[Patch match.pd] Fold (A / (1 << B)) to (A >> B)
[official-gcc.git] / gcc / asan.c
blobe730530930b44fbf937542ceff2d0f988e9a4b10
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "asan.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "langhooks.h"
56 #include "cfgloop.h"
57 #include "gimple-builder.h"
58 #include "ubsan.h"
59 #include "params.h"
60 #include "builtins.h"
61 #include "fnmatch.h"
62 #include "tree-inline.h"
64 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
65 with <2x slowdown on average.
67 The tool consists of two parts:
68 instrumentation module (this file) and a run-time library.
69 The instrumentation module adds a run-time check before every memory insn.
70 For a 8- or 16- byte load accessing address X:
71 ShadowAddr = (X >> 3) + Offset
72 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
73 if (ShadowValue)
74 __asan_report_load8(X);
75 For a load of N bytes (N=1, 2 or 4) from address X:
76 ShadowAddr = (X >> 3) + Offset
77 ShadowValue = *(char*)ShadowAddr;
78 if (ShadowValue)
79 if ((X & 7) + N - 1 > ShadowValue)
80 __asan_report_loadN(X);
81 Stores are instrumented similarly, but using __asan_report_storeN functions.
82 A call too __asan_init_vN() is inserted to the list of module CTORs.
83 N is the version number of the AddressSanitizer API. The changes between the
84 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
86 The run-time library redefines malloc (so that redzone are inserted around
87 the allocated memory) and free (so that reuse of free-ed memory is delayed),
88 provides __asan_report* and __asan_init_vN functions.
90 Read more:
91 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
93 The current implementation supports detection of out-of-bounds and
94 use-after-free in the heap, on the stack and for global variables.
96 [Protection of stack variables]
98 To understand how detection of out-of-bounds and use-after-free works
99 for stack variables, lets look at this example on x86_64 where the
100 stack grows downward:
103 foo ()
105 char a[23] = {0};
106 int b[2] = {0};
108 a[5] = 1;
109 b[1] = 2;
111 return a[5] + b[1];
114 For this function, the stack protected by asan will be organized as
115 follows, from the top of the stack to the bottom:
117 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
119 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
120 the next slot be 32 bytes aligned; this one is called Partial
121 Redzone; this 32 bytes alignment is an asan constraint]
123 Slot 3/ [24 bytes for variable 'a']
125 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
127 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
129 Slot 6/ [8 bytes for variable 'b']
131 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
132 'LEFT RedZone']
134 The 32 bytes of LEFT red zone at the bottom of the stack can be
135 decomposed as such:
137 1/ The first 8 bytes contain a magical asan number that is always
138 0x41B58AB3.
140 2/ The following 8 bytes contains a pointer to a string (to be
141 parsed at runtime by the runtime asan library), which format is
142 the following:
144 "<function-name> <space> <num-of-variables-on-the-stack>
145 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
146 <length-of-var-in-bytes> ){n} "
148 where '(...){n}' means the content inside the parenthesis occurs 'n'
149 times, with 'n' being the number of variables on the stack.
151 3/ The following 8 bytes contain the PC of the current function which
152 will be used by the run-time library to print an error message.
154 4/ The following 8 bytes are reserved for internal use by the run-time.
156 The shadow memory for that stack layout is going to look like this:
158 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
159 The F1 byte pattern is a magic number called
160 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
161 the memory for that shadow byte is part of a the LEFT red zone
162 intended to seat at the bottom of the variables on the stack.
164 - content of shadow memory 8 bytes for slots 6 and 5:
165 0xF4F4F400. The F4 byte pattern is a magic number
166 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
167 memory region for this shadow byte is a PARTIAL red zone
168 intended to pad a variable A, so that the slot following
169 {A,padding} is 32 bytes aligned.
171 Note that the fact that the least significant byte of this
172 shadow memory content is 00 means that 8 bytes of its
173 corresponding memory (which corresponds to the memory of
174 variable 'b') is addressable.
176 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
177 The F2 byte pattern is a magic number called
178 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
179 region for this shadow byte is a MIDDLE red zone intended to
180 seat between two 32 aligned slots of {variable,padding}.
182 - content of shadow memory 8 bytes for slot 3 and 2:
183 0xF4000000. This represents is the concatenation of
184 variable 'a' and the partial red zone following it, like what we
185 had for variable 'b'. The least significant 3 bytes being 00
186 means that the 3 bytes of variable 'a' are addressable.
188 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
189 The F3 byte pattern is a magic number called
190 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
191 region for this shadow byte is a RIGHT red zone intended to seat
192 at the top of the variables of the stack.
194 Note that the real variable layout is done in expand_used_vars in
195 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
196 stack variables as well as the different red zones, emits some
197 prologue code to populate the shadow memory as to poison (mark as
198 non-accessible) the regions of the red zones and mark the regions of
199 stack variables as accessible, and emit some epilogue code to
200 un-poison (mark as accessible) the regions of red zones right before
201 the function exits.
203 [Protection of global variables]
205 The basic idea is to insert a red zone between two global variables
206 and install a constructor function that calls the asan runtime to do
207 the populating of the relevant shadow memory regions at load time.
209 So the global variables are laid out as to insert a red zone between
210 them. The size of the red zones is so that each variable starts on a
211 32 bytes boundary.
213 Then a constructor function is installed so that, for each global
214 variable, it calls the runtime asan library function
215 __asan_register_globals_with an instance of this type:
217 struct __asan_global
219 // Address of the beginning of the global variable.
220 const void *__beg;
222 // Initial size of the global variable.
223 uptr __size;
225 // Size of the global variable + size of the red zone. This
226 // size is 32 bytes aligned.
227 uptr __size_with_redzone;
229 // Name of the global variable.
230 const void *__name;
232 // Name of the module where the global variable is declared.
233 const void *__module_name;
235 // 1 if it has dynamic initialization, 0 otherwise.
236 uptr __has_dynamic_init;
238 // A pointer to struct that contains source location, could be NULL.
239 __asan_global_source_location *__location;
242 A destructor function that calls the runtime asan library function
243 _asan_unregister_globals is also installed. */
245 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
246 static bool asan_shadow_offset_computed;
247 static vec<char *> sanitized_sections;
249 /* Set of variable declarations that are going to be guarded by
250 use-after-scope sanitizer. */
252 static hash_set<tree> *asan_handled_variables = NULL;
254 hash_set <tree> *asan_used_labels = NULL;
256 /* Sets shadow offset to value in string VAL. */
258 bool
259 set_asan_shadow_offset (const char *val)
261 char *endp;
263 errno = 0;
264 #ifdef HAVE_LONG_LONG
265 asan_shadow_offset_value = strtoull (val, &endp, 0);
266 #else
267 asan_shadow_offset_value = strtoul (val, &endp, 0);
268 #endif
269 if (!(*val != '\0' && *endp == '\0' && errno == 0))
270 return false;
272 asan_shadow_offset_computed = true;
274 return true;
277 /* Set list of user-defined sections that need to be sanitized. */
279 void
280 set_sanitized_sections (const char *sections)
282 char *pat;
283 unsigned i;
284 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
285 free (pat);
286 sanitized_sections.truncate (0);
288 for (const char *s = sections; *s; )
290 const char *end;
291 for (end = s; *end && *end != ','; ++end);
292 size_t len = end - s;
293 sanitized_sections.safe_push (xstrndup (s, len));
294 s = *end ? end + 1 : end;
298 bool
299 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
301 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
302 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
305 bool
306 asan_sanitize_stack_p (void)
308 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
311 /* Checks whether section SEC should be sanitized. */
313 static bool
314 section_sanitized_p (const char *sec)
316 char *pat;
317 unsigned i;
318 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
319 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
320 return true;
321 return false;
324 /* Returns Asan shadow offset. */
326 static unsigned HOST_WIDE_INT
327 asan_shadow_offset ()
329 if (!asan_shadow_offset_computed)
331 asan_shadow_offset_computed = true;
332 asan_shadow_offset_value = targetm.asan_shadow_offset ();
334 return asan_shadow_offset_value;
337 alias_set_type asan_shadow_set = -1;
339 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
340 alias set is used for all shadow memory accesses. */
341 static GTY(()) tree shadow_ptr_types[3];
343 /* Decl for __asan_option_detect_stack_use_after_return. */
344 static GTY(()) tree asan_detect_stack_use_after_return;
346 /* Hashtable support for memory references used by gimple
347 statements. */
349 /* This type represents a reference to a memory region. */
350 struct asan_mem_ref
352 /* The expression of the beginning of the memory region. */
353 tree start;
355 /* The size of the access. */
356 HOST_WIDE_INT access_size;
359 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
361 /* Initializes an instance of asan_mem_ref. */
363 static void
364 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
366 ref->start = start;
367 ref->access_size = access_size;
370 /* Allocates memory for an instance of asan_mem_ref into the memory
371 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
372 START is the address of (or the expression pointing to) the
373 beginning of memory reference. ACCESS_SIZE is the size of the
374 access to the referenced memory. */
376 static asan_mem_ref*
377 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
379 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
381 asan_mem_ref_init (ref, start, access_size);
382 return ref;
385 /* This builds and returns a pointer to the end of the memory region
386 that starts at START and of length LEN. */
388 tree
389 asan_mem_ref_get_end (tree start, tree len)
391 if (len == NULL_TREE || integer_zerop (len))
392 return start;
394 if (!ptrofftype_p (len))
395 len = convert_to_ptrofftype (len);
397 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
400 /* Return a tree expression that represents the end of the referenced
401 memory region. Beware that this function can actually build a new
402 tree expression. */
404 tree
405 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
407 return asan_mem_ref_get_end (ref->start, len);
410 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
412 static inline hashval_t hash (const asan_mem_ref *);
413 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
416 /* Hash a memory reference. */
418 inline hashval_t
419 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
421 return iterative_hash_expr (mem_ref->start, 0);
424 /* Compare two memory references. We accept the length of either
425 memory references to be NULL_TREE. */
427 inline bool
428 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
429 const asan_mem_ref *m2)
431 return operand_equal_p (m1->start, m2->start, 0);
434 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
436 /* Returns a reference to the hash table containing memory references.
437 This function ensures that the hash table is created. Note that
438 this hash table is updated by the function
439 update_mem_ref_hash_table. */
441 static hash_table<asan_mem_ref_hasher> *
442 get_mem_ref_hash_table ()
444 if (!asan_mem_ref_ht)
445 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
447 return asan_mem_ref_ht;
450 /* Clear all entries from the memory references hash table. */
452 static void
453 empty_mem_ref_hash_table ()
455 if (asan_mem_ref_ht)
456 asan_mem_ref_ht->empty ();
459 /* Free the memory references hash table. */
461 static void
462 free_mem_ref_resources ()
464 delete asan_mem_ref_ht;
465 asan_mem_ref_ht = NULL;
467 asan_mem_ref_pool.release ();
470 /* Return true iff the memory reference REF has been instrumented. */
472 static bool
473 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
475 asan_mem_ref r;
476 asan_mem_ref_init (&r, ref, access_size);
478 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
479 return saved_ref && saved_ref->access_size >= access_size;
482 /* Return true iff the memory reference REF has been instrumented. */
484 static bool
485 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
487 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
490 /* Return true iff access to memory region starting at REF and of
491 length LEN has been instrumented. */
493 static bool
494 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
496 HOST_WIDE_INT size_in_bytes
497 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
499 return size_in_bytes != -1
500 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
503 /* Set REF to the memory reference present in a gimple assignment
504 ASSIGNMENT. Return true upon successful completion, false
505 otherwise. */
507 static bool
508 get_mem_ref_of_assignment (const gassign *assignment,
509 asan_mem_ref *ref,
510 bool *ref_is_store)
512 gcc_assert (gimple_assign_single_p (assignment));
514 if (gimple_store_p (assignment)
515 && !gimple_clobber_p (assignment))
517 ref->start = gimple_assign_lhs (assignment);
518 *ref_is_store = true;
520 else if (gimple_assign_load_p (assignment))
522 ref->start = gimple_assign_rhs1 (assignment);
523 *ref_is_store = false;
525 else
526 return false;
528 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
529 return true;
532 /* Return the memory references contained in a gimple statement
533 representing a builtin call that has to do with memory access. */
535 static bool
536 get_mem_refs_of_builtin_call (const gcall *call,
537 asan_mem_ref *src0,
538 tree *src0_len,
539 bool *src0_is_store,
540 asan_mem_ref *src1,
541 tree *src1_len,
542 bool *src1_is_store,
543 asan_mem_ref *dst,
544 tree *dst_len,
545 bool *dst_is_store,
546 bool *dest_is_deref,
547 bool *intercepted_p)
549 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
551 tree callee = gimple_call_fndecl (call);
552 tree source0 = NULL_TREE, source1 = NULL_TREE,
553 dest = NULL_TREE, len = NULL_TREE;
554 bool is_store = true, got_reference_p = false;
555 HOST_WIDE_INT access_size = 1;
557 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
559 switch (DECL_FUNCTION_CODE (callee))
561 /* (s, s, n) style memops. */
562 case BUILT_IN_BCMP:
563 case BUILT_IN_MEMCMP:
564 source0 = gimple_call_arg (call, 0);
565 source1 = gimple_call_arg (call, 1);
566 len = gimple_call_arg (call, 2);
567 break;
569 /* (src, dest, n) style memops. */
570 case BUILT_IN_BCOPY:
571 source0 = gimple_call_arg (call, 0);
572 dest = gimple_call_arg (call, 1);
573 len = gimple_call_arg (call, 2);
574 break;
576 /* (dest, src, n) style memops. */
577 case BUILT_IN_MEMCPY:
578 case BUILT_IN_MEMCPY_CHK:
579 case BUILT_IN_MEMMOVE:
580 case BUILT_IN_MEMMOVE_CHK:
581 case BUILT_IN_MEMPCPY:
582 case BUILT_IN_MEMPCPY_CHK:
583 dest = gimple_call_arg (call, 0);
584 source0 = gimple_call_arg (call, 1);
585 len = gimple_call_arg (call, 2);
586 break;
588 /* (dest, n) style memops. */
589 case BUILT_IN_BZERO:
590 dest = gimple_call_arg (call, 0);
591 len = gimple_call_arg (call, 1);
592 break;
594 /* (dest, x, n) style memops*/
595 case BUILT_IN_MEMSET:
596 case BUILT_IN_MEMSET_CHK:
597 dest = gimple_call_arg (call, 0);
598 len = gimple_call_arg (call, 2);
599 break;
601 case BUILT_IN_STRLEN:
602 source0 = gimple_call_arg (call, 0);
603 len = gimple_call_lhs (call);
604 break;
606 /* And now the __atomic* and __sync builtins.
607 These are handled differently from the classical memory memory
608 access builtins above. */
610 case BUILT_IN_ATOMIC_LOAD_1:
611 is_store = false;
612 /* FALLTHRU */
613 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
615 case BUILT_IN_SYNC_FETCH_AND_OR_1:
616 case BUILT_IN_SYNC_FETCH_AND_AND_1:
617 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
618 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
619 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
620 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
621 case BUILT_IN_SYNC_OR_AND_FETCH_1:
622 case BUILT_IN_SYNC_AND_AND_FETCH_1:
623 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
624 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
625 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
626 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
627 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
628 case BUILT_IN_SYNC_LOCK_RELEASE_1:
629 case BUILT_IN_ATOMIC_EXCHANGE_1:
630 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
631 case BUILT_IN_ATOMIC_STORE_1:
632 case BUILT_IN_ATOMIC_ADD_FETCH_1:
633 case BUILT_IN_ATOMIC_SUB_FETCH_1:
634 case BUILT_IN_ATOMIC_AND_FETCH_1:
635 case BUILT_IN_ATOMIC_NAND_FETCH_1:
636 case BUILT_IN_ATOMIC_XOR_FETCH_1:
637 case BUILT_IN_ATOMIC_OR_FETCH_1:
638 case BUILT_IN_ATOMIC_FETCH_ADD_1:
639 case BUILT_IN_ATOMIC_FETCH_SUB_1:
640 case BUILT_IN_ATOMIC_FETCH_AND_1:
641 case BUILT_IN_ATOMIC_FETCH_NAND_1:
642 case BUILT_IN_ATOMIC_FETCH_XOR_1:
643 case BUILT_IN_ATOMIC_FETCH_OR_1:
644 access_size = 1;
645 goto do_atomic;
647 case BUILT_IN_ATOMIC_LOAD_2:
648 is_store = false;
649 /* FALLTHRU */
650 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
651 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
652 case BUILT_IN_SYNC_FETCH_AND_OR_2:
653 case BUILT_IN_SYNC_FETCH_AND_AND_2:
654 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
655 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
656 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
657 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
658 case BUILT_IN_SYNC_OR_AND_FETCH_2:
659 case BUILT_IN_SYNC_AND_AND_FETCH_2:
660 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
661 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
662 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
663 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
664 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
665 case BUILT_IN_SYNC_LOCK_RELEASE_2:
666 case BUILT_IN_ATOMIC_EXCHANGE_2:
667 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
668 case BUILT_IN_ATOMIC_STORE_2:
669 case BUILT_IN_ATOMIC_ADD_FETCH_2:
670 case BUILT_IN_ATOMIC_SUB_FETCH_2:
671 case BUILT_IN_ATOMIC_AND_FETCH_2:
672 case BUILT_IN_ATOMIC_NAND_FETCH_2:
673 case BUILT_IN_ATOMIC_XOR_FETCH_2:
674 case BUILT_IN_ATOMIC_OR_FETCH_2:
675 case BUILT_IN_ATOMIC_FETCH_ADD_2:
676 case BUILT_IN_ATOMIC_FETCH_SUB_2:
677 case BUILT_IN_ATOMIC_FETCH_AND_2:
678 case BUILT_IN_ATOMIC_FETCH_NAND_2:
679 case BUILT_IN_ATOMIC_FETCH_XOR_2:
680 case BUILT_IN_ATOMIC_FETCH_OR_2:
681 access_size = 2;
682 goto do_atomic;
684 case BUILT_IN_ATOMIC_LOAD_4:
685 is_store = false;
686 /* FALLTHRU */
687 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
688 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
689 case BUILT_IN_SYNC_FETCH_AND_OR_4:
690 case BUILT_IN_SYNC_FETCH_AND_AND_4:
691 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
692 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
693 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
694 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
695 case BUILT_IN_SYNC_OR_AND_FETCH_4:
696 case BUILT_IN_SYNC_AND_AND_FETCH_4:
697 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
698 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
699 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
700 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
701 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
702 case BUILT_IN_SYNC_LOCK_RELEASE_4:
703 case BUILT_IN_ATOMIC_EXCHANGE_4:
704 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
705 case BUILT_IN_ATOMIC_STORE_4:
706 case BUILT_IN_ATOMIC_ADD_FETCH_4:
707 case BUILT_IN_ATOMIC_SUB_FETCH_4:
708 case BUILT_IN_ATOMIC_AND_FETCH_4:
709 case BUILT_IN_ATOMIC_NAND_FETCH_4:
710 case BUILT_IN_ATOMIC_XOR_FETCH_4:
711 case BUILT_IN_ATOMIC_OR_FETCH_4:
712 case BUILT_IN_ATOMIC_FETCH_ADD_4:
713 case BUILT_IN_ATOMIC_FETCH_SUB_4:
714 case BUILT_IN_ATOMIC_FETCH_AND_4:
715 case BUILT_IN_ATOMIC_FETCH_NAND_4:
716 case BUILT_IN_ATOMIC_FETCH_XOR_4:
717 case BUILT_IN_ATOMIC_FETCH_OR_4:
718 access_size = 4;
719 goto do_atomic;
721 case BUILT_IN_ATOMIC_LOAD_8:
722 is_store = false;
723 /* FALLTHRU */
724 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
725 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
726 case BUILT_IN_SYNC_FETCH_AND_OR_8:
727 case BUILT_IN_SYNC_FETCH_AND_AND_8:
728 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
729 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
730 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
731 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
732 case BUILT_IN_SYNC_OR_AND_FETCH_8:
733 case BUILT_IN_SYNC_AND_AND_FETCH_8:
734 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
735 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
736 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
737 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
738 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
739 case BUILT_IN_SYNC_LOCK_RELEASE_8:
740 case BUILT_IN_ATOMIC_EXCHANGE_8:
741 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
742 case BUILT_IN_ATOMIC_STORE_8:
743 case BUILT_IN_ATOMIC_ADD_FETCH_8:
744 case BUILT_IN_ATOMIC_SUB_FETCH_8:
745 case BUILT_IN_ATOMIC_AND_FETCH_8:
746 case BUILT_IN_ATOMIC_NAND_FETCH_8:
747 case BUILT_IN_ATOMIC_XOR_FETCH_8:
748 case BUILT_IN_ATOMIC_OR_FETCH_8:
749 case BUILT_IN_ATOMIC_FETCH_ADD_8:
750 case BUILT_IN_ATOMIC_FETCH_SUB_8:
751 case BUILT_IN_ATOMIC_FETCH_AND_8:
752 case BUILT_IN_ATOMIC_FETCH_NAND_8:
753 case BUILT_IN_ATOMIC_FETCH_XOR_8:
754 case BUILT_IN_ATOMIC_FETCH_OR_8:
755 access_size = 8;
756 goto do_atomic;
758 case BUILT_IN_ATOMIC_LOAD_16:
759 is_store = false;
760 /* FALLTHRU */
761 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
762 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
763 case BUILT_IN_SYNC_FETCH_AND_OR_16:
764 case BUILT_IN_SYNC_FETCH_AND_AND_16:
765 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
766 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
767 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
768 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
769 case BUILT_IN_SYNC_OR_AND_FETCH_16:
770 case BUILT_IN_SYNC_AND_AND_FETCH_16:
771 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
772 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
773 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
774 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
775 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
776 case BUILT_IN_SYNC_LOCK_RELEASE_16:
777 case BUILT_IN_ATOMIC_EXCHANGE_16:
778 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
779 case BUILT_IN_ATOMIC_STORE_16:
780 case BUILT_IN_ATOMIC_ADD_FETCH_16:
781 case BUILT_IN_ATOMIC_SUB_FETCH_16:
782 case BUILT_IN_ATOMIC_AND_FETCH_16:
783 case BUILT_IN_ATOMIC_NAND_FETCH_16:
784 case BUILT_IN_ATOMIC_XOR_FETCH_16:
785 case BUILT_IN_ATOMIC_OR_FETCH_16:
786 case BUILT_IN_ATOMIC_FETCH_ADD_16:
787 case BUILT_IN_ATOMIC_FETCH_SUB_16:
788 case BUILT_IN_ATOMIC_FETCH_AND_16:
789 case BUILT_IN_ATOMIC_FETCH_NAND_16:
790 case BUILT_IN_ATOMIC_FETCH_XOR_16:
791 case BUILT_IN_ATOMIC_FETCH_OR_16:
792 access_size = 16;
793 /* FALLTHRU */
794 do_atomic:
796 dest = gimple_call_arg (call, 0);
797 /* DEST represents the address of a memory location.
798 instrument_derefs wants the memory location, so lets
799 dereference the address DEST before handing it to
800 instrument_derefs. */
801 tree type = build_nonstandard_integer_type (access_size
802 * BITS_PER_UNIT, 1);
803 dest = build2 (MEM_REF, type, dest,
804 build_int_cst (build_pointer_type (char_type_node), 0));
805 break;
808 default:
809 /* The other builtins memory access are not instrumented in this
810 function because they either don't have any length parameter,
811 or their length parameter is just a limit. */
812 break;
815 if (len != NULL_TREE)
817 if (source0 != NULL_TREE)
819 src0->start = source0;
820 src0->access_size = access_size;
821 *src0_len = len;
822 *src0_is_store = false;
825 if (source1 != NULL_TREE)
827 src1->start = source1;
828 src1->access_size = access_size;
829 *src1_len = len;
830 *src1_is_store = false;
833 if (dest != NULL_TREE)
835 dst->start = dest;
836 dst->access_size = access_size;
837 *dst_len = len;
838 *dst_is_store = true;
841 got_reference_p = true;
843 else if (dest)
845 dst->start = dest;
846 dst->access_size = access_size;
847 *dst_len = NULL_TREE;
848 *dst_is_store = is_store;
849 *dest_is_deref = true;
850 got_reference_p = true;
853 return got_reference_p;
856 /* Return true iff a given gimple statement has been instrumented.
857 Note that the statement is "defined" by the memory references it
858 contains. */
860 static bool
861 has_stmt_been_instrumented_p (gimple *stmt)
863 if (gimple_assign_single_p (stmt))
865 bool r_is_store;
866 asan_mem_ref r;
867 asan_mem_ref_init (&r, NULL, 1);
869 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
870 &r_is_store))
871 return has_mem_ref_been_instrumented (&r);
873 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
875 asan_mem_ref src0, src1, dest;
876 asan_mem_ref_init (&src0, NULL, 1);
877 asan_mem_ref_init (&src1, NULL, 1);
878 asan_mem_ref_init (&dest, NULL, 1);
880 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
881 bool src0_is_store = false, src1_is_store = false,
882 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
883 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
884 &src0, &src0_len, &src0_is_store,
885 &src1, &src1_len, &src1_is_store,
886 &dest, &dest_len, &dest_is_store,
887 &dest_is_deref, &intercepted_p))
889 if (src0.start != NULL_TREE
890 && !has_mem_ref_been_instrumented (&src0, src0_len))
891 return false;
893 if (src1.start != NULL_TREE
894 && !has_mem_ref_been_instrumented (&src1, src1_len))
895 return false;
897 if (dest.start != NULL_TREE
898 && !has_mem_ref_been_instrumented (&dest, dest_len))
899 return false;
901 return true;
904 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
906 asan_mem_ref r;
907 asan_mem_ref_init (&r, NULL, 1);
909 r.start = gimple_call_lhs (stmt);
910 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
911 return has_mem_ref_been_instrumented (&r);
914 return false;
917 /* Insert a memory reference into the hash table. */
919 static void
920 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
922 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
924 asan_mem_ref r;
925 asan_mem_ref_init (&r, ref, access_size);
927 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
928 if (*slot == NULL || (*slot)->access_size < access_size)
929 *slot = asan_mem_ref_new (ref, access_size);
932 /* Initialize shadow_ptr_types array. */
934 static void
935 asan_init_shadow_ptr_types (void)
937 asan_shadow_set = new_alias_set ();
938 tree types[3] = { signed_char_type_node, short_integer_type_node,
939 integer_type_node };
941 for (unsigned i = 0; i < 3; i++)
943 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
944 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
945 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
948 initialize_sanitizer_builtins ();
951 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
953 static tree
954 asan_pp_string (pretty_printer *pp)
956 const char *buf = pp_formatted_text (pp);
957 size_t len = strlen (buf);
958 tree ret = build_string (len + 1, buf);
959 TREE_TYPE (ret)
960 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
961 build_index_type (size_int (len)));
962 TREE_READONLY (ret) = 1;
963 TREE_STATIC (ret) = 1;
964 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
967 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
969 static rtx
970 asan_shadow_cst (unsigned char shadow_bytes[4])
972 int i;
973 unsigned HOST_WIDE_INT val = 0;
974 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
975 for (i = 0; i < 4; i++)
976 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
977 << (BITS_PER_UNIT * i);
978 return gen_int_mode (val, SImode);
981 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
982 though. */
984 static void
985 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
987 rtx_insn *insn, *insns, *jump;
988 rtx_code_label *top_label;
989 rtx end, addr, tmp;
991 start_sequence ();
992 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
993 insns = get_insns ();
994 end_sequence ();
995 for (insn = insns; insn; insn = NEXT_INSN (insn))
996 if (CALL_P (insn))
997 break;
998 if (insn == NULL_RTX)
1000 emit_insn (insns);
1001 return;
1004 gcc_assert ((len & 3) == 0);
1005 top_label = gen_label_rtx ();
1006 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1007 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1008 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1009 emit_label (top_label);
1011 emit_move_insn (shadow_mem, const0_rtx);
1012 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1013 true, OPTAB_LIB_WIDEN);
1014 if (tmp != addr)
1015 emit_move_insn (addr, tmp);
1016 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1017 jump = get_last_insn ();
1018 gcc_assert (JUMP_P (jump));
1019 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1022 void
1023 asan_function_start (void)
1025 section *fnsec = function_section (current_function_decl);
1026 switch_to_section (fnsec);
1027 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1028 current_function_funcdef_no);
1031 /* Return number of shadow bytes that are occupied by a local variable
1032 of SIZE bytes. */
1034 static unsigned HOST_WIDE_INT
1035 shadow_mem_size (unsigned HOST_WIDE_INT size)
1037 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1040 /* Insert code to protect stack vars. The prologue sequence should be emitted
1041 directly, epilogue sequence returned. BASE is the register holding the
1042 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1043 array contains pairs of offsets in reverse order, always the end offset
1044 of some gap that needs protection followed by starting offset,
1045 and DECLS is an array of representative decls for each var partition.
1046 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1047 elements long (OFFSETS include gap before the first variable as well
1048 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1049 register which stack vars DECL_RTLs are based on. Either BASE should be
1050 assigned to PBASE, when not doing use after return protection, or
1051 corresponding address based on __asan_stack_malloc* return value. */
1053 rtx_insn *
1054 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1055 HOST_WIDE_INT *offsets, tree *decls, int length)
1057 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1058 rtx_code_label *lab;
1059 rtx_insn *insns;
1060 char buf[32];
1061 unsigned char shadow_bytes[4];
1062 HOST_WIDE_INT base_offset = offsets[length - 1];
1063 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1064 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1065 HOST_WIDE_INT last_offset;
1066 int l;
1067 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1068 tree str_cst, decl, id;
1069 int use_after_return_class = -1;
1071 if (shadow_ptr_types[0] == NULL_TREE)
1072 asan_init_shadow_ptr_types ();
1074 /* First of all, prepare the description string. */
1075 pretty_printer asan_pp;
1077 pp_decimal_int (&asan_pp, length / 2 - 1);
1078 pp_space (&asan_pp);
1079 for (l = length - 2; l; l -= 2)
1081 tree decl = decls[l / 2 - 1];
1082 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1083 pp_space (&asan_pp);
1084 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1085 pp_space (&asan_pp);
1086 if (DECL_P (decl) && DECL_NAME (decl))
1088 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1089 pp_space (&asan_pp);
1090 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1092 else
1093 pp_string (&asan_pp, "9 <unknown>");
1094 pp_space (&asan_pp);
1096 str_cst = asan_pp_string (&asan_pp);
1098 /* Emit the prologue sequence. */
1099 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1100 && ASAN_USE_AFTER_RETURN)
1102 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1103 /* __asan_stack_malloc_N guarantees alignment
1104 N < 6 ? (64 << N) : 4096 bytes. */
1105 if (alignb > (use_after_return_class < 6
1106 ? (64U << use_after_return_class) : 4096U))
1107 use_after_return_class = -1;
1108 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1109 base_align_bias = ((asan_frame_size + alignb - 1)
1110 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1112 /* Align base if target is STRICT_ALIGNMENT. */
1113 if (STRICT_ALIGNMENT)
1114 base = expand_binop (Pmode, and_optab, base,
1115 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1116 << ASAN_SHADOW_SHIFT)
1117 / BITS_PER_UNIT), Pmode), NULL_RTX,
1118 1, OPTAB_DIRECT);
1120 if (use_after_return_class == -1 && pbase)
1121 emit_move_insn (pbase, base);
1123 base = expand_binop (Pmode, add_optab, base,
1124 gen_int_mode (base_offset - base_align_bias, Pmode),
1125 NULL_RTX, 1, OPTAB_DIRECT);
1126 orig_base = NULL_RTX;
1127 if (use_after_return_class != -1)
1129 if (asan_detect_stack_use_after_return == NULL_TREE)
1131 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1132 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1133 integer_type_node);
1134 SET_DECL_ASSEMBLER_NAME (decl, id);
1135 TREE_ADDRESSABLE (decl) = 1;
1136 DECL_ARTIFICIAL (decl) = 1;
1137 DECL_IGNORED_P (decl) = 1;
1138 DECL_EXTERNAL (decl) = 1;
1139 TREE_STATIC (decl) = 1;
1140 TREE_PUBLIC (decl) = 1;
1141 TREE_USED (decl) = 1;
1142 asan_detect_stack_use_after_return = decl;
1144 orig_base = gen_reg_rtx (Pmode);
1145 emit_move_insn (orig_base, base);
1146 ret = expand_normal (asan_detect_stack_use_after_return);
1147 lab = gen_label_rtx ();
1148 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1149 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1150 VOIDmode, 0, lab, very_likely);
1151 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1152 use_after_return_class);
1153 ret = init_one_libfunc (buf);
1154 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 1,
1155 GEN_INT (asan_frame_size
1156 + base_align_bias),
1157 TYPE_MODE (pointer_sized_int_node));
1158 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1159 and NULL otherwise. Check RET value is NULL here and jump over the
1160 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1161 int very_unlikely = REG_BR_PROB_BASE / 2000 - 1;
1162 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1163 VOIDmode, 0, lab, very_unlikely);
1164 ret = convert_memory_address (Pmode, ret);
1165 emit_move_insn (base, ret);
1166 emit_label (lab);
1167 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1168 gen_int_mode (base_align_bias
1169 - base_offset, Pmode),
1170 NULL_RTX, 1, OPTAB_DIRECT));
1172 mem = gen_rtx_MEM (ptr_mode, base);
1173 mem = adjust_address (mem, VOIDmode, base_align_bias);
1174 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1175 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1176 emit_move_insn (mem, expand_normal (str_cst));
1177 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1178 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1179 id = get_identifier (buf);
1180 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1181 VAR_DECL, id, char_type_node);
1182 SET_DECL_ASSEMBLER_NAME (decl, id);
1183 TREE_ADDRESSABLE (decl) = 1;
1184 TREE_READONLY (decl) = 1;
1185 DECL_ARTIFICIAL (decl) = 1;
1186 DECL_IGNORED_P (decl) = 1;
1187 TREE_STATIC (decl) = 1;
1188 TREE_PUBLIC (decl) = 0;
1189 TREE_USED (decl) = 1;
1190 DECL_INITIAL (decl) = decl;
1191 TREE_ASM_WRITTEN (decl) = 1;
1192 TREE_ASM_WRITTEN (id) = 1;
1193 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1194 shadow_base = expand_binop (Pmode, lshr_optab, base,
1195 GEN_INT (ASAN_SHADOW_SHIFT),
1196 NULL_RTX, 1, OPTAB_DIRECT);
1197 shadow_base
1198 = plus_constant (Pmode, shadow_base,
1199 asan_shadow_offset ()
1200 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1201 gcc_assert (asan_shadow_set != -1
1202 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1203 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1204 set_mem_alias_set (shadow_mem, asan_shadow_set);
1205 if (STRICT_ALIGNMENT)
1206 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1207 prev_offset = base_offset;
1208 for (l = length; l; l -= 2)
1210 if (l == 2)
1211 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1212 offset = offsets[l - 1];
1213 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1215 int i;
1216 HOST_WIDE_INT aoff
1217 = base_offset + ((offset - base_offset)
1218 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1219 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1220 (aoff - prev_offset)
1221 >> ASAN_SHADOW_SHIFT);
1222 prev_offset = aoff;
1223 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1224 if (aoff < offset)
1226 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1227 shadow_bytes[i] = 0;
1228 else
1229 shadow_bytes[i] = offset - aoff;
1231 else
1232 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1233 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1234 offset = aoff;
1236 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1238 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1239 (offset - prev_offset)
1240 >> ASAN_SHADOW_SHIFT);
1241 prev_offset = offset;
1242 memset (shadow_bytes, cur_shadow_byte, 4);
1243 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1244 offset += ASAN_RED_ZONE_SIZE;
1246 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1248 do_pending_stack_adjust ();
1250 /* Construct epilogue sequence. */
1251 start_sequence ();
1253 lab = NULL;
1254 if (use_after_return_class != -1)
1256 rtx_code_label *lab2 = gen_label_rtx ();
1257 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1258 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1259 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1260 VOIDmode, 0, lab2, very_likely);
1261 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1262 set_mem_alias_set (shadow_mem, asan_shadow_set);
1263 mem = gen_rtx_MEM (ptr_mode, base);
1264 mem = adjust_address (mem, VOIDmode, base_align_bias);
1265 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1266 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1267 if (use_after_return_class < 5
1268 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1269 BITS_PER_UNIT, true))
1270 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1271 BITS_PER_UNIT, true, 0);
1272 else if (use_after_return_class >= 5
1273 || !set_storage_via_setmem (shadow_mem,
1274 GEN_INT (sz),
1275 gen_int_mode (c, QImode),
1276 BITS_PER_UNIT, BITS_PER_UNIT,
1277 -1, sz, sz, sz))
1279 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1280 use_after_return_class);
1281 ret = init_one_libfunc (buf);
1282 rtx addr = convert_memory_address (ptr_mode, base);
1283 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1284 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1285 GEN_INT (asan_frame_size + base_align_bias),
1286 TYPE_MODE (pointer_sized_int_node),
1287 orig_addr, ptr_mode);
1289 lab = gen_label_rtx ();
1290 emit_jump (lab);
1291 emit_label (lab2);
1294 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1295 set_mem_alias_set (shadow_mem, asan_shadow_set);
1297 if (STRICT_ALIGNMENT)
1298 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1300 /* Unpoison shadow memory of a stack at the very end of a function.
1301 As we're poisoning stack variables at the end of their scope,
1302 shadow memory must be properly unpoisoned here. The easiest approach
1303 would be to collect all variables that should not be unpoisoned and
1304 we unpoison shadow memory of the whole stack except ranges
1305 occupied by these variables. */
1306 last_offset = base_offset;
1307 HOST_WIDE_INT current_offset = last_offset;
1308 if (length)
1310 HOST_WIDE_INT var_end_offset = 0;
1311 HOST_WIDE_INT stack_start = offsets[length - 1];
1312 gcc_assert (last_offset == stack_start);
1314 for (int l = length - 2; l > 0; l -= 2)
1316 HOST_WIDE_INT var_offset = offsets[l];
1317 current_offset = var_offset;
1318 var_end_offset = offsets[l - 1];
1319 HOST_WIDE_INT rounded_size = ROUND_UP (var_end_offset - var_offset,
1320 BITS_PER_UNIT);
1322 /* Should we unpoison the variable? */
1323 if (asan_handled_variables != NULL
1324 && asan_handled_variables->contains (decl))
1326 if (dump_file && (dump_flags & TDF_DETAILS))
1328 const char *n = (DECL_NAME (decl)
1329 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1330 : "<unknown>");
1331 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1332 "%s (%" PRId64 "B)\n", n,
1333 var_end_offset - var_offset);
1336 unsigned HOST_WIDE_INT s
1337 = shadow_mem_size (current_offset - last_offset);
1338 asan_clear_shadow (shadow_mem, s);
1339 HOST_WIDE_INT shift
1340 = shadow_mem_size (current_offset - last_offset + rounded_size);
1341 shadow_mem = adjust_address (shadow_mem, VOIDmode, shift);
1342 last_offset = var_offset + rounded_size;
1343 current_offset = last_offset;
1348 /* Handle last redzone. */
1349 current_offset = offsets[0];
1350 asan_clear_shadow (shadow_mem,
1351 shadow_mem_size (current_offset - last_offset));
1354 /* Clean-up set with instrumented stack variables. */
1355 delete asan_handled_variables;
1356 asan_handled_variables = NULL;
1357 delete asan_used_labels;
1358 asan_used_labels = NULL;
1360 do_pending_stack_adjust ();
1361 if (lab)
1362 emit_label (lab);
1364 insns = get_insns ();
1365 end_sequence ();
1366 return insns;
1369 /* Return true if DECL, a global var, might be overridden and needs
1370 therefore a local alias. */
1372 static bool
1373 asan_needs_local_alias (tree decl)
1375 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1378 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1379 therefore doesn't need protection. */
1381 static bool
1382 is_odr_indicator (tree decl)
1384 return (DECL_ARTIFICIAL (decl)
1385 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1388 /* Return true if DECL is a VAR_DECL that should be protected
1389 by Address Sanitizer, by appending a red zone with protected
1390 shadow memory after it and aligning it to at least
1391 ASAN_RED_ZONE_SIZE bytes. */
1393 bool
1394 asan_protect_global (tree decl)
1396 if (!ASAN_GLOBALS)
1397 return false;
1399 rtx rtl, symbol;
1401 if (TREE_CODE (decl) == STRING_CST)
1403 /* Instrument all STRING_CSTs except those created
1404 by asan_pp_string here. */
1405 if (shadow_ptr_types[0] != NULL_TREE
1406 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1407 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1408 return false;
1409 return true;
1411 if (!VAR_P (decl)
1412 /* TLS vars aren't statically protectable. */
1413 || DECL_THREAD_LOCAL_P (decl)
1414 /* Externs will be protected elsewhere. */
1415 || DECL_EXTERNAL (decl)
1416 || !DECL_RTL_SET_P (decl)
1417 /* Comdat vars pose an ABI problem, we can't know if
1418 the var that is selected by the linker will have
1419 padding or not. */
1420 || DECL_ONE_ONLY (decl)
1421 /* Similarly for common vars. People can use -fno-common.
1422 Note: Linux kernel is built with -fno-common, so we do instrument
1423 globals there even if it is C. */
1424 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1425 /* Don't protect if using user section, often vars placed
1426 into user section from multiple TUs are then assumed
1427 to be an array of such vars, putting padding in there
1428 breaks this assumption. */
1429 || (DECL_SECTION_NAME (decl) != NULL
1430 && !symtab_node::get (decl)->implicit_section
1431 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1432 || DECL_SIZE (decl) == 0
1433 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1434 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1435 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1436 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1437 || is_odr_indicator (decl))
1438 return false;
1440 rtl = DECL_RTL (decl);
1441 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1442 return false;
1443 symbol = XEXP (rtl, 0);
1445 if (CONSTANT_POOL_ADDRESS_P (symbol)
1446 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1447 return false;
1449 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1450 return false;
1452 #ifndef ASM_OUTPUT_DEF
1453 if (asan_needs_local_alias (decl))
1454 return false;
1455 #endif
1457 return true;
1460 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1461 IS_STORE is either 1 (for a store) or 0 (for a load). */
1463 static tree
1464 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1465 int *nargs)
1467 static enum built_in_function report[2][2][6]
1468 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1469 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1470 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1471 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1472 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1473 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1474 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1475 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1476 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1477 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1478 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1479 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1480 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1481 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1482 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1483 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1484 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1485 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1486 if (size_in_bytes == -1)
1488 *nargs = 2;
1489 return builtin_decl_implicit (report[recover_p][is_store][5]);
1491 *nargs = 1;
1492 int size_log2 = exact_log2 (size_in_bytes);
1493 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1496 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1497 IS_STORE is either 1 (for a store) or 0 (for a load). */
1499 static tree
1500 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1501 int *nargs)
1503 static enum built_in_function check[2][2][6]
1504 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1505 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1506 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1507 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1508 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1509 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1510 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1511 BUILT_IN_ASAN_LOAD2_NOABORT,
1512 BUILT_IN_ASAN_LOAD4_NOABORT,
1513 BUILT_IN_ASAN_LOAD8_NOABORT,
1514 BUILT_IN_ASAN_LOAD16_NOABORT,
1515 BUILT_IN_ASAN_LOADN_NOABORT },
1516 { BUILT_IN_ASAN_STORE1_NOABORT,
1517 BUILT_IN_ASAN_STORE2_NOABORT,
1518 BUILT_IN_ASAN_STORE4_NOABORT,
1519 BUILT_IN_ASAN_STORE8_NOABORT,
1520 BUILT_IN_ASAN_STORE16_NOABORT,
1521 BUILT_IN_ASAN_STOREN_NOABORT } } };
1522 if (size_in_bytes == -1)
1524 *nargs = 2;
1525 return builtin_decl_implicit (check[recover_p][is_store][5]);
1527 *nargs = 1;
1528 int size_log2 = exact_log2 (size_in_bytes);
1529 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1532 /* Split the current basic block and create a condition statement
1533 insertion point right before or after the statement pointed to by
1534 ITER. Return an iterator to the point at which the caller might
1535 safely insert the condition statement.
1537 THEN_BLOCK must be set to the address of an uninitialized instance
1538 of basic_block. The function will then set *THEN_BLOCK to the
1539 'then block' of the condition statement to be inserted by the
1540 caller.
1542 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1543 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1545 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1546 block' of the condition statement to be inserted by the caller.
1548 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1549 statements starting from *ITER, and *THEN_BLOCK is a new empty
1550 block.
1552 *ITER is adjusted to point to always point to the first statement
1553 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1554 same as what ITER was pointing to prior to calling this function,
1555 if BEFORE_P is true; otherwise, it is its following statement. */
1557 gimple_stmt_iterator
1558 create_cond_insert_point (gimple_stmt_iterator *iter,
1559 bool before_p,
1560 bool then_more_likely_p,
1561 bool create_then_fallthru_edge,
1562 basic_block *then_block,
1563 basic_block *fallthrough_block)
1565 gimple_stmt_iterator gsi = *iter;
1567 if (!gsi_end_p (gsi) && before_p)
1568 gsi_prev (&gsi);
1570 basic_block cur_bb = gsi_bb (*iter);
1572 edge e = split_block (cur_bb, gsi_stmt (gsi));
1574 /* Get a hold on the 'condition block', the 'then block' and the
1575 'else block'. */
1576 basic_block cond_bb = e->src;
1577 basic_block fallthru_bb = e->dest;
1578 basic_block then_bb = create_empty_bb (cond_bb);
1579 if (current_loops)
1581 add_bb_to_loop (then_bb, cond_bb->loop_father);
1582 loops_state_set (LOOPS_NEED_FIXUP);
1585 /* Set up the newly created 'then block'. */
1586 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1587 int fallthrough_probability
1588 = then_more_likely_p
1589 ? PROB_VERY_UNLIKELY
1590 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1591 e->probability = PROB_ALWAYS - fallthrough_probability;
1592 if (create_then_fallthru_edge)
1593 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1595 /* Set up the fallthrough basic block. */
1596 e = find_edge (cond_bb, fallthru_bb);
1597 e->flags = EDGE_FALSE_VALUE;
1598 e->count = cond_bb->count;
1599 e->probability = fallthrough_probability;
1601 /* Update dominance info for the newly created then_bb; note that
1602 fallthru_bb's dominance info has already been updated by
1603 split_bock. */
1604 if (dom_info_available_p (CDI_DOMINATORS))
1605 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1607 *then_block = then_bb;
1608 *fallthrough_block = fallthru_bb;
1609 *iter = gsi_start_bb (fallthru_bb);
1611 return gsi_last_bb (cond_bb);
1614 /* Insert an if condition followed by a 'then block' right before the
1615 statement pointed to by ITER. The fallthrough block -- which is the
1616 else block of the condition as well as the destination of the
1617 outcoming edge of the 'then block' -- starts with the statement
1618 pointed to by ITER.
1620 COND is the condition of the if.
1622 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1623 'then block' is higher than the probability of the edge to the
1624 fallthrough block.
1626 Upon completion of the function, *THEN_BB is set to the newly
1627 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1628 fallthrough block.
1630 *ITER is adjusted to still point to the same statement it was
1631 pointing to initially. */
1633 static void
1634 insert_if_then_before_iter (gcond *cond,
1635 gimple_stmt_iterator *iter,
1636 bool then_more_likely_p,
1637 basic_block *then_bb,
1638 basic_block *fallthrough_bb)
1640 gimple_stmt_iterator cond_insert_point =
1641 create_cond_insert_point (iter,
1642 /*before_p=*/true,
1643 then_more_likely_p,
1644 /*create_then_fallthru_edge=*/true,
1645 then_bb,
1646 fallthrough_bb);
1647 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1650 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1651 If RETURN_ADDRESS is set to true, return memory location instread
1652 of a value in the shadow memory. */
1654 static tree
1655 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1656 tree base_addr, tree shadow_ptr_type,
1657 bool return_address = false)
1659 tree t, uintptr_type = TREE_TYPE (base_addr);
1660 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1661 gimple *g;
1663 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1664 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1665 base_addr, t);
1666 gimple_set_location (g, location);
1667 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1669 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1670 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1671 gimple_assign_lhs (g), t);
1672 gimple_set_location (g, location);
1673 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1675 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1676 gimple_assign_lhs (g));
1677 gimple_set_location (g, location);
1678 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1680 if (!return_address)
1682 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1683 build_int_cst (shadow_ptr_type, 0));
1684 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1685 gimple_set_location (g, location);
1686 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1689 return gimple_assign_lhs (g);
1692 /* BASE can already be an SSA_NAME; in that case, do not create a
1693 new SSA_NAME for it. */
1695 static tree
1696 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1697 bool before_p)
1699 if (TREE_CODE (base) == SSA_NAME)
1700 return base;
1701 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1702 TREE_CODE (base), base);
1703 gimple_set_location (g, loc);
1704 if (before_p)
1705 gsi_insert_before (iter, g, GSI_SAME_STMT);
1706 else
1707 gsi_insert_after (iter, g, GSI_NEW_STMT);
1708 return gimple_assign_lhs (g);
1711 /* LEN can already have necessary size and precision;
1712 in that case, do not create a new variable. */
1714 tree
1715 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1716 bool before_p)
1718 if (ptrofftype_p (len))
1719 return len;
1720 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1721 NOP_EXPR, len);
1722 gimple_set_location (g, loc);
1723 if (before_p)
1724 gsi_insert_before (iter, g, GSI_SAME_STMT);
1725 else
1726 gsi_insert_after (iter, g, GSI_NEW_STMT);
1727 return gimple_assign_lhs (g);
1730 /* Instrument the memory access instruction BASE. Insert new
1731 statements before or after ITER.
1733 Note that the memory access represented by BASE can be either an
1734 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1735 location. IS_STORE is TRUE for a store, FALSE for a load.
1736 BEFORE_P is TRUE for inserting the instrumentation code before
1737 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1738 for a scalar memory access and FALSE for memory region access.
1739 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1740 length. ALIGN tells alignment of accessed memory object.
1742 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1743 memory region have already been instrumented.
1745 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1746 statement it was pointing to prior to calling this function,
1747 otherwise, it points to the statement logically following it. */
1749 static void
1750 build_check_stmt (location_t loc, tree base, tree len,
1751 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1752 bool is_non_zero_len, bool before_p, bool is_store,
1753 bool is_scalar_access, unsigned int align = 0)
1755 gimple_stmt_iterator gsi = *iter;
1756 gimple *g;
1758 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1760 gsi = *iter;
1762 base = unshare_expr (base);
1763 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1765 if (len)
1767 len = unshare_expr (len);
1768 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1770 else
1772 gcc_assert (size_in_bytes != -1);
1773 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1776 if (size_in_bytes > 1)
1778 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1779 || size_in_bytes > 16)
1780 is_scalar_access = false;
1781 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1783 /* On non-strict alignment targets, if
1784 16-byte access is just 8-byte aligned,
1785 this will result in misaligned shadow
1786 memory 2 byte load, but otherwise can
1787 be handled using one read. */
1788 if (size_in_bytes != 16
1789 || STRICT_ALIGNMENT
1790 || align < 8 * BITS_PER_UNIT)
1791 is_scalar_access = false;
1795 HOST_WIDE_INT flags = 0;
1796 if (is_store)
1797 flags |= ASAN_CHECK_STORE;
1798 if (is_non_zero_len)
1799 flags |= ASAN_CHECK_NON_ZERO_LEN;
1800 if (is_scalar_access)
1801 flags |= ASAN_CHECK_SCALAR_ACCESS;
1803 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1804 build_int_cst (integer_type_node, flags),
1805 base, len,
1806 build_int_cst (integer_type_node,
1807 align / BITS_PER_UNIT));
1808 gimple_set_location (g, loc);
1809 if (before_p)
1810 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1811 else
1813 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1814 gsi_next (&gsi);
1815 *iter = gsi;
1819 /* If T represents a memory access, add instrumentation code before ITER.
1820 LOCATION is source code location.
1821 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1823 static void
1824 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1825 location_t location, bool is_store)
1827 if (is_store && !ASAN_INSTRUMENT_WRITES)
1828 return;
1829 if (!is_store && !ASAN_INSTRUMENT_READS)
1830 return;
1832 tree type, base;
1833 HOST_WIDE_INT size_in_bytes;
1834 if (location == UNKNOWN_LOCATION)
1835 location = EXPR_LOCATION (t);
1837 type = TREE_TYPE (t);
1838 switch (TREE_CODE (t))
1840 case ARRAY_REF:
1841 case COMPONENT_REF:
1842 case INDIRECT_REF:
1843 case MEM_REF:
1844 case VAR_DECL:
1845 case BIT_FIELD_REF:
1846 break;
1847 /* FALLTHRU */
1848 default:
1849 return;
1852 size_in_bytes = int_size_in_bytes (type);
1853 if (size_in_bytes <= 0)
1854 return;
1856 HOST_WIDE_INT bitsize, bitpos;
1857 tree offset;
1858 machine_mode mode;
1859 int unsignedp, reversep, volatilep = 0;
1860 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
1861 &unsignedp, &reversep, &volatilep);
1863 if (TREE_CODE (t) == COMPONENT_REF
1864 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1866 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1867 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1868 TREE_OPERAND (t, 0), repr,
1869 TREE_OPERAND (t, 2)),
1870 location, is_store);
1871 return;
1874 if (bitpos % BITS_PER_UNIT
1875 || bitsize != size_in_bytes * BITS_PER_UNIT)
1876 return;
1878 if (VAR_P (inner)
1879 && offset == NULL_TREE
1880 && bitpos >= 0
1881 && DECL_SIZE (inner)
1882 && tree_fits_shwi_p (DECL_SIZE (inner))
1883 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1885 if (DECL_THREAD_LOCAL_P (inner))
1886 return;
1887 if (!ASAN_GLOBALS && is_global_var (inner))
1888 return;
1889 if (!TREE_STATIC (inner))
1891 /* Automatic vars in the current function will be always
1892 accessible. */
1893 if (decl_function_context (inner) == current_function_decl
1894 && (!asan_sanitize_use_after_scope ()
1895 || !TREE_ADDRESSABLE (inner)))
1896 return;
1898 /* Always instrument external vars, they might be dynamically
1899 initialized. */
1900 else if (!DECL_EXTERNAL (inner))
1902 /* For static vars if they are known not to be dynamically
1903 initialized, they will be always accessible. */
1904 varpool_node *vnode = varpool_node::get (inner);
1905 if (vnode && !vnode->dynamically_initialized)
1906 return;
1910 base = build_fold_addr_expr (t);
1911 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1913 unsigned int align = get_object_alignment (t);
1914 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1915 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1916 is_store, /*is_scalar_access*/true, align);
1917 update_mem_ref_hash_table (base, size_in_bytes);
1918 update_mem_ref_hash_table (t, size_in_bytes);
1923 /* Insert a memory reference into the hash table if access length
1924 can be determined in compile time. */
1926 static void
1927 maybe_update_mem_ref_hash_table (tree base, tree len)
1929 if (!POINTER_TYPE_P (TREE_TYPE (base))
1930 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1931 return;
1933 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1935 if (size_in_bytes != -1)
1936 update_mem_ref_hash_table (base, size_in_bytes);
1939 /* Instrument an access to a contiguous memory region that starts at
1940 the address pointed to by BASE, over a length of LEN (expressed in
1941 the sizeof (*BASE) bytes). ITER points to the instruction before
1942 which the instrumentation instructions must be inserted. LOCATION
1943 is the source location that the instrumentation instructions must
1944 have. If IS_STORE is true, then the memory access is a store;
1945 otherwise, it's a load. */
1947 static void
1948 instrument_mem_region_access (tree base, tree len,
1949 gimple_stmt_iterator *iter,
1950 location_t location, bool is_store)
1952 if (!POINTER_TYPE_P (TREE_TYPE (base))
1953 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1954 || integer_zerop (len))
1955 return;
1957 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1959 if ((size_in_bytes == -1)
1960 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1962 build_check_stmt (location, base, len, size_in_bytes, iter,
1963 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1964 is_store, /*is_scalar_access*/false, /*align*/0);
1967 maybe_update_mem_ref_hash_table (base, len);
1968 *iter = gsi_for_stmt (gsi_stmt (*iter));
1971 /* Instrument the call to a built-in memory access function that is
1972 pointed to by the iterator ITER.
1974 Upon completion, return TRUE iff *ITER has been advanced to the
1975 statement following the one it was originally pointing to. */
1977 static bool
1978 instrument_builtin_call (gimple_stmt_iterator *iter)
1980 if (!ASAN_MEMINTRIN)
1981 return false;
1983 bool iter_advanced_p = false;
1984 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
1986 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1988 location_t loc = gimple_location (call);
1990 asan_mem_ref src0, src1, dest;
1991 asan_mem_ref_init (&src0, NULL, 1);
1992 asan_mem_ref_init (&src1, NULL, 1);
1993 asan_mem_ref_init (&dest, NULL, 1);
1995 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1996 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1997 dest_is_deref = false, intercepted_p = true;
1999 if (get_mem_refs_of_builtin_call (call,
2000 &src0, &src0_len, &src0_is_store,
2001 &src1, &src1_len, &src1_is_store,
2002 &dest, &dest_len, &dest_is_store,
2003 &dest_is_deref, &intercepted_p))
2005 if (dest_is_deref)
2007 instrument_derefs (iter, dest.start, loc, dest_is_store);
2008 gsi_next (iter);
2009 iter_advanced_p = true;
2011 else if (!intercepted_p
2012 && (src0_len || src1_len || dest_len))
2014 if (src0.start != NULL_TREE)
2015 instrument_mem_region_access (src0.start, src0_len,
2016 iter, loc, /*is_store=*/false);
2017 if (src1.start != NULL_TREE)
2018 instrument_mem_region_access (src1.start, src1_len,
2019 iter, loc, /*is_store=*/false);
2020 if (dest.start != NULL_TREE)
2021 instrument_mem_region_access (dest.start, dest_len,
2022 iter, loc, /*is_store=*/true);
2024 *iter = gsi_for_stmt (call);
2025 gsi_next (iter);
2026 iter_advanced_p = true;
2028 else
2030 if (src0.start != NULL_TREE)
2031 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2032 if (src1.start != NULL_TREE)
2033 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2034 if (dest.start != NULL_TREE)
2035 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2038 return iter_advanced_p;
2041 /* Instrument the assignment statement ITER if it is subject to
2042 instrumentation. Return TRUE iff instrumentation actually
2043 happened. In that case, the iterator ITER is advanced to the next
2044 logical expression following the one initially pointed to by ITER,
2045 and the relevant memory reference that which access has been
2046 instrumented is added to the memory references hash table. */
2048 static bool
2049 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2051 gimple *s = gsi_stmt (*iter);
2053 gcc_assert (gimple_assign_single_p (s));
2055 tree ref_expr = NULL_TREE;
2056 bool is_store, is_instrumented = false;
2058 if (gimple_store_p (s))
2060 ref_expr = gimple_assign_lhs (s);
2061 is_store = true;
2062 instrument_derefs (iter, ref_expr,
2063 gimple_location (s),
2064 is_store);
2065 is_instrumented = true;
2068 if (gimple_assign_load_p (s))
2070 ref_expr = gimple_assign_rhs1 (s);
2071 is_store = false;
2072 instrument_derefs (iter, ref_expr,
2073 gimple_location (s),
2074 is_store);
2075 is_instrumented = true;
2078 if (is_instrumented)
2079 gsi_next (iter);
2081 return is_instrumented;
2084 /* Instrument the function call pointed to by the iterator ITER, if it
2085 is subject to instrumentation. At the moment, the only function
2086 calls that are instrumented are some built-in functions that access
2087 memory. Look at instrument_builtin_call to learn more.
2089 Upon completion return TRUE iff *ITER was advanced to the statement
2090 following the one it was originally pointing to. */
2092 static bool
2093 maybe_instrument_call (gimple_stmt_iterator *iter)
2095 gimple *stmt = gsi_stmt (*iter);
2096 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2098 if (is_builtin && instrument_builtin_call (iter))
2099 return true;
2101 if (gimple_call_noreturn_p (stmt))
2103 if (is_builtin)
2105 tree callee = gimple_call_fndecl (stmt);
2106 switch (DECL_FUNCTION_CODE (callee))
2108 case BUILT_IN_UNREACHABLE:
2109 case BUILT_IN_TRAP:
2110 /* Don't instrument these. */
2111 return false;
2112 default:
2113 break;
2116 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2117 gimple *g = gimple_build_call (decl, 0);
2118 gimple_set_location (g, gimple_location (stmt));
2119 gsi_insert_before (iter, g, GSI_SAME_STMT);
2122 bool instrumented = false;
2123 if (gimple_store_p (stmt))
2125 tree ref_expr = gimple_call_lhs (stmt);
2126 instrument_derefs (iter, ref_expr,
2127 gimple_location (stmt),
2128 /*is_store=*/true);
2130 instrumented = true;
2133 /* Walk through gimple_call arguments and check them id needed. */
2134 unsigned args_num = gimple_call_num_args (stmt);
2135 for (unsigned i = 0; i < args_num; ++i)
2137 tree arg = gimple_call_arg (stmt, i);
2138 /* If ARG is not a non-aggregate register variable, compiler in general
2139 creates temporary for it and pass it as argument to gimple call.
2140 But in some cases, e.g. when we pass by value a small structure that
2141 fits to register, compiler can avoid extra overhead by pulling out
2142 these temporaries. In this case, we should check the argument. */
2143 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2145 instrument_derefs (iter, arg,
2146 gimple_location (stmt),
2147 /*is_store=*/false);
2148 instrumented = true;
2151 if (instrumented)
2152 gsi_next (iter);
2153 return instrumented;
2156 /* Walk each instruction of all basic block and instrument those that
2157 represent memory references: loads, stores, or function calls.
2158 In a given basic block, this function avoids instrumenting memory
2159 references that have already been instrumented. */
2161 static void
2162 transform_statements (void)
2164 basic_block bb, last_bb = NULL;
2165 gimple_stmt_iterator i;
2166 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2168 FOR_EACH_BB_FN (bb, cfun)
2170 basic_block prev_bb = bb;
2172 if (bb->index >= saved_last_basic_block) continue;
2174 /* Flush the mem ref hash table, if current bb doesn't have
2175 exactly one predecessor, or if that predecessor (skipping
2176 over asan created basic blocks) isn't the last processed
2177 basic block. Thus we effectively flush on extended basic
2178 block boundaries. */
2179 while (single_pred_p (prev_bb))
2181 prev_bb = single_pred (prev_bb);
2182 if (prev_bb->index < saved_last_basic_block)
2183 break;
2185 if (prev_bb != last_bb)
2186 empty_mem_ref_hash_table ();
2187 last_bb = bb;
2189 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2191 gimple *s = gsi_stmt (i);
2193 if (has_stmt_been_instrumented_p (s))
2194 gsi_next (&i);
2195 else if (gimple_assign_single_p (s)
2196 && !gimple_clobber_p (s)
2197 && maybe_instrument_assignment (&i))
2198 /* Nothing to do as maybe_instrument_assignment advanced
2199 the iterator I. */;
2200 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2201 /* Nothing to do as maybe_instrument_call
2202 advanced the iterator I. */;
2203 else
2205 /* No instrumentation happened.
2207 If the current instruction is a function call that
2208 might free something, let's forget about the memory
2209 references that got instrumented. Otherwise we might
2210 miss some instrumentation opportunities. Do the same
2211 for a ASAN_MARK poisoning internal function. */
2212 if (is_gimple_call (s)
2213 && (!nonfreeing_call_p (s)
2214 || asan_mark_p (s, ASAN_MARK_POISON)))
2215 empty_mem_ref_hash_table ();
2217 gsi_next (&i);
2221 free_mem_ref_resources ();
2224 /* Build
2225 __asan_before_dynamic_init (module_name)
2227 __asan_after_dynamic_init ()
2228 call. */
2230 tree
2231 asan_dynamic_init_call (bool after_p)
2233 if (shadow_ptr_types[0] == NULL_TREE)
2234 asan_init_shadow_ptr_types ();
2236 tree fn = builtin_decl_implicit (after_p
2237 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2238 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2239 tree module_name_cst = NULL_TREE;
2240 if (!after_p)
2242 pretty_printer module_name_pp;
2243 pp_string (&module_name_pp, main_input_filename);
2245 module_name_cst = asan_pp_string (&module_name_pp);
2246 module_name_cst = fold_convert (const_ptr_type_node,
2247 module_name_cst);
2250 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2253 /* Build
2254 struct __asan_global
2256 const void *__beg;
2257 uptr __size;
2258 uptr __size_with_redzone;
2259 const void *__name;
2260 const void *__module_name;
2261 uptr __has_dynamic_init;
2262 __asan_global_source_location *__location;
2263 char *__odr_indicator;
2264 } type. */
2266 static tree
2267 asan_global_struct (void)
2269 static const char *field_names[]
2270 = { "__beg", "__size", "__size_with_redzone",
2271 "__name", "__module_name", "__has_dynamic_init", "__location",
2272 "__odr_indicator" };
2273 tree fields[ARRAY_SIZE (field_names)], ret;
2274 unsigned i;
2276 ret = make_node (RECORD_TYPE);
2277 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2279 fields[i]
2280 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2281 get_identifier (field_names[i]),
2282 (i == 0 || i == 3) ? const_ptr_type_node
2283 : pointer_sized_int_node);
2284 DECL_CONTEXT (fields[i]) = ret;
2285 if (i)
2286 DECL_CHAIN (fields[i - 1]) = fields[i];
2288 tree type_decl = build_decl (input_location, TYPE_DECL,
2289 get_identifier ("__asan_global"), ret);
2290 DECL_IGNORED_P (type_decl) = 1;
2291 DECL_ARTIFICIAL (type_decl) = 1;
2292 TYPE_FIELDS (ret) = fields[0];
2293 TYPE_NAME (ret) = type_decl;
2294 TYPE_STUB_DECL (ret) = type_decl;
2295 layout_type (ret);
2296 return ret;
2299 /* Create and return odr indicator symbol for DECL.
2300 TYPE is __asan_global struct type as returned by asan_global_struct. */
2302 static tree
2303 create_odr_indicator (tree decl, tree type)
2305 char *name;
2306 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2307 tree decl_name
2308 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2309 : DECL_NAME (decl));
2310 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2311 if (decl_name == NULL_TREE)
2312 return build_int_cst (uptr, 0);
2313 size_t len = strlen (IDENTIFIER_POINTER (decl_name)) + sizeof ("__odr_asan_");
2314 name = XALLOCAVEC (char, len);
2315 snprintf (name, len, "__odr_asan_%s", IDENTIFIER_POINTER (decl_name));
2316 #ifndef NO_DOT_IN_LABEL
2317 name[sizeof ("__odr_asan") - 1] = '.';
2318 #elif !defined(NO_DOLLAR_IN_LABEL)
2319 name[sizeof ("__odr_asan") - 1] = '$';
2320 #endif
2321 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2322 char_type_node);
2323 TREE_ADDRESSABLE (var) = 1;
2324 TREE_READONLY (var) = 0;
2325 TREE_THIS_VOLATILE (var) = 1;
2326 DECL_GIMPLE_REG_P (var) = 0;
2327 DECL_ARTIFICIAL (var) = 1;
2328 DECL_IGNORED_P (var) = 1;
2329 TREE_STATIC (var) = 1;
2330 TREE_PUBLIC (var) = 1;
2331 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2332 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2334 TREE_USED (var) = 1;
2335 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2336 build_int_cst (unsigned_type_node, 0));
2337 TREE_CONSTANT (ctor) = 1;
2338 TREE_STATIC (ctor) = 1;
2339 DECL_INITIAL (var) = ctor;
2340 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2341 NULL, DECL_ATTRIBUTES (var));
2342 make_decl_rtl (var);
2343 varpool_node::finalize_decl (var);
2344 return fold_convert (uptr, build_fold_addr_expr (var));
2347 /* Return true if DECL, a global var, might be overridden and needs
2348 an additional odr indicator symbol. */
2350 static bool
2351 asan_needs_odr_indicator_p (tree decl)
2353 /* Don't emit ODR indicators for kernel because:
2354 a) Kernel is written in C thus doesn't need ODR indicators.
2355 b) Some kernel code may have assumptions about symbols containing specific
2356 patterns in their names. Since ODR indicators contain original names
2357 of symbols they are emitted for, these assumptions would be broken for
2358 ODR indicator symbols. */
2359 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2360 && !DECL_ARTIFICIAL (decl)
2361 && !DECL_WEAK (decl)
2362 && TREE_PUBLIC (decl));
2365 /* Append description of a single global DECL into vector V.
2366 TYPE is __asan_global struct type as returned by asan_global_struct. */
2368 static void
2369 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2371 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2372 unsigned HOST_WIDE_INT size;
2373 tree str_cst, module_name_cst, refdecl = decl;
2374 vec<constructor_elt, va_gc> *vinner = NULL;
2376 pretty_printer asan_pp, module_name_pp;
2378 if (DECL_NAME (decl))
2379 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2380 else
2381 pp_string (&asan_pp, "<unknown>");
2382 str_cst = asan_pp_string (&asan_pp);
2384 pp_string (&module_name_pp, main_input_filename);
2385 module_name_cst = asan_pp_string (&module_name_pp);
2387 if (asan_needs_local_alias (decl))
2389 char buf[20];
2390 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2391 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2392 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2393 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2394 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2395 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2396 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2397 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2398 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2399 TREE_STATIC (refdecl) = 1;
2400 TREE_PUBLIC (refdecl) = 0;
2401 TREE_USED (refdecl) = 1;
2402 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2405 tree odr_indicator_ptr
2406 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2407 : build_int_cst (uptr, 0));
2408 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2409 fold_convert (const_ptr_type_node,
2410 build_fold_addr_expr (refdecl)));
2411 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2412 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2413 size += asan_red_zone_size (size);
2414 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2415 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2416 fold_convert (const_ptr_type_node, str_cst));
2417 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2418 fold_convert (const_ptr_type_node, module_name_cst));
2419 varpool_node *vnode = varpool_node::get (decl);
2420 int has_dynamic_init = 0;
2421 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2422 proper fix for PR 79061 will be applied. */
2423 if (!in_lto_p)
2424 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2425 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2426 build_int_cst (uptr, has_dynamic_init));
2427 tree locptr = NULL_TREE;
2428 location_t loc = DECL_SOURCE_LOCATION (decl);
2429 expanded_location xloc = expand_location (loc);
2430 if (xloc.file != NULL)
2432 static int lasanloccnt = 0;
2433 char buf[25];
2434 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2435 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2436 ubsan_get_source_location_type ());
2437 TREE_STATIC (var) = 1;
2438 TREE_PUBLIC (var) = 0;
2439 DECL_ARTIFICIAL (var) = 1;
2440 DECL_IGNORED_P (var) = 1;
2441 pretty_printer filename_pp;
2442 pp_string (&filename_pp, xloc.file);
2443 tree str = asan_pp_string (&filename_pp);
2444 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2445 NULL_TREE, str, NULL_TREE,
2446 build_int_cst (unsigned_type_node,
2447 xloc.line), NULL_TREE,
2448 build_int_cst (unsigned_type_node,
2449 xloc.column));
2450 TREE_CONSTANT (ctor) = 1;
2451 TREE_STATIC (ctor) = 1;
2452 DECL_INITIAL (var) = ctor;
2453 varpool_node::finalize_decl (var);
2454 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2456 else
2457 locptr = build_int_cst (uptr, 0);
2458 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2459 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2460 init = build_constructor (type, vinner);
2461 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2464 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2465 void
2466 initialize_sanitizer_builtins (void)
2468 tree decl;
2470 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2471 return;
2473 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2474 tree BT_FN_VOID_PTR
2475 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2476 tree BT_FN_VOID_CONST_PTR
2477 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2478 tree BT_FN_VOID_PTR_PTR
2479 = build_function_type_list (void_type_node, ptr_type_node,
2480 ptr_type_node, NULL_TREE);
2481 tree BT_FN_VOID_PTR_PTR_PTR
2482 = build_function_type_list (void_type_node, ptr_type_node,
2483 ptr_type_node, ptr_type_node, NULL_TREE);
2484 tree BT_FN_VOID_PTR_PTRMODE
2485 = build_function_type_list (void_type_node, ptr_type_node,
2486 pointer_sized_int_node, NULL_TREE);
2487 tree BT_FN_VOID_INT
2488 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2489 tree BT_FN_SIZE_CONST_PTR_INT
2490 = build_function_type_list (size_type_node, const_ptr_type_node,
2491 integer_type_node, NULL_TREE);
2492 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2493 tree BT_FN_IX_CONST_VPTR_INT[5];
2494 tree BT_FN_IX_VPTR_IX_INT[5];
2495 tree BT_FN_VOID_VPTR_IX_INT[5];
2496 tree vptr
2497 = build_pointer_type (build_qualified_type (void_type_node,
2498 TYPE_QUAL_VOLATILE));
2499 tree cvptr
2500 = build_pointer_type (build_qualified_type (void_type_node,
2501 TYPE_QUAL_VOLATILE
2502 |TYPE_QUAL_CONST));
2503 tree boolt
2504 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2505 int i;
2506 for (i = 0; i < 5; i++)
2508 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2509 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2510 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2511 integer_type_node, integer_type_node,
2512 NULL_TREE);
2513 BT_FN_IX_CONST_VPTR_INT[i]
2514 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2515 BT_FN_IX_VPTR_IX_INT[i]
2516 = build_function_type_list (ix, vptr, ix, integer_type_node,
2517 NULL_TREE);
2518 BT_FN_VOID_VPTR_IX_INT[i]
2519 = build_function_type_list (void_type_node, vptr, ix,
2520 integer_type_node, NULL_TREE);
2522 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2523 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2524 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2525 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2526 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2527 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2528 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2529 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2530 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2531 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2532 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2533 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2534 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2535 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2536 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2537 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2538 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2539 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2540 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2541 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2542 #undef ATTR_NOTHROW_LEAF_LIST
2543 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2544 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2545 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2546 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2547 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2548 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2549 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2550 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2551 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2552 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2553 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2554 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2555 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2556 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2557 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2558 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2559 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2560 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2561 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2562 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2563 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2564 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2565 #undef DEF_BUILTIN_STUB
2566 #define DEF_BUILTIN_STUB(ENUM, NAME)
2567 #undef DEF_SANITIZER_BUILTIN
2568 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2569 do { \
2570 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2571 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2572 set_call_expr_flags (decl, ATTRS); \
2573 set_builtin_decl (ENUM, decl, true); \
2574 } while (0);
2576 #include "sanitizer.def"
2578 /* -fsanitize=object-size uses __builtin_object_size, but that might
2579 not be available for e.g. Fortran at this point. We use
2580 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2581 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2582 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2583 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2584 BT_FN_SIZE_CONST_PTR_INT,
2585 ATTR_PURE_NOTHROW_LEAF_LIST)
2587 #undef DEF_SANITIZER_BUILTIN
2588 #undef DEF_BUILTIN_STUB
2591 /* Called via htab_traverse. Count number of emitted
2592 STRING_CSTs in the constant hash table. */
2595 count_string_csts (constant_descriptor_tree **slot,
2596 unsigned HOST_WIDE_INT *data)
2598 struct constant_descriptor_tree *desc = *slot;
2599 if (TREE_CODE (desc->value) == STRING_CST
2600 && TREE_ASM_WRITTEN (desc->value)
2601 && asan_protect_global (desc->value))
2602 ++*data;
2603 return 1;
2606 /* Helper structure to pass two parameters to
2607 add_string_csts. */
2609 struct asan_add_string_csts_data
2611 tree type;
2612 vec<constructor_elt, va_gc> *v;
2615 /* Called via hash_table::traverse. Call asan_add_global
2616 on emitted STRING_CSTs from the constant hash table. */
2619 add_string_csts (constant_descriptor_tree **slot,
2620 asan_add_string_csts_data *aascd)
2622 struct constant_descriptor_tree *desc = *slot;
2623 if (TREE_CODE (desc->value) == STRING_CST
2624 && TREE_ASM_WRITTEN (desc->value)
2625 && asan_protect_global (desc->value))
2627 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2628 aascd->type, aascd->v);
2630 return 1;
2633 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2634 invoke ggc_collect. */
2635 static GTY(()) tree asan_ctor_statements;
2637 /* Module-level instrumentation.
2638 - Insert __asan_init_vN() into the list of CTORs.
2639 - TODO: insert redzones around globals.
2642 void
2643 asan_finish_file (void)
2645 varpool_node *vnode;
2646 unsigned HOST_WIDE_INT gcount = 0;
2648 if (shadow_ptr_types[0] == NULL_TREE)
2649 asan_init_shadow_ptr_types ();
2650 /* Avoid instrumenting code in the asan ctors/dtors.
2651 We don't need to insert padding after the description strings,
2652 nor after .LASAN* array. */
2653 flag_sanitize &= ~SANITIZE_ADDRESS;
2655 /* For user-space we want asan constructors to run first.
2656 Linux kernel does not support priorities other than default, and the only
2657 other user of constructors is coverage. So we run with the default
2658 priority. */
2659 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2660 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2662 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2664 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2665 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2666 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2667 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2669 FOR_EACH_DEFINED_VARIABLE (vnode)
2670 if (TREE_ASM_WRITTEN (vnode->decl)
2671 && asan_protect_global (vnode->decl))
2672 ++gcount;
2673 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2674 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2675 (&gcount);
2676 if (gcount)
2678 tree type = asan_global_struct (), var, ctor;
2679 tree dtor_statements = NULL_TREE;
2680 vec<constructor_elt, va_gc> *v;
2681 char buf[20];
2683 type = build_array_type_nelts (type, gcount);
2684 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2685 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2686 type);
2687 TREE_STATIC (var) = 1;
2688 TREE_PUBLIC (var) = 0;
2689 DECL_ARTIFICIAL (var) = 1;
2690 DECL_IGNORED_P (var) = 1;
2691 vec_alloc (v, gcount);
2692 FOR_EACH_DEFINED_VARIABLE (vnode)
2693 if (TREE_ASM_WRITTEN (vnode->decl)
2694 && asan_protect_global (vnode->decl))
2695 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2696 struct asan_add_string_csts_data aascd;
2697 aascd.type = TREE_TYPE (type);
2698 aascd.v = v;
2699 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2700 (&aascd);
2701 ctor = build_constructor (type, v);
2702 TREE_CONSTANT (ctor) = 1;
2703 TREE_STATIC (ctor) = 1;
2704 DECL_INITIAL (var) = ctor;
2705 varpool_node::finalize_decl (var);
2707 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2708 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2709 append_to_statement_list (build_call_expr (fn, 2,
2710 build_fold_addr_expr (var),
2711 gcount_tree),
2712 &asan_ctor_statements);
2714 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2715 append_to_statement_list (build_call_expr (fn, 2,
2716 build_fold_addr_expr (var),
2717 gcount_tree),
2718 &dtor_statements);
2719 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2721 if (asan_ctor_statements)
2722 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2723 flag_sanitize |= SANITIZE_ADDRESS;
2726 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2727 on SHADOW address. Newly added statements will be added to ITER with
2728 given location LOC. We mark SIZE bytes in shadow memory, where
2729 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2730 end of a variable. */
2732 static void
2733 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2734 tree shadow,
2735 unsigned HOST_WIDE_INT base_addr_offset,
2736 bool is_clobber, unsigned size,
2737 unsigned last_chunk_size)
2739 tree shadow_ptr_type;
2741 switch (size)
2743 case 1:
2744 shadow_ptr_type = shadow_ptr_types[0];
2745 break;
2746 case 2:
2747 shadow_ptr_type = shadow_ptr_types[1];
2748 break;
2749 case 4:
2750 shadow_ptr_type = shadow_ptr_types[2];
2751 break;
2752 default:
2753 gcc_unreachable ();
2756 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
2757 unsigned HOST_WIDE_INT val = 0;
2758 unsigned last_pos = size;
2759 if (last_chunk_size && !is_clobber)
2760 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
2761 for (unsigned i = 0; i < size; ++i)
2763 unsigned char shadow_c = c;
2764 if (i == last_pos)
2765 shadow_c = last_chunk_size;
2766 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
2769 /* Handle last chunk in unpoisoning. */
2770 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
2772 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
2773 build_int_cst (shadow_ptr_type, base_addr_offset));
2775 gimple *g = gimple_build_assign (dest, magic);
2776 gimple_set_location (g, loc);
2777 gsi_insert_after (iter, g, GSI_NEW_STMT);
2780 /* Expand the ASAN_MARK builtins. */
2782 bool
2783 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
2785 gimple *g = gsi_stmt (*iter);
2786 location_t loc = gimple_location (g);
2787 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
2788 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
2790 tree base = gimple_call_arg (g, 1);
2791 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
2792 tree decl = TREE_OPERAND (base, 0);
2794 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
2795 if (TREE_CODE (decl) == COMPONENT_REF
2796 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
2797 decl = TREE_OPERAND (decl, 0);
2799 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
2800 if (asan_handled_variables == NULL)
2801 asan_handled_variables = new hash_set<tree> (16);
2802 asan_handled_variables->add (decl);
2803 tree len = gimple_call_arg (g, 2);
2805 gcc_assert (tree_fits_shwi_p (len));
2806 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
2807 gcc_assert (size_in_bytes);
2809 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2810 NOP_EXPR, base);
2811 gimple_set_location (g, loc);
2812 gsi_replace (iter, g, false);
2813 tree base_addr = gimple_assign_lhs (g);
2815 /* Generate direct emission if size_in_bytes is small. */
2816 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
2818 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
2820 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
2821 shadow_ptr_types[0], true);
2823 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
2825 unsigned size = 1;
2826 if (shadow_size - offset >= 4)
2827 size = 4;
2828 else if (shadow_size - offset >= 2)
2829 size = 2;
2831 unsigned HOST_WIDE_INT last_chunk_size = 0;
2832 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
2833 if (s > size_in_bytes)
2834 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
2836 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
2837 size, last_chunk_size);
2838 offset += size;
2841 else
2843 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2844 NOP_EXPR, len);
2845 gimple_set_location (g, loc);
2846 gsi_insert_before (iter, g, GSI_SAME_STMT);
2847 tree sz_arg = gimple_assign_lhs (g);
2849 tree fun
2850 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
2851 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
2852 g = gimple_build_call (fun, 2, base_addr, sz_arg);
2853 gimple_set_location (g, loc);
2854 gsi_insert_after (iter, g, GSI_NEW_STMT);
2857 return false;
2860 /* Expand the ASAN_{LOAD,STORE} builtins. */
2862 bool
2863 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2865 gimple *g = gsi_stmt (*iter);
2866 location_t loc = gimple_location (g);
2867 bool recover_p;
2868 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2869 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
2870 else
2871 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2873 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2874 gcc_assert (flags < ASAN_CHECK_LAST);
2875 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2876 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2877 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2879 tree base = gimple_call_arg (g, 1);
2880 tree len = gimple_call_arg (g, 2);
2881 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2883 HOST_WIDE_INT size_in_bytes
2884 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2886 if (use_calls)
2888 /* Instrument using callbacks. */
2889 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2890 NOP_EXPR, base);
2891 gimple_set_location (g, loc);
2892 gsi_insert_before (iter, g, GSI_SAME_STMT);
2893 tree base_addr = gimple_assign_lhs (g);
2895 int nargs;
2896 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2897 if (nargs == 1)
2898 g = gimple_build_call (fun, 1, base_addr);
2899 else
2901 gcc_assert (nargs == 2);
2902 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2903 NOP_EXPR, len);
2904 gimple_set_location (g, loc);
2905 gsi_insert_before (iter, g, GSI_SAME_STMT);
2906 tree sz_arg = gimple_assign_lhs (g);
2907 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2909 gimple_set_location (g, loc);
2910 gsi_replace (iter, g, false);
2911 return false;
2914 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2916 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2917 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2919 gimple_stmt_iterator gsi = *iter;
2921 if (!is_non_zero_len)
2923 /* So, the length of the memory area to asan-protect is
2924 non-constant. Let's guard the generated instrumentation code
2925 like:
2927 if (len != 0)
2929 //asan instrumentation code goes here.
2931 // falltrough instructions, starting with *ITER. */
2933 g = gimple_build_cond (NE_EXPR,
2934 len,
2935 build_int_cst (TREE_TYPE (len), 0),
2936 NULL_TREE, NULL_TREE);
2937 gimple_set_location (g, loc);
2939 basic_block then_bb, fallthrough_bb;
2940 insert_if_then_before_iter (as_a <gcond *> (g), iter,
2941 /*then_more_likely_p=*/true,
2942 &then_bb, &fallthrough_bb);
2943 /* Note that fallthrough_bb starts with the statement that was
2944 pointed to by ITER. */
2946 /* The 'then block' of the 'if (len != 0) condition is where
2947 we'll generate the asan instrumentation code now. */
2948 gsi = gsi_last_bb (then_bb);
2951 /* Get an iterator on the point where we can add the condition
2952 statement for the instrumentation. */
2953 basic_block then_bb, else_bb;
2954 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2955 /*then_more_likely_p=*/false,
2956 /*create_then_fallthru_edge*/recover_p,
2957 &then_bb,
2958 &else_bb);
2960 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2961 NOP_EXPR, base);
2962 gimple_set_location (g, loc);
2963 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2964 tree base_addr = gimple_assign_lhs (g);
2966 tree t = NULL_TREE;
2967 if (real_size_in_bytes >= 8)
2969 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2970 shadow_ptr_type);
2971 t = shadow;
2973 else
2975 /* Slow path for 1, 2 and 4 byte accesses. */
2976 /* Test (shadow != 0)
2977 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2978 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2979 shadow_ptr_type);
2980 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
2981 gimple_seq seq = NULL;
2982 gimple_seq_add_stmt (&seq, shadow_test);
2983 /* Aligned (>= 8 bytes) can test just
2984 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2985 to be 0. */
2986 if (align < 8)
2988 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2989 base_addr, 7));
2990 gimple_seq_add_stmt (&seq,
2991 build_type_cast (shadow_type,
2992 gimple_seq_last (seq)));
2993 if (real_size_in_bytes > 1)
2994 gimple_seq_add_stmt (&seq,
2995 build_assign (PLUS_EXPR,
2996 gimple_seq_last (seq),
2997 real_size_in_bytes - 1));
2998 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3000 else
3001 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3002 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3003 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3004 gimple_seq_last (seq)));
3005 t = gimple_assign_lhs (gimple_seq_last (seq));
3006 gimple_seq_set_location (seq, loc);
3007 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3009 /* For non-constant, misaligned or otherwise weird access sizes,
3010 check first and last byte. */
3011 if (size_in_bytes == -1)
3013 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3014 MINUS_EXPR, len,
3015 build_int_cst (pointer_sized_int_node, 1));
3016 gimple_set_location (g, loc);
3017 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3018 tree last = gimple_assign_lhs (g);
3019 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3020 PLUS_EXPR, base_addr, last);
3021 gimple_set_location (g, loc);
3022 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3023 tree base_end_addr = gimple_assign_lhs (g);
3025 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3026 shadow_ptr_type);
3027 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3028 gimple_seq seq = NULL;
3029 gimple_seq_add_stmt (&seq, shadow_test);
3030 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3031 base_end_addr, 7));
3032 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3033 gimple_seq_last (seq)));
3034 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3035 gimple_seq_last (seq),
3036 shadow));
3037 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3038 gimple_seq_last (seq)));
3039 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3040 gimple_seq_last (seq)));
3041 t = gimple_assign_lhs (gimple_seq_last (seq));
3042 gimple_seq_set_location (seq, loc);
3043 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3047 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3048 NULL_TREE, NULL_TREE);
3049 gimple_set_location (g, loc);
3050 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3052 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3053 gsi = gsi_start_bb (then_bb);
3054 int nargs;
3055 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3056 g = gimple_build_call (fun, nargs, base_addr, len);
3057 gimple_set_location (g, loc);
3058 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3060 gsi_remove (iter, true);
3061 *iter = gsi_start_bb (else_bb);
3063 return true;
3066 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3067 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3069 static tree
3070 create_asan_shadow_var (tree var_decl,
3071 hash_map<tree, tree> &shadow_vars_mapping)
3073 tree *slot = shadow_vars_mapping.get (var_decl);
3074 if (slot == NULL)
3076 tree shadow_var = copy_node (var_decl);
3078 copy_body_data id;
3079 memset (&id, 0, sizeof (copy_body_data));
3080 id.src_fn = id.dst_fn = current_function_decl;
3081 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3083 DECL_ARTIFICIAL (shadow_var) = 1;
3084 DECL_IGNORED_P (shadow_var) = 1;
3085 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3086 gimple_add_tmp_var (shadow_var);
3088 shadow_vars_mapping.put (var_decl, shadow_var);
3089 return shadow_var;
3091 else
3092 return *slot;
3095 /* Expand ASAN_POISON ifn. */
3097 bool
3098 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3099 bool *need_commit_edge_insert,
3100 hash_map<tree, tree> &shadow_vars_mapping)
3102 gimple *g = gsi_stmt (*iter);
3103 tree poisoned_var = gimple_call_lhs (g);
3104 if (!poisoned_var || has_zero_uses (poisoned_var))
3106 gsi_remove (iter, true);
3107 return true;
3110 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3111 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3112 create_tmp_var (TREE_TYPE (poisoned_var)));
3114 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3115 shadow_vars_mapping);
3117 bool recover_p;
3118 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3119 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3120 else
3121 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3122 tree size = DECL_SIZE_UNIT (shadow_var);
3123 gimple *poison_call
3124 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3125 build_int_cst (integer_type_node,
3126 ASAN_MARK_POISON),
3127 build_fold_addr_expr (shadow_var), size);
3129 gimple *use;
3130 imm_use_iterator imm_iter;
3131 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3133 if (is_gimple_debug (use))
3134 continue;
3136 int nargs;
3137 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3138 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3139 &nargs);
3141 gcall *call = gimple_build_call (fun, 1,
3142 build_fold_addr_expr (shadow_var));
3143 gimple_set_location (call, gimple_location (use));
3144 gimple *call_to_insert = call;
3146 /* The USE can be a gimple PHI node. If so, insert the call on
3147 all edges leading to the PHI node. */
3148 if (is_a <gphi *> (use))
3150 gphi *phi = dyn_cast<gphi *> (use);
3151 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3152 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3154 edge e = gimple_phi_arg_edge (phi, i);
3156 if (call_to_insert == NULL)
3157 call_to_insert = gimple_copy (call);
3159 gsi_insert_seq_on_edge (e, call_to_insert);
3160 *need_commit_edge_insert = true;
3161 call_to_insert = NULL;
3164 else
3166 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3167 if (store_p)
3168 gsi_replace (&gsi, call, true);
3169 else
3170 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3174 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3175 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3176 gsi_replace (iter, poison_call, false);
3178 return true;
3181 /* Instrument the current function. */
3183 static unsigned int
3184 asan_instrument (void)
3186 if (shadow_ptr_types[0] == NULL_TREE)
3187 asan_init_shadow_ptr_types ();
3188 transform_statements ();
3189 return 0;
3192 static bool
3193 gate_asan (void)
3195 return sanitize_flags_p (SANITIZE_ADDRESS);
3198 namespace {
3200 const pass_data pass_data_asan =
3202 GIMPLE_PASS, /* type */
3203 "asan", /* name */
3204 OPTGROUP_NONE, /* optinfo_flags */
3205 TV_NONE, /* tv_id */
3206 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3207 0, /* properties_provided */
3208 0, /* properties_destroyed */
3209 0, /* todo_flags_start */
3210 TODO_update_ssa, /* todo_flags_finish */
3213 class pass_asan : public gimple_opt_pass
3215 public:
3216 pass_asan (gcc::context *ctxt)
3217 : gimple_opt_pass (pass_data_asan, ctxt)
3220 /* opt_pass methods: */
3221 opt_pass * clone () { return new pass_asan (m_ctxt); }
3222 virtual bool gate (function *) { return gate_asan (); }
3223 virtual unsigned int execute (function *) { return asan_instrument (); }
3225 }; // class pass_asan
3227 } // anon namespace
3229 gimple_opt_pass *
3230 make_pass_asan (gcc::context *ctxt)
3232 return new pass_asan (ctxt);
3235 namespace {
3237 const pass_data pass_data_asan_O0 =
3239 GIMPLE_PASS, /* type */
3240 "asan0", /* name */
3241 OPTGROUP_NONE, /* optinfo_flags */
3242 TV_NONE, /* tv_id */
3243 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3244 0, /* properties_provided */
3245 0, /* properties_destroyed */
3246 0, /* todo_flags_start */
3247 TODO_update_ssa, /* todo_flags_finish */
3250 class pass_asan_O0 : public gimple_opt_pass
3252 public:
3253 pass_asan_O0 (gcc::context *ctxt)
3254 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3257 /* opt_pass methods: */
3258 virtual bool gate (function *) { return !optimize && gate_asan (); }
3259 virtual unsigned int execute (function *) { return asan_instrument (); }
3261 }; // class pass_asan_O0
3263 } // anon namespace
3265 gimple_opt_pass *
3266 make_pass_asan_O0 (gcc::context *ctxt)
3268 return new pass_asan_O0 (ctxt);
3271 #include "gt-asan.h"