* arm.c (FL_WBUF): Define.
[official-gcc.git] / gcc / rtlanal.c
blobda9774e488befcad3885d7c6e8d8c5c80e1c828e
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
40 /* Forward declarations */
41 static int global_reg_mentioned_p_1 (rtx *, void *);
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50 rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53 enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Bit flags that specify the machine subtype we are compiling for.
66 Bits are tested using macros TARGET_... defined in the tm.h file
67 and set by `-m...' switches. Must be defined in rtlanal.c. */
69 int target_flags;
71 /* Return 1 if the value of X is unstable
72 (would be different at a different point in the program).
73 The frame pointer, arg pointer, etc. are considered stable
74 (within one function) and so is anything marked `unchanging'. */
76 int
77 rtx_unstable_p (rtx x)
79 RTX_CODE code = GET_CODE (x);
80 int i;
81 const char *fmt;
83 switch (code)
85 case MEM:
86 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
88 case CONST:
89 case CONST_INT:
90 case CONST_DOUBLE:
91 case CONST_VECTOR:
92 case SYMBOL_REF:
93 case LABEL_REF:
94 return 0;
96 case REG:
97 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
98 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99 /* The arg pointer varies if it is not a fixed register. */
100 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101 return 0;
102 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103 /* ??? When call-clobbered, the value is stable modulo the restore
104 that must happen after a call. This currently screws up local-alloc
105 into believing that the restore is not needed. */
106 if (x == pic_offset_table_rtx)
107 return 0;
108 #endif
109 return 1;
111 case ASM_OPERANDS:
112 if (MEM_VOLATILE_P (x))
113 return 1;
115 /* Fall through. */
117 default:
118 break;
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123 if (fmt[i] == 'e')
125 if (rtx_unstable_p (XEXP (x, i)))
126 return 1;
128 else if (fmt[i] == 'E')
130 int j;
131 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_unstable_p (XVECEXP (x, i, j)))
133 return 1;
136 return 0;
139 /* Return 1 if X has a value that can vary even between two
140 executions of the program. 0 means X can be compared reliably
141 against certain constants or near-constants.
142 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143 zero, we are slightly more conservative.
144 The frame pointer and the arg pointer are considered constant. */
147 rtx_varies_p (rtx x, int for_alias)
149 RTX_CODE code;
150 int i;
151 const char *fmt;
153 if (!x)
154 return 0;
156 code = GET_CODE (x);
157 switch (code)
159 case MEM:
160 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
162 case CONST:
163 case CONST_INT:
164 case CONST_DOUBLE:
165 case CONST_VECTOR:
166 case SYMBOL_REF:
167 case LABEL_REF:
168 return 0;
170 case REG:
171 /* Note that we have to test for the actual rtx used for the frame
172 and arg pointers and not just the register number in case we have
173 eliminated the frame and/or arg pointer and are using it
174 for pseudos. */
175 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176 /* The arg pointer varies if it is not a fixed register. */
177 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178 return 0;
179 if (x == pic_offset_table_rtx
180 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181 /* ??? When call-clobbered, the value is stable modulo the restore
182 that must happen after a call. This currently screws up
183 local-alloc into believing that the restore is not needed, so we
184 must return 0 only if we are called from alias analysis. */
185 && for_alias
186 #endif
188 return 0;
189 return 1;
191 case LO_SUM:
192 /* The operand 0 of a LO_SUM is considered constant
193 (in fact it is related specifically to operand 1)
194 during alias analysis. */
195 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196 || rtx_varies_p (XEXP (x, 1), for_alias);
198 case ASM_OPERANDS:
199 if (MEM_VOLATILE_P (x))
200 return 1;
202 /* Fall through. */
204 default:
205 break;
208 fmt = GET_RTX_FORMAT (code);
209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210 if (fmt[i] == 'e')
212 if (rtx_varies_p (XEXP (x, i), for_alias))
213 return 1;
215 else if (fmt[i] == 'E')
217 int j;
218 for (j = 0; j < XVECLEN (x, i); j++)
219 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220 return 1;
223 return 0;
226 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
229 rtx_addr_can_trap_p (rtx x)
231 enum rtx_code code = GET_CODE (x);
233 switch (code)
235 case SYMBOL_REF:
236 return SYMBOL_REF_WEAK (x);
238 case LABEL_REF:
239 return 0;
241 case REG:
242 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
243 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
244 || x == stack_pointer_rtx
245 /* The arg pointer varies if it is not a fixed register. */
246 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
247 return 0;
248 /* All of the virtual frame registers are stack references. */
249 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
250 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
251 return 0;
252 return 1;
254 case CONST:
255 return rtx_addr_can_trap_p (XEXP (x, 0));
257 case PLUS:
258 /* An address is assumed not to trap if it is an address that can't
259 trap plus a constant integer or it is the pic register plus a
260 constant. */
261 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
262 && GET_CODE (XEXP (x, 1)) == CONST_INT)
263 || (XEXP (x, 0) == pic_offset_table_rtx
264 && CONSTANT_P (XEXP (x, 1))));
266 case LO_SUM:
267 case PRE_MODIFY:
268 return rtx_addr_can_trap_p (XEXP (x, 1));
270 case PRE_DEC:
271 case PRE_INC:
272 case POST_DEC:
273 case POST_INC:
274 case POST_MODIFY:
275 return rtx_addr_can_trap_p (XEXP (x, 0));
277 default:
278 break;
281 /* If it isn't one of the case above, it can cause a trap. */
282 return 1;
285 /* Return true if X is an address that is known to not be zero. */
287 bool
288 nonzero_address_p (rtx x)
290 enum rtx_code code = GET_CODE (x);
292 switch (code)
294 case SYMBOL_REF:
295 return !SYMBOL_REF_WEAK (x);
297 case LABEL_REF:
298 return true;
300 case REG:
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
303 || x == stack_pointer_rtx
304 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
305 return true;
306 /* All of the virtual frame registers are stack references. */
307 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
308 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
309 return true;
310 return false;
312 case CONST:
313 return nonzero_address_p (XEXP (x, 0));
315 case PLUS:
316 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
318 /* Pointers aren't allowed to wrap. If we've got a register
319 that is known to be a pointer, and a positive offset, then
320 the composite can't be zero. */
321 if (INTVAL (XEXP (x, 1)) > 0
322 && REG_P (XEXP (x, 0))
323 && REG_POINTER (XEXP (x, 0)))
324 return true;
326 return nonzero_address_p (XEXP (x, 0));
328 /* Handle PIC references. */
329 else if (XEXP (x, 0) == pic_offset_table_rtx
330 && CONSTANT_P (XEXP (x, 1)))
331 return true;
332 return false;
334 case PRE_MODIFY:
335 /* Similar to the above; allow positive offsets. Further, since
336 auto-inc is only allowed in memories, the register must be a
337 pointer. */
338 if (GET_CODE (XEXP (x, 1)) == CONST_INT
339 && INTVAL (XEXP (x, 1)) > 0)
340 return true;
341 return nonzero_address_p (XEXP (x, 0));
343 case PRE_INC:
344 /* Similarly. Further, the offset is always positive. */
345 return true;
347 case PRE_DEC:
348 case POST_DEC:
349 case POST_INC:
350 case POST_MODIFY:
351 return nonzero_address_p (XEXP (x, 0));
353 case LO_SUM:
354 return nonzero_address_p (XEXP (x, 1));
356 default:
357 break;
360 /* If it isn't one of the case above, might be zero. */
361 return false;
364 /* Return 1 if X refers to a memory location whose address
365 cannot be compared reliably with constant addresses,
366 or if X refers to a BLKmode memory object.
367 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
368 zero, we are slightly more conservative. */
371 rtx_addr_varies_p (rtx x, int for_alias)
373 enum rtx_code code;
374 int i;
375 const char *fmt;
377 if (x == 0)
378 return 0;
380 code = GET_CODE (x);
381 if (code == MEM)
382 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
384 fmt = GET_RTX_FORMAT (code);
385 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
386 if (fmt[i] == 'e')
388 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
389 return 1;
391 else if (fmt[i] == 'E')
393 int j;
394 for (j = 0; j < XVECLEN (x, i); j++)
395 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
396 return 1;
398 return 0;
401 /* Return the value of the integer term in X, if one is apparent;
402 otherwise return 0.
403 Only obvious integer terms are detected.
404 This is used in cse.c with the `related_value' field. */
406 HOST_WIDE_INT
407 get_integer_term (rtx x)
409 if (GET_CODE (x) == CONST)
410 x = XEXP (x, 0);
412 if (GET_CODE (x) == MINUS
413 && GET_CODE (XEXP (x, 1)) == CONST_INT)
414 return - INTVAL (XEXP (x, 1));
415 if (GET_CODE (x) == PLUS
416 && GET_CODE (XEXP (x, 1)) == CONST_INT)
417 return INTVAL (XEXP (x, 1));
418 return 0;
421 /* If X is a constant, return the value sans apparent integer term;
422 otherwise return 0.
423 Only obvious integer terms are detected. */
426 get_related_value (rtx x)
428 if (GET_CODE (x) != CONST)
429 return 0;
430 x = XEXP (x, 0);
431 if (GET_CODE (x) == PLUS
432 && GET_CODE (XEXP (x, 1)) == CONST_INT)
433 return XEXP (x, 0);
434 else if (GET_CODE (x) == MINUS
435 && GET_CODE (XEXP (x, 1)) == CONST_INT)
436 return XEXP (x, 0);
437 return 0;
440 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
441 a global register. */
443 static int
444 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
446 int regno;
447 rtx x = *loc;
449 if (! x)
450 return 0;
452 switch (GET_CODE (x))
454 case SUBREG:
455 if (REG_P (SUBREG_REG (x)))
457 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
458 && global_regs[subreg_regno (x)])
459 return 1;
460 return 0;
462 break;
464 case REG:
465 regno = REGNO (x);
466 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
467 return 1;
468 return 0;
470 case SCRATCH:
471 case PC:
472 case CC0:
473 case CONST_INT:
474 case CONST_DOUBLE:
475 case CONST:
476 case LABEL_REF:
477 return 0;
479 case CALL:
480 /* A non-constant call might use a global register. */
481 return 1;
483 default:
484 break;
487 return 0;
490 /* Returns nonzero if X mentions a global register. */
493 global_reg_mentioned_p (rtx x)
495 if (INSN_P (x))
497 if (CALL_P (x))
499 if (! CONST_OR_PURE_CALL_P (x))
500 return 1;
501 x = CALL_INSN_FUNCTION_USAGE (x);
502 if (x == 0)
503 return 0;
505 else
506 x = PATTERN (x);
509 return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
512 /* Return the number of places FIND appears within X. If COUNT_DEST is
513 zero, we do not count occurrences inside the destination of a SET. */
516 count_occurrences (rtx x, rtx find, int count_dest)
518 int i, j;
519 enum rtx_code code;
520 const char *format_ptr;
521 int count;
523 if (x == find)
524 return 1;
526 code = GET_CODE (x);
528 switch (code)
530 case REG:
531 case CONST_INT:
532 case CONST_DOUBLE:
533 case CONST_VECTOR:
534 case SYMBOL_REF:
535 case CODE_LABEL:
536 case PC:
537 case CC0:
538 return 0;
540 case MEM:
541 if (MEM_P (find) && rtx_equal_p (x, find))
542 return 1;
543 break;
545 case SET:
546 if (SET_DEST (x) == find && ! count_dest)
547 return count_occurrences (SET_SRC (x), find, count_dest);
548 break;
550 default:
551 break;
554 format_ptr = GET_RTX_FORMAT (code);
555 count = 0;
557 for (i = 0; i < GET_RTX_LENGTH (code); i++)
559 switch (*format_ptr++)
561 case 'e':
562 count += count_occurrences (XEXP (x, i), find, count_dest);
563 break;
565 case 'E':
566 for (j = 0; j < XVECLEN (x, i); j++)
567 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
568 break;
571 return count;
574 /* Nonzero if register REG appears somewhere within IN.
575 Also works if REG is not a register; in this case it checks
576 for a subexpression of IN that is Lisp "equal" to REG. */
579 reg_mentioned_p (rtx reg, rtx in)
581 const char *fmt;
582 int i;
583 enum rtx_code code;
585 if (in == 0)
586 return 0;
588 if (reg == in)
589 return 1;
591 if (GET_CODE (in) == LABEL_REF)
592 return reg == XEXP (in, 0);
594 code = GET_CODE (in);
596 switch (code)
598 /* Compare registers by number. */
599 case REG:
600 return REG_P (reg) && REGNO (in) == REGNO (reg);
602 /* These codes have no constituent expressions
603 and are unique. */
604 case SCRATCH:
605 case CC0:
606 case PC:
607 return 0;
609 case CONST_INT:
610 case CONST_VECTOR:
611 case CONST_DOUBLE:
612 /* These are kept unique for a given value. */
613 return 0;
615 default:
616 break;
619 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
620 return 1;
622 fmt = GET_RTX_FORMAT (code);
624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
626 if (fmt[i] == 'E')
628 int j;
629 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
630 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
631 return 1;
633 else if (fmt[i] == 'e'
634 && reg_mentioned_p (reg, XEXP (in, i)))
635 return 1;
637 return 0;
640 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
641 no CODE_LABEL insn. */
644 no_labels_between_p (rtx beg, rtx end)
646 rtx p;
647 if (beg == end)
648 return 0;
649 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
650 if (LABEL_P (p))
651 return 0;
652 return 1;
655 /* Nonzero if register REG is used in an insn between
656 FROM_INSN and TO_INSN (exclusive of those two). */
659 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
661 rtx insn;
663 if (from_insn == to_insn)
664 return 0;
666 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
667 if (INSN_P (insn)
668 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
669 || (CALL_P (insn)
670 && (find_reg_fusage (insn, USE, reg)
671 || find_reg_fusage (insn, CLOBBER, reg)))))
672 return 1;
673 return 0;
676 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
677 is entirely replaced by a new value and the only use is as a SET_DEST,
678 we do not consider it a reference. */
681 reg_referenced_p (rtx x, rtx body)
683 int i;
685 switch (GET_CODE (body))
687 case SET:
688 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
689 return 1;
691 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
692 of a REG that occupies all of the REG, the insn references X if
693 it is mentioned in the destination. */
694 if (GET_CODE (SET_DEST (body)) != CC0
695 && GET_CODE (SET_DEST (body)) != PC
696 && !REG_P (SET_DEST (body))
697 && ! (GET_CODE (SET_DEST (body)) == SUBREG
698 && REG_P (SUBREG_REG (SET_DEST (body)))
699 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
700 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
701 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
702 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
703 && reg_overlap_mentioned_p (x, SET_DEST (body)))
704 return 1;
705 return 0;
707 case ASM_OPERANDS:
708 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
709 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
710 return 1;
711 return 0;
713 case CALL:
714 case USE:
715 case IF_THEN_ELSE:
716 return reg_overlap_mentioned_p (x, body);
718 case TRAP_IF:
719 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
721 case PREFETCH:
722 return reg_overlap_mentioned_p (x, XEXP (body, 0));
724 case UNSPEC:
725 case UNSPEC_VOLATILE:
726 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
727 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
728 return 1;
729 return 0;
731 case PARALLEL:
732 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
733 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
734 return 1;
735 return 0;
737 case CLOBBER:
738 if (MEM_P (XEXP (body, 0)))
739 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
740 return 1;
741 return 0;
743 case COND_EXEC:
744 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
745 return 1;
746 return reg_referenced_p (x, COND_EXEC_CODE (body));
748 default:
749 return 0;
753 /* Nonzero if register REG is set or clobbered in an insn between
754 FROM_INSN and TO_INSN (exclusive of those two). */
757 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
759 rtx insn;
761 if (from_insn == to_insn)
762 return 0;
764 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
765 if (INSN_P (insn) && reg_set_p (reg, insn))
766 return 1;
767 return 0;
770 /* Internals of reg_set_between_p. */
772 reg_set_p (rtx reg, rtx insn)
774 /* We can be passed an insn or part of one. If we are passed an insn,
775 check if a side-effect of the insn clobbers REG. */
776 if (INSN_P (insn)
777 && (FIND_REG_INC_NOTE (insn, reg)
778 || (CALL_P (insn)
779 && ((REG_P (reg)
780 && REGNO (reg) < FIRST_PSEUDO_REGISTER
781 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
782 REGNO (reg)))
783 || MEM_P (reg)
784 || find_reg_fusage (insn, CLOBBER, reg)))))
785 return 1;
787 return set_of (reg, insn) != NULL_RTX;
790 /* Similar to reg_set_between_p, but check all registers in X. Return 0
791 only if none of them are modified between START and END. Return 1 if
792 X contains a MEM; this routine does usememory aliasing. */
795 modified_between_p (rtx x, rtx start, rtx end)
797 enum rtx_code code = GET_CODE (x);
798 const char *fmt;
799 int i, j;
800 rtx insn;
802 if (start == end)
803 return 0;
805 switch (code)
807 case CONST_INT:
808 case CONST_DOUBLE:
809 case CONST_VECTOR:
810 case CONST:
811 case SYMBOL_REF:
812 case LABEL_REF:
813 return 0;
815 case PC:
816 case CC0:
817 return 1;
819 case MEM:
820 if (modified_between_p (XEXP (x, 0), start, end))
821 return 1;
822 if (MEM_READONLY_P (x))
823 return 0;
824 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
825 if (memory_modified_in_insn_p (x, insn))
826 return 1;
827 return 0;
828 break;
830 case REG:
831 return reg_set_between_p (x, start, end);
833 default:
834 break;
837 fmt = GET_RTX_FORMAT (code);
838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
840 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
841 return 1;
843 else if (fmt[i] == 'E')
844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
845 if (modified_between_p (XVECEXP (x, i, j), start, end))
846 return 1;
849 return 0;
852 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
853 of them are modified in INSN. Return 1 if X contains a MEM; this routine
854 does use memory aliasing. */
857 modified_in_p (rtx x, rtx insn)
859 enum rtx_code code = GET_CODE (x);
860 const char *fmt;
861 int i, j;
863 switch (code)
865 case CONST_INT:
866 case CONST_DOUBLE:
867 case CONST_VECTOR:
868 case CONST:
869 case SYMBOL_REF:
870 case LABEL_REF:
871 return 0;
873 case PC:
874 case CC0:
875 return 1;
877 case MEM:
878 if (modified_in_p (XEXP (x, 0), insn))
879 return 1;
880 if (MEM_READONLY_P (x))
881 return 0;
882 if (memory_modified_in_insn_p (x, insn))
883 return 1;
884 return 0;
885 break;
887 case REG:
888 return reg_set_p (x, insn);
890 default:
891 break;
894 fmt = GET_RTX_FORMAT (code);
895 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
897 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
898 return 1;
900 else if (fmt[i] == 'E')
901 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
902 if (modified_in_p (XVECEXP (x, i, j), insn))
903 return 1;
906 return 0;
909 /* Helper function for set_of. */
910 struct set_of_data
912 rtx found;
913 rtx pat;
916 static void
917 set_of_1 (rtx x, rtx pat, void *data1)
919 struct set_of_data *data = (struct set_of_data *) (data1);
920 if (rtx_equal_p (x, data->pat)
921 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
922 data->found = pat;
925 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
926 (either directly or via STRICT_LOW_PART and similar modifiers). */
928 set_of (rtx pat, rtx insn)
930 struct set_of_data data;
931 data.found = NULL_RTX;
932 data.pat = pat;
933 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
934 return data.found;
937 /* Given an INSN, return a SET expression if this insn has only a single SET.
938 It may also have CLOBBERs, USEs, or SET whose output
939 will not be used, which we ignore. */
942 single_set_2 (rtx insn, rtx pat)
944 rtx set = NULL;
945 int set_verified = 1;
946 int i;
948 if (GET_CODE (pat) == PARALLEL)
950 for (i = 0; i < XVECLEN (pat, 0); i++)
952 rtx sub = XVECEXP (pat, 0, i);
953 switch (GET_CODE (sub))
955 case USE:
956 case CLOBBER:
957 break;
959 case SET:
960 /* We can consider insns having multiple sets, where all
961 but one are dead as single set insns. In common case
962 only single set is present in the pattern so we want
963 to avoid checking for REG_UNUSED notes unless necessary.
965 When we reach set first time, we just expect this is
966 the single set we are looking for and only when more
967 sets are found in the insn, we check them. */
968 if (!set_verified)
970 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
971 && !side_effects_p (set))
972 set = NULL;
973 else
974 set_verified = 1;
976 if (!set)
977 set = sub, set_verified = 0;
978 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
979 || side_effects_p (sub))
980 return NULL_RTX;
981 break;
983 default:
984 return NULL_RTX;
988 return set;
991 /* Given an INSN, return nonzero if it has more than one SET, else return
992 zero. */
995 multiple_sets (rtx insn)
997 int found;
998 int i;
1000 /* INSN must be an insn. */
1001 if (! INSN_P (insn))
1002 return 0;
1004 /* Only a PARALLEL can have multiple SETs. */
1005 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1007 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1008 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1010 /* If we have already found a SET, then return now. */
1011 if (found)
1012 return 1;
1013 else
1014 found = 1;
1018 /* Either zero or one SET. */
1019 return 0;
1022 /* Return nonzero if the destination of SET equals the source
1023 and there are no side effects. */
1026 set_noop_p (rtx set)
1028 rtx src = SET_SRC (set);
1029 rtx dst = SET_DEST (set);
1031 if (dst == pc_rtx && src == pc_rtx)
1032 return 1;
1034 if (MEM_P (dst) && MEM_P (src))
1035 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1037 if (GET_CODE (dst) == ZERO_EXTRACT)
1038 return rtx_equal_p (XEXP (dst, 0), src)
1039 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1040 && !side_effects_p (src);
1042 if (GET_CODE (dst) == STRICT_LOW_PART)
1043 dst = XEXP (dst, 0);
1045 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1047 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1048 return 0;
1049 src = SUBREG_REG (src);
1050 dst = SUBREG_REG (dst);
1053 return (REG_P (src) && REG_P (dst)
1054 && REGNO (src) == REGNO (dst));
1057 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1058 value to itself. */
1061 noop_move_p (rtx insn)
1063 rtx pat = PATTERN (insn);
1065 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1066 return 1;
1068 /* Insns carrying these notes are useful later on. */
1069 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1070 return 0;
1072 /* For now treat an insn with a REG_RETVAL note as a
1073 a special insn which should not be considered a no-op. */
1074 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1075 return 0;
1077 if (GET_CODE (pat) == SET && set_noop_p (pat))
1078 return 1;
1080 if (GET_CODE (pat) == PARALLEL)
1082 int i;
1083 /* If nothing but SETs of registers to themselves,
1084 this insn can also be deleted. */
1085 for (i = 0; i < XVECLEN (pat, 0); i++)
1087 rtx tem = XVECEXP (pat, 0, i);
1089 if (GET_CODE (tem) == USE
1090 || GET_CODE (tem) == CLOBBER)
1091 continue;
1093 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1094 return 0;
1097 return 1;
1099 return 0;
1103 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1104 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1105 If the object was modified, if we hit a partial assignment to X, or hit a
1106 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1107 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1108 be the src. */
1111 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1113 rtx p;
1115 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1116 p = PREV_INSN (p))
1117 if (INSN_P (p))
1119 rtx set = single_set (p);
1120 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1122 if (set && rtx_equal_p (x, SET_DEST (set)))
1124 rtx src = SET_SRC (set);
1126 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1127 src = XEXP (note, 0);
1129 if ((valid_to == NULL_RTX
1130 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1131 /* Reject hard registers because we don't usually want
1132 to use them; we'd rather use a pseudo. */
1133 && (! (REG_P (src)
1134 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1136 *pinsn = p;
1137 return src;
1141 /* If set in non-simple way, we don't have a value. */
1142 if (reg_set_p (x, p))
1143 break;
1146 return x;
1149 /* Return nonzero if register in range [REGNO, ENDREGNO)
1150 appears either explicitly or implicitly in X
1151 other than being stored into.
1153 References contained within the substructure at LOC do not count.
1154 LOC may be zero, meaning don't ignore anything. */
1157 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1158 rtx *loc)
1160 int i;
1161 unsigned int x_regno;
1162 RTX_CODE code;
1163 const char *fmt;
1165 repeat:
1166 /* The contents of a REG_NONNEG note is always zero, so we must come here
1167 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1168 if (x == 0)
1169 return 0;
1171 code = GET_CODE (x);
1173 switch (code)
1175 case REG:
1176 x_regno = REGNO (x);
1178 /* If we modifying the stack, frame, or argument pointer, it will
1179 clobber a virtual register. In fact, we could be more precise,
1180 but it isn't worth it. */
1181 if ((x_regno == STACK_POINTER_REGNUM
1182 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1183 || x_regno == ARG_POINTER_REGNUM
1184 #endif
1185 || x_regno == FRAME_POINTER_REGNUM)
1186 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1187 return 1;
1189 return (endregno > x_regno
1190 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1191 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1192 : 1));
1194 case SUBREG:
1195 /* If this is a SUBREG of a hard reg, we can see exactly which
1196 registers are being modified. Otherwise, handle normally. */
1197 if (REG_P (SUBREG_REG (x))
1198 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1200 unsigned int inner_regno = subreg_regno (x);
1201 unsigned int inner_endregno
1202 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1203 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1205 return endregno > inner_regno && regno < inner_endregno;
1207 break;
1209 case CLOBBER:
1210 case SET:
1211 if (&SET_DEST (x) != loc
1212 /* Note setting a SUBREG counts as referring to the REG it is in for
1213 a pseudo but not for hard registers since we can
1214 treat each word individually. */
1215 && ((GET_CODE (SET_DEST (x)) == SUBREG
1216 && loc != &SUBREG_REG (SET_DEST (x))
1217 && REG_P (SUBREG_REG (SET_DEST (x)))
1218 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1219 && refers_to_regno_p (regno, endregno,
1220 SUBREG_REG (SET_DEST (x)), loc))
1221 || (!REG_P (SET_DEST (x))
1222 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1223 return 1;
1225 if (code == CLOBBER || loc == &SET_SRC (x))
1226 return 0;
1227 x = SET_SRC (x);
1228 goto repeat;
1230 default:
1231 break;
1234 /* X does not match, so try its subexpressions. */
1236 fmt = GET_RTX_FORMAT (code);
1237 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1239 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1241 if (i == 0)
1243 x = XEXP (x, 0);
1244 goto repeat;
1246 else
1247 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1248 return 1;
1250 else if (fmt[i] == 'E')
1252 int j;
1253 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1254 if (loc != &XVECEXP (x, i, j)
1255 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1256 return 1;
1259 return 0;
1262 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1263 we check if any register number in X conflicts with the relevant register
1264 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1265 contains a MEM (we don't bother checking for memory addresses that can't
1266 conflict because we expect this to be a rare case. */
1269 reg_overlap_mentioned_p (rtx x, rtx in)
1271 unsigned int regno, endregno;
1273 /* If either argument is a constant, then modifying X can not
1274 affect IN. Here we look at IN, we can profitably combine
1275 CONSTANT_P (x) with the switch statement below. */
1276 if (CONSTANT_P (in))
1277 return 0;
1279 recurse:
1280 switch (GET_CODE (x))
1282 case STRICT_LOW_PART:
1283 case ZERO_EXTRACT:
1284 case SIGN_EXTRACT:
1285 /* Overly conservative. */
1286 x = XEXP (x, 0);
1287 goto recurse;
1289 case SUBREG:
1290 regno = REGNO (SUBREG_REG (x));
1291 if (regno < FIRST_PSEUDO_REGISTER)
1292 regno = subreg_regno (x);
1293 goto do_reg;
1295 case REG:
1296 regno = REGNO (x);
1297 do_reg:
1298 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1299 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1300 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1302 case MEM:
1304 const char *fmt;
1305 int i;
1307 if (MEM_P (in))
1308 return 1;
1310 fmt = GET_RTX_FORMAT (GET_CODE (in));
1311 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1312 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1313 return 1;
1315 return 0;
1318 case SCRATCH:
1319 case PC:
1320 case CC0:
1321 return reg_mentioned_p (x, in);
1323 case PARALLEL:
1325 int i;
1327 /* If any register in here refers to it we return true. */
1328 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1329 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1330 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1331 return 1;
1332 return 0;
1335 default:
1336 gcc_assert (CONSTANT_P (x));
1337 return 0;
1341 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1342 (X would be the pattern of an insn).
1343 FUN receives two arguments:
1344 the REG, MEM, CC0 or PC being stored in or clobbered,
1345 the SET or CLOBBER rtx that does the store.
1347 If the item being stored in or clobbered is a SUBREG of a hard register,
1348 the SUBREG will be passed. */
1350 void
1351 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1353 int i;
1355 if (GET_CODE (x) == COND_EXEC)
1356 x = COND_EXEC_CODE (x);
1358 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1360 rtx dest = SET_DEST (x);
1362 while ((GET_CODE (dest) == SUBREG
1363 && (!REG_P (SUBREG_REG (dest))
1364 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1365 || GET_CODE (dest) == ZERO_EXTRACT
1366 || GET_CODE (dest) == STRICT_LOW_PART)
1367 dest = XEXP (dest, 0);
1369 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1370 each of whose first operand is a register. */
1371 if (GET_CODE (dest) == PARALLEL)
1373 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1374 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1375 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1377 else
1378 (*fun) (dest, x, data);
1381 else if (GET_CODE (x) == PARALLEL)
1382 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1383 note_stores (XVECEXP (x, 0, i), fun, data);
1386 /* Like notes_stores, but call FUN for each expression that is being
1387 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1388 FUN for each expression, not any interior subexpressions. FUN receives a
1389 pointer to the expression and the DATA passed to this function.
1391 Note that this is not quite the same test as that done in reg_referenced_p
1392 since that considers something as being referenced if it is being
1393 partially set, while we do not. */
1395 void
1396 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1398 rtx body = *pbody;
1399 int i;
1401 switch (GET_CODE (body))
1403 case COND_EXEC:
1404 (*fun) (&COND_EXEC_TEST (body), data);
1405 note_uses (&COND_EXEC_CODE (body), fun, data);
1406 return;
1408 case PARALLEL:
1409 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1410 note_uses (&XVECEXP (body, 0, i), fun, data);
1411 return;
1413 case USE:
1414 (*fun) (&XEXP (body, 0), data);
1415 return;
1417 case ASM_OPERANDS:
1418 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1419 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1420 return;
1422 case TRAP_IF:
1423 (*fun) (&TRAP_CONDITION (body), data);
1424 return;
1426 case PREFETCH:
1427 (*fun) (&XEXP (body, 0), data);
1428 return;
1430 case UNSPEC:
1431 case UNSPEC_VOLATILE:
1432 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1433 (*fun) (&XVECEXP (body, 0, i), data);
1434 return;
1436 case CLOBBER:
1437 if (MEM_P (XEXP (body, 0)))
1438 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1439 return;
1441 case SET:
1443 rtx dest = SET_DEST (body);
1445 /* For sets we replace everything in source plus registers in memory
1446 expression in store and operands of a ZERO_EXTRACT. */
1447 (*fun) (&SET_SRC (body), data);
1449 if (GET_CODE (dest) == ZERO_EXTRACT)
1451 (*fun) (&XEXP (dest, 1), data);
1452 (*fun) (&XEXP (dest, 2), data);
1455 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1456 dest = XEXP (dest, 0);
1458 if (MEM_P (dest))
1459 (*fun) (&XEXP (dest, 0), data);
1461 return;
1463 default:
1464 /* All the other possibilities never store. */
1465 (*fun) (pbody, data);
1466 return;
1470 /* Return nonzero if X's old contents don't survive after INSN.
1471 This will be true if X is (cc0) or if X is a register and
1472 X dies in INSN or because INSN entirely sets X.
1474 "Entirely set" means set directly and not through a SUBREG, or
1475 ZERO_EXTRACT, so no trace of the old contents remains.
1476 Likewise, REG_INC does not count.
1478 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1479 but for this use that makes no difference, since regs don't overlap
1480 during their lifetimes. Therefore, this function may be used
1481 at any time after deaths have been computed (in flow.c).
1483 If REG is a hard reg that occupies multiple machine registers, this
1484 function will only return 1 if each of those registers will be replaced
1485 by INSN. */
1488 dead_or_set_p (rtx insn, rtx x)
1490 unsigned int regno, last_regno;
1491 unsigned int i;
1493 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1494 if (GET_CODE (x) == CC0)
1495 return 1;
1497 gcc_assert (REG_P (x));
1499 regno = REGNO (x);
1500 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1501 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1503 for (i = regno; i <= last_regno; i++)
1504 if (! dead_or_set_regno_p (insn, i))
1505 return 0;
1507 return 1;
1510 /* Return TRUE iff DEST is a register or subreg of a register and
1511 doesn't change the number of words of the inner register, and any
1512 part of the register is TEST_REGNO. */
1514 static bool
1515 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1517 unsigned int regno, endregno;
1519 if (GET_CODE (dest) == SUBREG
1520 && (((GET_MODE_SIZE (GET_MODE (dest))
1521 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1522 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1523 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1524 dest = SUBREG_REG (dest);
1526 if (!REG_P (dest))
1527 return false;
1529 regno = REGNO (dest);
1530 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1531 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1532 return (test_regno >= regno && test_regno < endregno);
1535 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1536 any member matches the covers_regno_no_parallel_p criteria. */
1538 static bool
1539 covers_regno_p (rtx dest, unsigned int test_regno)
1541 if (GET_CODE (dest) == PARALLEL)
1543 /* Some targets place small structures in registers for return
1544 values of functions, and those registers are wrapped in
1545 PARALLELs that we may see as the destination of a SET. */
1546 int i;
1548 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1550 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1551 if (inner != NULL_RTX
1552 && covers_regno_no_parallel_p (inner, test_regno))
1553 return true;
1556 return false;
1558 else
1559 return covers_regno_no_parallel_p (dest, test_regno);
1562 /* Utility function for dead_or_set_p to check an individual register. Also
1563 called from flow.c. */
1566 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1568 rtx pattern;
1570 /* See if there is a death note for something that includes TEST_REGNO. */
1571 if (find_regno_note (insn, REG_DEAD, test_regno))
1572 return 1;
1574 if (CALL_P (insn)
1575 && find_regno_fusage (insn, CLOBBER, test_regno))
1576 return 1;
1578 pattern = PATTERN (insn);
1580 if (GET_CODE (pattern) == COND_EXEC)
1581 pattern = COND_EXEC_CODE (pattern);
1583 if (GET_CODE (pattern) == SET)
1584 return covers_regno_p (SET_DEST (pattern), test_regno);
1585 else if (GET_CODE (pattern) == PARALLEL)
1587 int i;
1589 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1591 rtx body = XVECEXP (pattern, 0, i);
1593 if (GET_CODE (body) == COND_EXEC)
1594 body = COND_EXEC_CODE (body);
1596 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1597 && covers_regno_p (SET_DEST (body), test_regno))
1598 return 1;
1602 return 0;
1605 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1606 If DATUM is nonzero, look for one whose datum is DATUM. */
1609 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1611 rtx link;
1613 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1614 if (! INSN_P (insn))
1615 return 0;
1616 if (datum == 0)
1618 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1619 if (REG_NOTE_KIND (link) == kind)
1620 return link;
1621 return 0;
1624 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1625 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1626 return link;
1627 return 0;
1630 /* Return the reg-note of kind KIND in insn INSN which applies to register
1631 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1632 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1633 it might be the case that the note overlaps REGNO. */
1636 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1638 rtx link;
1640 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1641 if (! INSN_P (insn))
1642 return 0;
1644 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1645 if (REG_NOTE_KIND (link) == kind
1646 /* Verify that it is a register, so that scratch and MEM won't cause a
1647 problem here. */
1648 && REG_P (XEXP (link, 0))
1649 && REGNO (XEXP (link, 0)) <= regno
1650 && ((REGNO (XEXP (link, 0))
1651 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1652 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1653 [GET_MODE (XEXP (link, 0))]))
1654 > regno))
1655 return link;
1656 return 0;
1659 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1660 has such a note. */
1663 find_reg_equal_equiv_note (rtx insn)
1665 rtx link;
1667 if (!INSN_P (insn))
1668 return 0;
1669 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1670 if (REG_NOTE_KIND (link) == REG_EQUAL
1671 || REG_NOTE_KIND (link) == REG_EQUIV)
1673 if (single_set (insn) == 0)
1674 return 0;
1675 return link;
1677 return NULL;
1680 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1681 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1684 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1686 /* If it's not a CALL_INSN, it can't possibly have a
1687 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1688 if (!CALL_P (insn))
1689 return 0;
1691 gcc_assert (datum);
1693 if (!REG_P (datum))
1695 rtx link;
1697 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1698 link;
1699 link = XEXP (link, 1))
1700 if (GET_CODE (XEXP (link, 0)) == code
1701 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1702 return 1;
1704 else
1706 unsigned int regno = REGNO (datum);
1708 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1709 to pseudo registers, so don't bother checking. */
1711 if (regno < FIRST_PSEUDO_REGISTER)
1713 unsigned int end_regno
1714 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1715 unsigned int i;
1717 for (i = regno; i < end_regno; i++)
1718 if (find_regno_fusage (insn, code, i))
1719 return 1;
1723 return 0;
1726 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1727 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1730 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1732 rtx link;
1734 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1735 to pseudo registers, so don't bother checking. */
1737 if (regno >= FIRST_PSEUDO_REGISTER
1738 || !CALL_P (insn) )
1739 return 0;
1741 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1743 unsigned int regnote;
1744 rtx op, reg;
1746 if (GET_CODE (op = XEXP (link, 0)) == code
1747 && REG_P (reg = XEXP (op, 0))
1748 && (regnote = REGNO (reg)) <= regno
1749 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1750 return 1;
1753 return 0;
1756 /* Return true if INSN is a call to a pure function. */
1759 pure_call_p (rtx insn)
1761 rtx link;
1763 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1764 return 0;
1766 /* Look for the note that differentiates const and pure functions. */
1767 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1769 rtx u, m;
1771 if (GET_CODE (u = XEXP (link, 0)) == USE
1772 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1773 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1774 return 1;
1777 return 0;
1780 /* Remove register note NOTE from the REG_NOTES of INSN. */
1782 void
1783 remove_note (rtx insn, rtx note)
1785 rtx link;
1787 if (note == NULL_RTX)
1788 return;
1790 if (REG_NOTES (insn) == note)
1792 REG_NOTES (insn) = XEXP (note, 1);
1793 return;
1796 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1797 if (XEXP (link, 1) == note)
1799 XEXP (link, 1) = XEXP (note, 1);
1800 return;
1803 gcc_unreachable ();
1806 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1807 return 1 if it is found. A simple equality test is used to determine if
1808 NODE matches. */
1811 in_expr_list_p (rtx listp, rtx node)
1813 rtx x;
1815 for (x = listp; x; x = XEXP (x, 1))
1816 if (node == XEXP (x, 0))
1817 return 1;
1819 return 0;
1822 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1823 remove that entry from the list if it is found.
1825 A simple equality test is used to determine if NODE matches. */
1827 void
1828 remove_node_from_expr_list (rtx node, rtx *listp)
1830 rtx temp = *listp;
1831 rtx prev = NULL_RTX;
1833 while (temp)
1835 if (node == XEXP (temp, 0))
1837 /* Splice the node out of the list. */
1838 if (prev)
1839 XEXP (prev, 1) = XEXP (temp, 1);
1840 else
1841 *listp = XEXP (temp, 1);
1843 return;
1846 prev = temp;
1847 temp = XEXP (temp, 1);
1851 /* Nonzero if X contains any volatile instructions. These are instructions
1852 which may cause unpredictable machine state instructions, and thus no
1853 instructions should be moved or combined across them. This includes
1854 only volatile asms and UNSPEC_VOLATILE instructions. */
1857 volatile_insn_p (rtx x)
1859 RTX_CODE code;
1861 code = GET_CODE (x);
1862 switch (code)
1864 case LABEL_REF:
1865 case SYMBOL_REF:
1866 case CONST_INT:
1867 case CONST:
1868 case CONST_DOUBLE:
1869 case CONST_VECTOR:
1870 case CC0:
1871 case PC:
1872 case REG:
1873 case SCRATCH:
1874 case CLOBBER:
1875 case ADDR_VEC:
1876 case ADDR_DIFF_VEC:
1877 case CALL:
1878 case MEM:
1879 return 0;
1881 case UNSPEC_VOLATILE:
1882 /* case TRAP_IF: This isn't clear yet. */
1883 return 1;
1885 case ASM_INPUT:
1886 case ASM_OPERANDS:
1887 if (MEM_VOLATILE_P (x))
1888 return 1;
1890 default:
1891 break;
1894 /* Recursively scan the operands of this expression. */
1897 const char *fmt = GET_RTX_FORMAT (code);
1898 int i;
1900 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1902 if (fmt[i] == 'e')
1904 if (volatile_insn_p (XEXP (x, i)))
1905 return 1;
1907 else if (fmt[i] == 'E')
1909 int j;
1910 for (j = 0; j < XVECLEN (x, i); j++)
1911 if (volatile_insn_p (XVECEXP (x, i, j)))
1912 return 1;
1916 return 0;
1919 /* Nonzero if X contains any volatile memory references
1920 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1923 volatile_refs_p (rtx x)
1925 RTX_CODE code;
1927 code = GET_CODE (x);
1928 switch (code)
1930 case LABEL_REF:
1931 case SYMBOL_REF:
1932 case CONST_INT:
1933 case CONST:
1934 case CONST_DOUBLE:
1935 case CONST_VECTOR:
1936 case CC0:
1937 case PC:
1938 case REG:
1939 case SCRATCH:
1940 case CLOBBER:
1941 case ADDR_VEC:
1942 case ADDR_DIFF_VEC:
1943 return 0;
1945 case UNSPEC_VOLATILE:
1946 return 1;
1948 case MEM:
1949 case ASM_INPUT:
1950 case ASM_OPERANDS:
1951 if (MEM_VOLATILE_P (x))
1952 return 1;
1954 default:
1955 break;
1958 /* Recursively scan the operands of this expression. */
1961 const char *fmt = GET_RTX_FORMAT (code);
1962 int i;
1964 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1966 if (fmt[i] == 'e')
1968 if (volatile_refs_p (XEXP (x, i)))
1969 return 1;
1971 else if (fmt[i] == 'E')
1973 int j;
1974 for (j = 0; j < XVECLEN (x, i); j++)
1975 if (volatile_refs_p (XVECEXP (x, i, j)))
1976 return 1;
1980 return 0;
1983 /* Similar to above, except that it also rejects register pre- and post-
1984 incrementing. */
1987 side_effects_p (rtx x)
1989 RTX_CODE code;
1991 code = GET_CODE (x);
1992 switch (code)
1994 case LABEL_REF:
1995 case SYMBOL_REF:
1996 case CONST_INT:
1997 case CONST:
1998 case CONST_DOUBLE:
1999 case CONST_VECTOR:
2000 case CC0:
2001 case PC:
2002 case REG:
2003 case SCRATCH:
2004 case ADDR_VEC:
2005 case ADDR_DIFF_VEC:
2006 return 0;
2008 case CLOBBER:
2009 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2010 when some combination can't be done. If we see one, don't think
2011 that we can simplify the expression. */
2012 return (GET_MODE (x) != VOIDmode);
2014 case PRE_INC:
2015 case PRE_DEC:
2016 case POST_INC:
2017 case POST_DEC:
2018 case PRE_MODIFY:
2019 case POST_MODIFY:
2020 case CALL:
2021 case UNSPEC_VOLATILE:
2022 /* case TRAP_IF: This isn't clear yet. */
2023 return 1;
2025 case MEM:
2026 case ASM_INPUT:
2027 case ASM_OPERANDS:
2028 if (MEM_VOLATILE_P (x))
2029 return 1;
2031 default:
2032 break;
2035 /* Recursively scan the operands of this expression. */
2038 const char *fmt = GET_RTX_FORMAT (code);
2039 int i;
2041 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2043 if (fmt[i] == 'e')
2045 if (side_effects_p (XEXP (x, i)))
2046 return 1;
2048 else if (fmt[i] == 'E')
2050 int j;
2051 for (j = 0; j < XVECLEN (x, i); j++)
2052 if (side_effects_p (XVECEXP (x, i, j)))
2053 return 1;
2057 return 0;
2060 /* Return nonzero if evaluating rtx X might cause a trap. */
2063 may_trap_p (rtx x)
2065 int i;
2066 enum rtx_code code;
2067 const char *fmt;
2069 if (x == 0)
2070 return 0;
2071 code = GET_CODE (x);
2072 switch (code)
2074 /* Handle these cases quickly. */
2075 case CONST_INT:
2076 case CONST_DOUBLE:
2077 case CONST_VECTOR:
2078 case SYMBOL_REF:
2079 case LABEL_REF:
2080 case CONST:
2081 case PC:
2082 case CC0:
2083 case REG:
2084 case SCRATCH:
2085 return 0;
2087 case ASM_INPUT:
2088 case UNSPEC_VOLATILE:
2089 case TRAP_IF:
2090 return 1;
2092 case ASM_OPERANDS:
2093 return MEM_VOLATILE_P (x);
2095 /* Memory ref can trap unless it's a static var or a stack slot. */
2096 case MEM:
2097 if (MEM_NOTRAP_P (x))
2098 return 0;
2099 return rtx_addr_can_trap_p (XEXP (x, 0));
2101 /* Division by a non-constant might trap. */
2102 case DIV:
2103 case MOD:
2104 case UDIV:
2105 case UMOD:
2106 if (HONOR_SNANS (GET_MODE (x)))
2107 return 1;
2108 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
2109 return flag_trapping_math;
2110 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2111 return 1;
2112 break;
2114 case EXPR_LIST:
2115 /* An EXPR_LIST is used to represent a function call. This
2116 certainly may trap. */
2117 return 1;
2119 case GE:
2120 case GT:
2121 case LE:
2122 case LT:
2123 case LTGT:
2124 case COMPARE:
2125 /* Some floating point comparisons may trap. */
2126 if (!flag_trapping_math)
2127 break;
2128 /* ??? There is no machine independent way to check for tests that trap
2129 when COMPARE is used, though many targets do make this distinction.
2130 For instance, sparc uses CCFPE for compares which generate exceptions
2131 and CCFP for compares which do not generate exceptions. */
2132 if (HONOR_NANS (GET_MODE (x)))
2133 return 1;
2134 /* But often the compare has some CC mode, so check operand
2135 modes as well. */
2136 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2137 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2138 return 1;
2139 break;
2141 case EQ:
2142 case NE:
2143 if (HONOR_SNANS (GET_MODE (x)))
2144 return 1;
2145 /* Often comparison is CC mode, so check operand modes. */
2146 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2147 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2148 return 1;
2149 break;
2151 case FIX:
2152 /* Conversion of floating point might trap. */
2153 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2154 return 1;
2155 break;
2157 case NEG:
2158 case ABS:
2159 /* These operations don't trap even with floating point. */
2160 break;
2162 default:
2163 /* Any floating arithmetic may trap. */
2164 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2165 && flag_trapping_math)
2166 return 1;
2169 fmt = GET_RTX_FORMAT (code);
2170 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2172 if (fmt[i] == 'e')
2174 if (may_trap_p (XEXP (x, i)))
2175 return 1;
2177 else if (fmt[i] == 'E')
2179 int j;
2180 for (j = 0; j < XVECLEN (x, i); j++)
2181 if (may_trap_p (XVECEXP (x, i, j)))
2182 return 1;
2185 return 0;
2188 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2189 i.e., an inequality. */
2192 inequality_comparisons_p (rtx x)
2194 const char *fmt;
2195 int len, i;
2196 enum rtx_code code = GET_CODE (x);
2198 switch (code)
2200 case REG:
2201 case SCRATCH:
2202 case PC:
2203 case CC0:
2204 case CONST_INT:
2205 case CONST_DOUBLE:
2206 case CONST_VECTOR:
2207 case CONST:
2208 case LABEL_REF:
2209 case SYMBOL_REF:
2210 return 0;
2212 case LT:
2213 case LTU:
2214 case GT:
2215 case GTU:
2216 case LE:
2217 case LEU:
2218 case GE:
2219 case GEU:
2220 return 1;
2222 default:
2223 break;
2226 len = GET_RTX_LENGTH (code);
2227 fmt = GET_RTX_FORMAT (code);
2229 for (i = 0; i < len; i++)
2231 if (fmt[i] == 'e')
2233 if (inequality_comparisons_p (XEXP (x, i)))
2234 return 1;
2236 else if (fmt[i] == 'E')
2238 int j;
2239 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2240 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2241 return 1;
2245 return 0;
2248 /* Replace any occurrence of FROM in X with TO. The function does
2249 not enter into CONST_DOUBLE for the replace.
2251 Note that copying is not done so X must not be shared unless all copies
2252 are to be modified. */
2255 replace_rtx (rtx x, rtx from, rtx to)
2257 int i, j;
2258 const char *fmt;
2260 /* The following prevents loops occurrence when we change MEM in
2261 CONST_DOUBLE onto the same CONST_DOUBLE. */
2262 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2263 return x;
2265 if (x == from)
2266 return to;
2268 /* Allow this function to make replacements in EXPR_LISTs. */
2269 if (x == 0)
2270 return 0;
2272 if (GET_CODE (x) == SUBREG)
2274 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2276 if (GET_CODE (new) == CONST_INT)
2278 x = simplify_subreg (GET_MODE (x), new,
2279 GET_MODE (SUBREG_REG (x)),
2280 SUBREG_BYTE (x));
2281 gcc_assert (x);
2283 else
2284 SUBREG_REG (x) = new;
2286 return x;
2288 else if (GET_CODE (x) == ZERO_EXTEND)
2290 rtx new = replace_rtx (XEXP (x, 0), from, to);
2292 if (GET_CODE (new) == CONST_INT)
2294 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2295 new, GET_MODE (XEXP (x, 0)));
2296 gcc_assert (x);
2298 else
2299 XEXP (x, 0) = new;
2301 return x;
2304 fmt = GET_RTX_FORMAT (GET_CODE (x));
2305 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2307 if (fmt[i] == 'e')
2308 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2309 else if (fmt[i] == 'E')
2310 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2311 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2314 return x;
2317 /* Throughout the rtx X, replace many registers according to REG_MAP.
2318 Return the replacement for X (which may be X with altered contents).
2319 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2320 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2322 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2323 should not be mapped to pseudos or vice versa since validate_change
2324 is not called.
2326 If REPLACE_DEST is 1, replacements are also done in destinations;
2327 otherwise, only sources are replaced. */
2330 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2332 enum rtx_code code;
2333 int i;
2334 const char *fmt;
2336 if (x == 0)
2337 return x;
2339 code = GET_CODE (x);
2340 switch (code)
2342 case SCRATCH:
2343 case PC:
2344 case CC0:
2345 case CONST_INT:
2346 case CONST_DOUBLE:
2347 case CONST_VECTOR:
2348 case CONST:
2349 case SYMBOL_REF:
2350 case LABEL_REF:
2351 return x;
2353 case REG:
2354 /* Verify that the register has an entry before trying to access it. */
2355 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2357 /* SUBREGs can't be shared. Always return a copy to ensure that if
2358 this replacement occurs more than once then each instance will
2359 get distinct rtx. */
2360 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2361 return copy_rtx (reg_map[REGNO (x)]);
2362 return reg_map[REGNO (x)];
2364 return x;
2366 case SUBREG:
2367 /* Prevent making nested SUBREGs. */
2368 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2369 && reg_map[REGNO (SUBREG_REG (x))] != 0
2370 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2372 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2373 return simplify_gen_subreg (GET_MODE (x), map_val,
2374 GET_MODE (SUBREG_REG (x)),
2375 SUBREG_BYTE (x));
2377 break;
2379 case SET:
2380 if (replace_dest)
2381 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2383 else if (MEM_P (SET_DEST (x))
2384 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2385 /* Even if we are not to replace destinations, replace register if it
2386 is CONTAINED in destination (destination is memory or
2387 STRICT_LOW_PART). */
2388 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2389 reg_map, nregs, 0);
2390 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2391 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2392 break;
2394 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2395 return x;
2397 default:
2398 break;
2401 fmt = GET_RTX_FORMAT (code);
2402 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2404 if (fmt[i] == 'e')
2405 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2406 else if (fmt[i] == 'E')
2408 int j;
2409 for (j = 0; j < XVECLEN (x, i); j++)
2410 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2411 nregs, replace_dest);
2414 return x;
2417 /* Replace occurrences of the old label in *X with the new one.
2418 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2421 replace_label (rtx *x, void *data)
2423 rtx l = *x;
2424 rtx old_label = ((replace_label_data *) data)->r1;
2425 rtx new_label = ((replace_label_data *) data)->r2;
2426 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2428 if (l == NULL_RTX)
2429 return 0;
2431 if (GET_CODE (l) == SYMBOL_REF
2432 && CONSTANT_POOL_ADDRESS_P (l))
2434 rtx c = get_pool_constant (l);
2435 if (rtx_referenced_p (old_label, c))
2437 rtx new_c, new_l;
2438 replace_label_data *d = (replace_label_data *) data;
2440 /* Create a copy of constant C; replace the label inside
2441 but do not update LABEL_NUSES because uses in constant pool
2442 are not counted. */
2443 new_c = copy_rtx (c);
2444 d->update_label_nuses = false;
2445 for_each_rtx (&new_c, replace_label, data);
2446 d->update_label_nuses = update_label_nuses;
2448 /* Add the new constant NEW_C to constant pool and replace
2449 the old reference to constant by new reference. */
2450 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2451 *x = replace_rtx (l, l, new_l);
2453 return 0;
2456 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2457 field. This is not handled by for_each_rtx because it doesn't
2458 handle unprinted ('0') fields. */
2459 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2460 JUMP_LABEL (l) = new_label;
2462 if ((GET_CODE (l) == LABEL_REF
2463 || GET_CODE (l) == INSN_LIST)
2464 && XEXP (l, 0) == old_label)
2466 XEXP (l, 0) = new_label;
2467 if (update_label_nuses)
2469 ++LABEL_NUSES (new_label);
2470 --LABEL_NUSES (old_label);
2472 return 0;
2475 return 0;
2478 /* When *BODY is equal to X or X is directly referenced by *BODY
2479 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2480 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2482 static int
2483 rtx_referenced_p_1 (rtx *body, void *x)
2485 rtx y = (rtx) x;
2487 if (*body == NULL_RTX)
2488 return y == NULL_RTX;
2490 /* Return true if a label_ref *BODY refers to label Y. */
2491 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2492 return XEXP (*body, 0) == y;
2494 /* If *BODY is a reference to pool constant traverse the constant. */
2495 if (GET_CODE (*body) == SYMBOL_REF
2496 && CONSTANT_POOL_ADDRESS_P (*body))
2497 return rtx_referenced_p (y, get_pool_constant (*body));
2499 /* By default, compare the RTL expressions. */
2500 return rtx_equal_p (*body, y);
2503 /* Return true if X is referenced in BODY. */
2506 rtx_referenced_p (rtx x, rtx body)
2508 return for_each_rtx (&body, rtx_referenced_p_1, x);
2511 /* If INSN is a tablejump return true and store the label (before jump table) to
2512 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2514 bool
2515 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2517 rtx label, table;
2519 if (JUMP_P (insn)
2520 && (label = JUMP_LABEL (insn)) != NULL_RTX
2521 && (table = next_active_insn (label)) != NULL_RTX
2522 && JUMP_P (table)
2523 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2524 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2526 if (labelp)
2527 *labelp = label;
2528 if (tablep)
2529 *tablep = table;
2530 return true;
2532 return false;
2535 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2536 constant that is not in the constant pool and not in the condition
2537 of an IF_THEN_ELSE. */
2539 static int
2540 computed_jump_p_1 (rtx x)
2542 enum rtx_code code = GET_CODE (x);
2543 int i, j;
2544 const char *fmt;
2546 switch (code)
2548 case LABEL_REF:
2549 case PC:
2550 return 0;
2552 case CONST:
2553 case CONST_INT:
2554 case CONST_DOUBLE:
2555 case CONST_VECTOR:
2556 case SYMBOL_REF:
2557 case REG:
2558 return 1;
2560 case MEM:
2561 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2562 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2564 case IF_THEN_ELSE:
2565 return (computed_jump_p_1 (XEXP (x, 1))
2566 || computed_jump_p_1 (XEXP (x, 2)));
2568 default:
2569 break;
2572 fmt = GET_RTX_FORMAT (code);
2573 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2575 if (fmt[i] == 'e'
2576 && computed_jump_p_1 (XEXP (x, i)))
2577 return 1;
2579 else if (fmt[i] == 'E')
2580 for (j = 0; j < XVECLEN (x, i); j++)
2581 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2582 return 1;
2585 return 0;
2588 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2590 Tablejumps and casesi insns are not considered indirect jumps;
2591 we can recognize them by a (use (label_ref)). */
2594 computed_jump_p (rtx insn)
2596 int i;
2597 if (JUMP_P (insn))
2599 rtx pat = PATTERN (insn);
2601 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2602 return 0;
2603 else if (GET_CODE (pat) == PARALLEL)
2605 int len = XVECLEN (pat, 0);
2606 int has_use_labelref = 0;
2608 for (i = len - 1; i >= 0; i--)
2609 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2610 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2611 == LABEL_REF))
2612 has_use_labelref = 1;
2614 if (! has_use_labelref)
2615 for (i = len - 1; i >= 0; i--)
2616 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2617 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2618 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2619 return 1;
2621 else if (GET_CODE (pat) == SET
2622 && SET_DEST (pat) == pc_rtx
2623 && computed_jump_p_1 (SET_SRC (pat)))
2624 return 1;
2626 return 0;
2629 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2630 calls. Processes the subexpressions of EXP and passes them to F. */
2631 static int
2632 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2634 int result, i, j;
2635 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2636 rtx *x;
2638 for (; format[n] != '\0'; n++)
2640 switch (format[n])
2642 case 'e':
2643 /* Call F on X. */
2644 x = &XEXP (exp, n);
2645 result = (*f) (x, data);
2646 if (result == -1)
2647 /* Do not traverse sub-expressions. */
2648 continue;
2649 else if (result != 0)
2650 /* Stop the traversal. */
2651 return result;
2653 if (*x == NULL_RTX)
2654 /* There are no sub-expressions. */
2655 continue;
2657 i = non_rtx_starting_operands[GET_CODE (*x)];
2658 if (i >= 0)
2660 result = for_each_rtx_1 (*x, i, f, data);
2661 if (result != 0)
2662 return result;
2664 break;
2666 case 'V':
2667 case 'E':
2668 if (XVEC (exp, n) == 0)
2669 continue;
2670 for (j = 0; j < XVECLEN (exp, n); ++j)
2672 /* Call F on X. */
2673 x = &XVECEXP (exp, n, j);
2674 result = (*f) (x, data);
2675 if (result == -1)
2676 /* Do not traverse sub-expressions. */
2677 continue;
2678 else if (result != 0)
2679 /* Stop the traversal. */
2680 return result;
2682 if (*x == NULL_RTX)
2683 /* There are no sub-expressions. */
2684 continue;
2686 i = non_rtx_starting_operands[GET_CODE (*x)];
2687 if (i >= 0)
2689 result = for_each_rtx_1 (*x, i, f, data);
2690 if (result != 0)
2691 return result;
2694 break;
2696 default:
2697 /* Nothing to do. */
2698 break;
2702 return 0;
2705 /* Traverse X via depth-first search, calling F for each
2706 sub-expression (including X itself). F is also passed the DATA.
2707 If F returns -1, do not traverse sub-expressions, but continue
2708 traversing the rest of the tree. If F ever returns any other
2709 nonzero value, stop the traversal, and return the value returned
2710 by F. Otherwise, return 0. This function does not traverse inside
2711 tree structure that contains RTX_EXPRs, or into sub-expressions
2712 whose format code is `0' since it is not known whether or not those
2713 codes are actually RTL.
2715 This routine is very general, and could (should?) be used to
2716 implement many of the other routines in this file. */
2719 for_each_rtx (rtx *x, rtx_function f, void *data)
2721 int result;
2722 int i;
2724 /* Call F on X. */
2725 result = (*f) (x, data);
2726 if (result == -1)
2727 /* Do not traverse sub-expressions. */
2728 return 0;
2729 else if (result != 0)
2730 /* Stop the traversal. */
2731 return result;
2733 if (*x == NULL_RTX)
2734 /* There are no sub-expressions. */
2735 return 0;
2737 i = non_rtx_starting_operands[GET_CODE (*x)];
2738 if (i < 0)
2739 return 0;
2741 return for_each_rtx_1 (*x, i, f, data);
2745 /* Searches X for any reference to REGNO, returning the rtx of the
2746 reference found if any. Otherwise, returns NULL_RTX. */
2749 regno_use_in (unsigned int regno, rtx x)
2751 const char *fmt;
2752 int i, j;
2753 rtx tem;
2755 if (REG_P (x) && REGNO (x) == regno)
2756 return x;
2758 fmt = GET_RTX_FORMAT (GET_CODE (x));
2759 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2761 if (fmt[i] == 'e')
2763 if ((tem = regno_use_in (regno, XEXP (x, i))))
2764 return tem;
2766 else if (fmt[i] == 'E')
2767 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2768 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2769 return tem;
2772 return NULL_RTX;
2775 /* Return a value indicating whether OP, an operand of a commutative
2776 operation, is preferred as the first or second operand. The higher
2777 the value, the stronger the preference for being the first operand.
2778 We use negative values to indicate a preference for the first operand
2779 and positive values for the second operand. */
2782 commutative_operand_precedence (rtx op)
2784 enum rtx_code code = GET_CODE (op);
2786 /* Constants always come the second operand. Prefer "nice" constants. */
2787 if (code == CONST_INT)
2788 return -7;
2789 if (code == CONST_DOUBLE)
2790 return -6;
2791 op = avoid_constant_pool_reference (op);
2792 code = GET_CODE (op);
2794 switch (GET_RTX_CLASS (code))
2796 case RTX_CONST_OBJ:
2797 if (code == CONST_INT)
2798 return -5;
2799 if (code == CONST_DOUBLE)
2800 return -4;
2801 return -3;
2803 case RTX_EXTRA:
2804 /* SUBREGs of objects should come second. */
2805 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2806 return -2;
2808 if (!CONSTANT_P (op))
2809 return 0;
2810 else
2811 /* As for RTX_CONST_OBJ. */
2812 return -3;
2814 case RTX_OBJ:
2815 /* Complex expressions should be the first, so decrease priority
2816 of objects. */
2817 return -1;
2819 case RTX_COMM_ARITH:
2820 /* Prefer operands that are themselves commutative to be first.
2821 This helps to make things linear. In particular,
2822 (and (and (reg) (reg)) (not (reg))) is canonical. */
2823 return 4;
2825 case RTX_BIN_ARITH:
2826 /* If only one operand is a binary expression, it will be the first
2827 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2828 is canonical, although it will usually be further simplified. */
2829 return 2;
2831 case RTX_UNARY:
2832 /* Then prefer NEG and NOT. */
2833 if (code == NEG || code == NOT)
2834 return 1;
2836 default:
2837 return 0;
2841 /* Return 1 iff it is necessary to swap operands of commutative operation
2842 in order to canonicalize expression. */
2845 swap_commutative_operands_p (rtx x, rtx y)
2847 return (commutative_operand_precedence (x)
2848 < commutative_operand_precedence (y));
2851 /* Return 1 if X is an autoincrement side effect and the register is
2852 not the stack pointer. */
2854 auto_inc_p (rtx x)
2856 switch (GET_CODE (x))
2858 case PRE_INC:
2859 case POST_INC:
2860 case PRE_DEC:
2861 case POST_DEC:
2862 case PRE_MODIFY:
2863 case POST_MODIFY:
2864 /* There are no REG_INC notes for SP. */
2865 if (XEXP (x, 0) != stack_pointer_rtx)
2866 return 1;
2867 default:
2868 break;
2870 return 0;
2873 /* Return 1 if the sequence of instructions beginning with FROM and up
2874 to and including TO is safe to move. If NEW_TO is non-NULL, and
2875 the sequence is not already safe to move, but can be easily
2876 extended to a sequence which is safe, then NEW_TO will point to the
2877 end of the extended sequence.
2879 For now, this function only checks that the region contains whole
2880 exception regions, but it could be extended to check additional
2881 conditions as well. */
2884 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
2886 int eh_region_count = 0;
2887 int past_to_p = 0;
2888 rtx r = from;
2890 /* By default, assume the end of the region will be what was
2891 suggested. */
2892 if (new_to)
2893 *new_to = to;
2895 while (r)
2897 if (NOTE_P (r))
2899 switch (NOTE_LINE_NUMBER (r))
2901 case NOTE_INSN_EH_REGION_BEG:
2902 ++eh_region_count;
2903 break;
2905 case NOTE_INSN_EH_REGION_END:
2906 if (eh_region_count == 0)
2907 /* This sequence of instructions contains the end of
2908 an exception region, but not he beginning. Moving
2909 it will cause chaos. */
2910 return 0;
2912 --eh_region_count;
2913 break;
2915 default:
2916 break;
2919 else if (past_to_p)
2920 /* If we've passed TO, and we see a non-note instruction, we
2921 can't extend the sequence to a movable sequence. */
2922 return 0;
2924 if (r == to)
2926 if (!new_to)
2927 /* It's OK to move the sequence if there were matched sets of
2928 exception region notes. */
2929 return eh_region_count == 0;
2931 past_to_p = 1;
2934 /* It's OK to move the sequence if there were matched sets of
2935 exception region notes. */
2936 if (past_to_p && eh_region_count == 0)
2938 *new_to = r;
2939 return 1;
2942 /* Go to the next instruction. */
2943 r = NEXT_INSN (r);
2946 return 0;
2949 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2951 loc_mentioned_in_p (rtx *loc, rtx in)
2953 enum rtx_code code = GET_CODE (in);
2954 const char *fmt = GET_RTX_FORMAT (code);
2955 int i, j;
2957 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2959 if (loc == &in->u.fld[i].rt_rtx)
2960 return 1;
2961 if (fmt[i] == 'e')
2963 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2964 return 1;
2966 else if (fmt[i] == 'E')
2967 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2968 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2969 return 1;
2971 return 0;
2974 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2975 and SUBREG_BYTE, return the bit offset where the subreg begins
2976 (counting from the least significant bit of the operand). */
2978 unsigned int
2979 subreg_lsb_1 (enum machine_mode outer_mode,
2980 enum machine_mode inner_mode,
2981 unsigned int subreg_byte)
2983 unsigned int bitpos;
2984 unsigned int byte;
2985 unsigned int word;
2987 /* A paradoxical subreg begins at bit position 0. */
2988 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2989 return 0;
2991 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2992 /* If the subreg crosses a word boundary ensure that
2993 it also begins and ends on a word boundary. */
2994 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2995 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2996 && (subreg_byte % UNITS_PER_WORD
2997 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2999 if (WORDS_BIG_ENDIAN)
3000 word = (GET_MODE_SIZE (inner_mode)
3001 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3002 else
3003 word = subreg_byte / UNITS_PER_WORD;
3004 bitpos = word * BITS_PER_WORD;
3006 if (BYTES_BIG_ENDIAN)
3007 byte = (GET_MODE_SIZE (inner_mode)
3008 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3009 else
3010 byte = subreg_byte % UNITS_PER_WORD;
3011 bitpos += byte * BITS_PER_UNIT;
3013 return bitpos;
3016 /* Given a subreg X, return the bit offset where the subreg begins
3017 (counting from the least significant bit of the reg). */
3019 unsigned int
3020 subreg_lsb (rtx x)
3022 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3023 SUBREG_BYTE (x));
3026 /* This function returns the regno offset of a subreg expression.
3027 xregno - A regno of an inner hard subreg_reg (or what will become one).
3028 xmode - The mode of xregno.
3029 offset - The byte offset.
3030 ymode - The mode of a top level SUBREG (or what may become one).
3031 RETURN - The regno offset which would be used. */
3032 unsigned int
3033 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3034 unsigned int offset, enum machine_mode ymode)
3036 int nregs_xmode, nregs_ymode;
3037 int mode_multiple, nregs_multiple;
3038 int y_offset;
3040 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3042 nregs_xmode = hard_regno_nregs[xregno][xmode];
3043 nregs_ymode = hard_regno_nregs[xregno][ymode];
3045 /* If this is a big endian paradoxical subreg, which uses more actual
3046 hard registers than the original register, we must return a negative
3047 offset so that we find the proper highpart of the register. */
3048 if (offset == 0
3049 && nregs_ymode > nregs_xmode
3050 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3051 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3052 return nregs_xmode - nregs_ymode;
3054 if (offset == 0 || nregs_xmode == nregs_ymode)
3055 return 0;
3057 /* size of ymode must not be greater than the size of xmode. */
3058 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3059 gcc_assert (mode_multiple != 0);
3061 y_offset = offset / GET_MODE_SIZE (ymode);
3062 nregs_multiple = nregs_xmode / nregs_ymode;
3063 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3066 /* This function returns true when the offset is representable via
3067 subreg_offset in the given regno.
3068 xregno - A regno of an inner hard subreg_reg (or what will become one).
3069 xmode - The mode of xregno.
3070 offset - The byte offset.
3071 ymode - The mode of a top level SUBREG (or what may become one).
3072 RETURN - The regno offset which would be used. */
3073 bool
3074 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3075 unsigned int offset, enum machine_mode ymode)
3077 int nregs_xmode, nregs_ymode;
3078 int mode_multiple, nregs_multiple;
3079 int y_offset;
3081 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3083 nregs_xmode = hard_regno_nregs[xregno][xmode];
3084 nregs_ymode = hard_regno_nregs[xregno][ymode];
3086 /* Paradoxical subregs are always valid. */
3087 if (offset == 0
3088 && nregs_ymode > nregs_xmode
3089 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3090 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3091 return true;
3093 /* Lowpart subregs are always valid. */
3094 if (offset == subreg_lowpart_offset (ymode, xmode))
3095 return true;
3097 /* This should always pass, otherwise we don't know how to verify the
3098 constraint. These conditions may be relaxed but subreg_offset would
3099 need to be redesigned. */
3100 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3101 gcc_assert ((GET_MODE_SIZE (ymode) % nregs_ymode) == 0);
3102 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3104 /* The XMODE value can be seen as a vector of NREGS_XMODE
3105 values. The subreg must represent a lowpart of given field.
3106 Compute what field it is. */
3107 offset -= subreg_lowpart_offset (ymode,
3108 mode_for_size (GET_MODE_BITSIZE (xmode)
3109 / nregs_xmode,
3110 MODE_INT, 0));
3112 /* size of ymode must not be greater than the size of xmode. */
3113 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3114 gcc_assert (mode_multiple != 0);
3116 y_offset = offset / GET_MODE_SIZE (ymode);
3117 nregs_multiple = nregs_xmode / nregs_ymode;
3119 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3120 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3122 return (!(y_offset % (mode_multiple / nregs_multiple)));
3125 /* Return the final regno that a subreg expression refers to. */
3126 unsigned int
3127 subreg_regno (rtx x)
3129 unsigned int ret;
3130 rtx subreg = SUBREG_REG (x);
3131 int regno = REGNO (subreg);
3133 ret = regno + subreg_regno_offset (regno,
3134 GET_MODE (subreg),
3135 SUBREG_BYTE (x),
3136 GET_MODE (x));
3137 return ret;
3140 struct parms_set_data
3142 int nregs;
3143 HARD_REG_SET regs;
3146 /* Helper function for noticing stores to parameter registers. */
3147 static void
3148 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3150 struct parms_set_data *d = data;
3151 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3152 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3154 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3155 d->nregs--;
3159 /* Look backward for first parameter to be loaded.
3160 Note that loads of all parameters will not necessarily be
3161 found if CSE has eliminated some of them (e.g., an argument
3162 to the outer function is passed down as a parameter).
3163 Do not skip BOUNDARY. */
3165 find_first_parameter_load (rtx call_insn, rtx boundary)
3167 struct parms_set_data parm;
3168 rtx p, before, first_set;
3170 /* Since different machines initialize their parameter registers
3171 in different orders, assume nothing. Collect the set of all
3172 parameter registers. */
3173 CLEAR_HARD_REG_SET (parm.regs);
3174 parm.nregs = 0;
3175 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3176 if (GET_CODE (XEXP (p, 0)) == USE
3177 && REG_P (XEXP (XEXP (p, 0), 0)))
3179 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3181 /* We only care about registers which can hold function
3182 arguments. */
3183 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3184 continue;
3186 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3187 parm.nregs++;
3189 before = call_insn;
3190 first_set = call_insn;
3192 /* Search backward for the first set of a register in this set. */
3193 while (parm.nregs && before != boundary)
3195 before = PREV_INSN (before);
3197 /* It is possible that some loads got CSEed from one call to
3198 another. Stop in that case. */
3199 if (CALL_P (before))
3200 break;
3202 /* Our caller needs either ensure that we will find all sets
3203 (in case code has not been optimized yet), or take care
3204 for possible labels in a way by setting boundary to preceding
3205 CODE_LABEL. */
3206 if (LABEL_P (before))
3208 gcc_assert (before == boundary);
3209 break;
3212 if (INSN_P (before))
3214 int nregs_old = parm.nregs;
3215 note_stores (PATTERN (before), parms_set, &parm);
3216 /* If we found something that did not set a parameter reg,
3217 we're done. Do not keep going, as that might result
3218 in hoisting an insn before the setting of a pseudo
3219 that is used by the hoisted insn. */
3220 if (nregs_old != parm.nregs)
3221 first_set = before;
3222 else
3223 break;
3226 return first_set;
3229 /* Return true if we should avoid inserting code between INSN and preceding
3230 call instruction. */
3232 bool
3233 keep_with_call_p (rtx insn)
3235 rtx set;
3237 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3239 if (REG_P (SET_DEST (set))
3240 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3241 && fixed_regs[REGNO (SET_DEST (set))]
3242 && general_operand (SET_SRC (set), VOIDmode))
3243 return true;
3244 if (REG_P (SET_SRC (set))
3245 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3246 && REG_P (SET_DEST (set))
3247 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3248 return true;
3249 /* There may be a stack pop just after the call and before the store
3250 of the return register. Search for the actual store when deciding
3251 if we can break or not. */
3252 if (SET_DEST (set) == stack_pointer_rtx)
3254 rtx i2 = next_nonnote_insn (insn);
3255 if (i2 && keep_with_call_p (i2))
3256 return true;
3259 return false;
3262 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3263 to non-complex jumps. That is, direct unconditional, conditional,
3264 and tablejumps, but not computed jumps or returns. It also does
3265 not apply to the fallthru case of a conditional jump. */
3267 bool
3268 label_is_jump_target_p (rtx label, rtx jump_insn)
3270 rtx tmp = JUMP_LABEL (jump_insn);
3272 if (label == tmp)
3273 return true;
3275 if (tablejump_p (jump_insn, NULL, &tmp))
3277 rtvec vec = XVEC (PATTERN (tmp),
3278 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3279 int i, veclen = GET_NUM_ELEM (vec);
3281 for (i = 0; i < veclen; ++i)
3282 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3283 return true;
3286 return false;
3290 /* Return an estimate of the cost of computing rtx X.
3291 One use is in cse, to decide which expression to keep in the hash table.
3292 Another is in rtl generation, to pick the cheapest way to multiply.
3293 Other uses like the latter are expected in the future. */
3296 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3298 int i, j;
3299 enum rtx_code code;
3300 const char *fmt;
3301 int total;
3303 if (x == 0)
3304 return 0;
3306 /* Compute the default costs of certain things.
3307 Note that targetm.rtx_costs can override the defaults. */
3309 code = GET_CODE (x);
3310 switch (code)
3312 case MULT:
3313 total = COSTS_N_INSNS (5);
3314 break;
3315 case DIV:
3316 case UDIV:
3317 case MOD:
3318 case UMOD:
3319 total = COSTS_N_INSNS (7);
3320 break;
3321 case USE:
3322 /* Used in loop.c and combine.c as a marker. */
3323 total = 0;
3324 break;
3325 default:
3326 total = COSTS_N_INSNS (1);
3329 switch (code)
3331 case REG:
3332 return 0;
3334 case SUBREG:
3335 total = 0;
3336 /* If we can't tie these modes, make this expensive. The larger
3337 the mode, the more expensive it is. */
3338 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3339 return COSTS_N_INSNS (2
3340 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3341 break;
3343 default:
3344 if (targetm.rtx_costs (x, code, outer_code, &total))
3345 return total;
3346 break;
3349 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3350 which is already in total. */
3352 fmt = GET_RTX_FORMAT (code);
3353 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3354 if (fmt[i] == 'e')
3355 total += rtx_cost (XEXP (x, i), code);
3356 else if (fmt[i] == 'E')
3357 for (j = 0; j < XVECLEN (x, i); j++)
3358 total += rtx_cost (XVECEXP (x, i, j), code);
3360 return total;
3363 /* Return cost of address expression X.
3364 Expect that X is properly formed address reference. */
3367 address_cost (rtx x, enum machine_mode mode)
3369 /* We may be asked for cost of various unusual addresses, such as operands
3370 of push instruction. It is not worthwhile to complicate writing
3371 of the target hook by such cases. */
3373 if (!memory_address_p (mode, x))
3374 return 1000;
3376 return targetm.address_cost (x);
3379 /* If the target doesn't override, compute the cost as with arithmetic. */
3382 default_address_cost (rtx x)
3384 return rtx_cost (x, MEM);
3388 unsigned HOST_WIDE_INT
3389 nonzero_bits (rtx x, enum machine_mode mode)
3391 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3394 unsigned int
3395 num_sign_bit_copies (rtx x, enum machine_mode mode)
3397 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3400 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3401 It avoids exponential behavior in nonzero_bits1 when X has
3402 identical subexpressions on the first or the second level. */
3404 static unsigned HOST_WIDE_INT
3405 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3406 enum machine_mode known_mode,
3407 unsigned HOST_WIDE_INT known_ret)
3409 if (x == known_x && mode == known_mode)
3410 return known_ret;
3412 /* Try to find identical subexpressions. If found call
3413 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3414 precomputed value for the subexpression as KNOWN_RET. */
3416 if (ARITHMETIC_P (x))
3418 rtx x0 = XEXP (x, 0);
3419 rtx x1 = XEXP (x, 1);
3421 /* Check the first level. */
3422 if (x0 == x1)
3423 return nonzero_bits1 (x, mode, x0, mode,
3424 cached_nonzero_bits (x0, mode, known_x,
3425 known_mode, known_ret));
3427 /* Check the second level. */
3428 if (ARITHMETIC_P (x0)
3429 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3430 return nonzero_bits1 (x, mode, x1, mode,
3431 cached_nonzero_bits (x1, mode, known_x,
3432 known_mode, known_ret));
3434 if (ARITHMETIC_P (x1)
3435 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3436 return nonzero_bits1 (x, mode, x0, mode,
3437 cached_nonzero_bits (x0, mode, known_x,
3438 known_mode, known_ret));
3441 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3444 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3445 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3446 is less useful. We can't allow both, because that results in exponential
3447 run time recursion. There is a nullstone testcase that triggered
3448 this. This macro avoids accidental uses of num_sign_bit_copies. */
3449 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3451 /* Given an expression, X, compute which bits in X can be nonzero.
3452 We don't care about bits outside of those defined in MODE.
3454 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3455 an arithmetic operation, we can do better. */
3457 static unsigned HOST_WIDE_INT
3458 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3459 enum machine_mode known_mode,
3460 unsigned HOST_WIDE_INT known_ret)
3462 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3463 unsigned HOST_WIDE_INT inner_nz;
3464 enum rtx_code code;
3465 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3467 /* For floating-point values, assume all bits are needed. */
3468 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3469 return nonzero;
3471 /* If X is wider than MODE, use its mode instead. */
3472 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3474 mode = GET_MODE (x);
3475 nonzero = GET_MODE_MASK (mode);
3476 mode_width = GET_MODE_BITSIZE (mode);
3479 if (mode_width > HOST_BITS_PER_WIDE_INT)
3480 /* Our only callers in this case look for single bit values. So
3481 just return the mode mask. Those tests will then be false. */
3482 return nonzero;
3484 #ifndef WORD_REGISTER_OPERATIONS
3485 /* If MODE is wider than X, but both are a single word for both the host
3486 and target machines, we can compute this from which bits of the
3487 object might be nonzero in its own mode, taking into account the fact
3488 that on many CISC machines, accessing an object in a wider mode
3489 causes the high-order bits to become undefined. So they are
3490 not known to be zero. */
3492 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3493 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3494 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3495 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3497 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3498 known_x, known_mode, known_ret);
3499 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3500 return nonzero;
3502 #endif
3504 code = GET_CODE (x);
3505 switch (code)
3507 case REG:
3508 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3509 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3510 all the bits above ptr_mode are known to be zero. */
3511 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3512 && REG_POINTER (x))
3513 nonzero &= GET_MODE_MASK (ptr_mode);
3514 #endif
3516 /* Include declared information about alignment of pointers. */
3517 /* ??? We don't properly preserve REG_POINTER changes across
3518 pointer-to-integer casts, so we can't trust it except for
3519 things that we know must be pointers. See execute/960116-1.c. */
3520 if ((x == stack_pointer_rtx
3521 || x == frame_pointer_rtx
3522 || x == arg_pointer_rtx)
3523 && REGNO_POINTER_ALIGN (REGNO (x)))
3525 unsigned HOST_WIDE_INT alignment
3526 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3528 #ifdef PUSH_ROUNDING
3529 /* If PUSH_ROUNDING is defined, it is possible for the
3530 stack to be momentarily aligned only to that amount,
3531 so we pick the least alignment. */
3532 if (x == stack_pointer_rtx && PUSH_ARGS)
3533 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3534 alignment);
3535 #endif
3537 nonzero &= ~(alignment - 1);
3541 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3542 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3543 known_mode, known_ret,
3544 &nonzero_for_hook);
3546 if (new)
3547 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3548 known_mode, known_ret);
3550 return nonzero_for_hook;
3553 case CONST_INT:
3554 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3555 /* If X is negative in MODE, sign-extend the value. */
3556 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3557 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3558 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3559 #endif
3561 return INTVAL (x);
3563 case MEM:
3564 #ifdef LOAD_EXTEND_OP
3565 /* In many, if not most, RISC machines, reading a byte from memory
3566 zeros the rest of the register. Noticing that fact saves a lot
3567 of extra zero-extends. */
3568 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3569 nonzero &= GET_MODE_MASK (GET_MODE (x));
3570 #endif
3571 break;
3573 case EQ: case NE:
3574 case UNEQ: case LTGT:
3575 case GT: case GTU: case UNGT:
3576 case LT: case LTU: case UNLT:
3577 case GE: case GEU: case UNGE:
3578 case LE: case LEU: case UNLE:
3579 case UNORDERED: case ORDERED:
3581 /* If this produces an integer result, we know which bits are set.
3582 Code here used to clear bits outside the mode of X, but that is
3583 now done above. */
3585 if (GET_MODE_CLASS (mode) == MODE_INT
3586 && mode_width <= HOST_BITS_PER_WIDE_INT)
3587 nonzero = STORE_FLAG_VALUE;
3588 break;
3590 case NEG:
3591 #if 0
3592 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3593 and num_sign_bit_copies. */
3594 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3595 == GET_MODE_BITSIZE (GET_MODE (x)))
3596 nonzero = 1;
3597 #endif
3599 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3600 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3601 break;
3603 case ABS:
3604 #if 0
3605 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3606 and num_sign_bit_copies. */
3607 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3608 == GET_MODE_BITSIZE (GET_MODE (x)))
3609 nonzero = 1;
3610 #endif
3611 break;
3613 case TRUNCATE:
3614 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3615 known_x, known_mode, known_ret)
3616 & GET_MODE_MASK (mode));
3617 break;
3619 case ZERO_EXTEND:
3620 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3621 known_x, known_mode, known_ret);
3622 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3623 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3624 break;
3626 case SIGN_EXTEND:
3627 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3628 Otherwise, show all the bits in the outer mode but not the inner
3629 may be nonzero. */
3630 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3631 known_x, known_mode, known_ret);
3632 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3634 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3635 if (inner_nz
3636 & (((HOST_WIDE_INT) 1
3637 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3638 inner_nz |= (GET_MODE_MASK (mode)
3639 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3642 nonzero &= inner_nz;
3643 break;
3645 case AND:
3646 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3647 known_x, known_mode, known_ret)
3648 & cached_nonzero_bits (XEXP (x, 1), mode,
3649 known_x, known_mode, known_ret);
3650 break;
3652 case XOR: case IOR:
3653 case UMIN: case UMAX: case SMIN: case SMAX:
3655 unsigned HOST_WIDE_INT nonzero0 =
3656 cached_nonzero_bits (XEXP (x, 0), mode,
3657 known_x, known_mode, known_ret);
3659 /* Don't call nonzero_bits for the second time if it cannot change
3660 anything. */
3661 if ((nonzero & nonzero0) != nonzero)
3662 nonzero &= nonzero0
3663 | cached_nonzero_bits (XEXP (x, 1), mode,
3664 known_x, known_mode, known_ret);
3666 break;
3668 case PLUS: case MINUS:
3669 case MULT:
3670 case DIV: case UDIV:
3671 case MOD: case UMOD:
3672 /* We can apply the rules of arithmetic to compute the number of
3673 high- and low-order zero bits of these operations. We start by
3674 computing the width (position of the highest-order nonzero bit)
3675 and the number of low-order zero bits for each value. */
3677 unsigned HOST_WIDE_INT nz0 =
3678 cached_nonzero_bits (XEXP (x, 0), mode,
3679 known_x, known_mode, known_ret);
3680 unsigned HOST_WIDE_INT nz1 =
3681 cached_nonzero_bits (XEXP (x, 1), mode,
3682 known_x, known_mode, known_ret);
3683 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3684 int width0 = floor_log2 (nz0) + 1;
3685 int width1 = floor_log2 (nz1) + 1;
3686 int low0 = floor_log2 (nz0 & -nz0);
3687 int low1 = floor_log2 (nz1 & -nz1);
3688 HOST_WIDE_INT op0_maybe_minusp
3689 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3690 HOST_WIDE_INT op1_maybe_minusp
3691 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3692 unsigned int result_width = mode_width;
3693 int result_low = 0;
3695 switch (code)
3697 case PLUS:
3698 result_width = MAX (width0, width1) + 1;
3699 result_low = MIN (low0, low1);
3700 break;
3701 case MINUS:
3702 result_low = MIN (low0, low1);
3703 break;
3704 case MULT:
3705 result_width = width0 + width1;
3706 result_low = low0 + low1;
3707 break;
3708 case DIV:
3709 if (width1 == 0)
3710 break;
3711 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3712 result_width = width0;
3713 break;
3714 case UDIV:
3715 if (width1 == 0)
3716 break;
3717 result_width = width0;
3718 break;
3719 case MOD:
3720 if (width1 == 0)
3721 break;
3722 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3723 result_width = MIN (width0, width1);
3724 result_low = MIN (low0, low1);
3725 break;
3726 case UMOD:
3727 if (width1 == 0)
3728 break;
3729 result_width = MIN (width0, width1);
3730 result_low = MIN (low0, low1);
3731 break;
3732 default:
3733 gcc_unreachable ();
3736 if (result_width < mode_width)
3737 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3739 if (result_low > 0)
3740 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3742 #ifdef POINTERS_EXTEND_UNSIGNED
3743 /* If pointers extend unsigned and this is an addition or subtraction
3744 to a pointer in Pmode, all the bits above ptr_mode are known to be
3745 zero. */
3746 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3747 && (code == PLUS || code == MINUS)
3748 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3749 nonzero &= GET_MODE_MASK (ptr_mode);
3750 #endif
3752 break;
3754 case ZERO_EXTRACT:
3755 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3756 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3757 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3758 break;
3760 case SUBREG:
3761 /* If this is a SUBREG formed for a promoted variable that has
3762 been zero-extended, we know that at least the high-order bits
3763 are zero, though others might be too. */
3765 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3766 nonzero = GET_MODE_MASK (GET_MODE (x))
3767 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3768 known_x, known_mode, known_ret);
3770 /* If the inner mode is a single word for both the host and target
3771 machines, we can compute this from which bits of the inner
3772 object might be nonzero. */
3773 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3774 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3775 <= HOST_BITS_PER_WIDE_INT))
3777 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3778 known_x, known_mode, known_ret);
3780 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3781 /* If this is a typical RISC machine, we only have to worry
3782 about the way loads are extended. */
3783 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3784 ? (((nonzero
3785 & (((unsigned HOST_WIDE_INT) 1
3786 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3787 != 0))
3788 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3789 || !MEM_P (SUBREG_REG (x)))
3790 #endif
3792 /* On many CISC machines, accessing an object in a wider mode
3793 causes the high-order bits to become undefined. So they are
3794 not known to be zero. */
3795 if (GET_MODE_SIZE (GET_MODE (x))
3796 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3797 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3798 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3801 break;
3803 case ASHIFTRT:
3804 case LSHIFTRT:
3805 case ASHIFT:
3806 case ROTATE:
3807 /* The nonzero bits are in two classes: any bits within MODE
3808 that aren't in GET_MODE (x) are always significant. The rest of the
3809 nonzero bits are those that are significant in the operand of
3810 the shift when shifted the appropriate number of bits. This
3811 shows that high-order bits are cleared by the right shift and
3812 low-order bits by left shifts. */
3813 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3814 && INTVAL (XEXP (x, 1)) >= 0
3815 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3817 enum machine_mode inner_mode = GET_MODE (x);
3818 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3819 int count = INTVAL (XEXP (x, 1));
3820 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3821 unsigned HOST_WIDE_INT op_nonzero =
3822 cached_nonzero_bits (XEXP (x, 0), mode,
3823 known_x, known_mode, known_ret);
3824 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3825 unsigned HOST_WIDE_INT outer = 0;
3827 if (mode_width > width)
3828 outer = (op_nonzero & nonzero & ~mode_mask);
3830 if (code == LSHIFTRT)
3831 inner >>= count;
3832 else if (code == ASHIFTRT)
3834 inner >>= count;
3836 /* If the sign bit may have been nonzero before the shift, we
3837 need to mark all the places it could have been copied to
3838 by the shift as possibly nonzero. */
3839 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3840 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3842 else if (code == ASHIFT)
3843 inner <<= count;
3844 else
3845 inner = ((inner << (count % width)
3846 | (inner >> (width - (count % width)))) & mode_mask);
3848 nonzero &= (outer | inner);
3850 break;
3852 case FFS:
3853 case POPCOUNT:
3854 /* This is at most the number of bits in the mode. */
3855 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3856 break;
3858 case CLZ:
3859 /* If CLZ has a known value at zero, then the nonzero bits are
3860 that value, plus the number of bits in the mode minus one. */
3861 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3862 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3863 else
3864 nonzero = -1;
3865 break;
3867 case CTZ:
3868 /* If CTZ has a known value at zero, then the nonzero bits are
3869 that value, plus the number of bits in the mode minus one. */
3870 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3871 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3872 else
3873 nonzero = -1;
3874 break;
3876 case PARITY:
3877 nonzero = 1;
3878 break;
3880 case IF_THEN_ELSE:
3882 unsigned HOST_WIDE_INT nonzero_true =
3883 cached_nonzero_bits (XEXP (x, 1), mode,
3884 known_x, known_mode, known_ret);
3886 /* Don't call nonzero_bits for the second time if it cannot change
3887 anything. */
3888 if ((nonzero & nonzero_true) != nonzero)
3889 nonzero &= nonzero_true
3890 | cached_nonzero_bits (XEXP (x, 2), mode,
3891 known_x, known_mode, known_ret);
3893 break;
3895 default:
3896 break;
3899 return nonzero;
3902 /* See the macro definition above. */
3903 #undef cached_num_sign_bit_copies
3906 /* The function cached_num_sign_bit_copies is a wrapper around
3907 num_sign_bit_copies1. It avoids exponential behavior in
3908 num_sign_bit_copies1 when X has identical subexpressions on the
3909 first or the second level. */
3911 static unsigned int
3912 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3913 enum machine_mode known_mode,
3914 unsigned int known_ret)
3916 if (x == known_x && mode == known_mode)
3917 return known_ret;
3919 /* Try to find identical subexpressions. If found call
3920 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3921 the precomputed value for the subexpression as KNOWN_RET. */
3923 if (ARITHMETIC_P (x))
3925 rtx x0 = XEXP (x, 0);
3926 rtx x1 = XEXP (x, 1);
3928 /* Check the first level. */
3929 if (x0 == x1)
3930 return
3931 num_sign_bit_copies1 (x, mode, x0, mode,
3932 cached_num_sign_bit_copies (x0, mode, known_x,
3933 known_mode,
3934 known_ret));
3936 /* Check the second level. */
3937 if (ARITHMETIC_P (x0)
3938 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3939 return
3940 num_sign_bit_copies1 (x, mode, x1, mode,
3941 cached_num_sign_bit_copies (x1, mode, known_x,
3942 known_mode,
3943 known_ret));
3945 if (ARITHMETIC_P (x1)
3946 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3947 return
3948 num_sign_bit_copies1 (x, mode, x0, mode,
3949 cached_num_sign_bit_copies (x0, mode, known_x,
3950 known_mode,
3951 known_ret));
3954 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
3957 /* Return the number of bits at the high-order end of X that are known to
3958 be equal to the sign bit. X will be used in mode MODE; if MODE is
3959 VOIDmode, X will be used in its own mode. The returned value will always
3960 be between 1 and the number of bits in MODE. */
3962 static unsigned int
3963 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
3964 enum machine_mode known_mode,
3965 unsigned int known_ret)
3967 enum rtx_code code = GET_CODE (x);
3968 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
3969 int num0, num1, result;
3970 unsigned HOST_WIDE_INT nonzero;
3972 /* If we weren't given a mode, use the mode of X. If the mode is still
3973 VOIDmode, we don't know anything. Likewise if one of the modes is
3974 floating-point. */
3976 if (mode == VOIDmode)
3977 mode = GET_MODE (x);
3979 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
3980 return 1;
3982 /* For a smaller object, just ignore the high bits. */
3983 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
3985 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
3986 known_x, known_mode, known_ret);
3987 return MAX (1,
3988 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
3991 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
3993 #ifndef WORD_REGISTER_OPERATIONS
3994 /* If this machine does not do all register operations on the entire
3995 register and MODE is wider than the mode of X, we can say nothing
3996 at all about the high-order bits. */
3997 return 1;
3998 #else
3999 /* Likewise on machines that do, if the mode of the object is smaller
4000 than a word and loads of that size don't sign extend, we can say
4001 nothing about the high order bits. */
4002 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4003 #ifdef LOAD_EXTEND_OP
4004 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4005 #endif
4007 return 1;
4008 #endif
4011 switch (code)
4013 case REG:
4015 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4016 /* If pointers extend signed and this is a pointer in Pmode, say that
4017 all the bits above ptr_mode are known to be sign bit copies. */
4018 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4019 && REG_POINTER (x))
4020 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4021 #endif
4024 unsigned int copies_for_hook = 1, copies = 1;
4025 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4026 known_mode, known_ret,
4027 &copies_for_hook);
4029 if (new)
4030 copies = cached_num_sign_bit_copies (new, mode, known_x,
4031 known_mode, known_ret);
4033 if (copies > 1 || copies_for_hook > 1)
4034 return MAX (copies, copies_for_hook);
4036 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4038 break;
4040 case MEM:
4041 #ifdef LOAD_EXTEND_OP
4042 /* Some RISC machines sign-extend all loads of smaller than a word. */
4043 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4044 return MAX (1, ((int) bitwidth
4045 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4046 #endif
4047 break;
4049 case CONST_INT:
4050 /* If the constant is negative, take its 1's complement and remask.
4051 Then see how many zero bits we have. */
4052 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4053 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4054 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4055 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4057 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4059 case SUBREG:
4060 /* If this is a SUBREG for a promoted object that is sign-extended
4061 and we are looking at it in a wider mode, we know that at least the
4062 high-order bits are known to be sign bit copies. */
4064 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4066 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4067 known_x, known_mode, known_ret);
4068 return MAX ((int) bitwidth
4069 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4070 num0);
4073 /* For a smaller object, just ignore the high bits. */
4074 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4076 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4077 known_x, known_mode, known_ret);
4078 return MAX (1, (num0
4079 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4080 - bitwidth)));
4083 #ifdef WORD_REGISTER_OPERATIONS
4084 #ifdef LOAD_EXTEND_OP
4085 /* For paradoxical SUBREGs on machines where all register operations
4086 affect the entire register, just look inside. Note that we are
4087 passing MODE to the recursive call, so the number of sign bit copies
4088 will remain relative to that mode, not the inner mode. */
4090 /* This works only if loads sign extend. Otherwise, if we get a
4091 reload for the inner part, it may be loaded from the stack, and
4092 then we lose all sign bit copies that existed before the store
4093 to the stack. */
4095 if ((GET_MODE_SIZE (GET_MODE (x))
4096 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4097 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4098 && MEM_P (SUBREG_REG (x)))
4099 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4100 known_x, known_mode, known_ret);
4101 #endif
4102 #endif
4103 break;
4105 case SIGN_EXTRACT:
4106 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4107 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4108 break;
4110 case SIGN_EXTEND:
4111 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4112 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4113 known_x, known_mode, known_ret));
4115 case TRUNCATE:
4116 /* For a smaller object, just ignore the high bits. */
4117 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4118 known_x, known_mode, known_ret);
4119 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4120 - bitwidth)));
4122 case NOT:
4123 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4124 known_x, known_mode, known_ret);
4126 case ROTATE: case ROTATERT:
4127 /* If we are rotating left by a number of bits less than the number
4128 of sign bit copies, we can just subtract that amount from the
4129 number. */
4130 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4131 && INTVAL (XEXP (x, 1)) >= 0
4132 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4134 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4135 known_x, known_mode, known_ret);
4136 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4137 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4139 break;
4141 case NEG:
4142 /* In general, this subtracts one sign bit copy. But if the value
4143 is known to be positive, the number of sign bit copies is the
4144 same as that of the input. Finally, if the input has just one bit
4145 that might be nonzero, all the bits are copies of the sign bit. */
4146 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4147 known_x, known_mode, known_ret);
4148 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4149 return num0 > 1 ? num0 - 1 : 1;
4151 nonzero = nonzero_bits (XEXP (x, 0), mode);
4152 if (nonzero == 1)
4153 return bitwidth;
4155 if (num0 > 1
4156 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4157 num0--;
4159 return num0;
4161 case IOR: case AND: case XOR:
4162 case SMIN: case SMAX: case UMIN: case UMAX:
4163 /* Logical operations will preserve the number of sign-bit copies.
4164 MIN and MAX operations always return one of the operands. */
4165 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4166 known_x, known_mode, known_ret);
4167 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4168 known_x, known_mode, known_ret);
4169 return MIN (num0, num1);
4171 case PLUS: case MINUS:
4172 /* For addition and subtraction, we can have a 1-bit carry. However,
4173 if we are subtracting 1 from a positive number, there will not
4174 be such a carry. Furthermore, if the positive number is known to
4175 be 0 or 1, we know the result is either -1 or 0. */
4177 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4178 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4180 nonzero = nonzero_bits (XEXP (x, 0), mode);
4181 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4182 return (nonzero == 1 || nonzero == 0 ? bitwidth
4183 : bitwidth - floor_log2 (nonzero) - 1);
4186 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4187 known_x, known_mode, known_ret);
4188 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4189 known_x, known_mode, known_ret);
4190 result = MAX (1, MIN (num0, num1) - 1);
4192 #ifdef POINTERS_EXTEND_UNSIGNED
4193 /* If pointers extend signed and this is an addition or subtraction
4194 to a pointer in Pmode, all the bits above ptr_mode are known to be
4195 sign bit copies. */
4196 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4197 && (code == PLUS || code == MINUS)
4198 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4199 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4200 - GET_MODE_BITSIZE (ptr_mode) + 1),
4201 result);
4202 #endif
4203 return result;
4205 case MULT:
4206 /* The number of bits of the product is the sum of the number of
4207 bits of both terms. However, unless one of the terms if known
4208 to be positive, we must allow for an additional bit since negating
4209 a negative number can remove one sign bit copy. */
4211 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4212 known_x, known_mode, known_ret);
4213 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4214 known_x, known_mode, known_ret);
4216 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4217 if (result > 0
4218 && (bitwidth > HOST_BITS_PER_WIDE_INT
4219 || (((nonzero_bits (XEXP (x, 0), mode)
4220 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4221 && ((nonzero_bits (XEXP (x, 1), mode)
4222 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4223 result--;
4225 return MAX (1, result);
4227 case UDIV:
4228 /* The result must be <= the first operand. If the first operand
4229 has the high bit set, we know nothing about the number of sign
4230 bit copies. */
4231 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4232 return 1;
4233 else if ((nonzero_bits (XEXP (x, 0), mode)
4234 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4235 return 1;
4236 else
4237 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4238 known_x, known_mode, known_ret);
4240 case UMOD:
4241 /* The result must be <= the second operand. */
4242 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4243 known_x, known_mode, known_ret);
4245 case DIV:
4246 /* Similar to unsigned division, except that we have to worry about
4247 the case where the divisor is negative, in which case we have
4248 to add 1. */
4249 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4250 known_x, known_mode, known_ret);
4251 if (result > 1
4252 && (bitwidth > HOST_BITS_PER_WIDE_INT
4253 || (nonzero_bits (XEXP (x, 1), mode)
4254 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4255 result--;
4257 return result;
4259 case MOD:
4260 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4261 known_x, known_mode, known_ret);
4262 if (result > 1
4263 && (bitwidth > HOST_BITS_PER_WIDE_INT
4264 || (nonzero_bits (XEXP (x, 1), mode)
4265 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4266 result--;
4268 return result;
4270 case ASHIFTRT:
4271 /* Shifts by a constant add to the number of bits equal to the
4272 sign bit. */
4273 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4274 known_x, known_mode, known_ret);
4275 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4276 && INTVAL (XEXP (x, 1)) > 0)
4277 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4279 return num0;
4281 case ASHIFT:
4282 /* Left shifts destroy copies. */
4283 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4284 || INTVAL (XEXP (x, 1)) < 0
4285 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4286 return 1;
4288 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4289 known_x, known_mode, known_ret);
4290 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4292 case IF_THEN_ELSE:
4293 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4294 known_x, known_mode, known_ret);
4295 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4296 known_x, known_mode, known_ret);
4297 return MIN (num0, num1);
4299 case EQ: case NE: case GE: case GT: case LE: case LT:
4300 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4301 case GEU: case GTU: case LEU: case LTU:
4302 case UNORDERED: case ORDERED:
4303 /* If the constant is negative, take its 1's complement and remask.
4304 Then see how many zero bits we have. */
4305 nonzero = STORE_FLAG_VALUE;
4306 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4307 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4308 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4310 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4312 default:
4313 break;
4316 /* If we haven't been able to figure it out by one of the above rules,
4317 see if some of the high-order bits are known to be zero. If so,
4318 count those bits and return one less than that amount. If we can't
4319 safely compute the mask for this mode, always return BITWIDTH. */
4321 bitwidth = GET_MODE_BITSIZE (mode);
4322 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4323 return 1;
4325 nonzero = nonzero_bits (x, mode);
4326 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4327 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4330 /* Calculate the rtx_cost of a single instruction. A return value of
4331 zero indicates an instruction pattern without a known cost. */
4334 insn_rtx_cost (rtx pat)
4336 int i, cost;
4337 rtx set;
4339 /* Extract the single set rtx from the instruction pattern.
4340 We can't use single_set since we only have the pattern. */
4341 if (GET_CODE (pat) == SET)
4342 set = pat;
4343 else if (GET_CODE (pat) == PARALLEL)
4345 set = NULL_RTX;
4346 for (i = 0; i < XVECLEN (pat, 0); i++)
4348 rtx x = XVECEXP (pat, 0, i);
4349 if (GET_CODE (x) == SET)
4351 if (set)
4352 return 0;
4353 set = x;
4356 if (!set)
4357 return 0;
4359 else
4360 return 0;
4362 cost = rtx_cost (SET_SRC (set), SET);
4363 return cost > 0 ? cost : COSTS_N_INSNS (1);
4366 /* Given an insn INSN and condition COND, return the condition in a
4367 canonical form to simplify testing by callers. Specifically:
4369 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4370 (2) Both operands will be machine operands; (cc0) will have been replaced.
4371 (3) If an operand is a constant, it will be the second operand.
4372 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4373 for GE, GEU, and LEU.
4375 If the condition cannot be understood, or is an inequality floating-point
4376 comparison which needs to be reversed, 0 will be returned.
4378 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4380 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4381 insn used in locating the condition was found. If a replacement test
4382 of the condition is desired, it should be placed in front of that
4383 insn and we will be sure that the inputs are still valid.
4385 If WANT_REG is nonzero, we wish the condition to be relative to that
4386 register, if possible. Therefore, do not canonicalize the condition
4387 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4388 to be a compare to a CC mode register.
4390 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4391 and at INSN. */
4394 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4395 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4397 enum rtx_code code;
4398 rtx prev = insn;
4399 rtx set;
4400 rtx tem;
4401 rtx op0, op1;
4402 int reverse_code = 0;
4403 enum machine_mode mode;
4405 code = GET_CODE (cond);
4406 mode = GET_MODE (cond);
4407 op0 = XEXP (cond, 0);
4408 op1 = XEXP (cond, 1);
4410 if (reverse)
4411 code = reversed_comparison_code (cond, insn);
4412 if (code == UNKNOWN)
4413 return 0;
4415 if (earliest)
4416 *earliest = insn;
4418 /* If we are comparing a register with zero, see if the register is set
4419 in the previous insn to a COMPARE or a comparison operation. Perform
4420 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4421 in cse.c */
4423 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4424 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4425 && op1 == CONST0_RTX (GET_MODE (op0))
4426 && op0 != want_reg)
4428 /* Set nonzero when we find something of interest. */
4429 rtx x = 0;
4431 #ifdef HAVE_cc0
4432 /* If comparison with cc0, import actual comparison from compare
4433 insn. */
4434 if (op0 == cc0_rtx)
4436 if ((prev = prev_nonnote_insn (prev)) == 0
4437 || !NONJUMP_INSN_P (prev)
4438 || (set = single_set (prev)) == 0
4439 || SET_DEST (set) != cc0_rtx)
4440 return 0;
4442 op0 = SET_SRC (set);
4443 op1 = CONST0_RTX (GET_MODE (op0));
4444 if (earliest)
4445 *earliest = prev;
4447 #endif
4449 /* If this is a COMPARE, pick up the two things being compared. */
4450 if (GET_CODE (op0) == COMPARE)
4452 op1 = XEXP (op0, 1);
4453 op0 = XEXP (op0, 0);
4454 continue;
4456 else if (!REG_P (op0))
4457 break;
4459 /* Go back to the previous insn. Stop if it is not an INSN. We also
4460 stop if it isn't a single set or if it has a REG_INC note because
4461 we don't want to bother dealing with it. */
4463 if ((prev = prev_nonnote_insn (prev)) == 0
4464 || !NONJUMP_INSN_P (prev)
4465 || FIND_REG_INC_NOTE (prev, NULL_RTX))
4466 break;
4468 set = set_of (op0, prev);
4470 if (set
4471 && (GET_CODE (set) != SET
4472 || !rtx_equal_p (SET_DEST (set), op0)))
4473 break;
4475 /* If this is setting OP0, get what it sets it to if it looks
4476 relevant. */
4477 if (set)
4479 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4480 #ifdef FLOAT_STORE_FLAG_VALUE
4481 REAL_VALUE_TYPE fsfv;
4482 #endif
4484 /* ??? We may not combine comparisons done in a CCmode with
4485 comparisons not done in a CCmode. This is to aid targets
4486 like Alpha that have an IEEE compliant EQ instruction, and
4487 a non-IEEE compliant BEQ instruction. The use of CCmode is
4488 actually artificial, simply to prevent the combination, but
4489 should not affect other platforms.
4491 However, we must allow VOIDmode comparisons to match either
4492 CCmode or non-CCmode comparison, because some ports have
4493 modeless comparisons inside branch patterns.
4495 ??? This mode check should perhaps look more like the mode check
4496 in simplify_comparison in combine. */
4498 if ((GET_CODE (SET_SRC (set)) == COMPARE
4499 || (((code == NE
4500 || (code == LT
4501 && GET_MODE_CLASS (inner_mode) == MODE_INT
4502 && (GET_MODE_BITSIZE (inner_mode)
4503 <= HOST_BITS_PER_WIDE_INT)
4504 && (STORE_FLAG_VALUE
4505 & ((HOST_WIDE_INT) 1
4506 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4507 #ifdef FLOAT_STORE_FLAG_VALUE
4508 || (code == LT
4509 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4510 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4511 REAL_VALUE_NEGATIVE (fsfv)))
4512 #endif
4514 && COMPARISON_P (SET_SRC (set))))
4515 && (((GET_MODE_CLASS (mode) == MODE_CC)
4516 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4517 || mode == VOIDmode || inner_mode == VOIDmode))
4518 x = SET_SRC (set);
4519 else if (((code == EQ
4520 || (code == GE
4521 && (GET_MODE_BITSIZE (inner_mode)
4522 <= HOST_BITS_PER_WIDE_INT)
4523 && GET_MODE_CLASS (inner_mode) == MODE_INT
4524 && (STORE_FLAG_VALUE
4525 & ((HOST_WIDE_INT) 1
4526 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4527 #ifdef FLOAT_STORE_FLAG_VALUE
4528 || (code == GE
4529 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4530 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4531 REAL_VALUE_NEGATIVE (fsfv)))
4532 #endif
4534 && COMPARISON_P (SET_SRC (set))
4535 && (((GET_MODE_CLASS (mode) == MODE_CC)
4536 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4537 || mode == VOIDmode || inner_mode == VOIDmode))
4540 reverse_code = 1;
4541 x = SET_SRC (set);
4543 else
4544 break;
4547 else if (reg_set_p (op0, prev))
4548 /* If this sets OP0, but not directly, we have to give up. */
4549 break;
4551 if (x)
4553 /* If the caller is expecting the condition to be valid at INSN,
4554 make sure X doesn't change before INSN. */
4555 if (valid_at_insn_p)
4556 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4557 break;
4558 if (COMPARISON_P (x))
4559 code = GET_CODE (x);
4560 if (reverse_code)
4562 code = reversed_comparison_code (x, prev);
4563 if (code == UNKNOWN)
4564 return 0;
4565 reverse_code = 0;
4568 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4569 if (earliest)
4570 *earliest = prev;
4574 /* If constant is first, put it last. */
4575 if (CONSTANT_P (op0))
4576 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4578 /* If OP0 is the result of a comparison, we weren't able to find what
4579 was really being compared, so fail. */
4580 if (!allow_cc_mode
4581 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4582 return 0;
4584 /* Canonicalize any ordered comparison with integers involving equality
4585 if we can do computations in the relevant mode and we do not
4586 overflow. */
4588 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4589 && GET_CODE (op1) == CONST_INT
4590 && GET_MODE (op0) != VOIDmode
4591 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4593 HOST_WIDE_INT const_val = INTVAL (op1);
4594 unsigned HOST_WIDE_INT uconst_val = const_val;
4595 unsigned HOST_WIDE_INT max_val
4596 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4598 switch (code)
4600 case LE:
4601 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4602 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4603 break;
4605 /* When cross-compiling, const_val might be sign-extended from
4606 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4607 case GE:
4608 if ((HOST_WIDE_INT) (const_val & max_val)
4609 != (((HOST_WIDE_INT) 1
4610 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4611 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4612 break;
4614 case LEU:
4615 if (uconst_val < max_val)
4616 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4617 break;
4619 case GEU:
4620 if (uconst_val != 0)
4621 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4622 break;
4624 default:
4625 break;
4629 /* Never return CC0; return zero instead. */
4630 if (CC0_P (op0))
4631 return 0;
4633 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4636 /* Given a jump insn JUMP, return the condition that will cause it to branch
4637 to its JUMP_LABEL. If the condition cannot be understood, or is an
4638 inequality floating-point comparison which needs to be reversed, 0 will
4639 be returned.
4641 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4642 insn used in locating the condition was found. If a replacement test
4643 of the condition is desired, it should be placed in front of that
4644 insn and we will be sure that the inputs are still valid. If EARLIEST
4645 is null, the returned condition will be valid at INSN.
4647 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4648 compare CC mode register.
4650 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4653 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4655 rtx cond;
4656 int reverse;
4657 rtx set;
4659 /* If this is not a standard conditional jump, we can't parse it. */
4660 if (!JUMP_P (jump)
4661 || ! any_condjump_p (jump))
4662 return 0;
4663 set = pc_set (jump);
4665 cond = XEXP (SET_SRC (set), 0);
4667 /* If this branches to JUMP_LABEL when the condition is false, reverse
4668 the condition. */
4669 reverse
4670 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4671 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4673 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4674 allow_cc_mode, valid_at_insn_p);
4678 /* Initialize non_rtx_starting_operands, which is used to speed up
4679 for_each_rtx. */
4680 void
4681 init_rtlanal (void)
4683 int i;
4684 for (i = 0; i < NUM_RTX_CODE; i++)
4686 const char *format = GET_RTX_FORMAT (i);
4687 const char *first = strpbrk (format, "eEV");
4688 non_rtx_starting_operands[i] = first ? first - format : -1;