608 fndecl = MEM_EXPR (XEXP (call, 0));
5609 if (fndecl
5610 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
5611 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
5612 fndecl = NULL_TREE;
5613 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
5614 type = TREE_TYPE (fndecl);
5615 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
5617 if (TREE_CODE (fndecl) == INDIRECT_REF
5618 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
5619 obj_type_ref = TREE_OPERAND (fndecl, 0);
5620 fndecl = NULL_TREE;
5622 if (type)
5624 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
5625 t = TREE_CHAIN (t))
5626 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
5627 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
5628 break;
5629 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
5630 type = NULL;
5631 else
5633 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
5634 link = CALL_INSN_FUNCTION_USAGE (insn);
5635 #ifndef PCC_STATIC_STRUCT_RETURN
5636 if (aggregate_value_p (TREE_TYPE (type), type)
5637 && targetm.calls.struct_value_rtx (type, 0) == 0)
5639 tree struct_addr = build_pointer_type (TREE_TYPE (type));
5640 enum machine_mode mode = TYPE_MODE (struct_addr);
5641 rtx reg;
5642 INIT_CUMULATIVE_ARGS (args_so_far, type, NULL_RTX, fndecl,
5643 nargs + 1);
5644 reg = targetm.calls.function_arg (&args_so_far, mode,
5645 struct_addr, true);
5646 targetm.calls.function_arg_advance (&args_so_far, mode,
5647 struct_addr, true);
5648 if (reg == NULL_RTX)
5650 for (; link; link = XEXP (link, 1))
5651 if (GET_CODE (XEXP (link, 0)) == USE
5652 && MEM_P (XEXP (XEXP (link, 0), 0)))
5654 link = XEXP (link, 1);
5655 break;
5659 else
5660 #endif
5661 INIT_CUMULATIVE_ARGS (args_so_far, type, NULL_RTX, fndecl,
5662 nargs);
5663 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
5665 enum machine_mode mode;
5666 t = TYPE_ARG_TYPES (type);
5667 mode = TYPE_MODE (TREE_VALUE (t));
5668 this_arg = targetm.calls.function_arg (&args_so_far, mode,
5669 TREE_VALUE (t), true);
5670 if (this_arg && !REG_P (this_arg))
5671 this_arg = NULL_RTX;
5672 else if (this_arg == NULL_RTX)
5674 for (; link; link = XEXP (link, 1))
5675 if (GET_CODE (XEXP (link, 0)) == USE
5676 && MEM_P (XEXP (XEXP (link, 0), 0)))
5678 this_arg = XEXP (XEXP (link, 0), 0);
5679 break;
5686 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
5688 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
5689 if (GET_CODE (XEXP (link, 0)) == USE)
5691 rtx item = NULL_RTX;
5692 x = XEXP (XEXP (link, 0), 0);
5693 if (REG_P (x))
5695 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5696 if (val && cselib_preserved_value_p (val))
5697 item = gen_rtx_CONCAT (GET_MODE (x), x, val->val_rtx);
5698 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
5700 enum machine_mode mode = GET_MODE (x);
5702 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
5703 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
5705 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
5707 if (reg == NULL_RTX || !REG_P (reg))
5708 continue;
5709 val = cselib_lookup (reg, mode, 0, VOIDmode);
5710 if (val && cselib_preserved_value_p (val))
5712 item = gen_rtx_CONCAT (GET_MODE (x), x,
5713 lowpart_subreg (GET_MODE (x),
5714 val->val_rtx,
5715 mode));
5716 break;
5721 else if (MEM_P (x))
5723 rtx mem = x;
5724 cselib_val *val;
5726 if (!frame_pointer_needed)
5728 struct adjust_mem_data amd;
5729 amd.mem_mode = VOIDmode;
5730 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
5731 amd.side_effects = NULL_RTX;
5732 amd.store = true;
5733 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
5734 &amd);
5735 gcc_assert (amd.side_effects == NULL_RTX);
5737 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
5738 if (val && cselib_preserved_value_p (val))
5739 item = gen_rtx_CONCAT (GET_MODE (x), copy_rtx (x), val->val_rtx);
5741 if (item)
5742 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
5743 if (t && t != void_list_node)
5745 tree argtype = TREE_VALUE (t);
5746 enum machine_mode mode = TYPE_MODE (argtype);
5747 rtx reg;
5748 if (pass_by_reference (&args_so_far, mode, argtype, true))
5750 argtype = build_pointer_type (argtype);
5751 mode = TYPE_MODE (argtype);
5753 reg = targetm.calls.function_arg (&args_so_far, mode,
5754 argtype, true);
5755 if (TREE_CODE (argtype) == REFERENCE_TYPE
5756 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
5757 && reg
5758 && REG_P (reg)
5759 && GET_MODE (reg) == mode
5760 && GET_MODE_CLASS (mode) == MODE_INT
5761 && REG_P (x)
5762 && REGNO (x) == REGNO (reg)
5763 && GET_MODE (x) == mode
5764 && item)
5766 enum machine_mode indmode
5767 = TYPE_MODE (TREE_TYPE (argtype));
5768 rtx mem = gen_rtx_MEM (indmode, x);
5769 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
5770 if (val && cselib_preserved_value_p (val))
5772 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
5773 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5774 call_arguments);
5776 else
5778 struct elt_loc_list *l;
5779 tree initial;
5781 /* Try harder, when passing address of a constant
5782 pool integer it can be easily read back. */
5783 item = XEXP (item, 1);
5784 if (GET_CODE (item) == SUBREG)
5785 item = SUBREG_REG (item);
5786 gcc_assert (GET_CODE (item) == VALUE);
5787 val = CSELIB_VAL_PTR (item);
5788 for (l = val->locs; l; l = l->next)
5789 if (GET_CODE (l->loc) == SYMBOL_REF
5790 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
5791 && SYMBOL_REF_DECL (l->loc)
5792 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
5794 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
5795 if (host_integerp (initial, 0))
5797 item = GEN_INT (tree_low_cst (initial, 0));
5798 item = gen_rtx_CONCAT (indmode, mem, item);
5799 call_arguments
5800 = gen_rtx_EXPR_LIST (VOIDmode, item,
5801 call_arguments);
5803 break;
5807 targetm.calls.function_arg_advance (&args_so_far, mode,
5808 argtype, true);
5809 t = TREE_CHAIN (t);
5813 /* Reverse call_arguments chain. */
5814 prev = NULL_RTX;
5815 for (cur = call_arguments; cur; cur = next)
5817 next = XEXP (cur, 1);
5818 XEXP (cur, 1) = prev;
5819 prev = cur;
5821 call_arguments = prev;
5823 x = PATTERN (insn);
5824 if (GET_CODE (x) == PARALLEL)
5825 x = XVECEXP (x, 0, 0);
5826 if (GET_CODE (x) == SET)
5827 x = SET_SRC (x);
5828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
5830 x = XEXP (XEXP (x, 0), 0);
5831 if (GET_CODE (x) == SYMBOL_REF)
5832 /* Don't record anything. */;
5833 else if (CONSTANT_P (x))
5835 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
5836 pc_rtx, x);
5837 call_arguments
5838 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5840 else
5842 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5843 if (val && cselib_preserved_value_p (val))
5845 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
5846 call_arguments
5847 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5851 if (this_arg)
5853 enum machine_mode mode
5854 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
5855 rtx clobbered = gen_rtx_MEM (mode, this_arg);
5856 HOST_WIDE_INT token
5857 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
5858 if (token)
5859 clobbered = plus_constant (clobbered, token * GET_MODE_SIZE (mode));
5860 clobbered = gen_rtx_MEM (mode, clobbered);
5861 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
5862 call_arguments
5863 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5867 /* Callback for cselib_record_sets_hook, that records as micro
5868 operations uses and stores in an insn after cselib_record_sets has
5869 analyzed the sets in an insn, but before it modifies the stored
5870 values in the internal tables, unless cselib_record_sets doesn't
5871 call it directly (perhaps because we're not doing cselib in the
5872 first place, in which case sets and n_sets will be 0). */
5874 static void
5875 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5877 basic_block bb = BLOCK_FOR_INSN (insn);
5878 int n1, n2;
5879 struct count_use_info cui;
5880 micro_operation *mos;
5882 cselib_hook_called = true;
5884 cui.insn = insn;
5885 cui.bb = bb;
5886 cui.sets = sets;
5887 cui.n_sets = n_sets;
5889 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5890 cui.store_p = false;
5891 note_uses (&PATTERN (insn), add_uses_1, &cui);
5892 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5893 mos = VEC_address (micro_operation, VTI (bb)->mos);
5895 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5896 MO_VAL_LOC last. */
5897 while (n1 < n2)
5899 while (n1 < n2 && mos[n1].type == MO_USE)
5900 n1++;
5901 while (n1 < n2 && mos[n2].type != MO_USE)
5902 n2--;
5903 if (n1 < n2)
5905 micro_operation sw;
5907 sw = mos[n1];
5908 mos[n1] = mos[n2];
5909 mos[n2] = sw;
5913 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5914 while (n1 < n2)
5916 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
5917 n1++;
5918 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
5919 n2--;
5920 if (n1 < n2)
5922 micro_operation sw;
5924 sw = mos[n1];
5925 mos[n1] = mos[n2];
5926 mos[n2] = sw;
5930 if (CALL_P (insn))
5932 micro_operation mo;
5934 mo.type = MO_CALL;
5935 mo.insn = insn;
5936 mo.u.loc = call_arguments;
5937 call_arguments = NULL_RTX;
5939 if (dump_file && (dump_flags & TDF_DETAILS))
5940 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
5941 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5944 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5945 /* This will record NEXT_INSN (insn), such that we can
5946 insert notes before it without worrying about any
5947 notes that MO_USEs might emit after the insn. */
5948 cui.store_p = true;
5949 note_stores (PATTERN (insn), add_stores, &cui);
5950 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5951 mos = VEC_address (micro_operation, VTI (bb)->mos);
5953 /* Order the MO_VAL_USEs first (note_stores does nothing
5954 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5955 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5956 while (n1 < n2)
5958 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
5959 n1++;
5960 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
5961 n2--;
5962 if (n1 < n2)
5964 micro_operation sw;
5966 sw = mos[n1];
5967 mos[n1] = mos[n2];
5968 mos[n2] = sw;
5972 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5973 while (n1 < n2)
5975 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
5976 n1++;
5977 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
5978 n2--;
5979 if (n1 < n2)
5981 micro_operation sw;
5983 sw = mos[n1];
5984 mos[n1] = mos[n2];
5985 mos[n2] = sw;
5990 static enum var_init_status
5991 find_src_status (dataflow_set *in, rtx src)
5993 tree decl = NULL_TREE;
5994 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
5996 if (! flag_var_tracking_uninit)
5997 status = VAR_INIT_STATUS_INITIALIZED;
5999 if (src && REG_P (src))
6000 decl = var_debug_decl (REG_EXPR (src));
6001 else if (src && MEM_P (src))
6002 decl = var_debug_decl (MEM_EXPR (src));
6004 if (src && decl)
6005 status = get_init_value (in, src, dv_from_decl (decl));
6007 return status;
6010 /* SRC is the source of an assignment. Use SET to try to find what
6011 was ultimately assigned to SRC. Return that value if known,
6012 otherwise return SRC itself. */
6014 static rtx
6015 find_src_set_src (dataflow_set *set, rtx src)
6017 tree decl = NULL_TREE; /* The variable being copied around. */
6018 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6019 variable var;
6020 location_chain nextp;
6021 int i;
6022 bool found;
6024 if (src && REG_P (src))
6025 decl = var_debug_decl (REG_EXPR (src));
6026 else if (src && MEM_P (src))
6027 decl = var_debug_decl (MEM_EXPR (src));
6029 if (src && decl)
6031 decl_or_value dv = dv_from_decl (decl);
6033 var = shared_hash_find (set->vars, dv);
6034 if (var)
6036 found = false;
6037 for (i = 0; i < var->n_var_parts && !found; i++)
6038 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6039 nextp = nextp->next)
6040 if (rtx_equal_p (nextp->loc, src))
6042 set_src = nextp->set_src;
6043 found = true;
6049 return set_src;
6052 /* Compute the changes of variable locations in the basic block BB. */
6054 static bool
6055 compute_bb_dataflow (basic_block bb)
6057 unsigned int i;
6058 micro_operation *mo;
6059 bool changed;
6060 dataflow_set old_out;
6061 dataflow_set *in = &VTI (bb)->in;
6062 dataflow_set *out = &VTI (bb)->out;
6064 dataflow_set_init (&old_out);
6065 dataflow_set_copy (&old_out, out);
6066 dataflow_set_copy (out, in);
6068 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
6070 rtx insn = mo->insn;
6072 switch (mo->type)
6074 case MO_CALL:
6075 dataflow_set_clear_at_call (out);
6076 break;
6078 case MO_USE:
6080 rtx loc = mo->u.loc;
6082 if (REG_P (loc))
6083 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6084 else if (MEM_P (loc))
6085 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6087 break;
6089 case MO_VAL_LOC:
6091 rtx loc = mo->u.loc;
6092 rtx val, vloc;
6093 tree var;
6095 if (GET_CODE (loc) == CONCAT)
6097 val = XEXP (loc, 0);
6098 vloc = XEXP (loc, 1);
6100 else
6102 val = NULL_RTX;
6103 vloc = loc;
6106 var = PAT_VAR_LOCATION_DECL (vloc);
6108 clobber_variable_part (out, NULL_RTX,
6109 dv_from_decl (var), 0, NULL_RTX);
6110 if (val)
6112 if (VAL_NEEDS_RESOLUTION (loc))
6113 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6114 set_variable_part (out, val, dv_from_decl (var), 0,
6115 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6116 INSERT);
6118 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6119 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6120 dv_from_decl (var), 0,
6121 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6122 INSERT);
6124 break;
6126 case MO_VAL_USE:
6128 rtx loc = mo->u.loc;
6129 rtx val, vloc, uloc;
6131 vloc = uloc = XEXP (loc, 1);
6132 val = XEXP (loc, 0);
6134 if (GET_CODE (val) == CONCAT)
6136 uloc = XEXP (val, 1);
6137 val = XEXP (val, 0);
6140 if (VAL_NEEDS_RESOLUTION (loc))
6141 val_resolve (out, val, vloc, insn);
6142 else
6143 val_store (out, val, uloc, insn, false);
6145 if (VAL_HOLDS_TRACK_EXPR (loc))
6147 if (GET_CODE (uloc) == REG)
6148 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6149 NULL);
6150 else if (GET_CODE (uloc) == MEM)
6151 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6152 NULL);
6155 break;
6157 case MO_VAL_SET:
6159 rtx loc = mo->u.loc;
6160 rtx val, vloc, uloc, reverse = NULL_RTX;
6162 vloc = loc;
6163 if (VAL_EXPR_HAS_REVERSE (loc))
6165 reverse = XEXP (loc, 1);
6166 vloc = XEXP (loc, 0);
6168 uloc = XEXP (vloc, 1);
6169 val = XEXP (vloc, 0);
6170 vloc = uloc;
6172 if (GET_CODE (val) == CONCAT)
6174 vloc = XEXP (val, 1);
6175 val = XEXP (val, 0);
6178 if (GET_CODE (vloc) == SET)
6180 rtx vsrc = SET_SRC (vloc);
6182 gcc_assert (val != vsrc);
6183 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6185 vloc = SET_DEST (vloc);
6187 if (VAL_NEEDS_RESOLUTION (loc))
6188 val_resolve (out, val, vsrc, insn);
6190 else if (VAL_NEEDS_RESOLUTION (loc))
6192 gcc_assert (GET_CODE (uloc) == SET
6193 && GET_CODE (SET_SRC (uloc)) == REG);
6194 val_resolve (out, val, SET_SRC (uloc), insn);
6197 if (VAL_HOLDS_TRACK_EXPR (loc))
6199 if (VAL_EXPR_IS_CLOBBERED (loc))
6201 if (REG_P (uloc))
6202 var_reg_delete (out, uloc, true);
6203 else if (MEM_P (uloc))
6204 var_mem_delete (out, uloc, true);
6206 else
6208 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6209 rtx set_src = NULL;
6210 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6212 if (GET_CODE (uloc) == SET)
6214 set_src = SET_SRC (uloc);
6215 uloc = SET_DEST (uloc);
6218 if (copied_p)
6220 if (flag_var_tracking_uninit)
6222 status = find_src_status (in, set_src);
6224 if (status == VAR_INIT_STATUS_UNKNOWN)
6225 status = find_src_status (out, set_src);
6228 set_src = find_src_set_src (in, set_src);
6231 if (REG_P (uloc))
6232 var_reg_delete_and_set (out, uloc, !copied_p,
6233 status, set_src);
6234 else if (MEM_P (uloc))
6235 var_mem_delete_and_set (out, uloc, !copied_p,
6236 status, set_src);
6239 else if (REG_P (uloc))
6240 var_regno_delete (out, REGNO (uloc));
6242 val_store (out, val, vloc, insn, true);
6244 if (reverse)
6245 val_store (out, XEXP (reverse, 0), XEXP (reverse, 1),
6246 insn, false);
6248 break;
6250 case MO_SET:
6252 rtx loc = mo->u.loc;
6253 rtx set_src = NULL;
6255 if (GET_CODE (loc) == SET)
6257 set_src = SET_SRC (loc);
6258 loc = SET_DEST (loc);
6261 if (REG_P (loc))
6262 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6263 set_src);
6264 else if (MEM_P (loc))
6265 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6266 set_src);
6268 break;
6270 case MO_COPY:
6272 rtx loc = mo->u.loc;
6273 enum var_init_status src_status;
6274 rtx set_src = NULL;
6276 if (GET_CODE (loc) == SET)
6278 set_src = SET_SRC (loc);
6279 loc = SET_DEST (loc);
6282 if (! flag_var_tracking_uninit)
6283 src_status = VAR_INIT_STATUS_INITIALIZED;
6284 else
6286 src_status = find_src_status (in, set_src);
6288 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6289 src_status = find_src_status (out, set_src);
6292 set_src = find_src_set_src (in, set_src);
6294 if (REG_P (loc))
6295 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6296 else if (MEM_P (loc))
6297 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6299 break;
6301 case MO_USE_NO_VAR:
6303 rtx loc = mo->u.loc;
6305 if (REG_P (loc))
6306 var_reg_delete (out, loc, false);
6307 else if (MEM_P (loc))
6308 var_mem_delete (out, loc, false);
6310 break;
6312 case MO_CLOBBER:
6314 rtx loc = mo->u.loc;
6316 if (REG_P (loc))
6317 var_reg_delete (out, loc, true);
6318 else if (MEM_P (loc))
6319 var_mem_delete (out, loc, true);
6321 break;
6323 case MO_ADJUST:
6324 out->stack_adjust += mo->u.adjust;
6325 break;
6329 if (MAY_HAVE_DEBUG_INSNS)
6331 dataflow_set_equiv_regs (out);
6332 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6333 out);
6334 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6335 out);
6336 #if ENABLE_CHECKING
6337 htab_traverse (shared_hash_htab (out->vars),
6338 canonicalize_loc_order_check, out);
6339 #endif
6341 changed = dataflow_set_different (&old_out, out);
6342 dataflow_set_destroy (&old_out);
6343 return changed;
6346 /* Find the locations of variables in the whole function. */
6348 static bool
6349 vt_find_locations (void)
6351 fibheap_t worklist, pending, fibheap_swap;
6352 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6353 basic_block bb;
6354 edge e;
6355 int *bb_order;
6356 int *rc_order;
6357 int i;
6358 int htabsz = 0;
6359 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6360 bool success = true;
6362 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6363 /* Compute reverse completion order of depth first search of the CFG
6364 so that the data-flow runs faster. */
6365 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6366 bb_order = XNEWVEC (int, last_basic_block);
6367 pre_and_rev_post_order_compute (NULL, rc_order, false);
6368 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6369 bb_order[rc_order[i]] = i;
6370 free (rc_order);
6372 worklist = fibheap_new ();
6373 pending = fibheap_new ();
6374 visited = sbitmap_alloc (last_basic_block);
6375 in_worklist = sbitmap_alloc (last_basic_block);
6376 in_pending = sbitmap_alloc (last_basic_block);
6377 sbitmap_zero (in_worklist);
6379 FOR_EACH_BB (bb)
6380 fibheap_insert (pending, bb_order[bb->index], bb);
6381 sbitmap_ones (in_pending);
6383 while (success && !fibheap_empty (pending))
6385 fibheap_swap = pending;
6386 pending = worklist;
6387 worklist = fibheap_swap;
6388 sbitmap_swap = in_pending;
6389 in_pending = in_worklist;
6390 in_worklist = sbitmap_swap;
6392 sbitmap_zero (visited);
6394 while (!fibheap_empty (worklist))
6396 bb = (basic_block) fibheap_extract_min (worklist);
6397 RESET_BIT (in_worklist, bb->index);
6398 gcc_assert (!TEST_BIT (visited, bb->index));
6399 if (!TEST_BIT (visited, bb->index))
6401 bool changed;
6402 edge_iterator ei;
6403 int oldinsz, oldoutsz;
6405 SET_BIT (visited, bb->index);
6407 if (VTI (bb)->in.vars)
6409 htabsz
6410 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6411 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6412 oldinsz
6413 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6414 oldoutsz
6415 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6417 else
6418 oldinsz = oldoutsz = 0;
6420 if (MAY_HAVE_DEBUG_INSNS)
6422 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6423 bool first = true, adjust = false;
6425 /* Calculate the IN set as the intersection of
6426 predecessor OUT sets. */
6428 dataflow_set_clear (in);
6429 dst_can_be_shared = true;
6431 FOR_EACH_EDGE (e, ei, bb->preds)
6432 if (!VTI (e->src)->flooded)
6433 gcc_assert (bb_order[bb->index]
6434 <= bb_order[e->src->index]);
6435 else if (first)
6437 dataflow_set_copy (in, &VTI (e->src)->out);
6438 first_out = &VTI (e->src)->out;
6439 first = false;
6441 else
6443 dataflow_set_merge (in, &VTI (e->src)->out);
6444 adjust = true;
6447 if (adjust)
6449 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6450 #if ENABLE_CHECKING
6451 /* Merge and merge_adjust should keep entries in
6452 canonical order. */
6453 htab_traverse (shared_hash_htab (in->vars),
6454 canonicalize_loc_order_check,
6455 in);
6456 #endif
6457 if (dst_can_be_shared)
6459 shared_hash_destroy (in->vars);
6460 in->vars = shared_hash_copy (first_out->vars);
6464 VTI (bb)->flooded = true;
6466 else
6468 /* Calculate the IN set as union of predecessor OUT sets. */
6469 dataflow_set_clear (&VTI (bb)->in);
6470 FOR_EACH_EDGE (e, ei, bb->preds)
6471 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6474 changed = compute_bb_dataflow (bb);
6475 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6476 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6478 if (htabmax && htabsz > htabmax)
6480 if (MAY_HAVE_DEBUG_INSNS)
6481 inform (DECL_SOURCE_LOCATION (cfun->decl),
6482 "variable tracking size limit exceeded with "
6483 "-fvar-tracking-assignments, retrying without");
6484 else
6485 inform (DECL_SOURCE_LOCATION (cfun->decl),
6486 "variable tracking size limit exceeded");
6487 success = false;
6488 break;
6491 if (changed)
6493 FOR_EACH_EDGE (e, ei, bb->succs)
6495 if (e->dest == EXIT_BLOCK_PTR)
6496 continue;
6498 if (TEST_BIT (visited, e->dest->index))
6500 if (!TEST_BIT (in_pending, e->dest->index))
6502 /* Send E->DEST to next round. */
6503 SET_BIT (in_pending, e->dest->index);
6504 fibheap_insert (pending,
6505 bb_order[e->dest->index],
6506 e->dest);
6509 else if (!TEST_BIT (in_worklist, e->dest->index))
6511 /* Add E->DEST to current round. */
6512 SET_BIT (in_worklist, e->dest->index);
6513 fibheap_insert (worklist, bb_order[e->dest->index],
6514 e->dest);
6519 if (dump_file)
6520 fprintf (dump_file,
6521 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6522 bb->index,
6523 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6524 oldinsz,
6525 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6526 oldoutsz,
6527 (int)worklist->nodes, (int)pending->nodes, htabsz);
6529 if (dump_file && (dump_flags & TDF_DETAILS))
6531 fprintf (dump_file, "BB %i IN:\n", bb->index);
6532 dump_dataflow_set (&VTI (bb)->in);
6533 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6534 dump_dataflow_set (&VTI (bb)->out);
6540 if (success && MAY_HAVE_DEBUG_INSNS)
6541 FOR_EACH_BB (bb)
6542 gcc_assert (VTI (bb)->flooded);
6544 free (bb_order);
6545 fibheap_delete (worklist);
6546 fibheap_delete (pending);
6547 sbitmap_free (visited);
6548 sbitmap_free (in_worklist);
6549 sbitmap_free (in_pending);
6551 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6552 return success;
6555 /* Print the content of the LIST to dump file. */
6557 static void
6558 dump_attrs_list (attrs list)
6560 for (; list; list = list->next)
6562 if (dv_is_decl_p (list->dv))
6563 print_mem_expr (dump_file, dv_as_decl (list->dv));
6564 else
6565 print_rtl_single (dump_file, dv_as_value (list->dv));
6566 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6568 fprintf (dump_file, "\n");
6571 /* Print the information about variable *SLOT to dump file. */
6573 static int
6574 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6576 variable var = (variable) *slot;
6578 dump_var (var);
6580 /* Continue traversing the hash table. */
6581 return 1;
6584 /* Print the information about variable VAR to dump file. */
6586 static void
6587 dump_var (variable var)
6589 int i;
6590 location_chain node;
6592 if (dv_is_decl_p (var->dv))
6594 const_tree decl = dv_as_decl (var->dv);
6596 if (DECL_NAME (decl))
6598 fprintf (dump_file, " name: %s",
6599 IDENTIFIER_POINTER (DECL_NAME (decl)));
6600 if (dump_flags & TDF_UID)
6601 fprintf (dump_file, "D.%u", DECL_UID (decl));
6603 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6604 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6605 else
6606 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6607 fprintf (dump_file, "\n");
6609 else
6611 fputc (' ', dump_file);
6612 print_rtl_single (dump_file, dv_as_value (var->dv));
6615 for (i = 0; i < var->n_var_parts; i++)
6617 fprintf (dump_file, " offset %ld\n",
6618 (long) var->var_part[i].offset);
6619 for (node = var->var_part[i].loc_chain; node; node = node->next)
6621 fprintf (dump_file, " ");
6622 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6623 fprintf (dump_file, "[uninit]");
6624 print_rtl_single (dump_file, node->loc);
6629 /* Print the information about variables from hash table VARS to dump file. */
6631 static void
6632 dump_vars (htab_t vars)
6634 if (htab_elements (vars) > 0)
6636 fprintf (dump_file, "Variables:\n");
6637 htab_traverse (vars, dump_var_slot, NULL);
6641 /* Print the dataflow set SET to dump file. */
6643 static void
6644 dump_dataflow_set (dataflow_set *set)
6646 int i;
6648 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6649 set->stack_adjust);
6650 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6652 if (set->regs[i])
6654 fprintf (dump_file, "Reg %d:", i);
6655 dump_attrs_list (set->regs[i]);
6658 dump_vars (shared_hash_htab (set->vars));
6659 fprintf (dump_file, "\n");
6662 /* Print the IN and OUT sets for each basic block to dump file. */
6664 static void
6665 dump_dataflow_sets (void)
6667 basic_block bb;
6669 FOR_EACH_BB (bb)
6671 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6672 fprintf (dump_file, "IN:\n");
6673 dump_dataflow_set (&VTI (bb)->in);
6674 fprintf (dump_file, "OUT:\n");
6675 dump_dataflow_set (&VTI (bb)->out);
6679 /* Add variable VAR to the hash table of changed variables and
6680 if it has no locations delete it from SET's hash table. */
6682 static void
6683 variable_was_changed (variable var, dataflow_set *set)
6685 hashval_t hash = dv_htab_hash (var->dv);
6687 if (emit_notes)
6689 void **slot;
6690 bool old_cur_loc_changed = false;
6692 /* Remember this decl or VALUE has been added to changed_variables. */
6693 set_dv_changed (var->dv, true);
6695 slot = htab_find_slot_with_hash (changed_variables,
6696 var->dv,
6697 hash, INSERT);
6699 if (*slot)
6701 variable old_var = (variable) *slot;
6702 gcc_assert (old_var->in_changed_variables);
6703 old_var->in_changed_variables = false;
6704 old_cur_loc_changed = old_var->cur_loc_changed;
6705 variable_htab_free (*slot);
6707 if (set && var->n_var_parts == 0)
6709 variable empty_var;
6711 empty_var = (variable) pool_alloc (dv_pool (var->dv));
6712 empty_var->dv = var->dv;
6713 empty_var->refcount = 1;
6714 empty_var->n_var_parts = 0;
6715 empty_var->cur_loc_changed = true;
6716 empty_var->in_changed_variables = true;
6717 *slot = empty_var;
6718 goto drop_var;
6720 else
6722 var->refcount++;
6723 var->in_changed_variables = true;
6724 /* If within processing one uop a variable is deleted
6725 and then readded, we need to assume it has changed. */
6726 if (old_cur_loc_changed)
6727 var->cur_loc_changed = true;
6728 *slot = var;
6731 else
6733 gcc_assert (set);
6734 if (var->n_var_parts == 0)
6736 void **slot;
6738 drop_var:
6739 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6740 if (slot)
6742 if (shared_hash_shared (set->vars))
6743 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6744 NO_INSERT);
6745 htab_clear_slot (shared_hash_htab (set->vars), slot);
6751 /* Look for the index in VAR->var_part corresponding to OFFSET.
6752 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6753 referenced int will be set to the index that the part has or should
6754 have, if it should be inserted. */
6756 static inline int
6757 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6758 int *insertion_point)
6760 int pos, low, high;
6762 /* Find the location part. */
6763 low = 0;
6764 high = var->n_var_parts;
6765 while (low != high)
6767 pos = (low + high) / 2;
6768 if (var->var_part[pos].offset < offset)
6769 low = pos + 1;
6770 else
6771 high = pos;
6773 pos = low;
6775 if (insertion_point)
6776 *insertion_point = pos;
6778 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
6779 return pos;
6781 return -1;
6784 static void **
6785 set_slot_part (dataflow_set *set, rtx loc, void **slot,
6786 decl_or_value dv, HOST_WIDE_INT offset,
6787 enum var_init_status initialized, rtx set_src)
6789 int pos;
6790 location_chain node, next;
6791 location_chain *nextp;
6792 variable var;
6793 bool onepart = dv_onepart_p (dv);
6795 gcc_assert (offset == 0 || !onepart);
6796 gcc_assert (loc != dv_as_opaque (dv));
6798 var = (variable) *slot;
6800 if (! flag_var_tracking_uninit)
6801 initialized = VAR_INIT_STATUS_INITIALIZED;
6803 if (!var)
6805 /* Create new variable information. */
6806 var = (variable) pool_alloc (dv_pool (dv));
6807 var->dv = dv;
6808 var->refcount = 1;
6809 var->n_var_parts = 1;
6810 var->cur_loc_changed = false;
6811 var->in_changed_variables = false;
6812 var->var_part[0].offset = offset;
6813 var->var_part[0].loc_chain = NULL;
6814 var->var_part[0].cur_loc = NULL;
6815 *slot = var;
6816 pos = 0;
6817 nextp = &var->var_part[0].loc_chain;
6819 else if (onepart)
6821 int r = -1, c = 0;
6823 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
6825 pos = 0;
6827 if (GET_CODE (loc) == VALUE)
6829 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6830 nextp = &node->next)
6831 if (GET_CODE (node->loc) == VALUE)
6833 if (node->loc == loc)
6835 r = 0;
6836 break;
6838 if (canon_value_cmp (node->loc, loc))
6839 c++;
6840 else
6842 r = 1;
6843 break;
6846 else if (REG_P (node->loc) || MEM_P (node->loc))
6847 c++;
6848 else
6850 r = 1;
6851 break;
6854 else if (REG_P (loc))
6856 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6857 nextp = &node->next)
6858 if (REG_P (node->loc))
6860 if (REGNO (node->loc) < REGNO (loc))
6861 c++;
6862 else
6864 if (REGNO (node->loc) == REGNO (loc))
6865 r = 0;
6866 else
6867 r = 1;
6868 break;
6871 else
6873 r = 1;
6874 break;
6877 else if (MEM_P (loc))
6879 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6880 nextp = &node->next)
6881 if (REG_P (node->loc))
6882 c++;
6883 else if (MEM_P (node->loc))
6885 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
6886 break;
6887 else
6888 c++;
6890 else
6892 r = 1;
6893 break;
6896 else
6897 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6898 nextp = &node->next)
6899 if ((r = loc_cmp (node->loc, loc)) >= 0)
6900 break;
6901 else
6902 c++;
6904 if (r == 0)
6905 return slot;
6907 if (shared_var_p (var, set->vars))
6909 slot = unshare_variable (set, slot, var, initialized);
6910 var = (variable)*slot;
6911 for (nextp = &var->var_part[0].loc_chain; c;
6912 nextp = &(*nextp)->next)
6913 c--;
6914 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
6917 else
6919 int inspos = 0;
6921 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
6923 pos = find_variable_location_part (var, offset, &inspos);
6925 if (pos >= 0)
6927 node = var->var_part[pos].loc_chain;
6929 if (node
6930 && ((REG_P (node->loc) && REG_P (loc)
6931 && REGNO (node->loc) == REGNO (loc))
6932 || rtx_equal_p (node->loc, loc)))
6934 /* LOC is in the beginning of the chain so we have nothing
6935 to do. */
6936 if (node->init < initialized)
6937 node->init = initialized;
6938 if (set_src != NULL)
6939 node->set_src = set_src;
6941 return slot;
6943 else
6945 /* We have to make a copy of a shared variable. */
6946 if (shared_var_p (var, set->vars))
6948 slot = unshare_variable (set, slot, var, initialized);
6949 var = (variable)*slot;
6953 else
6955 /* We have not found the location part, new one will be created. */
6957 /* We have to make a copy of the shared variable. */
6958 if (shared_var_p (var, set->vars))
6960 slot = unshare_variable (set, slot, var, initialized);
6961 var = (variable)*slot;
6964 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6965 thus there are at most MAX_VAR_PARTS different offsets. */
6966 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
6967 && (!var->n_var_parts || !dv_onepart_p (var->dv)));
6969 /* We have to move the elements of array starting at index
6970 inspos to the next position. */
6971 for (pos = var->n_var_parts; pos > inspos; pos--)
6972 var->var_part[pos] = var->var_part[pos - 1];
6974 var->n_var_parts++;
6975 var->var_part[pos].offset = offset;
6976 var->var_part[pos].loc_chain = NULL;
6977 var->var_part[pos].cur_loc = NULL;
6980 /* Delete the location from the list. */
6981 nextp = &var->var_part[pos].loc_chain;
6982 for (node = var->var_part[pos].loc_chain; node; node = next)
6984 next = node->next;
6985 if ((REG_P (node->loc) && REG_P (loc)
6986 && REGNO (node->loc) == REGNO (loc))
6987 || rtx_equal_p (node->loc, loc))
6989 /* Save these values, to assign to the new node, before
6990 deleting this one. */
6991 if (node->init > initialized)
6992 initialized = node->init;
6993 if (node->set_src != NULL && set_src == NULL)
6994 set_src = node->set_src;
6995 if (var->var_part[pos].cur_loc == node->loc)
6997 var->var_part[pos].cur_loc = NULL;
6998 var->cur_loc_changed = true;
7000 pool_free (loc_chain_pool, node);
7001 *nextp = next;
7002 break;
7004 else
7005 nextp = &node->next;
7008 nextp = &var->var_part[pos].loc_chain;
7011 /* Add the location to the beginning. */
7012 node = (location_chain) pool_alloc (loc_chain_pool);
7013 node->loc = loc;
7014 node->init = initialized;
7015 node->set_src = set_src;
7016 node->next = *nextp;
7017 *nextp = node;
7019 if (onepart && emit_notes)
7020 add_value_chains (var->dv, loc);
7022 /* If no location was emitted do so. */
7023 if (var->var_part[pos].cur_loc == NULL)
7024 variable_was_changed (var, set);
7026 return slot;
7029 /* Set the part of variable's location in the dataflow set SET. The
7030 variable part is specified by variable's declaration in DV and
7031 offset OFFSET and the part's location by LOC. IOPT should be
7032 NO_INSERT if the variable is known to be in SET already and the
7033 variable hash table must not be resized, and INSERT otherwise. */
7035 static void
7036 set_variable_part (dataflow_set *set, rtx loc,
7037 decl_or_value dv, HOST_WIDE_INT offset,
7038 enum var_init_status initialized, rtx set_src,
7039 enum insert_option iopt)
7041 void **slot;
7043 if (iopt == NO_INSERT)
7044 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7045 else
7047 slot = shared_hash_find_slot (set->vars, dv);
7048 if (!slot)
7049 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7051 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7054 /* Remove all recorded register locations for the given variable part
7055 from dataflow set SET, except for those that are identical to loc.
7056 The variable part is specified by variable's declaration or value
7057 DV and offset OFFSET. */
7059 static void **
7060 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
7061 HOST_WIDE_INT offset, rtx set_src)
7063 variable var = (variable) *slot;
7064 int pos = find_variable_location_part (var, offset, NULL);
7066 if (pos >= 0)
7068 location_chain node, next;
7070 /* Remove the register locations from the dataflow set. */
7071 next = var->var_part[pos].loc_chain;
7072 for (node = next; node; node = next)
7074 next = node->next;
7075 if (node->loc != loc
7076 && (!flag_var_tracking_uninit
7077 || !set_src
7078 || MEM_P (set_src)
7079 || !rtx_equal_p (set_src, node->set_src)))
7081 if (REG_P (node->loc))
7083 attrs anode, anext;
7084 attrs *anextp;
7086 /* Remove the variable part from the register's
7087 list, but preserve any other variable parts
7088 that might be regarded as live in that same
7089 register. */
7090 anextp = &set->regs[REGNO (node->loc)];
7091 for (anode = *anextp; anode; anode = anext)
7093 anext = anode->next;
7094 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7095 && anode->offset == offset)
7097 pool_free (attrs_pool, anode);
7098 *anextp = anext;
7100 else
7101 anextp = &anode->next;
7105 slot = delete_slot_part (set, node->loc, slot, offset);
7110 return slot;
7113 /* Remove all recorded register locations for the given variable part
7114 from dataflow set SET, except for those that are identical to loc.
7115 The variable part is specified by variable's declaration or value
7116 DV and offset OFFSET. */
7118 static void
7119 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7120 HOST_WIDE_INT offset, rtx set_src)
7122 void **slot;
7124 if (!dv_as_opaque (dv)
7125 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7126 return;
7128 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7129 if (!slot)
7130 return;
7132 clobber_slot_part (set, loc, slot, offset, set_src);
7135 /* Delete the part of variable's location from dataflow set SET. The
7136 variable part is specified by its SET->vars slot SLOT and offset
7137 OFFSET and the part's location by LOC. */
7139 static void **
7140 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
7141 HOST_WIDE_INT offset)
7143 variable var = (variable) *slot;
7144 int pos = find_variable_location_part (var, offset, NULL);
7146 if (pos >= 0)
7148 location_chain node, next;
7149 location_chain *nextp;
7150 bool changed;
7152 if (shared_var_p (var, set->vars))
7154 /* If the variable contains the location part we have to
7155 make a copy of the variable. */
7156 for (node = var->var_part[pos].loc_chain; node;
7157 node = node->next)
7159 if ((REG_P (node->loc) && REG_P (loc)
7160 && REGNO (node->loc) == REGNO (loc))
7161 || rtx_equal_p (node->loc, loc))
7163 slot = unshare_variable (set, slot, var,
7164 VAR_INIT_STATUS_UNKNOWN);
7165 var = (variable)*slot;
7166 break;
7171 /* Delete the location part. */
7172 changed = false;
7173 nextp = &var->var_part[pos].loc_chain;
7174 for (node = *nextp; node; node = next)
7176 next = node->next;
7177 if ((REG_P (node->loc) && REG_P (loc)
7178 && REGNO (node->loc) == REGNO (loc))
7179 || rtx_equal_p (node->loc, loc))
7181 if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
7182 remove_value_chains (var->dv, node->loc);
7183 /* If we have deleted the location which was last emitted
7184 we have to emit new location so add the variable to set
7185 of changed variables. */
7186 if (var->var_part[pos].cur_loc == node->loc)
7188 changed = true;
7189 var->var_part[pos].cur_loc = NULL;
7190 var->cur_loc_changed = true;
7192 pool_free (loc_chain_pool, node);
7193 *nextp = next;
7194 break;
7196 else
7197 nextp = &node->next;
7200 if (var->var_part[pos].loc_chain == NULL)
7202 changed = true;
7203 var->n_var_parts--;
7204 if (emit_notes)
7205 var->cur_loc_changed = true;
7206 while (pos < var->n_var_parts)
7208 var->var_part[pos] = var->var_part[pos + 1];
7209 pos++;
7212 if (changed)
7213 variable_was_changed (var, set);
7216 return slot;
7219 /* Delete the part of variable's location from dataflow set SET. The
7220 variable part is specified by variable's declaration or value DV
7221 and offset OFFSET and the part's location by LOC. */
7223 static void
7224 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7225 HOST_WIDE_INT offset)
7227 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7228 if (!slot)
7229 return;
7231 delete_slot_part (set, loc, slot, offset);
7234 /* Structure for passing some other parameters to function
7235 vt_expand_loc_callback. */
7236 struct expand_loc_callback_data
7238 /* The variables and values active at this point. */
7239 htab_t vars;
7241 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
7242 Non-NULL should be returned if vt_expand_loc would return
7243 non-NULL in that case, NULL otherwise. cur_loc_changed should be
7244 computed and cur_loc recomputed when possible (but just once
7245 per emit_notes_for_changes call). */
7246 bool dummy;
7248 /* True if expansion of subexpressions had to recompute some
7249 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
7250 whose cur_loc has been already recomputed during current
7251 emit_notes_for_changes call. */
7252 bool cur_loc_changed;
7254 /* True if cur_loc should be ignored and any possible location
7255 returned. */
7256 bool ignore_cur_loc;
7259 /* Callback for cselib_expand_value, that looks for expressions
7260 holding the value in the var-tracking hash tables. Return X for
7261 standard processing, anything else is to be used as-is. */
7263 static rtx
7264 vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
7266 struct expand_loc_callback_data *elcd
7267 = (struct expand_loc_callback_data *) data;
7268 bool dummy = elcd->dummy;
7269 bool cur_loc_changed = elcd->cur_loc_changed;
7270 rtx cur_loc;
7271 decl_or_value dv;
7272 variable var;
7273 location_chain loc;
7274 rtx result, subreg, xret;
7276 switch (GET_CODE (x))
7278 case SUBREG:
7279 if (dummy)
7281 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x), regs,
7282 max_depth - 1,
7283 vt_expand_loc_callback, data))
7284 return pc_rtx;
7285 else
7286 return NULL;
7289 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
7290 max_depth - 1,
7291 vt_expand_loc_callback, data);
7293 if (!subreg)
7294 return NULL;
7296 result = simplify_gen_subreg (GET_MODE (x), subreg,
7297 GET_MODE (SUBREG_REG (x)),
7298 SUBREG_BYTE (x));
7300 /* Invalid SUBREGs are ok in debug info. ??? We could try
7301 alternate expansions for the VALUE as well. */
7302 if (!result)
7303 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
7305 return result;
7307 case DEBUG_EXPR:
7308 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
7309 xret = NULL;
7310 break;
7312 case VALUE:
7313 dv = dv_from_value (x);
7314 xret = x;
7315 break;
7317 default:
7318 return x;
7321 if (VALUE_RECURSED_INTO (x))
7322 return NULL;
7324 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
7326 if (!var)
7328 if (dummy && dv_changed_p (dv))
7329 elcd->cur_loc_changed = true;
7330 return xret;
7333 if (var->n_var_parts == 0)
7335 if (dummy)
7336 elcd->cur_loc_changed = true;
7337 return xret;
7340 gcc_assert (var->n_var_parts == 1);
7342 VALUE_RECURSED_INTO (x) = true;
7343 result = NULL;
7345 if (var->var_part[0].cur_loc && !elcd->ignore_cur_loc)
7347 if (dummy)
7349 if (cselib_dummy_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7350 max_depth,
7351 vt_expand_loc_callback, data))
7352 result = pc_rtx;
7354 else
7355 result = cselib_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7356 max_depth,
7357 vt_expand_loc_callback, data);
7358 if (result)
7359 set_dv_changed (dv, false);
7360 cur_loc = var->var_part[0].cur_loc;
7362 else
7363 cur_loc = NULL_RTX;
7364 if (!result && (dv_changed_p (dv) || elcd->ignore_cur_loc))
7366 if (!elcd->ignore_cur_loc)
7367 set_dv_changed (dv, false);
7368 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
7369 if (loc->loc == cur_loc)
7370 continue;
7371 else if (dummy)
7373 elcd->cur_loc_changed = cur_loc_changed;
7374 if (cselib_dummy_expand_value_rtx_cb (loc->loc, regs, max_depth,
7375 vt_expand_loc_callback,
7376 data))
7378 result = pc_rtx;
7379 break;
7382 else
7384 result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
7385 vt_expand_loc_callback, data);
7386 if (result)
7387 break;
7389 if (dummy && (result || var->var_part[0].cur_loc))
7390 var->cur_loc_changed = true;
7391 if (!elcd->ignore_cur_loc)
7392 var->var_part[0].cur_loc = loc ? loc->loc : NULL_RTX;
7394 if (dummy)
7396 if (var->cur_loc_changed)
7397 elcd->cur_loc_changed = true;
7398 else if (!result && var->var_part[0].cur_loc == NULL_RTX)
7399 elcd->cur_loc_changed = cur_loc_changed;
7402 VALUE_RECURSED_INTO (x) = false;
7403 if (result)
7404 return result;
7405 else
7406 return xret;
7409 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
7410 tables. */
7412 static rtx
7413 vt_expand_loc (rtx loc, htab_t vars, bool ignore_cur_loc)
7415 struct expand_loc_callback_data data;
7417 if (!MAY_HAVE_DEBUG_INSNS)
7418 return loc;
7420 data.vars = vars;
7421 data.dummy = false;
7422 data.cur_loc_changed = false;
7423 data.ignore_cur_loc = ignore_cur_loc;
7424 loc = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
7425 vt_expand_loc_callback, &data);
7427 if (loc && MEM_P (loc))
7428 loc = targetm.delegitimize_address (loc);
7429 return loc;
7432 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
7433 would succeed or not, without actually allocating new rtxes. */
7435 static bool
7436 vt_expand_loc_dummy (rtx loc, htab_t vars, bool *pcur_loc_changed)
7438 struct expand_loc_callback_data data;
7439 bool ret;
7441 gcc_assert (MAY_HAVE_DEBUG_INSNS);
7442 data.vars = vars;
7443 data.dummy = true;
7444 data.cur_loc_changed = false;
7445 data.ignore_cur_loc = false;
7446 ret = cselib_dummy_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
7447 vt_expand_loc_callback, &data);
7448 *pcur_loc_changed = data.cur_loc_changed;
7449 return ret;
7452 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7453 additional parameters: WHERE specifies whether the note shall be emitted
7454 before or after instruction INSN. */
7456 static int
7457 emit_note_insn_var_location (void **varp, void *data)
7459 variable var = (variable) *varp;
7460 rtx insn = ((emit_note_data *)data)->insn;
7461 enum emit_note_where where = ((emit_note_data *)data)->where;
7462 htab_t vars = ((emit_note_data *)data)->vars;
7463 rtx note, note_vl;
7464 int i, j, n_var_parts;
7465 bool complete;
7466 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
7467 HOST_WIDE_INT last_limit;
7468 tree type_size_unit;
7469 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
7470 rtx loc[MAX_VAR_PARTS];
7471 tree decl;
7472 location_chain lc;
7474 if (dv_is_value_p (var->dv))
7475 goto value_or_debug_decl;
7477 decl = dv_as_decl (var->dv);
7479 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7480 goto value_or_debug_decl;
7482 complete = true;
7483 last_limit = 0;
7484 n_var_parts = 0;
7485 if (!MAY_HAVE_DEBUG_INSNS)
7487 for (i = 0; i < var->n_var_parts; i++)
7488 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
7490 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
7491 var->cur_loc_changed = true;
7493 if (var->n_var_parts == 0)
7494 var->cur_loc_changed = true;
7496 if (!var->cur_loc_changed)
7497 goto clear;
7498 for (i = 0; i < var->n_var_parts; i++)
7500 enum machine_mode mode, wider_mode;
7501 rtx loc2;
7503 if (last_limit < var->var_part[i].offset)
7505 complete = false;
7506 break;
7508 else if (last_limit > var->var_part[i].offset)
7509 continue;
7510 offsets[n_var_parts] = var->var_part[i].offset;
7511 if (!var->var_part[i].cur_loc)
7513 complete = false;
7514 continue;
7516 loc2 = vt_expand_loc (var->var_part[i].cur_loc, vars, false);
7517 if (!loc2)
7519 complete = false;
7520 continue;
7522 loc[n_var_parts] = loc2;
7523 mode = GET_MODE (var->var_part[i].cur_loc);
7524 if (mode == VOIDmode && dv_onepart_p (var->dv))
7525 mode = DECL_MODE (decl);
7526 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7527 if (var->var_part[i].cur_loc == lc->loc)
7529 initialized = lc->init;
7530 break;
7532 gcc_assert (lc);
7533 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7535 /* Attempt to merge adjacent registers or memory. */
7536 wider_mode = GET_MODE_WIDER_MODE (mode);
7537 for (j = i + 1; j < var->n_var_parts; j++)
7538 if (last_limit <= var->var_part[j].offset)
7539 break;
7540 if (j < var->n_var_parts
7541 && wider_mode != VOIDmode
7542 && var->var_part[j].cur_loc
7543 && mode == GET_MODE (var->var_part[j].cur_loc)
7544 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
7545 && last_limit == var->var_part[j].offset
7546 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars, false))
7547 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
7549 rtx new_loc = NULL;
7551 if (REG_P (loc[n_var_parts])
7552 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
7553 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
7554 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
7555 == REGNO (loc2))
7557 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
7558 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
7559 mode, 0);
7560 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
7561 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
7562 if (new_loc)
7564 if (!REG_P (new_loc)
7565 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
7566 new_loc = NULL;
7567 else
7568 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
7571 else if (MEM_P (loc[n_var_parts])
7572 && GET_CODE (XEXP (loc2, 0)) == PLUS
7573 && REG_P (XEXP (XEXP (loc2, 0), 0))
7574 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
7576 if ((REG_P (XEXP (loc[n_var_parts], 0))
7577 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
7578 XEXP (XEXP (loc2, 0), 0))
7579 && INTVAL (XEXP (XEXP (loc2, 0), 1))
7580 == GET_MODE_SIZE (mode))
7581 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
7582 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
7583 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
7584 XEXP (XEXP (loc2, 0), 0))
7585 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
7586 + GET_MODE_SIZE (mode)
7587 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
7588 new_loc = adjust_address_nv (loc[n_var_parts],
7589 wider_mode, 0);
7592 if (new_loc)
7594 loc[n_var_parts] = new_loc;
7595 mode = wider_mode;
7596 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7597 i = j;
7600 ++n_var_parts;
7602 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
7603 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
7604 complete = false;
7606 if (! flag_var_tracking_uninit)
7607 initialized = VAR_INIT_STATUS_INITIALIZED;
7609 note_vl = NULL_RTX;
7610 if (!complete)
7611 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
7612 (int) initialized);
7613 else if (n_var_parts == 1)
7615 rtx expr_list;
7617 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
7618 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
7619 else
7620 expr_list = loc[0];
7622 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
7623 (int) initialized);
7625 else if (n_var_parts)
7627 rtx parallel;
7629 for (i = 0; i < n_var_parts; i++)
7630 loc[i]
7631 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
7633 parallel = gen_rtx_PARALLEL (VOIDmode,
7634 gen_rtvec_v (n_var_parts, loc));
7635 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
7636 parallel, (int) initialized);
7639 if (where != EMIT_NOTE_BEFORE_INSN)
7641 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7642 if (where == EMIT_NOTE_AFTER_CALL_INSN)
7643 NOTE_DURING_CALL_P (note) = true;
7645 else
7647 /* Make sure that the call related notes come first. */
7648 while (NEXT_INSN (insn)
7649 && NOTE_P (insn)
7650 && NOTE_DURING_CALL_P (insn))
7651 insn = NEXT_INSN (insn);
7652 if (NOTE_P (insn) && NOTE_DURING_CALL_P (insn))
7653 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7654 else
7655 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
7657 NOTE_VAR_LOCATION (note) = note_vl;
7659 clear:
7660 set_dv_changed (var->dv, false);
7661 var->cur_loc_changed = false;
7662 gcc_assert (var->in_changed_variables);
7663 var->in_changed_variables = false;
7664 htab_clear_slot (changed_variables, varp);
7666 /* Continue traversing the hash table. */
7667 return 1;
7669 value_or_debug_decl:
7670 if (dv_changed_p (var->dv) && var->n_var_parts)
7672 location_chain lc;
7673 bool cur_loc_changed;
7675 if (var->var_part[0].cur_loc
7676 && vt_expand_loc_dummy (var->var_part[0].cur_loc, vars,
7677 &cur_loc_changed))
7678 goto clear;
7679 for (lc = var->var_part[0].loc_chain; lc; lc = lc->next)
7680 if (lc->loc != var->var_part[0].cur_loc
7681 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7682 break;
7683 var->var_part[0].cur_loc = lc ? lc->loc : NULL_RTX;
7685 goto clear;
7688 DEF_VEC_P (variable);
7689 DEF_VEC_ALLOC_P (variable, heap);
7691 /* Stack of variable_def pointers that need processing with
7692 check_changed_vars_2. */
7694 static VEC (variable, heap) *changed_variables_stack;
7696 /* VALUEs with no variables that need set_dv_changed (val, false)
7697 called before check_changed_vars_3. */
7699 static VEC (rtx, heap) *changed_values_stack;
7701 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7703 static void
7704 check_changed_vars_0 (decl_or_value dv, htab_t htab)
7706 value_chain vc
7707 = (value_chain) htab_find_with_hash (value_chains, dv, dv_htab_hash (dv));
7709 if (vc == NULL)
7710 return;
7711 for (vc = vc->next; vc; vc = vc->next)
7712 if (!dv_changed_p (vc->dv))
7714 variable vcvar
7715 = (variable) htab_find_with_hash (htab, vc->dv,
7716 dv_htab_hash (vc->dv));
7717 if (vcvar)
7719 set_dv_changed (vc->dv, true);
7720 VEC_safe_push (variable, heap, changed_variables_stack, vcvar);
7722 else if (dv_is_value_p (vc->dv))
7724 set_dv_changed (vc->dv, true);
7725 VEC_safe_push (rtx, heap, changed_values_stack,
7726 dv_as_value (vc->dv));
7727 check_changed_vars_0 (vc->dv, htab);
7732 /* Populate changed_variables_stack with variable_def pointers
7733 that need variable_was_changed called on them. */
7735 static int
7736 check_changed_vars_1 (void **slot, void *data)
7738 variable var = (variable) *slot;
7739 htab_t htab = (htab_t) data;
7741 if (dv_is_value_p (var->dv)
7742 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7743 check_changed_vars_0 (var->dv, htab);
7744 return 1;
7747 /* Add VAR to changed_variables and also for VALUEs add recursively
7748 all DVs that aren't in changed_variables yet but reference the
7749 VALUE from its loc_chain. */
7751 static void
7752 check_changed_vars_2 (variable var, htab_t htab)
7754 variable_was_changed (var, NULL);
7755 if (dv_is_value_p (var->dv)
7756 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7757 check_changed_vars_0 (var->dv, htab);
7760 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7761 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7762 it needs and are also in changed variables) and track whether
7763 cur_loc (or anything it uses to compute location) had to change
7764 during the current emit_notes_for_changes call. */
7766 static int
7767 check_changed_vars_3 (void **slot, void *data)
7769 variable var = (variable) *slot;
7770 htab_t vars = (htab_t) data;
7771 int i;
7772 location_chain lc;
7773 bool cur_loc_changed;
7775 if (dv_is_value_p (var->dv)
7776 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7777 return 1;
7779 for (i = 0; i < var->n_var_parts; i++)
7781 if (var->var_part[i].cur_loc
7782 && vt_expand_loc_dummy (var->var_part[i].cur_loc, vars,
7783 &cur_loc_changed))
7785 if (cur_loc_changed)
7786 var->cur_loc_changed = true;
7787 continue;
7789 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7790 if (lc->loc != var->var_part[i].cur_loc
7791 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7792 break;
7793 if (lc || var->var_part[i].cur_loc)
7794 var->cur_loc_changed = true;
7795 var->var_part[i].cur_loc = lc ? lc->loc : NULL_RTX;
7797 if (var->n_var_parts == 0)
7798 var->cur_loc_changed = true;
7799 return 1;
7802 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7803 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7804 shall be emitted before of after instruction INSN. */
7806 static void
7807 emit_notes_for_changes (rtx insn, enum emit_note_where where,
7808 shared_hash vars)
7810 emit_note_data data;
7811 htab_t htab = shared_hash_htab (vars);
7813 if (!htab_elements (changed_variables))
7814 return;
7816 if (MAY_HAVE_DEBUG_INSNS)
7818 /* Unfortunately this has to be done in two steps, because
7819 we can't traverse a hashtab into which we are inserting
7820 through variable_was_changed. */
7821 htab_traverse (changed_variables, check_changed_vars_1, htab);
7822 while (VEC_length (variable, changed_variables_stack) > 0)
7823 check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
7824 htab);
7825 while (VEC_length (rtx, changed_values_stack) > 0)
7826 set_dv_changed (dv_from_value (VEC_pop (rtx, changed_values_stack)),
7827 false);
7828 htab_traverse (changed_variables, check_changed_vars_3, htab);
7831 data.insn = insn;
7832 data.where = where;
7833 data.vars = htab;
7835 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
7838 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7839 same variable in hash table DATA or is not there at all. */
7841 static int
7842 emit_notes_for_differences_1 (void **slot, void *data)
7844 htab_t new_vars = (htab_t) data;
7845 variable old_var, new_var;
7847 old_var = (variable) *slot;
7848 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
7849 dv_htab_hash (old_var->dv));
7851 if (!new_var)
7853 /* Variable has disappeared. */
7854 variable empty_var;
7856 empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
7857 empty_var->dv = old_var->dv;
7858 empty_var->refcount = 0;
7859 empty_var->n_var_parts = 0;
7860 empty_var->cur_loc_changed = false;
7861 empty_var->in_changed_variables = false;
7862 if (dv_onepart_p (old_var->dv))
7864 location_chain lc;
7866 gcc_assert (old_var->n_var_parts == 1);
7867 for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
7868 remove_value_chains (old_var->dv, lc->loc);
7870 variable_was_changed (empty_var, NULL);
7871 /* Continue traversing the hash table. */
7872 return 1;
7874 if (variable_different_p (old_var, new_var))
7876 if (dv_onepart_p (old_var->dv))
7878 location_chain lc1, lc2;
7880 gcc_assert (old_var->n_var_parts == 1
7881 && new_var->n_var_parts == 1);
7882 lc1 = old_var->var_part[0].loc_chain;
7883 lc2 = new_var->var_part[0].loc_chain;
7884 while (lc1
7885 && lc2
7886 && ((REG_P (lc1->loc) && REG_P (lc2->loc))
7887 || rtx_equal_p (lc1->loc, lc2->loc)))
7889 lc1 = lc1->next;
7890 lc2 = lc2->next;
7892 for (; lc2; lc2 = lc2->next)
7893 add_value_chains (old_var->dv, lc2->loc);
7894 for (; lc1; lc1 = lc1->next)
7895 remove_value_chains (old_var->dv, lc1->loc);
7897 variable_was_changed (new_var, NULL);
7899 /* Update cur_loc. */
7900 if (old_var != new_var)
7902 int i;
7903 for (i = 0; i < new_var->n_var_parts; i++)
7905 new_var->var_part[i].cur_loc = NULL;
7906 if (old_var->n_var_parts != new_var->n_var_parts
7907 || old_var->var_part[i].offset != new_var->var_part[i].offset)
7908 new_var->cur_loc_changed = true;
7909 else if (old_var->var_part[i].cur_loc != NULL)
7911 location_chain lc;
7912 rtx cur_loc = old_var->var_part[i].cur_loc;
7914 for (lc = new_var->var_part[i].loc_chain; lc; lc = lc->next)
7915 if (lc->loc == cur_loc
7916 || rtx_equal_p (cur_loc, lc->loc))
7918 new_var->var_part[i].cur_loc = lc->loc;
7919 break;
7921 if (lc == NULL)
7922 new_var->cur_loc_changed = true;
7927 /* Continue traversing the hash table. */
7928 return 1;
7931 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7932 table DATA. */
7934 static int
7935 emit_notes_for_differences_2 (void **slot, void *data)
7937 htab_t old_vars = (htab_t) data;
7938 variable old_var, new_var;
7940 new_var = (variable) *slot;
7941 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
7942 dv_htab_hash (new_var->dv));
7943 if (!old_var)
7945 int i;
7946 /* Variable has appeared. */
7947 if (dv_onepart_p (new_var->dv))
7949 location_chain lc;
7951 gcc_assert (new_var->n_var_parts == 1);
7952 for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
7953 add_value_chains (new_var->dv, lc->loc);
7955 for (i = 0; i < new_var->n_var_parts; i++)
7956 new_var->var_part[i].cur_loc = NULL;
7957 variable_was_changed (new_var, NULL);
7960 /* Continue traversing the hash table. */
7961 return 1;
7964 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7965 NEW_SET. */
7967 static void
7968 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
7969 dataflow_set *new_set)
7971 htab_traverse (shared_hash_htab (old_set->vars),
7972 emit_notes_for_differences_1,
7973 shared_hash_htab (new_set->vars));
7974 htab_traverse (shared_hash_htab (new_set->vars),
7975 emit_notes_for_differences_2,
7976 shared_hash_htab (old_set->vars));
7977 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
7980 /* Emit the notes for changes of location parts in the basic block BB. */
7982 static void
7983 emit_notes_in_bb (basic_block bb, dataflow_set *set)
7985 unsigned int i;
7986 micro_operation *mo;
7988 dataflow_set_clear (set);
7989 dataflow_set_copy (set, &VTI (bb)->in);
7991 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
7993 rtx insn = mo->insn;
7995 switch (mo->type)
7997 case MO_CALL:
7998 dataflow_set_clear_at_call (set);
7999 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
8001 rtx arguments = mo->u.loc, *p = &arguments, note;
8002 while (*p)
8004 XEXP (XEXP (*p, 0), 1)
8005 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
8006 shared_hash_htab (set->vars), true);
8007 /* If expansion is successful, keep it in the list. */
8008 if (XEXP (XEXP (*p, 0), 1))
8009 p = &XEXP (*p, 1);
8010 /* Otherwise, if the following item is data_value for it,
8011 drop it too too. */
8012 else if (XEXP (*p, 1)
8013 && REG_P (XEXP (XEXP (*p, 0), 0))
8014 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
8015 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
8017 && REGNO (XEXP (XEXP (*p, 0), 0))
8018 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
8019 0), 0)))
8020 *p = XEXP (XEXP (*p, 1), 1);
8021 /* Just drop this item. */
8022 else
8023 *p = XEXP (*p, 1);
8025 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
8026 NOTE_VAR_LOCATION (note) = arguments;
8028 break;
8030 case MO_USE:
8032 rtx loc = mo->u.loc;
8034 if (REG_P (loc))
8035 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8036 else
8037 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8039 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8041 break;
8043 case MO_VAL_LOC:
8045 rtx loc = mo->u.loc;
8046 rtx val, vloc;
8047 tree var;
8049 if (GET_CODE (loc) == CONCAT)
8051 val = XEXP (loc, 0);
8052 vloc = XEXP (loc, 1);
8054 else
8056 val = NULL_RTX;
8057 vloc = loc;
8060 var = PAT_VAR_LOCATION_DECL (vloc);
8062 clobber_variable_part (set, NULL_RTX,
8063 dv_from_decl (var), 0, NULL_RTX);
8064 if (val)
8066 if (VAL_NEEDS_RESOLUTION (loc))
8067 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
8068 set_variable_part (set, val, dv_from_decl (var), 0,
8069 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8070 INSERT);
8072 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
8073 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
8074 dv_from_decl (var), 0,
8075 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8076 INSERT);
8078 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8080 break;
8082 case MO_VAL_USE:
8084 rtx loc = mo->u.loc;
8085 rtx val, vloc, uloc;
8087 vloc = uloc = XEXP (loc, 1);
8088 val = XEXP (loc, 0);
8090 if (GET_CODE (val) == CONCAT)
8092 uloc = XEXP (val, 1);
8093 val = XEXP (val, 0);
8096 if (VAL_NEEDS_RESOLUTION (loc))
8097 val_resolve (set, val, vloc, insn);
8098 else
8099 val_store (set, val, uloc, insn, false);
8101 if (VAL_HOLDS_TRACK_EXPR (loc))
8103 if (GET_CODE (uloc) == REG)
8104 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8105 NULL);
8106 else if (GET_CODE (uloc) == MEM)
8107 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8108 NULL);
8111 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
8113 break;
8115 case MO_VAL_SET:
8117 rtx loc = mo->u.loc;
8118 rtx val, vloc, uloc, reverse = NULL_RTX;
8120 vloc = loc;
8121 if (VAL_EXPR_HAS_REVERSE (loc))
8123 reverse = XEXP (loc, 1);
8124 vloc = XEXP (loc, 0);
8126 uloc = XEXP (vloc, 1);
8127 val = XEXP (vloc, 0);
8128 vloc = uloc;
8130 if (GET_CODE (val) == CONCAT)
8132 vloc = XEXP (val, 1);
8133 val = XEXP (val, 0);
8136 if (GET_CODE (vloc) == SET)
8138 rtx vsrc = SET_SRC (vloc);
8140 gcc_assert (val != vsrc);
8141 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
8143 vloc = SET_DEST (vloc);
8145 if (VAL_NEEDS_RESOLUTION (loc))
8146 val_resolve (set, val, vsrc, insn);
8148 else if (VAL_NEEDS_RESOLUTION (loc))
8150 gcc_assert (GET_CODE (uloc) == SET
8151 && GET_CODE (SET_SRC (uloc)) == REG);
8152 val_resolve (set, val, SET_SRC (uloc), insn);
8155 if (VAL_HOLDS_TRACK_EXPR (loc))
8157 if (VAL_EXPR_IS_CLOBBERED (loc))
8159 if (REG_P (uloc))
8160 var_reg_delete (set, uloc, true);
8161 else if (MEM_P (uloc))
8162 var_mem_delete (set, uloc, true);
8164 else
8166 bool copied_p = VAL_EXPR_IS_COPIED (loc);
8167 rtx set_src = NULL;
8168 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
8170 if (GET_CODE (uloc) == SET)
8172 set_src = SET_SRC (uloc);
8173 uloc = SET_DEST (uloc);
8176 if (copied_p)
8178 status = find_src_status (set, set_src);
8180 set_src = find_src_set_src (set, set_src);
8183 if (REG_P (uloc))
8184 var_reg_delete_and_set (set, uloc, !copied_p,
8185 status, set_src);
8186 else if (MEM_P (uloc))
8187 var_mem_delete_and_set (set, uloc, !copied_p,
8188 status, set_src);
8191 else if (REG_P (uloc))
8192 var_regno_delete (set, REGNO (uloc));
8194 val_store (set, val, vloc, insn, true);
8196 if (reverse)
8197 val_store (set, XEXP (reverse, 0), XEXP (reverse, 1),
8198 insn, false);
8200 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8201 set->vars);
8203 break;
8205 case MO_SET:
8207 rtx loc = mo->u.loc;
8208 rtx set_src = NULL;
8210 if (GET_CODE (loc) == SET)
8212 set_src = SET_SRC (loc);
8213 loc = SET_DEST (loc);
8216 if (REG_P (loc))
8217 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8218 set_src);
8219 else
8220 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8221 set_src);
8223 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8224 set->vars);
8226 break;
8228 case MO_COPY:
8230 rtx loc = mo->u.loc;
8231 enum var_init_status src_status;
8232 rtx set_src = NULL;
8234 if (GET_CODE (loc) == SET)
8236 set_src = SET_SRC (loc);
8237 loc = SET_DEST (loc);
8240 src_status = find_src_status (set, set_src);
8241 set_src = find_src_set_src (set, set_src);
8243 if (REG_P (loc))
8244 var_reg_delete_and_set (set, loc, false, src_status, set_src);
8245 else
8246 var_mem_delete_and_set (set, loc, false, src_status, set_src);
8248 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8249 set->vars);
8251 break;
8253 case MO_USE_NO_VAR:
8255 rtx loc = mo->u.loc;
8257 if (REG_P (loc))
8258 var_reg_delete (set, loc, false);
8259 else
8260 var_mem_delete (set, loc, false);
8262 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8264 break;
8266 case MO_CLOBBER:
8268 rtx loc = mo->u.loc;
8270 if (REG_P (loc))
8271 var_reg_delete (set, loc, true);
8272 else
8273 var_mem_delete (set, loc, true);
8275 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8276 set->vars);
8278 break;
8280 case MO_ADJUST:
8281 set->stack_adjust += mo->u.adjust;
8282 break;
8287 /* Emit notes for the whole function. */
8289 static void
8290 vt_emit_notes (void)
8292 basic_block bb;
8293 dataflow_set cur;
8295 gcc_assert (!htab_elements (changed_variables));
8297 /* Free memory occupied by the out hash tables, as they aren't used
8298 anymore. */
8299 FOR_EACH_BB (bb)
8300 dataflow_set_clear (&VTI (bb)->out);
8302 /* Enable emitting notes by functions (mainly by set_variable_part and
8303 delete_variable_part). */
8304 emit_notes = true;
8306 if (MAY_HAVE_DEBUG_INSNS)
8308 unsigned int i;
8309 rtx val;
8311 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8312 add_cselib_value_chains (dv_from_value (val));
8313 changed_variables_stack = VEC_alloc (variable, heap, 40);
8314 changed_values_stack = VEC_alloc (rtx, heap, 40);
8317 dataflow_set_init (&cur);
8319 FOR_EACH_BB (bb)
8321 /* Emit the notes for changes of variable locations between two
8322 subsequent basic blocks. */
8323 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
8325 /* Emit the notes for the changes in the basic block itself. */
8326 emit_notes_in_bb (bb, &cur);
8328 /* Free memory occupied by the in hash table, we won't need it
8329 again. */
8330 dataflow_set_clear (&VTI (bb)->in);
8332 #ifdef ENABLE_CHECKING
8333 htab_traverse (shared_hash_htab (cur.vars),
8334 emit_notes_for_differences_1,
8335 shared_hash_htab (empty_shared_hash));
8336 if (MAY_HAVE_DEBUG_INSNS)
8338 unsigned int i;
8339 rtx val;
8341 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8342 remove_cselib_value_chains (dv_from_value (val));
8343 gcc_assert (htab_elements (value_chains) == 0);
8345 #endif
8346 dataflow_set_destroy (&cur);
8348 if (MAY_HAVE_DEBUG_INSNS)
8350 VEC_free (variable, heap, changed_variables_stack);
8351 VEC_free (rtx, heap, changed_values_stack);
8354 emit_notes = false;
8357 /* If there is a declaration and offset associated with register/memory RTL
8358 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
8360 static bool
8361 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
8363 if (REG_P (rtl))
8365 if (REG_ATTRS (rtl))
8367 *declp = REG_EXPR (rtl);
8368 *offsetp = REG_OFFSET (rtl);
8369 return true;
8372 else if (MEM_P (rtl))
8374 if (MEM_ATTRS (rtl))
8376 *declp = MEM_EXPR (rtl);
8377 *offsetp = INT_MEM_OFFSET (rtl);
8378 return true;
8381 return false;
8384 /* Helper function for vt_add_function_parameter. RTL is
8385 the expression and VAL corresponding cselib_val pointer
8386 for which ENTRY_VALUE should be created. */
8388 static void
8389 create_entry_value (rtx rtl, cselib_val *val)
8391 cselib_val *val2;
8392 struct elt_loc_list *el;
8393 el = (struct elt_loc_list *) ggc_alloc_cleared_atomic (sizeof (*el));
8394 el->next = val->locs;
8395 el->loc = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
8396 ENTRY_VALUE_EXP (el->loc) = rtl;
8397 el->setting_insn = get_insns ();
8398 val->locs = el;
8399 val2 = cselib_lookup_from_insn (el->loc, GET_MODE (rtl), true,
8400 VOIDmode, get_insns ());
8401 if (val2
8402 && val2 != val
8403 && val2->locs
8404 && rtx_equal_p (val2->locs->loc, el->loc))
8406 struct elt_loc_list *el2;
8408 preserve_value (val2);
8409 el2 = (struct elt_loc_list *) ggc_alloc_cleared_atomic (sizeof (*el2));
8410 el2->next = val2->locs;
8411 el2->loc = val->val_rtx;
8412 el2->setting_insn = get_insns ();
8413 val2->locs = el2;
8417 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8419 static void
8420 vt_add_function_parameter (tree parm)
8422 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8423 rtx incoming = DECL_INCOMING_RTL (parm);
8424 tree decl;
8425 enum machine_mode mode;
8426 HOST_WIDE_INT offset;
8427 dataflow_set *out;
8428 decl_or_value dv;
8430 if (TREE_CODE (parm) != PARM_DECL)
8431 return;
8433 if (!decl_rtl || !incoming)
8434 return;
8436 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8437 return;
8439 /* If there is a DRAP register, rewrite the incoming location of parameters
8440 passed on the stack into MEMs based on the argument pointer, as the DRAP
8441 register can be reused for other purposes and we do not track locations
8442 based on generic registers. But the prerequisite is that this argument
8443 pointer be also the virtual CFA pointer, see vt_initialize. */
8444 if (MEM_P (incoming)
8445 && stack_realign_drap
8446 && arg_pointer_rtx == cfa_base_rtx
8447 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
8448 || (GET_CODE (XEXP (incoming, 0)) == PLUS
8449 && XEXP (XEXP (incoming, 0), 0)
8450 == crtl->args.internal_arg_pointer
8451 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
8453 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
8454 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
8455 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
8456 incoming
8457 = replace_equiv_address_nv (incoming,
8458 plus_constant (arg_pointer_rtx, off));
8461 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
8463 if (REG_P (incoming) || MEM_P (incoming))
8465 /* This means argument is passed by invisible reference. */
8466 offset = 0;
8467 decl = parm;
8468 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
8470 else
8472 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
8473 return;
8474 offset += byte_lowpart_offset (GET_MODE (incoming),
8475 GET_MODE (decl_rtl));
8479 if (!decl)
8480 return;
8482 if (parm != decl)
8484 /* Assume that DECL_RTL was a pseudo that got spilled to
8485 memory. The spill slot sharing code will force the
8486 memory to reference spill_slot_decl (%sfp), so we don't
8487 match above. That's ok, the pseudo must have referenced
8488 the entire parameter, so just reset OFFSET. */
8489 gcc_assert (decl == get_spill_slot_decl (false));
8490 offset = 0;
8493 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
8494 return;
8496 out = &VTI (ENTRY_BLOCK_PTR)->out;
8498 dv = dv_from_decl (parm);
8500 if (target_for_debug_bind (parm)
8501 /* We can't deal with these right now, because this kind of
8502 variable is single-part. ??? We could handle parallels
8503 that describe multiple locations for the same single
8504 value, but ATM we don't. */
8505 && GET_CODE (incoming) != PARALLEL)
8507 cselib_val *val;
8509 /* ??? We shouldn't ever hit this, but it may happen because
8510 arguments passed by invisible reference aren't dealt with
8511 above: incoming-rtl will have Pmode rather than the
8512 expected mode for the type. */
8513 if (offset)
8514 return;
8516 val = cselib_lookup_from_insn (var_lowpart (mode, incoming), mode, true,
8517 VOIDmode, get_insns ());
8519 /* ??? Float-typed values in memory are not handled by
8520 cselib. */
8521 if (val)
8523 preserve_value (val);
8524 set_variable_part (out, val->val_rtx, dv, offset,
8525 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8526 dv = dv_from_value (val->val_rtx);
8530 if (REG_P (incoming))
8532 incoming = var_lowpart (mode, incoming);
8533 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
8534 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
8535 incoming);
8536 set_variable_part (out, incoming, dv, offset,
8537 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8538 if (dv_is_value_p (dv))
8540 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (dv));
8541 create_entry_value (incoming, val);
8542 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
8543 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
8545 enum machine_mode indmode
8546 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
8547 rtx mem = gen_rtx_MEM (indmode, incoming);
8548 val = cselib_lookup_from_insn (mem, indmode, true,
8549 VOIDmode, get_insns ());
8550 if (val)
8552 preserve_value (val);
8553 create_entry_value (mem, val);
8558 else if (MEM_P (incoming))
8560 incoming = var_lowpart (mode, incoming);
8561 set_variable_part (out, incoming, dv, offset,
8562 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8566 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
8568 static void
8569 vt_add_function_parameters (void)
8571 tree parm;
8573 for (parm = DECL_ARGUMENTS (current_function_decl);
8574 parm; parm = DECL_CHAIN (parm))
8575 vt_add_function_parameter (parm);
8577 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
8579 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
8581 if (TREE_CODE (vexpr) == INDIRECT_REF)
8582 vexpr = TREE_OPERAND (vexpr, 0);
8584 if (TREE_CODE (vexpr) == PARM_DECL
8585 && DECL_ARTIFICIAL (vexpr)
8586 && !DECL_IGNORED_P (vexpr)
8587 && DECL_NAMELESS (vexpr))
8588 vt_add_function_parameter (vexpr);
8592 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8594 static bool
8595 fp_setter (rtx insn)
8597 rtx pat = PATTERN (insn);
8598 if (RTX_FRAME_RELATED_P (insn))
8600 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
8601 if (expr)
8602 pat = XEXP (expr, 0);
8604 if (GET_CODE (pat) == SET)
8605 return SET_DEST (pat) == hard_frame_pointer_rtx;
8606 else if (GET_CODE (pat) == PARALLEL)
8608 int i;
8609 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8610 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8611 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
8612 return true;
8614 return false;
8617 /* Gather all registers used for passing arguments to other functions
8618 called from the current routine. */
8620 static void
8621 note_register_arguments (rtx insn)
8623 rtx link, x;
8625 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
8626 if (GET_CODE (XEXP (link, 0)) == USE)
8628 x = XEXP (XEXP (link, 0), 0);
8629 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8630 SET_HARD_REG_BIT (argument_reg_set, REGNO (x));
8634 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8635 ensure it isn't flushed during cselib_reset_table.
8636 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8637 has been eliminated. */
8639 static void
8640 vt_init_cfa_base (void)
8642 cselib_val *val;
8644 #ifdef FRAME_POINTER_CFA_OFFSET
8645 cfa_base_rtx = frame_pointer_rtx;
8646 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
8647 #else
8648 cfa_base_rtx = arg_pointer_rtx;
8649 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
8650 #endif
8651 if (cfa_base_rtx == hard_frame_pointer_rtx
8652 || !fixed_regs[REGNO (cfa_base_rtx)])
8654 cfa_base_rtx = NULL_RTX;
8655 return;
8657 if (!MAY_HAVE_DEBUG_INSNS)
8658 return;
8660 /* Tell alias analysis that cfa_base_rtx should share
8661 find_base_term value with stack pointer or hard frame pointer. */
8662 if (!frame_pointer_needed)
8663 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
8664 else if (!crtl->stack_realign_tried)
8665 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
8667 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
8668 VOIDmode, get_insns ());
8669 preserve_value (val);
8670 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
8671 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
8672 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
8673 0, NULL_RTX, INSERT);
8676 /* Allocate and initialize the data structures for variable tracking
8677 and parse the RTL to get the micro operations. */
8679 static bool
8680 vt_initialize (void)
8682 basic_block bb, prologue_bb = single_succ (ENTRY_BLOCK_PTR);
8683 HOST_WIDE_INT fp_cfa_offset = -1;
8685 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
8687 attrs_pool = create_alloc_pool ("attrs_def pool",
8688 sizeof (struct attrs_def), 1024);
8689 var_pool = create_alloc_pool ("variable_def pool",
8690 sizeof (struct variable_def)
8691 + (MAX_VAR_PARTS - 1)
8692 * sizeof (((variable)NULL)->var_part[0]), 64);
8693 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
8694 sizeof (struct location_chain_def),
8695 1024);
8696 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
8697 sizeof (struct shared_hash_def), 256);
8698 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
8699 empty_shared_hash->refcount = 1;
8700 empty_shared_hash->htab
8701 = htab_create (1, variable_htab_hash, variable_htab_eq,
8702 variable_htab_free);
8703 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
8704 variable_htab_free);
8705 if (MAY_HAVE_DEBUG_INSNS)
8707 value_chain_pool = create_alloc_pool ("value_chain_def pool",
8708 sizeof (struct value_chain_def),
8709 1024);
8710 value_chains = htab_create (32, value_chain_htab_hash,
8711 value_chain_htab_eq, NULL);
8714 /* Init the IN and OUT sets. */
8715 FOR_ALL_BB (bb)
8717 VTI (bb)->visited = false;
8718 VTI (bb)->flooded = false;
8719 dataflow_set_init (&VTI (bb)->in);
8720 dataflow_set_init (&VTI (bb)->out);
8721 VTI (bb)->permp = NULL;
8724 if (MAY_HAVE_DEBUG_INSNS)
8726 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
8727 scratch_regs = BITMAP_ALLOC (NULL);
8728 valvar_pool = create_alloc_pool ("small variable_def pool",
8729 sizeof (struct variable_def), 256);
8730 preserved_values = VEC_alloc (rtx, heap, 256);
8732 else
8734 scratch_regs = NULL;
8735 valvar_pool = NULL;
8738 CLEAR_HARD_REG_SET (argument_reg_set);
8740 /* In order to factor out the adjustments made to the stack pointer or to
8741 the hard frame pointer and thus be able to use DW_OP_fbreg operations
8742 instead of individual location lists, we're going to rewrite MEMs based
8743 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
8744 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
8745 resp. arg_pointer_rtx. We can do this either when there is no frame
8746 pointer in the function and stack adjustments are consistent for all
8747 basic blocks or when there is a frame pointer and no stack realignment.
8748 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
8749 has been eliminated. */
8750 if (!frame_pointer_needed)
8752 rtx reg, elim;
8754 if (!vt_stack_adjustments ())
8755 return false;
8757 #ifdef FRAME_POINTER_CFA_OFFSET
8758 reg = frame_pointer_rtx;
8759 #else
8760 reg = arg_pointer_rtx;
8761 #endif
8762 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8763 if (elim != reg)
8765 if (GET_CODE (elim) == PLUS)
8766 elim = XEXP (elim, 0);
8767 if (elim == stack_pointer_rtx)
8768 vt_init_cfa_base ();
8771 else if (!crtl->stack_realign_tried)
8773 rtx reg, elim;
8775 #ifdef FRAME_POINTER_CFA_OFFSET
8776 reg = frame_pointer_rtx;
8777 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
8778 #else
8779 reg = arg_pointer_rtx;
8780 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
8781 #endif
8782 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8783 if (elim != reg)
8785 if (GET_CODE (elim) == PLUS)
8787 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
8788 elim = XEXP (elim, 0);
8790 if (elim != hard_frame_pointer_rtx)
8791 fp_cfa_offset = -1;
8793 else
8794 fp_cfa_offset = -1;
8797 /* If the stack is realigned and a DRAP register is used, we're going to
8798 rewrite MEMs based on it representing incoming locations of parameters
8799 passed on the stack into MEMs based on the argument pointer. Although
8800 we aren't going to rewrite other MEMs, we still need to initialize the
8801 virtual CFA pointer in order to ensure that the argument pointer will
8802 be seen as a constant throughout the function.
8804 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
8805 else if (stack_realign_drap)
8807 rtx reg, elim;
8809 #ifdef FRAME_POINTER_CFA_OFFSET
8810 reg = frame_pointer_rtx;
8811 #else
8812 reg = arg_pointer_rtx;
8813 #endif
8814 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8815 if (elim != reg)
8817 if (GET_CODE (elim) == PLUS)
8818 elim = XEXP (elim, 0);
8819 if (elim == hard_frame_pointer_rtx)
8820 vt_init_cfa_base ();
8824 if (frame_pointer_needed)
8826 rtx insn;
8827 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
8828 if (CALL_P (insn))
8829 note_register_arguments (insn);
8832 hard_frame_pointer_adjustment = -1;
8834 vt_add_function_parameters ();
8836 FOR_EACH_BB (bb)
8838 rtx insn;
8839 HOST_WIDE_INT pre, post = 0;
8840 basic_block first_bb, last_bb;
8842 if (MAY_HAVE_DEBUG_INSNS)
8844 cselib_record_sets_hook = add_with_sets;
8845 if (dump_file && (dump_flags & TDF_DETAILS))
8846 fprintf (dump_file, "first value: %i\n",
8847 cselib_get_next_uid ());
8850 first_bb = bb;
8851 for (;;)
8853 edge e;
8854 if (bb->next_bb == EXIT_BLOCK_PTR
8855 || ! single_pred_p (bb->next_bb))
8856 break;
8857 e = find_edge (bb, bb->next_bb);
8858 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
8859 break;
8860 bb = bb->next_bb;
8862 last_bb = bb;
8864 /* Add the micro-operations to the vector. */
8865 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
8867 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
8868 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
8869 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
8870 insn = NEXT_INSN (insn))
8872 if (INSN_P (insn))
8874 if (!frame_pointer_needed)
8876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
8877 if (pre)
8879 micro_operation mo;
8880 mo.type = MO_ADJUST;
8881 mo.u.adjust = pre;
8882 mo.insn = insn;
8883 if (dump_file && (dump_flags & TDF_DETAILS))
8884 log_op_type (PATTERN (insn), bb, insn,
8885 MO_ADJUST, dump_file);
8886 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8887 &mo);
8888 VTI (bb)->out.stack_adjust += pre;
8892 cselib_hook_called = false;
8893 adjust_insn (bb, insn);
8894 if (MAY_HAVE_DEBUG_INSNS)
8896 if (CALL_P (insn))
8897 prepare_call_arguments (bb, insn);
8898 cselib_process_insn (insn);
8899 if (dump_file && (dump_flags & TDF_DETAILS))
8901 print_rtl_single (dump_file, insn);
8902 dump_cselib_table (dump_file);
8905 if (!cselib_hook_called)
8906 add_with_sets (insn, 0, 0);
8907 cancel_changes (0);
8909 if (!frame_pointer_needed && post)
8911 micro_operation mo;
8912 mo.type = MO_ADJUST;
8913 mo.u.adjust = post;
8914 mo.insn = insn;
8915 if (dump_file && (dump_flags & TDF_DETAILS))
8916 log_op_type (PATTERN (insn), bb, insn,
8917 MO_ADJUST, dump_file);
8918 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8919 &mo);
8920 VTI (bb)->out.stack_adjust += post;
8923 if (bb == prologue_bb
8924 && fp_cfa_offset != -1
8925 && hard_frame_pointer_adjustment == -1
8926 && RTX_FRAME_RELATED_P (insn)
8927 && fp_setter (insn))
8929 vt_init_cfa_base ();
8930 hard_frame_pointer_adjustment = fp_cfa_offset;
8934 gcc_assert (offset == VTI (bb)->out.stack_adjust);
8937 bb = last_bb;
8939 if (MAY_HAVE_DEBUG_INSNS)
8941 cselib_preserve_only_values ();
8942 cselib_reset_table (cselib_get_next_uid ());
8943 cselib_record_sets_hook = NULL;
8947 hard_frame_pointer_adjustment = -1;
8948 VTI (ENTRY_BLOCK_PTR)->flooded = true;
8949 cfa_base_rtx = NULL_RTX;
8950 return true;
8953 /* Get rid of all debug insns from the insn stream. */
8955 static void
8956 delete_debug_insns (void)
8958 basic_block bb;
8959 rtx insn, next;
8961 if (!MAY_HAVE_DEBUG_INSNS)
8962 return;
8964 FOR_EACH_BB (bb)
8966 FOR_BB_INSNS_SAFE (bb, insn, next)
8967 if (DEBUG_INSN_P (insn))
8968 delete_insn (insn);
8972 /* Run a fast, BB-local only version of var tracking, to take care of
8973 information that we don't do global analysis on, such that not all
8974 information is lost. If SKIPPED holds, we're skipping the global
8975 pass entirely, so we should try to use information it would have
8976 handled as well.. */
8978 static void
8979 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
8981 /* ??? Just skip it all for now. */
8982 delete_debug_insns ();
8985 /* Free the data structures needed for variable tracking. */
8987 static void
8988 vt_finalize (void)
8990 basic_block bb;
8992 FOR_EACH_BB (bb)
8994 VEC_free (micro_operation, heap, VTI (bb)->mos);
8997 FOR_ALL_BB (bb)
8999 dataflow_set_destroy (&VTI (bb)->in);
9000 dataflow_set_destroy (&VTI (bb)->out);
9001 if (VTI (bb)->permp)
9003 dataflow_set_destroy (VTI (bb)->permp);
9004 XDELETE (VTI (bb)->permp);
9007 free_aux_for_blocks ();
9008 htab_delete (empty_shared_hash->htab);
9009 htab_delete (changed_variables);
9010 free_alloc_pool (attrs_pool);
9011 free_alloc_pool (var_pool);
9012 free_alloc_pool (loc_chain_pool);
9013 free_alloc_pool (shared_hash_pool);
9015 if (MAY_HAVE_DEBUG_INSNS)
9017 htab_delete (value_chains);
9018 free_alloc_pool (value_chain_pool);
9019 free_alloc_pool (valvar_pool);
9020 VEC_free (rtx, heap, preserved_values);
9021 cselib_finish ();
9022 BITMAP_FREE (scratch_regs);
9023 scratch_regs = NULL;
9026 if (vui_vec)
9027 XDELETEVEC (vui_vec);
9028 vui_vec = NULL;
9029 vui_allocated = 0;
9032 /* The entry point to variable tracking pass. */
9034 static inline unsigned int
9035 variable_tracking_main_1 (void)
9037 bool success;
9039 if (flag_var_tracking_assignments < 0)
9041 delete_debug_insns ();
9042 return 0;
9045 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
9047 vt_debug_insns_local (true);
9048 return 0;
9051 mark_dfs_back_edges ();
9052 if (!vt_initialize ())
9054 vt_finalize ();
9055 vt_debug_insns_local (true);
9056 return 0;
9059 success = vt_find_locations ();
9061 if (!success && flag_var_tracking_assignments > 0)
9063 vt_finalize ();
9065 delete_debug_insns ();
9067 /* This is later restored by our caller. */
9068 flag_var_tracking_assignments = 0;
9070 success = vt_initialize ();
9071 gcc_assert (success);
9073 success = vt_find_locations ();
9076 if (!success)
9078 vt_finalize ();
9079 vt_debug_insns_local (false);
9080 return 0;
9083 if (dump_file && (dump_flags & TDF_DETAILS))
9085 dump_dataflow_sets ();
9086 dump_flow_info (dump_file, dump_flags);
9089 timevar_push (TV_VAR_TRACKING_EMIT);
9090 vt_emit_notes ();
9091 timevar_pop (TV_VAR_TRACKING_EMIT);
9093 vt_finalize ();
9094 vt_debug_insns_local (false);
9095 return 0;
9098 unsigned int
9099 variable_tracking_main (void)
9101 unsigned int ret;
9102 int save = flag_var_tracking_assignments;
9104 ret = variable_tracking_main_1 ();
9106 flag_var_tracking_assignments = save;
9108 return ret;
9111 static bool
9112 gate_handle_var_tracking (void)
9114 return (flag_var_tracking && !targetm.delay_vartrack);
9119 struct rtl_opt_pass pass_variable_tracking =
9122 RTL_PASS,
9123 "vartrack", /* name */
9124 gate_handle_var_tracking, /* gate */
9125 variable_tracking_main, /* execute */
9126 NULL, /* sub */
9127 NULL, /* next */
9128 0, /* static_pass_number */
9129 TV_VAR_TRACKING, /* tv_id */
9130 0, /* properties_required */
9131 0, /* properties_provided */
9132 0, /* properties_destroyed */
9133 0, /* todo_flags_start */
9134 TODO_verify_rtl_sharing /* todo_flags_finish */