* arm.c (FL_WBUF): Define.
[official-gcc.git] / gcc / cfgloopanal.c
blob2d2ece2cb2d6536ad68c151df58630c5ff520c40
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
35 bool
36 just_once_each_iteration_p (struct loop *loop, basic_block bb)
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
40 return false;
42 /* And just once. */
43 if (bb->loop_father != loop)
44 return false;
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb->flags & BB_IRREDUCIBLE_LOOP)
48 return false;
50 return true;
53 /* Structure representing edge of a graph. */
55 struct edge
57 int src, dest; /* Source and destination. */
58 struct edge *pred_next, *succ_next;
59 /* Next edge in predecessor and successor lists. */
60 void *data; /* Data attached to the edge. */
63 /* Structure representing vertex of a graph. */
65 struct vertex
67 struct edge *pred, *succ;
68 /* Lists of predecessors and successors. */
69 int component; /* Number of dfs restarts before reaching the
70 vertex. */
71 int post; /* Postorder number. */
74 /* Structure representing a graph. */
76 struct graph
78 int n_vertices; /* Number of vertices. */
79 struct vertex *vertices;
80 /* The vertices. */
83 /* Dumps graph G into F. */
85 extern void dump_graph (FILE *, struct graph *);
86 void dump_graph (FILE *f, struct graph *g)
88 int i;
89 struct edge *e;
91 for (i = 0; i < g->n_vertices; i++)
93 if (!g->vertices[i].pred
94 && !g->vertices[i].succ)
95 continue;
97 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
98 for (e = g->vertices[i].pred; e; e = e->pred_next)
99 fprintf (f, " %d", e->src);
100 fprintf (f, "\n");
102 fprintf (f, "\t->");
103 for (e = g->vertices[i].succ; e; e = e->succ_next)
104 fprintf (f, " %d", e->dest);
105 fprintf (f, "\n");
109 /* Creates a new graph with N_VERTICES vertices. */
111 static struct graph *
112 new_graph (int n_vertices)
114 struct graph *g = xmalloc (sizeof (struct graph));
116 g->n_vertices = n_vertices;
117 g->vertices = xcalloc (n_vertices, sizeof (struct vertex));
119 return g;
122 /* Adds an edge from F to T to graph G, with DATA attached. */
124 static void
125 add_edge (struct graph *g, int f, int t, void *data)
127 struct edge *e = xmalloc (sizeof (struct edge));
129 e->src = f;
130 e->dest = t;
131 e->data = data;
133 e->pred_next = g->vertices[t].pred;
134 g->vertices[t].pred = e;
136 e->succ_next = g->vertices[f].succ;
137 g->vertices[f].succ = e;
140 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
141 The vertices in postorder are stored into QT. If FORWARD is false,
142 backward dfs is run. */
144 static void
145 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
147 int i, tick = 0, v, comp = 0, top;
148 struct edge *e;
149 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
151 for (i = 0; i < g->n_vertices; i++)
153 g->vertices[i].component = -1;
154 g->vertices[i].post = -1;
157 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
158 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
159 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
160 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
162 for (i = 0; i < nq; i++)
164 v = qs[i];
165 if (g->vertices[v].post != -1)
166 continue;
168 g->vertices[v].component = comp++;
169 e = FST_EDGE (v);
170 top = 0;
172 while (1)
174 while (e && g->vertices[EDGE_DEST (e)].component != -1)
175 e = NEXT_EDGE (e);
177 if (!e)
179 if (qt)
180 qt[tick] = v;
181 g->vertices[v].post = tick++;
183 if (!top)
184 break;
186 e = stack[--top];
187 v = EDGE_SRC (e);
188 e = NEXT_EDGE (e);
189 continue;
192 stack[top++] = e;
193 v = EDGE_DEST (e);
194 e = FST_EDGE (v);
195 g->vertices[v].component = comp - 1;
199 free (stack);
202 /* Marks the edge E in graph G irreducible if it connects two vertices in the
203 same scc. */
205 static void
206 check_irred (struct graph *g, struct edge *e)
208 edge real = e->data;
210 /* All edges should lead from a component with higher number to the
211 one with lower one. */
212 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
214 if (g->vertices[e->src].component != g->vertices[e->dest].component)
215 return;
217 real->flags |= EDGE_IRREDUCIBLE_LOOP;
218 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
219 real->src->flags |= BB_IRREDUCIBLE_LOOP;
222 /* Runs CALLBACK for all edges in G. */
224 static void
225 for_each_edge (struct graph *g,
226 void (callback) (struct graph *, struct edge *))
228 struct edge *e;
229 int i;
231 for (i = 0; i < g->n_vertices; i++)
232 for (e = g->vertices[i].succ; e; e = e->succ_next)
233 callback (g, e);
236 /* Releases the memory occupied by G. */
238 static void
239 free_graph (struct graph *g)
241 struct edge *e, *n;
242 int i;
244 for (i = 0; i < g->n_vertices; i++)
245 for (e = g->vertices[i].succ; e; e = n)
247 n = e->succ_next;
248 free (e);
250 free (g->vertices);
251 free (g);
254 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
255 throw away all latch edges and mark blocks inside any remaining cycle.
256 Everything is a bit complicated due to fact we do not want to do this
257 for parts of cycles that only "pass" through some loop -- i.e. for
258 each cycle, we want to mark blocks that belong directly to innermost
259 loop containing the whole cycle.
261 LOOPS is the loop tree. */
263 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
264 #define BB_REPR(BB) ((BB)->index + 1)
266 void
267 mark_irreducible_loops (struct loops *loops)
269 basic_block act;
270 edge e;
271 edge_iterator ei;
272 int i, src, dest;
273 struct graph *g;
274 int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
275 int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
276 int nq, depth;
277 struct loop *cloop;
279 /* Reset the flags. */
280 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
282 act->flags &= ~BB_IRREDUCIBLE_LOOP;
283 FOR_EACH_EDGE (e, ei, act->succs)
284 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
287 /* Create the edge lists. */
288 g = new_graph (last_basic_block + loops->num);
290 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
291 FOR_EACH_EDGE (e, ei, act->succs)
293 /* Ignore edges to exit. */
294 if (e->dest == EXIT_BLOCK_PTR)
295 continue;
297 /* And latch edges. */
298 if (e->dest->loop_father->header == e->dest
299 && e->dest->loop_father->latch == act)
300 continue;
302 /* Edges inside a single loop should be left where they are. Edges
303 to subloop headers should lead to representative of the subloop,
304 but from the same place.
306 Edges exiting loops should lead from representative
307 of the son of nearest common ancestor of the loops in that
308 act lays. */
310 src = BB_REPR (act);
311 dest = BB_REPR (e->dest);
313 if (e->dest->loop_father->header == e->dest)
314 dest = LOOP_REPR (e->dest->loop_father);
316 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
318 depth = find_common_loop (act->loop_father,
319 e->dest->loop_father)->depth + 1;
320 if (depth == act->loop_father->depth)
321 cloop = act->loop_father;
322 else
323 cloop = act->loop_father->pred[depth];
325 src = LOOP_REPR (cloop);
328 add_edge (g, src, dest, e);
331 /* Find the strongly connected components. Use the algorithm of Tarjan --
332 first determine the postorder dfs numbering in reversed graph, then
333 run the dfs on the original graph in the order given by decreasing
334 numbers assigned by the previous pass. */
335 nq = 0;
336 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
338 queue1[nq++] = BB_REPR (act);
340 for (i = 1; i < (int) loops->num; i++)
341 if (loops->parray[i])
342 queue1[nq++] = LOOP_REPR (loops->parray[i]);
343 dfs (g, queue1, nq, queue2, false);
344 for (i = 0; i < nq; i++)
345 queue1[i] = queue2[nq - i - 1];
346 dfs (g, queue1, nq, NULL, true);
348 /* Mark the irreducible loops. */
349 for_each_edge (g, check_irred);
351 free_graph (g);
352 free (queue1);
353 free (queue2);
355 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
358 /* Counts number of insns inside LOOP. */
360 num_loop_insns (struct loop *loop)
362 basic_block *bbs, bb;
363 unsigned i, ninsns = 0;
364 rtx insn;
366 bbs = get_loop_body (loop);
367 for (i = 0; i < loop->num_nodes; i++)
369 bb = bbs[i];
370 ninsns++;
371 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
372 if (INSN_P (insn))
373 ninsns++;
375 free(bbs);
377 return ninsns;
380 /* Counts number of insns executed on average per iteration LOOP. */
382 average_num_loop_insns (struct loop *loop)
384 basic_block *bbs, bb;
385 unsigned i, binsns, ninsns, ratio;
386 rtx insn;
388 ninsns = 0;
389 bbs = get_loop_body (loop);
390 for (i = 0; i < loop->num_nodes; i++)
392 bb = bbs[i];
394 binsns = 1;
395 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
396 if (INSN_P (insn))
397 binsns++;
399 ratio = loop->header->frequency == 0
400 ? BB_FREQ_MAX
401 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
402 ninsns += binsns * ratio;
404 free(bbs);
406 ninsns /= BB_FREQ_MAX;
407 if (!ninsns)
408 ninsns = 1; /* To avoid division by zero. */
410 return ninsns;
413 /* Returns expected number of LOOP iterations.
414 Compute upper bound on number of iterations in case they do not fit integer
415 to help loop peeling heuristics. Use exact counts if at all possible. */
416 unsigned
417 expected_loop_iterations (const struct loop *loop)
419 edge e;
420 edge_iterator ei;
422 if (loop->header->count)
424 gcov_type count_in, count_latch, expected;
426 count_in = 0;
427 count_latch = 0;
429 FOR_EACH_EDGE (e, ei, loop->header->preds)
430 if (e->src == loop->latch)
431 count_latch = e->count;
432 else
433 count_in += e->count;
435 if (count_in == 0)
436 expected = count_latch * 2;
437 else
438 expected = (count_latch + count_in - 1) / count_in;
440 /* Avoid overflows. */
441 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
443 else
445 int freq_in, freq_latch;
447 freq_in = 0;
448 freq_latch = 0;
450 FOR_EACH_EDGE (e, ei, loop->header->preds)
451 if (e->src == loop->latch)
452 freq_latch = EDGE_FREQUENCY (e);
453 else
454 freq_in += EDGE_FREQUENCY (e);
456 if (freq_in == 0)
457 return freq_latch * 2;
459 return (freq_latch + freq_in - 1) / freq_in;
463 /* Returns the maximum level of nesting of subloops of LOOP. */
465 unsigned
466 get_loop_level (const struct loop *loop)
468 const struct loop *ploop;
469 unsigned mx = 0, l;
471 for (ploop = loop->inner; ploop; ploop = ploop->next)
473 l = get_loop_level (ploop);
474 if (l >= mx)
475 mx = l + 1;
477 return mx;
480 /* Returns estimate on cost of computing SEQ. */
482 static unsigned
483 seq_cost (rtx seq)
485 unsigned cost = 0;
486 rtx set;
488 for (; seq; seq = NEXT_INSN (seq))
490 set = single_set (seq);
491 if (set)
492 cost += rtx_cost (set, SET);
493 else
494 cost++;
497 return cost;
500 /* The properties of the target. */
502 unsigned target_avail_regs; /* Number of available registers. */
503 unsigned target_res_regs; /* Number of reserved registers. */
504 unsigned target_small_cost; /* The cost for register when there is a free one. */
505 unsigned target_pres_cost; /* The cost for register when there are not too many
506 free ones. */
507 unsigned target_spill_cost; /* The cost for register when we need to spill. */
509 /* Initialize the constants for computing set costs. */
511 void
512 init_set_costs (void)
514 rtx seq;
515 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
516 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
517 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
518 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
519 unsigned i;
521 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
522 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
523 && !fixed_regs[i])
524 target_avail_regs++;
526 target_res_regs = 3;
528 /* These are really just heuristic values. */
530 start_sequence ();
531 emit_move_insn (reg1, reg2);
532 seq = get_insns ();
533 end_sequence ();
534 target_small_cost = seq_cost (seq);
535 target_pres_cost = 2 * target_small_cost;
537 start_sequence ();
538 emit_move_insn (mem, reg1);
539 emit_move_insn (reg2, mem);
540 seq = get_insns ();
541 end_sequence ();
542 target_spill_cost = seq_cost (seq);
545 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
546 number of global registers used in loop. N_USES is the number of relevant
547 variable uses. */
549 unsigned
550 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
552 unsigned regs_needed = regs_used + size;
553 unsigned cost = 0;
555 if (regs_needed + target_res_regs <= target_avail_regs)
556 cost += target_small_cost * size;
557 else if (regs_needed <= target_avail_regs)
558 cost += target_pres_cost * size;
559 else
561 cost += target_pres_cost * size;
562 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
565 return cost;
568 /* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS. */
570 void
571 mark_loop_exit_edges (struct loops *loops)
573 basic_block bb;
574 edge e;
576 if (loops->num <= 1)
577 return;
579 FOR_EACH_BB (bb)
581 edge_iterator ei;
583 FOR_EACH_EDGE (e, ei, bb->succs)
585 if (bb->loop_father->outer
586 && loop_exit_edge_p (bb->loop_father, e))
587 e->flags |= EDGE_LOOP_EXIT;
588 else
589 e->flags &= ~EDGE_LOOP_EXIT;