dumping cleanup phase 1 -- Removing TODO_dump_func
[official-gcc.git] / gcc / tree-vrp.c
blobd12d634221ce503181b9bc663a9b2012b56a7b06
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
45 /* Type of value ranges. See value_range_d for a description of these
46 types. */
47 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
49 /* Range of values that can be associated with an SSA_NAME after VRP
50 has executed. */
51 struct value_range_d
53 /* Lattice value represented by this range. */
54 enum value_range_type type;
56 /* Minimum and maximum values represented by this range. These
57 values should be interpreted as follows:
59 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
60 be NULL.
62 - If TYPE == VR_RANGE then MIN holds the minimum value and
63 MAX holds the maximum value of the range [MIN, MAX].
65 - If TYPE == ANTI_RANGE the variable is known to NOT
66 take any values in the range [MIN, MAX]. */
67 tree min;
68 tree max;
70 /* Set of SSA names whose value ranges are equivalent to this one.
71 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
72 bitmap equiv;
75 typedef struct value_range_d value_range_t;
77 /* Set of SSA names found live during the RPO traversal of the function
78 for still active basic-blocks. */
79 static sbitmap *live;
81 /* Return true if the SSA name NAME is live on the edge E. */
83 static bool
84 live_on_edge (edge e, tree name)
86 return (live[e->dest->index]
87 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
90 /* Local functions. */
91 static int compare_values (tree val1, tree val2);
92 static int compare_values_warnv (tree val1, tree val2, bool *);
93 static void vrp_meet (value_range_t *, value_range_t *);
94 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
95 tree, tree, bool, bool *,
96 bool *);
98 /* Location information for ASSERT_EXPRs. Each instance of this
99 structure describes an ASSERT_EXPR for an SSA name. Since a single
100 SSA name may have more than one assertion associated with it, these
101 locations are kept in a linked list attached to the corresponding
102 SSA name. */
103 struct assert_locus_d
105 /* Basic block where the assertion would be inserted. */
106 basic_block bb;
108 /* Some assertions need to be inserted on an edge (e.g., assertions
109 generated by COND_EXPRs). In those cases, BB will be NULL. */
110 edge e;
112 /* Pointer to the statement that generated this assertion. */
113 gimple_stmt_iterator si;
115 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
116 enum tree_code comp_code;
118 /* Value being compared against. */
119 tree val;
121 /* Expression to compare. */
122 tree expr;
124 /* Next node in the linked list. */
125 struct assert_locus_d *next;
128 typedef struct assert_locus_d *assert_locus_t;
130 /* If bit I is present, it means that SSA name N_i has a list of
131 assertions that should be inserted in the IL. */
132 static bitmap need_assert_for;
134 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
135 holds a list of ASSERT_LOCUS_T nodes that describe where
136 ASSERT_EXPRs for SSA name N_I should be inserted. */
137 static assert_locus_t *asserts_for;
139 /* Value range array. After propagation, VR_VALUE[I] holds the range
140 of values that SSA name N_I may take. */
141 static value_range_t **vr_value;
143 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
144 number of executable edges we saw the last time we visited the
145 node. */
146 static int *vr_phi_edge_counts;
148 typedef struct {
149 gimple stmt;
150 tree vec;
151 } switch_update;
153 static VEC (edge, heap) *to_remove_edges;
154 DEF_VEC_O(switch_update);
155 DEF_VEC_ALLOC_O(switch_update, heap);
156 static VEC (switch_update, heap) *to_update_switch_stmts;
159 /* Return the maximum value for TYPE. */
161 static inline tree
162 vrp_val_max (const_tree type)
164 if (!INTEGRAL_TYPE_P (type))
165 return NULL_TREE;
167 return TYPE_MAX_VALUE (type);
170 /* Return the minimum value for TYPE. */
172 static inline tree
173 vrp_val_min (const_tree type)
175 if (!INTEGRAL_TYPE_P (type))
176 return NULL_TREE;
178 return TYPE_MIN_VALUE (type);
181 /* Return whether VAL is equal to the maximum value of its type. This
182 will be true for a positive overflow infinity. We can't do a
183 simple equality comparison with TYPE_MAX_VALUE because C typedefs
184 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
185 to the integer constant with the same value in the type. */
187 static inline bool
188 vrp_val_is_max (const_tree val)
190 tree type_max = vrp_val_max (TREE_TYPE (val));
191 return (val == type_max
192 || (type_max != NULL_TREE
193 && operand_equal_p (val, type_max, 0)));
196 /* Return whether VAL is equal to the minimum value of its type. This
197 will be true for a negative overflow infinity. */
199 static inline bool
200 vrp_val_is_min (const_tree val)
202 tree type_min = vrp_val_min (TREE_TYPE (val));
203 return (val == type_min
204 || (type_min != NULL_TREE
205 && operand_equal_p (val, type_min, 0)));
209 /* Return whether TYPE should use an overflow infinity distinct from
210 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
211 represent a signed overflow during VRP computations. An infinity
212 is distinct from a half-range, which will go from some number to
213 TYPE_{MIN,MAX}_VALUE. */
215 static inline bool
216 needs_overflow_infinity (const_tree type)
218 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
221 /* Return whether TYPE can support our overflow infinity
222 representation: we use the TREE_OVERFLOW flag, which only exists
223 for constants. If TYPE doesn't support this, we don't optimize
224 cases which would require signed overflow--we drop them to
225 VARYING. */
227 static inline bool
228 supports_overflow_infinity (const_tree type)
230 tree min = vrp_val_min (type), max = vrp_val_max (type);
231 #ifdef ENABLE_CHECKING
232 gcc_assert (needs_overflow_infinity (type));
233 #endif
234 return (min != NULL_TREE
235 && CONSTANT_CLASS_P (min)
236 && max != NULL_TREE
237 && CONSTANT_CLASS_P (max));
240 /* VAL is the maximum or minimum value of a type. Return a
241 corresponding overflow infinity. */
243 static inline tree
244 make_overflow_infinity (tree val)
246 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
247 val = copy_node (val);
248 TREE_OVERFLOW (val) = 1;
249 return val;
252 /* Return a negative overflow infinity for TYPE. */
254 static inline tree
255 negative_overflow_infinity (tree type)
257 gcc_checking_assert (supports_overflow_infinity (type));
258 return make_overflow_infinity (vrp_val_min (type));
261 /* Return a positive overflow infinity for TYPE. */
263 static inline tree
264 positive_overflow_infinity (tree type)
266 gcc_checking_assert (supports_overflow_infinity (type));
267 return make_overflow_infinity (vrp_val_max (type));
270 /* Return whether VAL is a negative overflow infinity. */
272 static inline bool
273 is_negative_overflow_infinity (const_tree val)
275 return (needs_overflow_infinity (TREE_TYPE (val))
276 && CONSTANT_CLASS_P (val)
277 && TREE_OVERFLOW (val)
278 && vrp_val_is_min (val));
281 /* Return whether VAL is a positive overflow infinity. */
283 static inline bool
284 is_positive_overflow_infinity (const_tree val)
286 return (needs_overflow_infinity (TREE_TYPE (val))
287 && CONSTANT_CLASS_P (val)
288 && TREE_OVERFLOW (val)
289 && vrp_val_is_max (val));
292 /* Return whether VAL is a positive or negative overflow infinity. */
294 static inline bool
295 is_overflow_infinity (const_tree val)
297 return (needs_overflow_infinity (TREE_TYPE (val))
298 && CONSTANT_CLASS_P (val)
299 && TREE_OVERFLOW (val)
300 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
303 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
305 static inline bool
306 stmt_overflow_infinity (gimple stmt)
308 if (is_gimple_assign (stmt)
309 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
310 GIMPLE_SINGLE_RHS)
311 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
312 return false;
315 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
316 the same value with TREE_OVERFLOW clear. This can be used to avoid
317 confusing a regular value with an overflow value. */
319 static inline tree
320 avoid_overflow_infinity (tree val)
322 if (!is_overflow_infinity (val))
323 return val;
325 if (vrp_val_is_max (val))
326 return vrp_val_max (TREE_TYPE (val));
327 else
329 gcc_checking_assert (vrp_val_is_min (val));
330 return vrp_val_min (TREE_TYPE (val));
335 /* Return true if ARG is marked with the nonnull attribute in the
336 current function signature. */
338 static bool
339 nonnull_arg_p (const_tree arg)
341 tree t, attrs, fntype;
342 unsigned HOST_WIDE_INT arg_num;
344 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
346 /* The static chain decl is always non null. */
347 if (arg == cfun->static_chain_decl)
348 return true;
350 fntype = TREE_TYPE (current_function_decl);
351 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
353 /* If "nonnull" wasn't specified, we know nothing about the argument. */
354 if (attrs == NULL_TREE)
355 return false;
357 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
358 if (TREE_VALUE (attrs) == NULL_TREE)
359 return true;
361 /* Get the position number for ARG in the function signature. */
362 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
364 t = DECL_CHAIN (t), arg_num++)
366 if (t == arg)
367 break;
370 gcc_assert (t == arg);
372 /* Now see if ARG_NUM is mentioned in the nonnull list. */
373 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
375 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
376 return true;
379 return false;
383 /* Set value range VR to VR_VARYING. */
385 static inline void
386 set_value_range_to_varying (value_range_t *vr)
388 vr->type = VR_VARYING;
389 vr->min = vr->max = NULL_TREE;
390 if (vr->equiv)
391 bitmap_clear (vr->equiv);
395 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
397 static void
398 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
399 tree max, bitmap equiv)
401 #if defined ENABLE_CHECKING
402 /* Check the validity of the range. */
403 if (t == VR_RANGE || t == VR_ANTI_RANGE)
405 int cmp;
407 gcc_assert (min && max);
409 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
410 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
412 cmp = compare_values (min, max);
413 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
415 if (needs_overflow_infinity (TREE_TYPE (min)))
416 gcc_assert (!is_overflow_infinity (min)
417 || !is_overflow_infinity (max));
420 if (t == VR_UNDEFINED || t == VR_VARYING)
421 gcc_assert (min == NULL_TREE && max == NULL_TREE);
423 if (t == VR_UNDEFINED || t == VR_VARYING)
424 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
425 #endif
427 vr->type = t;
428 vr->min = min;
429 vr->max = max;
431 /* Since updating the equivalence set involves deep copying the
432 bitmaps, only do it if absolutely necessary. */
433 if (vr->equiv == NULL
434 && equiv != NULL)
435 vr->equiv = BITMAP_ALLOC (NULL);
437 if (equiv != vr->equiv)
439 if (equiv && !bitmap_empty_p (equiv))
440 bitmap_copy (vr->equiv, equiv);
441 else
442 bitmap_clear (vr->equiv);
447 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
448 This means adjusting T, MIN and MAX representing the case of a
449 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
450 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
451 In corner cases where MAX+1 or MIN-1 wraps this will fall back
452 to varying.
453 This routine exists to ease canonicalization in the case where we
454 extract ranges from var + CST op limit. */
456 static void
457 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
458 tree min, tree max, bitmap equiv)
460 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
461 if ((t != VR_RANGE
462 && t != VR_ANTI_RANGE)
463 || TREE_CODE (min) != INTEGER_CST
464 || TREE_CODE (max) != INTEGER_CST)
466 set_value_range (vr, t, min, max, equiv);
467 return;
470 /* Wrong order for min and max, to swap them and the VR type we need
471 to adjust them. */
472 if (tree_int_cst_lt (max, min))
474 tree one = build_int_cst (TREE_TYPE (min), 1);
475 tree tmp = int_const_binop (PLUS_EXPR, max, one);
476 max = int_const_binop (MINUS_EXPR, min, one);
477 min = tmp;
479 /* There's one corner case, if we had [C+1, C] before we now have
480 that again. But this represents an empty value range, so drop
481 to varying in this case. */
482 if (tree_int_cst_lt (max, min))
484 set_value_range_to_varying (vr);
485 return;
488 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
491 /* Anti-ranges that can be represented as ranges should be so. */
492 if (t == VR_ANTI_RANGE)
494 bool is_min = vrp_val_is_min (min);
495 bool is_max = vrp_val_is_max (max);
497 if (is_min && is_max)
499 /* We cannot deal with empty ranges, drop to varying. */
500 set_value_range_to_varying (vr);
501 return;
503 else if (is_min
504 /* As a special exception preserve non-null ranges. */
505 && !(TYPE_UNSIGNED (TREE_TYPE (min))
506 && integer_zerop (max)))
508 tree one = build_int_cst (TREE_TYPE (max), 1);
509 min = int_const_binop (PLUS_EXPR, max, one);
510 max = vrp_val_max (TREE_TYPE (max));
511 t = VR_RANGE;
513 else if (is_max)
515 tree one = build_int_cst (TREE_TYPE (min), 1);
516 max = int_const_binop (MINUS_EXPR, min, one);
517 min = vrp_val_min (TREE_TYPE (min));
518 t = VR_RANGE;
522 set_value_range (vr, t, min, max, equiv);
525 /* Copy value range FROM into value range TO. */
527 static inline void
528 copy_value_range (value_range_t *to, value_range_t *from)
530 set_value_range (to, from->type, from->min, from->max, from->equiv);
533 /* Set value range VR to a single value. This function is only called
534 with values we get from statements, and exists to clear the
535 TREE_OVERFLOW flag so that we don't think we have an overflow
536 infinity when we shouldn't. */
538 static inline void
539 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
541 gcc_assert (is_gimple_min_invariant (val));
542 val = avoid_overflow_infinity (val);
543 set_value_range (vr, VR_RANGE, val, val, equiv);
546 /* Set value range VR to a non-negative range of type TYPE.
547 OVERFLOW_INFINITY indicates whether to use an overflow infinity
548 rather than TYPE_MAX_VALUE; this should be true if we determine
549 that the range is nonnegative based on the assumption that signed
550 overflow does not occur. */
552 static inline void
553 set_value_range_to_nonnegative (value_range_t *vr, tree type,
554 bool overflow_infinity)
556 tree zero;
558 if (overflow_infinity && !supports_overflow_infinity (type))
560 set_value_range_to_varying (vr);
561 return;
564 zero = build_int_cst (type, 0);
565 set_value_range (vr, VR_RANGE, zero,
566 (overflow_infinity
567 ? positive_overflow_infinity (type)
568 : TYPE_MAX_VALUE (type)),
569 vr->equiv);
572 /* Set value range VR to a non-NULL range of type TYPE. */
574 static inline void
575 set_value_range_to_nonnull (value_range_t *vr, tree type)
577 tree zero = build_int_cst (type, 0);
578 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
582 /* Set value range VR to a NULL range of type TYPE. */
584 static inline void
585 set_value_range_to_null (value_range_t *vr, tree type)
587 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
591 /* Set value range VR to a range of a truthvalue of type TYPE. */
593 static inline void
594 set_value_range_to_truthvalue (value_range_t *vr, tree type)
596 if (TYPE_PRECISION (type) == 1)
597 set_value_range_to_varying (vr);
598 else
599 set_value_range (vr, VR_RANGE,
600 build_int_cst (type, 0), build_int_cst (type, 1),
601 vr->equiv);
605 /* Set value range VR to VR_UNDEFINED. */
607 static inline void
608 set_value_range_to_undefined (value_range_t *vr)
610 vr->type = VR_UNDEFINED;
611 vr->min = vr->max = NULL_TREE;
612 if (vr->equiv)
613 bitmap_clear (vr->equiv);
617 /* If abs (min) < abs (max), set VR to [-max, max], if
618 abs (min) >= abs (max), set VR to [-min, min]. */
620 static void
621 abs_extent_range (value_range_t *vr, tree min, tree max)
623 int cmp;
625 gcc_assert (TREE_CODE (min) == INTEGER_CST);
626 gcc_assert (TREE_CODE (max) == INTEGER_CST);
627 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
628 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
629 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
630 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
631 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
633 set_value_range_to_varying (vr);
634 return;
636 cmp = compare_values (min, max);
637 if (cmp == -1)
638 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
639 else if (cmp == 0 || cmp == 1)
641 max = min;
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
644 else
646 set_value_range_to_varying (vr);
647 return;
649 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
653 /* Return value range information for VAR.
655 If we have no values ranges recorded (ie, VRP is not running), then
656 return NULL. Otherwise create an empty range if none existed for VAR. */
658 static value_range_t *
659 get_value_range (const_tree var)
661 value_range_t *vr;
662 tree sym;
663 unsigned ver = SSA_NAME_VERSION (var);
665 /* If we have no recorded ranges, then return NULL. */
666 if (! vr_value)
667 return NULL;
669 vr = vr_value[ver];
670 if (vr)
671 return vr;
673 /* Create a default value range. */
674 vr_value[ver] = vr = XCNEW (value_range_t);
676 /* Defer allocating the equivalence set. */
677 vr->equiv = NULL;
679 /* If VAR is a default definition, the variable can take any value
680 in VAR's type. */
681 sym = SSA_NAME_VAR (var);
682 if (SSA_NAME_IS_DEFAULT_DEF (var))
684 /* Try to use the "nonnull" attribute to create ~[0, 0]
685 anti-ranges for pointers. Note that this is only valid with
686 default definitions of PARM_DECLs. */
687 if (TREE_CODE (sym) == PARM_DECL
688 && POINTER_TYPE_P (TREE_TYPE (sym))
689 && nonnull_arg_p (sym))
690 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
691 else
692 set_value_range_to_varying (vr);
695 return vr;
698 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
700 static inline bool
701 vrp_operand_equal_p (const_tree val1, const_tree val2)
703 if (val1 == val2)
704 return true;
705 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
706 return false;
707 if (is_overflow_infinity (val1))
708 return is_overflow_infinity (val2);
709 return true;
712 /* Return true, if the bitmaps B1 and B2 are equal. */
714 static inline bool
715 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
717 return (b1 == b2
718 || ((!b1 || bitmap_empty_p (b1))
719 && (!b2 || bitmap_empty_p (b2)))
720 || (b1 && b2
721 && bitmap_equal_p (b1, b2)));
724 /* Update the value range and equivalence set for variable VAR to
725 NEW_VR. Return true if NEW_VR is different from VAR's previous
726 value.
728 NOTE: This function assumes that NEW_VR is a temporary value range
729 object created for the sole purpose of updating VAR's range. The
730 storage used by the equivalence set from NEW_VR will be freed by
731 this function. Do not call update_value_range when NEW_VR
732 is the range object associated with another SSA name. */
734 static inline bool
735 update_value_range (const_tree var, value_range_t *new_vr)
737 value_range_t *old_vr;
738 bool is_new;
740 /* Update the value range, if necessary. */
741 old_vr = get_value_range (var);
742 is_new = old_vr->type != new_vr->type
743 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
744 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
745 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
747 if (is_new)
748 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
749 new_vr->equiv);
751 BITMAP_FREE (new_vr->equiv);
753 return is_new;
757 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
758 point where equivalence processing can be turned on/off. */
760 static void
761 add_equivalence (bitmap *equiv, const_tree var)
763 unsigned ver = SSA_NAME_VERSION (var);
764 value_range_t *vr = vr_value[ver];
766 if (*equiv == NULL)
767 *equiv = BITMAP_ALLOC (NULL);
768 bitmap_set_bit (*equiv, ver);
769 if (vr && vr->equiv)
770 bitmap_ior_into (*equiv, vr->equiv);
774 /* Return true if VR is ~[0, 0]. */
776 static inline bool
777 range_is_nonnull (value_range_t *vr)
779 return vr->type == VR_ANTI_RANGE
780 && integer_zerop (vr->min)
781 && integer_zerop (vr->max);
785 /* Return true if VR is [0, 0]. */
787 static inline bool
788 range_is_null (value_range_t *vr)
790 return vr->type == VR_RANGE
791 && integer_zerop (vr->min)
792 && integer_zerop (vr->max);
795 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
796 a singleton. */
798 static inline bool
799 range_int_cst_p (value_range_t *vr)
801 return (vr->type == VR_RANGE
802 && TREE_CODE (vr->max) == INTEGER_CST
803 && TREE_CODE (vr->min) == INTEGER_CST
804 && !TREE_OVERFLOW (vr->max)
805 && !TREE_OVERFLOW (vr->min));
808 /* Return true if VR is a INTEGER_CST singleton. */
810 static inline bool
811 range_int_cst_singleton_p (value_range_t *vr)
813 return (range_int_cst_p (vr)
814 && tree_int_cst_equal (vr->min, vr->max));
817 /* Return true if value range VR involves at least one symbol. */
819 static inline bool
820 symbolic_range_p (value_range_t *vr)
822 return (!is_gimple_min_invariant (vr->min)
823 || !is_gimple_min_invariant (vr->max));
826 /* Return true if value range VR uses an overflow infinity. */
828 static inline bool
829 overflow_infinity_range_p (value_range_t *vr)
831 return (vr->type == VR_RANGE
832 && (is_overflow_infinity (vr->min)
833 || is_overflow_infinity (vr->max)));
836 /* Return false if we can not make a valid comparison based on VR;
837 this will be the case if it uses an overflow infinity and overflow
838 is not undefined (i.e., -fno-strict-overflow is in effect).
839 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
840 uses an overflow infinity. */
842 static bool
843 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
845 gcc_assert (vr->type == VR_RANGE);
846 if (is_overflow_infinity (vr->min))
848 *strict_overflow_p = true;
849 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
850 return false;
852 if (is_overflow_infinity (vr->max))
854 *strict_overflow_p = true;
855 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
856 return false;
858 return true;
862 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
863 ranges obtained so far. */
865 static bool
866 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
868 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
869 || (TREE_CODE (expr) == SSA_NAME
870 && ssa_name_nonnegative_p (expr)));
873 /* Return true if the result of assignment STMT is know to be non-negative.
874 If the return value is based on the assumption that signed overflow is
875 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
876 *STRICT_OVERFLOW_P.*/
878 static bool
879 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
881 enum tree_code code = gimple_assign_rhs_code (stmt);
882 switch (get_gimple_rhs_class (code))
884 case GIMPLE_UNARY_RHS:
885 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
886 gimple_expr_type (stmt),
887 gimple_assign_rhs1 (stmt),
888 strict_overflow_p);
889 case GIMPLE_BINARY_RHS:
890 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
891 gimple_expr_type (stmt),
892 gimple_assign_rhs1 (stmt),
893 gimple_assign_rhs2 (stmt),
894 strict_overflow_p);
895 case GIMPLE_TERNARY_RHS:
896 return false;
897 case GIMPLE_SINGLE_RHS:
898 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
899 strict_overflow_p);
900 case GIMPLE_INVALID_RHS:
901 gcc_unreachable ();
902 default:
903 gcc_unreachable ();
907 /* Return true if return value of call STMT is know to be non-negative.
908 If the return value is based on the assumption that signed overflow is
909 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
910 *STRICT_OVERFLOW_P.*/
912 static bool
913 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
915 tree arg0 = gimple_call_num_args (stmt) > 0 ?
916 gimple_call_arg (stmt, 0) : NULL_TREE;
917 tree arg1 = gimple_call_num_args (stmt) > 1 ?
918 gimple_call_arg (stmt, 1) : NULL_TREE;
920 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
921 gimple_call_fndecl (stmt),
922 arg0,
923 arg1,
924 strict_overflow_p);
927 /* Return true if STMT is know to to compute a non-negative value.
928 If the return value is based on the assumption that signed overflow is
929 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
930 *STRICT_OVERFLOW_P.*/
932 static bool
933 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
935 switch (gimple_code (stmt))
937 case GIMPLE_ASSIGN:
938 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
939 case GIMPLE_CALL:
940 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
941 default:
942 gcc_unreachable ();
946 /* Return true if the result of assignment STMT is know to be non-zero.
947 If the return value is based on the assumption that signed overflow is
948 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
949 *STRICT_OVERFLOW_P.*/
951 static bool
952 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
954 enum tree_code code = gimple_assign_rhs_code (stmt);
955 switch (get_gimple_rhs_class (code))
957 case GIMPLE_UNARY_RHS:
958 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
959 gimple_expr_type (stmt),
960 gimple_assign_rhs1 (stmt),
961 strict_overflow_p);
962 case GIMPLE_BINARY_RHS:
963 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
964 gimple_expr_type (stmt),
965 gimple_assign_rhs1 (stmt),
966 gimple_assign_rhs2 (stmt),
967 strict_overflow_p);
968 case GIMPLE_TERNARY_RHS:
969 return false;
970 case GIMPLE_SINGLE_RHS:
971 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
972 strict_overflow_p);
973 case GIMPLE_INVALID_RHS:
974 gcc_unreachable ();
975 default:
976 gcc_unreachable ();
980 /* Return true if STMT is know to to compute a non-zero value.
981 If the return value is based on the assumption that signed overflow is
982 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
983 *STRICT_OVERFLOW_P.*/
985 static bool
986 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
988 switch (gimple_code (stmt))
990 case GIMPLE_ASSIGN:
991 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
992 case GIMPLE_CALL:
993 return gimple_alloca_call_p (stmt);
994 default:
995 gcc_unreachable ();
999 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1000 obtained so far. */
1002 static bool
1003 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1005 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1006 return true;
1008 /* If we have an expression of the form &X->a, then the expression
1009 is nonnull if X is nonnull. */
1010 if (is_gimple_assign (stmt)
1011 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1013 tree expr = gimple_assign_rhs1 (stmt);
1014 tree base = get_base_address (TREE_OPERAND (expr, 0));
1016 if (base != NULL_TREE
1017 && TREE_CODE (base) == MEM_REF
1018 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1020 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1021 if (range_is_nonnull (vr))
1022 return true;
1026 return false;
1029 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1030 a gimple invariant, or SSA_NAME +- CST. */
1032 static bool
1033 valid_value_p (tree expr)
1035 if (TREE_CODE (expr) == SSA_NAME)
1036 return true;
1038 if (TREE_CODE (expr) == PLUS_EXPR
1039 || TREE_CODE (expr) == MINUS_EXPR)
1040 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1041 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1043 return is_gimple_min_invariant (expr);
1046 /* Return
1047 1 if VAL < VAL2
1048 0 if !(VAL < VAL2)
1049 -2 if those are incomparable. */
1050 static inline int
1051 operand_less_p (tree val, tree val2)
1053 /* LT is folded faster than GE and others. Inline the common case. */
1054 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1056 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1057 return INT_CST_LT_UNSIGNED (val, val2);
1058 else
1060 if (INT_CST_LT (val, val2))
1061 return 1;
1064 else
1066 tree tcmp;
1068 fold_defer_overflow_warnings ();
1070 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1072 fold_undefer_and_ignore_overflow_warnings ();
1074 if (!tcmp
1075 || TREE_CODE (tcmp) != INTEGER_CST)
1076 return -2;
1078 if (!integer_zerop (tcmp))
1079 return 1;
1082 /* val >= val2, not considering overflow infinity. */
1083 if (is_negative_overflow_infinity (val))
1084 return is_negative_overflow_infinity (val2) ? 0 : 1;
1085 else if (is_positive_overflow_infinity (val2))
1086 return is_positive_overflow_infinity (val) ? 0 : 1;
1088 return 0;
1091 /* Compare two values VAL1 and VAL2. Return
1093 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1094 -1 if VAL1 < VAL2,
1095 0 if VAL1 == VAL2,
1096 +1 if VAL1 > VAL2, and
1097 +2 if VAL1 != VAL2
1099 This is similar to tree_int_cst_compare but supports pointer values
1100 and values that cannot be compared at compile time.
1102 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1103 true if the return value is only valid if we assume that signed
1104 overflow is undefined. */
1106 static int
1107 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1109 if (val1 == val2)
1110 return 0;
1112 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1113 both integers. */
1114 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1115 == POINTER_TYPE_P (TREE_TYPE (val2)));
1116 /* Convert the two values into the same type. This is needed because
1117 sizetype causes sign extension even for unsigned types. */
1118 val2 = fold_convert (TREE_TYPE (val1), val2);
1119 STRIP_USELESS_TYPE_CONVERSION (val2);
1121 if ((TREE_CODE (val1) == SSA_NAME
1122 || TREE_CODE (val1) == PLUS_EXPR
1123 || TREE_CODE (val1) == MINUS_EXPR)
1124 && (TREE_CODE (val2) == SSA_NAME
1125 || TREE_CODE (val2) == PLUS_EXPR
1126 || TREE_CODE (val2) == MINUS_EXPR))
1128 tree n1, c1, n2, c2;
1129 enum tree_code code1, code2;
1131 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1132 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1133 same name, return -2. */
1134 if (TREE_CODE (val1) == SSA_NAME)
1136 code1 = SSA_NAME;
1137 n1 = val1;
1138 c1 = NULL_TREE;
1140 else
1142 code1 = TREE_CODE (val1);
1143 n1 = TREE_OPERAND (val1, 0);
1144 c1 = TREE_OPERAND (val1, 1);
1145 if (tree_int_cst_sgn (c1) == -1)
1147 if (is_negative_overflow_infinity (c1))
1148 return -2;
1149 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1150 if (!c1)
1151 return -2;
1152 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1156 if (TREE_CODE (val2) == SSA_NAME)
1158 code2 = SSA_NAME;
1159 n2 = val2;
1160 c2 = NULL_TREE;
1162 else
1164 code2 = TREE_CODE (val2);
1165 n2 = TREE_OPERAND (val2, 0);
1166 c2 = TREE_OPERAND (val2, 1);
1167 if (tree_int_cst_sgn (c2) == -1)
1169 if (is_negative_overflow_infinity (c2))
1170 return -2;
1171 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1172 if (!c2)
1173 return -2;
1174 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1178 /* Both values must use the same name. */
1179 if (n1 != n2)
1180 return -2;
1182 if (code1 == SSA_NAME
1183 && code2 == SSA_NAME)
1184 /* NAME == NAME */
1185 return 0;
1187 /* If overflow is defined we cannot simplify more. */
1188 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1189 return -2;
1191 if (strict_overflow_p != NULL
1192 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1193 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1194 *strict_overflow_p = true;
1196 if (code1 == SSA_NAME)
1198 if (code2 == PLUS_EXPR)
1199 /* NAME < NAME + CST */
1200 return -1;
1201 else if (code2 == MINUS_EXPR)
1202 /* NAME > NAME - CST */
1203 return 1;
1205 else if (code1 == PLUS_EXPR)
1207 if (code2 == SSA_NAME)
1208 /* NAME + CST > NAME */
1209 return 1;
1210 else if (code2 == PLUS_EXPR)
1211 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1212 return compare_values_warnv (c1, c2, strict_overflow_p);
1213 else if (code2 == MINUS_EXPR)
1214 /* NAME + CST1 > NAME - CST2 */
1215 return 1;
1217 else if (code1 == MINUS_EXPR)
1219 if (code2 == SSA_NAME)
1220 /* NAME - CST < NAME */
1221 return -1;
1222 else if (code2 == PLUS_EXPR)
1223 /* NAME - CST1 < NAME + CST2 */
1224 return -1;
1225 else if (code2 == MINUS_EXPR)
1226 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1227 C1 and C2 are swapped in the call to compare_values. */
1228 return compare_values_warnv (c2, c1, strict_overflow_p);
1231 gcc_unreachable ();
1234 /* We cannot compare non-constants. */
1235 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1236 return -2;
1238 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1240 /* We cannot compare overflowed values, except for overflow
1241 infinities. */
1242 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1244 if (strict_overflow_p != NULL)
1245 *strict_overflow_p = true;
1246 if (is_negative_overflow_infinity (val1))
1247 return is_negative_overflow_infinity (val2) ? 0 : -1;
1248 else if (is_negative_overflow_infinity (val2))
1249 return 1;
1250 else if (is_positive_overflow_infinity (val1))
1251 return is_positive_overflow_infinity (val2) ? 0 : 1;
1252 else if (is_positive_overflow_infinity (val2))
1253 return -1;
1254 return -2;
1257 return tree_int_cst_compare (val1, val2);
1259 else
1261 tree t;
1263 /* First see if VAL1 and VAL2 are not the same. */
1264 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1265 return 0;
1267 /* If VAL1 is a lower address than VAL2, return -1. */
1268 if (operand_less_p (val1, val2) == 1)
1269 return -1;
1271 /* If VAL1 is a higher address than VAL2, return +1. */
1272 if (operand_less_p (val2, val1) == 1)
1273 return 1;
1275 /* If VAL1 is different than VAL2, return +2.
1276 For integer constants we either have already returned -1 or 1
1277 or they are equivalent. We still might succeed in proving
1278 something about non-trivial operands. */
1279 if (TREE_CODE (val1) != INTEGER_CST
1280 || TREE_CODE (val2) != INTEGER_CST)
1282 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1283 if (t && integer_onep (t))
1284 return 2;
1287 return -2;
1291 /* Compare values like compare_values_warnv, but treat comparisons of
1292 nonconstants which rely on undefined overflow as incomparable. */
1294 static int
1295 compare_values (tree val1, tree val2)
1297 bool sop;
1298 int ret;
1300 sop = false;
1301 ret = compare_values_warnv (val1, val2, &sop);
1302 if (sop
1303 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1304 ret = -2;
1305 return ret;
1309 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1310 0 if VAL is not inside VR,
1311 -2 if we cannot tell either way.
1313 FIXME, the current semantics of this functions are a bit quirky
1314 when taken in the context of VRP. In here we do not care
1315 about VR's type. If VR is the anti-range ~[3, 5] the call
1316 value_inside_range (4, VR) will return 1.
1318 This is counter-intuitive in a strict sense, but the callers
1319 currently expect this. They are calling the function
1320 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1321 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1322 themselves.
1324 This also applies to value_ranges_intersect_p and
1325 range_includes_zero_p. The semantics of VR_RANGE and
1326 VR_ANTI_RANGE should be encoded here, but that also means
1327 adapting the users of these functions to the new semantics.
1329 Benchmark compile/20001226-1.c compilation time after changing this
1330 function. */
1332 static inline int
1333 value_inside_range (tree val, value_range_t * vr)
1335 int cmp1, cmp2;
1337 cmp1 = operand_less_p (val, vr->min);
1338 if (cmp1 == -2)
1339 return -2;
1340 if (cmp1 == 1)
1341 return 0;
1343 cmp2 = operand_less_p (vr->max, val);
1344 if (cmp2 == -2)
1345 return -2;
1347 return !cmp2;
1351 /* Return true if value ranges VR0 and VR1 have a non-empty
1352 intersection.
1354 Benchmark compile/20001226-1.c compilation time after changing this
1355 function.
1358 static inline bool
1359 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1361 /* The value ranges do not intersect if the maximum of the first range is
1362 less than the minimum of the second range or vice versa.
1363 When those relations are unknown, we can't do any better. */
1364 if (operand_less_p (vr0->max, vr1->min) != 0)
1365 return false;
1366 if (operand_less_p (vr1->max, vr0->min) != 0)
1367 return false;
1368 return true;
1372 /* Return true if VR includes the value zero, false otherwise. FIXME,
1373 currently this will return false for an anti-range like ~[-4, 3].
1374 This will be wrong when the semantics of value_inside_range are
1375 modified (currently the users of this function expect these
1376 semantics). */
1378 static inline bool
1379 range_includes_zero_p (value_range_t *vr)
1381 tree zero;
1383 gcc_assert (vr->type != VR_UNDEFINED
1384 && vr->type != VR_VARYING
1385 && !symbolic_range_p (vr));
1387 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1388 return (value_inside_range (zero, vr) == 1);
1391 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1392 false otherwise or if no value range information is available. */
1394 bool
1395 ssa_name_nonnegative_p (const_tree t)
1397 value_range_t *vr = get_value_range (t);
1399 if (INTEGRAL_TYPE_P (t)
1400 && TYPE_UNSIGNED (t))
1401 return true;
1403 if (!vr)
1404 return false;
1406 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1407 which would return a useful value should be encoded as a VR_RANGE. */
1408 if (vr->type == VR_RANGE)
1410 int result = compare_values (vr->min, integer_zero_node);
1412 return (result == 0 || result == 1);
1414 return false;
1417 /* If OP has a value range with a single constant value return that,
1418 otherwise return NULL_TREE. This returns OP itself if OP is a
1419 constant. */
1421 static tree
1422 op_with_constant_singleton_value_range (tree op)
1424 value_range_t *vr;
1426 if (is_gimple_min_invariant (op))
1427 return op;
1429 if (TREE_CODE (op) != SSA_NAME)
1430 return NULL_TREE;
1432 vr = get_value_range (op);
1433 if (vr->type == VR_RANGE
1434 && operand_equal_p (vr->min, vr->max, 0)
1435 && is_gimple_min_invariant (vr->min))
1436 return vr->min;
1438 return NULL_TREE;
1442 /* Extract value range information from an ASSERT_EXPR EXPR and store
1443 it in *VR_P. */
1445 static void
1446 extract_range_from_assert (value_range_t *vr_p, tree expr)
1448 tree var, cond, limit, min, max, type;
1449 value_range_t *var_vr, *limit_vr;
1450 enum tree_code cond_code;
1452 var = ASSERT_EXPR_VAR (expr);
1453 cond = ASSERT_EXPR_COND (expr);
1455 gcc_assert (COMPARISON_CLASS_P (cond));
1457 /* Find VAR in the ASSERT_EXPR conditional. */
1458 if (var == TREE_OPERAND (cond, 0)
1459 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1460 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1462 /* If the predicate is of the form VAR COMP LIMIT, then we just
1463 take LIMIT from the RHS and use the same comparison code. */
1464 cond_code = TREE_CODE (cond);
1465 limit = TREE_OPERAND (cond, 1);
1466 cond = TREE_OPERAND (cond, 0);
1468 else
1470 /* If the predicate is of the form LIMIT COMP VAR, then we need
1471 to flip around the comparison code to create the proper range
1472 for VAR. */
1473 cond_code = swap_tree_comparison (TREE_CODE (cond));
1474 limit = TREE_OPERAND (cond, 0);
1475 cond = TREE_OPERAND (cond, 1);
1478 limit = avoid_overflow_infinity (limit);
1480 type = TREE_TYPE (limit);
1481 gcc_assert (limit != var);
1483 /* For pointer arithmetic, we only keep track of pointer equality
1484 and inequality. */
1485 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1487 set_value_range_to_varying (vr_p);
1488 return;
1491 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1492 try to use LIMIT's range to avoid creating symbolic ranges
1493 unnecessarily. */
1494 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1496 /* LIMIT's range is only interesting if it has any useful information. */
1497 if (limit_vr
1498 && (limit_vr->type == VR_UNDEFINED
1499 || limit_vr->type == VR_VARYING
1500 || symbolic_range_p (limit_vr)))
1501 limit_vr = NULL;
1503 /* Initially, the new range has the same set of equivalences of
1504 VAR's range. This will be revised before returning the final
1505 value. Since assertions may be chained via mutually exclusive
1506 predicates, we will need to trim the set of equivalences before
1507 we are done. */
1508 gcc_assert (vr_p->equiv == NULL);
1509 add_equivalence (&vr_p->equiv, var);
1511 /* Extract a new range based on the asserted comparison for VAR and
1512 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1513 will only use it for equality comparisons (EQ_EXPR). For any
1514 other kind of assertion, we cannot derive a range from LIMIT's
1515 anti-range that can be used to describe the new range. For
1516 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1517 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1518 no single range for x_2 that could describe LE_EXPR, so we might
1519 as well build the range [b_4, +INF] for it.
1520 One special case we handle is extracting a range from a
1521 range test encoded as (unsigned)var + CST <= limit. */
1522 if (TREE_CODE (cond) == NOP_EXPR
1523 || TREE_CODE (cond) == PLUS_EXPR)
1525 if (TREE_CODE (cond) == PLUS_EXPR)
1527 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1528 TREE_OPERAND (cond, 1));
1529 max = int_const_binop (PLUS_EXPR, limit, min);
1530 cond = TREE_OPERAND (cond, 0);
1532 else
1534 min = build_int_cst (TREE_TYPE (var), 0);
1535 max = limit;
1538 /* Make sure to not set TREE_OVERFLOW on the final type
1539 conversion. We are willingly interpreting large positive
1540 unsigned values as negative singed values here. */
1541 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1542 0, false);
1543 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1544 0, false);
1546 /* We can transform a max, min range to an anti-range or
1547 vice-versa. Use set_and_canonicalize_value_range which does
1548 this for us. */
1549 if (cond_code == LE_EXPR)
1550 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1551 min, max, vr_p->equiv);
1552 else if (cond_code == GT_EXPR)
1553 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1554 min, max, vr_p->equiv);
1555 else
1556 gcc_unreachable ();
1558 else if (cond_code == EQ_EXPR)
1560 enum value_range_type range_type;
1562 if (limit_vr)
1564 range_type = limit_vr->type;
1565 min = limit_vr->min;
1566 max = limit_vr->max;
1568 else
1570 range_type = VR_RANGE;
1571 min = limit;
1572 max = limit;
1575 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1577 /* When asserting the equality VAR == LIMIT and LIMIT is another
1578 SSA name, the new range will also inherit the equivalence set
1579 from LIMIT. */
1580 if (TREE_CODE (limit) == SSA_NAME)
1581 add_equivalence (&vr_p->equiv, limit);
1583 else if (cond_code == NE_EXPR)
1585 /* As described above, when LIMIT's range is an anti-range and
1586 this assertion is an inequality (NE_EXPR), then we cannot
1587 derive anything from the anti-range. For instance, if
1588 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1589 not imply that VAR's range is [0, 0]. So, in the case of
1590 anti-ranges, we just assert the inequality using LIMIT and
1591 not its anti-range.
1593 If LIMIT_VR is a range, we can only use it to build a new
1594 anti-range if LIMIT_VR is a single-valued range. For
1595 instance, if LIMIT_VR is [0, 1], the predicate
1596 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1597 Rather, it means that for value 0 VAR should be ~[0, 0]
1598 and for value 1, VAR should be ~[1, 1]. We cannot
1599 represent these ranges.
1601 The only situation in which we can build a valid
1602 anti-range is when LIMIT_VR is a single-valued range
1603 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1604 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1605 if (limit_vr
1606 && limit_vr->type == VR_RANGE
1607 && compare_values (limit_vr->min, limit_vr->max) == 0)
1609 min = limit_vr->min;
1610 max = limit_vr->max;
1612 else
1614 /* In any other case, we cannot use LIMIT's range to build a
1615 valid anti-range. */
1616 min = max = limit;
1619 /* If MIN and MAX cover the whole range for their type, then
1620 just use the original LIMIT. */
1621 if (INTEGRAL_TYPE_P (type)
1622 && vrp_val_is_min (min)
1623 && vrp_val_is_max (max))
1624 min = max = limit;
1626 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1628 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1630 min = TYPE_MIN_VALUE (type);
1632 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1633 max = limit;
1634 else
1636 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1637 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1638 LT_EXPR. */
1639 max = limit_vr->max;
1642 /* If the maximum value forces us to be out of bounds, simply punt.
1643 It would be pointless to try and do anything more since this
1644 all should be optimized away above us. */
1645 if ((cond_code == LT_EXPR
1646 && compare_values (max, min) == 0)
1647 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1648 set_value_range_to_varying (vr_p);
1649 else
1651 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1652 if (cond_code == LT_EXPR)
1654 tree one = build_int_cst (type, 1);
1655 max = fold_build2 (MINUS_EXPR, type, max, one);
1656 if (EXPR_P (max))
1657 TREE_NO_WARNING (max) = 1;
1660 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1663 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1665 max = TYPE_MAX_VALUE (type);
1667 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1668 min = limit;
1669 else
1671 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1672 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1673 GT_EXPR. */
1674 min = limit_vr->min;
1677 /* If the minimum value forces us to be out of bounds, simply punt.
1678 It would be pointless to try and do anything more since this
1679 all should be optimized away above us. */
1680 if ((cond_code == GT_EXPR
1681 && compare_values (min, max) == 0)
1682 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1683 set_value_range_to_varying (vr_p);
1684 else
1686 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1687 if (cond_code == GT_EXPR)
1689 tree one = build_int_cst (type, 1);
1690 min = fold_build2 (PLUS_EXPR, type, min, one);
1691 if (EXPR_P (min))
1692 TREE_NO_WARNING (min) = 1;
1695 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1698 else
1699 gcc_unreachable ();
1701 /* If VAR already had a known range, it may happen that the new
1702 range we have computed and VAR's range are not compatible. For
1703 instance,
1705 if (p_5 == NULL)
1706 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1707 x_7 = p_6->fld;
1708 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1710 While the above comes from a faulty program, it will cause an ICE
1711 later because p_8 and p_6 will have incompatible ranges and at
1712 the same time will be considered equivalent. A similar situation
1713 would arise from
1715 if (i_5 > 10)
1716 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1717 if (i_5 < 5)
1718 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1720 Again i_6 and i_7 will have incompatible ranges. It would be
1721 pointless to try and do anything with i_7's range because
1722 anything dominated by 'if (i_5 < 5)' will be optimized away.
1723 Note, due to the wa in which simulation proceeds, the statement
1724 i_7 = ASSERT_EXPR <...> we would never be visited because the
1725 conditional 'if (i_5 < 5)' always evaluates to false. However,
1726 this extra check does not hurt and may protect against future
1727 changes to VRP that may get into a situation similar to the
1728 NULL pointer dereference example.
1730 Note that these compatibility tests are only needed when dealing
1731 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1732 are both anti-ranges, they will always be compatible, because two
1733 anti-ranges will always have a non-empty intersection. */
1735 var_vr = get_value_range (var);
1737 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1738 ranges or anti-ranges. */
1739 if (vr_p->type == VR_VARYING
1740 || vr_p->type == VR_UNDEFINED
1741 || var_vr->type == VR_VARYING
1742 || var_vr->type == VR_UNDEFINED
1743 || symbolic_range_p (vr_p)
1744 || symbolic_range_p (var_vr))
1745 return;
1747 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1749 /* If the two ranges have a non-empty intersection, we can
1750 refine the resulting range. Since the assert expression
1751 creates an equivalency and at the same time it asserts a
1752 predicate, we can take the intersection of the two ranges to
1753 get better precision. */
1754 if (value_ranges_intersect_p (var_vr, vr_p))
1756 /* Use the larger of the two minimums. */
1757 if (compare_values (vr_p->min, var_vr->min) == -1)
1758 min = var_vr->min;
1759 else
1760 min = vr_p->min;
1762 /* Use the smaller of the two maximums. */
1763 if (compare_values (vr_p->max, var_vr->max) == 1)
1764 max = var_vr->max;
1765 else
1766 max = vr_p->max;
1768 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1770 else
1772 /* The two ranges do not intersect, set the new range to
1773 VARYING, because we will not be able to do anything
1774 meaningful with it. */
1775 set_value_range_to_varying (vr_p);
1778 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1779 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1781 /* A range and an anti-range will cancel each other only if
1782 their ends are the same. For instance, in the example above,
1783 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1784 so VR_P should be set to VR_VARYING. */
1785 if (compare_values (var_vr->min, vr_p->min) == 0
1786 && compare_values (var_vr->max, vr_p->max) == 0)
1787 set_value_range_to_varying (vr_p);
1788 else
1790 tree min, max, anti_min, anti_max, real_min, real_max;
1791 int cmp;
1793 /* We want to compute the logical AND of the two ranges;
1794 there are three cases to consider.
1797 1. The VR_ANTI_RANGE range is completely within the
1798 VR_RANGE and the endpoints of the ranges are
1799 different. In that case the resulting range
1800 should be whichever range is more precise.
1801 Typically that will be the VR_RANGE.
1803 2. The VR_ANTI_RANGE is completely disjoint from
1804 the VR_RANGE. In this case the resulting range
1805 should be the VR_RANGE.
1807 3. There is some overlap between the VR_ANTI_RANGE
1808 and the VR_RANGE.
1810 3a. If the high limit of the VR_ANTI_RANGE resides
1811 within the VR_RANGE, then the result is a new
1812 VR_RANGE starting at the high limit of the
1813 VR_ANTI_RANGE + 1 and extending to the
1814 high limit of the original VR_RANGE.
1816 3b. If the low limit of the VR_ANTI_RANGE resides
1817 within the VR_RANGE, then the result is a new
1818 VR_RANGE starting at the low limit of the original
1819 VR_RANGE and extending to the low limit of the
1820 VR_ANTI_RANGE - 1. */
1821 if (vr_p->type == VR_ANTI_RANGE)
1823 anti_min = vr_p->min;
1824 anti_max = vr_p->max;
1825 real_min = var_vr->min;
1826 real_max = var_vr->max;
1828 else
1830 anti_min = var_vr->min;
1831 anti_max = var_vr->max;
1832 real_min = vr_p->min;
1833 real_max = vr_p->max;
1837 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1838 not including any endpoints. */
1839 if (compare_values (anti_max, real_max) == -1
1840 && compare_values (anti_min, real_min) == 1)
1842 /* If the range is covering the whole valid range of
1843 the type keep the anti-range. */
1844 if (!vrp_val_is_min (real_min)
1845 || !vrp_val_is_max (real_max))
1846 set_value_range (vr_p, VR_RANGE, real_min,
1847 real_max, vr_p->equiv);
1849 /* Case 2, VR_ANTI_RANGE completely disjoint from
1850 VR_RANGE. */
1851 else if (compare_values (anti_min, real_max) == 1
1852 || compare_values (anti_max, real_min) == -1)
1854 set_value_range (vr_p, VR_RANGE, real_min,
1855 real_max, vr_p->equiv);
1857 /* Case 3a, the anti-range extends into the low
1858 part of the real range. Thus creating a new
1859 low for the real range. */
1860 else if (((cmp = compare_values (anti_max, real_min)) == 1
1861 || cmp == 0)
1862 && compare_values (anti_max, real_max) == -1)
1864 gcc_assert (!is_positive_overflow_infinity (anti_max));
1865 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1866 && vrp_val_is_max (anti_max))
1868 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1870 set_value_range_to_varying (vr_p);
1871 return;
1873 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1875 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1876 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1877 anti_max,
1878 build_int_cst (TREE_TYPE (var_vr->min), 1));
1879 else
1880 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1881 anti_max, size_int (1));
1882 max = real_max;
1883 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1885 /* Case 3b, the anti-range extends into the high
1886 part of the real range. Thus creating a new
1887 higher for the real range. */
1888 else if (compare_values (anti_min, real_min) == 1
1889 && ((cmp = compare_values (anti_min, real_max)) == -1
1890 || cmp == 0))
1892 gcc_assert (!is_negative_overflow_infinity (anti_min));
1893 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1894 && vrp_val_is_min (anti_min))
1896 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1898 set_value_range_to_varying (vr_p);
1899 return;
1901 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1903 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1904 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1905 anti_min,
1906 build_int_cst (TREE_TYPE (var_vr->min), 1));
1907 else
1908 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1909 anti_min,
1910 size_int (-1));
1911 min = real_min;
1912 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1919 /* Extract range information from SSA name VAR and store it in VR. If
1920 VAR has an interesting range, use it. Otherwise, create the
1921 range [VAR, VAR] and return it. This is useful in situations where
1922 we may have conditionals testing values of VARYING names. For
1923 instance,
1925 x_3 = y_5;
1926 if (x_3 > y_5)
1929 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1930 always false. */
1932 static void
1933 extract_range_from_ssa_name (value_range_t *vr, tree var)
1935 value_range_t *var_vr = get_value_range (var);
1937 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1938 copy_value_range (vr, var_vr);
1939 else
1940 set_value_range (vr, VR_RANGE, var, var, NULL);
1942 add_equivalence (&vr->equiv, var);
1946 /* Wrapper around int_const_binop. If the operation overflows and we
1947 are not using wrapping arithmetic, then adjust the result to be
1948 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1949 NULL_TREE if we need to use an overflow infinity representation but
1950 the type does not support it. */
1952 static tree
1953 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1955 tree res;
1957 res = int_const_binop (code, val1, val2);
1959 /* If we are using unsigned arithmetic, operate symbolically
1960 on -INF and +INF as int_const_binop only handles signed overflow. */
1961 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1963 int checkz = compare_values (res, val1);
1964 bool overflow = false;
1966 /* Ensure that res = val1 [+*] val2 >= val1
1967 or that res = val1 - val2 <= val1. */
1968 if ((code == PLUS_EXPR
1969 && !(checkz == 1 || checkz == 0))
1970 || (code == MINUS_EXPR
1971 && !(checkz == 0 || checkz == -1)))
1973 overflow = true;
1975 /* Checking for multiplication overflow is done by dividing the
1976 output of the multiplication by the first input of the
1977 multiplication. If the result of that division operation is
1978 not equal to the second input of the multiplication, then the
1979 multiplication overflowed. */
1980 else if (code == MULT_EXPR && !integer_zerop (val1))
1982 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1983 res,
1984 val1);
1985 int check = compare_values (tmp, val2);
1987 if (check != 0)
1988 overflow = true;
1991 if (overflow)
1993 res = copy_node (res);
1994 TREE_OVERFLOW (res) = 1;
1998 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1999 /* If the singed operation wraps then int_const_binop has done
2000 everything we want. */
2002 else if ((TREE_OVERFLOW (res)
2003 && !TREE_OVERFLOW (val1)
2004 && !TREE_OVERFLOW (val2))
2005 || is_overflow_infinity (val1)
2006 || is_overflow_infinity (val2))
2008 /* If the operation overflowed but neither VAL1 nor VAL2 are
2009 overflown, return -INF or +INF depending on the operation
2010 and the combination of signs of the operands. */
2011 int sgn1 = tree_int_cst_sgn (val1);
2012 int sgn2 = tree_int_cst_sgn (val2);
2014 if (needs_overflow_infinity (TREE_TYPE (res))
2015 && !supports_overflow_infinity (TREE_TYPE (res)))
2016 return NULL_TREE;
2018 /* We have to punt on adding infinities of different signs,
2019 since we can't tell what the sign of the result should be.
2020 Likewise for subtracting infinities of the same sign. */
2021 if (((code == PLUS_EXPR && sgn1 != sgn2)
2022 || (code == MINUS_EXPR && sgn1 == sgn2))
2023 && is_overflow_infinity (val1)
2024 && is_overflow_infinity (val2))
2025 return NULL_TREE;
2027 /* Don't try to handle division or shifting of infinities. */
2028 if ((code == TRUNC_DIV_EXPR
2029 || code == FLOOR_DIV_EXPR
2030 || code == CEIL_DIV_EXPR
2031 || code == EXACT_DIV_EXPR
2032 || code == ROUND_DIV_EXPR
2033 || code == RSHIFT_EXPR)
2034 && (is_overflow_infinity (val1)
2035 || is_overflow_infinity (val2)))
2036 return NULL_TREE;
2038 /* Notice that we only need to handle the restricted set of
2039 operations handled by extract_range_from_binary_expr.
2040 Among them, only multiplication, addition and subtraction
2041 can yield overflow without overflown operands because we
2042 are working with integral types only... except in the
2043 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2044 for division too. */
2046 /* For multiplication, the sign of the overflow is given
2047 by the comparison of the signs of the operands. */
2048 if ((code == MULT_EXPR && sgn1 == sgn2)
2049 /* For addition, the operands must be of the same sign
2050 to yield an overflow. Its sign is therefore that
2051 of one of the operands, for example the first. For
2052 infinite operands X + -INF is negative, not positive. */
2053 || (code == PLUS_EXPR
2054 && (sgn1 >= 0
2055 ? !is_negative_overflow_infinity (val2)
2056 : is_positive_overflow_infinity (val2)))
2057 /* For subtraction, non-infinite operands must be of
2058 different signs to yield an overflow. Its sign is
2059 therefore that of the first operand or the opposite of
2060 that of the second operand. A first operand of 0 counts
2061 as positive here, for the corner case 0 - (-INF), which
2062 overflows, but must yield +INF. For infinite operands 0
2063 - INF is negative, not positive. */
2064 || (code == MINUS_EXPR
2065 && (sgn1 >= 0
2066 ? !is_positive_overflow_infinity (val2)
2067 : is_negative_overflow_infinity (val2)))
2068 /* We only get in here with positive shift count, so the
2069 overflow direction is the same as the sign of val1.
2070 Actually rshift does not overflow at all, but we only
2071 handle the case of shifting overflowed -INF and +INF. */
2072 || (code == RSHIFT_EXPR
2073 && sgn1 >= 0)
2074 /* For division, the only case is -INF / -1 = +INF. */
2075 || code == TRUNC_DIV_EXPR
2076 || code == FLOOR_DIV_EXPR
2077 || code == CEIL_DIV_EXPR
2078 || code == EXACT_DIV_EXPR
2079 || code == ROUND_DIV_EXPR)
2080 return (needs_overflow_infinity (TREE_TYPE (res))
2081 ? positive_overflow_infinity (TREE_TYPE (res))
2082 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2083 else
2084 return (needs_overflow_infinity (TREE_TYPE (res))
2085 ? negative_overflow_infinity (TREE_TYPE (res))
2086 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2089 return res;
2093 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2094 bitmask if some bit is unset, it means for all numbers in the range
2095 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2096 bitmask if some bit is set, it means for all numbers in the range
2097 the bit is 1, otherwise it might be 0 or 1. */
2099 static bool
2100 zero_nonzero_bits_from_vr (value_range_t *vr, double_int *may_be_nonzero,
2101 double_int *must_be_nonzero)
2103 if (range_int_cst_p (vr))
2105 if (range_int_cst_singleton_p (vr))
2107 *may_be_nonzero = tree_to_double_int (vr->min);
2108 *must_be_nonzero = *may_be_nonzero;
2109 return true;
2111 if (tree_int_cst_sgn (vr->min) >= 0)
2113 double_int dmin = tree_to_double_int (vr->min);
2114 double_int dmax = tree_to_double_int (vr->max);
2115 double_int xor_mask = double_int_xor (dmin, dmax);
2116 *may_be_nonzero = double_int_ior (dmin, dmax);
2117 *must_be_nonzero = double_int_and (dmin, dmax);
2118 if (xor_mask.high != 0)
2120 unsigned HOST_WIDE_INT mask
2121 = ((unsigned HOST_WIDE_INT) 1
2122 << floor_log2 (xor_mask.high)) - 1;
2123 may_be_nonzero->low = ALL_ONES;
2124 may_be_nonzero->high |= mask;
2125 must_be_nonzero->low = 0;
2126 must_be_nonzero->high &= ~mask;
2128 else if (xor_mask.low != 0)
2130 unsigned HOST_WIDE_INT mask
2131 = ((unsigned HOST_WIDE_INT) 1
2132 << floor_log2 (xor_mask.low)) - 1;
2133 may_be_nonzero->low |= mask;
2134 must_be_nonzero->low &= ~mask;
2136 return true;
2139 may_be_nonzero->low = ALL_ONES;
2140 may_be_nonzero->high = ALL_ONES;
2141 must_be_nonzero->low = 0;
2142 must_be_nonzero->high = 0;
2143 return false;
2147 /* Extract range information from a binary expression EXPR based on
2148 the ranges of each of its operands and the expression code. */
2150 static void
2151 extract_range_from_binary_expr (value_range_t *vr,
2152 enum tree_code code,
2153 tree expr_type, tree op0, tree op1)
2155 enum value_range_type type;
2156 tree min, max;
2157 int cmp;
2158 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2159 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2161 /* Not all binary expressions can be applied to ranges in a
2162 meaningful way. Handle only arithmetic operations. */
2163 if (code != PLUS_EXPR
2164 && code != MINUS_EXPR
2165 && code != POINTER_PLUS_EXPR
2166 && code != MULT_EXPR
2167 && code != TRUNC_DIV_EXPR
2168 && code != FLOOR_DIV_EXPR
2169 && code != CEIL_DIV_EXPR
2170 && code != EXACT_DIV_EXPR
2171 && code != ROUND_DIV_EXPR
2172 && code != TRUNC_MOD_EXPR
2173 && code != RSHIFT_EXPR
2174 && code != MIN_EXPR
2175 && code != MAX_EXPR
2176 && code != BIT_AND_EXPR
2177 && code != BIT_IOR_EXPR
2178 && code != TRUTH_AND_EXPR
2179 && code != TRUTH_OR_EXPR)
2181 /* We can still do constant propagation here. */
2182 tree const_op0 = op_with_constant_singleton_value_range (op0);
2183 tree const_op1 = op_with_constant_singleton_value_range (op1);
2184 if (const_op0 || const_op1)
2186 tree tem = fold_binary (code, expr_type,
2187 const_op0 ? const_op0 : op0,
2188 const_op1 ? const_op1 : op1);
2189 if (tem
2190 && is_gimple_min_invariant (tem)
2191 && !is_overflow_infinity (tem))
2193 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2194 return;
2197 set_value_range_to_varying (vr);
2198 return;
2201 /* Get value ranges for each operand. For constant operands, create
2202 a new value range with the operand to simplify processing. */
2203 if (TREE_CODE (op0) == SSA_NAME)
2204 vr0 = *(get_value_range (op0));
2205 else if (is_gimple_min_invariant (op0))
2206 set_value_range_to_value (&vr0, op0, NULL);
2207 else
2208 set_value_range_to_varying (&vr0);
2210 if (TREE_CODE (op1) == SSA_NAME)
2211 vr1 = *(get_value_range (op1));
2212 else if (is_gimple_min_invariant (op1))
2213 set_value_range_to_value (&vr1, op1, NULL);
2214 else
2215 set_value_range_to_varying (&vr1);
2217 /* If either range is UNDEFINED, so is the result. */
2218 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2220 set_value_range_to_undefined (vr);
2221 return;
2224 /* The type of the resulting value range defaults to VR0.TYPE. */
2225 type = vr0.type;
2227 /* Refuse to operate on VARYING ranges, ranges of different kinds
2228 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2229 because we may be able to derive a useful range even if one of
2230 the operands is VR_VARYING or symbolic range. Similarly for
2231 divisions. TODO, we may be able to derive anti-ranges in
2232 some cases. */
2233 if (code != BIT_AND_EXPR
2234 && code != TRUTH_AND_EXPR
2235 && code != TRUTH_OR_EXPR
2236 && code != TRUNC_DIV_EXPR
2237 && code != FLOOR_DIV_EXPR
2238 && code != CEIL_DIV_EXPR
2239 && code != EXACT_DIV_EXPR
2240 && code != ROUND_DIV_EXPR
2241 && code != TRUNC_MOD_EXPR
2242 && (vr0.type == VR_VARYING
2243 || vr1.type == VR_VARYING
2244 || vr0.type != vr1.type
2245 || symbolic_range_p (&vr0)
2246 || symbolic_range_p (&vr1)))
2248 set_value_range_to_varying (vr);
2249 return;
2252 /* Now evaluate the expression to determine the new range. */
2253 if (POINTER_TYPE_P (expr_type)
2254 || POINTER_TYPE_P (TREE_TYPE (op0))
2255 || POINTER_TYPE_P (TREE_TYPE (op1)))
2257 if (code == MIN_EXPR || code == MAX_EXPR)
2259 /* For MIN/MAX expressions with pointers, we only care about
2260 nullness, if both are non null, then the result is nonnull.
2261 If both are null, then the result is null. Otherwise they
2262 are varying. */
2263 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2264 set_value_range_to_nonnull (vr, expr_type);
2265 else if (range_is_null (&vr0) && range_is_null (&vr1))
2266 set_value_range_to_null (vr, expr_type);
2267 else
2268 set_value_range_to_varying (vr);
2270 return;
2272 if (code == POINTER_PLUS_EXPR)
2274 /* For pointer types, we are really only interested in asserting
2275 whether the expression evaluates to non-NULL. */
2276 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2277 set_value_range_to_nonnull (vr, expr_type);
2278 else if (range_is_null (&vr0) && range_is_null (&vr1))
2279 set_value_range_to_null (vr, expr_type);
2280 else
2281 set_value_range_to_varying (vr);
2283 else if (code == BIT_AND_EXPR)
2285 /* For pointer types, we are really only interested in asserting
2286 whether the expression evaluates to non-NULL. */
2287 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2288 set_value_range_to_nonnull (vr, expr_type);
2289 else if (range_is_null (&vr0) || range_is_null (&vr1))
2290 set_value_range_to_null (vr, expr_type);
2291 else
2292 set_value_range_to_varying (vr);
2294 else
2295 gcc_unreachable ();
2297 return;
2300 /* For integer ranges, apply the operation to each end of the
2301 range and see what we end up with. */
2302 if (code == TRUTH_AND_EXPR
2303 || code == TRUTH_OR_EXPR)
2305 /* If one of the operands is zero, we know that the whole
2306 expression evaluates zero. */
2307 if (code == TRUTH_AND_EXPR
2308 && ((vr0.type == VR_RANGE
2309 && integer_zerop (vr0.min)
2310 && integer_zerop (vr0.max))
2311 || (vr1.type == VR_RANGE
2312 && integer_zerop (vr1.min)
2313 && integer_zerop (vr1.max))))
2315 type = VR_RANGE;
2316 min = max = build_int_cst (expr_type, 0);
2318 /* If one of the operands is one, we know that the whole
2319 expression evaluates one. */
2320 else if (code == TRUTH_OR_EXPR
2321 && ((vr0.type == VR_RANGE
2322 && integer_onep (vr0.min)
2323 && integer_onep (vr0.max))
2324 || (vr1.type == VR_RANGE
2325 && integer_onep (vr1.min)
2326 && integer_onep (vr1.max))))
2328 type = VR_RANGE;
2329 min = max = build_int_cst (expr_type, 1);
2331 else if (vr0.type != VR_VARYING
2332 && vr1.type != VR_VARYING
2333 && vr0.type == vr1.type
2334 && !symbolic_range_p (&vr0)
2335 && !overflow_infinity_range_p (&vr0)
2336 && !symbolic_range_p (&vr1)
2337 && !overflow_infinity_range_p (&vr1))
2339 /* Boolean expressions cannot be folded with int_const_binop. */
2340 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2341 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2343 else
2345 /* The result of a TRUTH_*_EXPR is always true or false. */
2346 set_value_range_to_truthvalue (vr, expr_type);
2347 return;
2350 else if (code == PLUS_EXPR
2351 || code == MIN_EXPR
2352 || code == MAX_EXPR)
2354 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2355 VR_VARYING. It would take more effort to compute a precise
2356 range for such a case. For example, if we have op0 == 1 and
2357 op1 == -1 with their ranges both being ~[0,0], we would have
2358 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2359 Note that we are guaranteed to have vr0.type == vr1.type at
2360 this point. */
2361 if (vr0.type == VR_ANTI_RANGE)
2363 if (code == PLUS_EXPR)
2365 set_value_range_to_varying (vr);
2366 return;
2368 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2369 the resulting VR_ANTI_RANGE is the same - intersection
2370 of the two ranges. */
2371 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2372 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2374 else
2376 /* For operations that make the resulting range directly
2377 proportional to the original ranges, apply the operation to
2378 the same end of each range. */
2379 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2380 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2383 /* If both additions overflowed the range kind is still correct.
2384 This happens regularly with subtracting something in unsigned
2385 arithmetic.
2386 ??? See PR30318 for all the cases we do not handle. */
2387 if (code == PLUS_EXPR
2388 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2389 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2391 min = build_int_cst_wide (TREE_TYPE (min),
2392 TREE_INT_CST_LOW (min),
2393 TREE_INT_CST_HIGH (min));
2394 max = build_int_cst_wide (TREE_TYPE (max),
2395 TREE_INT_CST_LOW (max),
2396 TREE_INT_CST_HIGH (max));
2399 else if (code == MULT_EXPR
2400 || code == TRUNC_DIV_EXPR
2401 || code == FLOOR_DIV_EXPR
2402 || code == CEIL_DIV_EXPR
2403 || code == EXACT_DIV_EXPR
2404 || code == ROUND_DIV_EXPR
2405 || code == RSHIFT_EXPR)
2407 tree val[4];
2408 size_t i;
2409 bool sop;
2411 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2412 drop to VR_VARYING. It would take more effort to compute a
2413 precise range for such a case. For example, if we have
2414 op0 == 65536 and op1 == 65536 with their ranges both being
2415 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2416 we cannot claim that the product is in ~[0,0]. Note that we
2417 are guaranteed to have vr0.type == vr1.type at this
2418 point. */
2419 if (code == MULT_EXPR
2420 && vr0.type == VR_ANTI_RANGE
2421 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2423 set_value_range_to_varying (vr);
2424 return;
2427 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2428 then drop to VR_VARYING. Outside of this range we get undefined
2429 behavior from the shift operation. We cannot even trust
2430 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2431 shifts, and the operation at the tree level may be widened. */
2432 if (code == RSHIFT_EXPR)
2434 if (vr1.type == VR_ANTI_RANGE
2435 || !vrp_expr_computes_nonnegative (op1, &sop)
2436 || (operand_less_p
2437 (build_int_cst (TREE_TYPE (vr1.max),
2438 TYPE_PRECISION (expr_type) - 1),
2439 vr1.max) != 0))
2441 set_value_range_to_varying (vr);
2442 return;
2446 else if ((code == TRUNC_DIV_EXPR
2447 || code == FLOOR_DIV_EXPR
2448 || code == CEIL_DIV_EXPR
2449 || code == EXACT_DIV_EXPR
2450 || code == ROUND_DIV_EXPR)
2451 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2453 /* For division, if op1 has VR_RANGE but op0 does not, something
2454 can be deduced just from that range. Say [min, max] / [4, max]
2455 gives [min / 4, max / 4] range. */
2456 if (vr1.type == VR_RANGE
2457 && !symbolic_range_p (&vr1)
2458 && !range_includes_zero_p (&vr1))
2460 vr0.type = type = VR_RANGE;
2461 vr0.min = vrp_val_min (TREE_TYPE (op0));
2462 vr0.max = vrp_val_max (TREE_TYPE (op1));
2464 else
2466 set_value_range_to_varying (vr);
2467 return;
2471 /* For divisions, if flag_non_call_exceptions is true, we must
2472 not eliminate a division by zero. */
2473 if ((code == TRUNC_DIV_EXPR
2474 || code == FLOOR_DIV_EXPR
2475 || code == CEIL_DIV_EXPR
2476 || code == EXACT_DIV_EXPR
2477 || code == ROUND_DIV_EXPR)
2478 && cfun->can_throw_non_call_exceptions
2479 && (vr1.type != VR_RANGE
2480 || symbolic_range_p (&vr1)
2481 || range_includes_zero_p (&vr1)))
2483 set_value_range_to_varying (vr);
2484 return;
2487 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2488 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2489 include 0. */
2490 if ((code == TRUNC_DIV_EXPR
2491 || code == FLOOR_DIV_EXPR
2492 || code == CEIL_DIV_EXPR
2493 || code == EXACT_DIV_EXPR
2494 || code == ROUND_DIV_EXPR)
2495 && vr0.type == VR_RANGE
2496 && (vr1.type != VR_RANGE
2497 || symbolic_range_p (&vr1)
2498 || range_includes_zero_p (&vr1)))
2500 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2501 int cmp;
2503 sop = false;
2504 min = NULL_TREE;
2505 max = NULL_TREE;
2506 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2508 /* For unsigned division or when divisor is known
2509 to be non-negative, the range has to cover
2510 all numbers from 0 to max for positive max
2511 and all numbers from min to 0 for negative min. */
2512 cmp = compare_values (vr0.max, zero);
2513 if (cmp == -1)
2514 max = zero;
2515 else if (cmp == 0 || cmp == 1)
2516 max = vr0.max;
2517 else
2518 type = VR_VARYING;
2519 cmp = compare_values (vr0.min, zero);
2520 if (cmp == 1)
2521 min = zero;
2522 else if (cmp == 0 || cmp == -1)
2523 min = vr0.min;
2524 else
2525 type = VR_VARYING;
2527 else
2529 /* Otherwise the range is -max .. max or min .. -min
2530 depending on which bound is bigger in absolute value,
2531 as the division can change the sign. */
2532 abs_extent_range (vr, vr0.min, vr0.max);
2533 return;
2535 if (type == VR_VARYING)
2537 set_value_range_to_varying (vr);
2538 return;
2542 /* Multiplications and divisions are a bit tricky to handle,
2543 depending on the mix of signs we have in the two ranges, we
2544 need to operate on different values to get the minimum and
2545 maximum values for the new range. One approach is to figure
2546 out all the variations of range combinations and do the
2547 operations.
2549 However, this involves several calls to compare_values and it
2550 is pretty convoluted. It's simpler to do the 4 operations
2551 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2552 MAX1) and then figure the smallest and largest values to form
2553 the new range. */
2554 else
2556 gcc_assert ((vr0.type == VR_RANGE
2557 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2558 && vr0.type == vr1.type);
2560 /* Compute the 4 cross operations. */
2561 sop = false;
2562 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2563 if (val[0] == NULL_TREE)
2564 sop = true;
2566 if (vr1.max == vr1.min)
2567 val[1] = NULL_TREE;
2568 else
2570 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2571 if (val[1] == NULL_TREE)
2572 sop = true;
2575 if (vr0.max == vr0.min)
2576 val[2] = NULL_TREE;
2577 else
2579 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2580 if (val[2] == NULL_TREE)
2581 sop = true;
2584 if (vr0.min == vr0.max || vr1.min == vr1.max)
2585 val[3] = NULL_TREE;
2586 else
2588 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2589 if (val[3] == NULL_TREE)
2590 sop = true;
2593 if (sop)
2595 set_value_range_to_varying (vr);
2596 return;
2599 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2600 of VAL[i]. */
2601 min = val[0];
2602 max = val[0];
2603 for (i = 1; i < 4; i++)
2605 if (!is_gimple_min_invariant (min)
2606 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2607 || !is_gimple_min_invariant (max)
2608 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2609 break;
2611 if (val[i])
2613 if (!is_gimple_min_invariant (val[i])
2614 || (TREE_OVERFLOW (val[i])
2615 && !is_overflow_infinity (val[i])))
2617 /* If we found an overflowed value, set MIN and MAX
2618 to it so that we set the resulting range to
2619 VARYING. */
2620 min = max = val[i];
2621 break;
2624 if (compare_values (val[i], min) == -1)
2625 min = val[i];
2627 if (compare_values (val[i], max) == 1)
2628 max = val[i];
2633 else if (code == TRUNC_MOD_EXPR)
2635 bool sop = false;
2636 if (vr1.type != VR_RANGE
2637 || symbolic_range_p (&vr1)
2638 || range_includes_zero_p (&vr1)
2639 || vrp_val_is_min (vr1.min))
2641 set_value_range_to_varying (vr);
2642 return;
2644 type = VR_RANGE;
2645 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2646 max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
2647 if (tree_int_cst_lt (max, vr1.max))
2648 max = vr1.max;
2649 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2650 /* If the dividend is non-negative the modulus will be
2651 non-negative as well. */
2652 if (TYPE_UNSIGNED (TREE_TYPE (max))
2653 || (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
2654 min = build_int_cst (TREE_TYPE (max), 0);
2655 else
2656 min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
2658 else if (code == MINUS_EXPR)
2660 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2661 VR_VARYING. It would take more effort to compute a precise
2662 range for such a case. For example, if we have op0 == 1 and
2663 op1 == 1 with their ranges both being ~[0,0], we would have
2664 op0 - op1 == 0, so we cannot claim that the difference is in
2665 ~[0,0]. Note that we are guaranteed to have
2666 vr0.type == vr1.type at this point. */
2667 if (vr0.type == VR_ANTI_RANGE)
2669 set_value_range_to_varying (vr);
2670 return;
2673 /* For MINUS_EXPR, apply the operation to the opposite ends of
2674 each range. */
2675 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2676 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2678 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2680 bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
2681 bool int_cst_range0, int_cst_range1;
2682 double_int may_be_nonzero0, may_be_nonzero1;
2683 double_int must_be_nonzero0, must_be_nonzero1;
2685 vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
2686 vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
2687 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2688 &must_be_nonzero0);
2689 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2690 &must_be_nonzero1);
2692 type = VR_RANGE;
2693 if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
2694 min = max = int_const_binop (code, vr0.max, vr1.max);
2695 else if (!int_cst_range0 && !int_cst_range1)
2697 set_value_range_to_varying (vr);
2698 return;
2700 else if (code == BIT_AND_EXPR)
2702 min = double_int_to_tree (expr_type,
2703 double_int_and (must_be_nonzero0,
2704 must_be_nonzero1));
2705 max = double_int_to_tree (expr_type,
2706 double_int_and (may_be_nonzero0,
2707 may_be_nonzero1));
2708 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2709 min = NULL_TREE;
2710 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2711 max = NULL_TREE;
2712 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2714 if (min == NULL_TREE)
2715 min = build_int_cst (expr_type, 0);
2716 if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max))
2717 max = vr0.max;
2719 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2721 if (min == NULL_TREE)
2722 min = build_int_cst (expr_type, 0);
2723 if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max))
2724 max = vr1.max;
2727 else if (!int_cst_range0
2728 || !int_cst_range1
2729 || tree_int_cst_sgn (vr0.min) < 0
2730 || tree_int_cst_sgn (vr1.min) < 0)
2732 set_value_range_to_varying (vr);
2733 return;
2735 else
2737 min = double_int_to_tree (expr_type,
2738 double_int_ior (must_be_nonzero0,
2739 must_be_nonzero1));
2740 max = double_int_to_tree (expr_type,
2741 double_int_ior (may_be_nonzero0,
2742 may_be_nonzero1));
2743 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2744 min = vr0.min;
2745 else
2746 min = vrp_int_const_binop (MAX_EXPR, min, vr0.min);
2747 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2748 max = NULL_TREE;
2749 min = vrp_int_const_binop (MAX_EXPR, min, vr1.min);
2752 else
2753 gcc_unreachable ();
2755 /* If either MIN or MAX overflowed, then set the resulting range to
2756 VARYING. But we do accept an overflow infinity
2757 representation. */
2758 if (min == NULL_TREE
2759 || !is_gimple_min_invariant (min)
2760 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2761 || max == NULL_TREE
2762 || !is_gimple_min_invariant (max)
2763 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2765 set_value_range_to_varying (vr);
2766 return;
2769 /* We punt if:
2770 1) [-INF, +INF]
2771 2) [-INF, +-INF(OVF)]
2772 3) [+-INF(OVF), +INF]
2773 4) [+-INF(OVF), +-INF(OVF)]
2774 We learn nothing when we have INF and INF(OVF) on both sides.
2775 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2776 overflow. */
2777 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2778 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2780 set_value_range_to_varying (vr);
2781 return;
2784 cmp = compare_values (min, max);
2785 if (cmp == -2 || cmp == 1)
2787 /* If the new range has its limits swapped around (MIN > MAX),
2788 then the operation caused one of them to wrap around, mark
2789 the new range VARYING. */
2790 set_value_range_to_varying (vr);
2792 else
2793 set_value_range (vr, type, min, max, NULL);
2797 /* Extract range information from a unary expression EXPR based on
2798 the range of its operand and the expression code. */
2800 static void
2801 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2802 tree type, tree op0)
2804 tree min, max;
2805 int cmp;
2806 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2808 /* Refuse to operate on certain unary expressions for which we
2809 cannot easily determine a resulting range. */
2810 if (code == FIX_TRUNC_EXPR
2811 || code == FLOAT_EXPR
2812 || code == BIT_NOT_EXPR
2813 || code == CONJ_EXPR)
2815 /* We can still do constant propagation here. */
2816 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2818 tree tem = fold_unary (code, type, op0);
2819 if (tem
2820 && is_gimple_min_invariant (tem)
2821 && !is_overflow_infinity (tem))
2823 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2824 return;
2827 set_value_range_to_varying (vr);
2828 return;
2831 /* Get value ranges for the operand. For constant operands, create
2832 a new value range with the operand to simplify processing. */
2833 if (TREE_CODE (op0) == SSA_NAME)
2834 vr0 = *(get_value_range (op0));
2835 else if (is_gimple_min_invariant (op0))
2836 set_value_range_to_value (&vr0, op0, NULL);
2837 else
2838 set_value_range_to_varying (&vr0);
2840 /* If VR0 is UNDEFINED, so is the result. */
2841 if (vr0.type == VR_UNDEFINED)
2843 set_value_range_to_undefined (vr);
2844 return;
2847 /* Refuse to operate on symbolic ranges, or if neither operand is
2848 a pointer or integral type. */
2849 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2850 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2851 || (vr0.type != VR_VARYING
2852 && symbolic_range_p (&vr0)))
2854 set_value_range_to_varying (vr);
2855 return;
2858 /* If the expression involves pointers, we are only interested in
2859 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2860 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2862 bool sop;
2864 sop = false;
2865 if (range_is_nonnull (&vr0)
2866 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2867 && !sop))
2868 set_value_range_to_nonnull (vr, type);
2869 else if (range_is_null (&vr0))
2870 set_value_range_to_null (vr, type);
2871 else
2872 set_value_range_to_varying (vr);
2874 return;
2877 /* Handle unary expressions on integer ranges. */
2878 if (CONVERT_EXPR_CODE_P (code)
2879 && INTEGRAL_TYPE_P (type)
2880 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2882 tree inner_type = TREE_TYPE (op0);
2883 tree outer_type = type;
2885 /* If VR0 is varying and we increase the type precision, assume
2886 a full range for the following transformation. */
2887 if (vr0.type == VR_VARYING
2888 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2890 vr0.type = VR_RANGE;
2891 vr0.min = TYPE_MIN_VALUE (inner_type);
2892 vr0.max = TYPE_MAX_VALUE (inner_type);
2895 /* If VR0 is a constant range or anti-range and the conversion is
2896 not truncating we can convert the min and max values and
2897 canonicalize the resulting range. Otherwise we can do the
2898 conversion if the size of the range is less than what the
2899 precision of the target type can represent and the range is
2900 not an anti-range. */
2901 if ((vr0.type == VR_RANGE
2902 || vr0.type == VR_ANTI_RANGE)
2903 && TREE_CODE (vr0.min) == INTEGER_CST
2904 && TREE_CODE (vr0.max) == INTEGER_CST
2905 && (!is_overflow_infinity (vr0.min)
2906 || (vr0.type == VR_RANGE
2907 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2908 && needs_overflow_infinity (outer_type)
2909 && supports_overflow_infinity (outer_type)))
2910 && (!is_overflow_infinity (vr0.max)
2911 || (vr0.type == VR_RANGE
2912 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2913 && needs_overflow_infinity (outer_type)
2914 && supports_overflow_infinity (outer_type)))
2915 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2916 || (vr0.type == VR_RANGE
2917 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2918 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2919 size_int (TYPE_PRECISION (outer_type)))))))
2921 tree new_min, new_max;
2922 new_min = force_fit_type_double (outer_type,
2923 tree_to_double_int (vr0.min),
2924 0, false);
2925 new_max = force_fit_type_double (outer_type,
2926 tree_to_double_int (vr0.max),
2927 0, false);
2928 if (is_overflow_infinity (vr0.min))
2929 new_min = negative_overflow_infinity (outer_type);
2930 if (is_overflow_infinity (vr0.max))
2931 new_max = positive_overflow_infinity (outer_type);
2932 set_and_canonicalize_value_range (vr, vr0.type,
2933 new_min, new_max, NULL);
2934 return;
2937 set_value_range_to_varying (vr);
2938 return;
2941 /* Conversion of a VR_VARYING value to a wider type can result
2942 in a usable range. So wait until after we've handled conversions
2943 before dropping the result to VR_VARYING if we had a source
2944 operand that is VR_VARYING. */
2945 if (vr0.type == VR_VARYING)
2947 set_value_range_to_varying (vr);
2948 return;
2951 /* Apply the operation to each end of the range and see what we end
2952 up with. */
2953 if (code == NEGATE_EXPR
2954 && !TYPE_UNSIGNED (type))
2956 /* NEGATE_EXPR flips the range around. We need to treat
2957 TYPE_MIN_VALUE specially. */
2958 if (is_positive_overflow_infinity (vr0.max))
2959 min = negative_overflow_infinity (type);
2960 else if (is_negative_overflow_infinity (vr0.max))
2961 min = positive_overflow_infinity (type);
2962 else if (!vrp_val_is_min (vr0.max))
2963 min = fold_unary_to_constant (code, type, vr0.max);
2964 else if (needs_overflow_infinity (type))
2966 if (supports_overflow_infinity (type)
2967 && !is_overflow_infinity (vr0.min)
2968 && !vrp_val_is_min (vr0.min))
2969 min = positive_overflow_infinity (type);
2970 else
2972 set_value_range_to_varying (vr);
2973 return;
2976 else
2977 min = TYPE_MIN_VALUE (type);
2979 if (is_positive_overflow_infinity (vr0.min))
2980 max = negative_overflow_infinity (type);
2981 else if (is_negative_overflow_infinity (vr0.min))
2982 max = positive_overflow_infinity (type);
2983 else if (!vrp_val_is_min (vr0.min))
2984 max = fold_unary_to_constant (code, type, vr0.min);
2985 else if (needs_overflow_infinity (type))
2987 if (supports_overflow_infinity (type))
2988 max = positive_overflow_infinity (type);
2989 else
2991 set_value_range_to_varying (vr);
2992 return;
2995 else
2996 max = TYPE_MIN_VALUE (type);
2998 else if (code == NEGATE_EXPR
2999 && TYPE_UNSIGNED (type))
3001 if (!range_includes_zero_p (&vr0))
3003 max = fold_unary_to_constant (code, type, vr0.min);
3004 min = fold_unary_to_constant (code, type, vr0.max);
3006 else
3008 if (range_is_null (&vr0))
3009 set_value_range_to_null (vr, type);
3010 else
3011 set_value_range_to_varying (vr);
3012 return;
3015 else if (code == ABS_EXPR
3016 && !TYPE_UNSIGNED (type))
3018 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3019 useful range. */
3020 if (!TYPE_OVERFLOW_UNDEFINED (type)
3021 && ((vr0.type == VR_RANGE
3022 && vrp_val_is_min (vr0.min))
3023 || (vr0.type == VR_ANTI_RANGE
3024 && !vrp_val_is_min (vr0.min)
3025 && !range_includes_zero_p (&vr0))))
3027 set_value_range_to_varying (vr);
3028 return;
3031 /* ABS_EXPR may flip the range around, if the original range
3032 included negative values. */
3033 if (is_overflow_infinity (vr0.min))
3034 min = positive_overflow_infinity (type);
3035 else if (!vrp_val_is_min (vr0.min))
3036 min = fold_unary_to_constant (code, type, vr0.min);
3037 else if (!needs_overflow_infinity (type))
3038 min = TYPE_MAX_VALUE (type);
3039 else if (supports_overflow_infinity (type))
3040 min = positive_overflow_infinity (type);
3041 else
3043 set_value_range_to_varying (vr);
3044 return;
3047 if (is_overflow_infinity (vr0.max))
3048 max = positive_overflow_infinity (type);
3049 else if (!vrp_val_is_min (vr0.max))
3050 max = fold_unary_to_constant (code, type, vr0.max);
3051 else if (!needs_overflow_infinity (type))
3052 max = TYPE_MAX_VALUE (type);
3053 else if (supports_overflow_infinity (type)
3054 /* We shouldn't generate [+INF, +INF] as set_value_range
3055 doesn't like this and ICEs. */
3056 && !is_positive_overflow_infinity (min))
3057 max = positive_overflow_infinity (type);
3058 else
3060 set_value_range_to_varying (vr);
3061 return;
3064 cmp = compare_values (min, max);
3066 /* If a VR_ANTI_RANGEs contains zero, then we have
3067 ~[-INF, min(MIN, MAX)]. */
3068 if (vr0.type == VR_ANTI_RANGE)
3070 if (range_includes_zero_p (&vr0))
3072 /* Take the lower of the two values. */
3073 if (cmp != 1)
3074 max = min;
3076 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3077 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3078 flag_wrapv is set and the original anti-range doesn't include
3079 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3080 if (TYPE_OVERFLOW_WRAPS (type))
3082 tree type_min_value = TYPE_MIN_VALUE (type);
3084 min = (vr0.min != type_min_value
3085 ? int_const_binop (PLUS_EXPR, type_min_value,
3086 integer_one_node)
3087 : type_min_value);
3089 else
3091 if (overflow_infinity_range_p (&vr0))
3092 min = negative_overflow_infinity (type);
3093 else
3094 min = TYPE_MIN_VALUE (type);
3097 else
3099 /* All else has failed, so create the range [0, INF], even for
3100 flag_wrapv since TYPE_MIN_VALUE is in the original
3101 anti-range. */
3102 vr0.type = VR_RANGE;
3103 min = build_int_cst (type, 0);
3104 if (needs_overflow_infinity (type))
3106 if (supports_overflow_infinity (type))
3107 max = positive_overflow_infinity (type);
3108 else
3110 set_value_range_to_varying (vr);
3111 return;
3114 else
3115 max = TYPE_MAX_VALUE (type);
3119 /* If the range contains zero then we know that the minimum value in the
3120 range will be zero. */
3121 else if (range_includes_zero_p (&vr0))
3123 if (cmp == 1)
3124 max = min;
3125 min = build_int_cst (type, 0);
3127 else
3129 /* If the range was reversed, swap MIN and MAX. */
3130 if (cmp == 1)
3132 tree t = min;
3133 min = max;
3134 max = t;
3138 else
3140 /* Otherwise, operate on each end of the range. */
3141 min = fold_unary_to_constant (code, type, vr0.min);
3142 max = fold_unary_to_constant (code, type, vr0.max);
3144 if (needs_overflow_infinity (type))
3146 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3148 /* If both sides have overflowed, we don't know
3149 anything. */
3150 if ((is_overflow_infinity (vr0.min)
3151 || TREE_OVERFLOW (min))
3152 && (is_overflow_infinity (vr0.max)
3153 || TREE_OVERFLOW (max)))
3155 set_value_range_to_varying (vr);
3156 return;
3159 if (is_overflow_infinity (vr0.min))
3160 min = vr0.min;
3161 else if (TREE_OVERFLOW (min))
3163 if (supports_overflow_infinity (type))
3164 min = (tree_int_cst_sgn (min) >= 0
3165 ? positive_overflow_infinity (TREE_TYPE (min))
3166 : negative_overflow_infinity (TREE_TYPE (min)));
3167 else
3169 set_value_range_to_varying (vr);
3170 return;
3174 if (is_overflow_infinity (vr0.max))
3175 max = vr0.max;
3176 else if (TREE_OVERFLOW (max))
3178 if (supports_overflow_infinity (type))
3179 max = (tree_int_cst_sgn (max) >= 0
3180 ? positive_overflow_infinity (TREE_TYPE (max))
3181 : negative_overflow_infinity (TREE_TYPE (max)));
3182 else
3184 set_value_range_to_varying (vr);
3185 return;
3191 cmp = compare_values (min, max);
3192 if (cmp == -2 || cmp == 1)
3194 /* If the new range has its limits swapped around (MIN > MAX),
3195 then the operation caused one of them to wrap around, mark
3196 the new range VARYING. */
3197 set_value_range_to_varying (vr);
3199 else
3200 set_value_range (vr, vr0.type, min, max, NULL);
3204 /* Extract range information from a conditional expression EXPR based on
3205 the ranges of each of its operands and the expression code. */
3207 static void
3208 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3210 tree op0, op1;
3211 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3212 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3214 /* Get value ranges for each operand. For constant operands, create
3215 a new value range with the operand to simplify processing. */
3216 op0 = COND_EXPR_THEN (expr);
3217 if (TREE_CODE (op0) == SSA_NAME)
3218 vr0 = *(get_value_range (op0));
3219 else if (is_gimple_min_invariant (op0))
3220 set_value_range_to_value (&vr0, op0, NULL);
3221 else
3222 set_value_range_to_varying (&vr0);
3224 op1 = COND_EXPR_ELSE (expr);
3225 if (TREE_CODE (op1) == SSA_NAME)
3226 vr1 = *(get_value_range (op1));
3227 else if (is_gimple_min_invariant (op1))
3228 set_value_range_to_value (&vr1, op1, NULL);
3229 else
3230 set_value_range_to_varying (&vr1);
3232 /* The resulting value range is the union of the operand ranges */
3233 vrp_meet (&vr0, &vr1);
3234 copy_value_range (vr, &vr0);
3238 /* Extract range information from a comparison expression EXPR based
3239 on the range of its operand and the expression code. */
3241 static void
3242 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3243 tree type, tree op0, tree op1)
3245 bool sop = false;
3246 tree val;
3248 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3249 NULL);
3251 /* A disadvantage of using a special infinity as an overflow
3252 representation is that we lose the ability to record overflow
3253 when we don't have an infinity. So we have to ignore a result
3254 which relies on overflow. */
3256 if (val && !is_overflow_infinity (val) && !sop)
3258 /* Since this expression was found on the RHS of an assignment,
3259 its type may be different from _Bool. Convert VAL to EXPR's
3260 type. */
3261 val = fold_convert (type, val);
3262 if (is_gimple_min_invariant (val))
3263 set_value_range_to_value (vr, val, vr->equiv);
3264 else
3265 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3267 else
3268 /* The result of a comparison is always true or false. */
3269 set_value_range_to_truthvalue (vr, type);
3272 /* Try to derive a nonnegative or nonzero range out of STMT relying
3273 primarily on generic routines in fold in conjunction with range data.
3274 Store the result in *VR */
3276 static void
3277 extract_range_basic (value_range_t *vr, gimple stmt)
3279 bool sop = false;
3280 tree type = gimple_expr_type (stmt);
3282 if (INTEGRAL_TYPE_P (type)
3283 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3284 set_value_range_to_nonnegative (vr, type,
3285 sop || stmt_overflow_infinity (stmt));
3286 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3287 && !sop)
3288 set_value_range_to_nonnull (vr, type);
3289 else
3290 set_value_range_to_varying (vr);
3294 /* Try to compute a useful range out of assignment STMT and store it
3295 in *VR. */
3297 static void
3298 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3300 enum tree_code code = gimple_assign_rhs_code (stmt);
3302 if (code == ASSERT_EXPR)
3303 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3304 else if (code == SSA_NAME)
3305 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3306 else if (TREE_CODE_CLASS (code) == tcc_binary
3307 || code == TRUTH_AND_EXPR
3308 || code == TRUTH_OR_EXPR
3309 || code == TRUTH_XOR_EXPR)
3310 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3311 gimple_expr_type (stmt),
3312 gimple_assign_rhs1 (stmt),
3313 gimple_assign_rhs2 (stmt));
3314 else if (TREE_CODE_CLASS (code) == tcc_unary)
3315 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3316 gimple_expr_type (stmt),
3317 gimple_assign_rhs1 (stmt));
3318 else if (code == COND_EXPR)
3319 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3320 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3321 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3322 gimple_expr_type (stmt),
3323 gimple_assign_rhs1 (stmt),
3324 gimple_assign_rhs2 (stmt));
3325 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3326 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3327 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3328 else
3329 set_value_range_to_varying (vr);
3331 if (vr->type == VR_VARYING)
3332 extract_range_basic (vr, stmt);
3335 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3336 would be profitable to adjust VR using scalar evolution information
3337 for VAR. If so, update VR with the new limits. */
3339 static void
3340 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3341 gimple stmt, tree var)
3343 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3344 enum ev_direction dir;
3346 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3347 better opportunities than a regular range, but I'm not sure. */
3348 if (vr->type == VR_ANTI_RANGE)
3349 return;
3351 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3353 /* Like in PR19590, scev can return a constant function. */
3354 if (is_gimple_min_invariant (chrec))
3356 set_value_range_to_value (vr, chrec, vr->equiv);
3357 return;
3360 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3361 return;
3363 init = initial_condition_in_loop_num (chrec, loop->num);
3364 tem = op_with_constant_singleton_value_range (init);
3365 if (tem)
3366 init = tem;
3367 step = evolution_part_in_loop_num (chrec, loop->num);
3368 tem = op_with_constant_singleton_value_range (step);
3369 if (tem)
3370 step = tem;
3372 /* If STEP is symbolic, we can't know whether INIT will be the
3373 minimum or maximum value in the range. Also, unless INIT is
3374 a simple expression, compare_values and possibly other functions
3375 in tree-vrp won't be able to handle it. */
3376 if (step == NULL_TREE
3377 || !is_gimple_min_invariant (step)
3378 || !valid_value_p (init))
3379 return;
3381 dir = scev_direction (chrec);
3382 if (/* Do not adjust ranges if we do not know whether the iv increases
3383 or decreases, ... */
3384 dir == EV_DIR_UNKNOWN
3385 /* ... or if it may wrap. */
3386 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3387 true))
3388 return;
3390 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3391 negative_overflow_infinity and positive_overflow_infinity,
3392 because we have concluded that the loop probably does not
3393 wrap. */
3395 type = TREE_TYPE (var);
3396 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3397 tmin = lower_bound_in_type (type, type);
3398 else
3399 tmin = TYPE_MIN_VALUE (type);
3400 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3401 tmax = upper_bound_in_type (type, type);
3402 else
3403 tmax = TYPE_MAX_VALUE (type);
3405 /* Try to use estimated number of iterations for the loop to constrain the
3406 final value in the evolution. */
3407 if (TREE_CODE (step) == INTEGER_CST
3408 && is_gimple_val (init)
3409 && (TREE_CODE (init) != SSA_NAME
3410 || get_value_range (init)->type == VR_RANGE))
3412 double_int nit;
3414 if (estimated_loop_iterations (loop, true, &nit))
3416 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3417 double_int dtmp;
3418 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3419 int overflow = 0;
3421 dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3422 unsigned_p, &overflow);
3423 /* If the multiplication overflowed we can't do a meaningful
3424 adjustment. Likewise if the result doesn't fit in the type
3425 of the induction variable. For a signed type we have to
3426 check whether the result has the expected signedness which
3427 is that of the step as number of iterations is unsigned. */
3428 if (!overflow
3429 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3430 && (unsigned_p
3431 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3433 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3434 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3435 TREE_TYPE (init), init, tem);
3436 /* Likewise if the addition did. */
3437 if (maxvr.type == VR_RANGE)
3439 tmin = maxvr.min;
3440 tmax = maxvr.max;
3446 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3448 min = tmin;
3449 max = tmax;
3451 /* For VARYING or UNDEFINED ranges, just about anything we get
3452 from scalar evolutions should be better. */
3454 if (dir == EV_DIR_DECREASES)
3455 max = init;
3456 else
3457 min = init;
3459 /* If we would create an invalid range, then just assume we
3460 know absolutely nothing. This may be over-conservative,
3461 but it's clearly safe, and should happen only in unreachable
3462 parts of code, or for invalid programs. */
3463 if (compare_values (min, max) == 1)
3464 return;
3466 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3468 else if (vr->type == VR_RANGE)
3470 min = vr->min;
3471 max = vr->max;
3473 if (dir == EV_DIR_DECREASES)
3475 /* INIT is the maximum value. If INIT is lower than VR->MAX
3476 but no smaller than VR->MIN, set VR->MAX to INIT. */
3477 if (compare_values (init, max) == -1)
3478 max = init;
3480 /* According to the loop information, the variable does not
3481 overflow. If we think it does, probably because of an
3482 overflow due to arithmetic on a different INF value,
3483 reset now. */
3484 if (is_negative_overflow_infinity (min)
3485 || compare_values (min, tmin) == -1)
3486 min = tmin;
3489 else
3491 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3492 if (compare_values (init, min) == 1)
3493 min = init;
3495 if (is_positive_overflow_infinity (max)
3496 || compare_values (tmax, max) == -1)
3497 max = tmax;
3500 /* If we just created an invalid range with the minimum
3501 greater than the maximum, we fail conservatively.
3502 This should happen only in unreachable
3503 parts of code, or for invalid programs. */
3504 if (compare_values (min, max) == 1)
3505 return;
3507 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3511 /* Return true if VAR may overflow at STMT. This checks any available
3512 loop information to see if we can determine that VAR does not
3513 overflow. */
3515 static bool
3516 vrp_var_may_overflow (tree var, gimple stmt)
3518 struct loop *l;
3519 tree chrec, init, step;
3521 if (current_loops == NULL)
3522 return true;
3524 l = loop_containing_stmt (stmt);
3525 if (l == NULL
3526 || !loop_outer (l))
3527 return true;
3529 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3530 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3531 return true;
3533 init = initial_condition_in_loop_num (chrec, l->num);
3534 step = evolution_part_in_loop_num (chrec, l->num);
3536 if (step == NULL_TREE
3537 || !is_gimple_min_invariant (step)
3538 || !valid_value_p (init))
3539 return true;
3541 /* If we get here, we know something useful about VAR based on the
3542 loop information. If it wraps, it may overflow. */
3544 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3545 true))
3546 return true;
3548 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3550 print_generic_expr (dump_file, var, 0);
3551 fprintf (dump_file, ": loop information indicates does not overflow\n");
3554 return false;
3558 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3560 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3561 all the values in the ranges.
3563 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3565 - Return NULL_TREE if it is not always possible to determine the
3566 value of the comparison.
3568 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3569 overflow infinity was used in the test. */
3572 static tree
3573 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3574 bool *strict_overflow_p)
3576 /* VARYING or UNDEFINED ranges cannot be compared. */
3577 if (vr0->type == VR_VARYING
3578 || vr0->type == VR_UNDEFINED
3579 || vr1->type == VR_VARYING
3580 || vr1->type == VR_UNDEFINED)
3581 return NULL_TREE;
3583 /* Anti-ranges need to be handled separately. */
3584 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3586 /* If both are anti-ranges, then we cannot compute any
3587 comparison. */
3588 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3589 return NULL_TREE;
3591 /* These comparisons are never statically computable. */
3592 if (comp == GT_EXPR
3593 || comp == GE_EXPR
3594 || comp == LT_EXPR
3595 || comp == LE_EXPR)
3596 return NULL_TREE;
3598 /* Equality can be computed only between a range and an
3599 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3600 if (vr0->type == VR_RANGE)
3602 /* To simplify processing, make VR0 the anti-range. */
3603 value_range_t *tmp = vr0;
3604 vr0 = vr1;
3605 vr1 = tmp;
3608 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3610 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3611 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3612 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3614 return NULL_TREE;
3617 if (!usable_range_p (vr0, strict_overflow_p)
3618 || !usable_range_p (vr1, strict_overflow_p))
3619 return NULL_TREE;
3621 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3622 operands around and change the comparison code. */
3623 if (comp == GT_EXPR || comp == GE_EXPR)
3625 value_range_t *tmp;
3626 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3627 tmp = vr0;
3628 vr0 = vr1;
3629 vr1 = tmp;
3632 if (comp == EQ_EXPR)
3634 /* Equality may only be computed if both ranges represent
3635 exactly one value. */
3636 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3637 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3639 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3640 strict_overflow_p);
3641 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3642 strict_overflow_p);
3643 if (cmp_min == 0 && cmp_max == 0)
3644 return boolean_true_node;
3645 else if (cmp_min != -2 && cmp_max != -2)
3646 return boolean_false_node;
3648 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3649 else if (compare_values_warnv (vr0->min, vr1->max,
3650 strict_overflow_p) == 1
3651 || compare_values_warnv (vr1->min, vr0->max,
3652 strict_overflow_p) == 1)
3653 return boolean_false_node;
3655 return NULL_TREE;
3657 else if (comp == NE_EXPR)
3659 int cmp1, cmp2;
3661 /* If VR0 is completely to the left or completely to the right
3662 of VR1, they are always different. Notice that we need to
3663 make sure that both comparisons yield similar results to
3664 avoid comparing values that cannot be compared at
3665 compile-time. */
3666 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3667 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3668 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3669 return boolean_true_node;
3671 /* If VR0 and VR1 represent a single value and are identical,
3672 return false. */
3673 else if (compare_values_warnv (vr0->min, vr0->max,
3674 strict_overflow_p) == 0
3675 && compare_values_warnv (vr1->min, vr1->max,
3676 strict_overflow_p) == 0
3677 && compare_values_warnv (vr0->min, vr1->min,
3678 strict_overflow_p) == 0
3679 && compare_values_warnv (vr0->max, vr1->max,
3680 strict_overflow_p) == 0)
3681 return boolean_false_node;
3683 /* Otherwise, they may or may not be different. */
3684 else
3685 return NULL_TREE;
3687 else if (comp == LT_EXPR || comp == LE_EXPR)
3689 int tst;
3691 /* If VR0 is to the left of VR1, return true. */
3692 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3693 if ((comp == LT_EXPR && tst == -1)
3694 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3696 if (overflow_infinity_range_p (vr0)
3697 || overflow_infinity_range_p (vr1))
3698 *strict_overflow_p = true;
3699 return boolean_true_node;
3702 /* If VR0 is to the right of VR1, return false. */
3703 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3704 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3705 || (comp == LE_EXPR && tst == 1))
3707 if (overflow_infinity_range_p (vr0)
3708 || overflow_infinity_range_p (vr1))
3709 *strict_overflow_p = true;
3710 return boolean_false_node;
3713 /* Otherwise, we don't know. */
3714 return NULL_TREE;
3717 gcc_unreachable ();
3721 /* Given a value range VR, a value VAL and a comparison code COMP, return
3722 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3723 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3724 always returns false. Return NULL_TREE if it is not always
3725 possible to determine the value of the comparison. Also set
3726 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3727 infinity was used in the test. */
3729 static tree
3730 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3731 bool *strict_overflow_p)
3733 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3734 return NULL_TREE;
3736 /* Anti-ranges need to be handled separately. */
3737 if (vr->type == VR_ANTI_RANGE)
3739 /* For anti-ranges, the only predicates that we can compute at
3740 compile time are equality and inequality. */
3741 if (comp == GT_EXPR
3742 || comp == GE_EXPR
3743 || comp == LT_EXPR
3744 || comp == LE_EXPR)
3745 return NULL_TREE;
3747 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3748 if (value_inside_range (val, vr) == 1)
3749 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3751 return NULL_TREE;
3754 if (!usable_range_p (vr, strict_overflow_p))
3755 return NULL_TREE;
3757 if (comp == EQ_EXPR)
3759 /* EQ_EXPR may only be computed if VR represents exactly
3760 one value. */
3761 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3763 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3764 if (cmp == 0)
3765 return boolean_true_node;
3766 else if (cmp == -1 || cmp == 1 || cmp == 2)
3767 return boolean_false_node;
3769 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3770 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3771 return boolean_false_node;
3773 return NULL_TREE;
3775 else if (comp == NE_EXPR)
3777 /* If VAL is not inside VR, then they are always different. */
3778 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3779 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3780 return boolean_true_node;
3782 /* If VR represents exactly one value equal to VAL, then return
3783 false. */
3784 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3785 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3786 return boolean_false_node;
3788 /* Otherwise, they may or may not be different. */
3789 return NULL_TREE;
3791 else if (comp == LT_EXPR || comp == LE_EXPR)
3793 int tst;
3795 /* If VR is to the left of VAL, return true. */
3796 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3797 if ((comp == LT_EXPR && tst == -1)
3798 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3800 if (overflow_infinity_range_p (vr))
3801 *strict_overflow_p = true;
3802 return boolean_true_node;
3805 /* If VR is to the right of VAL, return false. */
3806 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3807 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3808 || (comp == LE_EXPR && tst == 1))
3810 if (overflow_infinity_range_p (vr))
3811 *strict_overflow_p = true;
3812 return boolean_false_node;
3815 /* Otherwise, we don't know. */
3816 return NULL_TREE;
3818 else if (comp == GT_EXPR || comp == GE_EXPR)
3820 int tst;
3822 /* If VR is to the right of VAL, return true. */
3823 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3824 if ((comp == GT_EXPR && tst == 1)
3825 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3827 if (overflow_infinity_range_p (vr))
3828 *strict_overflow_p = true;
3829 return boolean_true_node;
3832 /* If VR is to the left of VAL, return false. */
3833 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3834 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3835 || (comp == GE_EXPR && tst == -1))
3837 if (overflow_infinity_range_p (vr))
3838 *strict_overflow_p = true;
3839 return boolean_false_node;
3842 /* Otherwise, we don't know. */
3843 return NULL_TREE;
3846 gcc_unreachable ();
3850 /* Debugging dumps. */
3852 void dump_value_range (FILE *, value_range_t *);
3853 void debug_value_range (value_range_t *);
3854 void dump_all_value_ranges (FILE *);
3855 void debug_all_value_ranges (void);
3856 void dump_vr_equiv (FILE *, bitmap);
3857 void debug_vr_equiv (bitmap);
3860 /* Dump value range VR to FILE. */
3862 void
3863 dump_value_range (FILE *file, value_range_t *vr)
3865 if (vr == NULL)
3866 fprintf (file, "[]");
3867 else if (vr->type == VR_UNDEFINED)
3868 fprintf (file, "UNDEFINED");
3869 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3871 tree type = TREE_TYPE (vr->min);
3873 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3875 if (is_negative_overflow_infinity (vr->min))
3876 fprintf (file, "-INF(OVF)");
3877 else if (INTEGRAL_TYPE_P (type)
3878 && !TYPE_UNSIGNED (type)
3879 && vrp_val_is_min (vr->min))
3880 fprintf (file, "-INF");
3881 else
3882 print_generic_expr (file, vr->min, 0);
3884 fprintf (file, ", ");
3886 if (is_positive_overflow_infinity (vr->max))
3887 fprintf (file, "+INF(OVF)");
3888 else if (INTEGRAL_TYPE_P (type)
3889 && vrp_val_is_max (vr->max))
3890 fprintf (file, "+INF");
3891 else
3892 print_generic_expr (file, vr->max, 0);
3894 fprintf (file, "]");
3896 if (vr->equiv)
3898 bitmap_iterator bi;
3899 unsigned i, c = 0;
3901 fprintf (file, " EQUIVALENCES: { ");
3903 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3905 print_generic_expr (file, ssa_name (i), 0);
3906 fprintf (file, " ");
3907 c++;
3910 fprintf (file, "} (%u elements)", c);
3913 else if (vr->type == VR_VARYING)
3914 fprintf (file, "VARYING");
3915 else
3916 fprintf (file, "INVALID RANGE");
3920 /* Dump value range VR to stderr. */
3922 DEBUG_FUNCTION void
3923 debug_value_range (value_range_t *vr)
3925 dump_value_range (stderr, vr);
3926 fprintf (stderr, "\n");
3930 /* Dump value ranges of all SSA_NAMEs to FILE. */
3932 void
3933 dump_all_value_ranges (FILE *file)
3935 size_t i;
3937 for (i = 0; i < num_ssa_names; i++)
3939 if (vr_value[i])
3941 print_generic_expr (file, ssa_name (i), 0);
3942 fprintf (file, ": ");
3943 dump_value_range (file, vr_value[i]);
3944 fprintf (file, "\n");
3948 fprintf (file, "\n");
3952 /* Dump all value ranges to stderr. */
3954 DEBUG_FUNCTION void
3955 debug_all_value_ranges (void)
3957 dump_all_value_ranges (stderr);
3961 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3962 create a new SSA name N and return the assertion assignment
3963 'V = ASSERT_EXPR <V, V OP W>'. */
3965 static gimple
3966 build_assert_expr_for (tree cond, tree v)
3968 tree n;
3969 gimple assertion;
3971 gcc_assert (TREE_CODE (v) == SSA_NAME);
3972 n = duplicate_ssa_name (v, NULL);
3974 if (COMPARISON_CLASS_P (cond))
3976 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3977 assertion = gimple_build_assign (n, a);
3979 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3981 /* Given !V, build the assignment N = false. */
3982 tree op0 = TREE_OPERAND (cond, 0);
3983 gcc_assert (op0 == v);
3984 assertion = gimple_build_assign (n, boolean_false_node);
3986 else if (TREE_CODE (cond) == SSA_NAME)
3988 /* Given V, build the assignment N = true. */
3989 gcc_assert (v == cond);
3990 assertion = gimple_build_assign (n, boolean_true_node);
3992 else
3993 gcc_unreachable ();
3995 SSA_NAME_DEF_STMT (n) = assertion;
3997 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3998 operand of the ASSERT_EXPR. Register the new name and the old one
3999 in the replacement table so that we can fix the SSA web after
4000 adding all the ASSERT_EXPRs. */
4001 register_new_name_mapping (n, v);
4003 return assertion;
4007 /* Return false if EXPR is a predicate expression involving floating
4008 point values. */
4010 static inline bool
4011 fp_predicate (gimple stmt)
4013 GIMPLE_CHECK (stmt, GIMPLE_COND);
4015 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4019 /* If the range of values taken by OP can be inferred after STMT executes,
4020 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4021 describes the inferred range. Return true if a range could be
4022 inferred. */
4024 static bool
4025 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4027 *val_p = NULL_TREE;
4028 *comp_code_p = ERROR_MARK;
4030 /* Do not attempt to infer anything in names that flow through
4031 abnormal edges. */
4032 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4033 return false;
4035 /* Similarly, don't infer anything from statements that may throw
4036 exceptions. */
4037 if (stmt_could_throw_p (stmt))
4038 return false;
4040 /* If STMT is the last statement of a basic block with no
4041 successors, there is no point inferring anything about any of its
4042 operands. We would not be able to find a proper insertion point
4043 for the assertion, anyway. */
4044 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4045 return false;
4047 /* We can only assume that a pointer dereference will yield
4048 non-NULL if -fdelete-null-pointer-checks is enabled. */
4049 if (flag_delete_null_pointer_checks
4050 && POINTER_TYPE_P (TREE_TYPE (op))
4051 && gimple_code (stmt) != GIMPLE_ASM)
4053 unsigned num_uses, num_loads, num_stores;
4055 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4056 if (num_loads + num_stores > 0)
4058 *val_p = build_int_cst (TREE_TYPE (op), 0);
4059 *comp_code_p = NE_EXPR;
4060 return true;
4064 return false;
4068 void dump_asserts_for (FILE *, tree);
4069 void debug_asserts_for (tree);
4070 void dump_all_asserts (FILE *);
4071 void debug_all_asserts (void);
4073 /* Dump all the registered assertions for NAME to FILE. */
4075 void
4076 dump_asserts_for (FILE *file, tree name)
4078 assert_locus_t loc;
4080 fprintf (file, "Assertions to be inserted for ");
4081 print_generic_expr (file, name, 0);
4082 fprintf (file, "\n");
4084 loc = asserts_for[SSA_NAME_VERSION (name)];
4085 while (loc)
4087 fprintf (file, "\t");
4088 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4089 fprintf (file, "\n\tBB #%d", loc->bb->index);
4090 if (loc->e)
4092 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4093 loc->e->dest->index);
4094 dump_edge_info (file, loc->e, 0);
4096 fprintf (file, "\n\tPREDICATE: ");
4097 print_generic_expr (file, name, 0);
4098 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4099 print_generic_expr (file, loc->val, 0);
4100 fprintf (file, "\n\n");
4101 loc = loc->next;
4104 fprintf (file, "\n");
4108 /* Dump all the registered assertions for NAME to stderr. */
4110 DEBUG_FUNCTION void
4111 debug_asserts_for (tree name)
4113 dump_asserts_for (stderr, name);
4117 /* Dump all the registered assertions for all the names to FILE. */
4119 void
4120 dump_all_asserts (FILE *file)
4122 unsigned i;
4123 bitmap_iterator bi;
4125 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4126 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4127 dump_asserts_for (file, ssa_name (i));
4128 fprintf (file, "\n");
4132 /* Dump all the registered assertions for all the names to stderr. */
4134 DEBUG_FUNCTION void
4135 debug_all_asserts (void)
4137 dump_all_asserts (stderr);
4141 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4142 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4143 E->DEST, then register this location as a possible insertion point
4144 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4146 BB, E and SI provide the exact insertion point for the new
4147 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4148 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4149 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4150 must not be NULL. */
4152 static void
4153 register_new_assert_for (tree name, tree expr,
4154 enum tree_code comp_code,
4155 tree val,
4156 basic_block bb,
4157 edge e,
4158 gimple_stmt_iterator si)
4160 assert_locus_t n, loc, last_loc;
4161 basic_block dest_bb;
4163 gcc_checking_assert (bb == NULL || e == NULL);
4165 if (e == NULL)
4166 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4167 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4169 /* Never build an assert comparing against an integer constant with
4170 TREE_OVERFLOW set. This confuses our undefined overflow warning
4171 machinery. */
4172 if (TREE_CODE (val) == INTEGER_CST
4173 && TREE_OVERFLOW (val))
4174 val = build_int_cst_wide (TREE_TYPE (val),
4175 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4177 /* The new assertion A will be inserted at BB or E. We need to
4178 determine if the new location is dominated by a previously
4179 registered location for A. If we are doing an edge insertion,
4180 assume that A will be inserted at E->DEST. Note that this is not
4181 necessarily true.
4183 If E is a critical edge, it will be split. But even if E is
4184 split, the new block will dominate the same set of blocks that
4185 E->DEST dominates.
4187 The reverse, however, is not true, blocks dominated by E->DEST
4188 will not be dominated by the new block created to split E. So,
4189 if the insertion location is on a critical edge, we will not use
4190 the new location to move another assertion previously registered
4191 at a block dominated by E->DEST. */
4192 dest_bb = (bb) ? bb : e->dest;
4194 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4195 VAL at a block dominating DEST_BB, then we don't need to insert a new
4196 one. Similarly, if the same assertion already exists at a block
4197 dominated by DEST_BB and the new location is not on a critical
4198 edge, then update the existing location for the assertion (i.e.,
4199 move the assertion up in the dominance tree).
4201 Note, this is implemented as a simple linked list because there
4202 should not be more than a handful of assertions registered per
4203 name. If this becomes a performance problem, a table hashed by
4204 COMP_CODE and VAL could be implemented. */
4205 loc = asserts_for[SSA_NAME_VERSION (name)];
4206 last_loc = loc;
4207 while (loc)
4209 if (loc->comp_code == comp_code
4210 && (loc->val == val
4211 || operand_equal_p (loc->val, val, 0))
4212 && (loc->expr == expr
4213 || operand_equal_p (loc->expr, expr, 0)))
4215 /* If the assertion NAME COMP_CODE VAL has already been
4216 registered at a basic block that dominates DEST_BB, then
4217 we don't need to insert the same assertion again. Note
4218 that we don't check strict dominance here to avoid
4219 replicating the same assertion inside the same basic
4220 block more than once (e.g., when a pointer is
4221 dereferenced several times inside a block).
4223 An exception to this rule are edge insertions. If the
4224 new assertion is to be inserted on edge E, then it will
4225 dominate all the other insertions that we may want to
4226 insert in DEST_BB. So, if we are doing an edge
4227 insertion, don't do this dominance check. */
4228 if (e == NULL
4229 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4230 return;
4232 /* Otherwise, if E is not a critical edge and DEST_BB
4233 dominates the existing location for the assertion, move
4234 the assertion up in the dominance tree by updating its
4235 location information. */
4236 if ((e == NULL || !EDGE_CRITICAL_P (e))
4237 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4239 loc->bb = dest_bb;
4240 loc->e = e;
4241 loc->si = si;
4242 return;
4246 /* Update the last node of the list and move to the next one. */
4247 last_loc = loc;
4248 loc = loc->next;
4251 /* If we didn't find an assertion already registered for
4252 NAME COMP_CODE VAL, add a new one at the end of the list of
4253 assertions associated with NAME. */
4254 n = XNEW (struct assert_locus_d);
4255 n->bb = dest_bb;
4256 n->e = e;
4257 n->si = si;
4258 n->comp_code = comp_code;
4259 n->val = val;
4260 n->expr = expr;
4261 n->next = NULL;
4263 if (last_loc)
4264 last_loc->next = n;
4265 else
4266 asserts_for[SSA_NAME_VERSION (name)] = n;
4268 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4271 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4272 Extract a suitable test code and value and store them into *CODE_P and
4273 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4275 If no extraction was possible, return FALSE, otherwise return TRUE.
4277 If INVERT is true, then we invert the result stored into *CODE_P. */
4279 static bool
4280 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4281 tree cond_op0, tree cond_op1,
4282 bool invert, enum tree_code *code_p,
4283 tree *val_p)
4285 enum tree_code comp_code;
4286 tree val;
4288 /* Otherwise, we have a comparison of the form NAME COMP VAL
4289 or VAL COMP NAME. */
4290 if (name == cond_op1)
4292 /* If the predicate is of the form VAL COMP NAME, flip
4293 COMP around because we need to register NAME as the
4294 first operand in the predicate. */
4295 comp_code = swap_tree_comparison (cond_code);
4296 val = cond_op0;
4298 else
4300 /* The comparison is of the form NAME COMP VAL, so the
4301 comparison code remains unchanged. */
4302 comp_code = cond_code;
4303 val = cond_op1;
4306 /* Invert the comparison code as necessary. */
4307 if (invert)
4308 comp_code = invert_tree_comparison (comp_code, 0);
4310 /* VRP does not handle float types. */
4311 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4312 return false;
4314 /* Do not register always-false predicates.
4315 FIXME: this works around a limitation in fold() when dealing with
4316 enumerations. Given 'enum { N1, N2 } x;', fold will not
4317 fold 'if (x > N2)' to 'if (0)'. */
4318 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4319 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4321 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4322 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4324 if (comp_code == GT_EXPR
4325 && (!max
4326 || compare_values (val, max) == 0))
4327 return false;
4329 if (comp_code == LT_EXPR
4330 && (!min
4331 || compare_values (val, min) == 0))
4332 return false;
4334 *code_p = comp_code;
4335 *val_p = val;
4336 return true;
4339 /* Try to register an edge assertion for SSA name NAME on edge E for
4340 the condition COND contributing to the conditional jump pointed to by BSI.
4341 Invert the condition COND if INVERT is true.
4342 Return true if an assertion for NAME could be registered. */
4344 static bool
4345 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4346 enum tree_code cond_code,
4347 tree cond_op0, tree cond_op1, bool invert)
4349 tree val;
4350 enum tree_code comp_code;
4351 bool retval = false;
4353 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4354 cond_op0,
4355 cond_op1,
4356 invert, &comp_code, &val))
4357 return false;
4359 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4360 reachable from E. */
4361 if (live_on_edge (e, name)
4362 && !has_single_use (name))
4364 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4365 retval = true;
4368 /* In the case of NAME <= CST and NAME being defined as
4369 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4370 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4371 This catches range and anti-range tests. */
4372 if ((comp_code == LE_EXPR
4373 || comp_code == GT_EXPR)
4374 && TREE_CODE (val) == INTEGER_CST
4375 && TYPE_UNSIGNED (TREE_TYPE (val)))
4377 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4378 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4380 /* Extract CST2 from the (optional) addition. */
4381 if (is_gimple_assign (def_stmt)
4382 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4384 name2 = gimple_assign_rhs1 (def_stmt);
4385 cst2 = gimple_assign_rhs2 (def_stmt);
4386 if (TREE_CODE (name2) == SSA_NAME
4387 && TREE_CODE (cst2) == INTEGER_CST)
4388 def_stmt = SSA_NAME_DEF_STMT (name2);
4391 /* Extract NAME2 from the (optional) sign-changing cast. */
4392 if (gimple_assign_cast_p (def_stmt))
4394 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4395 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4396 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4397 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4398 name3 = gimple_assign_rhs1 (def_stmt);
4401 /* If name3 is used later, create an ASSERT_EXPR for it. */
4402 if (name3 != NULL_TREE
4403 && TREE_CODE (name3) == SSA_NAME
4404 && (cst2 == NULL_TREE
4405 || TREE_CODE (cst2) == INTEGER_CST)
4406 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4407 && live_on_edge (e, name3)
4408 && !has_single_use (name3))
4410 tree tmp;
4412 /* Build an expression for the range test. */
4413 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4414 if (cst2 != NULL_TREE)
4415 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4417 if (dump_file)
4419 fprintf (dump_file, "Adding assert for ");
4420 print_generic_expr (dump_file, name3, 0);
4421 fprintf (dump_file, " from ");
4422 print_generic_expr (dump_file, tmp, 0);
4423 fprintf (dump_file, "\n");
4426 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4428 retval = true;
4431 /* If name2 is used later, create an ASSERT_EXPR for it. */
4432 if (name2 != NULL_TREE
4433 && TREE_CODE (name2) == SSA_NAME
4434 && TREE_CODE (cst2) == INTEGER_CST
4435 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4436 && live_on_edge (e, name2)
4437 && !has_single_use (name2))
4439 tree tmp;
4441 /* Build an expression for the range test. */
4442 tmp = name2;
4443 if (TREE_TYPE (name) != TREE_TYPE (name2))
4444 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4445 if (cst2 != NULL_TREE)
4446 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4448 if (dump_file)
4450 fprintf (dump_file, "Adding assert for ");
4451 print_generic_expr (dump_file, name2, 0);
4452 fprintf (dump_file, " from ");
4453 print_generic_expr (dump_file, tmp, 0);
4454 fprintf (dump_file, "\n");
4457 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4459 retval = true;
4463 return retval;
4466 /* OP is an operand of a truth value expression which is known to have
4467 a particular value. Register any asserts for OP and for any
4468 operands in OP's defining statement.
4470 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4471 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4473 static bool
4474 register_edge_assert_for_1 (tree op, enum tree_code code,
4475 edge e, gimple_stmt_iterator bsi)
4477 bool retval = false;
4478 gimple op_def;
4479 tree val;
4480 enum tree_code rhs_code;
4482 /* We only care about SSA_NAMEs. */
4483 if (TREE_CODE (op) != SSA_NAME)
4484 return false;
4486 /* We know that OP will have a zero or nonzero value. If OP is used
4487 more than once go ahead and register an assert for OP.
4489 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4490 it will always be set for OP (because OP is used in a COND_EXPR in
4491 the subgraph). */
4492 if (!has_single_use (op))
4494 val = build_int_cst (TREE_TYPE (op), 0);
4495 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4496 retval = true;
4499 /* Now look at how OP is set. If it's set from a comparison,
4500 a truth operation or some bit operations, then we may be able
4501 to register information about the operands of that assignment. */
4502 op_def = SSA_NAME_DEF_STMT (op);
4503 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4504 return retval;
4506 rhs_code = gimple_assign_rhs_code (op_def);
4508 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4510 bool invert = (code == EQ_EXPR ? true : false);
4511 tree op0 = gimple_assign_rhs1 (op_def);
4512 tree op1 = gimple_assign_rhs2 (op_def);
4514 if (TREE_CODE (op0) == SSA_NAME)
4515 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4516 invert);
4517 if (TREE_CODE (op1) == SSA_NAME)
4518 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4519 invert);
4521 else if ((code == NE_EXPR
4522 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4523 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4524 || (code == EQ_EXPR
4525 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4526 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4528 /* Recurse on each operand. */
4529 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4530 code, e, bsi);
4531 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4532 code, e, bsi);
4534 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4536 /* Recurse, flipping CODE. */
4537 code = invert_tree_comparison (code, false);
4538 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4539 code, e, bsi);
4541 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4543 /* Recurse through the copy. */
4544 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4545 code, e, bsi);
4547 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4549 /* Recurse through the type conversion. */
4550 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4551 code, e, bsi);
4554 return retval;
4557 /* Try to register an edge assertion for SSA name NAME on edge E for
4558 the condition COND contributing to the conditional jump pointed to by SI.
4559 Return true if an assertion for NAME could be registered. */
4561 static bool
4562 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4563 enum tree_code cond_code, tree cond_op0,
4564 tree cond_op1)
4566 tree val;
4567 enum tree_code comp_code;
4568 bool retval = false;
4569 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4571 /* Do not attempt to infer anything in names that flow through
4572 abnormal edges. */
4573 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4574 return false;
4576 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4577 cond_op0, cond_op1,
4578 is_else_edge,
4579 &comp_code, &val))
4580 return false;
4582 /* Register ASSERT_EXPRs for name. */
4583 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4584 cond_op1, is_else_edge);
4587 /* If COND is effectively an equality test of an SSA_NAME against
4588 the value zero or one, then we may be able to assert values
4589 for SSA_NAMEs which flow into COND. */
4591 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4592 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4593 have nonzero value. */
4594 if (((comp_code == EQ_EXPR && integer_onep (val))
4595 || (comp_code == NE_EXPR && integer_zerop (val))))
4597 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4599 if (is_gimple_assign (def_stmt)
4600 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4601 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4603 tree op0 = gimple_assign_rhs1 (def_stmt);
4604 tree op1 = gimple_assign_rhs2 (def_stmt);
4605 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4606 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4610 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4611 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4612 have zero value. */
4613 if (((comp_code == EQ_EXPR && integer_zerop (val))
4614 || (comp_code == NE_EXPR && integer_onep (val))))
4616 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4618 if (is_gimple_assign (def_stmt)
4619 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4620 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4621 necessarily zero value. */
4622 || (comp_code == EQ_EXPR
4623 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4625 tree op0 = gimple_assign_rhs1 (def_stmt);
4626 tree op1 = gimple_assign_rhs2 (def_stmt);
4627 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4628 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4632 return retval;
4636 /* Determine whether the outgoing edges of BB should receive an
4637 ASSERT_EXPR for each of the operands of BB's LAST statement.
4638 The last statement of BB must be a COND_EXPR.
4640 If any of the sub-graphs rooted at BB have an interesting use of
4641 the predicate operands, an assert location node is added to the
4642 list of assertions for the corresponding operands. */
4644 static bool
4645 find_conditional_asserts (basic_block bb, gimple last)
4647 bool need_assert;
4648 gimple_stmt_iterator bsi;
4649 tree op;
4650 edge_iterator ei;
4651 edge e;
4652 ssa_op_iter iter;
4654 need_assert = false;
4655 bsi = gsi_for_stmt (last);
4657 /* Look for uses of the operands in each of the sub-graphs
4658 rooted at BB. We need to check each of the outgoing edges
4659 separately, so that we know what kind of ASSERT_EXPR to
4660 insert. */
4661 FOR_EACH_EDGE (e, ei, bb->succs)
4663 if (e->dest == bb)
4664 continue;
4666 /* Register the necessary assertions for each operand in the
4667 conditional predicate. */
4668 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4670 need_assert |= register_edge_assert_for (op, e, bsi,
4671 gimple_cond_code (last),
4672 gimple_cond_lhs (last),
4673 gimple_cond_rhs (last));
4677 return need_assert;
4680 struct case_info
4682 tree expr;
4683 basic_block bb;
4686 /* Compare two case labels sorting first by the destination bb index
4687 and then by the case value. */
4689 static int
4690 compare_case_labels (const void *p1, const void *p2)
4692 const struct case_info *ci1 = (const struct case_info *) p1;
4693 const struct case_info *ci2 = (const struct case_info *) p2;
4694 int idx1 = ci1->bb->index;
4695 int idx2 = ci2->bb->index;
4697 if (idx1 < idx2)
4698 return -1;
4699 else if (idx1 == idx2)
4701 /* Make sure the default label is first in a group. */
4702 if (!CASE_LOW (ci1->expr))
4703 return -1;
4704 else if (!CASE_LOW (ci2->expr))
4705 return 1;
4706 else
4707 return tree_int_cst_compare (CASE_LOW (ci1->expr),
4708 CASE_LOW (ci2->expr));
4710 else
4711 return 1;
4714 /* Determine whether the outgoing edges of BB should receive an
4715 ASSERT_EXPR for each of the operands of BB's LAST statement.
4716 The last statement of BB must be a SWITCH_EXPR.
4718 If any of the sub-graphs rooted at BB have an interesting use of
4719 the predicate operands, an assert location node is added to the
4720 list of assertions for the corresponding operands. */
4722 static bool
4723 find_switch_asserts (basic_block bb, gimple last)
4725 bool need_assert;
4726 gimple_stmt_iterator bsi;
4727 tree op;
4728 edge e;
4729 struct case_info *ci;
4730 size_t n = gimple_switch_num_labels (last);
4731 #if GCC_VERSION >= 4000
4732 unsigned int idx;
4733 #else
4734 /* Work around GCC 3.4 bug (PR 37086). */
4735 volatile unsigned int idx;
4736 #endif
4738 need_assert = false;
4739 bsi = gsi_for_stmt (last);
4740 op = gimple_switch_index (last);
4741 if (TREE_CODE (op) != SSA_NAME)
4742 return false;
4744 /* Build a vector of case labels sorted by destination label. */
4745 ci = XNEWVEC (struct case_info, n);
4746 for (idx = 0; idx < n; ++idx)
4748 ci[idx].expr = gimple_switch_label (last, idx);
4749 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
4751 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
4753 for (idx = 0; idx < n; ++idx)
4755 tree min, max;
4756 tree cl = ci[idx].expr;
4757 basic_block cbb = ci[idx].bb;
4759 min = CASE_LOW (cl);
4760 max = CASE_HIGH (cl);
4762 /* If there are multiple case labels with the same destination
4763 we need to combine them to a single value range for the edge. */
4764 if (idx + 1 < n && cbb == ci[idx + 1].bb)
4766 /* Skip labels until the last of the group. */
4767 do {
4768 ++idx;
4769 } while (idx < n && cbb == ci[idx].bb);
4770 --idx;
4772 /* Pick up the maximum of the case label range. */
4773 if (CASE_HIGH (ci[idx].expr))
4774 max = CASE_HIGH (ci[idx].expr);
4775 else
4776 max = CASE_LOW (ci[idx].expr);
4779 /* Nothing to do if the range includes the default label until we
4780 can register anti-ranges. */
4781 if (min == NULL_TREE)
4782 continue;
4784 /* Find the edge to register the assert expr on. */
4785 e = find_edge (bb, cbb);
4787 /* Register the necessary assertions for the operand in the
4788 SWITCH_EXPR. */
4789 need_assert |= register_edge_assert_for (op, e, bsi,
4790 max ? GE_EXPR : EQ_EXPR,
4792 fold_convert (TREE_TYPE (op),
4793 min));
4794 if (max)
4796 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4798 fold_convert (TREE_TYPE (op),
4799 max));
4803 XDELETEVEC (ci);
4804 return need_assert;
4808 /* Traverse all the statements in block BB looking for statements that
4809 may generate useful assertions for the SSA names in their operand.
4810 If a statement produces a useful assertion A for name N_i, then the
4811 list of assertions already generated for N_i is scanned to
4812 determine if A is actually needed.
4814 If N_i already had the assertion A at a location dominating the
4815 current location, then nothing needs to be done. Otherwise, the
4816 new location for A is recorded instead.
4818 1- For every statement S in BB, all the variables used by S are
4819 added to bitmap FOUND_IN_SUBGRAPH.
4821 2- If statement S uses an operand N in a way that exposes a known
4822 value range for N, then if N was not already generated by an
4823 ASSERT_EXPR, create a new assert location for N. For instance,
4824 if N is a pointer and the statement dereferences it, we can
4825 assume that N is not NULL.
4827 3- COND_EXPRs are a special case of #2. We can derive range
4828 information from the predicate but need to insert different
4829 ASSERT_EXPRs for each of the sub-graphs rooted at the
4830 conditional block. If the last statement of BB is a conditional
4831 expression of the form 'X op Y', then
4833 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4835 b) If the conditional is the only entry point to the sub-graph
4836 corresponding to the THEN_CLAUSE, recurse into it. On
4837 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4838 an ASSERT_EXPR is added for the corresponding variable.
4840 c) Repeat step (b) on the ELSE_CLAUSE.
4842 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4844 For instance,
4846 if (a == 9)
4847 b = a;
4848 else
4849 b = c + 1;
4851 In this case, an assertion on the THEN clause is useful to
4852 determine that 'a' is always 9 on that edge. However, an assertion
4853 on the ELSE clause would be unnecessary.
4855 4- If BB does not end in a conditional expression, then we recurse
4856 into BB's dominator children.
4858 At the end of the recursive traversal, every SSA name will have a
4859 list of locations where ASSERT_EXPRs should be added. When a new
4860 location for name N is found, it is registered by calling
4861 register_new_assert_for. That function keeps track of all the
4862 registered assertions to prevent adding unnecessary assertions.
4863 For instance, if a pointer P_4 is dereferenced more than once in a
4864 dominator tree, only the location dominating all the dereference of
4865 P_4 will receive an ASSERT_EXPR.
4867 If this function returns true, then it means that there are names
4868 for which we need to generate ASSERT_EXPRs. Those assertions are
4869 inserted by process_assert_insertions. */
4871 static bool
4872 find_assert_locations_1 (basic_block bb, sbitmap live)
4874 gimple_stmt_iterator si;
4875 gimple last;
4876 gimple phi;
4877 bool need_assert;
4879 need_assert = false;
4880 last = last_stmt (bb);
4882 /* If BB's last statement is a conditional statement involving integer
4883 operands, determine if we need to add ASSERT_EXPRs. */
4884 if (last
4885 && gimple_code (last) == GIMPLE_COND
4886 && !fp_predicate (last)
4887 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4888 need_assert |= find_conditional_asserts (bb, last);
4890 /* If BB's last statement is a switch statement involving integer
4891 operands, determine if we need to add ASSERT_EXPRs. */
4892 if (last
4893 && gimple_code (last) == GIMPLE_SWITCH
4894 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4895 need_assert |= find_switch_asserts (bb, last);
4897 /* Traverse all the statements in BB marking used names and looking
4898 for statements that may infer assertions for their used operands. */
4899 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4901 gimple stmt;
4902 tree op;
4903 ssa_op_iter i;
4905 stmt = gsi_stmt (si);
4907 if (is_gimple_debug (stmt))
4908 continue;
4910 /* See if we can derive an assertion for any of STMT's operands. */
4911 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4913 tree value;
4914 enum tree_code comp_code;
4916 /* Mark OP in our live bitmap. */
4917 SET_BIT (live, SSA_NAME_VERSION (op));
4919 /* If OP is used in such a way that we can infer a value
4920 range for it, and we don't find a previous assertion for
4921 it, create a new assertion location node for OP. */
4922 if (infer_value_range (stmt, op, &comp_code, &value))
4924 /* If we are able to infer a nonzero value range for OP,
4925 then walk backwards through the use-def chain to see if OP
4926 was set via a typecast.
4928 If so, then we can also infer a nonzero value range
4929 for the operand of the NOP_EXPR. */
4930 if (comp_code == NE_EXPR && integer_zerop (value))
4932 tree t = op;
4933 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4935 while (is_gimple_assign (def_stmt)
4936 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4937 && TREE_CODE
4938 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4939 && POINTER_TYPE_P
4940 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4942 t = gimple_assign_rhs1 (def_stmt);
4943 def_stmt = SSA_NAME_DEF_STMT (t);
4945 /* Note we want to register the assert for the
4946 operand of the NOP_EXPR after SI, not after the
4947 conversion. */
4948 if (! has_single_use (t))
4950 register_new_assert_for (t, t, comp_code, value,
4951 bb, NULL, si);
4952 need_assert = true;
4957 /* If OP is used only once, namely in this STMT, don't
4958 bother creating an ASSERT_EXPR for it. Such an
4959 ASSERT_EXPR would do nothing but increase compile time. */
4960 if (!has_single_use (op))
4962 register_new_assert_for (op, op, comp_code, value,
4963 bb, NULL, si);
4964 need_assert = true;
4970 /* Traverse all PHI nodes in BB marking used operands. */
4971 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4973 use_operand_p arg_p;
4974 ssa_op_iter i;
4975 phi = gsi_stmt (si);
4977 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4979 tree arg = USE_FROM_PTR (arg_p);
4980 if (TREE_CODE (arg) == SSA_NAME)
4981 SET_BIT (live, SSA_NAME_VERSION (arg));
4985 return need_assert;
4988 /* Do an RPO walk over the function computing SSA name liveness
4989 on-the-fly and deciding on assert expressions to insert.
4990 Returns true if there are assert expressions to be inserted. */
4992 static bool
4993 find_assert_locations (void)
4995 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4996 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4997 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4998 int rpo_cnt, i;
4999 bool need_asserts;
5001 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
5002 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5003 for (i = 0; i < rpo_cnt; ++i)
5004 bb_rpo[rpo[i]] = i;
5006 need_asserts = false;
5007 for (i = rpo_cnt-1; i >= 0; --i)
5009 basic_block bb = BASIC_BLOCK (rpo[i]);
5010 edge e;
5011 edge_iterator ei;
5013 if (!live[rpo[i]])
5015 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5016 sbitmap_zero (live[rpo[i]]);
5019 /* Process BB and update the live information with uses in
5020 this block. */
5021 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5023 /* Merge liveness into the predecessor blocks and free it. */
5024 if (!sbitmap_empty_p (live[rpo[i]]))
5026 int pred_rpo = i;
5027 FOR_EACH_EDGE (e, ei, bb->preds)
5029 int pred = e->src->index;
5030 if (e->flags & EDGE_DFS_BACK)
5031 continue;
5033 if (!live[pred])
5035 live[pred] = sbitmap_alloc (num_ssa_names);
5036 sbitmap_zero (live[pred]);
5038 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5040 if (bb_rpo[pred] < pred_rpo)
5041 pred_rpo = bb_rpo[pred];
5044 /* Record the RPO number of the last visited block that needs
5045 live information from this block. */
5046 last_rpo[rpo[i]] = pred_rpo;
5048 else
5050 sbitmap_free (live[rpo[i]]);
5051 live[rpo[i]] = NULL;
5054 /* We can free all successors live bitmaps if all their
5055 predecessors have been visited already. */
5056 FOR_EACH_EDGE (e, ei, bb->succs)
5057 if (last_rpo[e->dest->index] == i
5058 && live[e->dest->index])
5060 sbitmap_free (live[e->dest->index]);
5061 live[e->dest->index] = NULL;
5065 XDELETEVEC (rpo);
5066 XDELETEVEC (bb_rpo);
5067 XDELETEVEC (last_rpo);
5068 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5069 if (live[i])
5070 sbitmap_free (live[i]);
5071 XDELETEVEC (live);
5073 return need_asserts;
5076 /* Create an ASSERT_EXPR for NAME and insert it in the location
5077 indicated by LOC. Return true if we made any edge insertions. */
5079 static bool
5080 process_assert_insertions_for (tree name, assert_locus_t loc)
5082 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5083 gimple stmt;
5084 tree cond;
5085 gimple assert_stmt;
5086 edge_iterator ei;
5087 edge e;
5089 /* If we have X <=> X do not insert an assert expr for that. */
5090 if (loc->expr == loc->val)
5091 return false;
5093 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5094 assert_stmt = build_assert_expr_for (cond, name);
5095 if (loc->e)
5097 /* We have been asked to insert the assertion on an edge. This
5098 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5099 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5100 || (gimple_code (gsi_stmt (loc->si))
5101 == GIMPLE_SWITCH));
5103 gsi_insert_on_edge (loc->e, assert_stmt);
5104 return true;
5107 /* Otherwise, we can insert right after LOC->SI iff the
5108 statement must not be the last statement in the block. */
5109 stmt = gsi_stmt (loc->si);
5110 if (!stmt_ends_bb_p (stmt))
5112 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5113 return false;
5116 /* If STMT must be the last statement in BB, we can only insert new
5117 assertions on the non-abnormal edge out of BB. Note that since
5118 STMT is not control flow, there may only be one non-abnormal edge
5119 out of BB. */
5120 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5121 if (!(e->flags & EDGE_ABNORMAL))
5123 gsi_insert_on_edge (e, assert_stmt);
5124 return true;
5127 gcc_unreachable ();
5131 /* Process all the insertions registered for every name N_i registered
5132 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5133 found in ASSERTS_FOR[i]. */
5135 static void
5136 process_assert_insertions (void)
5138 unsigned i;
5139 bitmap_iterator bi;
5140 bool update_edges_p = false;
5141 int num_asserts = 0;
5143 if (dump_file && (dump_flags & TDF_DETAILS))
5144 dump_all_asserts (dump_file);
5146 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5148 assert_locus_t loc = asserts_for[i];
5149 gcc_assert (loc);
5151 while (loc)
5153 assert_locus_t next = loc->next;
5154 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5155 free (loc);
5156 loc = next;
5157 num_asserts++;
5161 if (update_edges_p)
5162 gsi_commit_edge_inserts ();
5164 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5165 num_asserts);
5169 /* Traverse the flowgraph looking for conditional jumps to insert range
5170 expressions. These range expressions are meant to provide information
5171 to optimizations that need to reason in terms of value ranges. They
5172 will not be expanded into RTL. For instance, given:
5174 x = ...
5175 y = ...
5176 if (x < y)
5177 y = x - 2;
5178 else
5179 x = y + 3;
5181 this pass will transform the code into:
5183 x = ...
5184 y = ...
5185 if (x < y)
5187 x = ASSERT_EXPR <x, x < y>
5188 y = x - 2
5190 else
5192 y = ASSERT_EXPR <y, x <= y>
5193 x = y + 3
5196 The idea is that once copy and constant propagation have run, other
5197 optimizations will be able to determine what ranges of values can 'x'
5198 take in different paths of the code, simply by checking the reaching
5199 definition of 'x'. */
5201 static void
5202 insert_range_assertions (void)
5204 need_assert_for = BITMAP_ALLOC (NULL);
5205 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5207 calculate_dominance_info (CDI_DOMINATORS);
5209 if (find_assert_locations ())
5211 process_assert_insertions ();
5212 update_ssa (TODO_update_ssa_no_phi);
5215 if (dump_file && (dump_flags & TDF_DETAILS))
5217 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5218 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5221 free (asserts_for);
5222 BITMAP_FREE (need_assert_for);
5225 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5226 and "struct" hacks. If VRP can determine that the
5227 array subscript is a constant, check if it is outside valid
5228 range. If the array subscript is a RANGE, warn if it is
5229 non-overlapping with valid range.
5230 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5232 static void
5233 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5235 value_range_t* vr = NULL;
5236 tree low_sub, up_sub;
5237 tree low_bound, up_bound, up_bound_p1;
5238 tree base;
5240 if (TREE_NO_WARNING (ref))
5241 return;
5243 low_sub = up_sub = TREE_OPERAND (ref, 1);
5244 up_bound = array_ref_up_bound (ref);
5246 /* Can not check flexible arrays. */
5247 if (!up_bound
5248 || TREE_CODE (up_bound) != INTEGER_CST)
5249 return;
5251 /* Accesses to trailing arrays via pointers may access storage
5252 beyond the types array bounds. */
5253 base = get_base_address (ref);
5254 if (base && TREE_CODE (base) == MEM_REF)
5256 tree cref, next = NULL_TREE;
5258 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5259 return;
5261 cref = TREE_OPERAND (ref, 0);
5262 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5263 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5264 next && TREE_CODE (next) != FIELD_DECL;
5265 next = DECL_CHAIN (next))
5268 /* If this is the last field in a struct type or a field in a
5269 union type do not warn. */
5270 if (!next)
5271 return;
5274 low_bound = array_ref_low_bound (ref);
5275 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5277 if (TREE_CODE (low_sub) == SSA_NAME)
5279 vr = get_value_range (low_sub);
5280 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5282 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5283 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5287 if (vr && vr->type == VR_ANTI_RANGE)
5289 if (TREE_CODE (up_sub) == INTEGER_CST
5290 && tree_int_cst_lt (up_bound, up_sub)
5291 && TREE_CODE (low_sub) == INTEGER_CST
5292 && tree_int_cst_lt (low_sub, low_bound))
5294 warning_at (location, OPT_Warray_bounds,
5295 "array subscript is outside array bounds");
5296 TREE_NO_WARNING (ref) = 1;
5299 else if (TREE_CODE (up_sub) == INTEGER_CST
5300 && (ignore_off_by_one
5301 ? (tree_int_cst_lt (up_bound, up_sub)
5302 && !tree_int_cst_equal (up_bound_p1, up_sub))
5303 : (tree_int_cst_lt (up_bound, up_sub)
5304 || tree_int_cst_equal (up_bound_p1, up_sub))))
5306 warning_at (location, OPT_Warray_bounds,
5307 "array subscript is above array bounds");
5308 TREE_NO_WARNING (ref) = 1;
5310 else if (TREE_CODE (low_sub) == INTEGER_CST
5311 && tree_int_cst_lt (low_sub, low_bound))
5313 warning_at (location, OPT_Warray_bounds,
5314 "array subscript is below array bounds");
5315 TREE_NO_WARNING (ref) = 1;
5319 /* Searches if the expr T, located at LOCATION computes
5320 address of an ARRAY_REF, and call check_array_ref on it. */
5322 static void
5323 search_for_addr_array (tree t, location_t location)
5325 while (TREE_CODE (t) == SSA_NAME)
5327 gimple g = SSA_NAME_DEF_STMT (t);
5329 if (gimple_code (g) != GIMPLE_ASSIGN)
5330 return;
5332 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5333 != GIMPLE_SINGLE_RHS)
5334 return;
5336 t = gimple_assign_rhs1 (g);
5340 /* We are only interested in addresses of ARRAY_REF's. */
5341 if (TREE_CODE (t) != ADDR_EXPR)
5342 return;
5344 /* Check each ARRAY_REFs in the reference chain. */
5347 if (TREE_CODE (t) == ARRAY_REF)
5348 check_array_ref (location, t, true /*ignore_off_by_one*/);
5350 t = TREE_OPERAND (t, 0);
5352 while (handled_component_p (t));
5354 if (TREE_CODE (t) == MEM_REF
5355 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5356 && !TREE_NO_WARNING (t))
5358 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5359 tree low_bound, up_bound, el_sz;
5360 double_int idx;
5361 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5362 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5363 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5364 return;
5366 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5367 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5368 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5369 if (!low_bound
5370 || TREE_CODE (low_bound) != INTEGER_CST
5371 || !up_bound
5372 || TREE_CODE (up_bound) != INTEGER_CST
5373 || !el_sz
5374 || TREE_CODE (el_sz) != INTEGER_CST)
5375 return;
5377 idx = mem_ref_offset (t);
5378 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5379 if (double_int_scmp (idx, double_int_zero) < 0)
5381 warning_at (location, OPT_Warray_bounds,
5382 "array subscript is below array bounds");
5383 TREE_NO_WARNING (t) = 1;
5385 else if (double_int_scmp (idx,
5386 double_int_add
5387 (double_int_add
5388 (tree_to_double_int (up_bound),
5389 double_int_neg
5390 (tree_to_double_int (low_bound))),
5391 double_int_one)) > 0)
5393 warning_at (location, OPT_Warray_bounds,
5394 "array subscript is above array bounds");
5395 TREE_NO_WARNING (t) = 1;
5400 /* walk_tree() callback that checks if *TP is
5401 an ARRAY_REF inside an ADDR_EXPR (in which an array
5402 subscript one outside the valid range is allowed). Call
5403 check_array_ref for each ARRAY_REF found. The location is
5404 passed in DATA. */
5406 static tree
5407 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5409 tree t = *tp;
5410 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5411 location_t location;
5413 if (EXPR_HAS_LOCATION (t))
5414 location = EXPR_LOCATION (t);
5415 else
5417 location_t *locp = (location_t *) wi->info;
5418 location = *locp;
5421 *walk_subtree = TRUE;
5423 if (TREE_CODE (t) == ARRAY_REF)
5424 check_array_ref (location, t, false /*ignore_off_by_one*/);
5426 if (TREE_CODE (t) == MEM_REF
5427 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5428 search_for_addr_array (TREE_OPERAND (t, 0), location);
5430 if (TREE_CODE (t) == ADDR_EXPR)
5431 *walk_subtree = FALSE;
5433 return NULL_TREE;
5436 /* Walk over all statements of all reachable BBs and call check_array_bounds
5437 on them. */
5439 static void
5440 check_all_array_refs (void)
5442 basic_block bb;
5443 gimple_stmt_iterator si;
5445 FOR_EACH_BB (bb)
5447 edge_iterator ei;
5448 edge e;
5449 bool executable = false;
5451 /* Skip blocks that were found to be unreachable. */
5452 FOR_EACH_EDGE (e, ei, bb->preds)
5453 executable |= !!(e->flags & EDGE_EXECUTABLE);
5454 if (!executable)
5455 continue;
5457 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5459 gimple stmt = gsi_stmt (si);
5460 struct walk_stmt_info wi;
5461 if (!gimple_has_location (stmt))
5462 continue;
5464 if (is_gimple_call (stmt))
5466 size_t i;
5467 size_t n = gimple_call_num_args (stmt);
5468 for (i = 0; i < n; i++)
5470 tree arg = gimple_call_arg (stmt, i);
5471 search_for_addr_array (arg, gimple_location (stmt));
5474 else
5476 memset (&wi, 0, sizeof (wi));
5477 wi.info = CONST_CAST (void *, (const void *)
5478 gimple_location_ptr (stmt));
5480 walk_gimple_op (gsi_stmt (si),
5481 check_array_bounds,
5482 &wi);
5488 /* Convert range assertion expressions into the implied copies and
5489 copy propagate away the copies. Doing the trivial copy propagation
5490 here avoids the need to run the full copy propagation pass after
5491 VRP.
5493 FIXME, this will eventually lead to copy propagation removing the
5494 names that had useful range information attached to them. For
5495 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5496 then N_i will have the range [3, +INF].
5498 However, by converting the assertion into the implied copy
5499 operation N_i = N_j, we will then copy-propagate N_j into the uses
5500 of N_i and lose the range information. We may want to hold on to
5501 ASSERT_EXPRs a little while longer as the ranges could be used in
5502 things like jump threading.
5504 The problem with keeping ASSERT_EXPRs around is that passes after
5505 VRP need to handle them appropriately.
5507 Another approach would be to make the range information a first
5508 class property of the SSA_NAME so that it can be queried from
5509 any pass. This is made somewhat more complex by the need for
5510 multiple ranges to be associated with one SSA_NAME. */
5512 static void
5513 remove_range_assertions (void)
5515 basic_block bb;
5516 gimple_stmt_iterator si;
5518 /* Note that the BSI iterator bump happens at the bottom of the
5519 loop and no bump is necessary if we're removing the statement
5520 referenced by the current BSI. */
5521 FOR_EACH_BB (bb)
5522 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5524 gimple stmt = gsi_stmt (si);
5525 gimple use_stmt;
5527 if (is_gimple_assign (stmt)
5528 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5530 tree rhs = gimple_assign_rhs1 (stmt);
5531 tree var;
5532 tree cond = fold (ASSERT_EXPR_COND (rhs));
5533 use_operand_p use_p;
5534 imm_use_iterator iter;
5536 gcc_assert (cond != boolean_false_node);
5538 /* Propagate the RHS into every use of the LHS. */
5539 var = ASSERT_EXPR_VAR (rhs);
5540 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5541 gimple_assign_lhs (stmt))
5542 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5544 SET_USE (use_p, var);
5545 gcc_assert (TREE_CODE (var) == SSA_NAME);
5548 /* And finally, remove the copy, it is not needed. */
5549 gsi_remove (&si, true);
5550 release_defs (stmt);
5552 else
5553 gsi_next (&si);
5558 /* Return true if STMT is interesting for VRP. */
5560 static bool
5561 stmt_interesting_for_vrp (gimple stmt)
5563 if (gimple_code (stmt) == GIMPLE_PHI
5564 && is_gimple_reg (gimple_phi_result (stmt))
5565 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5566 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5567 return true;
5568 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5570 tree lhs = gimple_get_lhs (stmt);
5572 /* In general, assignments with virtual operands are not useful
5573 for deriving ranges, with the obvious exception of calls to
5574 builtin functions. */
5575 if (lhs && TREE_CODE (lhs) == SSA_NAME
5576 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5577 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5578 && ((is_gimple_call (stmt)
5579 && gimple_call_fndecl (stmt) != NULL_TREE
5580 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5581 || !gimple_vuse (stmt)))
5582 return true;
5584 else if (gimple_code (stmt) == GIMPLE_COND
5585 || gimple_code (stmt) == GIMPLE_SWITCH)
5586 return true;
5588 return false;
5592 /* Initialize local data structures for VRP. */
5594 static void
5595 vrp_initialize (void)
5597 basic_block bb;
5599 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5600 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5602 FOR_EACH_BB (bb)
5604 gimple_stmt_iterator si;
5606 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5608 gimple phi = gsi_stmt (si);
5609 if (!stmt_interesting_for_vrp (phi))
5611 tree lhs = PHI_RESULT (phi);
5612 set_value_range_to_varying (get_value_range (lhs));
5613 prop_set_simulate_again (phi, false);
5615 else
5616 prop_set_simulate_again (phi, true);
5619 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5621 gimple stmt = gsi_stmt (si);
5623 /* If the statement is a control insn, then we do not
5624 want to avoid simulating the statement once. Failure
5625 to do so means that those edges will never get added. */
5626 if (stmt_ends_bb_p (stmt))
5627 prop_set_simulate_again (stmt, true);
5628 else if (!stmt_interesting_for_vrp (stmt))
5630 ssa_op_iter i;
5631 tree def;
5632 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5633 set_value_range_to_varying (get_value_range (def));
5634 prop_set_simulate_again (stmt, false);
5636 else
5637 prop_set_simulate_again (stmt, true);
5642 /* Return the singleton value-range for NAME or NAME. */
5644 static inline tree
5645 vrp_valueize (tree name)
5647 if (TREE_CODE (name) == SSA_NAME)
5649 value_range_t *vr = get_value_range (name);
5650 if (vr->type == VR_RANGE
5651 && (vr->min == vr->max
5652 || operand_equal_p (vr->min, vr->max, 0)))
5653 return vr->min;
5655 return name;
5658 /* Visit assignment STMT. If it produces an interesting range, record
5659 the SSA name in *OUTPUT_P. */
5661 static enum ssa_prop_result
5662 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5664 tree def, lhs;
5665 ssa_op_iter iter;
5666 enum gimple_code code = gimple_code (stmt);
5667 lhs = gimple_get_lhs (stmt);
5669 /* We only keep track of ranges in integral and pointer types. */
5670 if (TREE_CODE (lhs) == SSA_NAME
5671 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5672 /* It is valid to have NULL MIN/MAX values on a type. See
5673 build_range_type. */
5674 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5675 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5676 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5678 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5680 /* Try folding the statement to a constant first. */
5681 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5682 if (tem && !is_overflow_infinity (tem))
5683 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5684 /* Then dispatch to value-range extracting functions. */
5685 else if (code == GIMPLE_CALL)
5686 extract_range_basic (&new_vr, stmt);
5687 else
5688 extract_range_from_assignment (&new_vr, stmt);
5690 if (update_value_range (lhs, &new_vr))
5692 *output_p = lhs;
5694 if (dump_file && (dump_flags & TDF_DETAILS))
5696 fprintf (dump_file, "Found new range for ");
5697 print_generic_expr (dump_file, lhs, 0);
5698 fprintf (dump_file, ": ");
5699 dump_value_range (dump_file, &new_vr);
5700 fprintf (dump_file, "\n\n");
5703 if (new_vr.type == VR_VARYING)
5704 return SSA_PROP_VARYING;
5706 return SSA_PROP_INTERESTING;
5709 return SSA_PROP_NOT_INTERESTING;
5712 /* Every other statement produces no useful ranges. */
5713 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5714 set_value_range_to_varying (get_value_range (def));
5716 return SSA_PROP_VARYING;
5719 /* Helper that gets the value range of the SSA_NAME with version I
5720 or a symbolic range containing the SSA_NAME only if the value range
5721 is varying or undefined. */
5723 static inline value_range_t
5724 get_vr_for_comparison (int i)
5726 value_range_t vr = *(vr_value[i]);
5728 /* If name N_i does not have a valid range, use N_i as its own
5729 range. This allows us to compare against names that may
5730 have N_i in their ranges. */
5731 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5733 vr.type = VR_RANGE;
5734 vr.min = ssa_name (i);
5735 vr.max = ssa_name (i);
5738 return vr;
5741 /* Compare all the value ranges for names equivalent to VAR with VAL
5742 using comparison code COMP. Return the same value returned by
5743 compare_range_with_value, including the setting of
5744 *STRICT_OVERFLOW_P. */
5746 static tree
5747 compare_name_with_value (enum tree_code comp, tree var, tree val,
5748 bool *strict_overflow_p)
5750 bitmap_iterator bi;
5751 unsigned i;
5752 bitmap e;
5753 tree retval, t;
5754 int used_strict_overflow;
5755 bool sop;
5756 value_range_t equiv_vr;
5758 /* Get the set of equivalences for VAR. */
5759 e = get_value_range (var)->equiv;
5761 /* Start at -1. Set it to 0 if we do a comparison without relying
5762 on overflow, or 1 if all comparisons rely on overflow. */
5763 used_strict_overflow = -1;
5765 /* Compare vars' value range with val. */
5766 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5767 sop = false;
5768 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5769 if (retval)
5770 used_strict_overflow = sop ? 1 : 0;
5772 /* If the equiv set is empty we have done all work we need to do. */
5773 if (e == NULL)
5775 if (retval
5776 && used_strict_overflow > 0)
5777 *strict_overflow_p = true;
5778 return retval;
5781 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5783 equiv_vr = get_vr_for_comparison (i);
5784 sop = false;
5785 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5786 if (t)
5788 /* If we get different answers from different members
5789 of the equivalence set this check must be in a dead
5790 code region. Folding it to a trap representation
5791 would be correct here. For now just return don't-know. */
5792 if (retval != NULL
5793 && t != retval)
5795 retval = NULL_TREE;
5796 break;
5798 retval = t;
5800 if (!sop)
5801 used_strict_overflow = 0;
5802 else if (used_strict_overflow < 0)
5803 used_strict_overflow = 1;
5807 if (retval
5808 && used_strict_overflow > 0)
5809 *strict_overflow_p = true;
5811 return retval;
5815 /* Given a comparison code COMP and names N1 and N2, compare all the
5816 ranges equivalent to N1 against all the ranges equivalent to N2
5817 to determine the value of N1 COMP N2. Return the same value
5818 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5819 whether we relied on an overflow infinity in the comparison. */
5822 static tree
5823 compare_names (enum tree_code comp, tree n1, tree n2,
5824 bool *strict_overflow_p)
5826 tree t, retval;
5827 bitmap e1, e2;
5828 bitmap_iterator bi1, bi2;
5829 unsigned i1, i2;
5830 int used_strict_overflow;
5831 static bitmap_obstack *s_obstack = NULL;
5832 static bitmap s_e1 = NULL, s_e2 = NULL;
5834 /* Compare the ranges of every name equivalent to N1 against the
5835 ranges of every name equivalent to N2. */
5836 e1 = get_value_range (n1)->equiv;
5837 e2 = get_value_range (n2)->equiv;
5839 /* Use the fake bitmaps if e1 or e2 are not available. */
5840 if (s_obstack == NULL)
5842 s_obstack = XNEW (bitmap_obstack);
5843 bitmap_obstack_initialize (s_obstack);
5844 s_e1 = BITMAP_ALLOC (s_obstack);
5845 s_e2 = BITMAP_ALLOC (s_obstack);
5847 if (e1 == NULL)
5848 e1 = s_e1;
5849 if (e2 == NULL)
5850 e2 = s_e2;
5852 /* Add N1 and N2 to their own set of equivalences to avoid
5853 duplicating the body of the loop just to check N1 and N2
5854 ranges. */
5855 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5856 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5858 /* If the equivalence sets have a common intersection, then the two
5859 names can be compared without checking their ranges. */
5860 if (bitmap_intersect_p (e1, e2))
5862 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5863 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5865 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5866 ? boolean_true_node
5867 : boolean_false_node;
5870 /* Start at -1. Set it to 0 if we do a comparison without relying
5871 on overflow, or 1 if all comparisons rely on overflow. */
5872 used_strict_overflow = -1;
5874 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5875 N2 to their own set of equivalences to avoid duplicating the body
5876 of the loop just to check N1 and N2 ranges. */
5877 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5879 value_range_t vr1 = get_vr_for_comparison (i1);
5881 t = retval = NULL_TREE;
5882 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5884 bool sop = false;
5886 value_range_t vr2 = get_vr_for_comparison (i2);
5888 t = compare_ranges (comp, &vr1, &vr2, &sop);
5889 if (t)
5891 /* If we get different answers from different members
5892 of the equivalence set this check must be in a dead
5893 code region. Folding it to a trap representation
5894 would be correct here. For now just return don't-know. */
5895 if (retval != NULL
5896 && t != retval)
5898 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5899 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5900 return NULL_TREE;
5902 retval = t;
5904 if (!sop)
5905 used_strict_overflow = 0;
5906 else if (used_strict_overflow < 0)
5907 used_strict_overflow = 1;
5911 if (retval)
5913 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5914 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5915 if (used_strict_overflow > 0)
5916 *strict_overflow_p = true;
5917 return retval;
5921 /* None of the equivalent ranges are useful in computing this
5922 comparison. */
5923 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5924 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5925 return NULL_TREE;
5928 /* Helper function for vrp_evaluate_conditional_warnv. */
5930 static tree
5931 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5932 tree op0, tree op1,
5933 bool * strict_overflow_p)
5935 value_range_t *vr0, *vr1;
5937 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5938 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5940 if (vr0 && vr1)
5941 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5942 else if (vr0 && vr1 == NULL)
5943 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5944 else if (vr0 == NULL && vr1)
5945 return (compare_range_with_value
5946 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5947 return NULL;
5950 /* Helper function for vrp_evaluate_conditional_warnv. */
5952 static tree
5953 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5954 tree op1, bool use_equiv_p,
5955 bool *strict_overflow_p, bool *only_ranges)
5957 tree ret;
5958 if (only_ranges)
5959 *only_ranges = true;
5961 /* We only deal with integral and pointer types. */
5962 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5963 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5964 return NULL_TREE;
5966 if (use_equiv_p)
5968 if (only_ranges
5969 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5970 (code, op0, op1, strict_overflow_p)))
5971 return ret;
5972 *only_ranges = false;
5973 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5974 return compare_names (code, op0, op1, strict_overflow_p);
5975 else if (TREE_CODE (op0) == SSA_NAME)
5976 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5977 else if (TREE_CODE (op1) == SSA_NAME)
5978 return (compare_name_with_value
5979 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5981 else
5982 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5983 strict_overflow_p);
5984 return NULL_TREE;
5987 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5988 information. Return NULL if the conditional can not be evaluated.
5989 The ranges of all the names equivalent with the operands in COND
5990 will be used when trying to compute the value. If the result is
5991 based on undefined signed overflow, issue a warning if
5992 appropriate. */
5994 static tree
5995 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5997 bool sop;
5998 tree ret;
5999 bool only_ranges;
6001 /* Some passes and foldings leak constants with overflow flag set
6002 into the IL. Avoid doing wrong things with these and bail out. */
6003 if ((TREE_CODE (op0) == INTEGER_CST
6004 && TREE_OVERFLOW (op0))
6005 || (TREE_CODE (op1) == INTEGER_CST
6006 && TREE_OVERFLOW (op1)))
6007 return NULL_TREE;
6009 sop = false;
6010 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6011 &only_ranges);
6013 if (ret && sop)
6015 enum warn_strict_overflow_code wc;
6016 const char* warnmsg;
6018 if (is_gimple_min_invariant (ret))
6020 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6021 warnmsg = G_("assuming signed overflow does not occur when "
6022 "simplifying conditional to constant");
6024 else
6026 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6027 warnmsg = G_("assuming signed overflow does not occur when "
6028 "simplifying conditional");
6031 if (issue_strict_overflow_warning (wc))
6033 location_t location;
6035 if (!gimple_has_location (stmt))
6036 location = input_location;
6037 else
6038 location = gimple_location (stmt);
6039 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6043 if (warn_type_limits
6044 && ret && only_ranges
6045 && TREE_CODE_CLASS (code) == tcc_comparison
6046 && TREE_CODE (op0) == SSA_NAME)
6048 /* If the comparison is being folded and the operand on the LHS
6049 is being compared against a constant value that is outside of
6050 the natural range of OP0's type, then the predicate will
6051 always fold regardless of the value of OP0. If -Wtype-limits
6052 was specified, emit a warning. */
6053 tree type = TREE_TYPE (op0);
6054 value_range_t *vr0 = get_value_range (op0);
6056 if (vr0->type != VR_VARYING
6057 && INTEGRAL_TYPE_P (type)
6058 && vrp_val_is_min (vr0->min)
6059 && vrp_val_is_max (vr0->max)
6060 && is_gimple_min_invariant (op1))
6062 location_t location;
6064 if (!gimple_has_location (stmt))
6065 location = input_location;
6066 else
6067 location = gimple_location (stmt);
6069 warning_at (location, OPT_Wtype_limits,
6070 integer_zerop (ret)
6071 ? G_("comparison always false "
6072 "due to limited range of data type")
6073 : G_("comparison always true "
6074 "due to limited range of data type"));
6078 return ret;
6082 /* Visit conditional statement STMT. If we can determine which edge
6083 will be taken out of STMT's basic block, record it in
6084 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6085 SSA_PROP_VARYING. */
6087 static enum ssa_prop_result
6088 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6090 tree val;
6091 bool sop;
6093 *taken_edge_p = NULL;
6095 if (dump_file && (dump_flags & TDF_DETAILS))
6097 tree use;
6098 ssa_op_iter i;
6100 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6101 print_gimple_stmt (dump_file, stmt, 0, 0);
6102 fprintf (dump_file, "\nWith known ranges\n");
6104 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6106 fprintf (dump_file, "\t");
6107 print_generic_expr (dump_file, use, 0);
6108 fprintf (dump_file, ": ");
6109 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6112 fprintf (dump_file, "\n");
6115 /* Compute the value of the predicate COND by checking the known
6116 ranges of each of its operands.
6118 Note that we cannot evaluate all the equivalent ranges here
6119 because those ranges may not yet be final and with the current
6120 propagation strategy, we cannot determine when the value ranges
6121 of the names in the equivalence set have changed.
6123 For instance, given the following code fragment
6125 i_5 = PHI <8, i_13>
6127 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6128 if (i_14 == 1)
6131 Assume that on the first visit to i_14, i_5 has the temporary
6132 range [8, 8] because the second argument to the PHI function is
6133 not yet executable. We derive the range ~[0, 0] for i_14 and the
6134 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6135 the first time, since i_14 is equivalent to the range [8, 8], we
6136 determine that the predicate is always false.
6138 On the next round of propagation, i_13 is determined to be
6139 VARYING, which causes i_5 to drop down to VARYING. So, another
6140 visit to i_14 is scheduled. In this second visit, we compute the
6141 exact same range and equivalence set for i_14, namely ~[0, 0] and
6142 { i_5 }. But we did not have the previous range for i_5
6143 registered, so vrp_visit_assignment thinks that the range for
6144 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6145 is not visited again, which stops propagation from visiting
6146 statements in the THEN clause of that if().
6148 To properly fix this we would need to keep the previous range
6149 value for the names in the equivalence set. This way we would've
6150 discovered that from one visit to the other i_5 changed from
6151 range [8, 8] to VR_VARYING.
6153 However, fixing this apparent limitation may not be worth the
6154 additional checking. Testing on several code bases (GCC, DLV,
6155 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6156 4 more predicates folded in SPEC. */
6157 sop = false;
6159 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6160 gimple_cond_lhs (stmt),
6161 gimple_cond_rhs (stmt),
6162 false, &sop, NULL);
6163 if (val)
6165 if (!sop)
6166 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6167 else
6169 if (dump_file && (dump_flags & TDF_DETAILS))
6170 fprintf (dump_file,
6171 "\nIgnoring predicate evaluation because "
6172 "it assumes that signed overflow is undefined");
6173 val = NULL_TREE;
6177 if (dump_file && (dump_flags & TDF_DETAILS))
6179 fprintf (dump_file, "\nPredicate evaluates to: ");
6180 if (val == NULL_TREE)
6181 fprintf (dump_file, "DON'T KNOW\n");
6182 else
6183 print_generic_stmt (dump_file, val, 0);
6186 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6189 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6190 that includes the value VAL. The search is restricted to the range
6191 [START_IDX, n - 1] where n is the size of VEC.
6193 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6194 returned.
6196 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6197 it is placed in IDX and false is returned.
6199 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6200 returned. */
6202 static bool
6203 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6205 size_t n = gimple_switch_num_labels (stmt);
6206 size_t low, high;
6208 /* Find case label for minimum of the value range or the next one.
6209 At each iteration we are searching in [low, high - 1]. */
6211 for (low = start_idx, high = n; high != low; )
6213 tree t;
6214 int cmp;
6215 /* Note that i != high, so we never ask for n. */
6216 size_t i = (high + low) / 2;
6217 t = gimple_switch_label (stmt, i);
6219 /* Cache the result of comparing CASE_LOW and val. */
6220 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6222 if (cmp == 0)
6224 /* Ranges cannot be empty. */
6225 *idx = i;
6226 return true;
6228 else if (cmp > 0)
6229 high = i;
6230 else
6232 low = i + 1;
6233 if (CASE_HIGH (t) != NULL
6234 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6236 *idx = i;
6237 return true;
6242 *idx = high;
6243 return false;
6246 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6247 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6248 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6249 then MAX_IDX < MIN_IDX.
6250 Returns true if the default label is not needed. */
6252 static bool
6253 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6254 size_t *max_idx)
6256 size_t i, j;
6257 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6258 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6260 if (i == j
6261 && min_take_default
6262 && max_take_default)
6264 /* Only the default case label reached.
6265 Return an empty range. */
6266 *min_idx = 1;
6267 *max_idx = 0;
6268 return false;
6270 else
6272 bool take_default = min_take_default || max_take_default;
6273 tree low, high;
6274 size_t k;
6276 if (max_take_default)
6277 j--;
6279 /* If the case label range is continuous, we do not need
6280 the default case label. Verify that. */
6281 high = CASE_LOW (gimple_switch_label (stmt, i));
6282 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6283 high = CASE_HIGH (gimple_switch_label (stmt, i));
6284 for (k = i + 1; k <= j; ++k)
6286 low = CASE_LOW (gimple_switch_label (stmt, k));
6287 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6289 take_default = true;
6290 break;
6292 high = low;
6293 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6294 high = CASE_HIGH (gimple_switch_label (stmt, k));
6297 *min_idx = i;
6298 *max_idx = j;
6299 return !take_default;
6303 /* Visit switch statement STMT. If we can determine which edge
6304 will be taken out of STMT's basic block, record it in
6305 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6306 SSA_PROP_VARYING. */
6308 static enum ssa_prop_result
6309 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6311 tree op, val;
6312 value_range_t *vr;
6313 size_t i = 0, j = 0;
6314 bool take_default;
6316 *taken_edge_p = NULL;
6317 op = gimple_switch_index (stmt);
6318 if (TREE_CODE (op) != SSA_NAME)
6319 return SSA_PROP_VARYING;
6321 vr = get_value_range (op);
6322 if (dump_file && (dump_flags & TDF_DETAILS))
6324 fprintf (dump_file, "\nVisiting switch expression with operand ");
6325 print_generic_expr (dump_file, op, 0);
6326 fprintf (dump_file, " with known range ");
6327 dump_value_range (dump_file, vr);
6328 fprintf (dump_file, "\n");
6331 if (vr->type != VR_RANGE
6332 || symbolic_range_p (vr))
6333 return SSA_PROP_VARYING;
6335 /* Find the single edge that is taken from the switch expression. */
6336 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6338 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6339 label */
6340 if (j < i)
6342 gcc_assert (take_default);
6343 val = gimple_switch_default_label (stmt);
6345 else
6347 /* Check if labels with index i to j and maybe the default label
6348 are all reaching the same label. */
6350 val = gimple_switch_label (stmt, i);
6351 if (take_default
6352 && CASE_LABEL (gimple_switch_default_label (stmt))
6353 != CASE_LABEL (val))
6355 if (dump_file && (dump_flags & TDF_DETAILS))
6356 fprintf (dump_file, " not a single destination for this "
6357 "range\n");
6358 return SSA_PROP_VARYING;
6360 for (++i; i <= j; ++i)
6362 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6364 if (dump_file && (dump_flags & TDF_DETAILS))
6365 fprintf (dump_file, " not a single destination for this "
6366 "range\n");
6367 return SSA_PROP_VARYING;
6372 *taken_edge_p = find_edge (gimple_bb (stmt),
6373 label_to_block (CASE_LABEL (val)));
6375 if (dump_file && (dump_flags & TDF_DETAILS))
6377 fprintf (dump_file, " will take edge to ");
6378 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6381 return SSA_PROP_INTERESTING;
6385 /* Evaluate statement STMT. If the statement produces a useful range,
6386 return SSA_PROP_INTERESTING and record the SSA name with the
6387 interesting range into *OUTPUT_P.
6389 If STMT is a conditional branch and we can determine its truth
6390 value, the taken edge is recorded in *TAKEN_EDGE_P.
6392 If STMT produces a varying value, return SSA_PROP_VARYING. */
6394 static enum ssa_prop_result
6395 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6397 tree def;
6398 ssa_op_iter iter;
6400 if (dump_file && (dump_flags & TDF_DETAILS))
6402 fprintf (dump_file, "\nVisiting statement:\n");
6403 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6404 fprintf (dump_file, "\n");
6407 if (!stmt_interesting_for_vrp (stmt))
6408 gcc_assert (stmt_ends_bb_p (stmt));
6409 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6411 /* In general, assignments with virtual operands are not useful
6412 for deriving ranges, with the obvious exception of calls to
6413 builtin functions. */
6414 if ((is_gimple_call (stmt)
6415 && gimple_call_fndecl (stmt) != NULL_TREE
6416 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6417 || !gimple_vuse (stmt))
6418 return vrp_visit_assignment_or_call (stmt, output_p);
6420 else if (gimple_code (stmt) == GIMPLE_COND)
6421 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6422 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6423 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6425 /* All other statements produce nothing of interest for VRP, so mark
6426 their outputs varying and prevent further simulation. */
6427 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6428 set_value_range_to_varying (get_value_range (def));
6430 return SSA_PROP_VARYING;
6434 /* Meet operation for value ranges. Given two value ranges VR0 and
6435 VR1, store in VR0 a range that contains both VR0 and VR1. This
6436 may not be the smallest possible such range. */
6438 static void
6439 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6441 if (vr0->type == VR_UNDEFINED)
6443 copy_value_range (vr0, vr1);
6444 return;
6447 if (vr1->type == VR_UNDEFINED)
6449 /* Nothing to do. VR0 already has the resulting range. */
6450 return;
6453 if (vr0->type == VR_VARYING)
6455 /* Nothing to do. VR0 already has the resulting range. */
6456 return;
6459 if (vr1->type == VR_VARYING)
6461 set_value_range_to_varying (vr0);
6462 return;
6465 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6467 int cmp;
6468 tree min, max;
6470 /* Compute the convex hull of the ranges. The lower limit of
6471 the new range is the minimum of the two ranges. If they
6472 cannot be compared, then give up. */
6473 cmp = compare_values (vr0->min, vr1->min);
6474 if (cmp == 0 || cmp == 1)
6475 min = vr1->min;
6476 else if (cmp == -1)
6477 min = vr0->min;
6478 else
6479 goto give_up;
6481 /* Similarly, the upper limit of the new range is the maximum
6482 of the two ranges. If they cannot be compared, then
6483 give up. */
6484 cmp = compare_values (vr0->max, vr1->max);
6485 if (cmp == 0 || cmp == -1)
6486 max = vr1->max;
6487 else if (cmp == 1)
6488 max = vr0->max;
6489 else
6490 goto give_up;
6492 /* Check for useless ranges. */
6493 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6494 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6495 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6496 goto give_up;
6498 /* The resulting set of equivalences is the intersection of
6499 the two sets. */
6500 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6501 bitmap_and_into (vr0->equiv, vr1->equiv);
6502 else if (vr0->equiv && !vr1->equiv)
6503 bitmap_clear (vr0->equiv);
6505 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6507 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6509 /* Two anti-ranges meet only if their complements intersect.
6510 Only handle the case of identical ranges. */
6511 if (compare_values (vr0->min, vr1->min) == 0
6512 && compare_values (vr0->max, vr1->max) == 0
6513 && compare_values (vr0->min, vr0->max) == 0)
6515 /* The resulting set of equivalences is the intersection of
6516 the two sets. */
6517 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6518 bitmap_and_into (vr0->equiv, vr1->equiv);
6519 else if (vr0->equiv && !vr1->equiv)
6520 bitmap_clear (vr0->equiv);
6522 else
6523 goto give_up;
6525 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6527 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6528 only handle the case where the ranges have an empty intersection.
6529 The result of the meet operation is the anti-range. */
6530 if (!symbolic_range_p (vr0)
6531 && !symbolic_range_p (vr1)
6532 && !value_ranges_intersect_p (vr0, vr1))
6534 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6535 set. We need to compute the intersection of the two
6536 equivalence sets. */
6537 if (vr1->type == VR_ANTI_RANGE)
6538 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6540 /* The resulting set of equivalences is the intersection of
6541 the two sets. */
6542 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6543 bitmap_and_into (vr0->equiv, vr1->equiv);
6544 else if (vr0->equiv && !vr1->equiv)
6545 bitmap_clear (vr0->equiv);
6547 else
6548 goto give_up;
6550 else
6551 gcc_unreachable ();
6553 return;
6555 give_up:
6556 /* Failed to find an efficient meet. Before giving up and setting
6557 the result to VARYING, see if we can at least derive a useful
6558 anti-range. FIXME, all this nonsense about distinguishing
6559 anti-ranges from ranges is necessary because of the odd
6560 semantics of range_includes_zero_p and friends. */
6561 if (!symbolic_range_p (vr0)
6562 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6563 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6564 && !symbolic_range_p (vr1)
6565 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6566 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6568 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6570 /* Since this meet operation did not result from the meeting of
6571 two equivalent names, VR0 cannot have any equivalences. */
6572 if (vr0->equiv)
6573 bitmap_clear (vr0->equiv);
6575 else
6576 set_value_range_to_varying (vr0);
6580 /* Visit all arguments for PHI node PHI that flow through executable
6581 edges. If a valid value range can be derived from all the incoming
6582 value ranges, set a new range for the LHS of PHI. */
6584 static enum ssa_prop_result
6585 vrp_visit_phi_node (gimple phi)
6587 size_t i;
6588 tree lhs = PHI_RESULT (phi);
6589 value_range_t *lhs_vr = get_value_range (lhs);
6590 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6591 int edges, old_edges;
6592 struct loop *l;
6594 if (dump_file && (dump_flags & TDF_DETAILS))
6596 fprintf (dump_file, "\nVisiting PHI node: ");
6597 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6600 edges = 0;
6601 for (i = 0; i < gimple_phi_num_args (phi); i++)
6603 edge e = gimple_phi_arg_edge (phi, i);
6605 if (dump_file && (dump_flags & TDF_DETAILS))
6607 fprintf (dump_file,
6608 "\n Argument #%d (%d -> %d %sexecutable)\n",
6609 (int) i, e->src->index, e->dest->index,
6610 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6613 if (e->flags & EDGE_EXECUTABLE)
6615 tree arg = PHI_ARG_DEF (phi, i);
6616 value_range_t vr_arg;
6618 ++edges;
6620 if (TREE_CODE (arg) == SSA_NAME)
6622 vr_arg = *(get_value_range (arg));
6624 else
6626 if (is_overflow_infinity (arg))
6628 arg = copy_node (arg);
6629 TREE_OVERFLOW (arg) = 0;
6632 vr_arg.type = VR_RANGE;
6633 vr_arg.min = arg;
6634 vr_arg.max = arg;
6635 vr_arg.equiv = NULL;
6638 if (dump_file && (dump_flags & TDF_DETAILS))
6640 fprintf (dump_file, "\t");
6641 print_generic_expr (dump_file, arg, dump_flags);
6642 fprintf (dump_file, "\n\tValue: ");
6643 dump_value_range (dump_file, &vr_arg);
6644 fprintf (dump_file, "\n");
6647 vrp_meet (&vr_result, &vr_arg);
6649 if (vr_result.type == VR_VARYING)
6650 break;
6654 if (vr_result.type == VR_VARYING)
6655 goto varying;
6657 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6658 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6660 /* To prevent infinite iterations in the algorithm, derive ranges
6661 when the new value is slightly bigger or smaller than the
6662 previous one. We don't do this if we have seen a new executable
6663 edge; this helps us avoid an overflow infinity for conditionals
6664 which are not in a loop. */
6665 if (edges > 0
6666 && gimple_phi_num_args (phi) > 1
6667 && edges == old_edges)
6669 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6670 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6672 /* For non VR_RANGE or for pointers fall back to varying if
6673 the range changed. */
6674 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6675 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6676 && (cmp_min != 0 || cmp_max != 0))
6677 goto varying;
6679 /* If the new minimum is smaller or larger than the previous
6680 one, go all the way to -INF. In the first case, to avoid
6681 iterating millions of times to reach -INF, and in the
6682 other case to avoid infinite bouncing between different
6683 minimums. */
6684 if (cmp_min > 0 || cmp_min < 0)
6686 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6687 || !vrp_var_may_overflow (lhs, phi))
6688 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6689 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6690 vr_result.min =
6691 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6694 /* Similarly, if the new maximum is smaller or larger than
6695 the previous one, go all the way to +INF. */
6696 if (cmp_max < 0 || cmp_max > 0)
6698 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6699 || !vrp_var_may_overflow (lhs, phi))
6700 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6701 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6702 vr_result.max =
6703 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6706 /* If we dropped either bound to +-INF then if this is a loop
6707 PHI node SCEV may known more about its value-range. */
6708 if ((cmp_min > 0 || cmp_min < 0
6709 || cmp_max < 0 || cmp_max > 0)
6710 && current_loops
6711 && (l = loop_containing_stmt (phi))
6712 && l->header == gimple_bb (phi))
6713 adjust_range_with_scev (&vr_result, l, phi, lhs);
6715 /* If we will end up with a (-INF, +INF) range, set it to
6716 VARYING. Same if the previous max value was invalid for
6717 the type and we end up with vr_result.min > vr_result.max. */
6718 if ((vrp_val_is_max (vr_result.max)
6719 && vrp_val_is_min (vr_result.min))
6720 || compare_values (vr_result.min,
6721 vr_result.max) > 0)
6722 goto varying;
6725 /* If the new range is different than the previous value, keep
6726 iterating. */
6727 if (update_value_range (lhs, &vr_result))
6729 if (dump_file && (dump_flags & TDF_DETAILS))
6731 fprintf (dump_file, "Found new range for ");
6732 print_generic_expr (dump_file, lhs, 0);
6733 fprintf (dump_file, ": ");
6734 dump_value_range (dump_file, &vr_result);
6735 fprintf (dump_file, "\n\n");
6738 return SSA_PROP_INTERESTING;
6741 /* Nothing changed, don't add outgoing edges. */
6742 return SSA_PROP_NOT_INTERESTING;
6744 /* No match found. Set the LHS to VARYING. */
6745 varying:
6746 set_value_range_to_varying (lhs_vr);
6747 return SSA_PROP_VARYING;
6750 /* Simplify boolean operations if the source is known
6751 to be already a boolean. */
6752 static bool
6753 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6755 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6756 tree val = NULL;
6757 tree op0, op1;
6758 value_range_t *vr;
6759 bool sop = false;
6760 bool need_conversion;
6762 op0 = gimple_assign_rhs1 (stmt);
6763 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6765 if (TREE_CODE (op0) != SSA_NAME)
6766 return false;
6767 vr = get_value_range (op0);
6769 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6770 if (!val || !integer_onep (val))
6771 return false;
6773 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6774 if (!val || !integer_onep (val))
6775 return false;
6778 if (rhs_code == TRUTH_NOT_EXPR)
6780 rhs_code = NE_EXPR;
6781 op1 = build_int_cst (TREE_TYPE (op0), 1);
6783 else
6785 op1 = gimple_assign_rhs2 (stmt);
6787 /* Reduce number of cases to handle. */
6788 if (is_gimple_min_invariant (op1))
6790 /* Exclude anything that should have been already folded. */
6791 if (rhs_code != EQ_EXPR
6792 && rhs_code != NE_EXPR
6793 && rhs_code != TRUTH_XOR_EXPR)
6794 return false;
6796 if (!integer_zerop (op1)
6797 && !integer_onep (op1)
6798 && !integer_all_onesp (op1))
6799 return false;
6801 /* Limit the number of cases we have to consider. */
6802 if (rhs_code == EQ_EXPR)
6804 rhs_code = NE_EXPR;
6805 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6808 else
6810 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6811 if (rhs_code == EQ_EXPR)
6812 return false;
6814 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6816 vr = get_value_range (op1);
6817 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6818 if (!val || !integer_onep (val))
6819 return false;
6821 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6822 if (!val || !integer_onep (val))
6823 return false;
6828 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6830 location_t location;
6832 if (!gimple_has_location (stmt))
6833 location = input_location;
6834 else
6835 location = gimple_location (stmt);
6837 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6838 warning_at (location, OPT_Wstrict_overflow,
6839 _("assuming signed overflow does not occur when "
6840 "simplifying && or || to & or |"));
6841 else
6842 warning_at (location, OPT_Wstrict_overflow,
6843 _("assuming signed overflow does not occur when "
6844 "simplifying ==, != or ! to identity or ^"));
6847 need_conversion =
6848 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6849 TREE_TYPE (op0));
6851 /* Make sure to not sign-extend -1 as a boolean value. */
6852 if (need_conversion
6853 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6854 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6855 return false;
6857 switch (rhs_code)
6859 case TRUTH_AND_EXPR:
6860 rhs_code = BIT_AND_EXPR;
6861 break;
6862 case TRUTH_OR_EXPR:
6863 rhs_code = BIT_IOR_EXPR;
6864 break;
6865 case TRUTH_XOR_EXPR:
6866 case NE_EXPR:
6867 if (integer_zerop (op1))
6869 gimple_assign_set_rhs_with_ops (gsi,
6870 need_conversion ? NOP_EXPR : SSA_NAME,
6871 op0, NULL);
6872 update_stmt (gsi_stmt (*gsi));
6873 return true;
6876 rhs_code = BIT_XOR_EXPR;
6877 break;
6878 default:
6879 gcc_unreachable ();
6882 if (need_conversion)
6883 return false;
6885 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6886 update_stmt (gsi_stmt (*gsi));
6887 return true;
6890 /* Simplify a division or modulo operator to a right shift or
6891 bitwise and if the first operand is unsigned or is greater
6892 than zero and the second operand is an exact power of two. */
6894 static bool
6895 simplify_div_or_mod_using_ranges (gimple stmt)
6897 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6898 tree val = NULL;
6899 tree op0 = gimple_assign_rhs1 (stmt);
6900 tree op1 = gimple_assign_rhs2 (stmt);
6901 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6903 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6905 val = integer_one_node;
6907 else
6909 bool sop = false;
6911 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6913 if (val
6914 && sop
6915 && integer_onep (val)
6916 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6918 location_t location;
6920 if (!gimple_has_location (stmt))
6921 location = input_location;
6922 else
6923 location = gimple_location (stmt);
6924 warning_at (location, OPT_Wstrict_overflow,
6925 "assuming signed overflow does not occur when "
6926 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6930 if (val && integer_onep (val))
6932 tree t;
6934 if (rhs_code == TRUNC_DIV_EXPR)
6936 t = build_int_cst (integer_type_node, tree_log2 (op1));
6937 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6938 gimple_assign_set_rhs1 (stmt, op0);
6939 gimple_assign_set_rhs2 (stmt, t);
6941 else
6943 t = build_int_cst (TREE_TYPE (op1), 1);
6944 t = int_const_binop (MINUS_EXPR, op1, t);
6945 t = fold_convert (TREE_TYPE (op0), t);
6947 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6948 gimple_assign_set_rhs1 (stmt, op0);
6949 gimple_assign_set_rhs2 (stmt, t);
6952 update_stmt (stmt);
6953 return true;
6956 return false;
6959 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6960 ABS_EXPR. If the operand is <= 0, then simplify the
6961 ABS_EXPR into a NEGATE_EXPR. */
6963 static bool
6964 simplify_abs_using_ranges (gimple stmt)
6966 tree val = NULL;
6967 tree op = gimple_assign_rhs1 (stmt);
6968 tree type = TREE_TYPE (op);
6969 value_range_t *vr = get_value_range (op);
6971 if (TYPE_UNSIGNED (type))
6973 val = integer_zero_node;
6975 else if (vr)
6977 bool sop = false;
6979 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6980 if (!val)
6982 sop = false;
6983 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6984 &sop);
6986 if (val)
6988 if (integer_zerop (val))
6989 val = integer_one_node;
6990 else if (integer_onep (val))
6991 val = integer_zero_node;
6995 if (val
6996 && (integer_onep (val) || integer_zerop (val)))
6998 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
7000 location_t location;
7002 if (!gimple_has_location (stmt))
7003 location = input_location;
7004 else
7005 location = gimple_location (stmt);
7006 warning_at (location, OPT_Wstrict_overflow,
7007 "assuming signed overflow does not occur when "
7008 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
7011 gimple_assign_set_rhs1 (stmt, op);
7012 if (integer_onep (val))
7013 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
7014 else
7015 gimple_assign_set_rhs_code (stmt, SSA_NAME);
7016 update_stmt (stmt);
7017 return true;
7021 return false;
7024 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
7025 If all the bits that are being cleared by & are already
7026 known to be zero from VR, or all the bits that are being
7027 set by | are already known to be one from VR, the bit
7028 operation is redundant. */
7030 static bool
7031 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7033 tree op0 = gimple_assign_rhs1 (stmt);
7034 tree op1 = gimple_assign_rhs2 (stmt);
7035 tree op = NULL_TREE;
7036 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7037 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7038 double_int may_be_nonzero0, may_be_nonzero1;
7039 double_int must_be_nonzero0, must_be_nonzero1;
7040 double_int mask;
7042 if (TREE_CODE (op0) == SSA_NAME)
7043 vr0 = *(get_value_range (op0));
7044 else if (is_gimple_min_invariant (op0))
7045 set_value_range_to_value (&vr0, op0, NULL);
7046 else
7047 return false;
7049 if (TREE_CODE (op1) == SSA_NAME)
7050 vr1 = *(get_value_range (op1));
7051 else if (is_gimple_min_invariant (op1))
7052 set_value_range_to_value (&vr1, op1, NULL);
7053 else
7054 return false;
7056 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7057 return false;
7058 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7059 return false;
7061 switch (gimple_assign_rhs_code (stmt))
7063 case BIT_AND_EXPR:
7064 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7065 if (double_int_zero_p (mask))
7067 op = op0;
7068 break;
7070 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7071 if (double_int_zero_p (mask))
7073 op = op1;
7074 break;
7076 break;
7077 case BIT_IOR_EXPR:
7078 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7079 if (double_int_zero_p (mask))
7081 op = op1;
7082 break;
7084 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7085 if (double_int_zero_p (mask))
7087 op = op0;
7088 break;
7090 break;
7091 default:
7092 gcc_unreachable ();
7095 if (op == NULL_TREE)
7096 return false;
7098 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7099 update_stmt (gsi_stmt (*gsi));
7100 return true;
7103 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7104 a known value range VR.
7106 If there is one and only one value which will satisfy the
7107 conditional, then return that value. Else return NULL. */
7109 static tree
7110 test_for_singularity (enum tree_code cond_code, tree op0,
7111 tree op1, value_range_t *vr)
7113 tree min = NULL;
7114 tree max = NULL;
7116 /* Extract minimum/maximum values which satisfy the
7117 the conditional as it was written. */
7118 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7120 /* This should not be negative infinity; there is no overflow
7121 here. */
7122 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7124 max = op1;
7125 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7127 tree one = build_int_cst (TREE_TYPE (op0), 1);
7128 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7129 if (EXPR_P (max))
7130 TREE_NO_WARNING (max) = 1;
7133 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7135 /* This should not be positive infinity; there is no overflow
7136 here. */
7137 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7139 min = op1;
7140 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7142 tree one = build_int_cst (TREE_TYPE (op0), 1);
7143 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7144 if (EXPR_P (min))
7145 TREE_NO_WARNING (min) = 1;
7149 /* Now refine the minimum and maximum values using any
7150 value range information we have for op0. */
7151 if (min && max)
7153 if (compare_values (vr->min, min) == 1)
7154 min = vr->min;
7155 if (compare_values (vr->max, max) == -1)
7156 max = vr->max;
7158 /* If the new min/max values have converged to a single value,
7159 then there is only one value which can satisfy the condition,
7160 return that value. */
7161 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7162 return min;
7164 return NULL;
7167 /* Simplify a conditional using a relational operator to an equality
7168 test if the range information indicates only one value can satisfy
7169 the original conditional. */
7171 static bool
7172 simplify_cond_using_ranges (gimple stmt)
7174 tree op0 = gimple_cond_lhs (stmt);
7175 tree op1 = gimple_cond_rhs (stmt);
7176 enum tree_code cond_code = gimple_cond_code (stmt);
7178 if (cond_code != NE_EXPR
7179 && cond_code != EQ_EXPR
7180 && TREE_CODE (op0) == SSA_NAME
7181 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7182 && is_gimple_min_invariant (op1))
7184 value_range_t *vr = get_value_range (op0);
7186 /* If we have range information for OP0, then we might be
7187 able to simplify this conditional. */
7188 if (vr->type == VR_RANGE)
7190 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7192 if (new_tree)
7194 if (dump_file)
7196 fprintf (dump_file, "Simplified relational ");
7197 print_gimple_stmt (dump_file, stmt, 0, 0);
7198 fprintf (dump_file, " into ");
7201 gimple_cond_set_code (stmt, EQ_EXPR);
7202 gimple_cond_set_lhs (stmt, op0);
7203 gimple_cond_set_rhs (stmt, new_tree);
7205 update_stmt (stmt);
7207 if (dump_file)
7209 print_gimple_stmt (dump_file, stmt, 0, 0);
7210 fprintf (dump_file, "\n");
7213 return true;
7216 /* Try again after inverting the condition. We only deal
7217 with integral types here, so no need to worry about
7218 issues with inverting FP comparisons. */
7219 cond_code = invert_tree_comparison (cond_code, false);
7220 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7222 if (new_tree)
7224 if (dump_file)
7226 fprintf (dump_file, "Simplified relational ");
7227 print_gimple_stmt (dump_file, stmt, 0, 0);
7228 fprintf (dump_file, " into ");
7231 gimple_cond_set_code (stmt, NE_EXPR);
7232 gimple_cond_set_lhs (stmt, op0);
7233 gimple_cond_set_rhs (stmt, new_tree);
7235 update_stmt (stmt);
7237 if (dump_file)
7239 print_gimple_stmt (dump_file, stmt, 0, 0);
7240 fprintf (dump_file, "\n");
7243 return true;
7248 return false;
7251 /* Simplify a switch statement using the value range of the switch
7252 argument. */
7254 static bool
7255 simplify_switch_using_ranges (gimple stmt)
7257 tree op = gimple_switch_index (stmt);
7258 value_range_t *vr;
7259 bool take_default;
7260 edge e;
7261 edge_iterator ei;
7262 size_t i = 0, j = 0, n, n2;
7263 tree vec2;
7264 switch_update su;
7266 if (TREE_CODE (op) == SSA_NAME)
7268 vr = get_value_range (op);
7270 /* We can only handle integer ranges. */
7271 if (vr->type != VR_RANGE
7272 || symbolic_range_p (vr))
7273 return false;
7275 /* Find case label for min/max of the value range. */
7276 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7278 else if (TREE_CODE (op) == INTEGER_CST)
7280 take_default = !find_case_label_index (stmt, 1, op, &i);
7281 if (take_default)
7283 i = 1;
7284 j = 0;
7286 else
7288 j = i;
7291 else
7292 return false;
7294 n = gimple_switch_num_labels (stmt);
7296 /* Bail out if this is just all edges taken. */
7297 if (i == 1
7298 && j == n - 1
7299 && take_default)
7300 return false;
7302 /* Build a new vector of taken case labels. */
7303 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7304 n2 = 0;
7306 /* Add the default edge, if necessary. */
7307 if (take_default)
7308 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7310 for (; i <= j; ++i, ++n2)
7311 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7313 /* Mark needed edges. */
7314 for (i = 0; i < n2; ++i)
7316 e = find_edge (gimple_bb (stmt),
7317 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7318 e->aux = (void *)-1;
7321 /* Queue not needed edges for later removal. */
7322 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7324 if (e->aux == (void *)-1)
7326 e->aux = NULL;
7327 continue;
7330 if (dump_file && (dump_flags & TDF_DETAILS))
7332 fprintf (dump_file, "removing unreachable case label\n");
7334 VEC_safe_push (edge, heap, to_remove_edges, e);
7335 e->flags &= ~EDGE_EXECUTABLE;
7338 /* And queue an update for the stmt. */
7339 su.stmt = stmt;
7340 su.vec = vec2;
7341 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7342 return false;
7345 /* Simplify STMT using ranges if possible. */
7347 static bool
7348 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7350 gimple stmt = gsi_stmt (*gsi);
7351 if (is_gimple_assign (stmt))
7353 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7355 switch (rhs_code)
7357 case EQ_EXPR:
7358 case NE_EXPR:
7359 case TRUTH_NOT_EXPR:
7360 case TRUTH_AND_EXPR:
7361 case TRUTH_OR_EXPR:
7362 case TRUTH_XOR_EXPR:
7363 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
7364 or identity if the RHS is zero or one, and the LHS are known
7365 to be boolean values. Transform all TRUTH_*_EXPR into
7366 BIT_*_EXPR if both arguments are known to be boolean values. */
7367 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7368 return simplify_truth_ops_using_ranges (gsi, stmt);
7369 break;
7371 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7372 and BIT_AND_EXPR respectively if the first operand is greater
7373 than zero and the second operand is an exact power of two. */
7374 case TRUNC_DIV_EXPR:
7375 case TRUNC_MOD_EXPR:
7376 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
7377 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7378 return simplify_div_or_mod_using_ranges (stmt);
7379 break;
7381 /* Transform ABS (X) into X or -X as appropriate. */
7382 case ABS_EXPR:
7383 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
7384 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7385 return simplify_abs_using_ranges (stmt);
7386 break;
7388 case BIT_AND_EXPR:
7389 case BIT_IOR_EXPR:
7390 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7391 if all the bits being cleared are already cleared or
7392 all the bits being set are already set. */
7393 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7394 return simplify_bit_ops_using_ranges (gsi, stmt);
7395 break;
7397 default:
7398 break;
7401 else if (gimple_code (stmt) == GIMPLE_COND)
7402 return simplify_cond_using_ranges (stmt);
7403 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7404 return simplify_switch_using_ranges (stmt);
7406 return false;
7409 /* If the statement pointed by SI has a predicate whose value can be
7410 computed using the value range information computed by VRP, compute
7411 its value and return true. Otherwise, return false. */
7413 static bool
7414 fold_predicate_in (gimple_stmt_iterator *si)
7416 bool assignment_p = false;
7417 tree val;
7418 gimple stmt = gsi_stmt (*si);
7420 if (is_gimple_assign (stmt)
7421 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7423 assignment_p = true;
7424 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7425 gimple_assign_rhs1 (stmt),
7426 gimple_assign_rhs2 (stmt),
7427 stmt);
7429 else if (gimple_code (stmt) == GIMPLE_COND)
7430 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7431 gimple_cond_lhs (stmt),
7432 gimple_cond_rhs (stmt),
7433 stmt);
7434 else
7435 return false;
7437 if (val)
7439 if (assignment_p)
7440 val = fold_convert (gimple_expr_type (stmt), val);
7442 if (dump_file)
7444 fprintf (dump_file, "Folding predicate ");
7445 print_gimple_expr (dump_file, stmt, 0, 0);
7446 fprintf (dump_file, " to ");
7447 print_generic_expr (dump_file, val, 0);
7448 fprintf (dump_file, "\n");
7451 if (is_gimple_assign (stmt))
7452 gimple_assign_set_rhs_from_tree (si, val);
7453 else
7455 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7456 if (integer_zerop (val))
7457 gimple_cond_make_false (stmt);
7458 else if (integer_onep (val))
7459 gimple_cond_make_true (stmt);
7460 else
7461 gcc_unreachable ();
7464 return true;
7467 return false;
7470 /* Callback for substitute_and_fold folding the stmt at *SI. */
7472 static bool
7473 vrp_fold_stmt (gimple_stmt_iterator *si)
7475 if (fold_predicate_in (si))
7476 return true;
7478 return simplify_stmt_using_ranges (si);
7481 /* Stack of dest,src equivalency pairs that need to be restored after
7482 each attempt to thread a block's incoming edge to an outgoing edge.
7484 A NULL entry is used to mark the end of pairs which need to be
7485 restored. */
7486 static VEC(tree,heap) *stack;
7488 /* A trivial wrapper so that we can present the generic jump threading
7489 code with a simple API for simplifying statements. STMT is the
7490 statement we want to simplify, WITHIN_STMT provides the location
7491 for any overflow warnings. */
7493 static tree
7494 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7496 /* We only use VRP information to simplify conditionals. This is
7497 overly conservative, but it's unclear if doing more would be
7498 worth the compile time cost. */
7499 if (gimple_code (stmt) != GIMPLE_COND)
7500 return NULL;
7502 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7503 gimple_cond_lhs (stmt),
7504 gimple_cond_rhs (stmt), within_stmt);
7507 /* Blocks which have more than one predecessor and more than
7508 one successor present jump threading opportunities, i.e.,
7509 when the block is reached from a specific predecessor, we
7510 may be able to determine which of the outgoing edges will
7511 be traversed. When this optimization applies, we are able
7512 to avoid conditionals at runtime and we may expose secondary
7513 optimization opportunities.
7515 This routine is effectively a driver for the generic jump
7516 threading code. It basically just presents the generic code
7517 with edges that may be suitable for jump threading.
7519 Unlike DOM, we do not iterate VRP if jump threading was successful.
7520 While iterating may expose new opportunities for VRP, it is expected
7521 those opportunities would be very limited and the compile time cost
7522 to expose those opportunities would be significant.
7524 As jump threading opportunities are discovered, they are registered
7525 for later realization. */
7527 static void
7528 identify_jump_threads (void)
7530 basic_block bb;
7531 gimple dummy;
7532 int i;
7533 edge e;
7535 /* Ugh. When substituting values earlier in this pass we can
7536 wipe the dominance information. So rebuild the dominator
7537 information as we need it within the jump threading code. */
7538 calculate_dominance_info (CDI_DOMINATORS);
7540 /* We do not allow VRP information to be used for jump threading
7541 across a back edge in the CFG. Otherwise it becomes too
7542 difficult to avoid eliminating loop exit tests. Of course
7543 EDGE_DFS_BACK is not accurate at this time so we have to
7544 recompute it. */
7545 mark_dfs_back_edges ();
7547 /* Do not thread across edges we are about to remove. Just marking
7548 them as EDGE_DFS_BACK will do. */
7549 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7550 e->flags |= EDGE_DFS_BACK;
7552 /* Allocate our unwinder stack to unwind any temporary equivalences
7553 that might be recorded. */
7554 stack = VEC_alloc (tree, heap, 20);
7556 /* To avoid lots of silly node creation, we create a single
7557 conditional and just modify it in-place when attempting to
7558 thread jumps. */
7559 dummy = gimple_build_cond (EQ_EXPR,
7560 integer_zero_node, integer_zero_node,
7561 NULL, NULL);
7563 /* Walk through all the blocks finding those which present a
7564 potential jump threading opportunity. We could set this up
7565 as a dominator walker and record data during the walk, but
7566 I doubt it's worth the effort for the classes of jump
7567 threading opportunities we are trying to identify at this
7568 point in compilation. */
7569 FOR_EACH_BB (bb)
7571 gimple last;
7573 /* If the generic jump threading code does not find this block
7574 interesting, then there is nothing to do. */
7575 if (! potentially_threadable_block (bb))
7576 continue;
7578 /* We only care about blocks ending in a COND_EXPR. While there
7579 may be some value in handling SWITCH_EXPR here, I doubt it's
7580 terribly important. */
7581 last = gsi_stmt (gsi_last_bb (bb));
7583 /* We're basically looking for a switch or any kind of conditional with
7584 integral or pointer type arguments. Note the type of the second
7585 argument will be the same as the first argument, so no need to
7586 check it explicitly. */
7587 if (gimple_code (last) == GIMPLE_SWITCH
7588 || (gimple_code (last) == GIMPLE_COND
7589 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7590 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7591 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7592 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7593 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7595 edge_iterator ei;
7597 /* We've got a block with multiple predecessors and multiple
7598 successors which also ends in a suitable conditional or
7599 switch statement. For each predecessor, see if we can thread
7600 it to a specific successor. */
7601 FOR_EACH_EDGE (e, ei, bb->preds)
7603 /* Do not thread across back edges or abnormal edges
7604 in the CFG. */
7605 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7606 continue;
7608 thread_across_edge (dummy, e, true, &stack,
7609 simplify_stmt_for_jump_threading);
7614 /* We do not actually update the CFG or SSA graphs at this point as
7615 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7616 handle ASSERT_EXPRs gracefully. */
7619 /* We identified all the jump threading opportunities earlier, but could
7620 not transform the CFG at that time. This routine transforms the
7621 CFG and arranges for the dominator tree to be rebuilt if necessary.
7623 Note the SSA graph update will occur during the normal TODO
7624 processing by the pass manager. */
7625 static void
7626 finalize_jump_threads (void)
7628 thread_through_all_blocks (false);
7629 VEC_free (tree, heap, stack);
7633 /* Traverse all the blocks folding conditionals with known ranges. */
7635 static void
7636 vrp_finalize (void)
7638 size_t i;
7639 unsigned num = num_ssa_names;
7641 if (dump_file)
7643 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7644 dump_all_value_ranges (dump_file);
7645 fprintf (dump_file, "\n");
7648 substitute_and_fold (op_with_constant_singleton_value_range,
7649 vrp_fold_stmt, false);
7651 if (warn_array_bounds)
7652 check_all_array_refs ();
7654 /* We must identify jump threading opportunities before we release
7655 the datastructures built by VRP. */
7656 identify_jump_threads ();
7658 /* Free allocated memory. */
7659 for (i = 0; i < num; i++)
7660 if (vr_value[i])
7662 BITMAP_FREE (vr_value[i]->equiv);
7663 free (vr_value[i]);
7666 free (vr_value);
7667 free (vr_phi_edge_counts);
7669 /* So that we can distinguish between VRP data being available
7670 and not available. */
7671 vr_value = NULL;
7672 vr_phi_edge_counts = NULL;
7676 /* Main entry point to VRP (Value Range Propagation). This pass is
7677 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7678 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7679 Programming Language Design and Implementation, pp. 67-78, 1995.
7680 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7682 This is essentially an SSA-CCP pass modified to deal with ranges
7683 instead of constants.
7685 While propagating ranges, we may find that two or more SSA name
7686 have equivalent, though distinct ranges. For instance,
7688 1 x_9 = p_3->a;
7689 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7690 3 if (p_4 == q_2)
7691 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7692 5 endif
7693 6 if (q_2)
7695 In the code above, pointer p_5 has range [q_2, q_2], but from the
7696 code we can also determine that p_5 cannot be NULL and, if q_2 had
7697 a non-varying range, p_5's range should also be compatible with it.
7699 These equivalences are created by two expressions: ASSERT_EXPR and
7700 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7701 result of another assertion, then we can use the fact that p_5 and
7702 p_4 are equivalent when evaluating p_5's range.
7704 Together with value ranges, we also propagate these equivalences
7705 between names so that we can take advantage of information from
7706 multiple ranges when doing final replacement. Note that this
7707 equivalency relation is transitive but not symmetric.
7709 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7710 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7711 in contexts where that assertion does not hold (e.g., in line 6).
7713 TODO, the main difference between this pass and Patterson's is that
7714 we do not propagate edge probabilities. We only compute whether
7715 edges can be taken or not. That is, instead of having a spectrum
7716 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7717 DON'T KNOW. In the future, it may be worthwhile to propagate
7718 probabilities to aid branch prediction. */
7720 static unsigned int
7721 execute_vrp (void)
7723 int i;
7724 edge e;
7725 switch_update *su;
7727 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7728 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7729 scev_initialize ();
7731 /* Estimate number of iterations - but do not use undefined behavior
7732 for this. We can't do this lazily as other functions may compute
7733 this using undefined behavior. */
7734 free_numbers_of_iterations_estimates ();
7735 estimate_numbers_of_iterations (false);
7737 insert_range_assertions ();
7739 to_remove_edges = VEC_alloc (edge, heap, 10);
7740 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7741 threadedge_initialize_values ();
7743 vrp_initialize ();
7744 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7745 vrp_finalize ();
7747 /* ASSERT_EXPRs must be removed before finalizing jump threads
7748 as finalizing jump threads calls the CFG cleanup code which
7749 does not properly handle ASSERT_EXPRs. */
7750 remove_range_assertions ();
7752 /* If we exposed any new variables, go ahead and put them into
7753 SSA form now, before we handle jump threading. This simplifies
7754 interactions between rewriting of _DECL nodes into SSA form
7755 and rewriting SSA_NAME nodes into SSA form after block
7756 duplication and CFG manipulation. */
7757 update_ssa (TODO_update_ssa);
7759 finalize_jump_threads ();
7761 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7762 CFG in a broken state and requires a cfg_cleanup run. */
7763 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7764 remove_edge (e);
7765 /* Update SWITCH_EXPR case label vector. */
7766 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7768 size_t j;
7769 size_t n = TREE_VEC_LENGTH (su->vec);
7770 tree label;
7771 gimple_switch_set_num_labels (su->stmt, n);
7772 for (j = 0; j < n; j++)
7773 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7774 /* As we may have replaced the default label with a regular one
7775 make sure to make it a real default label again. This ensures
7776 optimal expansion. */
7777 label = gimple_switch_default_label (su->stmt);
7778 CASE_LOW (label) = NULL_TREE;
7779 CASE_HIGH (label) = NULL_TREE;
7782 if (VEC_length (edge, to_remove_edges) > 0)
7783 free_dominance_info (CDI_DOMINATORS);
7785 VEC_free (edge, heap, to_remove_edges);
7786 VEC_free (switch_update, heap, to_update_switch_stmts);
7787 threadedge_finalize_values ();
7789 scev_finalize ();
7790 loop_optimizer_finalize ();
7791 return 0;
7794 static bool
7795 gate_vrp (void)
7797 return flag_tree_vrp != 0;
7800 struct gimple_opt_pass pass_vrp =
7803 GIMPLE_PASS,
7804 "vrp", /* name */
7805 gate_vrp, /* gate */
7806 execute_vrp, /* execute */
7807 NULL, /* sub */
7808 NULL, /* next */
7809 0, /* static_pass_number */
7810 TV_TREE_VRP, /* tv_id */
7811 PROP_ssa, /* properties_required */
7812 0, /* properties_provided */
7813 0, /* properties_destroyed */
7814 0, /* todo_flags_start */
7815 TODO_cleanup_cfg
7816 | TODO_update_ssa
7817 | TODO_verify_ssa
7818 | TODO_verify_flow
7819 | TODO_ggc_collect /* todo_flags_finish */