dumping cleanup phase 1 -- Removing TODO_dump_func
[official-gcc.git] / gcc / function.c
blobd5248730de1ec574ccb86f0f98fceac2ee2a9e03
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "cfglayout.h"
61 #include "gimple.h"
62 #include "tree-pass.h"
63 #include "predict.h"
64 #include "df.h"
65 #include "timevar.h"
66 #include "vecprim.h"
68 /* So we can assign to cfun in this file. */
69 #undef cfun
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 pass_stack_ptr_mod has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 /* These hashes record the prologue and epilogue insns. */
127 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t prologue_insn_hash;
129 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
130 htab_t epilogue_insn_hash;
133 htab_t types_used_by_vars_hash = NULL;
134 VEC(tree,gc) *types_used_by_cur_var_decl;
136 /* Forward declarations. */
138 static struct temp_slot *find_temp_slot_from_address (rtx);
139 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
140 static void pad_below (struct args_size *, enum machine_mode, tree);
141 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
142 static int all_blocks (tree, tree *);
143 static tree *get_block_vector (tree, int *);
144 extern tree debug_find_var_in_block_tree (tree, tree);
145 /* We always define `record_insns' even if it's not used so that we
146 can always export `prologue_epilogue_contains'. */
147 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
148 static bool contains (const_rtx, htab_t);
149 #ifdef HAVE_return
150 static void emit_return_into_block (basic_block);
151 #endif
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 /* Stack of nested functions. */
158 /* Keep track of the cfun stack. */
160 typedef struct function *function_p;
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
166 /* Save the current context for compilation of a nested function.
167 This is called from language-specific code. */
169 void
170 push_function_context (void)
172 if (cfun == 0)
173 allocate_struct_function (NULL, false);
175 VEC_safe_push (function_p, heap, function_context_stack, cfun);
176 set_cfun (NULL);
179 /* Restore the last saved context, at the end of a nested function.
180 This function is called from language-specific code. */
182 void
183 pop_function_context (void)
185 struct function *p = VEC_pop (function_p, function_context_stack);
186 set_cfun (p);
187 current_function_decl = p->decl;
189 /* Reset variables that have known state during rtx generation. */
190 virtuals_instantiated = 0;
191 generating_concat_p = 1;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been parsed, but not compiled, to let
196 garbage collection reclaim the memory. */
198 void
199 free_after_parsing (struct function *f)
201 f->language = 0;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been compiled, to let garbage collection
206 reclaim the memory. */
208 void
209 free_after_compilation (struct function *f)
211 prologue_insn_hash = NULL;
212 epilogue_insn_hash = NULL;
214 free (crtl->emit.regno_pointer_align);
216 memset (crtl, 0, sizeof (struct rtl_data));
217 f->eh = NULL;
218 f->machine = NULL;
219 f->cfg = NULL;
221 regno_reg_rtx = NULL;
222 insn_locators_free ();
225 /* Return size needed for stack frame based on slots so far allocated.
226 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
227 the caller may have to do that. */
229 HOST_WIDE_INT
230 get_frame_size (void)
232 if (FRAME_GROWS_DOWNWARD)
233 return -frame_offset;
234 else
235 return frame_offset;
238 /* Issue an error message and return TRUE if frame OFFSET overflows in
239 the signed target pointer arithmetics for function FUNC. Otherwise
240 return FALSE. */
242 bool
243 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
245 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
247 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
248 /* Leave room for the fixed part of the frame. */
249 - 64 * UNITS_PER_WORD)
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects too large");
253 return TRUE;
256 return FALSE;
259 /* Return stack slot alignment in bits for TYPE and MODE. */
261 static unsigned int
262 get_stack_local_alignment (tree type, enum machine_mode mode)
264 unsigned int alignment;
266 if (mode == BLKmode)
267 alignment = BIGGEST_ALIGNMENT;
268 else
269 alignment = GET_MODE_ALIGNMENT (mode);
271 /* Allow the frond-end to (possibly) increase the alignment of this
272 stack slot. */
273 if (! type)
274 type = lang_hooks.types.type_for_mode (mode, 0);
276 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
279 /* Determine whether it is possible to fit a stack slot of size SIZE and
280 alignment ALIGNMENT into an area in the stack frame that starts at
281 frame offset START and has a length of LENGTH. If so, store the frame
282 offset to be used for the stack slot in *POFFSET and return true;
283 return false otherwise. This function will extend the frame size when
284 given a start/length pair that lies at the end of the frame. */
286 static bool
287 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
288 HOST_WIDE_INT size, unsigned int alignment,
289 HOST_WIDE_INT *poffset)
291 HOST_WIDE_INT this_frame_offset;
292 int frame_off, frame_alignment, frame_phase;
294 /* Calculate how many bytes the start of local variables is off from
295 stack alignment. */
296 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
297 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
298 frame_phase = frame_off ? frame_alignment - frame_off : 0;
300 /* Round the frame offset to the specified alignment. */
302 /* We must be careful here, since FRAME_OFFSET might be negative and
303 division with a negative dividend isn't as well defined as we might
304 like. So we instead assume that ALIGNMENT is a power of two and
305 use logical operations which are unambiguous. */
306 if (FRAME_GROWS_DOWNWARD)
307 this_frame_offset
308 = (FLOOR_ROUND (start + length - size - frame_phase,
309 (unsigned HOST_WIDE_INT) alignment)
310 + frame_phase);
311 else
312 this_frame_offset
313 = (CEIL_ROUND (start - frame_phase,
314 (unsigned HOST_WIDE_INT) alignment)
315 + frame_phase);
317 /* See if it fits. If this space is at the edge of the frame,
318 consider extending the frame to make it fit. Our caller relies on
319 this when allocating a new slot. */
320 if (frame_offset == start && this_frame_offset < frame_offset)
321 frame_offset = this_frame_offset;
322 else if (this_frame_offset < start)
323 return false;
324 else if (start + length == frame_offset
325 && this_frame_offset + size > start + length)
326 frame_offset = this_frame_offset + size;
327 else if (this_frame_offset + size > start + length)
328 return false;
330 *poffset = this_frame_offset;
331 return true;
334 /* Create a new frame_space structure describing free space in the stack
335 frame beginning at START and ending at END, and chain it into the
336 function's frame_space_list. */
338 static void
339 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
341 struct frame_space *space = ggc_alloc_frame_space ();
342 space->next = crtl->frame_space_list;
343 crtl->frame_space_list = space;
344 space->start = start;
345 space->length = end - start;
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349 with machine mode MODE.
351 ALIGN controls the amount of alignment for the address of the slot:
352 0 means according to MODE,
353 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354 -2 means use BITS_PER_UNIT,
355 positive specifies alignment boundary in bits.
357 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358 alignment and ASLK_RECORD_PAD bit set if we should remember
359 extra space we allocated for alignment purposes. When we are
360 called from assign_stack_temp_for_type, it is not set so we don't
361 track the same stack slot in two independent lists.
363 We do not round to stack_boundary here. */
366 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
367 int align, int kind)
369 rtx x, addr;
370 int bigend_correction = 0;
371 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
372 unsigned int alignment, alignment_in_bits;
374 if (align == 0)
376 alignment = get_stack_local_alignment (NULL, mode);
377 alignment /= BITS_PER_UNIT;
379 else if (align == -1)
381 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
382 size = CEIL_ROUND (size, alignment);
384 else if (align == -2)
385 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
386 else
387 alignment = align / BITS_PER_UNIT;
389 alignment_in_bits = alignment * BITS_PER_UNIT;
391 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
392 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
394 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
395 alignment = alignment_in_bits / BITS_PER_UNIT;
398 if (SUPPORTS_STACK_ALIGNMENT)
400 if (crtl->stack_alignment_estimated < alignment_in_bits)
402 if (!crtl->stack_realign_processed)
403 crtl->stack_alignment_estimated = alignment_in_bits;
404 else
406 /* If stack is realigned and stack alignment value
407 hasn't been finalized, it is OK not to increase
408 stack_alignment_estimated. The bigger alignment
409 requirement is recorded in stack_alignment_needed
410 below. */
411 gcc_assert (!crtl->stack_realign_finalized);
412 if (!crtl->stack_realign_needed)
414 /* It is OK to reduce the alignment as long as the
415 requested size is 0 or the estimated stack
416 alignment >= mode alignment. */
417 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
418 || size == 0
419 || (crtl->stack_alignment_estimated
420 >= GET_MODE_ALIGNMENT (mode)));
421 alignment_in_bits = crtl->stack_alignment_estimated;
422 alignment = alignment_in_bits / BITS_PER_UNIT;
428 if (crtl->stack_alignment_needed < alignment_in_bits)
429 crtl->stack_alignment_needed = alignment_in_bits;
430 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
431 crtl->max_used_stack_slot_alignment = alignment_in_bits;
433 if (mode != BLKmode || size != 0)
435 if (kind & ASLK_RECORD_PAD)
437 struct frame_space **psp;
439 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
441 struct frame_space *space = *psp;
442 if (!try_fit_stack_local (space->start, space->length, size,
443 alignment, &slot_offset))
444 continue;
445 *psp = space->next;
446 if (slot_offset > space->start)
447 add_frame_space (space->start, slot_offset);
448 if (slot_offset + size < space->start + space->length)
449 add_frame_space (slot_offset + size,
450 space->start + space->length);
451 goto found_space;
455 else if (!STACK_ALIGNMENT_NEEDED)
457 slot_offset = frame_offset;
458 goto found_space;
461 old_frame_offset = frame_offset;
463 if (FRAME_GROWS_DOWNWARD)
465 frame_offset -= size;
466 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
468 if (kind & ASLK_RECORD_PAD)
470 if (slot_offset > frame_offset)
471 add_frame_space (frame_offset, slot_offset);
472 if (slot_offset + size < old_frame_offset)
473 add_frame_space (slot_offset + size, old_frame_offset);
476 else
478 frame_offset += size;
479 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
481 if (kind & ASLK_RECORD_PAD)
483 if (slot_offset > old_frame_offset)
484 add_frame_space (old_frame_offset, slot_offset);
485 if (slot_offset + size < frame_offset)
486 add_frame_space (slot_offset + size, frame_offset);
490 found_space:
491 /* On a big-endian machine, if we are allocating more space than we will use,
492 use the least significant bytes of those that are allocated. */
493 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
494 bigend_correction = size - GET_MODE_SIZE (mode);
496 /* If we have already instantiated virtual registers, return the actual
497 address relative to the frame pointer. */
498 if (virtuals_instantiated)
499 addr = plus_constant (frame_pointer_rtx,
500 trunc_int_for_mode
501 (slot_offset + bigend_correction
502 + STARTING_FRAME_OFFSET, Pmode));
503 else
504 addr = plus_constant (virtual_stack_vars_rtx,
505 trunc_int_for_mode
506 (slot_offset + bigend_correction,
507 Pmode));
509 x = gen_rtx_MEM (mode, addr);
510 set_mem_align (x, alignment_in_bits);
511 MEM_NOTRAP_P (x) = 1;
513 stack_slot_list
514 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
516 if (frame_offset_overflow (frame_offset, current_function_decl))
517 frame_offset = 0;
519 return x;
522 /* Wrap up assign_stack_local_1 with last parameter as false. */
525 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
527 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
531 /* In order to evaluate some expressions, such as function calls returning
532 structures in memory, we need to temporarily allocate stack locations.
533 We record each allocated temporary in the following structure.
535 Associated with each temporary slot is a nesting level. When we pop up
536 one level, all temporaries associated with the previous level are freed.
537 Normally, all temporaries are freed after the execution of the statement
538 in which they were created. However, if we are inside a ({...}) grouping,
539 the result may be in a temporary and hence must be preserved. If the
540 result could be in a temporary, we preserve it if we can determine which
541 one it is in. If we cannot determine which temporary may contain the
542 result, all temporaries are preserved. A temporary is preserved by
543 pretending it was allocated at the previous nesting level.
545 Automatic variables are also assigned temporary slots, at the nesting
546 level where they are defined. They are marked a "kept" so that
547 free_temp_slots will not free them. */
549 struct GTY(()) temp_slot {
550 /* Points to next temporary slot. */
551 struct temp_slot *next;
552 /* Points to previous temporary slot. */
553 struct temp_slot *prev;
554 /* The rtx to used to reference the slot. */
555 rtx slot;
556 /* The size, in units, of the slot. */
557 HOST_WIDE_INT size;
558 /* The type of the object in the slot, or zero if it doesn't correspond
559 to a type. We use this to determine whether a slot can be reused.
560 It can be reused if objects of the type of the new slot will always
561 conflict with objects of the type of the old slot. */
562 tree type;
563 /* The alignment (in bits) of the slot. */
564 unsigned int align;
565 /* Nonzero if this temporary is currently in use. */
566 char in_use;
567 /* Nonzero if this temporary has its address taken. */
568 char addr_taken;
569 /* Nesting level at which this slot is being used. */
570 int level;
571 /* Nonzero if this should survive a call to free_temp_slots. */
572 int keep;
573 /* The offset of the slot from the frame_pointer, including extra space
574 for alignment. This info is for combine_temp_slots. */
575 HOST_WIDE_INT base_offset;
576 /* The size of the slot, including extra space for alignment. This
577 info is for combine_temp_slots. */
578 HOST_WIDE_INT full_size;
581 /* A table of addresses that represent a stack slot. The table is a mapping
582 from address RTXen to a temp slot. */
583 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
585 /* Entry for the above hash table. */
586 struct GTY(()) temp_slot_address_entry {
587 hashval_t hash;
588 rtx address;
589 struct temp_slot *temp_slot;
592 /* Removes temporary slot TEMP from LIST. */
594 static void
595 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
597 if (temp->next)
598 temp->next->prev = temp->prev;
599 if (temp->prev)
600 temp->prev->next = temp->next;
601 else
602 *list = temp->next;
604 temp->prev = temp->next = NULL;
607 /* Inserts temporary slot TEMP to LIST. */
609 static void
610 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
612 temp->next = *list;
613 if (*list)
614 (*list)->prev = temp;
615 temp->prev = NULL;
616 *list = temp;
619 /* Returns the list of used temp slots at LEVEL. */
621 static struct temp_slot **
622 temp_slots_at_level (int level)
624 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
625 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
627 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
630 /* Returns the maximal temporary slot level. */
632 static int
633 max_slot_level (void)
635 if (!used_temp_slots)
636 return -1;
638 return VEC_length (temp_slot_p, used_temp_slots) - 1;
641 /* Moves temporary slot TEMP to LEVEL. */
643 static void
644 move_slot_to_level (struct temp_slot *temp, int level)
646 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
647 insert_slot_to_list (temp, temp_slots_at_level (level));
648 temp->level = level;
651 /* Make temporary slot TEMP available. */
653 static void
654 make_slot_available (struct temp_slot *temp)
656 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
657 insert_slot_to_list (temp, &avail_temp_slots);
658 temp->in_use = 0;
659 temp->level = -1;
662 /* Compute the hash value for an address -> temp slot mapping.
663 The value is cached on the mapping entry. */
664 static hashval_t
665 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
667 int do_not_record = 0;
668 return hash_rtx (t->address, GET_MODE (t->address),
669 &do_not_record, NULL, false);
672 /* Return the hash value for an address -> temp slot mapping. */
673 static hashval_t
674 temp_slot_address_hash (const void *p)
676 const struct temp_slot_address_entry *t;
677 t = (const struct temp_slot_address_entry *) p;
678 return t->hash;
681 /* Compare two address -> temp slot mapping entries. */
682 static int
683 temp_slot_address_eq (const void *p1, const void *p2)
685 const struct temp_slot_address_entry *t1, *t2;
686 t1 = (const struct temp_slot_address_entry *) p1;
687 t2 = (const struct temp_slot_address_entry *) p2;
688 return exp_equiv_p (t1->address, t2->address, 0, true);
691 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
692 static void
693 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
695 void **slot;
696 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
697 t->address = address;
698 t->temp_slot = temp_slot;
699 t->hash = temp_slot_address_compute_hash (t);
700 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
701 *slot = t;
704 /* Remove an address -> temp slot mapping entry if the temp slot is
705 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
706 static int
707 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
709 const struct temp_slot_address_entry *t;
710 t = (const struct temp_slot_address_entry *) *slot;
711 if (! t->temp_slot->in_use)
712 *slot = NULL;
713 return 1;
716 /* Remove all mappings of addresses to unused temp slots. */
717 static void
718 remove_unused_temp_slot_addresses (void)
720 htab_traverse (temp_slot_address_table,
721 remove_unused_temp_slot_addresses_1,
722 NULL);
725 /* Find the temp slot corresponding to the object at address X. */
727 static struct temp_slot *
728 find_temp_slot_from_address (rtx x)
730 struct temp_slot *p;
731 struct temp_slot_address_entry tmp, *t;
733 /* First try the easy way:
734 See if X exists in the address -> temp slot mapping. */
735 tmp.address = x;
736 tmp.temp_slot = NULL;
737 tmp.hash = temp_slot_address_compute_hash (&tmp);
738 t = (struct temp_slot_address_entry *)
739 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
740 if (t)
741 return t->temp_slot;
743 /* If we have a sum involving a register, see if it points to a temp
744 slot. */
745 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
746 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
747 return p;
748 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
749 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
750 return p;
752 /* Last resort: Address is a virtual stack var address. */
753 if (GET_CODE (x) == PLUS
754 && XEXP (x, 0) == virtual_stack_vars_rtx
755 && CONST_INT_P (XEXP (x, 1)))
757 int i;
758 for (i = max_slot_level (); i >= 0; i--)
759 for (p = *temp_slots_at_level (i); p; p = p->next)
761 if (INTVAL (XEXP (x, 1)) >= p->base_offset
762 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
763 return p;
767 return NULL;
770 /* Allocate a temporary stack slot and record it for possible later
771 reuse.
773 MODE is the machine mode to be given to the returned rtx.
775 SIZE is the size in units of the space required. We do no rounding here
776 since assign_stack_local will do any required rounding.
778 KEEP is 1 if this slot is to be retained after a call to
779 free_temp_slots. Automatic variables for a block are allocated
780 with this flag. KEEP values of 2 or 3 were needed respectively
781 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
782 or for SAVE_EXPRs, but they are now unused.
784 TYPE is the type that will be used for the stack slot. */
787 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
788 int keep, tree type)
790 unsigned int align;
791 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
792 rtx slot;
794 /* If SIZE is -1 it means that somebody tried to allocate a temporary
795 of a variable size. */
796 gcc_assert (size != -1);
798 /* These are now unused. */
799 gcc_assert (keep <= 1);
801 align = get_stack_local_alignment (type, mode);
803 /* Try to find an available, already-allocated temporary of the proper
804 mode which meets the size and alignment requirements. Choose the
805 smallest one with the closest alignment.
807 If assign_stack_temp is called outside of the tree->rtl expansion,
808 we cannot reuse the stack slots (that may still refer to
809 VIRTUAL_STACK_VARS_REGNUM). */
810 if (!virtuals_instantiated)
812 for (p = avail_temp_slots; p; p = p->next)
814 if (p->align >= align && p->size >= size
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0 || best_p->size > p->size
818 || (best_p->size == p->size && best_p->align > p->align)))
820 if (p->align == align && p->size == size)
822 selected = p;
823 cut_slot_from_list (selected, &avail_temp_slots);
824 best_p = 0;
825 break;
827 best_p = p;
832 /* Make our best, if any, the one to use. */
833 if (best_p)
835 selected = best_p;
836 cut_slot_from_list (selected, &avail_temp_slots);
838 /* If there are enough aligned bytes left over, make them into a new
839 temp_slot so that the extra bytes don't get wasted. Do this only
840 for BLKmode slots, so that we can be sure of the alignment. */
841 if (GET_MODE (best_p->slot) == BLKmode)
843 int alignment = best_p->align / BITS_PER_UNIT;
844 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
846 if (best_p->size - rounded_size >= alignment)
848 p = ggc_alloc_temp_slot ();
849 p->in_use = p->addr_taken = 0;
850 p->size = best_p->size - rounded_size;
851 p->base_offset = best_p->base_offset + rounded_size;
852 p->full_size = best_p->full_size - rounded_size;
853 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
854 p->align = best_p->align;
855 p->type = best_p->type;
856 insert_slot_to_list (p, &avail_temp_slots);
858 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
859 stack_slot_list);
861 best_p->size = rounded_size;
862 best_p->full_size = rounded_size;
867 /* If we still didn't find one, make a new temporary. */
868 if (selected == 0)
870 HOST_WIDE_INT frame_offset_old = frame_offset;
872 p = ggc_alloc_temp_slot ();
874 /* We are passing an explicit alignment request to assign_stack_local.
875 One side effect of that is assign_stack_local will not round SIZE
876 to ensure the frame offset remains suitably aligned.
878 So for requests which depended on the rounding of SIZE, we go ahead
879 and round it now. We also make sure ALIGNMENT is at least
880 BIGGEST_ALIGNMENT. */
881 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
882 p->slot = assign_stack_local_1 (mode,
883 (mode == BLKmode
884 ? CEIL_ROUND (size,
885 (int) align
886 / BITS_PER_UNIT)
887 : size),
888 align, 0);
890 p->align = align;
892 /* The following slot size computation is necessary because we don't
893 know the actual size of the temporary slot until assign_stack_local
894 has performed all the frame alignment and size rounding for the
895 requested temporary. Note that extra space added for alignment
896 can be either above or below this stack slot depending on which
897 way the frame grows. We include the extra space if and only if it
898 is above this slot. */
899 if (FRAME_GROWS_DOWNWARD)
900 p->size = frame_offset_old - frame_offset;
901 else
902 p->size = size;
904 /* Now define the fields used by combine_temp_slots. */
905 if (FRAME_GROWS_DOWNWARD)
907 p->base_offset = frame_offset;
908 p->full_size = frame_offset_old - frame_offset;
910 else
912 p->base_offset = frame_offset_old;
913 p->full_size = frame_offset - frame_offset_old;
916 selected = p;
919 p = selected;
920 p->in_use = 1;
921 p->addr_taken = 0;
922 p->type = type;
923 p->level = temp_slot_level;
924 p->keep = keep;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
943 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
944 gcc_checking_assert (!MEM_SCALAR_P (slot) && !MEM_IN_STRUCT_P (slot));
945 if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
946 MEM_IN_STRUCT_P (slot) = 1;
947 else
948 MEM_SCALAR_P (slot) = 1;
950 MEM_NOTRAP_P (slot) = 1;
952 return slot;
955 /* Allocate a temporary stack slot and record it for possible later
956 reuse. First three arguments are same as in preceding function. */
959 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
961 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
964 /* Assign a temporary.
965 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
966 and so that should be used in error messages. In either case, we
967 allocate of the given type.
968 KEEP is as for assign_stack_temp.
969 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
970 it is 0 if a register is OK.
971 DONT_PROMOTE is 1 if we should not promote values in register
972 to wider modes. */
975 assign_temp (tree type_or_decl, int keep, int memory_required,
976 int dont_promote ATTRIBUTE_UNUSED)
978 tree type, decl;
979 enum machine_mode mode;
980 #ifdef PROMOTE_MODE
981 int unsignedp;
982 #endif
984 if (DECL_P (type_or_decl))
985 decl = type_or_decl, type = TREE_TYPE (decl);
986 else
987 decl = NULL, type = type_or_decl;
989 mode = TYPE_MODE (type);
990 #ifdef PROMOTE_MODE
991 unsignedp = TYPE_UNSIGNED (type);
992 #endif
994 if (mode == BLKmode || memory_required)
996 HOST_WIDE_INT size = int_size_in_bytes (type);
997 rtx tmp;
999 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
1000 problems with allocating the stack space. */
1001 if (size == 0)
1002 size = 1;
1004 /* Unfortunately, we don't yet know how to allocate variable-sized
1005 temporaries. However, sometimes we can find a fixed upper limit on
1006 the size, so try that instead. */
1007 else if (size == -1)
1008 size = max_int_size_in_bytes (type);
1010 /* The size of the temporary may be too large to fit into an integer. */
1011 /* ??? Not sure this should happen except for user silliness, so limit
1012 this to things that aren't compiler-generated temporaries. The
1013 rest of the time we'll die in assign_stack_temp_for_type. */
1014 if (decl && size == -1
1015 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1017 error ("size of variable %q+D is too large", decl);
1018 size = 1;
1021 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1022 return tmp;
1025 #ifdef PROMOTE_MODE
1026 if (! dont_promote)
1027 mode = promote_mode (type, mode, &unsignedp);
1028 #endif
1030 return gen_reg_rtx (mode);
1033 /* Combine temporary stack slots which are adjacent on the stack.
1035 This allows for better use of already allocated stack space. This is only
1036 done for BLKmode slots because we can be sure that we won't have alignment
1037 problems in this case. */
1039 static void
1040 combine_temp_slots (void)
1042 struct temp_slot *p, *q, *next, *next_q;
1043 int num_slots;
1045 /* We can't combine slots, because the information about which slot
1046 is in which alias set will be lost. */
1047 if (flag_strict_aliasing)
1048 return;
1050 /* If there are a lot of temp slots, don't do anything unless
1051 high levels of optimization. */
1052 if (! flag_expensive_optimizations)
1053 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1054 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1055 return;
1057 for (p = avail_temp_slots; p; p = next)
1059 int delete_p = 0;
1061 next = p->next;
1063 if (GET_MODE (p->slot) != BLKmode)
1064 continue;
1066 for (q = p->next; q; q = next_q)
1068 int delete_q = 0;
1070 next_q = q->next;
1072 if (GET_MODE (q->slot) != BLKmode)
1073 continue;
1075 if (p->base_offset + p->full_size == q->base_offset)
1077 /* Q comes after P; combine Q into P. */
1078 p->size += q->size;
1079 p->full_size += q->full_size;
1080 delete_q = 1;
1082 else if (q->base_offset + q->full_size == p->base_offset)
1084 /* P comes after Q; combine P into Q. */
1085 q->size += p->size;
1086 q->full_size += p->full_size;
1087 delete_p = 1;
1088 break;
1090 if (delete_q)
1091 cut_slot_from_list (q, &avail_temp_slots);
1094 /* Either delete P or advance past it. */
1095 if (delete_p)
1096 cut_slot_from_list (p, &avail_temp_slots);
1100 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1101 slot that previously was known by OLD_RTX. */
1103 void
1104 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1106 struct temp_slot *p;
1108 if (rtx_equal_p (old_rtx, new_rtx))
1109 return;
1111 p = find_temp_slot_from_address (old_rtx);
1113 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1114 NEW_RTX is a register, see if one operand of the PLUS is a
1115 temporary location. If so, NEW_RTX points into it. Otherwise,
1116 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1117 in common between them. If so, try a recursive call on those
1118 values. */
1119 if (p == 0)
1121 if (GET_CODE (old_rtx) != PLUS)
1122 return;
1124 if (REG_P (new_rtx))
1126 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1127 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1128 return;
1130 else if (GET_CODE (new_rtx) != PLUS)
1131 return;
1133 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1134 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1135 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1136 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1137 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1138 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1139 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1140 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1142 return;
1145 /* Otherwise add an alias for the temp's address. */
1146 insert_temp_slot_address (new_rtx, p);
1149 /* If X could be a reference to a temporary slot, mark the fact that its
1150 address was taken. */
1152 void
1153 mark_temp_addr_taken (rtx x)
1155 struct temp_slot *p;
1157 if (x == 0)
1158 return;
1160 /* If X is not in memory or is at a constant address, it cannot be in
1161 a temporary slot. */
1162 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1163 return;
1165 p = find_temp_slot_from_address (XEXP (x, 0));
1166 if (p != 0)
1167 p->addr_taken = 1;
1170 /* If X could be a reference to a temporary slot, mark that slot as
1171 belonging to the to one level higher than the current level. If X
1172 matched one of our slots, just mark that one. Otherwise, we can't
1173 easily predict which it is, so upgrade all of them. Kept slots
1174 need not be touched.
1176 This is called when an ({...}) construct occurs and a statement
1177 returns a value in memory. */
1179 void
1180 preserve_temp_slots (rtx x)
1182 struct temp_slot *p = 0, *next;
1184 /* If there is no result, we still might have some objects whose address
1185 were taken, so we need to make sure they stay around. */
1186 if (x == 0)
1188 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1190 next = p->next;
1192 if (p->addr_taken)
1193 move_slot_to_level (p, temp_slot_level - 1);
1196 return;
1199 /* If X is a register that is being used as a pointer, see if we have
1200 a temporary slot we know it points to. To be consistent with
1201 the code below, we really should preserve all non-kept slots
1202 if we can't find a match, but that seems to be much too costly. */
1203 if (REG_P (x) && REG_POINTER (x))
1204 p = find_temp_slot_from_address (x);
1206 /* If X is not in memory or is at a constant address, it cannot be in
1207 a temporary slot, but it can contain something whose address was
1208 taken. */
1209 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1211 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1213 next = p->next;
1215 if (p->addr_taken)
1216 move_slot_to_level (p, temp_slot_level - 1);
1219 return;
1222 /* First see if we can find a match. */
1223 if (p == 0)
1224 p = find_temp_slot_from_address (XEXP (x, 0));
1226 if (p != 0)
1228 /* Move everything at our level whose address was taken to our new
1229 level in case we used its address. */
1230 struct temp_slot *q;
1232 if (p->level == temp_slot_level)
1234 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1236 next = q->next;
1238 if (p != q && q->addr_taken)
1239 move_slot_to_level (q, temp_slot_level - 1);
1242 move_slot_to_level (p, temp_slot_level - 1);
1243 p->addr_taken = 0;
1245 return;
1248 /* Otherwise, preserve all non-kept slots at this level. */
1249 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1251 next = p->next;
1253 if (!p->keep)
1254 move_slot_to_level (p, temp_slot_level - 1);
1258 /* Free all temporaries used so far. This is normally called at the
1259 end of generating code for a statement. */
1261 void
1262 free_temp_slots (void)
1264 struct temp_slot *p, *next;
1265 bool some_available = false;
1267 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1269 next = p->next;
1271 if (!p->keep)
1273 make_slot_available (p);
1274 some_available = true;
1278 if (some_available)
1280 remove_unused_temp_slot_addresses ();
1281 combine_temp_slots ();
1285 /* Push deeper into the nesting level for stack temporaries. */
1287 void
1288 push_temp_slots (void)
1290 temp_slot_level++;
1293 /* Pop a temporary nesting level. All slots in use in the current level
1294 are freed. */
1296 void
1297 pop_temp_slots (void)
1299 struct temp_slot *p, *next;
1300 bool some_available = false;
1302 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1304 next = p->next;
1305 make_slot_available (p);
1306 some_available = true;
1309 if (some_available)
1311 remove_unused_temp_slot_addresses ();
1312 combine_temp_slots ();
1315 temp_slot_level--;
1318 /* Initialize temporary slots. */
1320 void
1321 init_temp_slots (void)
1323 /* We have not allocated any temporaries yet. */
1324 avail_temp_slots = 0;
1325 used_temp_slots = 0;
1326 temp_slot_level = 0;
1328 /* Set up the table to map addresses to temp slots. */
1329 if (! temp_slot_address_table)
1330 temp_slot_address_table = htab_create_ggc (32,
1331 temp_slot_address_hash,
1332 temp_slot_address_eq,
1333 NULL);
1334 else
1335 htab_empty (temp_slot_address_table);
1338 /* These routines are responsible for converting virtual register references
1339 to the actual hard register references once RTL generation is complete.
1341 The following four variables are used for communication between the
1342 routines. They contain the offsets of the virtual registers from their
1343 respective hard registers. */
1345 static int in_arg_offset;
1346 static int var_offset;
1347 static int dynamic_offset;
1348 static int out_arg_offset;
1349 static int cfa_offset;
1351 /* In most machines, the stack pointer register is equivalent to the bottom
1352 of the stack. */
1354 #ifndef STACK_POINTER_OFFSET
1355 #define STACK_POINTER_OFFSET 0
1356 #endif
1358 /* If not defined, pick an appropriate default for the offset of dynamically
1359 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1360 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1362 #ifndef STACK_DYNAMIC_OFFSET
1364 /* The bottom of the stack points to the actual arguments. If
1365 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1366 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1367 stack space for register parameters is not pushed by the caller, but
1368 rather part of the fixed stack areas and hence not included in
1369 `crtl->outgoing_args_size'. Nevertheless, we must allow
1370 for it when allocating stack dynamic objects. */
1372 #if defined(REG_PARM_STACK_SPACE)
1373 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1374 ((ACCUMULATE_OUTGOING_ARGS \
1375 ? (crtl->outgoing_args_size \
1376 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1377 : REG_PARM_STACK_SPACE (FNDECL))) \
1378 : 0) + (STACK_POINTER_OFFSET))
1379 #else
1380 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1381 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1382 + (STACK_POINTER_OFFSET))
1383 #endif
1384 #endif
1387 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1388 is a virtual register, return the equivalent hard register and set the
1389 offset indirectly through the pointer. Otherwise, return 0. */
1391 static rtx
1392 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1394 rtx new_rtx;
1395 HOST_WIDE_INT offset;
1397 if (x == virtual_incoming_args_rtx)
1399 if (stack_realign_drap)
1401 /* Replace virtual_incoming_args_rtx with internal arg
1402 pointer if DRAP is used to realign stack. */
1403 new_rtx = crtl->args.internal_arg_pointer;
1404 offset = 0;
1406 else
1407 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1409 else if (x == virtual_stack_vars_rtx)
1410 new_rtx = frame_pointer_rtx, offset = var_offset;
1411 else if (x == virtual_stack_dynamic_rtx)
1412 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1413 else if (x == virtual_outgoing_args_rtx)
1414 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1415 else if (x == virtual_cfa_rtx)
1417 #ifdef FRAME_POINTER_CFA_OFFSET
1418 new_rtx = frame_pointer_rtx;
1419 #else
1420 new_rtx = arg_pointer_rtx;
1421 #endif
1422 offset = cfa_offset;
1424 else if (x == virtual_preferred_stack_boundary_rtx)
1426 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1427 offset = 0;
1429 else
1430 return NULL_RTX;
1432 *poffset = offset;
1433 return new_rtx;
1436 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1437 Instantiate any virtual registers present inside of *LOC. The expression
1438 is simplified, as much as possible, but is not to be considered "valid"
1439 in any sense implied by the target. If any change is made, set CHANGED
1440 to true. */
1442 static int
1443 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1445 HOST_WIDE_INT offset;
1446 bool *changed = (bool *) data;
1447 rtx x, new_rtx;
1449 x = *loc;
1450 if (x == 0)
1451 return 0;
1453 switch (GET_CODE (x))
1455 case REG:
1456 new_rtx = instantiate_new_reg (x, &offset);
1457 if (new_rtx)
1459 *loc = plus_constant (new_rtx, offset);
1460 if (changed)
1461 *changed = true;
1463 return -1;
1465 case PLUS:
1466 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1467 if (new_rtx)
1469 new_rtx = plus_constant (new_rtx, offset);
1470 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1471 if (changed)
1472 *changed = true;
1473 return -1;
1476 /* FIXME -- from old code */
1477 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1478 we can commute the PLUS and SUBREG because pointers into the
1479 frame are well-behaved. */
1480 break;
1482 default:
1483 break;
1486 return 0;
1489 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1490 matches the predicate for insn CODE operand OPERAND. */
1492 static int
1493 safe_insn_predicate (int code, int operand, rtx x)
1495 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1498 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1499 registers present inside of insn. The result will be a valid insn. */
1501 static void
1502 instantiate_virtual_regs_in_insn (rtx insn)
1504 HOST_WIDE_INT offset;
1505 int insn_code, i;
1506 bool any_change = false;
1507 rtx set, new_rtx, x, seq;
1509 /* There are some special cases to be handled first. */
1510 set = single_set (insn);
1511 if (set)
1513 /* We're allowed to assign to a virtual register. This is interpreted
1514 to mean that the underlying register gets assigned the inverse
1515 transformation. This is used, for example, in the handling of
1516 non-local gotos. */
1517 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1518 if (new_rtx)
1520 start_sequence ();
1522 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1523 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1524 GEN_INT (-offset));
1525 x = force_operand (x, new_rtx);
1526 if (x != new_rtx)
1527 emit_move_insn (new_rtx, x);
1529 seq = get_insns ();
1530 end_sequence ();
1532 emit_insn_before (seq, insn);
1533 delete_insn (insn);
1534 return;
1537 /* Handle a straight copy from a virtual register by generating a
1538 new add insn. The difference between this and falling through
1539 to the generic case is avoiding a new pseudo and eliminating a
1540 move insn in the initial rtl stream. */
1541 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1542 if (new_rtx && offset != 0
1543 && REG_P (SET_DEST (set))
1544 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1546 start_sequence ();
1548 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1549 new_rtx, GEN_INT (offset), SET_DEST (set),
1550 1, OPTAB_LIB_WIDEN);
1551 if (x != SET_DEST (set))
1552 emit_move_insn (SET_DEST (set), x);
1554 seq = get_insns ();
1555 end_sequence ();
1557 emit_insn_before (seq, insn);
1558 delete_insn (insn);
1559 return;
1562 extract_insn (insn);
1563 insn_code = INSN_CODE (insn);
1565 /* Handle a plus involving a virtual register by determining if the
1566 operands remain valid if they're modified in place. */
1567 if (GET_CODE (SET_SRC (set)) == PLUS
1568 && recog_data.n_operands >= 3
1569 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1570 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1571 && CONST_INT_P (recog_data.operand[2])
1572 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1574 offset += INTVAL (recog_data.operand[2]);
1576 /* If the sum is zero, then replace with a plain move. */
1577 if (offset == 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1581 start_sequence ();
1582 emit_move_insn (SET_DEST (set), new_rtx);
1583 seq = get_insns ();
1584 end_sequence ();
1586 emit_insn_before (seq, insn);
1587 delete_insn (insn);
1588 return;
1591 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1593 /* Using validate_change and apply_change_group here leaves
1594 recog_data in an invalid state. Since we know exactly what
1595 we want to check, do those two by hand. */
1596 if (safe_insn_predicate (insn_code, 1, new_rtx)
1597 && safe_insn_predicate (insn_code, 2, x))
1599 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1600 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1601 any_change = true;
1603 /* Fall through into the regular operand fixup loop in
1604 order to take care of operands other than 1 and 2. */
1608 else
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1614 /* In the general case, we expect virtual registers to appear only in
1615 operands, and then only as either bare registers or inside memories. */
1616 for (i = 0; i < recog_data.n_operands; ++i)
1618 x = recog_data.operand[i];
1619 switch (GET_CODE (x))
1621 case MEM:
1623 rtx addr = XEXP (x, 0);
1624 bool changed = false;
1626 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1627 if (!changed)
1628 continue;
1630 start_sequence ();
1631 x = replace_equiv_address (x, addr);
1632 /* It may happen that the address with the virtual reg
1633 was valid (e.g. based on the virtual stack reg, which might
1634 be acceptable to the predicates with all offsets), whereas
1635 the address now isn't anymore, for instance when the address
1636 is still offsetted, but the base reg isn't virtual-stack-reg
1637 anymore. Below we would do a force_reg on the whole operand,
1638 but this insn might actually only accept memory. Hence,
1639 before doing that last resort, try to reload the address into
1640 a register, so this operand stays a MEM. */
1641 if (!safe_insn_predicate (insn_code, i, x))
1643 addr = force_reg (GET_MODE (addr), addr);
1644 x = replace_equiv_address (x, addr);
1646 seq = get_insns ();
1647 end_sequence ();
1648 if (seq)
1649 emit_insn_before (seq, insn);
1651 break;
1653 case REG:
1654 new_rtx = instantiate_new_reg (x, &offset);
1655 if (new_rtx == NULL)
1656 continue;
1657 if (offset == 0)
1658 x = new_rtx;
1659 else
1661 start_sequence ();
1663 /* Careful, special mode predicates may have stuff in
1664 insn_data[insn_code].operand[i].mode that isn't useful
1665 to us for computing a new value. */
1666 /* ??? Recognize address_operand and/or "p" constraints
1667 to see if (plus new offset) is a valid before we put
1668 this through expand_simple_binop. */
1669 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1670 GEN_INT (offset), NULL_RTX,
1671 1, OPTAB_LIB_WIDEN);
1672 seq = get_insns ();
1673 end_sequence ();
1674 emit_insn_before (seq, insn);
1676 break;
1678 case SUBREG:
1679 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1680 if (new_rtx == NULL)
1681 continue;
1682 if (offset != 0)
1684 start_sequence ();
1685 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1686 GEN_INT (offset), NULL_RTX,
1687 1, OPTAB_LIB_WIDEN);
1688 seq = get_insns ();
1689 end_sequence ();
1690 emit_insn_before (seq, insn);
1692 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1693 GET_MODE (new_rtx), SUBREG_BYTE (x));
1694 gcc_assert (x);
1695 break;
1697 default:
1698 continue;
1701 /* At this point, X contains the new value for the operand.
1702 Validate the new value vs the insn predicate. Note that
1703 asm insns will have insn_code -1 here. */
1704 if (!safe_insn_predicate (insn_code, i, x))
1706 start_sequence ();
1707 if (REG_P (x))
1709 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1710 x = copy_to_reg (x);
1712 else
1713 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1714 seq = get_insns ();
1715 end_sequence ();
1716 if (seq)
1717 emit_insn_before (seq, insn);
1720 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1721 any_change = true;
1724 if (any_change)
1726 /* Propagate operand changes into the duplicates. */
1727 for (i = 0; i < recog_data.n_dups; ++i)
1728 *recog_data.dup_loc[i]
1729 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1731 /* Force re-recognition of the instruction for validation. */
1732 INSN_CODE (insn) = -1;
1735 if (asm_noperands (PATTERN (insn)) >= 0)
1737 if (!check_asm_operands (PATTERN (insn)))
1739 error_for_asm (insn, "impossible constraint in %<asm%>");
1740 delete_insn (insn);
1743 else
1745 if (recog_memoized (insn) < 0)
1746 fatal_insn_not_found (insn);
1750 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1751 do any instantiation required. */
1753 void
1754 instantiate_decl_rtl (rtx x)
1756 rtx addr;
1758 if (x == 0)
1759 return;
1761 /* If this is a CONCAT, recurse for the pieces. */
1762 if (GET_CODE (x) == CONCAT)
1764 instantiate_decl_rtl (XEXP (x, 0));
1765 instantiate_decl_rtl (XEXP (x, 1));
1766 return;
1769 /* If this is not a MEM, no need to do anything. Similarly if the
1770 address is a constant or a register that is not a virtual register. */
1771 if (!MEM_P (x))
1772 return;
1774 addr = XEXP (x, 0);
1775 if (CONSTANT_P (addr)
1776 || (REG_P (addr)
1777 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1778 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1779 return;
1781 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1784 /* Helper for instantiate_decls called via walk_tree: Process all decls
1785 in the given DECL_VALUE_EXPR. */
1787 static tree
1788 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1790 tree t = *tp;
1791 if (! EXPR_P (t))
1793 *walk_subtrees = 0;
1794 if (DECL_P (t))
1796 if (DECL_RTL_SET_P (t))
1797 instantiate_decl_rtl (DECL_RTL (t));
1798 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1799 && DECL_INCOMING_RTL (t))
1800 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1801 if ((TREE_CODE (t) == VAR_DECL
1802 || TREE_CODE (t) == RESULT_DECL)
1803 && DECL_HAS_VALUE_EXPR_P (t))
1805 tree v = DECL_VALUE_EXPR (t);
1806 walk_tree (&v, instantiate_expr, NULL, NULL);
1810 return NULL;
1813 /* Subroutine of instantiate_decls: Process all decls in the given
1814 BLOCK node and all its subblocks. */
1816 static void
1817 instantiate_decls_1 (tree let)
1819 tree t;
1821 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1823 if (DECL_RTL_SET_P (t))
1824 instantiate_decl_rtl (DECL_RTL (t));
1825 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1827 tree v = DECL_VALUE_EXPR (t);
1828 walk_tree (&v, instantiate_expr, NULL, NULL);
1832 /* Process all subblocks. */
1833 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1834 instantiate_decls_1 (t);
1837 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1838 all virtual registers in their DECL_RTL's. */
1840 static void
1841 instantiate_decls (tree fndecl)
1843 tree decl;
1844 unsigned ix;
1846 /* Process all parameters of the function. */
1847 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1849 instantiate_decl_rtl (DECL_RTL (decl));
1850 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1851 if (DECL_HAS_VALUE_EXPR_P (decl))
1853 tree v = DECL_VALUE_EXPR (decl);
1854 walk_tree (&v, instantiate_expr, NULL, NULL);
1858 if ((decl = DECL_RESULT (fndecl))
1859 && TREE_CODE (decl) == RESULT_DECL)
1861 if (DECL_RTL_SET_P (decl))
1862 instantiate_decl_rtl (DECL_RTL (decl));
1863 if (DECL_HAS_VALUE_EXPR_P (decl))
1865 tree v = DECL_VALUE_EXPR (decl);
1866 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 /* Now process all variables defined in the function or its subblocks. */
1871 instantiate_decls_1 (DECL_INITIAL (fndecl));
1873 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1874 if (DECL_RTL_SET_P (decl))
1875 instantiate_decl_rtl (DECL_RTL (decl));
1876 VEC_free (tree, gc, cfun->local_decls);
1879 /* Pass through the INSNS of function FNDECL and convert virtual register
1880 references to hard register references. */
1882 static unsigned int
1883 instantiate_virtual_regs (void)
1885 rtx insn;
1887 /* Compute the offsets to use for this function. */
1888 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1889 var_offset = STARTING_FRAME_OFFSET;
1890 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1891 out_arg_offset = STACK_POINTER_OFFSET;
1892 #ifdef FRAME_POINTER_CFA_OFFSET
1893 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1894 #else
1895 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1896 #endif
1898 /* Initialize recognition, indicating that volatile is OK. */
1899 init_recog ();
1901 /* Scan through all the insns, instantiating every virtual register still
1902 present. */
1903 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1904 if (INSN_P (insn))
1906 /* These patterns in the instruction stream can never be recognized.
1907 Fortunately, they shouldn't contain virtual registers either. */
1908 if (GET_CODE (PATTERN (insn)) == USE
1909 || GET_CODE (PATTERN (insn)) == CLOBBER
1910 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1911 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1912 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1913 continue;
1914 else if (DEBUG_INSN_P (insn))
1915 for_each_rtx (&INSN_VAR_LOCATION (insn),
1916 instantiate_virtual_regs_in_rtx, NULL);
1917 else
1918 instantiate_virtual_regs_in_insn (insn);
1920 if (INSN_DELETED_P (insn))
1921 continue;
1923 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1925 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1926 if (CALL_P (insn))
1927 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1928 instantiate_virtual_regs_in_rtx, NULL);
1931 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1932 instantiate_decls (current_function_decl);
1934 targetm.instantiate_decls ();
1936 /* Indicate that, from now on, assign_stack_local should use
1937 frame_pointer_rtx. */
1938 virtuals_instantiated = 1;
1940 return 0;
1943 struct rtl_opt_pass pass_instantiate_virtual_regs =
1946 RTL_PASS,
1947 "vregs", /* name */
1948 NULL, /* gate */
1949 instantiate_virtual_regs, /* execute */
1950 NULL, /* sub */
1951 NULL, /* next */
1952 0, /* static_pass_number */
1953 TV_NONE, /* tv_id */
1954 0, /* properties_required */
1955 0, /* properties_provided */
1956 0, /* properties_destroyed */
1957 0, /* todo_flags_start */
1958 0 /* todo_flags_finish */
1963 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1964 This means a type for which function calls must pass an address to the
1965 function or get an address back from the function.
1966 EXP may be a type node or an expression (whose type is tested). */
1969 aggregate_value_p (const_tree exp, const_tree fntype)
1971 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1972 int i, regno, nregs;
1973 rtx reg;
1975 if (fntype)
1976 switch (TREE_CODE (fntype))
1978 case CALL_EXPR:
1980 tree fndecl = get_callee_fndecl (fntype);
1981 fntype = (fndecl
1982 ? TREE_TYPE (fndecl)
1983 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1985 break;
1986 case FUNCTION_DECL:
1987 fntype = TREE_TYPE (fntype);
1988 break;
1989 case FUNCTION_TYPE:
1990 case METHOD_TYPE:
1991 break;
1992 case IDENTIFIER_NODE:
1993 fntype = NULL_TREE;
1994 break;
1995 default:
1996 /* We don't expect other tree types here. */
1997 gcc_unreachable ();
2000 if (VOID_TYPE_P (type))
2001 return 0;
2003 /* If a record should be passed the same as its first (and only) member
2004 don't pass it as an aggregate. */
2005 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2006 return aggregate_value_p (first_field (type), fntype);
2008 /* If the front end has decided that this needs to be passed by
2009 reference, do so. */
2010 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2011 && DECL_BY_REFERENCE (exp))
2012 return 1;
2014 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2015 if (fntype && TREE_ADDRESSABLE (fntype))
2016 return 1;
2018 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2019 and thus can't be returned in registers. */
2020 if (TREE_ADDRESSABLE (type))
2021 return 1;
2023 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2024 return 1;
2026 if (targetm.calls.return_in_memory (type, fntype))
2027 return 1;
2029 /* Make sure we have suitable call-clobbered regs to return
2030 the value in; if not, we must return it in memory. */
2031 reg = hard_function_value (type, 0, fntype, 0);
2033 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2034 it is OK. */
2035 if (!REG_P (reg))
2036 return 0;
2038 regno = REGNO (reg);
2039 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2040 for (i = 0; i < nregs; i++)
2041 if (! call_used_regs[regno + i])
2042 return 1;
2044 return 0;
2047 /* Return true if we should assign DECL a pseudo register; false if it
2048 should live on the local stack. */
2050 bool
2051 use_register_for_decl (const_tree decl)
2053 if (!targetm.calls.allocate_stack_slots_for_args())
2054 return true;
2056 /* Honor volatile. */
2057 if (TREE_SIDE_EFFECTS (decl))
2058 return false;
2060 /* Honor addressability. */
2061 if (TREE_ADDRESSABLE (decl))
2062 return false;
2064 /* Only register-like things go in registers. */
2065 if (DECL_MODE (decl) == BLKmode)
2066 return false;
2068 /* If -ffloat-store specified, don't put explicit float variables
2069 into registers. */
2070 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2071 propagates values across these stores, and it probably shouldn't. */
2072 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2073 return false;
2075 /* If we're not interested in tracking debugging information for
2076 this decl, then we can certainly put it in a register. */
2077 if (DECL_IGNORED_P (decl))
2078 return true;
2080 if (optimize)
2081 return true;
2083 if (!DECL_REGISTER (decl))
2084 return false;
2086 switch (TREE_CODE (TREE_TYPE (decl)))
2088 case RECORD_TYPE:
2089 case UNION_TYPE:
2090 case QUAL_UNION_TYPE:
2091 /* When not optimizing, disregard register keyword for variables with
2092 types containing methods, otherwise the methods won't be callable
2093 from the debugger. */
2094 if (TYPE_METHODS (TREE_TYPE (decl)))
2095 return false;
2096 break;
2097 default:
2098 break;
2101 return true;
2104 /* Return true if TYPE should be passed by invisible reference. */
2106 bool
2107 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2108 tree type, bool named_arg)
2110 if (type)
2112 /* If this type contains non-trivial constructors, then it is
2113 forbidden for the middle-end to create any new copies. */
2114 if (TREE_ADDRESSABLE (type))
2115 return true;
2117 /* GCC post 3.4 passes *all* variable sized types by reference. */
2118 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2119 return true;
2121 /* If a record type should be passed the same as its first (and only)
2122 member, use the type and mode of that member. */
2123 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2125 type = TREE_TYPE (first_field (type));
2126 mode = TYPE_MODE (type);
2130 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2133 /* Return true if TYPE, which is passed by reference, should be callee
2134 copied instead of caller copied. */
2136 bool
2137 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2138 tree type, bool named_arg)
2140 if (type && TREE_ADDRESSABLE (type))
2141 return false;
2142 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2145 /* Structures to communicate between the subroutines of assign_parms.
2146 The first holds data persistent across all parameters, the second
2147 is cleared out for each parameter. */
2149 struct assign_parm_data_all
2151 CUMULATIVE_ARGS args_so_far;
2152 struct args_size stack_args_size;
2153 tree function_result_decl;
2154 tree orig_fnargs;
2155 rtx first_conversion_insn;
2156 rtx last_conversion_insn;
2157 HOST_WIDE_INT pretend_args_size;
2158 HOST_WIDE_INT extra_pretend_bytes;
2159 int reg_parm_stack_space;
2162 struct assign_parm_data_one
2164 tree nominal_type;
2165 tree passed_type;
2166 rtx entry_parm;
2167 rtx stack_parm;
2168 enum machine_mode nominal_mode;
2169 enum machine_mode passed_mode;
2170 enum machine_mode promoted_mode;
2171 struct locate_and_pad_arg_data locate;
2172 int partial;
2173 BOOL_BITFIELD named_arg : 1;
2174 BOOL_BITFIELD passed_pointer : 1;
2175 BOOL_BITFIELD on_stack : 1;
2176 BOOL_BITFIELD loaded_in_reg : 1;
2179 /* A subroutine of assign_parms. Initialize ALL. */
2181 static void
2182 assign_parms_initialize_all (struct assign_parm_data_all *all)
2184 tree fntype ATTRIBUTE_UNUSED;
2186 memset (all, 0, sizeof (*all));
2188 fntype = TREE_TYPE (current_function_decl);
2190 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2191 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2192 #else
2193 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2194 current_function_decl, -1);
2195 #endif
2197 #ifdef REG_PARM_STACK_SPACE
2198 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2199 #endif
2202 /* If ARGS contains entries with complex types, split the entry into two
2203 entries of the component type. Return a new list of substitutions are
2204 needed, else the old list. */
2206 static void
2207 split_complex_args (VEC(tree, heap) **args)
2209 unsigned i;
2210 tree p;
2212 FOR_EACH_VEC_ELT (tree, *args, i, p)
2214 tree type = TREE_TYPE (p);
2215 if (TREE_CODE (type) == COMPLEX_TYPE
2216 && targetm.calls.split_complex_arg (type))
2218 tree decl;
2219 tree subtype = TREE_TYPE (type);
2220 bool addressable = TREE_ADDRESSABLE (p);
2222 /* Rewrite the PARM_DECL's type with its component. */
2223 p = copy_node (p);
2224 TREE_TYPE (p) = subtype;
2225 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2226 DECL_MODE (p) = VOIDmode;
2227 DECL_SIZE (p) = NULL;
2228 DECL_SIZE_UNIT (p) = NULL;
2229 /* If this arg must go in memory, put it in a pseudo here.
2230 We can't allow it to go in memory as per normal parms,
2231 because the usual place might not have the imag part
2232 adjacent to the real part. */
2233 DECL_ARTIFICIAL (p) = addressable;
2234 DECL_IGNORED_P (p) = addressable;
2235 TREE_ADDRESSABLE (p) = 0;
2236 layout_decl (p, 0);
2237 VEC_replace (tree, *args, i, p);
2239 /* Build a second synthetic decl. */
2240 decl = build_decl (EXPR_LOCATION (p),
2241 PARM_DECL, NULL_TREE, subtype);
2242 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2243 DECL_ARTIFICIAL (decl) = addressable;
2244 DECL_IGNORED_P (decl) = addressable;
2245 layout_decl (decl, 0);
2246 VEC_safe_insert (tree, heap, *args, ++i, decl);
2251 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2252 the hidden struct return argument, and (abi willing) complex args.
2253 Return the new parameter list. */
2255 static VEC(tree, heap) *
2256 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2258 tree fndecl = current_function_decl;
2259 tree fntype = TREE_TYPE (fndecl);
2260 VEC(tree, heap) *fnargs = NULL;
2261 tree arg;
2263 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2264 VEC_safe_push (tree, heap, fnargs, arg);
2266 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2268 /* If struct value address is treated as the first argument, make it so. */
2269 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2270 && ! cfun->returns_pcc_struct
2271 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2273 tree type = build_pointer_type (TREE_TYPE (fntype));
2274 tree decl;
2276 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2277 PARM_DECL, get_identifier (".result_ptr"), type);
2278 DECL_ARG_TYPE (decl) = type;
2279 DECL_ARTIFICIAL (decl) = 1;
2280 DECL_NAMELESS (decl) = 1;
2281 TREE_CONSTANT (decl) = 1;
2283 DECL_CHAIN (decl) = all->orig_fnargs;
2284 all->orig_fnargs = decl;
2285 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2287 all->function_result_decl = decl;
2290 /* If the target wants to split complex arguments into scalars, do so. */
2291 if (targetm.calls.split_complex_arg)
2292 split_complex_args (&fnargs);
2294 return fnargs;
2297 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2298 data for the parameter. Incorporate ABI specifics such as pass-by-
2299 reference and type promotion. */
2301 static void
2302 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2303 struct assign_parm_data_one *data)
2305 tree nominal_type, passed_type;
2306 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2307 int unsignedp;
2309 memset (data, 0, sizeof (*data));
2311 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2312 if (!cfun->stdarg)
2313 data->named_arg = 1; /* No variadic parms. */
2314 else if (DECL_CHAIN (parm))
2315 data->named_arg = 1; /* Not the last non-variadic parm. */
2316 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2317 data->named_arg = 1; /* Only variadic ones are unnamed. */
2318 else
2319 data->named_arg = 0; /* Treat as variadic. */
2321 nominal_type = TREE_TYPE (parm);
2322 passed_type = DECL_ARG_TYPE (parm);
2324 /* Look out for errors propagating this far. Also, if the parameter's
2325 type is void then its value doesn't matter. */
2326 if (TREE_TYPE (parm) == error_mark_node
2327 /* This can happen after weird syntax errors
2328 or if an enum type is defined among the parms. */
2329 || TREE_CODE (parm) != PARM_DECL
2330 || passed_type == NULL
2331 || VOID_TYPE_P (nominal_type))
2333 nominal_type = passed_type = void_type_node;
2334 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2335 goto egress;
2338 /* Find mode of arg as it is passed, and mode of arg as it should be
2339 during execution of this function. */
2340 passed_mode = TYPE_MODE (passed_type);
2341 nominal_mode = TYPE_MODE (nominal_type);
2343 /* If the parm is to be passed as a transparent union or record, use the
2344 type of the first field for the tests below. We have already verified
2345 that the modes are the same. */
2346 if ((TREE_CODE (passed_type) == UNION_TYPE
2347 || TREE_CODE (passed_type) == RECORD_TYPE)
2348 && TYPE_TRANSPARENT_AGGR (passed_type))
2349 passed_type = TREE_TYPE (first_field (passed_type));
2351 /* See if this arg was passed by invisible reference. */
2352 if (pass_by_reference (&all->args_so_far, passed_mode,
2353 passed_type, data->named_arg))
2355 passed_type = nominal_type = build_pointer_type (passed_type);
2356 data->passed_pointer = true;
2357 passed_mode = nominal_mode = Pmode;
2360 /* Find mode as it is passed by the ABI. */
2361 unsignedp = TYPE_UNSIGNED (passed_type);
2362 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2363 TREE_TYPE (current_function_decl), 0);
2365 egress:
2366 data->nominal_type = nominal_type;
2367 data->passed_type = passed_type;
2368 data->nominal_mode = nominal_mode;
2369 data->passed_mode = passed_mode;
2370 data->promoted_mode = promoted_mode;
2373 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2375 static void
2376 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2377 struct assign_parm_data_one *data, bool no_rtl)
2379 int varargs_pretend_bytes = 0;
2381 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2382 data->promoted_mode,
2383 data->passed_type,
2384 &varargs_pretend_bytes, no_rtl);
2386 /* If the back-end has requested extra stack space, record how much is
2387 needed. Do not change pretend_args_size otherwise since it may be
2388 nonzero from an earlier partial argument. */
2389 if (varargs_pretend_bytes > 0)
2390 all->pretend_args_size = varargs_pretend_bytes;
2393 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2394 the incoming location of the current parameter. */
2396 static void
2397 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2398 struct assign_parm_data_one *data)
2400 HOST_WIDE_INT pretend_bytes = 0;
2401 rtx entry_parm;
2402 bool in_regs;
2404 if (data->promoted_mode == VOIDmode)
2406 data->entry_parm = data->stack_parm = const0_rtx;
2407 return;
2410 entry_parm = targetm.calls.function_incoming_arg (&all->args_so_far,
2411 data->promoted_mode,
2412 data->passed_type,
2413 data->named_arg);
2415 if (entry_parm == 0)
2416 data->promoted_mode = data->passed_mode;
2418 /* Determine parm's home in the stack, in case it arrives in the stack
2419 or we should pretend it did. Compute the stack position and rtx where
2420 the argument arrives and its size.
2422 There is one complexity here: If this was a parameter that would
2423 have been passed in registers, but wasn't only because it is
2424 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2425 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2426 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2427 as it was the previous time. */
2428 in_regs = entry_parm != 0;
2429 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2430 in_regs = true;
2431 #endif
2432 if (!in_regs && !data->named_arg)
2434 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2436 rtx tem;
2437 tem = targetm.calls.function_incoming_arg (&all->args_so_far,
2438 data->promoted_mode,
2439 data->passed_type, true);
2440 in_regs = tem != NULL;
2444 /* If this parameter was passed both in registers and in the stack, use
2445 the copy on the stack. */
2446 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2447 data->passed_type))
2448 entry_parm = 0;
2450 if (entry_parm)
2452 int partial;
2454 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2455 data->promoted_mode,
2456 data->passed_type,
2457 data->named_arg);
2458 data->partial = partial;
2460 /* The caller might already have allocated stack space for the
2461 register parameters. */
2462 if (partial != 0 && all->reg_parm_stack_space == 0)
2464 /* Part of this argument is passed in registers and part
2465 is passed on the stack. Ask the prologue code to extend
2466 the stack part so that we can recreate the full value.
2468 PRETEND_BYTES is the size of the registers we need to store.
2469 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2470 stack space that the prologue should allocate.
2472 Internally, gcc assumes that the argument pointer is aligned
2473 to STACK_BOUNDARY bits. This is used both for alignment
2474 optimizations (see init_emit) and to locate arguments that are
2475 aligned to more than PARM_BOUNDARY bits. We must preserve this
2476 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2477 a stack boundary. */
2479 /* We assume at most one partial arg, and it must be the first
2480 argument on the stack. */
2481 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2483 pretend_bytes = partial;
2484 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2486 /* We want to align relative to the actual stack pointer, so
2487 don't include this in the stack size until later. */
2488 all->extra_pretend_bytes = all->pretend_args_size;
2492 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2493 entry_parm ? data->partial : 0, current_function_decl,
2494 &all->stack_args_size, &data->locate);
2496 /* Update parm_stack_boundary if this parameter is passed in the
2497 stack. */
2498 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2499 crtl->parm_stack_boundary = data->locate.boundary;
2501 /* Adjust offsets to include the pretend args. */
2502 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2503 data->locate.slot_offset.constant += pretend_bytes;
2504 data->locate.offset.constant += pretend_bytes;
2506 data->entry_parm = entry_parm;
2509 /* A subroutine of assign_parms. If there is actually space on the stack
2510 for this parm, count it in stack_args_size and return true. */
2512 static bool
2513 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2514 struct assign_parm_data_one *data)
2516 /* Trivially true if we've no incoming register. */
2517 if (data->entry_parm == NULL)
2519 /* Also true if we're partially in registers and partially not,
2520 since we've arranged to drop the entire argument on the stack. */
2521 else if (data->partial != 0)
2523 /* Also true if the target says that it's passed in both registers
2524 and on the stack. */
2525 else if (GET_CODE (data->entry_parm) == PARALLEL
2526 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2528 /* Also true if the target says that there's stack allocated for
2529 all register parameters. */
2530 else if (all->reg_parm_stack_space > 0)
2532 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2533 else
2534 return false;
2536 all->stack_args_size.constant += data->locate.size.constant;
2537 if (data->locate.size.var)
2538 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2540 return true;
2543 /* A subroutine of assign_parms. Given that this parameter is allocated
2544 stack space by the ABI, find it. */
2546 static void
2547 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2549 rtx offset_rtx, stack_parm;
2550 unsigned int align, boundary;
2552 /* If we're passing this arg using a reg, make its stack home the
2553 aligned stack slot. */
2554 if (data->entry_parm)
2555 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2556 else
2557 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2559 stack_parm = crtl->args.internal_arg_pointer;
2560 if (offset_rtx != const0_rtx)
2561 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2562 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2564 if (!data->passed_pointer)
2566 set_mem_attributes (stack_parm, parm, 1);
2567 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2568 while promoted mode's size is needed. */
2569 if (data->promoted_mode != BLKmode
2570 && data->promoted_mode != DECL_MODE (parm))
2572 set_mem_size (stack_parm,
2573 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2574 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2576 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2577 data->promoted_mode);
2578 if (offset)
2579 set_mem_offset (stack_parm,
2580 plus_constant (MEM_OFFSET (stack_parm),
2581 -offset));
2586 boundary = data->locate.boundary;
2587 align = BITS_PER_UNIT;
2589 /* If we're padding upward, we know that the alignment of the slot
2590 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2591 intentionally forcing upward padding. Otherwise we have to come
2592 up with a guess at the alignment based on OFFSET_RTX. */
2593 if (data->locate.where_pad != downward || data->entry_parm)
2594 align = boundary;
2595 else if (CONST_INT_P (offset_rtx))
2597 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2598 align = align & -align;
2600 set_mem_align (stack_parm, align);
2602 if (data->entry_parm)
2603 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2605 data->stack_parm = stack_parm;
2608 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2609 always valid and contiguous. */
2611 static void
2612 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2614 rtx entry_parm = data->entry_parm;
2615 rtx stack_parm = data->stack_parm;
2617 /* If this parm was passed part in regs and part in memory, pretend it
2618 arrived entirely in memory by pushing the register-part onto the stack.
2619 In the special case of a DImode or DFmode that is split, we could put
2620 it together in a pseudoreg directly, but for now that's not worth
2621 bothering with. */
2622 if (data->partial != 0)
2624 /* Handle calls that pass values in multiple non-contiguous
2625 locations. The Irix 6 ABI has examples of this. */
2626 if (GET_CODE (entry_parm) == PARALLEL)
2627 emit_group_store (validize_mem (stack_parm), entry_parm,
2628 data->passed_type,
2629 int_size_in_bytes (data->passed_type));
2630 else
2632 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2633 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2634 data->partial / UNITS_PER_WORD);
2637 entry_parm = stack_parm;
2640 /* If we didn't decide this parm came in a register, by default it came
2641 on the stack. */
2642 else if (entry_parm == NULL)
2643 entry_parm = stack_parm;
2645 /* When an argument is passed in multiple locations, we can't make use
2646 of this information, but we can save some copying if the whole argument
2647 is passed in a single register. */
2648 else if (GET_CODE (entry_parm) == PARALLEL
2649 && data->nominal_mode != BLKmode
2650 && data->passed_mode != BLKmode)
2652 size_t i, len = XVECLEN (entry_parm, 0);
2654 for (i = 0; i < len; i++)
2655 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2656 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2657 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2658 == data->passed_mode)
2659 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2661 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2662 break;
2666 data->entry_parm = entry_parm;
2669 /* A subroutine of assign_parms. Reconstitute any values which were
2670 passed in multiple registers and would fit in a single register. */
2672 static void
2673 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2675 rtx entry_parm = data->entry_parm;
2677 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2678 This can be done with register operations rather than on the
2679 stack, even if we will store the reconstituted parameter on the
2680 stack later. */
2681 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2683 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2684 emit_group_store (parmreg, entry_parm, data->passed_type,
2685 GET_MODE_SIZE (GET_MODE (entry_parm)));
2686 entry_parm = parmreg;
2689 data->entry_parm = entry_parm;
2692 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2693 always valid and properly aligned. */
2695 static void
2696 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2698 rtx stack_parm = data->stack_parm;
2700 /* If we can't trust the parm stack slot to be aligned enough for its
2701 ultimate type, don't use that slot after entry. We'll make another
2702 stack slot, if we need one. */
2703 if (stack_parm
2704 && ((STRICT_ALIGNMENT
2705 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2706 || (data->nominal_type
2707 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2708 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2709 stack_parm = NULL;
2711 /* If parm was passed in memory, and we need to convert it on entry,
2712 don't store it back in that same slot. */
2713 else if (data->entry_parm == stack_parm
2714 && data->nominal_mode != BLKmode
2715 && data->nominal_mode != data->passed_mode)
2716 stack_parm = NULL;
2718 /* If stack protection is in effect for this function, don't leave any
2719 pointers in their passed stack slots. */
2720 else if (crtl->stack_protect_guard
2721 && (flag_stack_protect == 2
2722 || data->passed_pointer
2723 || POINTER_TYPE_P (data->nominal_type)))
2724 stack_parm = NULL;
2726 data->stack_parm = stack_parm;
2729 /* A subroutine of assign_parms. Return true if the current parameter
2730 should be stored as a BLKmode in the current frame. */
2732 static bool
2733 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2735 if (data->nominal_mode == BLKmode)
2736 return true;
2737 if (GET_MODE (data->entry_parm) == BLKmode)
2738 return true;
2740 #ifdef BLOCK_REG_PADDING
2741 /* Only assign_parm_setup_block knows how to deal with register arguments
2742 that are padded at the least significant end. */
2743 if (REG_P (data->entry_parm)
2744 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2745 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2746 == (BYTES_BIG_ENDIAN ? upward : downward)))
2747 return true;
2748 #endif
2750 return false;
2753 /* A subroutine of assign_parms. Arrange for the parameter to be
2754 present and valid in DATA->STACK_RTL. */
2756 static void
2757 assign_parm_setup_block (struct assign_parm_data_all *all,
2758 tree parm, struct assign_parm_data_one *data)
2760 rtx entry_parm = data->entry_parm;
2761 rtx stack_parm = data->stack_parm;
2762 HOST_WIDE_INT size;
2763 HOST_WIDE_INT size_stored;
2765 if (GET_CODE (entry_parm) == PARALLEL)
2766 entry_parm = emit_group_move_into_temps (entry_parm);
2768 size = int_size_in_bytes (data->passed_type);
2769 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2770 if (stack_parm == 0)
2772 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2773 stack_parm = assign_stack_local (BLKmode, size_stored,
2774 DECL_ALIGN (parm));
2775 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2776 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2777 set_mem_attributes (stack_parm, parm, 1);
2780 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2781 calls that pass values in multiple non-contiguous locations. */
2782 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2784 rtx mem;
2786 /* Note that we will be storing an integral number of words.
2787 So we have to be careful to ensure that we allocate an
2788 integral number of words. We do this above when we call
2789 assign_stack_local if space was not allocated in the argument
2790 list. If it was, this will not work if PARM_BOUNDARY is not
2791 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2792 if it becomes a problem. Exception is when BLKmode arrives
2793 with arguments not conforming to word_mode. */
2795 if (data->stack_parm == 0)
2797 else if (GET_CODE (entry_parm) == PARALLEL)
2799 else
2800 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2802 mem = validize_mem (stack_parm);
2804 /* Handle values in multiple non-contiguous locations. */
2805 if (GET_CODE (entry_parm) == PARALLEL)
2807 push_to_sequence2 (all->first_conversion_insn,
2808 all->last_conversion_insn);
2809 emit_group_store (mem, entry_parm, data->passed_type, size);
2810 all->first_conversion_insn = get_insns ();
2811 all->last_conversion_insn = get_last_insn ();
2812 end_sequence ();
2815 else if (size == 0)
2818 /* If SIZE is that of a mode no bigger than a word, just use
2819 that mode's store operation. */
2820 else if (size <= UNITS_PER_WORD)
2822 enum machine_mode mode
2823 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2825 if (mode != BLKmode
2826 #ifdef BLOCK_REG_PADDING
2827 && (size == UNITS_PER_WORD
2828 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2829 != (BYTES_BIG_ENDIAN ? upward : downward)))
2830 #endif
2833 rtx reg;
2835 /* We are really truncating a word_mode value containing
2836 SIZE bytes into a value of mode MODE. If such an
2837 operation requires no actual instructions, we can refer
2838 to the value directly in mode MODE, otherwise we must
2839 start with the register in word_mode and explicitly
2840 convert it. */
2841 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2842 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2843 else
2845 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2846 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2848 emit_move_insn (change_address (mem, mode, 0), reg);
2851 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2852 machine must be aligned to the left before storing
2853 to memory. Note that the previous test doesn't
2854 handle all cases (e.g. SIZE == 3). */
2855 else if (size != UNITS_PER_WORD
2856 #ifdef BLOCK_REG_PADDING
2857 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2858 == downward)
2859 #else
2860 && BYTES_BIG_ENDIAN
2861 #endif
2864 rtx tem, x;
2865 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2866 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2868 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2869 tem = change_address (mem, word_mode, 0);
2870 emit_move_insn (tem, x);
2872 else
2873 move_block_from_reg (REGNO (entry_parm), mem,
2874 size_stored / UNITS_PER_WORD);
2876 else
2877 move_block_from_reg (REGNO (entry_parm), mem,
2878 size_stored / UNITS_PER_WORD);
2880 else if (data->stack_parm == 0)
2882 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2883 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2884 BLOCK_OP_NORMAL);
2885 all->first_conversion_insn = get_insns ();
2886 all->last_conversion_insn = get_last_insn ();
2887 end_sequence ();
2890 data->stack_parm = stack_parm;
2891 SET_DECL_RTL (parm, stack_parm);
2894 /* A subroutine of assign_parm_setup_reg, called through note_stores.
2895 This collects sets and clobbers of hard registers in a HARD_REG_SET,
2896 which is pointed to by DATA. */
2897 static void
2898 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2900 HARD_REG_SET *pset = (HARD_REG_SET *)data;
2901 if (REG_P (x) && HARD_REGISTER_P (x))
2902 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
2905 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2906 parameter. Get it there. Perform all ABI specified conversions. */
2908 static void
2909 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2910 struct assign_parm_data_one *data)
2912 rtx parmreg, validated_mem;
2913 rtx equiv_stack_parm;
2914 enum machine_mode promoted_nominal_mode;
2915 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2916 bool did_conversion = false;
2917 bool need_conversion, moved;
2919 /* Store the parm in a pseudoregister during the function, but we may
2920 need to do it in a wider mode. Using 2 here makes the result
2921 consistent with promote_decl_mode and thus expand_expr_real_1. */
2922 promoted_nominal_mode
2923 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2924 TREE_TYPE (current_function_decl), 2);
2926 parmreg = gen_reg_rtx (promoted_nominal_mode);
2928 if (!DECL_ARTIFICIAL (parm))
2929 mark_user_reg (parmreg);
2931 /* If this was an item that we received a pointer to,
2932 set DECL_RTL appropriately. */
2933 if (data->passed_pointer)
2935 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2936 set_mem_attributes (x, parm, 1);
2937 SET_DECL_RTL (parm, x);
2939 else
2940 SET_DECL_RTL (parm, parmreg);
2942 assign_parm_remove_parallels (data);
2944 /* Copy the value into the register, thus bridging between
2945 assign_parm_find_data_types and expand_expr_real_1. */
2947 equiv_stack_parm = data->stack_parm;
2948 validated_mem = validize_mem (data->entry_parm);
2950 need_conversion = (data->nominal_mode != data->passed_mode
2951 || promoted_nominal_mode != data->promoted_mode);
2952 moved = false;
2954 if (need_conversion
2955 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2956 && data->nominal_mode == data->passed_mode
2957 && data->nominal_mode == GET_MODE (data->entry_parm))
2959 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2960 mode, by the caller. We now have to convert it to
2961 NOMINAL_MODE, if different. However, PARMREG may be in
2962 a different mode than NOMINAL_MODE if it is being stored
2963 promoted.
2965 If ENTRY_PARM is a hard register, it might be in a register
2966 not valid for operating in its mode (e.g., an odd-numbered
2967 register for a DFmode). In that case, moves are the only
2968 thing valid, so we can't do a convert from there. This
2969 occurs when the calling sequence allow such misaligned
2970 usages.
2972 In addition, the conversion may involve a call, which could
2973 clobber parameters which haven't been copied to pseudo
2974 registers yet.
2976 First, we try to emit an insn which performs the necessary
2977 conversion. We verify that this insn does not clobber any
2978 hard registers. */
2980 enum insn_code icode;
2981 rtx op0, op1;
2983 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2984 unsignedp);
2986 op0 = parmreg;
2987 op1 = validated_mem;
2988 if (icode != CODE_FOR_nothing
2989 && insn_operand_matches (icode, 0, op0)
2990 && insn_operand_matches (icode, 1, op1))
2992 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2993 rtx insn, insns;
2994 HARD_REG_SET hardregs;
2996 start_sequence ();
2997 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
2998 data->passed_mode, unsignedp);
2999 emit_insn (insn);
3000 insns = get_insns ();
3002 moved = true;
3003 CLEAR_HARD_REG_SET (hardregs);
3004 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3006 if (INSN_P (insn))
3007 note_stores (PATTERN (insn), record_hard_reg_sets,
3008 &hardregs);
3009 if (!hard_reg_set_empty_p (hardregs))
3010 moved = false;
3013 end_sequence ();
3015 if (moved)
3017 emit_insn (insns);
3018 if (equiv_stack_parm != NULL_RTX)
3019 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3020 equiv_stack_parm);
3025 if (moved)
3026 /* Nothing to do. */
3028 else if (need_conversion)
3030 /* We did not have an insn to convert directly, or the sequence
3031 generated appeared unsafe. We must first copy the parm to a
3032 pseudo reg, and save the conversion until after all
3033 parameters have been moved. */
3035 int save_tree_used;
3036 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3038 emit_move_insn (tempreg, validated_mem);
3040 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3041 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3043 if (GET_CODE (tempreg) == SUBREG
3044 && GET_MODE (tempreg) == data->nominal_mode
3045 && REG_P (SUBREG_REG (tempreg))
3046 && data->nominal_mode == data->passed_mode
3047 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3048 && GET_MODE_SIZE (GET_MODE (tempreg))
3049 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3051 /* The argument is already sign/zero extended, so note it
3052 into the subreg. */
3053 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3054 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3057 /* TREE_USED gets set erroneously during expand_assignment. */
3058 save_tree_used = TREE_USED (parm);
3059 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3060 TREE_USED (parm) = save_tree_used;
3061 all->first_conversion_insn = get_insns ();
3062 all->last_conversion_insn = get_last_insn ();
3063 end_sequence ();
3065 did_conversion = true;
3067 else
3068 emit_move_insn (parmreg, validated_mem);
3070 /* If we were passed a pointer but the actual value can safely live
3071 in a register, put it in one. */
3072 if (data->passed_pointer
3073 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3074 /* If by-reference argument was promoted, demote it. */
3075 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3076 || use_register_for_decl (parm)))
3078 /* We can't use nominal_mode, because it will have been set to
3079 Pmode above. We must use the actual mode of the parm. */
3080 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3081 mark_user_reg (parmreg);
3083 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3085 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3086 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3088 push_to_sequence2 (all->first_conversion_insn,
3089 all->last_conversion_insn);
3090 emit_move_insn (tempreg, DECL_RTL (parm));
3091 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3092 emit_move_insn (parmreg, tempreg);
3093 all->first_conversion_insn = get_insns ();
3094 all->last_conversion_insn = get_last_insn ();
3095 end_sequence ();
3097 did_conversion = true;
3099 else
3100 emit_move_insn (parmreg, DECL_RTL (parm));
3102 SET_DECL_RTL (parm, parmreg);
3104 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3105 now the parm. */
3106 data->stack_parm = NULL;
3109 /* Mark the register as eliminable if we did no conversion and it was
3110 copied from memory at a fixed offset, and the arg pointer was not
3111 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3112 offset formed an invalid address, such memory-equivalences as we
3113 make here would screw up life analysis for it. */
3114 if (data->nominal_mode == data->passed_mode
3115 && !did_conversion
3116 && data->stack_parm != 0
3117 && MEM_P (data->stack_parm)
3118 && data->locate.offset.var == 0
3119 && reg_mentioned_p (virtual_incoming_args_rtx,
3120 XEXP (data->stack_parm, 0)))
3122 rtx linsn = get_last_insn ();
3123 rtx sinsn, set;
3125 /* Mark complex types separately. */
3126 if (GET_CODE (parmreg) == CONCAT)
3128 enum machine_mode submode
3129 = GET_MODE_INNER (GET_MODE (parmreg));
3130 int regnor = REGNO (XEXP (parmreg, 0));
3131 int regnoi = REGNO (XEXP (parmreg, 1));
3132 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3133 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3134 GET_MODE_SIZE (submode));
3136 /* Scan backwards for the set of the real and
3137 imaginary parts. */
3138 for (sinsn = linsn; sinsn != 0;
3139 sinsn = prev_nonnote_insn (sinsn))
3141 set = single_set (sinsn);
3142 if (set == 0)
3143 continue;
3145 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3146 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3147 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3148 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3151 else if ((set = single_set (linsn)) != 0
3152 && SET_DEST (set) == parmreg)
3153 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3156 /* For pointer data type, suggest pointer register. */
3157 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3158 mark_reg_pointer (parmreg,
3159 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3162 /* A subroutine of assign_parms. Allocate stack space to hold the current
3163 parameter. Get it there. Perform all ABI specified conversions. */
3165 static void
3166 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3167 struct assign_parm_data_one *data)
3169 /* Value must be stored in the stack slot STACK_PARM during function
3170 execution. */
3171 bool to_conversion = false;
3173 assign_parm_remove_parallels (data);
3175 if (data->promoted_mode != data->nominal_mode)
3177 /* Conversion is required. */
3178 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3180 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3182 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3183 to_conversion = true;
3185 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3186 TYPE_UNSIGNED (TREE_TYPE (parm)));
3188 if (data->stack_parm)
3190 int offset = subreg_lowpart_offset (data->nominal_mode,
3191 GET_MODE (data->stack_parm));
3192 /* ??? This may need a big-endian conversion on sparc64. */
3193 data->stack_parm
3194 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3195 if (offset && MEM_OFFSET (data->stack_parm))
3196 set_mem_offset (data->stack_parm,
3197 plus_constant (MEM_OFFSET (data->stack_parm),
3198 offset));
3202 if (data->entry_parm != data->stack_parm)
3204 rtx src, dest;
3206 if (data->stack_parm == 0)
3208 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3209 GET_MODE (data->entry_parm),
3210 TYPE_ALIGN (data->passed_type));
3211 data->stack_parm
3212 = assign_stack_local (GET_MODE (data->entry_parm),
3213 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3214 align);
3215 set_mem_attributes (data->stack_parm, parm, 1);
3218 dest = validize_mem (data->stack_parm);
3219 src = validize_mem (data->entry_parm);
3221 if (MEM_P (src))
3223 /* Use a block move to handle potentially misaligned entry_parm. */
3224 if (!to_conversion)
3225 push_to_sequence2 (all->first_conversion_insn,
3226 all->last_conversion_insn);
3227 to_conversion = true;
3229 emit_block_move (dest, src,
3230 GEN_INT (int_size_in_bytes (data->passed_type)),
3231 BLOCK_OP_NORMAL);
3233 else
3234 emit_move_insn (dest, src);
3237 if (to_conversion)
3239 all->first_conversion_insn = get_insns ();
3240 all->last_conversion_insn = get_last_insn ();
3241 end_sequence ();
3244 SET_DECL_RTL (parm, data->stack_parm);
3247 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3248 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3250 static void
3251 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3252 VEC(tree, heap) *fnargs)
3254 tree parm;
3255 tree orig_fnargs = all->orig_fnargs;
3256 unsigned i = 0;
3258 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3260 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3261 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3263 rtx tmp, real, imag;
3264 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3266 real = DECL_RTL (VEC_index (tree, fnargs, i));
3267 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3268 if (inner != GET_MODE (real))
3270 real = gen_lowpart_SUBREG (inner, real);
3271 imag = gen_lowpart_SUBREG (inner, imag);
3274 if (TREE_ADDRESSABLE (parm))
3276 rtx rmem, imem;
3277 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3278 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3279 DECL_MODE (parm),
3280 TYPE_ALIGN (TREE_TYPE (parm)));
3282 /* split_complex_arg put the real and imag parts in
3283 pseudos. Move them to memory. */
3284 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3285 set_mem_attributes (tmp, parm, 1);
3286 rmem = adjust_address_nv (tmp, inner, 0);
3287 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3288 push_to_sequence2 (all->first_conversion_insn,
3289 all->last_conversion_insn);
3290 emit_move_insn (rmem, real);
3291 emit_move_insn (imem, imag);
3292 all->first_conversion_insn = get_insns ();
3293 all->last_conversion_insn = get_last_insn ();
3294 end_sequence ();
3296 else
3297 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3298 SET_DECL_RTL (parm, tmp);
3300 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3301 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3302 if (inner != GET_MODE (real))
3304 real = gen_lowpart_SUBREG (inner, real);
3305 imag = gen_lowpart_SUBREG (inner, imag);
3307 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3308 set_decl_incoming_rtl (parm, tmp, false);
3309 i++;
3314 /* Assign RTL expressions to the function's parameters. This may involve
3315 copying them into registers and using those registers as the DECL_RTL. */
3317 static void
3318 assign_parms (tree fndecl)
3320 struct assign_parm_data_all all;
3321 tree parm;
3322 VEC(tree, heap) *fnargs;
3323 unsigned i;
3325 crtl->args.internal_arg_pointer
3326 = targetm.calls.internal_arg_pointer ();
3328 assign_parms_initialize_all (&all);
3329 fnargs = assign_parms_augmented_arg_list (&all);
3331 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3333 struct assign_parm_data_one data;
3335 /* Extract the type of PARM; adjust it according to ABI. */
3336 assign_parm_find_data_types (&all, parm, &data);
3338 /* Early out for errors and void parameters. */
3339 if (data.passed_mode == VOIDmode)
3341 SET_DECL_RTL (parm, const0_rtx);
3342 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3343 continue;
3346 /* Estimate stack alignment from parameter alignment. */
3347 if (SUPPORTS_STACK_ALIGNMENT)
3349 unsigned int align
3350 = targetm.calls.function_arg_boundary (data.promoted_mode,
3351 data.passed_type);
3352 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3353 align);
3354 if (TYPE_ALIGN (data.nominal_type) > align)
3355 align = MINIMUM_ALIGNMENT (data.nominal_type,
3356 TYPE_MODE (data.nominal_type),
3357 TYPE_ALIGN (data.nominal_type));
3358 if (crtl->stack_alignment_estimated < align)
3360 gcc_assert (!crtl->stack_realign_processed);
3361 crtl->stack_alignment_estimated = align;
3365 if (cfun->stdarg && !DECL_CHAIN (parm))
3366 assign_parms_setup_varargs (&all, &data, false);
3368 /* Find out where the parameter arrives in this function. */
3369 assign_parm_find_entry_rtl (&all, &data);
3371 /* Find out where stack space for this parameter might be. */
3372 if (assign_parm_is_stack_parm (&all, &data))
3374 assign_parm_find_stack_rtl (parm, &data);
3375 assign_parm_adjust_entry_rtl (&data);
3378 /* Record permanently how this parm was passed. */
3379 if (data.passed_pointer)
3381 rtx incoming_rtl
3382 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3383 data.entry_parm);
3384 set_decl_incoming_rtl (parm, incoming_rtl, true);
3386 else
3387 set_decl_incoming_rtl (parm, data.entry_parm, false);
3389 /* Update info on where next arg arrives in registers. */
3390 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3391 data.passed_type, data.named_arg);
3393 assign_parm_adjust_stack_rtl (&data);
3395 if (assign_parm_setup_block_p (&data))
3396 assign_parm_setup_block (&all, parm, &data);
3397 else if (data.passed_pointer || use_register_for_decl (parm))
3398 assign_parm_setup_reg (&all, parm, &data);
3399 else
3400 assign_parm_setup_stack (&all, parm, &data);
3403 if (targetm.calls.split_complex_arg)
3404 assign_parms_unsplit_complex (&all, fnargs);
3406 VEC_free (tree, heap, fnargs);
3408 /* Output all parameter conversion instructions (possibly including calls)
3409 now that all parameters have been copied out of hard registers. */
3410 emit_insn (all.first_conversion_insn);
3412 /* Estimate reload stack alignment from scalar return mode. */
3413 if (SUPPORTS_STACK_ALIGNMENT)
3415 if (DECL_RESULT (fndecl))
3417 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3418 enum machine_mode mode = TYPE_MODE (type);
3420 if (mode != BLKmode
3421 && mode != VOIDmode
3422 && !AGGREGATE_TYPE_P (type))
3424 unsigned int align = GET_MODE_ALIGNMENT (mode);
3425 if (crtl->stack_alignment_estimated < align)
3427 gcc_assert (!crtl->stack_realign_processed);
3428 crtl->stack_alignment_estimated = align;
3434 /* If we are receiving a struct value address as the first argument, set up
3435 the RTL for the function result. As this might require code to convert
3436 the transmitted address to Pmode, we do this here to ensure that possible
3437 preliminary conversions of the address have been emitted already. */
3438 if (all.function_result_decl)
3440 tree result = DECL_RESULT (current_function_decl);
3441 rtx addr = DECL_RTL (all.function_result_decl);
3442 rtx x;
3444 if (DECL_BY_REFERENCE (result))
3446 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3447 x = addr;
3449 else
3451 SET_DECL_VALUE_EXPR (result,
3452 build1 (INDIRECT_REF, TREE_TYPE (result),
3453 all.function_result_decl));
3454 addr = convert_memory_address (Pmode, addr);
3455 x = gen_rtx_MEM (DECL_MODE (result), addr);
3456 set_mem_attributes (x, result, 1);
3459 DECL_HAS_VALUE_EXPR_P (result) = 1;
3461 SET_DECL_RTL (result, x);
3464 /* We have aligned all the args, so add space for the pretend args. */
3465 crtl->args.pretend_args_size = all.pretend_args_size;
3466 all.stack_args_size.constant += all.extra_pretend_bytes;
3467 crtl->args.size = all.stack_args_size.constant;
3469 /* Adjust function incoming argument size for alignment and
3470 minimum length. */
3472 #ifdef REG_PARM_STACK_SPACE
3473 crtl->args.size = MAX (crtl->args.size,
3474 REG_PARM_STACK_SPACE (fndecl));
3475 #endif
3477 crtl->args.size = CEIL_ROUND (crtl->args.size,
3478 PARM_BOUNDARY / BITS_PER_UNIT);
3480 #ifdef ARGS_GROW_DOWNWARD
3481 crtl->args.arg_offset_rtx
3482 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3483 : expand_expr (size_diffop (all.stack_args_size.var,
3484 size_int (-all.stack_args_size.constant)),
3485 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3486 #else
3487 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3488 #endif
3490 /* See how many bytes, if any, of its args a function should try to pop
3491 on return. */
3493 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3494 TREE_TYPE (fndecl),
3495 crtl->args.size);
3497 /* For stdarg.h function, save info about
3498 regs and stack space used by the named args. */
3500 crtl->args.info = all.args_so_far;
3502 /* Set the rtx used for the function return value. Put this in its
3503 own variable so any optimizers that need this information don't have
3504 to include tree.h. Do this here so it gets done when an inlined
3505 function gets output. */
3507 crtl->return_rtx
3508 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3509 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3511 /* If scalar return value was computed in a pseudo-reg, or was a named
3512 return value that got dumped to the stack, copy that to the hard
3513 return register. */
3514 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3516 tree decl_result = DECL_RESULT (fndecl);
3517 rtx decl_rtl = DECL_RTL (decl_result);
3519 if (REG_P (decl_rtl)
3520 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3521 : DECL_REGISTER (decl_result))
3523 rtx real_decl_rtl;
3525 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3526 fndecl, true);
3527 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3528 /* The delay slot scheduler assumes that crtl->return_rtx
3529 holds the hard register containing the return value, not a
3530 temporary pseudo. */
3531 crtl->return_rtx = real_decl_rtl;
3536 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3537 For all seen types, gimplify their sizes. */
3539 static tree
3540 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3542 tree t = *tp;
3544 *walk_subtrees = 0;
3545 if (TYPE_P (t))
3547 if (POINTER_TYPE_P (t))
3548 *walk_subtrees = 1;
3549 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3550 && !TYPE_SIZES_GIMPLIFIED (t))
3552 gimplify_type_sizes (t, (gimple_seq *) data);
3553 *walk_subtrees = 1;
3557 return NULL;
3560 /* Gimplify the parameter list for current_function_decl. This involves
3561 evaluating SAVE_EXPRs of variable sized parameters and generating code
3562 to implement callee-copies reference parameters. Returns a sequence of
3563 statements to add to the beginning of the function. */
3565 gimple_seq
3566 gimplify_parameters (void)
3568 struct assign_parm_data_all all;
3569 tree parm;
3570 gimple_seq stmts = NULL;
3571 VEC(tree, heap) *fnargs;
3572 unsigned i;
3574 assign_parms_initialize_all (&all);
3575 fnargs = assign_parms_augmented_arg_list (&all);
3577 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3579 struct assign_parm_data_one data;
3581 /* Extract the type of PARM; adjust it according to ABI. */
3582 assign_parm_find_data_types (&all, parm, &data);
3584 /* Early out for errors and void parameters. */
3585 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3586 continue;
3588 /* Update info on where next arg arrives in registers. */
3589 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3590 data.passed_type, data.named_arg);
3592 /* ??? Once upon a time variable_size stuffed parameter list
3593 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3594 turned out to be less than manageable in the gimple world.
3595 Now we have to hunt them down ourselves. */
3596 walk_tree_without_duplicates (&data.passed_type,
3597 gimplify_parm_type, &stmts);
3599 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3601 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3602 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3605 if (data.passed_pointer)
3607 tree type = TREE_TYPE (data.passed_type);
3608 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3609 type, data.named_arg))
3611 tree local, t;
3613 /* For constant-sized objects, this is trivial; for
3614 variable-sized objects, we have to play games. */
3615 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3616 && !(flag_stack_check == GENERIC_STACK_CHECK
3617 && compare_tree_int (DECL_SIZE_UNIT (parm),
3618 STACK_CHECK_MAX_VAR_SIZE) > 0))
3620 local = create_tmp_reg (type, get_name (parm));
3621 DECL_IGNORED_P (local) = 0;
3622 /* If PARM was addressable, move that flag over
3623 to the local copy, as its address will be taken,
3624 not the PARMs. Keep the parms address taken
3625 as we'll query that flag during gimplification. */
3626 if (TREE_ADDRESSABLE (parm))
3627 TREE_ADDRESSABLE (local) = 1;
3629 else
3631 tree ptr_type, addr;
3633 ptr_type = build_pointer_type (type);
3634 addr = create_tmp_reg (ptr_type, get_name (parm));
3635 DECL_IGNORED_P (addr) = 0;
3636 local = build_fold_indirect_ref (addr);
3638 t = built_in_decls[BUILT_IN_ALLOCA];
3639 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3640 /* The call has been built for a variable-sized object. */
3641 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3642 t = fold_convert (ptr_type, t);
3643 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3644 gimplify_and_add (t, &stmts);
3647 gimplify_assign (local, parm, &stmts);
3649 SET_DECL_VALUE_EXPR (parm, local);
3650 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3655 VEC_free (tree, heap, fnargs);
3657 return stmts;
3660 /* Compute the size and offset from the start of the stacked arguments for a
3661 parm passed in mode PASSED_MODE and with type TYPE.
3663 INITIAL_OFFSET_PTR points to the current offset into the stacked
3664 arguments.
3666 The starting offset and size for this parm are returned in
3667 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3668 nonzero, the offset is that of stack slot, which is returned in
3669 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3670 padding required from the initial offset ptr to the stack slot.
3672 IN_REGS is nonzero if the argument will be passed in registers. It will
3673 never be set if REG_PARM_STACK_SPACE is not defined.
3675 FNDECL is the function in which the argument was defined.
3677 There are two types of rounding that are done. The first, controlled by
3678 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3679 argument list to be aligned to the specific boundary (in bits). This
3680 rounding affects the initial and starting offsets, but not the argument
3681 size.
3683 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3684 optionally rounds the size of the parm to PARM_BOUNDARY. The
3685 initial offset is not affected by this rounding, while the size always
3686 is and the starting offset may be. */
3688 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3689 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3690 callers pass in the total size of args so far as
3691 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3693 void
3694 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3695 int partial, tree fndecl ATTRIBUTE_UNUSED,
3696 struct args_size *initial_offset_ptr,
3697 struct locate_and_pad_arg_data *locate)
3699 tree sizetree;
3700 enum direction where_pad;
3701 unsigned int boundary;
3702 int reg_parm_stack_space = 0;
3703 int part_size_in_regs;
3705 #ifdef REG_PARM_STACK_SPACE
3706 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3708 /* If we have found a stack parm before we reach the end of the
3709 area reserved for registers, skip that area. */
3710 if (! in_regs)
3712 if (reg_parm_stack_space > 0)
3714 if (initial_offset_ptr->var)
3716 initial_offset_ptr->var
3717 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3718 ssize_int (reg_parm_stack_space));
3719 initial_offset_ptr->constant = 0;
3721 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3722 initial_offset_ptr->constant = reg_parm_stack_space;
3725 #endif /* REG_PARM_STACK_SPACE */
3727 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3729 sizetree
3730 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3731 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3732 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3733 locate->where_pad = where_pad;
3735 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3736 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3737 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3739 locate->boundary = boundary;
3741 if (SUPPORTS_STACK_ALIGNMENT)
3743 /* stack_alignment_estimated can't change after stack has been
3744 realigned. */
3745 if (crtl->stack_alignment_estimated < boundary)
3747 if (!crtl->stack_realign_processed)
3748 crtl->stack_alignment_estimated = boundary;
3749 else
3751 /* If stack is realigned and stack alignment value
3752 hasn't been finalized, it is OK not to increase
3753 stack_alignment_estimated. The bigger alignment
3754 requirement is recorded in stack_alignment_needed
3755 below. */
3756 gcc_assert (!crtl->stack_realign_finalized
3757 && crtl->stack_realign_needed);
3762 /* Remember if the outgoing parameter requires extra alignment on the
3763 calling function side. */
3764 if (crtl->stack_alignment_needed < boundary)
3765 crtl->stack_alignment_needed = boundary;
3766 if (crtl->preferred_stack_boundary < boundary)
3767 crtl->preferred_stack_boundary = boundary;
3769 #ifdef ARGS_GROW_DOWNWARD
3770 locate->slot_offset.constant = -initial_offset_ptr->constant;
3771 if (initial_offset_ptr->var)
3772 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3773 initial_offset_ptr->var);
3776 tree s2 = sizetree;
3777 if (where_pad != none
3778 && (!host_integerp (sizetree, 1)
3779 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3780 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3781 SUB_PARM_SIZE (locate->slot_offset, s2);
3784 locate->slot_offset.constant += part_size_in_regs;
3786 if (!in_regs
3787 #ifdef REG_PARM_STACK_SPACE
3788 || REG_PARM_STACK_SPACE (fndecl) > 0
3789 #endif
3791 pad_to_arg_alignment (&locate->slot_offset, boundary,
3792 &locate->alignment_pad);
3794 locate->size.constant = (-initial_offset_ptr->constant
3795 - locate->slot_offset.constant);
3796 if (initial_offset_ptr->var)
3797 locate->size.var = size_binop (MINUS_EXPR,
3798 size_binop (MINUS_EXPR,
3799 ssize_int (0),
3800 initial_offset_ptr->var),
3801 locate->slot_offset.var);
3803 /* Pad_below needs the pre-rounded size to know how much to pad
3804 below. */
3805 locate->offset = locate->slot_offset;
3806 if (where_pad == downward)
3807 pad_below (&locate->offset, passed_mode, sizetree);
3809 #else /* !ARGS_GROW_DOWNWARD */
3810 if (!in_regs
3811 #ifdef REG_PARM_STACK_SPACE
3812 || REG_PARM_STACK_SPACE (fndecl) > 0
3813 #endif
3815 pad_to_arg_alignment (initial_offset_ptr, boundary,
3816 &locate->alignment_pad);
3817 locate->slot_offset = *initial_offset_ptr;
3819 #ifdef PUSH_ROUNDING
3820 if (passed_mode != BLKmode)
3821 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3822 #endif
3824 /* Pad_below needs the pre-rounded size to know how much to pad below
3825 so this must be done before rounding up. */
3826 locate->offset = locate->slot_offset;
3827 if (where_pad == downward)
3828 pad_below (&locate->offset, passed_mode, sizetree);
3830 if (where_pad != none
3831 && (!host_integerp (sizetree, 1)
3832 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3833 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3835 ADD_PARM_SIZE (locate->size, sizetree);
3837 locate->size.constant -= part_size_in_regs;
3838 #endif /* ARGS_GROW_DOWNWARD */
3840 #ifdef FUNCTION_ARG_OFFSET
3841 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3842 #endif
3845 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3846 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3848 static void
3849 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3850 struct args_size *alignment_pad)
3852 tree save_var = NULL_TREE;
3853 HOST_WIDE_INT save_constant = 0;
3854 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3855 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3857 #ifdef SPARC_STACK_BOUNDARY_HACK
3858 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3859 the real alignment of %sp. However, when it does this, the
3860 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3861 if (SPARC_STACK_BOUNDARY_HACK)
3862 sp_offset = 0;
3863 #endif
3865 if (boundary > PARM_BOUNDARY)
3867 save_var = offset_ptr->var;
3868 save_constant = offset_ptr->constant;
3871 alignment_pad->var = NULL_TREE;
3872 alignment_pad->constant = 0;
3874 if (boundary > BITS_PER_UNIT)
3876 if (offset_ptr->var)
3878 tree sp_offset_tree = ssize_int (sp_offset);
3879 tree offset = size_binop (PLUS_EXPR,
3880 ARGS_SIZE_TREE (*offset_ptr),
3881 sp_offset_tree);
3882 #ifdef ARGS_GROW_DOWNWARD
3883 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3884 #else
3885 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3886 #endif
3888 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3889 /* ARGS_SIZE_TREE includes constant term. */
3890 offset_ptr->constant = 0;
3891 if (boundary > PARM_BOUNDARY)
3892 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3893 save_var);
3895 else
3897 offset_ptr->constant = -sp_offset +
3898 #ifdef ARGS_GROW_DOWNWARD
3899 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3900 #else
3901 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3902 #endif
3903 if (boundary > PARM_BOUNDARY)
3904 alignment_pad->constant = offset_ptr->constant - save_constant;
3909 static void
3910 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3912 if (passed_mode != BLKmode)
3914 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3915 offset_ptr->constant
3916 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3917 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3918 - GET_MODE_SIZE (passed_mode));
3920 else
3922 if (TREE_CODE (sizetree) != INTEGER_CST
3923 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3925 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3926 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3927 /* Add it in. */
3928 ADD_PARM_SIZE (*offset_ptr, s2);
3929 SUB_PARM_SIZE (*offset_ptr, sizetree);
3935 /* True if register REGNO was alive at a place where `setjmp' was
3936 called and was set more than once or is an argument. Such regs may
3937 be clobbered by `longjmp'. */
3939 static bool
3940 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3942 /* There appear to be cases where some local vars never reach the
3943 backend but have bogus regnos. */
3944 if (regno >= max_reg_num ())
3945 return false;
3947 return ((REG_N_SETS (regno) > 1
3948 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3949 && REGNO_REG_SET_P (setjmp_crosses, regno));
3952 /* Walk the tree of blocks describing the binding levels within a
3953 function and warn about variables the might be killed by setjmp or
3954 vfork. This is done after calling flow_analysis before register
3955 allocation since that will clobber the pseudo-regs to hard
3956 regs. */
3958 static void
3959 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3961 tree decl, sub;
3963 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3965 if (TREE_CODE (decl) == VAR_DECL
3966 && DECL_RTL_SET_P (decl)
3967 && REG_P (DECL_RTL (decl))
3968 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3969 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3970 " %<longjmp%> or %<vfork%>", decl);
3973 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3974 setjmp_vars_warning (setjmp_crosses, sub);
3977 /* Do the appropriate part of setjmp_vars_warning
3978 but for arguments instead of local variables. */
3980 static void
3981 setjmp_args_warning (bitmap setjmp_crosses)
3983 tree decl;
3984 for (decl = DECL_ARGUMENTS (current_function_decl);
3985 decl; decl = DECL_CHAIN (decl))
3986 if (DECL_RTL (decl) != 0
3987 && REG_P (DECL_RTL (decl))
3988 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3989 warning (OPT_Wclobbered,
3990 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3991 decl);
3994 /* Generate warning messages for variables live across setjmp. */
3996 void
3997 generate_setjmp_warnings (void)
3999 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4001 if (n_basic_blocks == NUM_FIXED_BLOCKS
4002 || bitmap_empty_p (setjmp_crosses))
4003 return;
4005 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4006 setjmp_args_warning (setjmp_crosses);
4010 /* Reverse the order of elements in the fragment chain T of blocks,
4011 and return the new head of the chain (old last element). */
4013 static tree
4014 block_fragments_nreverse (tree t)
4016 tree prev = 0, block, next;
4017 for (block = t; block; block = next)
4019 next = BLOCK_FRAGMENT_CHAIN (block);
4020 BLOCK_FRAGMENT_CHAIN (block) = prev;
4021 prev = block;
4023 return prev;
4026 /* Reverse the order of elements in the chain T of blocks,
4027 and return the new head of the chain (old last element).
4028 Also do the same on subblocks and reverse the order of elements
4029 in BLOCK_FRAGMENT_CHAIN as well. */
4031 static tree
4032 blocks_nreverse_all (tree t)
4034 tree prev = 0, block, next;
4035 for (block = t; block; block = next)
4037 next = BLOCK_CHAIN (block);
4038 BLOCK_CHAIN (block) = prev;
4039 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4040 if (BLOCK_FRAGMENT_CHAIN (block)
4041 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4042 BLOCK_FRAGMENT_CHAIN (block)
4043 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4044 prev = block;
4046 return prev;
4050 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4051 and create duplicate blocks. */
4052 /* ??? Need an option to either create block fragments or to create
4053 abstract origin duplicates of a source block. It really depends
4054 on what optimization has been performed. */
4056 void
4057 reorder_blocks (void)
4059 tree block = DECL_INITIAL (current_function_decl);
4060 VEC(tree,heap) *block_stack;
4062 if (block == NULL_TREE)
4063 return;
4065 block_stack = VEC_alloc (tree, heap, 10);
4067 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4068 clear_block_marks (block);
4070 /* Prune the old trees away, so that they don't get in the way. */
4071 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4072 BLOCK_CHAIN (block) = NULL_TREE;
4074 /* Recreate the block tree from the note nesting. */
4075 reorder_blocks_1 (get_insns (), block, &block_stack);
4076 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4078 VEC_free (tree, heap, block_stack);
4081 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4083 void
4084 clear_block_marks (tree block)
4086 while (block)
4088 TREE_ASM_WRITTEN (block) = 0;
4089 clear_block_marks (BLOCK_SUBBLOCKS (block));
4090 block = BLOCK_CHAIN (block);
4094 static void
4095 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4097 rtx insn;
4099 for (insn = insns; insn; insn = NEXT_INSN (insn))
4101 if (NOTE_P (insn))
4103 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4105 tree block = NOTE_BLOCK (insn);
4106 tree origin;
4108 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4109 origin = block;
4111 /* If we have seen this block before, that means it now
4112 spans multiple address regions. Create a new fragment. */
4113 if (TREE_ASM_WRITTEN (block))
4115 tree new_block = copy_node (block);
4117 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4118 BLOCK_FRAGMENT_CHAIN (new_block)
4119 = BLOCK_FRAGMENT_CHAIN (origin);
4120 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4122 NOTE_BLOCK (insn) = new_block;
4123 block = new_block;
4126 BLOCK_SUBBLOCKS (block) = 0;
4127 TREE_ASM_WRITTEN (block) = 1;
4128 /* When there's only one block for the entire function,
4129 current_block == block and we mustn't do this, it
4130 will cause infinite recursion. */
4131 if (block != current_block)
4133 if (block != origin)
4134 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4136 BLOCK_SUPERCONTEXT (block) = current_block;
4137 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4138 BLOCK_SUBBLOCKS (current_block) = block;
4139 current_block = origin;
4141 VEC_safe_push (tree, heap, *p_block_stack, block);
4143 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4145 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4146 current_block = BLOCK_SUPERCONTEXT (current_block);
4152 /* Reverse the order of elements in the chain T of blocks,
4153 and return the new head of the chain (old last element). */
4155 tree
4156 blocks_nreverse (tree t)
4158 tree prev = 0, block, next;
4159 for (block = t; block; block = next)
4161 next = BLOCK_CHAIN (block);
4162 BLOCK_CHAIN (block) = prev;
4163 prev = block;
4165 return prev;
4168 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4169 by modifying the last node in chain 1 to point to chain 2. */
4171 tree
4172 block_chainon (tree op1, tree op2)
4174 tree t1;
4176 if (!op1)
4177 return op2;
4178 if (!op2)
4179 return op1;
4181 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4182 continue;
4183 BLOCK_CHAIN (t1) = op2;
4185 #ifdef ENABLE_TREE_CHECKING
4187 tree t2;
4188 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4189 gcc_assert (t2 != t1);
4191 #endif
4193 return op1;
4196 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4197 non-NULL, list them all into VECTOR, in a depth-first preorder
4198 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4199 blocks. */
4201 static int
4202 all_blocks (tree block, tree *vector)
4204 int n_blocks = 0;
4206 while (block)
4208 TREE_ASM_WRITTEN (block) = 0;
4210 /* Record this block. */
4211 if (vector)
4212 vector[n_blocks] = block;
4214 ++n_blocks;
4216 /* Record the subblocks, and their subblocks... */
4217 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4218 vector ? vector + n_blocks : 0);
4219 block = BLOCK_CHAIN (block);
4222 return n_blocks;
4225 /* Return a vector containing all the blocks rooted at BLOCK. The
4226 number of elements in the vector is stored in N_BLOCKS_P. The
4227 vector is dynamically allocated; it is the caller's responsibility
4228 to call `free' on the pointer returned. */
4230 static tree *
4231 get_block_vector (tree block, int *n_blocks_p)
4233 tree *block_vector;
4235 *n_blocks_p = all_blocks (block, NULL);
4236 block_vector = XNEWVEC (tree, *n_blocks_p);
4237 all_blocks (block, block_vector);
4239 return block_vector;
4242 static GTY(()) int next_block_index = 2;
4244 /* Set BLOCK_NUMBER for all the blocks in FN. */
4246 void
4247 number_blocks (tree fn)
4249 int i;
4250 int n_blocks;
4251 tree *block_vector;
4253 /* For SDB and XCOFF debugging output, we start numbering the blocks
4254 from 1 within each function, rather than keeping a running
4255 count. */
4256 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4257 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4258 next_block_index = 1;
4259 #endif
4261 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4263 /* The top-level BLOCK isn't numbered at all. */
4264 for (i = 1; i < n_blocks; ++i)
4265 /* We number the blocks from two. */
4266 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4268 free (block_vector);
4270 return;
4273 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4275 DEBUG_FUNCTION tree
4276 debug_find_var_in_block_tree (tree var, tree block)
4278 tree t;
4280 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4281 if (t == var)
4282 return block;
4284 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4286 tree ret = debug_find_var_in_block_tree (var, t);
4287 if (ret)
4288 return ret;
4291 return NULL_TREE;
4294 /* Keep track of whether we're in a dummy function context. If we are,
4295 we don't want to invoke the set_current_function hook, because we'll
4296 get into trouble if the hook calls target_reinit () recursively or
4297 when the initial initialization is not yet complete. */
4299 static bool in_dummy_function;
4301 /* Invoke the target hook when setting cfun. Update the optimization options
4302 if the function uses different options than the default. */
4304 static void
4305 invoke_set_current_function_hook (tree fndecl)
4307 if (!in_dummy_function)
4309 tree opts = ((fndecl)
4310 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4311 : optimization_default_node);
4313 if (!opts)
4314 opts = optimization_default_node;
4316 /* Change optimization options if needed. */
4317 if (optimization_current_node != opts)
4319 optimization_current_node = opts;
4320 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4323 targetm.set_current_function (fndecl);
4327 /* cfun should never be set directly; use this function. */
4329 void
4330 set_cfun (struct function *new_cfun)
4332 if (cfun != new_cfun)
4334 cfun = new_cfun;
4335 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4339 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4341 static VEC(function_p,heap) *cfun_stack;
4343 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4345 void
4346 push_cfun (struct function *new_cfun)
4348 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4349 set_cfun (new_cfun);
4352 /* Pop cfun from the stack. */
4354 void
4355 pop_cfun (void)
4357 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4358 set_cfun (new_cfun);
4361 /* Return value of funcdef and increase it. */
4363 get_next_funcdef_no (void)
4365 return funcdef_no++;
4368 /* Return value of funcdef. */
4370 get_last_funcdef_no (void)
4372 return funcdef_no;
4375 /* Allocate a function structure for FNDECL and set its contents
4376 to the defaults. Set cfun to the newly-allocated object.
4377 Some of the helper functions invoked during initialization assume
4378 that cfun has already been set. Therefore, assign the new object
4379 directly into cfun and invoke the back end hook explicitly at the
4380 very end, rather than initializing a temporary and calling set_cfun
4381 on it.
4383 ABSTRACT_P is true if this is a function that will never be seen by
4384 the middle-end. Such functions are front-end concepts (like C++
4385 function templates) that do not correspond directly to functions
4386 placed in object files. */
4388 void
4389 allocate_struct_function (tree fndecl, bool abstract_p)
4391 tree result;
4392 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4394 cfun = ggc_alloc_cleared_function ();
4396 init_eh_for_function ();
4398 if (init_machine_status)
4399 cfun->machine = (*init_machine_status) ();
4401 #ifdef OVERRIDE_ABI_FORMAT
4402 OVERRIDE_ABI_FORMAT (fndecl);
4403 #endif
4405 invoke_set_current_function_hook (fndecl);
4407 if (fndecl != NULL_TREE)
4409 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4410 cfun->decl = fndecl;
4411 current_function_funcdef_no = get_next_funcdef_no ();
4413 result = DECL_RESULT (fndecl);
4414 if (!abstract_p && aggregate_value_p (result, fndecl))
4416 #ifdef PCC_STATIC_STRUCT_RETURN
4417 cfun->returns_pcc_struct = 1;
4418 #endif
4419 cfun->returns_struct = 1;
4422 cfun->stdarg = stdarg_p (fntype);
4424 /* Assume all registers in stdarg functions need to be saved. */
4425 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4426 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4428 /* ??? This could be set on a per-function basis by the front-end
4429 but is this worth the hassle? */
4430 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4434 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4435 instead of just setting it. */
4437 void
4438 push_struct_function (tree fndecl)
4440 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4441 allocate_struct_function (fndecl, false);
4444 /* Reset crtl and other non-struct-function variables to defaults as
4445 appropriate for emitting rtl at the start of a function. */
4447 static void
4448 prepare_function_start (void)
4450 gcc_assert (!crtl->emit.x_last_insn);
4451 init_temp_slots ();
4452 init_emit ();
4453 init_varasm_status ();
4454 init_expr ();
4455 default_rtl_profile ();
4457 if (flag_stack_usage_info)
4459 cfun->su = ggc_alloc_cleared_stack_usage ();
4460 cfun->su->static_stack_size = -1;
4463 cse_not_expected = ! optimize;
4465 /* Caller save not needed yet. */
4466 caller_save_needed = 0;
4468 /* We haven't done register allocation yet. */
4469 reg_renumber = 0;
4471 /* Indicate that we have not instantiated virtual registers yet. */
4472 virtuals_instantiated = 0;
4474 /* Indicate that we want CONCATs now. */
4475 generating_concat_p = 1;
4477 /* Indicate we have no need of a frame pointer yet. */
4478 frame_pointer_needed = 0;
4481 /* Initialize the rtl expansion mechanism so that we can do simple things
4482 like generate sequences. This is used to provide a context during global
4483 initialization of some passes. You must call expand_dummy_function_end
4484 to exit this context. */
4486 void
4487 init_dummy_function_start (void)
4489 gcc_assert (!in_dummy_function);
4490 in_dummy_function = true;
4491 push_struct_function (NULL_TREE);
4492 prepare_function_start ();
4495 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4496 and initialize static variables for generating RTL for the statements
4497 of the function. */
4499 void
4500 init_function_start (tree subr)
4502 if (subr && DECL_STRUCT_FUNCTION (subr))
4503 set_cfun (DECL_STRUCT_FUNCTION (subr));
4504 else
4505 allocate_struct_function (subr, false);
4506 prepare_function_start ();
4507 decide_function_section (subr);
4509 /* Warn if this value is an aggregate type,
4510 regardless of which calling convention we are using for it. */
4511 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4512 warning (OPT_Waggregate_return, "function returns an aggregate");
4515 /* Make sure all values used by the optimization passes have sane defaults. */
4516 unsigned int
4517 init_function_for_compilation (void)
4519 reg_renumber = 0;
4520 return 0;
4523 struct rtl_opt_pass pass_init_function =
4526 RTL_PASS,
4527 "*init_function", /* name */
4528 NULL, /* gate */
4529 init_function_for_compilation, /* execute */
4530 NULL, /* sub */
4531 NULL, /* next */
4532 0, /* static_pass_number */
4533 TV_NONE, /* tv_id */
4534 0, /* properties_required */
4535 0, /* properties_provided */
4536 0, /* properties_destroyed */
4537 0, /* todo_flags_start */
4538 0 /* todo_flags_finish */
4543 void
4544 expand_main_function (void)
4546 #if (defined(INVOKE__main) \
4547 || (!defined(HAS_INIT_SECTION) \
4548 && !defined(INIT_SECTION_ASM_OP) \
4549 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4550 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4551 #endif
4554 /* Expand code to initialize the stack_protect_guard. This is invoked at
4555 the beginning of a function to be protected. */
4557 #ifndef HAVE_stack_protect_set
4558 # define HAVE_stack_protect_set 0
4559 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4560 #endif
4562 void
4563 stack_protect_prologue (void)
4565 tree guard_decl = targetm.stack_protect_guard ();
4566 rtx x, y;
4568 x = expand_normal (crtl->stack_protect_guard);
4569 y = expand_normal (guard_decl);
4571 /* Allow the target to copy from Y to X without leaking Y into a
4572 register. */
4573 if (HAVE_stack_protect_set)
4575 rtx insn = gen_stack_protect_set (x, y);
4576 if (insn)
4578 emit_insn (insn);
4579 return;
4583 /* Otherwise do a straight move. */
4584 emit_move_insn (x, y);
4587 /* Expand code to verify the stack_protect_guard. This is invoked at
4588 the end of a function to be protected. */
4590 #ifndef HAVE_stack_protect_test
4591 # define HAVE_stack_protect_test 0
4592 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4593 #endif
4595 void
4596 stack_protect_epilogue (void)
4598 tree guard_decl = targetm.stack_protect_guard ();
4599 rtx label = gen_label_rtx ();
4600 rtx x, y, tmp;
4602 x = expand_normal (crtl->stack_protect_guard);
4603 y = expand_normal (guard_decl);
4605 /* Allow the target to compare Y with X without leaking either into
4606 a register. */
4607 switch (HAVE_stack_protect_test != 0)
4609 case 1:
4610 tmp = gen_stack_protect_test (x, y, label);
4611 if (tmp)
4613 emit_insn (tmp);
4614 break;
4616 /* FALLTHRU */
4618 default:
4619 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4620 break;
4623 /* The noreturn predictor has been moved to the tree level. The rtl-level
4624 predictors estimate this branch about 20%, which isn't enough to get
4625 things moved out of line. Since this is the only extant case of adding
4626 a noreturn function at the rtl level, it doesn't seem worth doing ought
4627 except adding the prediction by hand. */
4628 tmp = get_last_insn ();
4629 if (JUMP_P (tmp))
4630 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4632 expand_expr_stmt (targetm.stack_protect_fail ());
4633 emit_label (label);
4636 /* Start the RTL for a new function, and set variables used for
4637 emitting RTL.
4638 SUBR is the FUNCTION_DECL node.
4639 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4640 the function's parameters, which must be run at any return statement. */
4642 void
4643 expand_function_start (tree subr)
4645 /* Make sure volatile mem refs aren't considered
4646 valid operands of arithmetic insns. */
4647 init_recog_no_volatile ();
4649 crtl->profile
4650 = (profile_flag
4651 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4653 crtl->limit_stack
4654 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4656 /* Make the label for return statements to jump to. Do not special
4657 case machines with special return instructions -- they will be
4658 handled later during jump, ifcvt, or epilogue creation. */
4659 return_label = gen_label_rtx ();
4661 /* Initialize rtx used to return the value. */
4662 /* Do this before assign_parms so that we copy the struct value address
4663 before any library calls that assign parms might generate. */
4665 /* Decide whether to return the value in memory or in a register. */
4666 if (aggregate_value_p (DECL_RESULT (subr), subr))
4668 /* Returning something that won't go in a register. */
4669 rtx value_address = 0;
4671 #ifdef PCC_STATIC_STRUCT_RETURN
4672 if (cfun->returns_pcc_struct)
4674 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4675 value_address = assemble_static_space (size);
4677 else
4678 #endif
4680 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4681 /* Expect to be passed the address of a place to store the value.
4682 If it is passed as an argument, assign_parms will take care of
4683 it. */
4684 if (sv)
4686 value_address = gen_reg_rtx (Pmode);
4687 emit_move_insn (value_address, sv);
4690 if (value_address)
4692 rtx x = value_address;
4693 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4695 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4696 set_mem_attributes (x, DECL_RESULT (subr), 1);
4698 SET_DECL_RTL (DECL_RESULT (subr), x);
4701 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4702 /* If return mode is void, this decl rtl should not be used. */
4703 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4704 else
4706 /* Compute the return values into a pseudo reg, which we will copy
4707 into the true return register after the cleanups are done. */
4708 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4709 if (TYPE_MODE (return_type) != BLKmode
4710 && targetm.calls.return_in_msb (return_type))
4711 /* expand_function_end will insert the appropriate padding in
4712 this case. Use the return value's natural (unpadded) mode
4713 within the function proper. */
4714 SET_DECL_RTL (DECL_RESULT (subr),
4715 gen_reg_rtx (TYPE_MODE (return_type)));
4716 else
4718 /* In order to figure out what mode to use for the pseudo, we
4719 figure out what the mode of the eventual return register will
4720 actually be, and use that. */
4721 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4723 /* Structures that are returned in registers are not
4724 aggregate_value_p, so we may see a PARALLEL or a REG. */
4725 if (REG_P (hard_reg))
4726 SET_DECL_RTL (DECL_RESULT (subr),
4727 gen_reg_rtx (GET_MODE (hard_reg)));
4728 else
4730 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4731 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4735 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4736 result to the real return register(s). */
4737 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4740 /* Initialize rtx for parameters and local variables.
4741 In some cases this requires emitting insns. */
4742 assign_parms (subr);
4744 /* If function gets a static chain arg, store it. */
4745 if (cfun->static_chain_decl)
4747 tree parm = cfun->static_chain_decl;
4748 rtx local, chain, insn;
4750 local = gen_reg_rtx (Pmode);
4751 chain = targetm.calls.static_chain (current_function_decl, true);
4753 set_decl_incoming_rtl (parm, chain, false);
4754 SET_DECL_RTL (parm, local);
4755 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4757 insn = emit_move_insn (local, chain);
4759 /* Mark the register as eliminable, similar to parameters. */
4760 if (MEM_P (chain)
4761 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4762 set_unique_reg_note (insn, REG_EQUIV, chain);
4765 /* If the function receives a non-local goto, then store the
4766 bits we need to restore the frame pointer. */
4767 if (cfun->nonlocal_goto_save_area)
4769 tree t_save;
4770 rtx r_save;
4772 /* ??? We need to do this save early. Unfortunately here is
4773 before the frame variable gets declared. Help out... */
4774 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4775 if (!DECL_RTL_SET_P (var))
4776 expand_decl (var);
4778 t_save = build4 (ARRAY_REF, ptr_type_node,
4779 cfun->nonlocal_goto_save_area,
4780 integer_zero_node, NULL_TREE, NULL_TREE);
4781 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4782 r_save = convert_memory_address (Pmode, r_save);
4784 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4785 update_nonlocal_goto_save_area ();
4788 /* The following was moved from init_function_start.
4789 The move is supposed to make sdb output more accurate. */
4790 /* Indicate the beginning of the function body,
4791 as opposed to parm setup. */
4792 emit_note (NOTE_INSN_FUNCTION_BEG);
4794 gcc_assert (NOTE_P (get_last_insn ()));
4796 parm_birth_insn = get_last_insn ();
4798 if (crtl->profile)
4800 #ifdef PROFILE_HOOK
4801 PROFILE_HOOK (current_function_funcdef_no);
4802 #endif
4805 /* If we are doing generic stack checking, the probe should go here. */
4806 if (flag_stack_check == GENERIC_STACK_CHECK)
4807 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4809 /* Make sure there is a line number after the function entry setup code. */
4810 force_next_line_note ();
4813 /* Undo the effects of init_dummy_function_start. */
4814 void
4815 expand_dummy_function_end (void)
4817 gcc_assert (in_dummy_function);
4819 /* End any sequences that failed to be closed due to syntax errors. */
4820 while (in_sequence_p ())
4821 end_sequence ();
4823 /* Outside function body, can't compute type's actual size
4824 until next function's body starts. */
4826 free_after_parsing (cfun);
4827 free_after_compilation (cfun);
4828 pop_cfun ();
4829 in_dummy_function = false;
4832 /* Call DOIT for each hard register used as a return value from
4833 the current function. */
4835 void
4836 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4838 rtx outgoing = crtl->return_rtx;
4840 if (! outgoing)
4841 return;
4843 if (REG_P (outgoing))
4844 (*doit) (outgoing, arg);
4845 else if (GET_CODE (outgoing) == PARALLEL)
4847 int i;
4849 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4851 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4853 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4854 (*doit) (x, arg);
4859 static void
4860 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4862 emit_clobber (reg);
4865 void
4866 clobber_return_register (void)
4868 diddle_return_value (do_clobber_return_reg, NULL);
4870 /* In case we do use pseudo to return value, clobber it too. */
4871 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4873 tree decl_result = DECL_RESULT (current_function_decl);
4874 rtx decl_rtl = DECL_RTL (decl_result);
4875 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4877 do_clobber_return_reg (decl_rtl, NULL);
4882 static void
4883 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4885 emit_use (reg);
4888 static void
4889 use_return_register (void)
4891 diddle_return_value (do_use_return_reg, NULL);
4894 /* Possibly warn about unused parameters. */
4895 void
4896 do_warn_unused_parameter (tree fn)
4898 tree decl;
4900 for (decl = DECL_ARGUMENTS (fn);
4901 decl; decl = DECL_CHAIN (decl))
4902 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4903 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4904 && !TREE_NO_WARNING (decl))
4905 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4908 static GTY(()) rtx initial_trampoline;
4910 /* Generate RTL for the end of the current function. */
4912 void
4913 expand_function_end (void)
4915 rtx clobber_after;
4917 /* If arg_pointer_save_area was referenced only from a nested
4918 function, we will not have initialized it yet. Do that now. */
4919 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4920 get_arg_pointer_save_area ();
4922 /* If we are doing generic stack checking and this function makes calls,
4923 do a stack probe at the start of the function to ensure we have enough
4924 space for another stack frame. */
4925 if (flag_stack_check == GENERIC_STACK_CHECK)
4927 rtx insn, seq;
4929 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4930 if (CALL_P (insn))
4932 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4933 start_sequence ();
4934 if (STACK_CHECK_MOVING_SP)
4935 anti_adjust_stack_and_probe (max_frame_size, true);
4936 else
4937 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4938 seq = get_insns ();
4939 end_sequence ();
4940 set_insn_locators (seq, prologue_locator);
4941 emit_insn_before (seq, stack_check_probe_note);
4942 break;
4946 /* End any sequences that failed to be closed due to syntax errors. */
4947 while (in_sequence_p ())
4948 end_sequence ();
4950 clear_pending_stack_adjust ();
4951 do_pending_stack_adjust ();
4953 /* Output a linenumber for the end of the function.
4954 SDB depends on this. */
4955 force_next_line_note ();
4956 set_curr_insn_source_location (input_location);
4958 /* Before the return label (if any), clobber the return
4959 registers so that they are not propagated live to the rest of
4960 the function. This can only happen with functions that drop
4961 through; if there had been a return statement, there would
4962 have either been a return rtx, or a jump to the return label.
4964 We delay actual code generation after the current_function_value_rtx
4965 is computed. */
4966 clobber_after = get_last_insn ();
4968 /* Output the label for the actual return from the function. */
4969 emit_label (return_label);
4971 if (targetm.except_unwind_info (&global_options) == UI_SJLJ)
4973 /* Let except.c know where it should emit the call to unregister
4974 the function context for sjlj exceptions. */
4975 if (flag_exceptions)
4976 sjlj_emit_function_exit_after (get_last_insn ());
4978 else
4980 /* We want to ensure that instructions that may trap are not
4981 moved into the epilogue by scheduling, because we don't
4982 always emit unwind information for the epilogue. */
4983 if (cfun->can_throw_non_call_exceptions)
4984 emit_insn (gen_blockage ());
4987 /* If this is an implementation of throw, do what's necessary to
4988 communicate between __builtin_eh_return and the epilogue. */
4989 expand_eh_return ();
4991 /* If scalar return value was computed in a pseudo-reg, or was a named
4992 return value that got dumped to the stack, copy that to the hard
4993 return register. */
4994 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4996 tree decl_result = DECL_RESULT (current_function_decl);
4997 rtx decl_rtl = DECL_RTL (decl_result);
4999 if (REG_P (decl_rtl)
5000 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5001 : DECL_REGISTER (decl_result))
5003 rtx real_decl_rtl = crtl->return_rtx;
5005 /* This should be set in assign_parms. */
5006 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5008 /* If this is a BLKmode structure being returned in registers,
5009 then use the mode computed in expand_return. Note that if
5010 decl_rtl is memory, then its mode may have been changed,
5011 but that crtl->return_rtx has not. */
5012 if (GET_MODE (real_decl_rtl) == BLKmode)
5013 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5015 /* If a non-BLKmode return value should be padded at the least
5016 significant end of the register, shift it left by the appropriate
5017 amount. BLKmode results are handled using the group load/store
5018 machinery. */
5019 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5020 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5022 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5023 REGNO (real_decl_rtl)),
5024 decl_rtl);
5025 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5027 /* If a named return value dumped decl_return to memory, then
5028 we may need to re-do the PROMOTE_MODE signed/unsigned
5029 extension. */
5030 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5032 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5033 promote_function_mode (TREE_TYPE (decl_result),
5034 GET_MODE (decl_rtl), &unsignedp,
5035 TREE_TYPE (current_function_decl), 1);
5037 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5039 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5041 /* If expand_function_start has created a PARALLEL for decl_rtl,
5042 move the result to the real return registers. Otherwise, do
5043 a group load from decl_rtl for a named return. */
5044 if (GET_CODE (decl_rtl) == PARALLEL)
5045 emit_group_move (real_decl_rtl, decl_rtl);
5046 else
5047 emit_group_load (real_decl_rtl, decl_rtl,
5048 TREE_TYPE (decl_result),
5049 int_size_in_bytes (TREE_TYPE (decl_result)));
5051 /* In the case of complex integer modes smaller than a word, we'll
5052 need to generate some non-trivial bitfield insertions. Do that
5053 on a pseudo and not the hard register. */
5054 else if (GET_CODE (decl_rtl) == CONCAT
5055 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5056 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5058 int old_generating_concat_p;
5059 rtx tmp;
5061 old_generating_concat_p = generating_concat_p;
5062 generating_concat_p = 0;
5063 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5064 generating_concat_p = old_generating_concat_p;
5066 emit_move_insn (tmp, decl_rtl);
5067 emit_move_insn (real_decl_rtl, tmp);
5069 else
5070 emit_move_insn (real_decl_rtl, decl_rtl);
5074 /* If returning a structure, arrange to return the address of the value
5075 in a place where debuggers expect to find it.
5077 If returning a structure PCC style,
5078 the caller also depends on this value.
5079 And cfun->returns_pcc_struct is not necessarily set. */
5080 if (cfun->returns_struct
5081 || cfun->returns_pcc_struct)
5083 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5084 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5085 rtx outgoing;
5087 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5088 type = TREE_TYPE (type);
5089 else
5090 value_address = XEXP (value_address, 0);
5092 outgoing = targetm.calls.function_value (build_pointer_type (type),
5093 current_function_decl, true);
5095 /* Mark this as a function return value so integrate will delete the
5096 assignment and USE below when inlining this function. */
5097 REG_FUNCTION_VALUE_P (outgoing) = 1;
5099 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5100 value_address = convert_memory_address (GET_MODE (outgoing),
5101 value_address);
5103 emit_move_insn (outgoing, value_address);
5105 /* Show return register used to hold result (in this case the address
5106 of the result. */
5107 crtl->return_rtx = outgoing;
5110 /* Emit the actual code to clobber return register. */
5112 rtx seq;
5114 start_sequence ();
5115 clobber_return_register ();
5116 seq = get_insns ();
5117 end_sequence ();
5119 emit_insn_after (seq, clobber_after);
5122 /* Output the label for the naked return from the function. */
5123 if (naked_return_label)
5124 emit_label (naked_return_label);
5126 /* @@@ This is a kludge. We want to ensure that instructions that
5127 may trap are not moved into the epilogue by scheduling, because
5128 we don't always emit unwind information for the epilogue. */
5129 if (cfun->can_throw_non_call_exceptions
5130 && targetm.except_unwind_info (&global_options) != UI_SJLJ)
5131 emit_insn (gen_blockage ());
5133 /* If stack protection is enabled for this function, check the guard. */
5134 if (crtl->stack_protect_guard)
5135 stack_protect_epilogue ();
5137 /* If we had calls to alloca, and this machine needs
5138 an accurate stack pointer to exit the function,
5139 insert some code to save and restore the stack pointer. */
5140 if (! EXIT_IGNORE_STACK
5141 && cfun->calls_alloca)
5143 rtx tem = 0, seq;
5145 start_sequence ();
5146 emit_stack_save (SAVE_FUNCTION, &tem);
5147 seq = get_insns ();
5148 end_sequence ();
5149 emit_insn_before (seq, parm_birth_insn);
5151 emit_stack_restore (SAVE_FUNCTION, tem);
5154 /* ??? This should no longer be necessary since stupid is no longer with
5155 us, but there are some parts of the compiler (eg reload_combine, and
5156 sh mach_dep_reorg) that still try and compute their own lifetime info
5157 instead of using the general framework. */
5158 use_return_register ();
5162 get_arg_pointer_save_area (void)
5164 rtx ret = arg_pointer_save_area;
5166 if (! ret)
5168 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5169 arg_pointer_save_area = ret;
5172 if (! crtl->arg_pointer_save_area_init)
5174 rtx seq;
5176 /* Save the arg pointer at the beginning of the function. The
5177 generated stack slot may not be a valid memory address, so we
5178 have to check it and fix it if necessary. */
5179 start_sequence ();
5180 emit_move_insn (validize_mem (ret),
5181 crtl->args.internal_arg_pointer);
5182 seq = get_insns ();
5183 end_sequence ();
5185 push_topmost_sequence ();
5186 emit_insn_after (seq, entry_of_function ());
5187 pop_topmost_sequence ();
5189 crtl->arg_pointer_save_area_init = true;
5192 return ret;
5195 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5196 for the first time. */
5198 static void
5199 record_insns (rtx insns, rtx end, htab_t *hashp)
5201 rtx tmp;
5202 htab_t hash = *hashp;
5204 if (hash == NULL)
5205 *hashp = hash
5206 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5208 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5210 void **slot = htab_find_slot (hash, tmp, INSERT);
5211 gcc_assert (*slot == NULL);
5212 *slot = tmp;
5216 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5217 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5218 insn, then record COPY as well. */
5220 void
5221 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5223 htab_t hash;
5224 void **slot;
5226 hash = epilogue_insn_hash;
5227 if (!hash || !htab_find (hash, insn))
5229 hash = prologue_insn_hash;
5230 if (!hash || !htab_find (hash, insn))
5231 return;
5234 slot = htab_find_slot (hash, copy, INSERT);
5235 gcc_assert (*slot == NULL);
5236 *slot = copy;
5239 /* Set the locator of the insn chain starting at INSN to LOC. */
5240 static void
5241 set_insn_locators (rtx insn, int loc)
5243 while (insn != NULL_RTX)
5245 if (INSN_P (insn))
5246 INSN_LOCATOR (insn) = loc;
5247 insn = NEXT_INSN (insn);
5251 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5252 we can be running after reorg, SEQUENCE rtl is possible. */
5254 static bool
5255 contains (const_rtx insn, htab_t hash)
5257 if (hash == NULL)
5258 return false;
5260 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5262 int i;
5263 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5264 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5265 return true;
5266 return false;
5269 return htab_find (hash, insn) != NULL;
5273 prologue_epilogue_contains (const_rtx insn)
5275 if (contains (insn, prologue_insn_hash))
5276 return 1;
5277 if (contains (insn, epilogue_insn_hash))
5278 return 1;
5279 return 0;
5282 #ifdef HAVE_return
5283 /* Insert use of return register before the end of BB. */
5285 static void
5286 emit_use_return_register_into_block (basic_block bb)
5288 rtx seq;
5289 start_sequence ();
5290 use_return_register ();
5291 seq = get_insns ();
5292 end_sequence ();
5293 emit_insn_before (seq, BB_END (bb));
5296 /* Insert gen_return at the end of block BB. This also means updating
5297 block_for_insn appropriately. */
5299 static void
5300 emit_return_into_block (basic_block bb)
5302 emit_jump_insn_after (gen_return (), BB_END (bb));
5304 #endif /* HAVE_return */
5306 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5307 this into place with notes indicating where the prologue ends and where
5308 the epilogue begins. Update the basic block information when possible. */
5310 static void
5311 thread_prologue_and_epilogue_insns (void)
5313 bool inserted;
5314 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5315 edge entry_edge, e;
5316 edge_iterator ei;
5318 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5320 inserted = false;
5321 seq = NULL_RTX;
5322 epilogue_end = NULL_RTX;
5324 /* Can't deal with multiple successors of the entry block at the
5325 moment. Function should always have at least one entry
5326 point. */
5327 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5328 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5330 if (flag_split_stack
5331 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5332 == NULL))
5334 #ifndef HAVE_split_stack_prologue
5335 gcc_unreachable ();
5336 #else
5337 gcc_assert (HAVE_split_stack_prologue);
5339 start_sequence ();
5340 emit_insn (gen_split_stack_prologue ());
5341 seq = get_insns ();
5342 end_sequence ();
5344 record_insns (seq, NULL, &prologue_insn_hash);
5345 set_insn_locators (seq, prologue_locator);
5347 insert_insn_on_edge (seq, entry_edge);
5348 inserted = true;
5349 #endif
5352 #ifdef HAVE_prologue
5353 if (HAVE_prologue)
5355 start_sequence ();
5356 seq = gen_prologue ();
5357 emit_insn (seq);
5359 /* Insert an explicit USE for the frame pointer
5360 if the profiling is on and the frame pointer is required. */
5361 if (crtl->profile && frame_pointer_needed)
5362 emit_use (hard_frame_pointer_rtx);
5364 /* Retain a map of the prologue insns. */
5365 record_insns (seq, NULL, &prologue_insn_hash);
5366 emit_note (NOTE_INSN_PROLOGUE_END);
5368 /* Ensure that instructions are not moved into the prologue when
5369 profiling is on. The call to the profiling routine can be
5370 emitted within the live range of a call-clobbered register. */
5371 if (!targetm.profile_before_prologue () && crtl->profile)
5372 emit_insn (gen_blockage ());
5374 seq = get_insns ();
5375 end_sequence ();
5376 set_insn_locators (seq, prologue_locator);
5378 insert_insn_on_edge (seq, entry_edge);
5379 inserted = true;
5381 #endif
5383 /* If the exit block has no non-fake predecessors, we don't need
5384 an epilogue. */
5385 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5386 if ((e->flags & EDGE_FAKE) == 0)
5387 break;
5388 if (e == NULL)
5389 goto epilogue_done;
5391 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5392 #ifdef HAVE_return
5393 if (optimize && HAVE_return)
5395 /* If we're allowed to generate a simple return instruction,
5396 then by definition we don't need a full epilogue. Examine
5397 the block that falls through to EXIT. If it does not
5398 contain any code, examine its predecessors and try to
5399 emit (conditional) return instructions. */
5401 basic_block last;
5402 rtx label;
5404 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5405 if (e == NULL)
5406 goto epilogue_done;
5407 last = e->src;
5409 /* Verify that there are no active instructions in the last block. */
5410 label = BB_END (last);
5411 while (label && !LABEL_P (label))
5413 if (active_insn_p (label))
5414 break;
5415 label = PREV_INSN (label);
5418 if (BB_HEAD (last) == label && LABEL_P (label))
5420 edge_iterator ei2;
5422 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5424 basic_block bb = e->src;
5425 rtx jump;
5427 if (bb == ENTRY_BLOCK_PTR)
5429 ei_next (&ei2);
5430 continue;
5433 jump = BB_END (bb);
5434 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5436 ei_next (&ei2);
5437 continue;
5440 /* If we have an unconditional jump, we can replace that
5441 with a simple return instruction. */
5442 if (simplejump_p (jump))
5444 /* The use of the return register might be present in the exit
5445 fallthru block. Either:
5446 - removing the use is safe, and we should remove the use in
5447 the exit fallthru block, or
5448 - removing the use is not safe, and we should add it here.
5449 For now, we conservatively choose the latter. Either of the
5450 2 helps in crossjumping. */
5451 emit_use_return_register_into_block (bb);
5453 emit_return_into_block (bb);
5454 delete_insn (jump);
5457 /* If we have a conditional jump, we can try to replace
5458 that with a conditional return instruction. */
5459 else if (condjump_p (jump))
5461 if (! redirect_jump (jump, 0, 0))
5463 ei_next (&ei2);
5464 continue;
5467 /* See comment in simple_jump_p case above. */
5468 emit_use_return_register_into_block (bb);
5470 /* If this block has only one successor, it both jumps
5471 and falls through to the fallthru block, so we can't
5472 delete the edge. */
5473 if (single_succ_p (bb))
5475 ei_next (&ei2);
5476 continue;
5479 else
5481 ei_next (&ei2);
5482 continue;
5485 /* Fix up the CFG for the successful change we just made. */
5486 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5489 /* Emit a return insn for the exit fallthru block. Whether
5490 this is still reachable will be determined later. */
5492 emit_barrier_after (BB_END (last));
5493 emit_return_into_block (last);
5494 epilogue_end = BB_END (last);
5495 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5496 goto epilogue_done;
5499 #endif
5501 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5502 this marker for the splits of EH_RETURN patterns, and nothing else
5503 uses the flag in the meantime. */
5504 epilogue_completed = 1;
5506 #ifdef HAVE_eh_return
5507 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5508 some targets, these get split to a special version of the epilogue
5509 code. In order to be able to properly annotate these with unwind
5510 info, try to split them now. If we get a valid split, drop an
5511 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5512 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5514 rtx prev, last, trial;
5516 if (e->flags & EDGE_FALLTHRU)
5517 continue;
5518 last = BB_END (e->src);
5519 if (!eh_returnjump_p (last))
5520 continue;
5522 prev = PREV_INSN (last);
5523 trial = try_split (PATTERN (last), last, 1);
5524 if (trial == last)
5525 continue;
5527 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5528 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5530 #endif
5532 /* Find the edge that falls through to EXIT. Other edges may exist
5533 due to RETURN instructions, but those don't need epilogues.
5534 There really shouldn't be a mixture -- either all should have
5535 been converted or none, however... */
5537 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5538 if (e == NULL)
5539 goto epilogue_done;
5541 #ifdef HAVE_epilogue
5542 if (HAVE_epilogue)
5544 start_sequence ();
5545 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5546 seq = gen_epilogue ();
5547 if (seq)
5548 emit_jump_insn (seq);
5550 /* Retain a map of the epilogue insns. */
5551 record_insns (seq, NULL, &epilogue_insn_hash);
5552 set_insn_locators (seq, epilogue_locator);
5554 seq = get_insns ();
5555 end_sequence ();
5557 insert_insn_on_edge (seq, e);
5558 inserted = true;
5560 else
5561 #endif
5563 basic_block cur_bb;
5565 if (! next_active_insn (BB_END (e->src)))
5566 goto epilogue_done;
5567 /* We have a fall-through edge to the exit block, the source is not
5568 at the end of the function, and there will be an assembler epilogue
5569 at the end of the function.
5570 We can't use force_nonfallthru here, because that would try to
5571 use return. Inserting a jump 'by hand' is extremely messy, so
5572 we take advantage of cfg_layout_finalize using
5573 fixup_fallthru_exit_predecessor. */
5574 cfg_layout_initialize (0);
5575 FOR_EACH_BB (cur_bb)
5576 if (cur_bb->index >= NUM_FIXED_BLOCKS
5577 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5578 cur_bb->aux = cur_bb->next_bb;
5579 cfg_layout_finalize ();
5582 epilogue_done:
5583 default_rtl_profile ();
5585 if (inserted)
5587 sbitmap blocks;
5589 commit_edge_insertions ();
5591 /* Look for basic blocks within the prologue insns. */
5592 blocks = sbitmap_alloc (last_basic_block);
5593 sbitmap_zero (blocks);
5594 SET_BIT (blocks, entry_edge->dest->index);
5595 find_many_sub_basic_blocks (blocks);
5596 sbitmap_free (blocks);
5598 /* The epilogue insns we inserted may cause the exit edge to no longer
5599 be fallthru. */
5600 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5602 if (((e->flags & EDGE_FALLTHRU) != 0)
5603 && returnjump_p (BB_END (e->src)))
5604 e->flags &= ~EDGE_FALLTHRU;
5608 #ifdef HAVE_sibcall_epilogue
5609 /* Emit sibling epilogues before any sibling call sites. */
5610 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5612 basic_block bb = e->src;
5613 rtx insn = BB_END (bb);
5615 if (!CALL_P (insn)
5616 || ! SIBLING_CALL_P (insn))
5618 ei_next (&ei);
5619 continue;
5622 start_sequence ();
5623 emit_note (NOTE_INSN_EPILOGUE_BEG);
5624 emit_insn (gen_sibcall_epilogue ());
5625 seq = get_insns ();
5626 end_sequence ();
5628 /* Retain a map of the epilogue insns. Used in life analysis to
5629 avoid getting rid of sibcall epilogue insns. Do this before we
5630 actually emit the sequence. */
5631 record_insns (seq, NULL, &epilogue_insn_hash);
5632 set_insn_locators (seq, epilogue_locator);
5634 emit_insn_before (seq, insn);
5635 ei_next (&ei);
5637 #endif
5639 #ifdef HAVE_epilogue
5640 if (epilogue_end)
5642 rtx insn, next;
5644 /* Similarly, move any line notes that appear after the epilogue.
5645 There is no need, however, to be quite so anal about the existence
5646 of such a note. Also possibly move
5647 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5648 info generation. */
5649 for (insn = epilogue_end; insn; insn = next)
5651 next = NEXT_INSN (insn);
5652 if (NOTE_P (insn)
5653 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5654 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5657 #endif
5659 /* Threading the prologue and epilogue changes the artificial refs
5660 in the entry and exit blocks. */
5661 epilogue_completed = 1;
5662 df_update_entry_exit_and_calls ();
5665 /* Reposition the prologue-end and epilogue-begin notes after
5666 instruction scheduling. */
5668 void
5669 reposition_prologue_and_epilogue_notes (void)
5671 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5672 || defined (HAVE_sibcall_epilogue)
5673 /* Since the hash table is created on demand, the fact that it is
5674 non-null is a signal that it is non-empty. */
5675 if (prologue_insn_hash != NULL)
5677 size_t len = htab_elements (prologue_insn_hash);
5678 rtx insn, last = NULL, note = NULL;
5680 /* Scan from the beginning until we reach the last prologue insn. */
5681 /* ??? While we do have the CFG intact, there are two problems:
5682 (1) The prologue can contain loops (typically probing the stack),
5683 which means that the end of the prologue isn't in the first bb.
5684 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5685 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5687 if (NOTE_P (insn))
5689 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5690 note = insn;
5692 else if (contains (insn, prologue_insn_hash))
5694 last = insn;
5695 if (--len == 0)
5696 break;
5700 if (last)
5702 if (note == NULL)
5704 /* Scan forward looking for the PROLOGUE_END note. It should
5705 be right at the beginning of the block, possibly with other
5706 insn notes that got moved there. */
5707 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5709 if (NOTE_P (note)
5710 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5711 break;
5715 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5716 if (LABEL_P (last))
5717 last = NEXT_INSN (last);
5718 reorder_insns (note, note, last);
5722 if (epilogue_insn_hash != NULL)
5724 edge_iterator ei;
5725 edge e;
5727 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5729 rtx insn, first = NULL, note = NULL;
5730 basic_block bb = e->src;
5732 /* Scan from the beginning until we reach the first epilogue insn. */
5733 FOR_BB_INSNS (bb, insn)
5735 if (NOTE_P (insn))
5737 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5739 note = insn;
5740 if (first != NULL)
5741 break;
5744 else if (first == NULL && contains (insn, epilogue_insn_hash))
5746 first = insn;
5747 if (note != NULL)
5748 break;
5752 if (note)
5754 /* If the function has a single basic block, and no real
5755 epilogue insns (e.g. sibcall with no cleanup), the
5756 epilogue note can get scheduled before the prologue
5757 note. If we have frame related prologue insns, having
5758 them scanned during the epilogue will result in a crash.
5759 In this case re-order the epilogue note to just before
5760 the last insn in the block. */
5761 if (first == NULL)
5762 first = BB_END (bb);
5764 if (PREV_INSN (first) != note)
5765 reorder_insns (note, note, PREV_INSN (first));
5769 #endif /* HAVE_prologue or HAVE_epilogue */
5772 /* Returns the name of the current function. */
5773 const char *
5774 current_function_name (void)
5776 if (cfun == NULL)
5777 return "<none>";
5778 return lang_hooks.decl_printable_name (cfun->decl, 2);
5782 static unsigned int
5783 rest_of_handle_check_leaf_regs (void)
5785 #ifdef LEAF_REGISTERS
5786 current_function_uses_only_leaf_regs
5787 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5788 #endif
5789 return 0;
5792 /* Insert a TYPE into the used types hash table of CFUN. */
5794 static void
5795 used_types_insert_helper (tree type, struct function *func)
5797 if (type != NULL && func != NULL)
5799 void **slot;
5801 if (func->used_types_hash == NULL)
5802 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5803 htab_eq_pointer, NULL);
5804 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5805 if (*slot == NULL)
5806 *slot = type;
5810 /* Given a type, insert it into the used hash table in cfun. */
5811 void
5812 used_types_insert (tree t)
5814 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5815 if (TYPE_NAME (t))
5816 break;
5817 else
5818 t = TREE_TYPE (t);
5819 if (TREE_CODE (t) == ERROR_MARK)
5820 return;
5821 if (TYPE_NAME (t) == NULL_TREE
5822 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5823 t = TYPE_MAIN_VARIANT (t);
5824 if (debug_info_level > DINFO_LEVEL_NONE)
5826 if (cfun)
5827 used_types_insert_helper (t, cfun);
5828 else
5829 /* So this might be a type referenced by a global variable.
5830 Record that type so that we can later decide to emit its debug
5831 information. */
5832 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5836 /* Helper to Hash a struct types_used_by_vars_entry. */
5838 static hashval_t
5839 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5841 gcc_assert (entry && entry->var_decl && entry->type);
5843 return iterative_hash_object (entry->type,
5844 iterative_hash_object (entry->var_decl, 0));
5847 /* Hash function of the types_used_by_vars_entry hash table. */
5849 hashval_t
5850 types_used_by_vars_do_hash (const void *x)
5852 const struct types_used_by_vars_entry *entry =
5853 (const struct types_used_by_vars_entry *) x;
5855 return hash_types_used_by_vars_entry (entry);
5858 /*Equality function of the types_used_by_vars_entry hash table. */
5861 types_used_by_vars_eq (const void *x1, const void *x2)
5863 const struct types_used_by_vars_entry *e1 =
5864 (const struct types_used_by_vars_entry *) x1;
5865 const struct types_used_by_vars_entry *e2 =
5866 (const struct types_used_by_vars_entry *)x2;
5868 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5871 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5873 void
5874 types_used_by_var_decl_insert (tree type, tree var_decl)
5876 if (type != NULL && var_decl != NULL)
5878 void **slot;
5879 struct types_used_by_vars_entry e;
5880 e.var_decl = var_decl;
5881 e.type = type;
5882 if (types_used_by_vars_hash == NULL)
5883 types_used_by_vars_hash =
5884 htab_create_ggc (37, types_used_by_vars_do_hash,
5885 types_used_by_vars_eq, NULL);
5886 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5887 hash_types_used_by_vars_entry (&e), INSERT);
5888 if (*slot == NULL)
5890 struct types_used_by_vars_entry *entry;
5891 entry = ggc_alloc_types_used_by_vars_entry ();
5892 entry->type = type;
5893 entry->var_decl = var_decl;
5894 *slot = entry;
5899 struct rtl_opt_pass pass_leaf_regs =
5902 RTL_PASS,
5903 "*leaf_regs", /* name */
5904 NULL, /* gate */
5905 rest_of_handle_check_leaf_regs, /* execute */
5906 NULL, /* sub */
5907 NULL, /* next */
5908 0, /* static_pass_number */
5909 TV_NONE, /* tv_id */
5910 0, /* properties_required */
5911 0, /* properties_provided */
5912 0, /* properties_destroyed */
5913 0, /* todo_flags_start */
5914 0 /* todo_flags_finish */
5918 static unsigned int
5919 rest_of_handle_thread_prologue_and_epilogue (void)
5921 if (optimize)
5922 cleanup_cfg (CLEANUP_EXPENSIVE);
5924 /* On some machines, the prologue and epilogue code, or parts thereof,
5925 can be represented as RTL. Doing so lets us schedule insns between
5926 it and the rest of the code and also allows delayed branch
5927 scheduling to operate in the epilogue. */
5928 thread_prologue_and_epilogue_insns ();
5930 /* The stack usage info is finalized during prologue expansion. */
5931 if (flag_stack_usage_info)
5932 output_stack_usage ();
5934 return 0;
5937 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5940 RTL_PASS,
5941 "pro_and_epilogue", /* name */
5942 NULL, /* gate */
5943 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5944 NULL, /* sub */
5945 NULL, /* next */
5946 0, /* static_pass_number */
5947 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5948 0, /* properties_required */
5949 0, /* properties_provided */
5950 0, /* properties_destroyed */
5951 TODO_verify_flow, /* todo_flags_start */
5952 TODO_df_verify |
5953 TODO_df_finish | TODO_verify_rtl_sharing |
5954 TODO_ggc_collect /* todo_flags_finish */
5959 /* This mini-pass fixes fall-out from SSA in asm statements that have
5960 in-out constraints. Say you start with
5962 orig = inout;
5963 asm ("": "+mr" (inout));
5964 use (orig);
5966 which is transformed very early to use explicit output and match operands:
5968 orig = inout;
5969 asm ("": "=mr" (inout) : "0" (inout));
5970 use (orig);
5972 Or, after SSA and copyprop,
5974 asm ("": "=mr" (inout_2) : "0" (inout_1));
5975 use (inout_1);
5977 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5978 they represent two separate values, so they will get different pseudo
5979 registers during expansion. Then, since the two operands need to match
5980 per the constraints, but use different pseudo registers, reload can
5981 only register a reload for these operands. But reloads can only be
5982 satisfied by hardregs, not by memory, so we need a register for this
5983 reload, just because we are presented with non-matching operands.
5984 So, even though we allow memory for this operand, no memory can be
5985 used for it, just because the two operands don't match. This can
5986 cause reload failures on register-starved targets.
5988 So it's a symptom of reload not being able to use memory for reloads
5989 or, alternatively it's also a symptom of both operands not coming into
5990 reload as matching (in which case the pseudo could go to memory just
5991 fine, as the alternative allows it, and no reload would be necessary).
5992 We fix the latter problem here, by transforming
5994 asm ("": "=mr" (inout_2) : "0" (inout_1));
5996 back to
5998 inout_2 = inout_1;
5999 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6001 static void
6002 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
6004 int i;
6005 bool changed = false;
6006 rtx op = SET_SRC (p_sets[0]);
6007 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6008 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6009 bool *output_matched = XALLOCAVEC (bool, noutputs);
6011 memset (output_matched, 0, noutputs * sizeof (bool));
6012 for (i = 0; i < ninputs; i++)
6014 rtx input, output, insns;
6015 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6016 char *end;
6017 int match, j;
6019 if (*constraint == '%')
6020 constraint++;
6022 match = strtoul (constraint, &end, 10);
6023 if (end == constraint)
6024 continue;
6026 gcc_assert (match < noutputs);
6027 output = SET_DEST (p_sets[match]);
6028 input = RTVEC_ELT (inputs, i);
6029 /* Only do the transformation for pseudos. */
6030 if (! REG_P (output)
6031 || rtx_equal_p (output, input)
6032 || (GET_MODE (input) != VOIDmode
6033 && GET_MODE (input) != GET_MODE (output)))
6034 continue;
6036 /* We can't do anything if the output is also used as input,
6037 as we're going to overwrite it. */
6038 for (j = 0; j < ninputs; j++)
6039 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6040 break;
6041 if (j != ninputs)
6042 continue;
6044 /* Avoid changing the same input several times. For
6045 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6046 only change in once (to out1), rather than changing it
6047 first to out1 and afterwards to out2. */
6048 if (i > 0)
6050 for (j = 0; j < noutputs; j++)
6051 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6052 break;
6053 if (j != noutputs)
6054 continue;
6056 output_matched[match] = true;
6058 start_sequence ();
6059 emit_move_insn (output, input);
6060 insns = get_insns ();
6061 end_sequence ();
6062 emit_insn_before (insns, insn);
6064 /* Now replace all mentions of the input with output. We can't
6065 just replace the occurrence in inputs[i], as the register might
6066 also be used in some other input (or even in an address of an
6067 output), which would mean possibly increasing the number of
6068 inputs by one (namely 'output' in addition), which might pose
6069 a too complicated problem for reload to solve. E.g. this situation:
6071 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6073 Here 'input' is used in two occurrences as input (once for the
6074 input operand, once for the address in the second output operand).
6075 If we would replace only the occurrence of the input operand (to
6076 make the matching) we would be left with this:
6078 output = input
6079 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6081 Now we suddenly have two different input values (containing the same
6082 value, but different pseudos) where we formerly had only one.
6083 With more complicated asms this might lead to reload failures
6084 which wouldn't have happen without this pass. So, iterate over
6085 all operands and replace all occurrences of the register used. */
6086 for (j = 0; j < noutputs; j++)
6087 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6088 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6089 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6090 input, output);
6091 for (j = 0; j < ninputs; j++)
6092 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6093 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6094 input, output);
6096 changed = true;
6099 if (changed)
6100 df_insn_rescan (insn);
6103 static unsigned
6104 rest_of_match_asm_constraints (void)
6106 basic_block bb;
6107 rtx insn, pat, *p_sets;
6108 int noutputs;
6110 if (!crtl->has_asm_statement)
6111 return 0;
6113 df_set_flags (DF_DEFER_INSN_RESCAN);
6114 FOR_EACH_BB (bb)
6116 FOR_BB_INSNS (bb, insn)
6118 if (!INSN_P (insn))
6119 continue;
6121 pat = PATTERN (insn);
6122 if (GET_CODE (pat) == PARALLEL)
6123 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6124 else if (GET_CODE (pat) == SET)
6125 p_sets = &PATTERN (insn), noutputs = 1;
6126 else
6127 continue;
6129 if (GET_CODE (*p_sets) == SET
6130 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6131 match_asm_constraints_1 (insn, p_sets, noutputs);
6135 return TODO_df_finish;
6138 struct rtl_opt_pass pass_match_asm_constraints =
6141 RTL_PASS,
6142 "asmcons", /* name */
6143 NULL, /* gate */
6144 rest_of_match_asm_constraints, /* execute */
6145 NULL, /* sub */
6146 NULL, /* next */
6147 0, /* static_pass_number */
6148 TV_NONE, /* tv_id */
6149 0, /* properties_required */
6150 0, /* properties_provided */
6151 0, /* properties_destroyed */
6152 0, /* todo_flags_start */
6153 0 /* todo_flags_finish */
6158 #include "gt-function.h"