* config/m68k/m68k.md (bungt_rev): New pattern.
[official-gcc.git] / gcc / tree-ssa-structalias.c
blob9be67cadb030d27c5f526764292953d5a3d5d14d
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "errors.h"
36 #include "diagnostic.h"
37 #include "tree.h"
38 #include "c-common.h"
39 #include "tree-flow.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "c-tree.h"
43 #include "tree-gimple.h"
44 #include "hashtab.h"
45 #include "function.h"
46 #include "cgraph.h"
47 #include "tree-pass.h"
48 #include "timevar.h"
49 #include "alloc-pool.h"
50 #include "splay-tree.h"
51 #include "params.h"
52 #include "tree-ssa-structalias.h"
53 #include "cgraph.h"
55 /* The idea behind this analyzer is to generate set constraints from the
56 program, then solve the resulting constraints in order to generate the
57 points-to sets.
59 Set constraints are a way of modeling program analysis problems that
60 involve sets. They consist of an inclusion constraint language,
61 describing the variables (each variable is a set) and operations that
62 are involved on the variables, and a set of rules that derive facts
63 from these operations. To solve a system of set constraints, you derive
64 all possible facts under the rules, which gives you the correct sets
65 as a consequence.
67 See "Efficient Field-sensitive pointer analysis for C" by "David
68 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
69 http://citeseer.ist.psu.edu/pearce04efficient.html
71 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
72 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
73 http://citeseer.ist.psu.edu/heintze01ultrafast.html
75 There are three types of constraint expressions, DEREF, ADDRESSOF, and
76 SCALAR. Each constraint expression consists of a constraint type,
77 a variable, and an offset.
79 SCALAR is a constraint expression type used to represent x, whether
80 it appears on the LHS or the RHS of a statement.
81 DEREF is a constraint expression type used to represent *x, whether
82 it appears on the LHS or the RHS of a statement.
83 ADDRESSOF is a constraint expression used to represent &x, whether
84 it appears on the LHS or the RHS of a statement.
86 Each pointer variable in the program is assigned an integer id, and
87 each field of a structure variable is assigned an integer id as well.
89 Structure variables are linked to their list of fields through a "next
90 field" in each variable that points to the next field in offset
91 order.
92 Each variable for a structure field has
94 1. "size", that tells the size in bits of that field.
95 2. "fullsize, that tells the size in bits of the entire structure.
96 3. "offset", that tells the offset in bits from the beginning of the
97 structure to this field.
99 Thus,
100 struct f
102 int a;
103 int b;
104 } foo;
105 int *bar;
107 looks like
109 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
110 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
111 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
114 In order to solve the system of set constraints, the following is
115 done:
117 1. Each constraint variable x has a solution set associated with it,
118 Sol(x).
120 2. Constraints are separated into direct, copy, and complex.
121 Direct constraints are ADDRESSOF constraints that require no extra
122 processing, such as P = &Q
123 Copy constraints are those of the form P = Q.
124 Complex constraints are all the constraints involving dereferences.
126 3. All direct constraints of the form P = &Q are processed, such
127 that Q is added to Sol(P)
129 4. All complex constraints for a given constraint variable are stored in a
130 linked list attached to that variable's node.
132 5. A directed graph is built out of the copy constraints. Each
133 constraint variable is a node in the graph, and an edge from
134 Q to P is added for each copy constraint of the form P = Q
136 6. The graph is then walked, and solution sets are
137 propagated along the copy edges, such that an edge from Q to P
138 causes Sol(P) <- Sol(P) union Sol(Q).
140 7. As we visit each node, all complex constraints associated with
141 that node are processed by adding appropriate copy edges to the graph, or the
142 appropriate variables to the solution set.
144 8. The process of walking the graph is iterated until no solution
145 sets change.
147 Prior to walking the graph in steps 6 and 7, We perform static
148 cycle elimination on the constraint graph, as well
149 as off-line variable substitution.
151 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
152 on and turned into anything), but isn't. You can just see what offset
153 inside the pointed-to struct it's going to access.
155 TODO: Constant bounded arrays can be handled as if they were structs of the
156 same number of elements.
158 TODO: Modeling heap and incoming pointers becomes much better if we
159 add fields to them as we discover them, which we could do.
161 TODO: We could handle unions, but to be honest, it's probably not
162 worth the pain or slowdown. */
164 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
165 htab_t heapvar_for_stmt;
166 static bool use_field_sensitive = true;
167 static int in_ipa_mode = 0;
168 static bitmap_obstack predbitmap_obstack;
169 static bitmap_obstack ptabitmap_obstack;
170 static bitmap_obstack iteration_obstack;
172 static unsigned int create_variable_info_for (tree, const char *);
173 static void build_constraint_graph (void);
175 DEF_VEC_P(constraint_t);
176 DEF_VEC_ALLOC_P(constraint_t,heap);
178 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
179 if (a) \
180 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
182 static struct constraint_stats
184 unsigned int total_vars;
185 unsigned int collapsed_vars;
186 unsigned int unified_vars_static;
187 unsigned int unified_vars_dynamic;
188 unsigned int iterations;
189 unsigned int num_edges;
190 } stats;
192 struct variable_info
194 /* ID of this variable */
195 unsigned int id;
197 /* Name of this variable */
198 const char *name;
200 /* Tree that this variable is associated with. */
201 tree decl;
203 /* Offset of this variable, in bits, from the base variable */
204 unsigned HOST_WIDE_INT offset;
206 /* Size of the variable, in bits. */
207 unsigned HOST_WIDE_INT size;
209 /* Full size of the base variable, in bits. */
210 unsigned HOST_WIDE_INT fullsize;
212 /* A link to the variable for the next field in this structure. */
213 struct variable_info *next;
215 /* Node in the graph that represents the constraints and points-to
216 solution for the variable. */
217 unsigned int node;
219 /* True if the address of this variable is taken. Needed for
220 variable substitution. */
221 unsigned int address_taken:1;
223 /* True if this variable is the target of a dereference. Needed for
224 variable substitution. */
225 unsigned int indirect_target:1;
227 /* True if this is a variable created by the constraint analysis, such as
228 heap variables and constraints we had to break up. */
229 unsigned int is_artificial_var:1;
231 /* True if this is a special variable whose solution set should not be
232 changed. */
233 unsigned int is_special_var:1;
235 /* True for variables whose size is not known or variable. */
236 unsigned int is_unknown_size_var:1;
238 /* True for variables that have unions somewhere in them. */
239 unsigned int has_union:1;
241 /* True if this is a heap variable. */
242 unsigned int is_heap_var:1;
244 /* Points-to set for this variable. */
245 bitmap solution;
247 /* Variable ids represented by this node. */
248 bitmap variables;
250 /* Vector of complex constraints for this node. Complex
251 constraints are those involving dereferences. */
252 VEC(constraint_t,heap) *complex;
254 /* Variable id this was collapsed to due to type unsafety.
255 This should be unused completely after build_constraint_graph, or
256 something is broken. */
257 struct variable_info *collapsed_to;
259 typedef struct variable_info *varinfo_t;
261 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
263 /* Pool of variable info structures. */
264 static alloc_pool variable_info_pool;
266 DEF_VEC_P(varinfo_t);
268 DEF_VEC_ALLOC_P(varinfo_t, heap);
270 /* Table of variable info structures for constraint variables. Indexed directly
271 by variable info id. */
272 static VEC(varinfo_t,heap) *varmap;
274 /* Return the varmap element N */
276 static inline varinfo_t
277 get_varinfo (unsigned int n)
279 return VEC_index(varinfo_t, varmap, n);
282 /* Return the varmap element N, following the collapsed_to link. */
284 static inline varinfo_t
285 get_varinfo_fc (unsigned int n)
287 varinfo_t v = VEC_index(varinfo_t, varmap, n);
289 if (v->collapsed_to)
290 return v->collapsed_to;
291 return v;
294 /* Variable that represents the unknown pointer. */
295 static varinfo_t var_anything;
296 static tree anything_tree;
297 static unsigned int anything_id;
299 /* Variable that represents the NULL pointer. */
300 static varinfo_t var_nothing;
301 static tree nothing_tree;
302 static unsigned int nothing_id;
304 /* Variable that represents read only memory. */
305 static varinfo_t var_readonly;
306 static tree readonly_tree;
307 static unsigned int readonly_id;
309 /* Variable that represents integers. This is used for when people do things
310 like &0->a.b. */
311 static varinfo_t var_integer;
312 static tree integer_tree;
313 static unsigned int integer_id;
316 /* Lookup a heap var for FROM, and return it if we find one. */
318 static tree
319 heapvar_lookup (tree from)
321 struct tree_map *h, in;
322 in.from = from;
324 h = htab_find_with_hash (heapvar_for_stmt, &in, htab_hash_pointer (from));
325 if (h)
326 return h->to;
327 return NULL_TREE;
330 /* Insert a mapping FROM->TO in the heap var for statement
331 hashtable. */
333 static void
334 heapvar_insert (tree from, tree to)
336 struct tree_map *h;
337 void **loc;
339 h = ggc_alloc (sizeof (struct tree_map));
340 h->hash = htab_hash_pointer (from);
341 h->from = from;
342 h->to = to;
343 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
344 *(struct tree_map **) loc = h;
347 /* Return a new variable info structure consisting for a variable
348 named NAME, and using constraint graph node NODE. */
350 static varinfo_t
351 new_var_info (tree t, unsigned int id, const char *name, unsigned int node)
353 varinfo_t ret = pool_alloc (variable_info_pool);
355 ret->id = id;
356 ret->name = name;
357 ret->decl = t;
358 ret->node = node;
359 ret->address_taken = false;
360 ret->indirect_target = false;
361 ret->is_artificial_var = false;
362 ret->is_heap_var = false;
363 ret->is_special_var = false;
364 ret->is_unknown_size_var = false;
365 ret->has_union = false;
366 ret->solution = BITMAP_ALLOC (&ptabitmap_obstack);
367 ret->variables = BITMAP_ALLOC (&ptabitmap_obstack);
368 ret->complex = NULL;
369 ret->next = NULL;
370 ret->collapsed_to = NULL;
371 return ret;
374 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
376 /* An expression that appears in a constraint. */
378 struct constraint_expr
380 /* Constraint type. */
381 constraint_expr_type type;
383 /* Variable we are referring to in the constraint. */
384 unsigned int var;
386 /* Offset, in bits, of this constraint from the beginning of
387 variables it ends up referring to.
389 IOW, in a deref constraint, we would deref, get the result set,
390 then add OFFSET to each member. */
391 unsigned HOST_WIDE_INT offset;
394 typedef struct constraint_expr ce_s;
395 DEF_VEC_O(ce_s);
396 DEF_VEC_ALLOC_O(ce_s, heap);
397 static void get_constraint_for (tree, VEC(ce_s, heap) **);
398 static void do_deref (VEC (ce_s, heap) **);
400 /* Our set constraints are made up of two constraint expressions, one
401 LHS, and one RHS.
403 As described in the introduction, our set constraints each represent an
404 operation between set valued variables.
406 struct constraint
408 struct constraint_expr lhs;
409 struct constraint_expr rhs;
412 /* List of constraints that we use to build the constraint graph from. */
414 static VEC(constraint_t,heap) *constraints;
415 static alloc_pool constraint_pool;
417 /* An edge in the weighted constraint graph. The edges are weighted,
418 with a bit set in weights meaning their is an edge with that
419 weight.
420 We don't keep the src in the edge, because we always know what it
421 is. */
423 struct constraint_edge
425 unsigned int dest;
426 bitmap weights;
429 typedef struct constraint_edge *constraint_edge_t;
430 static alloc_pool constraint_edge_pool;
432 /* Return a new constraint edge from SRC to DEST. */
434 static constraint_edge_t
435 new_constraint_edge (unsigned int dest)
437 constraint_edge_t ret = pool_alloc (constraint_edge_pool);
438 ret->dest = dest;
439 ret->weights = NULL;
440 return ret;
443 DEF_VEC_P(constraint_edge_t);
444 DEF_VEC_ALLOC_P(constraint_edge_t,heap);
447 /* The constraint graph is represented internally in two different
448 ways. The overwhelming majority of edges in the constraint graph
449 are zero weigh edges, and thus, using a vector of contrainst_edge_t
450 is a waste of time and memory, since they have no weights. We
451 simply use a bitmap to store the preds and succs for each node.
452 The weighted edges are stored as a set of adjacency vectors, one
453 per variable. succs[x] is the vector of successors for variable x,
454 and preds[x] is the vector of predecessors for variable x. IOW,
455 all edges are "forward" edges, which is not like our CFG. So
456 remember that preds[x]->src == x, and succs[x]->src == x. */
458 struct constraint_graph
460 bitmap *zero_weight_succs;
461 bitmap *zero_weight_preds;
462 VEC(constraint_edge_t,heap) **succs;
463 VEC(constraint_edge_t,heap) **preds;
466 typedef struct constraint_graph *constraint_graph_t;
468 static constraint_graph_t graph;
470 /* Create a new constraint consisting of LHS and RHS expressions. */
472 static constraint_t
473 new_constraint (const struct constraint_expr lhs,
474 const struct constraint_expr rhs)
476 constraint_t ret = pool_alloc (constraint_pool);
477 ret->lhs = lhs;
478 ret->rhs = rhs;
479 return ret;
482 /* Print out constraint C to FILE. */
484 void
485 dump_constraint (FILE *file, constraint_t c)
487 if (c->lhs.type == ADDRESSOF)
488 fprintf (file, "&");
489 else if (c->lhs.type == DEREF)
490 fprintf (file, "*");
491 fprintf (file, "%s", get_varinfo_fc (c->lhs.var)->name);
492 if (c->lhs.offset != 0)
493 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
494 fprintf (file, " = ");
495 if (c->rhs.type == ADDRESSOF)
496 fprintf (file, "&");
497 else if (c->rhs.type == DEREF)
498 fprintf (file, "*");
499 fprintf (file, "%s", get_varinfo_fc (c->rhs.var)->name);
500 if (c->rhs.offset != 0)
501 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
502 fprintf (file, "\n");
505 /* Print out constraint C to stderr. */
507 void
508 debug_constraint (constraint_t c)
510 dump_constraint (stderr, c);
513 /* Print out all constraints to FILE */
515 void
516 dump_constraints (FILE *file)
518 int i;
519 constraint_t c;
520 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
521 dump_constraint (file, c);
524 /* Print out all constraints to stderr. */
526 void
527 debug_constraints (void)
529 dump_constraints (stderr);
532 /* SOLVER FUNCTIONS
534 The solver is a simple worklist solver, that works on the following
535 algorithm:
537 sbitmap changed_nodes = all ones;
538 changed_count = number of nodes;
539 For each node that was already collapsed:
540 changed_count--;
542 while (changed_count > 0)
544 compute topological ordering for constraint graph
546 find and collapse cycles in the constraint graph (updating
547 changed if necessary)
549 for each node (n) in the graph in topological order:
550 changed_count--;
552 Process each complex constraint associated with the node,
553 updating changed if necessary.
555 For each outgoing edge from n, propagate the solution from n to
556 the destination of the edge, updating changed as necessary.
558 } */
560 /* Return true if two constraint expressions A and B are equal. */
562 static bool
563 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
565 return a.type == b.type && a.var == b.var && a.offset == b.offset;
568 /* Return true if constraint expression A is less than constraint expression
569 B. This is just arbitrary, but consistent, in order to give them an
570 ordering. */
572 static bool
573 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
575 if (a.type == b.type)
577 if (a.var == b.var)
578 return a.offset < b.offset;
579 else
580 return a.var < b.var;
582 else
583 return a.type < b.type;
586 /* Return true if constraint A is less than constraint B. This is just
587 arbitrary, but consistent, in order to give them an ordering. */
589 static bool
590 constraint_less (const constraint_t a, const constraint_t b)
592 if (constraint_expr_less (a->lhs, b->lhs))
593 return true;
594 else if (constraint_expr_less (b->lhs, a->lhs))
595 return false;
596 else
597 return constraint_expr_less (a->rhs, b->rhs);
600 /* Return true if two constraints A and B are equal. */
602 static bool
603 constraint_equal (struct constraint a, struct constraint b)
605 return constraint_expr_equal (a.lhs, b.lhs)
606 && constraint_expr_equal (a.rhs, b.rhs);
610 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
612 static constraint_t
613 constraint_vec_find (VEC(constraint_t,heap) *vec,
614 struct constraint lookfor)
616 unsigned int place;
617 constraint_t found;
619 if (vec == NULL)
620 return NULL;
622 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
623 if (place >= VEC_length (constraint_t, vec))
624 return NULL;
625 found = VEC_index (constraint_t, vec, place);
626 if (!constraint_equal (*found, lookfor))
627 return NULL;
628 return found;
631 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
633 static void
634 constraint_set_union (VEC(constraint_t,heap) **to,
635 VEC(constraint_t,heap) **from)
637 int i;
638 constraint_t c;
640 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
642 if (constraint_vec_find (*to, *c) == NULL)
644 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
645 constraint_less);
646 VEC_safe_insert (constraint_t, heap, *to, place, c);
651 /* Take a solution set SET, add OFFSET to each member of the set, and
652 overwrite SET with the result when done. */
654 static void
655 solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
657 bitmap result = BITMAP_ALLOC (&iteration_obstack);
658 unsigned int i;
659 bitmap_iterator bi;
661 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
663 /* If this is a properly sized variable, only add offset if it's
664 less than end. Otherwise, it is globbed to a single
665 variable. */
667 if ((get_varinfo (i)->offset + offset) < get_varinfo (i)->fullsize)
669 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (i)->offset + offset;
670 varinfo_t v = first_vi_for_offset (get_varinfo (i), fieldoffset);
671 if (!v)
672 continue;
673 bitmap_set_bit (result, v->id);
675 else if (get_varinfo (i)->is_artificial_var
676 || get_varinfo (i)->has_union
677 || get_varinfo (i)->is_unknown_size_var)
679 bitmap_set_bit (result, i);
683 bitmap_copy (set, result);
684 BITMAP_FREE (result);
687 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
688 process. */
690 static bool
691 set_union_with_increment (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
693 if (inc == 0)
694 return bitmap_ior_into (to, from);
695 else
697 bitmap tmp;
698 bool res;
700 tmp = BITMAP_ALLOC (&iteration_obstack);
701 bitmap_copy (tmp, from);
702 solution_set_add (tmp, inc);
703 res = bitmap_ior_into (to, tmp);
704 BITMAP_FREE (tmp);
705 return res;
709 /* Insert constraint C into the list of complex constraints for VAR. */
711 static void
712 insert_into_complex (unsigned int var, constraint_t c)
714 varinfo_t vi = get_varinfo (var);
715 unsigned int place = VEC_lower_bound (constraint_t, vi->complex, c,
716 constraint_less);
717 VEC_safe_insert (constraint_t, heap, vi->complex, place, c);
721 /* Compare two constraint edges A and B, return true if they are equal. */
723 static bool
724 constraint_edge_equal (struct constraint_edge a, struct constraint_edge b)
726 return a.dest == b.dest;
729 /* Compare two constraint edges, return true if A is less than B */
731 static bool
732 constraint_edge_less (const constraint_edge_t a, const constraint_edge_t b)
734 if (a->dest < b->dest)
735 return true;
736 return false;
739 /* Find the constraint edge that matches LOOKFOR, in VEC.
740 Return the edge, if found, NULL otherwise. */
742 static constraint_edge_t
743 constraint_edge_vec_find (VEC(constraint_edge_t,heap) *vec,
744 struct constraint_edge lookfor)
746 unsigned int place;
747 constraint_edge_t edge = NULL;
749 place = VEC_lower_bound (constraint_edge_t, vec, &lookfor,
750 constraint_edge_less);
751 if (place >= VEC_length (constraint_edge_t, vec))
752 return NULL;
753 edge = VEC_index (constraint_edge_t, vec, place);
754 if (!constraint_edge_equal (*edge, lookfor))
755 return NULL;
756 return edge;
759 /* Condense two variable nodes into a single variable node, by moving
760 all associated info from SRC to TO. */
762 static void
763 condense_varmap_nodes (unsigned int to, unsigned int src)
765 varinfo_t tovi = get_varinfo (to);
766 varinfo_t srcvi = get_varinfo (src);
767 unsigned int i;
768 constraint_t c;
769 bitmap_iterator bi;
771 /* the src node, and all its variables, are now the to node. */
772 srcvi->node = to;
773 EXECUTE_IF_SET_IN_BITMAP (srcvi->variables, 0, i, bi)
774 get_varinfo (i)->node = to;
776 /* Merge the src node variables and the to node variables. */
777 bitmap_set_bit (tovi->variables, src);
778 bitmap_ior_into (tovi->variables, srcvi->variables);
779 bitmap_clear (srcvi->variables);
781 /* Move all complex constraints from src node into to node */
782 for (i = 0; VEC_iterate (constraint_t, srcvi->complex, i, c); i++)
784 /* In complex constraints for node src, we may have either
785 a = *src, and *src = a. */
787 if (c->rhs.type == DEREF)
788 c->rhs.var = to;
789 else
790 c->lhs.var = to;
792 constraint_set_union (&tovi->complex, &srcvi->complex);
793 VEC_free (constraint_t, heap, srcvi->complex);
794 srcvi->complex = NULL;
797 /* Erase an edge from SRC to SRC from GRAPH. This routine only
798 handles self-edges (e.g. an edge from a to a). */
800 static void
801 erase_graph_self_edge (constraint_graph_t graph, unsigned int src)
803 VEC(constraint_edge_t,heap) *predvec = graph->preds[src];
804 VEC(constraint_edge_t,heap) *succvec = graph->succs[src];
805 struct constraint_edge edge;
806 unsigned int place;
808 edge.dest = src;
810 /* Remove from the successors. */
811 place = VEC_lower_bound (constraint_edge_t, succvec, &edge,
812 constraint_edge_less);
814 /* Make sure we found the edge. */
815 #ifdef ENABLE_CHECKING
817 constraint_edge_t tmp = VEC_index (constraint_edge_t, succvec, place);
818 gcc_assert (constraint_edge_equal (*tmp, edge));
820 #endif
821 VEC_ordered_remove (constraint_edge_t, succvec, place);
823 /* Remove from the predecessors. */
824 place = VEC_lower_bound (constraint_edge_t, predvec, &edge,
825 constraint_edge_less);
827 /* Make sure we found the edge. */
828 #ifdef ENABLE_CHECKING
830 constraint_edge_t tmp = VEC_index (constraint_edge_t, predvec, place);
831 gcc_assert (constraint_edge_equal (*tmp, edge));
833 #endif
834 VEC_ordered_remove (constraint_edge_t, predvec, place);
837 /* Remove edges involving NODE from GRAPH. */
839 static void
840 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
842 VEC(constraint_edge_t,heap) *succvec = graph->succs[node];
843 VEC(constraint_edge_t,heap) *predvec = graph->preds[node];
844 bitmap_iterator bi;
845 unsigned int j;
846 constraint_edge_t c = NULL;
847 int i;
849 /* Walk the successors, erase the associated preds. */
851 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_succs[node], 0, j, bi)
852 if (j != node)
853 bitmap_clear_bit (graph->zero_weight_preds[j], node);
855 for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
856 if (c->dest != node)
858 unsigned int place;
859 struct constraint_edge lookfor;
860 constraint_edge_t result;
862 lookfor.dest = node;
863 place = VEC_lower_bound (constraint_edge_t, graph->preds[c->dest],
864 &lookfor, constraint_edge_less);
865 result = VEC_ordered_remove (constraint_edge_t,
866 graph->preds[c->dest], place);
867 pool_free (constraint_edge_pool, result);
870 /* Walk the preds, erase the associated succs. */
872 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_preds[node], 0, j, bi)
873 if (j != node)
874 bitmap_clear_bit (graph->zero_weight_succs[j], node);
876 for (i =0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
877 if (c->dest != node)
879 unsigned int place;
880 struct constraint_edge lookfor;
881 constraint_edge_t result;
883 lookfor.dest = node;
884 place = VEC_lower_bound (constraint_edge_t, graph->succs[c->dest],
885 &lookfor, constraint_edge_less);
886 result = VEC_ordered_remove (constraint_edge_t,
887 graph->succs[c->dest], place);
888 pool_free (constraint_edge_pool, result);
892 if (graph->zero_weight_preds[node])
894 BITMAP_FREE (graph->zero_weight_preds[node]);
895 graph->zero_weight_preds[node] = NULL;
898 if (graph->zero_weight_succs[node])
900 BITMAP_FREE (graph->zero_weight_succs[node]);
901 graph->zero_weight_succs[node] = NULL;
904 VEC_free (constraint_edge_t, heap, graph->preds[node]);
905 VEC_free (constraint_edge_t, heap, graph->succs[node]);
906 graph->preds[node] = NULL;
907 graph->succs[node] = NULL;
910 static bool edge_added = false;
912 /* Add edge (src, dest) to the graph. */
914 static bool
915 add_graph_edge (constraint_graph_t graph, unsigned int src, unsigned int dest)
917 unsigned int place;
918 VEC(constraint_edge_t,heap) *vec;
919 struct constraint_edge newe;
920 newe.dest = dest;
922 vec = graph->preds[src];
923 place = VEC_lower_bound (constraint_edge_t, vec, &newe,
924 constraint_edge_less);
925 if (place == VEC_length (constraint_edge_t, vec)
926 || VEC_index (constraint_edge_t, vec, place)->dest != dest)
928 constraint_edge_t edge = new_constraint_edge (dest);
930 VEC_safe_insert (constraint_edge_t, heap, graph->preds[src],
931 place, edge);
932 edge = new_constraint_edge (src);
934 place = VEC_lower_bound (constraint_edge_t, graph->succs[dest],
935 edge, constraint_edge_less);
936 VEC_safe_insert (constraint_edge_t, heap, graph->succs[dest],
937 place, edge);
938 edge_added = true;
939 stats.num_edges++;
940 return true;
942 else
943 return false;
947 /* Return the bitmap representing the weights of edge (SRC, DEST). */
949 static bitmap *
950 get_graph_weights (constraint_graph_t graph, unsigned int src,
951 unsigned int dest)
953 constraint_edge_t edge;
954 VEC(constraint_edge_t,heap) *vec;
955 struct constraint_edge lookfor;
957 lookfor.dest = dest;
959 vec = graph->preds[src];
960 edge = constraint_edge_vec_find (vec, lookfor);
961 gcc_assert (edge != NULL);
962 return &edge->weights;
965 /* Allocate graph weight bitmap for the edges associated with SRC and
966 DEST in GRAPH. Both the pred and the succ edges share a single
967 bitmap, so we need to set both edges to that bitmap. */
969 static bitmap
970 allocate_graph_weights (constraint_graph_t graph, unsigned int src,
971 unsigned int dest)
973 bitmap result;
974 constraint_edge_t edge;
975 VEC(constraint_edge_t,heap) *vec;
976 struct constraint_edge lookfor;
978 result = BITMAP_ALLOC (&ptabitmap_obstack);
980 /* Set the pred weight. */
981 lookfor.dest = dest;
982 vec = graph->preds[src];
983 edge = constraint_edge_vec_find (vec, lookfor);
984 gcc_assert (edge != NULL);
985 edge->weights = result;
987 /* Set the succ weight. */
988 lookfor.dest = src;
989 vec = graph->succs[dest];
990 edge = constraint_edge_vec_find (vec, lookfor);
991 gcc_assert (edge != NULL);
992 edge->weights = result;
994 return result;
998 /* Merge GRAPH nodes FROM and TO into node TO. */
1000 static void
1001 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1002 unsigned int from)
1004 VEC(constraint_edge_t,heap) *succvec = graph->succs[from];
1005 VEC(constraint_edge_t,heap) *predvec = graph->preds[from];
1006 int i;
1007 constraint_edge_t c;
1008 unsigned int j;
1009 bitmap_iterator bi;
1011 /* Merge all the zero weighted predecessor edges. */
1012 if (graph->zero_weight_preds[from])
1014 if (!graph->zero_weight_preds[to])
1015 graph->zero_weight_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1017 EXECUTE_IF_SET_IN_BITMAP (graph->zero_weight_preds[from], 0, j, bi)
1019 if (j != to)
1021 bitmap_clear_bit (graph->zero_weight_succs[j], from);
1022 bitmap_set_bit (graph->zero_weight_succs[j], to);
1025 bitmap_ior_into (graph->zero_weight_preds[to],
1026 graph->zero_weight_preds[from]);
1029 /* Merge all the zero weighted successor edges. */
1030 if (graph->zero_weight_succs[from])
1032 if (!graph->zero_weight_succs[to])
1033 graph->zero_weight_succs[to] = BITMAP_ALLOC (&ptabitmap_obstack);
1034 EXECUTE_IF_SET_IN_BITMAP (graph->zero_weight_succs[from], 0, j, bi)
1036 bitmap_clear_bit (graph->zero_weight_preds[j], from);
1037 bitmap_set_bit (graph->zero_weight_preds[j], to);
1039 bitmap_ior_into (graph->zero_weight_succs[to],
1040 graph->zero_weight_succs[from]);
1043 /* Merge all the nonzero weighted predecessor edges. */
1044 for (i = 0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
1046 unsigned int d = c->dest;
1047 bitmap temp;
1048 bitmap *weights;
1050 if (c->dest == from)
1051 d = to;
1053 add_graph_edge (graph, to, d);
1055 temp = *(get_graph_weights (graph, from, c->dest));
1056 if (temp)
1058 weights = get_graph_weights (graph, to, d);
1059 if (!*weights)
1060 *weights = allocate_graph_weights (graph, to, d);
1062 bitmap_ior_into (*weights, temp);
1067 /* Merge all the nonzero weighted successor edges. */
1068 for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
1070 unsigned int d = c->dest;
1071 bitmap temp;
1072 bitmap *weights;
1074 if (c->dest == from)
1075 d = to;
1077 add_graph_edge (graph, d, to);
1079 temp = *(get_graph_weights (graph, c->dest, from));
1080 if (temp)
1082 weights = get_graph_weights (graph, d, to);
1083 if (!*weights)
1084 *weights = allocate_graph_weights (graph, d, to);
1085 bitmap_ior_into (*weights, temp);
1088 clear_edges_for_node (graph, from);
1091 /* Add a graph edge to GRAPH, going from TO to FROM, with WEIGHT, if
1092 it doesn't exist in the graph already.
1093 Return false if the edge already existed, true otherwise. */
1095 static bool
1096 int_add_graph_edge (constraint_graph_t graph, unsigned int to,
1097 unsigned int from, unsigned HOST_WIDE_INT weight)
1099 if (to == from && weight == 0)
1101 return false;
1103 else
1105 bool r = false;
1107 if (weight == 0)
1109 if (!graph->zero_weight_preds[to])
1110 graph->zero_weight_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1111 if (!graph->zero_weight_succs[from])
1112 graph->zero_weight_succs[from] = BITMAP_ALLOC (&ptabitmap_obstack);
1113 if (!bitmap_bit_p (graph->zero_weight_succs[from], to))
1115 edge_added = true;
1116 r = true;
1117 stats.num_edges++;
1118 bitmap_set_bit (graph->zero_weight_preds[to], from);
1119 bitmap_set_bit (graph->zero_weight_succs[from], to);
1122 else
1124 bitmap *weights;
1126 r = add_graph_edge (graph, to, from);
1127 weights = get_graph_weights (graph, to, from);
1129 if (!*weights)
1131 r = true;
1132 *weights = allocate_graph_weights (graph, to, from);
1133 bitmap_set_bit (*weights, weight);
1135 else
1137 r |= !bitmap_bit_p (*weights, weight);
1138 bitmap_set_bit (*weights, weight);
1142 return r;
1147 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1149 static bool
1150 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1151 unsigned int dest)
1153 struct constraint_edge lookfor;
1154 lookfor.dest = src;
1156 return (graph->zero_weight_succs[dest]
1157 && bitmap_bit_p (graph->zero_weight_succs[dest], src))
1158 || constraint_edge_vec_find (graph->succs[dest], lookfor) != NULL;
1161 /* Return true if {DEST, SRC} is an existing weighted graph edge (IE has
1162 a weight other than 0) in GRAPH. */
1163 static bool
1164 valid_weighted_graph_edge (constraint_graph_t graph, unsigned int src,
1165 unsigned int dest)
1167 struct constraint_edge lookfor;
1168 lookfor.dest = src;
1170 return graph->preds[src]
1171 && constraint_edge_vec_find (graph->succs[dest], lookfor) != NULL;
1175 /* Build the constraint graph. */
1177 static void
1178 build_constraint_graph (void)
1180 int i = 0;
1181 constraint_t c;
1183 graph = XNEW (struct constraint_graph);
1184 graph->succs = XCNEWVEC (VEC(constraint_edge_t,heap) *, VEC_length (varinfo_t, varmap) + 1);
1185 graph->preds = XCNEWVEC (VEC(constraint_edge_t,heap) *, VEC_length (varinfo_t, varmap) + 1);
1186 graph->zero_weight_succs = XCNEWVEC (bitmap, VEC_length (varinfo_t, varmap) + 1);
1187 graph->zero_weight_preds = XCNEWVEC (bitmap, VEC_length (varinfo_t, varmap) + 1);
1189 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1191 struct constraint_expr lhs = c->lhs;
1192 struct constraint_expr rhs = c->rhs;
1193 unsigned int lhsvar = get_varinfo_fc (lhs.var)->id;
1194 unsigned int rhsvar = get_varinfo_fc (rhs.var)->id;
1196 if (lhs.type == DEREF)
1198 /* *x = y or *x = &y (complex) */
1199 if (rhs.type == ADDRESSOF || rhsvar > anything_id)
1200 insert_into_complex (lhsvar, c);
1202 else if (rhs.type == DEREF)
1204 /* !special var= *y */
1205 if (!(get_varinfo (lhsvar)->is_special_var))
1206 insert_into_complex (rhsvar, c);
1208 else if (rhs.type == ADDRESSOF)
1210 /* x = &y */
1211 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1213 else if (lhsvar > anything_id)
1215 /* Ignore 0 weighted self edges, as they can't possibly contribute
1216 anything */
1217 if (lhsvar != rhsvar || rhs.offset != 0 || lhs.offset != 0)
1219 /* x = y (simple) */
1220 int_add_graph_edge (graph, lhs.var, rhs.var, rhs.offset);
1228 /* Changed variables on the last iteration. */
1229 static unsigned int changed_count;
1230 static sbitmap changed;
1232 DEF_VEC_I(unsigned);
1233 DEF_VEC_ALLOC_I(unsigned,heap);
1236 /* Strongly Connected Component visitation info. */
1238 struct scc_info
1240 sbitmap visited;
1241 sbitmap in_component;
1242 int current_index;
1243 unsigned int *visited_index;
1244 VEC(unsigned,heap) *scc_stack;
1245 VEC(unsigned,heap) *unification_queue;
1249 /* Recursive routine to find strongly connected components in GRAPH.
1250 SI is the SCC info to store the information in, and N is the id of current
1251 graph node we are processing.
1253 This is Tarjan's strongly connected component finding algorithm, as
1254 modified by Nuutila to keep only non-root nodes on the stack.
1255 The algorithm can be found in "On finding the strongly connected
1256 connected components in a directed graph" by Esko Nuutila and Eljas
1257 Soisalon-Soininen, in Information Processing Letters volume 49,
1258 number 1, pages 9-14. */
1260 static void
1261 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1263 unsigned int i;
1264 bitmap_iterator bi;
1266 gcc_assert (get_varinfo (n)->node == n);
1267 SET_BIT (si->visited, n);
1268 RESET_BIT (si->in_component, n);
1269 si->visited_index[n] = si->current_index ++;
1271 /* Visit all the successors. */
1272 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_succs[n], 0, i, bi)
1274 unsigned int w = i;
1275 if (!TEST_BIT (si->visited, w))
1276 scc_visit (graph, si, w);
1277 if (!TEST_BIT (si->in_component, w))
1279 unsigned int t = get_varinfo (w)->node;
1280 unsigned int nnode = get_varinfo (n)->node;
1281 if (si->visited_index[t] < si->visited_index[nnode])
1282 get_varinfo (n)->node = t;
1286 /* See if any components have been identified. */
1287 if (get_varinfo (n)->node == n)
1289 unsigned int t = si->visited_index[n];
1290 SET_BIT (si->in_component, n);
1291 while (VEC_length (unsigned, si->scc_stack) != 0
1292 && t < si->visited_index[VEC_last (unsigned, si->scc_stack)])
1294 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1295 get_varinfo (w)->node = n;
1296 SET_BIT (si->in_component, w);
1297 /* Mark this node for collapsing. */
1298 VEC_safe_push (unsigned, heap, si->unification_queue, w);
1301 else
1302 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1306 /* Collapse two variables into one variable. */
1308 static void
1309 collapse_nodes (constraint_graph_t graph, unsigned int to, unsigned int from)
1311 bitmap tosol, fromsol;
1313 condense_varmap_nodes (to, from);
1314 tosol = get_varinfo (to)->solution;
1315 fromsol = get_varinfo (from)->solution;
1316 bitmap_ior_into (tosol, fromsol);
1317 merge_graph_nodes (graph, to, from);
1319 if (valid_graph_edge (graph, to, to))
1321 if (graph->zero_weight_preds[to])
1323 bitmap_clear_bit (graph->zero_weight_preds[to], to);
1324 bitmap_clear_bit (graph->zero_weight_succs[to], to);
1326 if (valid_weighted_graph_edge (graph, to, to))
1328 bitmap weights = *(get_graph_weights (graph, to, to));
1329 if (!weights || bitmap_empty_p (weights))
1330 erase_graph_self_edge (graph, to);
1333 BITMAP_FREE (fromsol);
1334 get_varinfo (to)->address_taken |= get_varinfo (from)->address_taken;
1335 get_varinfo (to)->indirect_target |= get_varinfo (from)->indirect_target;
1339 /* Unify nodes in GRAPH that we have found to be part of a cycle.
1340 SI is the Strongly Connected Components information structure that tells us
1341 what components to unify.
1342 UPDATE_CHANGED should be set to true if the changed sbitmap and changed
1343 count should be updated to reflect the unification. */
1345 static void
1346 process_unification_queue (constraint_graph_t graph, struct scc_info *si,
1347 bool update_changed)
1349 size_t i = 0;
1350 bitmap tmp = BITMAP_ALLOC (update_changed ? &iteration_obstack : NULL);
1351 bitmap_clear (tmp);
1353 /* We proceed as follows:
1355 For each component in the queue (components are delineated by
1356 when current_queue_element->node != next_queue_element->node):
1358 rep = representative node for component
1360 For each node (tounify) to be unified in the component,
1361 merge the solution for tounify into tmp bitmap
1363 clear solution for tounify
1365 merge edges from tounify into rep
1367 merge complex constraints from tounify into rep
1369 update changed count to note that tounify will never change
1370 again
1372 Merge tmp into solution for rep, marking rep changed if this
1373 changed rep's solution.
1375 Delete any 0 weighted self-edges we now have for rep. */
1376 while (i != VEC_length (unsigned, si->unification_queue))
1378 unsigned int tounify = VEC_index (unsigned, si->unification_queue, i);
1379 unsigned int n = get_varinfo (tounify)->node;
1381 if (dump_file && (dump_flags & TDF_DETAILS))
1382 fprintf (dump_file, "Unifying %s to %s\n",
1383 get_varinfo (tounify)->name,
1384 get_varinfo (n)->name);
1385 if (update_changed)
1386 stats.unified_vars_dynamic++;
1387 else
1388 stats.unified_vars_static++;
1389 bitmap_ior_into (tmp, get_varinfo (tounify)->solution);
1390 merge_graph_nodes (graph, n, tounify);
1391 condense_varmap_nodes (n, tounify);
1393 if (update_changed && TEST_BIT (changed, tounify))
1395 RESET_BIT (changed, tounify);
1396 if (!TEST_BIT (changed, n))
1397 SET_BIT (changed, n);
1398 else
1400 gcc_assert (changed_count > 0);
1401 changed_count--;
1405 bitmap_clear (get_varinfo (tounify)->solution);
1406 ++i;
1408 /* If we've either finished processing the entire queue, or
1409 finished processing all nodes for component n, update the solution for
1410 n. */
1411 if (i == VEC_length (unsigned, si->unification_queue)
1412 || get_varinfo (VEC_index (unsigned, si->unification_queue, i))->node != n)
1414 /* If the solution changes because of the merging, we need to mark
1415 the variable as changed. */
1416 if (bitmap_ior_into (get_varinfo (n)->solution, tmp))
1418 if (update_changed && !TEST_BIT (changed, n))
1420 SET_BIT (changed, n);
1421 changed_count++;
1424 bitmap_clear (tmp);
1426 if (valid_graph_edge (graph, n, n))
1428 if (graph->zero_weight_succs[n])
1430 if (graph->zero_weight_preds[n])
1431 bitmap_clear_bit (graph->zero_weight_preds[n], n);
1432 bitmap_clear_bit (graph->zero_weight_succs[n], n);
1434 if (valid_weighted_graph_edge (graph, n, n))
1436 bitmap weights = *(get_graph_weights (graph, n, n));
1437 if (!weights || bitmap_empty_p (weights))
1438 erase_graph_self_edge (graph, n);
1443 BITMAP_FREE (tmp);
1447 /* Information needed to compute the topological ordering of a graph. */
1449 struct topo_info
1451 /* sbitmap of visited nodes. */
1452 sbitmap visited;
1453 /* Array that stores the topological order of the graph, *in
1454 reverse*. */
1455 VEC(unsigned,heap) *topo_order;
1459 /* Initialize and return a topological info structure. */
1461 static struct topo_info *
1462 init_topo_info (void)
1464 size_t size = VEC_length (varinfo_t, varmap);
1465 struct topo_info *ti = XNEW (struct topo_info);
1466 ti->visited = sbitmap_alloc (size);
1467 sbitmap_zero (ti->visited);
1468 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1469 return ti;
1473 /* Free the topological sort info pointed to by TI. */
1475 static void
1476 free_topo_info (struct topo_info *ti)
1478 sbitmap_free (ti->visited);
1479 VEC_free (unsigned, heap, ti->topo_order);
1480 free (ti);
1483 /* Visit the graph in topological order, and store the order in the
1484 topo_info structure. */
1486 static void
1487 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1488 unsigned int n)
1490 VEC(constraint_edge_t,heap) *succs = graph->succs[n];
1491 bitmap temp;
1492 bitmap_iterator bi;
1493 constraint_edge_t c;
1494 int i;
1495 unsigned int j;
1497 SET_BIT (ti->visited, n);
1498 if (VEC_length (constraint_edge_t, succs) != 0)
1500 temp = BITMAP_ALLOC (&iteration_obstack);
1501 if (graph->zero_weight_succs[n])
1502 bitmap_ior_into (temp, graph->zero_weight_succs[n]);
1503 for (i = 0; VEC_iterate (constraint_edge_t, succs, i, c); i++)
1504 bitmap_set_bit (temp, c->dest);
1506 else
1507 temp = graph->zero_weight_succs[n];
1509 if (temp)
1510 EXECUTE_IF_SET_IN_BITMAP (temp, 0, j, bi)
1512 if (!TEST_BIT (ti->visited, j))
1513 topo_visit (graph, ti, j);
1515 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1518 /* Return true if variable N + OFFSET is a legal field of N. */
1520 static bool
1521 type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
1523 varinfo_t ninfo = get_varinfo (n);
1525 /* For things we've globbed to single variables, any offset into the
1526 variable acts like the entire variable, so that it becomes offset
1527 0. */
1528 if (ninfo->is_special_var
1529 || ninfo->is_artificial_var
1530 || ninfo->is_unknown_size_var)
1532 *offset = 0;
1533 return true;
1535 return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
1538 /* Process a constraint C that represents *x = &y. */
1540 static void
1541 do_da_constraint (constraint_graph_t graph ATTRIBUTE_UNUSED,
1542 constraint_t c, bitmap delta)
1544 unsigned int rhs = c->rhs.var;
1545 unsigned int j;
1546 bitmap_iterator bi;
1548 /* For each member j of Delta (Sol(x)), add x to Sol(j) */
1549 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1551 unsigned HOST_WIDE_INT offset = c->lhs.offset;
1552 if (type_safe (j, &offset) && !(get_varinfo (j)->is_special_var))
1554 /* *x != NULL && *x != ANYTHING*/
1555 varinfo_t v;
1556 unsigned int t;
1557 bitmap sol;
1558 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + offset;
1560 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1561 if (!v)
1562 continue;
1563 t = v->node;
1564 sol = get_varinfo (t)->solution;
1565 if (!bitmap_bit_p (sol, rhs))
1567 bitmap_set_bit (sol, rhs);
1568 if (!TEST_BIT (changed, t))
1570 SET_BIT (changed, t);
1571 changed_count++;
1575 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1576 fprintf (dump_file, "Untypesafe usage in do_da_constraint.\n");
1581 /* Process a constraint C that represents x = *y, using DELTA as the
1582 starting solution. */
1584 static void
1585 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1586 bitmap delta)
1588 unsigned int lhs = get_varinfo (c->lhs.var)->node;
1589 bool flag = false;
1590 bitmap sol = get_varinfo (lhs)->solution;
1591 unsigned int j;
1592 bitmap_iterator bi;
1594 if (bitmap_bit_p (delta, anything_id))
1596 flag = !bitmap_bit_p (sol, anything_id);
1597 if (flag)
1598 bitmap_set_bit (sol, anything_id);
1599 goto done;
1601 /* For each variable j in delta (Sol(y)), add
1602 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1603 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1605 unsigned HOST_WIDE_INT roffset = c->rhs.offset;
1606 if (type_safe (j, &roffset))
1608 varinfo_t v;
1609 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
1610 unsigned int t;
1612 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1613 if (!v)
1614 continue;
1615 t = v->node;
1617 /* Adding edges from the special vars is pointless.
1618 They don't have sets that can change. */
1619 if (get_varinfo (t) ->is_special_var)
1620 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1621 else if (int_add_graph_edge (graph, lhs, t, 0))
1622 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1624 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1625 fprintf (dump_file, "Untypesafe usage in do_sd_constraint\n");
1629 done:
1630 /* If the LHS solution changed, mark the var as changed. */
1631 if (flag)
1633 get_varinfo (lhs)->solution = sol;
1634 if (!TEST_BIT (changed, lhs))
1636 SET_BIT (changed, lhs);
1637 changed_count++;
1642 /* Process a constraint C that represents *x = y. */
1644 static void
1645 do_ds_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1647 unsigned int rhs = get_varinfo (c->rhs.var)->node;
1648 unsigned HOST_WIDE_INT roff = c->rhs.offset;
1649 bitmap sol = get_varinfo (rhs)->solution;
1650 unsigned int j;
1651 bitmap_iterator bi;
1653 if (bitmap_bit_p (sol, anything_id))
1655 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1657 varinfo_t jvi = get_varinfo (j);
1658 unsigned int t;
1659 unsigned int loff = c->lhs.offset;
1660 unsigned HOST_WIDE_INT fieldoffset = jvi->offset + loff;
1661 varinfo_t v;
1663 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1664 if (!v)
1665 continue;
1666 t = v->node;
1668 if (!bitmap_bit_p (get_varinfo (t)->solution, anything_id))
1670 bitmap_set_bit (get_varinfo (t)->solution, anything_id);
1671 if (!TEST_BIT (changed, t))
1673 SET_BIT (changed, t);
1674 changed_count++;
1678 return;
1681 /* For each member j of delta (Sol(x)), add an edge from y to j and
1682 union Sol(y) into Sol(j) */
1683 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1685 unsigned HOST_WIDE_INT loff = c->lhs.offset;
1686 if (type_safe (j, &loff) && !(get_varinfo(j)->is_special_var))
1688 varinfo_t v;
1689 unsigned int t;
1690 unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;
1692 v = first_vi_for_offset (get_varinfo (j), fieldoffset);
1693 if (!v)
1694 continue;
1695 t = v->node;
1696 if (int_add_graph_edge (graph, t, rhs, roff))
1698 bitmap tmp = get_varinfo (t)->solution;
1699 if (set_union_with_increment (tmp, sol, roff))
1701 get_varinfo (t)->solution = tmp;
1702 if (t == rhs)
1703 sol = get_varinfo (rhs)->solution;
1704 if (!TEST_BIT (changed, t))
1706 SET_BIT (changed, t);
1707 changed_count++;
1712 else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
1713 fprintf (dump_file, "Untypesafe usage in do_ds_constraint\n");
1717 /* Handle a non-simple (simple meaning requires no iteration), non-copy
1718 constraint (IE *x = &y, x = *y, and *x = y). */
1720 static void
1721 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1723 if (c->lhs.type == DEREF)
1725 if (c->rhs.type == ADDRESSOF)
1727 /* *x = &y */
1728 do_da_constraint (graph, c, delta);
1730 else
1732 /* *x = y */
1733 do_ds_constraint (graph, c, delta);
1736 else
1738 /* x = *y */
1739 if (!(get_varinfo (c->lhs.var)->is_special_var))
1740 do_sd_constraint (graph, c, delta);
1744 /* Initialize and return a new SCC info structure. */
1746 static struct scc_info *
1747 init_scc_info (void)
1749 struct scc_info *si = XNEW (struct scc_info);
1750 size_t size = VEC_length (varinfo_t, varmap);
1752 si->current_index = 0;
1753 si->visited = sbitmap_alloc (size);
1754 sbitmap_zero (si->visited);
1755 si->in_component = sbitmap_alloc (size);
1756 sbitmap_ones (si->in_component);
1757 si->visited_index = XCNEWVEC (unsigned int, size + 1);
1758 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1759 si->unification_queue = VEC_alloc (unsigned, heap, 1);
1760 return si;
1763 /* Free an SCC info structure pointed to by SI */
1765 static void
1766 free_scc_info (struct scc_info *si)
1768 sbitmap_free (si->visited);
1769 sbitmap_free (si->in_component);
1770 free (si->visited_index);
1771 VEC_free (unsigned, heap, si->scc_stack);
1772 VEC_free (unsigned, heap, si->unification_queue);
1773 free(si);
1777 /* Find cycles in GRAPH that occur, using strongly connected components, and
1778 collapse the cycles into a single representative node. if UPDATE_CHANGED
1779 is true, then update the changed sbitmap to note those nodes whose
1780 solutions have changed as a result of collapsing. */
1782 static void
1783 find_and_collapse_graph_cycles (constraint_graph_t graph, bool update_changed)
1785 unsigned int i;
1786 unsigned int size = VEC_length (varinfo_t, varmap);
1787 struct scc_info *si = init_scc_info ();
1789 for (i = 0; i != size; ++i)
1790 if (!TEST_BIT (si->visited, i) && get_varinfo (i)->node == i)
1791 scc_visit (graph, si, i);
1793 process_unification_queue (graph, si, update_changed);
1794 free_scc_info (si);
1797 /* Compute a topological ordering for GRAPH, and store the result in the
1798 topo_info structure TI. */
1800 static void
1801 compute_topo_order (constraint_graph_t graph,
1802 struct topo_info *ti)
1804 unsigned int i;
1805 unsigned int size = VEC_length (varinfo_t, varmap);
1807 for (i = 0; i != size; ++i)
1808 if (!TEST_BIT (ti->visited, i) && get_varinfo (i)->node == i)
1809 topo_visit (graph, ti, i);
1812 /* Return true if bitmap B is empty, or a bitmap other than bit 0 is set. */
1814 static bool
1815 bitmap_other_than_zero_bit_set (bitmap b)
1817 unsigned int i;
1818 bitmap_iterator bi;
1820 if (bitmap_empty_p (b))
1821 return false;
1822 EXECUTE_IF_SET_IN_BITMAP (b, 1, i, bi)
1823 return true;
1824 return false;
1827 /* Perform offline variable substitution.
1829 This is a linear time way of identifying variables that must have
1830 equivalent points-to sets, including those caused by static cycles,
1831 and single entry subgraphs, in the constraint graph.
1833 The technique is described in "Off-line variable substitution for
1834 scaling points-to analysis" by Atanas Rountev and Satish Chandra,
1835 in "ACM SIGPLAN Notices" volume 35, number 5, pages 47-56. */
1837 static void
1838 perform_var_substitution (constraint_graph_t graph)
1840 struct topo_info *ti = init_topo_info ();
1842 bitmap_obstack_initialize (&iteration_obstack);
1843 /* Compute the topological ordering of the graph, then visit each
1844 node in topological order. */
1845 compute_topo_order (graph, ti);
1847 while (VEC_length (unsigned, ti->topo_order) != 0)
1849 unsigned int i = VEC_pop (unsigned, ti->topo_order);
1850 unsigned int pred;
1851 varinfo_t vi = get_varinfo (i);
1852 bool okay_to_elim = false;
1853 unsigned int root = VEC_length (varinfo_t, varmap);
1854 VEC(constraint_edge_t,heap) *predvec = graph->preds[i];
1855 constraint_edge_t ce = NULL;
1856 bitmap tmp;
1857 unsigned int k;
1858 bitmap_iterator bi;
1860 /* We can't eliminate things whose address is taken, or which is
1861 the target of a dereference. */
1862 if (vi->address_taken || vi->indirect_target)
1863 continue;
1865 /* See if all predecessors of I are ripe for elimination */
1866 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_preds[i], 0, k, bi)
1868 unsigned int w;
1869 w = get_varinfo (k)->node;
1871 /* We can't eliminate the node if one of the predecessors is
1872 part of a different strongly connected component. */
1873 if (!okay_to_elim)
1875 root = w;
1876 okay_to_elim = true;
1878 else if (w != root)
1880 okay_to_elim = false;
1881 break;
1884 /* Theorem 4 in Rountev and Chandra: If i is a direct node,
1885 then Solution(i) is a subset of Solution (w), where w is a
1886 predecessor in the graph.
1887 Corollary: If all predecessors of i have the same
1888 points-to set, then i has that same points-to set as
1889 those predecessors. */
1890 tmp = BITMAP_ALLOC (NULL);
1891 bitmap_and_compl (tmp, get_varinfo (i)->solution,
1892 get_varinfo (w)->solution);
1893 if (!bitmap_empty_p (tmp))
1895 okay_to_elim = false;
1896 BITMAP_FREE (tmp);
1897 break;
1899 BITMAP_FREE (tmp);
1902 if (okay_to_elim)
1903 for (pred = 0;
1904 VEC_iterate (constraint_edge_t, predvec, pred, ce);
1905 pred++)
1907 bitmap weight;
1908 unsigned int w;
1909 weight = *(get_graph_weights (graph, i, ce->dest));
1911 /* We can't eliminate variables that have nonzero weighted
1912 edges between them. */
1913 if (weight && bitmap_other_than_zero_bit_set (weight))
1915 okay_to_elim = false;
1916 break;
1918 w = get_varinfo (ce->dest)->node;
1920 /* We can't eliminate the node if one of the predecessors is
1921 part of a different strongly connected component. */
1922 if (!okay_to_elim)
1924 root = w;
1925 okay_to_elim = true;
1927 else if (w != root)
1929 okay_to_elim = false;
1930 break;
1933 /* Theorem 4 in Rountev and Chandra: If i is a direct node,
1934 then Solution(i) is a subset of Solution (w), where w is a
1935 predecessor in the graph.
1936 Corollary: If all predecessors of i have the same
1937 points-to set, then i has that same points-to set as
1938 those predecessors. */
1939 tmp = BITMAP_ALLOC (NULL);
1940 bitmap_and_compl (tmp, get_varinfo (i)->solution,
1941 get_varinfo (w)->solution);
1942 if (!bitmap_empty_p (tmp))
1944 okay_to_elim = false;
1945 BITMAP_FREE (tmp);
1946 break;
1948 BITMAP_FREE (tmp);
1951 /* See if the root is different than the original node.
1952 If so, we've found an equivalence. */
1953 if (root != get_varinfo (i)->node && okay_to_elim)
1955 /* Found an equivalence */
1956 get_varinfo (i)->node = root;
1957 collapse_nodes (graph, root, i);
1958 if (dump_file && (dump_flags & TDF_DETAILS))
1959 fprintf (dump_file, "Collapsing %s into %s\n",
1960 get_varinfo (i)->name,
1961 get_varinfo (root)->name);
1962 stats.collapsed_vars++;
1966 bitmap_obstack_release (&iteration_obstack);
1967 free_topo_info (ti);
1970 /* Solve the constraint graph GRAPH using our worklist solver.
1971 This is based on the PW* family of solvers from the "Efficient Field
1972 Sensitive Pointer Analysis for C" paper.
1973 It works by iterating over all the graph nodes, processing the complex
1974 constraints and propagating the copy constraints, until everything stops
1975 changed. This corresponds to steps 6-8 in the solving list given above. */
1977 static void
1978 solve_graph (constraint_graph_t graph)
1980 unsigned int size = VEC_length (varinfo_t, varmap);
1981 unsigned int i;
1983 changed_count = size;
1984 changed = sbitmap_alloc (size);
1985 sbitmap_ones (changed);
1987 /* The already collapsed/unreachable nodes will never change, so we
1988 need to account for them in changed_count. */
1989 for (i = 0; i < size; i++)
1990 if (get_varinfo (i)->node != i)
1991 changed_count--;
1993 while (changed_count > 0)
1995 unsigned int i;
1996 struct topo_info *ti = init_topo_info ();
1997 stats.iterations++;
1999 bitmap_obstack_initialize (&iteration_obstack);
2001 if (edge_added)
2003 /* We already did cycle elimination once, when we did
2004 variable substitution, so we don't need it again for the
2005 first iteration. */
2006 if (stats.iterations > 1)
2007 find_and_collapse_graph_cycles (graph, true);
2009 edge_added = false;
2012 compute_topo_order (graph, ti);
2014 while (VEC_length (unsigned, ti->topo_order) != 0)
2016 i = VEC_pop (unsigned, ti->topo_order);
2017 gcc_assert (get_varinfo (i)->node == i);
2019 /* If the node has changed, we need to process the
2020 complex constraints and outgoing edges again. */
2021 if (TEST_BIT (changed, i))
2023 unsigned int j;
2024 constraint_t c;
2025 constraint_edge_t e = NULL;
2026 bitmap solution;
2027 bitmap_iterator bi;
2028 VEC(constraint_t,heap) *complex = get_varinfo (i)->complex;
2029 VEC(constraint_edge_t,heap) *succs;
2031 RESET_BIT (changed, i);
2032 changed_count--;
2034 /* Process the complex constraints */
2035 solution = get_varinfo (i)->solution;
2036 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2037 do_complex_constraint (graph, c, solution);
2039 /* Propagate solution to all successors. */
2040 succs = graph->succs[i];
2042 EXECUTE_IF_IN_NONNULL_BITMAP (graph->zero_weight_succs[i], 0, j, bi)
2044 bitmap tmp = get_varinfo (j)->solution;
2045 bool flag = false;
2047 flag = set_union_with_increment (tmp, solution, 0);
2049 if (flag)
2051 get_varinfo (j)->solution = tmp;
2052 if (!TEST_BIT (changed, j))
2054 SET_BIT (changed, j);
2055 changed_count++;
2059 for (j = 0; VEC_iterate (constraint_edge_t, succs, j, e); j++)
2061 bitmap tmp = get_varinfo (e->dest)->solution;
2062 bool flag = false;
2063 unsigned int k;
2064 bitmap weights = e->weights;
2065 bitmap_iterator bi;
2067 gcc_assert (weights && !bitmap_empty_p (weights));
2068 EXECUTE_IF_SET_IN_BITMAP (weights, 0, k, bi)
2069 flag |= set_union_with_increment (tmp, solution, k);
2071 if (flag)
2073 get_varinfo (e->dest)->solution = tmp;
2074 if (!TEST_BIT (changed, e->dest))
2076 SET_BIT (changed, e->dest);
2077 changed_count++;
2083 free_topo_info (ti);
2084 bitmap_obstack_release (&iteration_obstack);
2087 sbitmap_free (changed);
2091 /* CONSTRAINT AND VARIABLE GENERATION FUNCTIONS */
2093 /* Map from trees to variable ids. */
2094 static htab_t id_for_tree;
2096 typedef struct tree_id
2098 tree t;
2099 unsigned int id;
2100 } *tree_id_t;
2102 /* Hash a tree id structure. */
2104 static hashval_t
2105 tree_id_hash (const void *p)
2107 const tree_id_t ta = (tree_id_t) p;
2108 return htab_hash_pointer (ta->t);
2111 /* Return true if the tree in P1 and the tree in P2 are the same. */
2113 static int
2114 tree_id_eq (const void *p1, const void *p2)
2116 const tree_id_t ta1 = (tree_id_t) p1;
2117 const tree_id_t ta2 = (tree_id_t) p2;
2118 return ta1->t == ta2->t;
2121 /* Insert ID as the variable id for tree T in the hashtable. */
2123 static void
2124 insert_id_for_tree (tree t, int id)
2126 void **slot;
2127 struct tree_id finder;
2128 tree_id_t new_pair;
2130 finder.t = t;
2131 slot = htab_find_slot (id_for_tree, &finder, INSERT);
2132 gcc_assert (*slot == NULL);
2133 new_pair = XNEW (struct tree_id);
2134 new_pair->t = t;
2135 new_pair->id = id;
2136 *slot = (void *)new_pair;
2139 /* Find the variable id for tree T in ID_FOR_TREE. If T does not
2140 exist in the hash table, return false, otherwise, return true and
2141 set *ID to the id we found. */
2143 static bool
2144 lookup_id_for_tree (tree t, unsigned int *id)
2146 tree_id_t pair;
2147 struct tree_id finder;
2149 finder.t = t;
2150 pair = htab_find (id_for_tree, &finder);
2151 if (pair == NULL)
2152 return false;
2153 *id = pair->id;
2154 return true;
2157 /* Return a printable name for DECL */
2159 static const char *
2160 alias_get_name (tree decl)
2162 const char *res = get_name (decl);
2163 char *temp;
2164 int num_printed = 0;
2166 if (res != NULL)
2167 return res;
2169 res = "NULL";
2170 if (!dump_file)
2171 return res;
2173 if (TREE_CODE (decl) == SSA_NAME)
2175 num_printed = asprintf (&temp, "%s_%u",
2176 alias_get_name (SSA_NAME_VAR (decl)),
2177 SSA_NAME_VERSION (decl));
2179 else if (DECL_P (decl))
2181 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2183 if (num_printed > 0)
2185 res = ggc_strdup (temp);
2186 free (temp);
2188 return res;
2191 /* Find the variable id for tree T in the hashtable.
2192 If T doesn't exist in the hash table, create an entry for it. */
2194 static unsigned int
2195 get_id_for_tree (tree t)
2197 tree_id_t pair;
2198 struct tree_id finder;
2200 finder.t = t;
2201 pair = htab_find (id_for_tree, &finder);
2202 if (pair == NULL)
2203 return create_variable_info_for (t, alias_get_name (t));
2205 return pair->id;
2208 /* Get a constraint expression from an SSA_VAR_P node. */
2210 static struct constraint_expr
2211 get_constraint_exp_from_ssa_var (tree t)
2213 struct constraint_expr cexpr;
2215 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2217 /* For parameters, get at the points-to set for the actual parm
2218 decl. */
2219 if (TREE_CODE (t) == SSA_NAME
2220 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2221 && default_def (SSA_NAME_VAR (t)) == t)
2222 return get_constraint_exp_from_ssa_var (SSA_NAME_VAR (t));
2224 cexpr.type = SCALAR;
2226 cexpr.var = get_id_for_tree (t);
2227 /* If we determine the result is "anything", and we know this is readonly,
2228 say it points to readonly memory instead. */
2229 if (cexpr.var == anything_id && TREE_READONLY (t))
2231 cexpr.type = ADDRESSOF;
2232 cexpr.var = readonly_id;
2235 cexpr.offset = 0;
2236 return cexpr;
2239 /* Process a completed constraint T, and add it to the constraint
2240 list. */
2242 static void
2243 process_constraint (constraint_t t)
2245 struct constraint_expr rhs = t->rhs;
2246 struct constraint_expr lhs = t->lhs;
2248 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2249 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2251 /* ANYTHING == ANYTHING is pointless. */
2252 if (lhs.var == anything_id && rhs.var == anything_id)
2253 return;
2255 /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
2256 else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
2258 rhs = t->lhs;
2259 t->lhs = t->rhs;
2260 t->rhs = rhs;
2261 process_constraint (t);
2263 /* This can happen in our IR with things like n->a = *p */
2264 else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2266 /* Split into tmp = *rhs, *lhs = tmp */
2267 tree rhsdecl = get_varinfo (rhs.var)->decl;
2268 tree pointertype = TREE_TYPE (rhsdecl);
2269 tree pointedtotype = TREE_TYPE (pointertype);
2270 tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
2271 struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
2273 /* If this is an aggregate of known size, we should have passed
2274 this off to do_structure_copy, and it should have broken it
2275 up. */
2276 gcc_assert (!AGGREGATE_TYPE_P (pointedtotype)
2277 || get_varinfo (rhs.var)->is_unknown_size_var);
2279 process_constraint (new_constraint (tmplhs, rhs));
2280 process_constraint (new_constraint (lhs, tmplhs));
2282 else if (rhs.type == ADDRESSOF)
2284 varinfo_t vi;
2285 gcc_assert (rhs.offset == 0);
2287 for (vi = get_varinfo (rhs.var); vi != NULL; vi = vi->next)
2288 vi->address_taken = true;
2290 VEC_safe_push (constraint_t, heap, constraints, t);
2292 else
2294 if (lhs.type != DEREF && rhs.type == DEREF)
2295 get_varinfo (lhs.var)->indirect_target = true;
2296 VEC_safe_push (constraint_t, heap, constraints, t);
2301 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2302 structure. */
2304 static unsigned HOST_WIDE_INT
2305 bitpos_of_field (const tree fdecl)
2308 if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
2309 || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
2310 return -1;
2312 return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
2313 + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
2317 /* Return true if an access to [ACCESSPOS, ACCESSSIZE]
2318 overlaps with a field at [FIELDPOS, FIELDSIZE] */
2320 static bool
2321 offset_overlaps_with_access (const unsigned HOST_WIDE_INT fieldpos,
2322 const unsigned HOST_WIDE_INT fieldsize,
2323 const unsigned HOST_WIDE_INT accesspos,
2324 const unsigned HOST_WIDE_INT accesssize)
2326 if (fieldpos == accesspos && fieldsize == accesssize)
2327 return true;
2328 if (accesspos >= fieldpos && accesspos < (fieldpos + fieldsize))
2329 return true;
2330 if (accesspos < fieldpos && (accesspos + accesssize > fieldpos))
2331 return true;
2333 return false;
2336 /* Given a COMPONENT_REF T, return the constraint_expr for it. */
2338 static void
2339 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results)
2341 tree orig_t = t;
2342 HOST_WIDE_INT bitsize = -1;
2343 HOST_WIDE_INT bitmaxsize = -1;
2344 HOST_WIDE_INT bitpos;
2345 tree forzero;
2346 struct constraint_expr *result;
2347 unsigned int beforelength = VEC_length (ce_s, *results);
2349 /* Some people like to do cute things like take the address of
2350 &0->a.b */
2351 forzero = t;
2352 while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
2353 forzero = TREE_OPERAND (forzero, 0);
2355 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
2357 struct constraint_expr temp;
2359 temp.offset = 0;
2360 temp.var = integer_id;
2361 temp.type = SCALAR;
2362 VEC_safe_push (ce_s, heap, *results, &temp);
2363 return;
2366 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
2367 get_constraint_for (t, results);
2368 result = VEC_last (ce_s, *results);
2369 result->offset = bitpos;
2371 gcc_assert (beforelength + 1 == VEC_length (ce_s, *results));
2373 /* This can also happen due to weird offsetof type macros. */
2374 if (TREE_CODE (t) != ADDR_EXPR && result->type == ADDRESSOF)
2375 result->type = SCALAR;
2377 if (result->type == SCALAR)
2379 /* In languages like C, you can access one past the end of an
2380 array. You aren't allowed to dereference it, so we can
2381 ignore this constraint. When we handle pointer subtraction,
2382 we may have to do something cute here. */
2384 if (result->offset < get_varinfo (result->var)->fullsize
2385 && bitmaxsize != 0)
2387 /* It's also not true that the constraint will actually start at the
2388 right offset, it may start in some padding. We only care about
2389 setting the constraint to the first actual field it touches, so
2390 walk to find it. */
2391 varinfo_t curr;
2392 for (curr = get_varinfo (result->var); curr; curr = curr->next)
2394 if (offset_overlaps_with_access (curr->offset, curr->size,
2395 result->offset, bitmaxsize))
2397 result->var = curr->id;
2398 break;
2401 /* assert that we found *some* field there. The user couldn't be
2402 accessing *only* padding. */
2403 /* Still the user could access one past the end of an array
2404 embedded in a struct resulting in accessing *only* padding. */
2405 gcc_assert (curr || ref_contains_array_ref (orig_t));
2407 else if (bitmaxsize == 0)
2409 if (dump_file && (dump_flags & TDF_DETAILS))
2410 fprintf (dump_file, "Access to zero-sized part of variable,"
2411 "ignoring\n");
2413 else
2414 if (dump_file && (dump_flags & TDF_DETAILS))
2415 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
2417 result->offset = 0;
2422 /* Dereference the constraint expression CONS, and return the result.
2423 DEREF (ADDRESSOF) = SCALAR
2424 DEREF (SCALAR) = DEREF
2425 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
2426 This is needed so that we can handle dereferencing DEREF constraints. */
2428 static void
2429 do_deref (VEC (ce_s, heap) **constraints)
2431 struct constraint_expr *c;
2432 unsigned int i = 0;
2433 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
2435 if (c->type == SCALAR)
2436 c->type = DEREF;
2437 else if (c->type == ADDRESSOF)
2438 c->type = SCALAR;
2439 else if (c->type == DEREF)
2441 tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
2442 struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
2443 process_constraint (new_constraint (tmplhs, *c));
2444 c->var = tmplhs.var;
2446 else
2447 gcc_unreachable ();
2452 /* Given a tree T, return the constraint expression for it. */
2454 static void
2455 get_constraint_for (tree t, VEC (ce_s, heap) **results)
2457 struct constraint_expr temp;
2459 /* x = integer is all glommed to a single variable, which doesn't
2460 point to anything by itself. That is, of course, unless it is an
2461 integer constant being treated as a pointer, in which case, we
2462 will return that this is really the addressof anything. This
2463 happens below, since it will fall into the default case. The only
2464 case we know something about an integer treated like a pointer is
2465 when it is the NULL pointer, and then we just say it points to
2466 NULL. */
2467 if (TREE_CODE (t) == INTEGER_CST
2468 && !POINTER_TYPE_P (TREE_TYPE (t)))
2470 temp.var = integer_id;
2471 temp.type = SCALAR;
2472 temp.offset = 0;
2473 VEC_safe_push (ce_s, heap, *results, &temp);
2474 return;
2476 else if (TREE_CODE (t) == INTEGER_CST
2477 && integer_zerop (t))
2479 temp.var = nothing_id;
2480 temp.type = ADDRESSOF;
2481 temp.offset = 0;
2482 VEC_safe_push (ce_s, heap, *results, &temp);
2483 return;
2486 switch (TREE_CODE_CLASS (TREE_CODE (t)))
2488 case tcc_expression:
2490 switch (TREE_CODE (t))
2492 case ADDR_EXPR:
2494 struct constraint_expr *c;
2495 unsigned int i;
2496 tree exp = TREE_OPERAND (t, 0);
2497 tree pttype = TREE_TYPE (TREE_TYPE (t));
2499 get_constraint_for (exp, results);
2500 /* Make sure we capture constraints to all elements
2501 of an array. */
2502 if ((handled_component_p (exp)
2503 && ref_contains_array_ref (exp))
2504 || TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE)
2506 struct constraint_expr *origrhs;
2507 varinfo_t origvar;
2508 struct constraint_expr tmp;
2510 gcc_assert (VEC_length (ce_s, *results) == 1);
2511 origrhs = VEC_last (ce_s, *results);
2512 tmp = *origrhs;
2513 VEC_pop (ce_s, *results);
2514 origvar = get_varinfo (origrhs->var);
2515 for (; origvar; origvar = origvar->next)
2517 tmp.var = origvar->id;
2518 VEC_safe_push (ce_s, heap, *results, &tmp);
2521 else if (VEC_length (ce_s, *results) == 1
2522 && (AGGREGATE_TYPE_P (pttype)
2523 || TREE_CODE (pttype) == COMPLEX_TYPE))
2525 struct constraint_expr *origrhs;
2526 varinfo_t origvar;
2527 struct constraint_expr tmp;
2529 gcc_assert (VEC_length (ce_s, *results) == 1);
2530 origrhs = VEC_last (ce_s, *results);
2531 tmp = *origrhs;
2532 VEC_pop (ce_s, *results);
2533 origvar = get_varinfo (origrhs->var);
2534 for (; origvar; origvar = origvar->next)
2536 tmp.var = origvar->id;
2537 VEC_safe_push (ce_s, heap, *results, &tmp);
2541 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
2543 if (c->type == DEREF)
2544 c->type = SCALAR;
2545 else
2546 c->type = ADDRESSOF;
2548 return;
2550 break;
2551 case CALL_EXPR:
2553 /* XXX: In interprocedural mode, if we didn't have the
2554 body, we would need to do *each pointer argument =
2555 &ANYTHING added. */
2556 if (call_expr_flags (t) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA))
2558 varinfo_t vi;
2559 tree heapvar = heapvar_lookup (t);
2561 if (heapvar == NULL)
2563 heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
2564 DECL_EXTERNAL (heapvar) = 1;
2565 if (referenced_vars)
2566 add_referenced_var (heapvar);
2567 heapvar_insert (t, heapvar);
2570 temp.var = create_variable_info_for (heapvar,
2571 alias_get_name (heapvar));
2573 vi = get_varinfo (temp.var);
2574 vi->is_artificial_var = 1;
2575 vi->is_heap_var = 1;
2576 temp.type = ADDRESSOF;
2577 temp.offset = 0;
2578 VEC_safe_push (ce_s, heap, *results, &temp);
2579 return;
2581 /* FALLTHRU */
2582 default:
2584 temp.type = ADDRESSOF;
2585 temp.var = anything_id;
2586 temp.offset = 0;
2587 VEC_safe_push (ce_s, heap, *results, &temp);
2588 return;
2592 case tcc_reference:
2594 switch (TREE_CODE (t))
2596 case INDIRECT_REF:
2598 get_constraint_for (TREE_OPERAND (t, 0), results);
2599 do_deref (results);
2600 return;
2602 case ARRAY_REF:
2603 case ARRAY_RANGE_REF:
2604 case COMPONENT_REF:
2605 get_constraint_for_component_ref (t, results);
2606 return;
2607 default:
2609 temp.type = ADDRESSOF;
2610 temp.var = anything_id;
2611 temp.offset = 0;
2612 VEC_safe_push (ce_s, heap, *results, &temp);
2613 return;
2617 case tcc_unary:
2619 switch (TREE_CODE (t))
2621 case NOP_EXPR:
2622 case CONVERT_EXPR:
2623 case NON_LVALUE_EXPR:
2625 tree op = TREE_OPERAND (t, 0);
2627 /* Cast from non-pointer to pointers are bad news for us.
2628 Anything else, we see through */
2629 if (!(POINTER_TYPE_P (TREE_TYPE (t))
2630 && ! POINTER_TYPE_P (TREE_TYPE (op))))
2632 get_constraint_for (op, results);
2633 return;
2636 /* FALLTHRU */
2638 default:
2640 temp.type = ADDRESSOF;
2641 temp.var = anything_id;
2642 temp.offset = 0;
2643 VEC_safe_push (ce_s, heap, *results, &temp);
2644 return;
2648 case tcc_exceptional:
2650 switch (TREE_CODE (t))
2652 case PHI_NODE:
2654 get_constraint_for (PHI_RESULT (t), results);
2655 return;
2657 break;
2658 case SSA_NAME:
2660 struct constraint_expr temp;
2661 temp = get_constraint_exp_from_ssa_var (t);
2662 VEC_safe_push (ce_s, heap, *results, &temp);
2663 return;
2665 break;
2666 default:
2668 temp.type = ADDRESSOF;
2669 temp.var = anything_id;
2670 temp.offset = 0;
2671 VEC_safe_push (ce_s, heap, *results, &temp);
2672 return;
2676 case tcc_declaration:
2678 struct constraint_expr temp;
2679 temp = get_constraint_exp_from_ssa_var (t);
2680 VEC_safe_push (ce_s, heap, *results, &temp);
2681 return;
2683 default:
2685 temp.type = ADDRESSOF;
2686 temp.var = anything_id;
2687 temp.offset = 0;
2688 VEC_safe_push (ce_s, heap, *results, &temp);
2689 return;
2695 /* Handle the structure copy case where we have a simple structure copy
2696 between LHS and RHS that is of SIZE (in bits)
2698 For each field of the lhs variable (lhsfield)
2699 For each field of the rhs variable at lhsfield.offset (rhsfield)
2700 add the constraint lhsfield = rhsfield
2702 If we fail due to some kind of type unsafety or other thing we
2703 can't handle, return false. We expect the caller to collapse the
2704 variable in that case. */
2706 static bool
2707 do_simple_structure_copy (const struct constraint_expr lhs,
2708 const struct constraint_expr rhs,
2709 const unsigned HOST_WIDE_INT size)
2711 varinfo_t p = get_varinfo (lhs.var);
2712 unsigned HOST_WIDE_INT pstart, last;
2713 pstart = p->offset;
2714 last = p->offset + size;
2715 for (; p && p->offset < last; p = p->next)
2717 varinfo_t q;
2718 struct constraint_expr templhs = lhs;
2719 struct constraint_expr temprhs = rhs;
2720 unsigned HOST_WIDE_INT fieldoffset;
2722 templhs.var = p->id;
2723 q = get_varinfo (temprhs.var);
2724 fieldoffset = p->offset - pstart;
2725 q = first_vi_for_offset (q, q->offset + fieldoffset);
2726 if (!q)
2727 return false;
2728 temprhs.var = q->id;
2729 process_constraint (new_constraint (templhs, temprhs));
2731 return true;
2735 /* Handle the structure copy case where we have a structure copy between a
2736 aggregate on the LHS and a dereference of a pointer on the RHS
2737 that is of SIZE (in bits)
2739 For each field of the lhs variable (lhsfield)
2740 rhs.offset = lhsfield->offset
2741 add the constraint lhsfield = rhs
2744 static void
2745 do_rhs_deref_structure_copy (const struct constraint_expr lhs,
2746 const struct constraint_expr rhs,
2747 const unsigned HOST_WIDE_INT size)
2749 varinfo_t p = get_varinfo (lhs.var);
2750 unsigned HOST_WIDE_INT pstart,last;
2751 pstart = p->offset;
2752 last = p->offset + size;
2754 for (; p && p->offset < last; p = p->next)
2756 varinfo_t q;
2757 struct constraint_expr templhs = lhs;
2758 struct constraint_expr temprhs = rhs;
2759 unsigned HOST_WIDE_INT fieldoffset;
2762 if (templhs.type == SCALAR)
2763 templhs.var = p->id;
2764 else
2765 templhs.offset = p->offset;
2767 q = get_varinfo (temprhs.var);
2768 fieldoffset = p->offset - pstart;
2769 temprhs.offset += fieldoffset;
2770 process_constraint (new_constraint (templhs, temprhs));
2774 /* Handle the structure copy case where we have a structure copy
2775 between a aggregate on the RHS and a dereference of a pointer on
2776 the LHS that is of SIZE (in bits)
2778 For each field of the rhs variable (rhsfield)
2779 lhs.offset = rhsfield->offset
2780 add the constraint lhs = rhsfield
2783 static void
2784 do_lhs_deref_structure_copy (const struct constraint_expr lhs,
2785 const struct constraint_expr rhs,
2786 const unsigned HOST_WIDE_INT size)
2788 varinfo_t p = get_varinfo (rhs.var);
2789 unsigned HOST_WIDE_INT pstart,last;
2790 pstart = p->offset;
2791 last = p->offset + size;
2793 for (; p && p->offset < last; p = p->next)
2795 varinfo_t q;
2796 struct constraint_expr templhs = lhs;
2797 struct constraint_expr temprhs = rhs;
2798 unsigned HOST_WIDE_INT fieldoffset;
2801 if (temprhs.type == SCALAR)
2802 temprhs.var = p->id;
2803 else
2804 temprhs.offset = p->offset;
2806 q = get_varinfo (templhs.var);
2807 fieldoffset = p->offset - pstart;
2808 templhs.offset += fieldoffset;
2809 process_constraint (new_constraint (templhs, temprhs));
2813 /* Sometimes, frontends like to give us bad type information. This
2814 function will collapse all the fields from VAR to the end of VAR,
2815 into VAR, so that we treat those fields as a single variable.
2816 We return the variable they were collapsed into. */
2818 static unsigned int
2819 collapse_rest_of_var (unsigned int var)
2821 varinfo_t currvar = get_varinfo (var);
2822 varinfo_t field;
2824 for (field = currvar->next; field; field = field->next)
2826 if (dump_file)
2827 fprintf (dump_file, "Type safety: Collapsing var %s into %s\n",
2828 field->name, currvar->name);
2830 gcc_assert (!field->collapsed_to);
2831 field->collapsed_to = currvar;
2834 currvar->next = NULL;
2835 currvar->size = currvar->fullsize - currvar->offset;
2837 return currvar->id;
2840 /* Handle aggregate copies by expanding into copies of the respective
2841 fields of the structures. */
2843 static void
2844 do_structure_copy (tree lhsop, tree rhsop)
2846 struct constraint_expr lhs, rhs, tmp;
2847 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
2848 varinfo_t p;
2849 unsigned HOST_WIDE_INT lhssize;
2850 unsigned HOST_WIDE_INT rhssize;
2852 get_constraint_for (lhsop, &lhsc);
2853 get_constraint_for (rhsop, &rhsc);
2854 gcc_assert (VEC_length (ce_s, lhsc) == 1);
2855 gcc_assert (VEC_length (ce_s, rhsc) == 1);
2856 lhs = *(VEC_last (ce_s, lhsc));
2857 rhs = *(VEC_last (ce_s, rhsc));
2859 VEC_free (ce_s, heap, lhsc);
2860 VEC_free (ce_s, heap, rhsc);
2862 /* If we have special var = x, swap it around. */
2863 if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
2865 tmp = lhs;
2866 lhs = rhs;
2867 rhs = tmp;
2870 /* This is fairly conservative for the RHS == ADDRESSOF case, in that it's
2871 possible it's something we could handle. However, most cases falling
2872 into this are dealing with transparent unions, which are slightly
2873 weird. */
2874 if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
2876 rhs.type = ADDRESSOF;
2877 rhs.var = anything_id;
2880 /* If the RHS is a special var, or an addressof, set all the LHS fields to
2881 that special var. */
2882 if (rhs.var <= integer_id)
2884 for (p = get_varinfo (lhs.var); p; p = p->next)
2886 struct constraint_expr templhs = lhs;
2887 struct constraint_expr temprhs = rhs;
2889 if (templhs.type == SCALAR )
2890 templhs.var = p->id;
2891 else
2892 templhs.offset += p->offset;
2893 process_constraint (new_constraint (templhs, temprhs));
2896 else
2898 tree rhstype = TREE_TYPE (rhsop);
2899 tree lhstype = TREE_TYPE (lhsop);
2900 tree rhstypesize;
2901 tree lhstypesize;
2903 lhstypesize = DECL_P (lhsop) ? DECL_SIZE (lhsop) : TYPE_SIZE (lhstype);
2904 rhstypesize = DECL_P (rhsop) ? DECL_SIZE (rhsop) : TYPE_SIZE (rhstype);
2906 /* If we have a variably sized types on the rhs or lhs, and a deref
2907 constraint, add the constraint, lhsconstraint = &ANYTHING.
2908 This is conservatively correct because either the lhs is an unknown
2909 sized var (if the constraint is SCALAR), or the lhs is a DEREF
2910 constraint, and every variable it can point to must be unknown sized
2911 anyway, so we don't need to worry about fields at all. */
2912 if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
2913 || (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
2915 rhs.var = anything_id;
2916 rhs.type = ADDRESSOF;
2917 rhs.offset = 0;
2918 process_constraint (new_constraint (lhs, rhs));
2919 return;
2922 /* The size only really matters insofar as we don't set more or less of
2923 the variable. If we hit an unknown size var, the size should be the
2924 whole darn thing. */
2925 if (get_varinfo (rhs.var)->is_unknown_size_var)
2926 rhssize = ~0;
2927 else
2928 rhssize = TREE_INT_CST_LOW (rhstypesize);
2930 if (get_varinfo (lhs.var)->is_unknown_size_var)
2931 lhssize = ~0;
2932 else
2933 lhssize = TREE_INT_CST_LOW (lhstypesize);
2936 if (rhs.type == SCALAR && lhs.type == SCALAR)
2938 if (!do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize)))
2940 lhs.var = collapse_rest_of_var (lhs.var);
2941 rhs.var = collapse_rest_of_var (rhs.var);
2942 lhs.offset = 0;
2943 rhs.offset = 0;
2944 lhs.type = SCALAR;
2945 rhs.type = SCALAR;
2946 process_constraint (new_constraint (lhs, rhs));
2949 else if (lhs.type != DEREF && rhs.type == DEREF)
2950 do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
2951 else if (lhs.type == DEREF && rhs.type != DEREF)
2952 do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
2953 else
2955 tree pointedtotype = lhstype;
2956 tree tmpvar;
2958 gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
2959 tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
2960 do_structure_copy (tmpvar, rhsop);
2961 do_structure_copy (lhsop, tmpvar);
2966 /* Update related alias information kept in AI. This is used when
2967 building name tags, alias sets and deciding grouping heuristics.
2968 STMT is the statement to process. This function also updates
2969 ADDRESSABLE_VARS. */
2971 static void
2972 update_alias_info (tree stmt, struct alias_info *ai)
2974 bitmap addr_taken;
2975 use_operand_p use_p;
2976 ssa_op_iter iter;
2977 enum escape_type stmt_escape_type = is_escape_site (stmt, ai);
2978 tree op;
2980 /* Mark all the variables whose address are taken by the statement. */
2981 addr_taken = addresses_taken (stmt);
2982 if (addr_taken)
2984 bitmap_ior_into (addressable_vars, addr_taken);
2986 /* If STMT is an escape point, all the addresses taken by it are
2987 call-clobbered. */
2988 if (stmt_escape_type != NO_ESCAPE)
2990 bitmap_iterator bi;
2991 unsigned i;
2993 EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
2995 tree rvar = referenced_var (i);
2996 if (!unmodifiable_var_p (rvar))
2997 mark_call_clobbered (rvar, stmt_escape_type);
3002 /* Process each operand use. If an operand may be aliased, keep
3003 track of how many times it's being used. For pointers, determine
3004 whether they are dereferenced by the statement, or whether their
3005 value escapes, etc. */
3006 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
3008 tree op, var;
3009 var_ann_t v_ann;
3010 struct ptr_info_def *pi;
3011 bool is_store, is_potential_deref;
3012 unsigned num_uses, num_derefs;
3014 op = USE_FROM_PTR (use_p);
3016 /* If STMT is a PHI node, OP may be an ADDR_EXPR. If so, add it
3017 to the set of addressable variables. */
3018 if (TREE_CODE (op) == ADDR_EXPR)
3020 gcc_assert (TREE_CODE (stmt) == PHI_NODE);
3022 /* PHI nodes don't have annotations for pinning the set
3023 of addresses taken, so we collect them here.
3025 FIXME, should we allow PHI nodes to have annotations
3026 so that they can be treated like regular statements?
3027 Currently, they are treated as second-class
3028 statements. */
3029 add_to_addressable_set (TREE_OPERAND (op, 0), &addressable_vars);
3030 continue;
3033 /* Ignore constants. */
3034 if (TREE_CODE (op) != SSA_NAME)
3035 continue;
3037 var = SSA_NAME_VAR (op);
3038 v_ann = var_ann (var);
3040 /* The base variable of an ssa name must be a GIMPLE register, and thus
3041 it cannot be aliased. */
3042 gcc_assert (!may_be_aliased (var));
3044 /* We are only interested in pointers. */
3045 if (!POINTER_TYPE_P (TREE_TYPE (op)))
3046 continue;
3048 pi = get_ptr_info (op);
3050 /* Add OP to AI->PROCESSED_PTRS, if it's not there already. */
3051 if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op)))
3053 SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op));
3054 VEC_safe_push (tree, heap, ai->processed_ptrs, op);
3057 /* If STMT is a PHI node, then it will not have pointer
3058 dereferences and it will not be an escape point. */
3059 if (TREE_CODE (stmt) == PHI_NODE)
3060 continue;
3062 /* Determine whether OP is a dereferenced pointer, and if STMT
3063 is an escape point, whether OP escapes. */
3064 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3066 /* Handle a corner case involving address expressions of the
3067 form '&PTR->FLD'. The problem with these expressions is that
3068 they do not represent a dereference of PTR. However, if some
3069 other transformation propagates them into an INDIRECT_REF
3070 expression, we end up with '*(&PTR->FLD)' which is folded
3071 into 'PTR->FLD'.
3073 So, if the original code had no other dereferences of PTR,
3074 the aliaser will not create memory tags for it, and when
3075 &PTR->FLD gets propagated to INDIRECT_REF expressions, the
3076 memory operations will receive no V_MAY_DEF/VUSE operands.
3078 One solution would be to have count_uses_and_derefs consider
3079 &PTR->FLD a dereference of PTR. But that is wrong, since it
3080 is not really a dereference but an offset calculation.
3082 What we do here is to recognize these special ADDR_EXPR
3083 nodes. Since these expressions are never GIMPLE values (they
3084 are not GIMPLE invariants), they can only appear on the RHS
3085 of an assignment and their base address is always an
3086 INDIRECT_REF expression. */
3087 is_potential_deref = false;
3088 if (TREE_CODE (stmt) == MODIFY_EXPR
3089 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ADDR_EXPR
3090 && !is_gimple_val (TREE_OPERAND (stmt, 1)))
3092 /* If the RHS if of the form &PTR->FLD and PTR == OP, then
3093 this represents a potential dereference of PTR. */
3094 tree rhs = TREE_OPERAND (stmt, 1);
3095 tree base = get_base_address (TREE_OPERAND (rhs, 0));
3096 if (TREE_CODE (base) == INDIRECT_REF
3097 && TREE_OPERAND (base, 0) == op)
3098 is_potential_deref = true;
3101 if (num_derefs > 0 || is_potential_deref)
3103 /* Mark OP as dereferenced. In a subsequent pass,
3104 dereferenced pointers that point to a set of
3105 variables will be assigned a name tag to alias
3106 all the variables OP points to. */
3107 pi->is_dereferenced = 1;
3109 /* Keep track of how many time we've dereferenced each
3110 pointer. */
3111 NUM_REFERENCES_INC (v_ann);
3113 /* If this is a store operation, mark OP as being
3114 dereferenced to store, otherwise mark it as being
3115 dereferenced to load. */
3116 if (is_store)
3117 bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
3118 else
3119 bitmap_set_bit (ai->dereferenced_ptrs_load, DECL_UID (var));
3122 if (stmt_escape_type != NO_ESCAPE && num_derefs < num_uses)
3124 /* If STMT is an escape point and STMT contains at
3125 least one direct use of OP, then the value of OP
3126 escapes and so the pointed-to variables need to
3127 be marked call-clobbered. */
3128 pi->value_escapes_p = 1;
3129 pi->escape_mask |= stmt_escape_type;
3131 /* If the statement makes a function call, assume
3132 that pointer OP will be dereferenced in a store
3133 operation inside the called function. */
3134 if (get_call_expr_in (stmt))
3136 bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
3137 pi->is_dereferenced = 1;
3142 if (TREE_CODE (stmt) == PHI_NODE)
3143 return;
3145 /* Update reference counter for definitions to any
3146 potentially aliased variable. This is used in the alias
3147 grouping heuristics. */
3148 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
3150 tree var = SSA_NAME_VAR (op);
3151 var_ann_t ann = var_ann (var);
3152 bitmap_set_bit (ai->written_vars, DECL_UID (var));
3153 if (may_be_aliased (var))
3154 NUM_REFERENCES_INC (ann);
3158 /* Mark variables in V_MAY_DEF operands as being written to. */
3159 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
3161 tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
3162 bitmap_set_bit (ai->written_vars, DECL_UID (var));
3167 /* Handle pointer arithmetic EXPR when creating aliasing constraints.
3168 Expressions of the type PTR + CST can be handled in two ways:
3170 1- If the constraint for PTR is ADDRESSOF for a non-structure
3171 variable, then we can use it directly because adding or
3172 subtracting a constant may not alter the original ADDRESSOF
3173 constraint (i.e., pointer arithmetic may not legally go outside
3174 an object's boundaries).
3176 2- If the constraint for PTR is ADDRESSOF for a structure variable,
3177 then if CST is a compile-time constant that can be used as an
3178 offset, we can determine which sub-variable will be pointed-to
3179 by the expression.
3181 Return true if the expression is handled. For any other kind of
3182 expression, return false so that each operand can be added as a
3183 separate constraint by the caller. */
3185 static bool
3186 handle_ptr_arith (VEC (ce_s, heap) *lhsc, tree expr)
3188 tree op0, op1;
3189 struct constraint_expr *c, *c2;
3190 unsigned int i = 0;
3191 unsigned int j = 0;
3192 VEC (ce_s, heap) *temp = NULL;
3193 unsigned int rhsoffset = 0;
3195 if (TREE_CODE (expr) != PLUS_EXPR
3196 && TREE_CODE (expr) != MINUS_EXPR)
3197 return false;
3199 op0 = TREE_OPERAND (expr, 0);
3200 op1 = TREE_OPERAND (expr, 1);
3202 get_constraint_for (op0, &temp);
3203 if (POINTER_TYPE_P (TREE_TYPE (op0))
3204 && TREE_CODE (op1) == INTEGER_CST
3205 && TREE_CODE (expr) == PLUS_EXPR)
3207 rhsoffset = TREE_INT_CST_LOW (op1) * BITS_PER_UNIT;
3211 for (i = 0; VEC_iterate (ce_s, lhsc, i, c); i++)
3212 for (j = 0; VEC_iterate (ce_s, temp, j, c2); j++)
3214 if (c2->type == ADDRESSOF && rhsoffset != 0)
3216 varinfo_t temp = get_varinfo (c2->var);
3218 /* An access one after the end of an array is valid,
3219 so simply punt on accesses we cannot resolve. */
3220 temp = first_vi_for_offset (temp, rhsoffset);
3221 if (temp == NULL)
3222 continue;
3223 c2->var = temp->id;
3224 c2->offset = 0;
3226 else
3227 c2->offset = rhsoffset;
3228 process_constraint (new_constraint (*c, *c2));
3231 VEC_free (ce_s, heap, temp);
3233 return true;
3237 /* Walk statement T setting up aliasing constraints according to the
3238 references found in T. This function is the main part of the
3239 constraint builder. AI points to auxiliary alias information used
3240 when building alias sets and computing alias grouping heuristics. */
3242 static void
3243 find_func_aliases (tree origt)
3245 tree t = origt;
3246 VEC(ce_s, heap) *lhsc = NULL;
3247 VEC(ce_s, heap) *rhsc = NULL;
3248 struct constraint_expr *c;
3250 if (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0))
3251 t = TREE_OPERAND (t, 0);
3253 /* Now build constraints expressions. */
3254 if (TREE_CODE (t) == PHI_NODE)
3256 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (PHI_RESULT (t))));
3258 /* Only care about pointers and structures containing
3259 pointers. */
3260 if (POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (t)))
3261 || TREE_CODE (TREE_TYPE (PHI_RESULT (t))) == COMPLEX_TYPE)
3263 int i;
3264 unsigned int j;
3266 /* For a phi node, assign all the arguments to
3267 the result. */
3268 get_constraint_for (PHI_RESULT (t), &lhsc);
3269 for (i = 0; i < PHI_NUM_ARGS (t); i++)
3271 tree rhstype;
3272 tree strippedrhs = PHI_ARG_DEF (t, i);
3274 STRIP_NOPS (strippedrhs);
3275 rhstype = TREE_TYPE (strippedrhs);
3276 get_constraint_for (PHI_ARG_DEF (t, i), &rhsc);
3278 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3280 struct constraint_expr *c2;
3281 while (VEC_length (ce_s, rhsc) > 0)
3283 c2 = VEC_last (ce_s, rhsc);
3284 process_constraint (new_constraint (*c, *c2));
3285 VEC_pop (ce_s, rhsc);
3291 /* In IPA mode, we need to generate constraints to pass call
3292 arguments through their calls. There are two case, either a
3293 modify_expr when we are returning a value, or just a plain
3294 call_expr when we are not. */
3295 else if (in_ipa_mode
3296 && ((TREE_CODE (t) == MODIFY_EXPR
3297 && TREE_CODE (TREE_OPERAND (t, 1)) == CALL_EXPR
3298 && !(call_expr_flags (TREE_OPERAND (t, 1))
3299 & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
3300 || (TREE_CODE (t) == CALL_EXPR
3301 && !(call_expr_flags (t)
3302 & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))))
3304 tree lhsop;
3305 tree rhsop;
3306 unsigned int varid;
3307 tree arglist;
3308 varinfo_t fi;
3309 int i = 1;
3310 tree decl;
3311 if (TREE_CODE (t) == MODIFY_EXPR)
3313 lhsop = TREE_OPERAND (t, 0);
3314 rhsop = TREE_OPERAND (t, 1);
3316 else
3318 lhsop = NULL;
3319 rhsop = t;
3321 decl = get_callee_fndecl (rhsop);
3323 /* If we can directly resolve the function being called, do so.
3324 Otherwise, it must be some sort of indirect expression that
3325 we should still be able to handle. */
3326 if (decl)
3328 varid = get_id_for_tree (decl);
3330 else
3332 decl = TREE_OPERAND (rhsop, 0);
3333 varid = get_id_for_tree (decl);
3336 /* Assign all the passed arguments to the appropriate incoming
3337 parameters of the function. */
3338 fi = get_varinfo (varid);
3339 arglist = TREE_OPERAND (rhsop, 1);
3341 for (;arglist; arglist = TREE_CHAIN (arglist))
3343 tree arg = TREE_VALUE (arglist);
3344 struct constraint_expr lhs ;
3345 struct constraint_expr *rhsp;
3347 get_constraint_for (arg, &rhsc);
3348 if (TREE_CODE (decl) != FUNCTION_DECL)
3350 lhs.type = DEREF;
3351 lhs.var = fi->id;
3352 lhs.offset = i;
3354 else
3356 lhs.type = SCALAR;
3357 lhs.var = first_vi_for_offset (fi, i)->id;
3358 lhs.offset = 0;
3360 while (VEC_length (ce_s, rhsc) != 0)
3362 rhsp = VEC_last (ce_s, rhsc);
3363 process_constraint (new_constraint (lhs, *rhsp));
3364 VEC_pop (ce_s, rhsc);
3366 i++;
3368 /* If we are returning a value, assign it to the result. */
3369 if (lhsop)
3371 struct constraint_expr rhs;
3372 struct constraint_expr *lhsp;
3373 unsigned int j = 0;
3375 get_constraint_for (lhsop, &lhsc);
3376 if (TREE_CODE (decl) != FUNCTION_DECL)
3378 rhs.type = DEREF;
3379 rhs.var = fi->id;
3380 rhs.offset = i;
3382 else
3384 rhs.type = SCALAR;
3385 rhs.var = first_vi_for_offset (fi, i)->id;
3386 rhs.offset = 0;
3388 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3389 process_constraint (new_constraint (*lhsp, rhs));
3392 /* Otherwise, just a regular assignment statement. */
3393 else if (TREE_CODE (t) == MODIFY_EXPR)
3395 tree lhsop = TREE_OPERAND (t, 0);
3396 tree rhsop = TREE_OPERAND (t, 1);
3397 int i;
3399 if ((AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
3400 || TREE_CODE (TREE_TYPE (lhsop)) == COMPLEX_TYPE)
3401 && (AGGREGATE_TYPE_P (TREE_TYPE (rhsop))
3402 || TREE_CODE (TREE_TYPE (lhsop)) == COMPLEX_TYPE))
3404 do_structure_copy (lhsop, rhsop);
3406 else
3408 /* Only care about operations with pointers, structures
3409 containing pointers, dereferences, and call expressions. */
3410 if (POINTER_TYPE_P (TREE_TYPE (lhsop))
3411 || AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
3412 || TREE_CODE (TREE_TYPE (lhsop)) == COMPLEX_TYPE
3413 || TREE_CODE (rhsop) == CALL_EXPR)
3415 get_constraint_for (lhsop, &lhsc);
3416 switch (TREE_CODE_CLASS (TREE_CODE (rhsop)))
3418 /* RHS that consist of unary operations,
3419 exceptional types, or bare decls/constants, get
3420 handled directly by get_constraint_for. */
3421 case tcc_reference:
3422 case tcc_declaration:
3423 case tcc_constant:
3424 case tcc_exceptional:
3425 case tcc_expression:
3426 case tcc_unary:
3428 unsigned int j;
3430 get_constraint_for (rhsop, &rhsc);
3431 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3433 struct constraint_expr *c2;
3434 unsigned int k;
3436 for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
3437 process_constraint (new_constraint (*c, *c2));
3441 break;
3443 case tcc_binary:
3445 /* For pointer arithmetic of the form
3446 PTR + CST, we can simply use PTR's
3447 constraint because pointer arithmetic is
3448 not allowed to go out of bounds. */
3449 if (handle_ptr_arith (lhsc, rhsop))
3450 break;
3452 /* FALLTHRU */
3454 /* Otherwise, walk each operand. Notice that we
3455 can't use the operand interface because we need
3456 to process expressions other than simple operands
3457 (e.g. INDIRECT_REF, ADDR_EXPR, CALL_EXPR). */
3458 default:
3459 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (rhsop)); i++)
3461 tree op = TREE_OPERAND (rhsop, i);
3462 unsigned int j;
3464 gcc_assert (VEC_length (ce_s, rhsc) == 0);
3465 get_constraint_for (op, &rhsc);
3466 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3468 struct constraint_expr *c2;
3469 while (VEC_length (ce_s, rhsc) > 0)
3471 c2 = VEC_last (ce_s, rhsc);
3472 process_constraint (new_constraint (*c, *c2));
3473 VEC_pop (ce_s, rhsc);
3482 /* After promoting variables and computing aliasing we will
3483 need to re-scan most statements. FIXME: Try to minimize the
3484 number of statements re-scanned. It's not really necessary to
3485 re-scan *all* statements. */
3486 mark_stmt_modified (origt);
3487 VEC_free (ce_s, heap, rhsc);
3488 VEC_free (ce_s, heap, lhsc);
3492 /* Find the first varinfo in the same variable as START that overlaps with
3493 OFFSET.
3494 Effectively, walk the chain of fields for the variable START to find the
3495 first field that overlaps with OFFSET.
3496 Return NULL if we can't find one. */
3498 static varinfo_t
3499 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
3501 varinfo_t curr = start;
3502 while (curr)
3504 /* We may not find a variable in the field list with the actual
3505 offset when when we have glommed a structure to a variable.
3506 In that case, however, offset should still be within the size
3507 of the variable. */
3508 if (offset >= curr->offset && offset < (curr->offset + curr->size))
3509 return curr;
3510 curr = curr->next;
3512 return NULL;
3516 /* Insert the varinfo FIELD into the field list for BASE, at the front
3517 of the list. */
3519 static void
3520 insert_into_field_list (varinfo_t base, varinfo_t field)
3522 varinfo_t prev = base;
3523 varinfo_t curr = base->next;
3525 field->next = curr;
3526 prev->next = field;
3529 /* Insert the varinfo FIELD into the field list for BASE, ordered by
3530 offset. */
3532 static void
3533 insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
3535 varinfo_t prev = base;
3536 varinfo_t curr = base->next;
3538 if (curr == NULL)
3540 prev->next = field;
3541 field->next = NULL;
3543 else
3545 while (curr)
3547 if (field->offset <= curr->offset)
3548 break;
3549 prev = curr;
3550 curr = curr->next;
3552 field->next = prev->next;
3553 prev->next = field;
3557 /* qsort comparison function for two fieldoff's PA and PB */
3559 static int
3560 fieldoff_compare (const void *pa, const void *pb)
3562 const fieldoff_s *foa = (const fieldoff_s *)pa;
3563 const fieldoff_s *fob = (const fieldoff_s *)pb;
3564 HOST_WIDE_INT foasize, fobsize;
3566 if (foa->offset != fob->offset)
3567 return foa->offset - fob->offset;
3569 foasize = TREE_INT_CST_LOW (foa->size);
3570 fobsize = TREE_INT_CST_LOW (fob->size);
3571 return foasize - fobsize;
3574 /* Sort a fieldstack according to the field offset and sizes. */
3575 void
3576 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
3578 qsort (VEC_address (fieldoff_s, fieldstack),
3579 VEC_length (fieldoff_s, fieldstack),
3580 sizeof (fieldoff_s),
3581 fieldoff_compare);
3584 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
3585 of TYPE onto fieldstack, recording their offsets along the way.
3586 OFFSET is used to keep track of the offset in this entire structure, rather
3587 than just the immediately containing structure. Returns the number
3588 of fields pushed.
3589 HAS_UNION is set to true if we find a union type as a field of
3590 TYPE. */
3593 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
3594 HOST_WIDE_INT offset, bool *has_union)
3596 tree field;
3597 int count = 0;
3599 if (TREE_CODE (type) == COMPLEX_TYPE)
3601 fieldoff_s *real_part, *img_part;
3602 real_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3603 real_part->type = TREE_TYPE (type);
3604 real_part->size = TYPE_SIZE (TREE_TYPE (type));
3605 real_part->offset = offset;
3606 real_part->decl = NULL_TREE;
3608 img_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3609 img_part->type = TREE_TYPE (type);
3610 img_part->size = TYPE_SIZE (TREE_TYPE (type));
3611 img_part->offset = offset + TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (type)));
3612 img_part->decl = NULL_TREE;
3614 return 2;
3617 if (TREE_CODE (type) == ARRAY_TYPE)
3619 tree sz = TYPE_SIZE (type);
3620 tree elsz = TYPE_SIZE (TREE_TYPE (type));
3621 HOST_WIDE_INT nr;
3622 int i;
3624 if (! sz
3625 || ! host_integerp (sz, 1)
3626 || TREE_INT_CST_LOW (sz) == 0
3627 || ! elsz
3628 || ! host_integerp (elsz, 1)
3629 || TREE_INT_CST_LOW (elsz) == 0)
3630 return 0;
3632 nr = TREE_INT_CST_LOW (sz) / TREE_INT_CST_LOW (elsz);
3633 if (nr > SALIAS_MAX_ARRAY_ELEMENTS)
3634 return 0;
3636 for (i = 0; i < nr; ++i)
3638 bool push = false;
3639 int pushed = 0;
3641 if (has_union
3642 && (TREE_CODE (TREE_TYPE (type)) == QUAL_UNION_TYPE
3643 || TREE_CODE (TREE_TYPE (type)) == UNION_TYPE))
3644 *has_union = true;
3646 if (!AGGREGATE_TYPE_P (TREE_TYPE (type))) /* var_can_have_subvars */
3647 push = true;
3648 else if (!(pushed = push_fields_onto_fieldstack
3649 (TREE_TYPE (type), fieldstack,
3650 offset + i * TREE_INT_CST_LOW (elsz), has_union)))
3651 /* Empty structures may have actual size, like in C++. So
3652 see if we didn't push any subfields and the size is
3653 nonzero, push the field onto the stack */
3654 push = true;
3656 if (push)
3658 fieldoff_s *pair;
3660 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3661 pair->type = TREE_TYPE (type);
3662 pair->size = elsz;
3663 pair->decl = NULL_TREE;
3664 pair->offset = offset + i * TREE_INT_CST_LOW (elsz);
3665 count++;
3667 else
3668 count += pushed;
3671 return count;
3674 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3675 if (TREE_CODE (field) == FIELD_DECL)
3677 bool push = false;
3678 int pushed = 0;
3680 if (has_union
3681 && (TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
3682 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
3683 *has_union = true;
3685 if (!var_can_have_subvars (field))
3686 push = true;
3687 else if (!(pushed = push_fields_onto_fieldstack
3688 (TREE_TYPE (field), fieldstack,
3689 offset + bitpos_of_field (field), has_union))
3690 && DECL_SIZE (field)
3691 && !integer_zerop (DECL_SIZE (field)))
3692 /* Empty structures may have actual size, like in C++. So
3693 see if we didn't push any subfields and the size is
3694 nonzero, push the field onto the stack */
3695 push = true;
3697 if (push)
3699 fieldoff_s *pair;
3701 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
3702 pair->type = TREE_TYPE (field);
3703 pair->size = DECL_SIZE (field);
3704 pair->decl = field;
3705 pair->offset = offset + bitpos_of_field (field);
3706 count++;
3708 else
3709 count += pushed;
3712 return count;
3715 static void
3716 make_constraint_to_anything (varinfo_t vi)
3718 struct constraint_expr lhs, rhs;
3720 lhs.var = vi->id;
3721 lhs.offset = 0;
3722 lhs.type = SCALAR;
3724 rhs.var = anything_id;
3725 rhs.offset =0 ;
3726 rhs.type = ADDRESSOF;
3727 process_constraint (new_constraint (lhs, rhs));
3730 /* Count the number of arguments DECL has, and set IS_VARARGS to true
3731 if it is a varargs function. */
3733 static unsigned int
3734 count_num_arguments (tree decl, bool *is_varargs)
3736 unsigned int i = 0;
3737 tree t;
3739 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
3741 t = TREE_CHAIN (t))
3743 if (TREE_VALUE (t) == void_type_node)
3744 break;
3745 i++;
3748 if (!t)
3749 *is_varargs = true;
3750 return i;
3753 /* Creation function node for DECL, using NAME, and return the index
3754 of the variable we've created for the function. */
3756 static unsigned int
3757 create_function_info_for (tree decl, const char *name)
3759 unsigned int index = VEC_length (varinfo_t, varmap);
3760 varinfo_t vi;
3761 tree arg;
3762 unsigned int i;
3763 bool is_varargs = false;
3765 /* Create the variable info. */
3767 vi = new_var_info (decl, index, name, index);
3768 vi->decl = decl;
3769 vi->offset = 0;
3770 vi->has_union = 0;
3771 vi->size = 1;
3772 vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
3773 insert_id_for_tree (vi->decl, index);
3774 VEC_safe_push (varinfo_t, heap, varmap, vi);
3776 stats.total_vars++;
3778 /* If it's varargs, we don't know how many arguments it has, so we
3779 can't do much.
3781 if (is_varargs)
3783 vi->fullsize = ~0;
3784 vi->size = ~0;
3785 vi->is_unknown_size_var = true;
3786 return index;
3790 arg = DECL_ARGUMENTS (decl);
3792 /* Set up variables for each argument. */
3793 for (i = 1; i < vi->fullsize; i++)
3795 varinfo_t argvi;
3796 const char *newname;
3797 char *tempname;
3798 unsigned int newindex;
3799 tree argdecl = decl;
3801 if (arg)
3802 argdecl = arg;
3804 newindex = VEC_length (varinfo_t, varmap);
3805 asprintf (&tempname, "%s.arg%d", name, i-1);
3806 newname = ggc_strdup (tempname);
3807 free (tempname);
3809 argvi = new_var_info (argdecl, newindex,newname, newindex);
3810 argvi->decl = argdecl;
3811 VEC_safe_push (varinfo_t, heap, varmap, argvi);
3812 argvi->offset = i;
3813 argvi->size = 1;
3814 argvi->fullsize = vi->fullsize;
3815 argvi->has_union = false;
3816 insert_into_field_list_sorted (vi, argvi);
3817 stats.total_vars ++;
3818 if (arg)
3820 insert_id_for_tree (arg, newindex);
3821 arg = TREE_CHAIN (arg);
3825 /* Create a variable for the return var. */
3826 if (DECL_RESULT (decl) != NULL
3827 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
3829 varinfo_t resultvi;
3830 const char *newname;
3831 char *tempname;
3832 unsigned int newindex;
3833 tree resultdecl = decl;
3835 vi->fullsize ++;
3837 if (DECL_RESULT (decl))
3838 resultdecl = DECL_RESULT (decl);
3840 newindex = VEC_length (varinfo_t, varmap);
3841 asprintf (&tempname, "%s.result", name);
3842 newname = ggc_strdup (tempname);
3843 free (tempname);
3845 resultvi = new_var_info (resultdecl, newindex, newname, newindex);
3846 resultvi->decl = resultdecl;
3847 VEC_safe_push (varinfo_t, heap, varmap, resultvi);
3848 resultvi->offset = i;
3849 resultvi->size = 1;
3850 resultvi->fullsize = vi->fullsize;
3851 resultvi->has_union = false;
3852 insert_into_field_list_sorted (vi, resultvi);
3853 stats.total_vars ++;
3854 if (DECL_RESULT (decl))
3855 insert_id_for_tree (DECL_RESULT (decl), newindex);
3857 return index;
3861 /* Return true if FIELDSTACK contains fields that overlap.
3862 FIELDSTACK is assumed to be sorted by offset. */
3864 static bool
3865 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
3867 fieldoff_s *fo = NULL;
3868 unsigned int i;
3869 HOST_WIDE_INT lastoffset = -1;
3871 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
3873 if (fo->offset == lastoffset)
3874 return true;
3875 lastoffset = fo->offset;
3877 return false;
3879 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
3880 This will also create any varinfo structures necessary for fields
3881 of DECL. */
3883 static unsigned int
3884 create_variable_info_for (tree decl, const char *name)
3886 unsigned int index = VEC_length (varinfo_t, varmap);
3887 varinfo_t vi;
3888 tree decltype = TREE_TYPE (decl);
3889 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decltype);
3890 bool notokay = false;
3891 bool hasunion;
3892 bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
3893 VEC (fieldoff_s,heap) *fieldstack = NULL;
3895 if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
3896 return create_function_info_for (decl, name);
3898 hasunion = TREE_CODE (decltype) == UNION_TYPE
3899 || TREE_CODE (decltype) == QUAL_UNION_TYPE;
3900 if (var_can_have_subvars (decl) && use_field_sensitive && !hasunion)
3902 push_fields_onto_fieldstack (decltype, &fieldstack, 0, &hasunion);
3903 if (hasunion)
3905 VEC_free (fieldoff_s, heap, fieldstack);
3906 notokay = true;
3911 /* If the variable doesn't have subvars, we may end up needing to
3912 sort the field list and create fake variables for all the
3913 fields. */
3914 vi = new_var_info (decl, index, name, index);
3915 vi->decl = decl;
3916 vi->offset = 0;
3917 vi->has_union = hasunion;
3918 if (!declsize
3919 || TREE_CODE (declsize) != INTEGER_CST
3920 || TREE_CODE (decltype) == UNION_TYPE
3921 || TREE_CODE (decltype) == QUAL_UNION_TYPE)
3923 vi->is_unknown_size_var = true;
3924 vi->fullsize = ~0;
3925 vi->size = ~0;
3927 else
3929 vi->fullsize = TREE_INT_CST_LOW (declsize);
3930 vi->size = vi->fullsize;
3933 insert_id_for_tree (vi->decl, index);
3934 VEC_safe_push (varinfo_t, heap, varmap, vi);
3935 if (is_global && (!flag_whole_program || !in_ipa_mode))
3936 make_constraint_to_anything (vi);
3938 stats.total_vars++;
3939 if (use_field_sensitive
3940 && !notokay
3941 && !vi->is_unknown_size_var
3942 && var_can_have_subvars (decl)
3943 && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
3945 unsigned int newindex = VEC_length (varinfo_t, varmap);
3946 fieldoff_s *fo = NULL;
3947 unsigned int i;
3949 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
3951 if (! fo->size
3952 || TREE_CODE (fo->size) != INTEGER_CST
3953 || fo->offset < 0)
3955 notokay = true;
3956 break;
3960 /* We can't sort them if we have a field with a variable sized type,
3961 which will make notokay = true. In that case, we are going to return
3962 without creating varinfos for the fields anyway, so sorting them is a
3963 waste to boot. */
3964 if (!notokay)
3966 sort_fieldstack (fieldstack);
3967 /* Due to some C++ FE issues, like PR 22488, we might end up
3968 what appear to be overlapping fields even though they,
3969 in reality, do not overlap. Until the C++ FE is fixed,
3970 we will simply disable field-sensitivity for these cases. */
3971 notokay = check_for_overlaps (fieldstack);
3975 if (VEC_length (fieldoff_s, fieldstack) != 0)
3976 fo = VEC_index (fieldoff_s, fieldstack, 0);
3978 if (fo == NULL || notokay)
3980 vi->is_unknown_size_var = 1;
3981 vi->fullsize = ~0;
3982 vi->size = ~0;
3983 VEC_free (fieldoff_s, heap, fieldstack);
3984 return index;
3987 vi->size = TREE_INT_CST_LOW (fo->size);
3988 vi->offset = fo->offset;
3989 for (i = VEC_length (fieldoff_s, fieldstack) - 1;
3990 i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
3991 i--)
3993 varinfo_t newvi;
3994 const char *newname = "NULL";
3995 char *tempname;
3997 newindex = VEC_length (varinfo_t, varmap);
3998 if (dump_file)
4000 if (fo->decl)
4001 asprintf (&tempname, "%s.%s",
4002 vi->name, alias_get_name (fo->decl));
4003 else
4004 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC,
4005 vi->name, fo->offset);
4006 newname = ggc_strdup (tempname);
4007 free (tempname);
4009 newvi = new_var_info (decl, newindex, newname, newindex);
4010 newvi->offset = fo->offset;
4011 newvi->size = TREE_INT_CST_LOW (fo->size);
4012 newvi->fullsize = vi->fullsize;
4013 insert_into_field_list (vi, newvi);
4014 VEC_safe_push (varinfo_t, heap, varmap, newvi);
4015 if (is_global && (!flag_whole_program || !in_ipa_mode))
4016 make_constraint_to_anything (newvi);
4018 stats.total_vars++;
4020 VEC_free (fieldoff_s, heap, fieldstack);
4022 return index;
4025 /* Print out the points-to solution for VAR to FILE. */
4027 void
4028 dump_solution_for_var (FILE *file, unsigned int var)
4030 varinfo_t vi = get_varinfo (var);
4031 unsigned int i;
4032 bitmap_iterator bi;
4034 fprintf (file, "%s = { ", vi->name);
4035 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (vi->node)->solution, 0, i, bi)
4037 fprintf (file, "%s ", get_varinfo (i)->name);
4039 fprintf (file, "}\n");
4042 /* Print the points-to solution for VAR to stdout. */
4044 void
4045 debug_solution_for_var (unsigned int var)
4047 dump_solution_for_var (stdout, var);
4051 /* Create varinfo structures for all of the variables in the
4052 function for intraprocedural mode. */
4054 static void
4055 intra_create_variable_infos (void)
4057 tree t;
4059 /* For each incoming argument arg, ARG = &ANYTHING or a dummy variable if
4060 flag_argument_noalias > 2. */
4061 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
4063 struct constraint_expr lhs;
4064 varinfo_t p;
4066 lhs.offset = 0;
4067 lhs.type = SCALAR;
4068 lhs.var = create_variable_info_for (t, alias_get_name (t));
4070 /* With flag_argument_noalias greater than two means that the incoming
4071 argument cannot alias anything except for itself so create a HEAP
4072 variable. */
4073 if (POINTER_TYPE_P (TREE_TYPE (t))
4074 && flag_argument_noalias > 2)
4076 varinfo_t vi;
4077 struct constraint_expr rhs;
4078 tree heapvar = heapvar_lookup (t);
4079 unsigned int id;
4080 if (heapvar == NULL_TREE)
4082 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
4083 "PARM_NOALIAS");
4084 DECL_EXTERNAL (heapvar) = 1;
4085 if (referenced_vars)
4086 add_referenced_var (heapvar);
4087 heapvar_insert (t, heapvar);
4089 id = create_variable_info_for (heapvar,
4090 alias_get_name (heapvar));
4091 vi = get_varinfo (id);
4092 vi->is_artificial_var = 1;
4093 vi->is_heap_var = 1;
4094 rhs.var = id;
4095 rhs.type = ADDRESSOF;
4096 rhs.offset = 0;
4097 for (p = get_varinfo (lhs.var); p; p = p->next)
4099 struct constraint_expr temp = lhs;
4100 temp.var = p->id;
4101 process_constraint (new_constraint (temp, rhs));
4104 else
4105 for (p = get_varinfo (lhs.var); p; p = p->next)
4106 make_constraint_to_anything (p);
4110 /* Set bits in INTO corresponding to the variable uids in solution set
4111 FROM */
4113 static void
4114 set_uids_in_ptset (bitmap into, bitmap from)
4116 unsigned int i;
4117 bitmap_iterator bi;
4118 subvar_t sv;
4120 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4122 varinfo_t vi = get_varinfo (i);
4124 /* The only artificial variables that are allowed in a may-alias
4125 set are heap variables. */
4126 if (vi->is_artificial_var && !vi->is_heap_var)
4127 continue;
4129 if (vi->has_union && get_subvars_for_var (vi->decl) != NULL)
4131 /* Variables containing unions may need to be converted to
4132 their SFT's, because SFT's can have unions and we cannot. */
4133 for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
4134 bitmap_set_bit (into, DECL_UID (sv->var));
4136 else if (TREE_CODE (vi->decl) == VAR_DECL
4137 || TREE_CODE (vi->decl) == PARM_DECL)
4139 if (var_can_have_subvars (vi->decl)
4140 && get_subvars_for_var (vi->decl))
4142 /* If VI->DECL is an aggregate for which we created
4143 SFTs, add the SFT corresponding to VI->OFFSET. */
4144 tree sft = get_subvar_at (vi->decl, vi->offset);
4145 if (sft)
4146 bitmap_set_bit (into, DECL_UID (sft));
4148 else
4150 /* Otherwise, just add VI->DECL to the alias set. */
4151 bitmap_set_bit (into, DECL_UID (vi->decl));
4158 static bool have_alias_info = false;
4160 /* Given a pointer variable P, fill in its points-to set, or return
4161 false if we can't. */
4163 bool
4164 find_what_p_points_to (tree p)
4166 unsigned int id = 0;
4167 tree lookup_p = p;
4169 if (!have_alias_info)
4170 return false;
4172 /* For parameters, get at the points-to set for the actual parm
4173 decl. */
4174 if (TREE_CODE (p) == SSA_NAME
4175 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
4176 && default_def (SSA_NAME_VAR (p)) == p)
4177 lookup_p = SSA_NAME_VAR (p);
4179 if (lookup_id_for_tree (lookup_p, &id))
4181 varinfo_t vi = get_varinfo (id);
4183 if (vi->is_artificial_var)
4184 return false;
4186 /* See if this is a field or a structure. */
4187 if (vi->size != vi->fullsize)
4189 /* Nothing currently asks about structure fields directly,
4190 but when they do, we need code here to hand back the
4191 points-to set. */
4192 if (!var_can_have_subvars (vi->decl)
4193 || get_subvars_for_var (vi->decl) == NULL)
4194 return false;
4196 else
4198 struct ptr_info_def *pi = get_ptr_info (p);
4199 unsigned int i;
4200 bitmap_iterator bi;
4202 /* This variable may have been collapsed, let's get the real
4203 variable. */
4204 vi = get_varinfo (vi->node);
4206 /* Translate artificial variables into SSA_NAME_PTR_INFO
4207 attributes. */
4208 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4210 varinfo_t vi = get_varinfo (i);
4212 if (vi->is_artificial_var)
4214 /* FIXME. READONLY should be handled better so that
4215 flow insensitive aliasing can disregard writable
4216 aliases. */
4217 if (vi->id == nothing_id)
4218 pi->pt_null = 1;
4219 else if (vi->id == anything_id)
4220 pi->pt_anything = 1;
4221 else if (vi->id == readonly_id)
4222 pi->pt_anything = 1;
4223 else if (vi->id == integer_id)
4224 pi->pt_anything = 1;
4225 else if (vi->is_heap_var)
4226 pi->pt_global_mem = 1;
4230 if (pi->pt_anything)
4231 return false;
4233 if (!pi->pt_vars)
4234 pi->pt_vars = BITMAP_GGC_ALLOC ();
4236 set_uids_in_ptset (pi->pt_vars, vi->solution);
4238 if (bitmap_empty_p (pi->pt_vars))
4239 pi->pt_vars = NULL;
4241 return true;
4245 return false;
4250 /* Dump points-to information to OUTFILE. */
4252 void
4253 dump_sa_points_to_info (FILE *outfile)
4255 unsigned int i;
4257 fprintf (outfile, "\nPoints-to sets\n\n");
4259 if (dump_flags & TDF_STATS)
4261 fprintf (outfile, "Stats:\n");
4262 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
4263 fprintf (outfile, "Statically unified vars: %d\n",
4264 stats.unified_vars_static);
4265 fprintf (outfile, "Collapsed vars: %d\n", stats.collapsed_vars);
4266 fprintf (outfile, "Dynamically unified vars: %d\n",
4267 stats.unified_vars_dynamic);
4268 fprintf (outfile, "Iterations: %d\n", stats.iterations);
4269 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
4272 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
4273 dump_solution_for_var (outfile, i);
4277 /* Debug points-to information to stderr. */
4279 void
4280 debug_sa_points_to_info (void)
4282 dump_sa_points_to_info (stderr);
4286 /* Initialize the always-existing constraint variables for NULL
4287 ANYTHING, READONLY, and INTEGER */
4289 static void
4290 init_base_vars (void)
4292 struct constraint_expr lhs, rhs;
4294 /* Create the NULL variable, used to represent that a variable points
4295 to NULL. */
4296 nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
4297 var_nothing = new_var_info (nothing_tree, 0, "NULL", 0);
4298 insert_id_for_tree (nothing_tree, 0);
4299 var_nothing->is_artificial_var = 1;
4300 var_nothing->offset = 0;
4301 var_nothing->size = ~0;
4302 var_nothing->fullsize = ~0;
4303 var_nothing->is_special_var = 1;
4304 nothing_id = 0;
4305 VEC_safe_push (varinfo_t, heap, varmap, var_nothing);
4307 /* Create the ANYTHING variable, used to represent that a variable
4308 points to some unknown piece of memory. */
4309 anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
4310 var_anything = new_var_info (anything_tree, 1, "ANYTHING", 1);
4311 insert_id_for_tree (anything_tree, 1);
4312 var_anything->is_artificial_var = 1;
4313 var_anything->size = ~0;
4314 var_anything->offset = 0;
4315 var_anything->next = NULL;
4316 var_anything->fullsize = ~0;
4317 var_anything->is_special_var = 1;
4318 anything_id = 1;
4320 /* Anything points to anything. This makes deref constraints just
4321 work in the presence of linked list and other p = *p type loops,
4322 by saying that *ANYTHING = ANYTHING. */
4323 VEC_safe_push (varinfo_t, heap, varmap, var_anything);
4324 lhs.type = SCALAR;
4325 lhs.var = anything_id;
4326 lhs.offset = 0;
4327 rhs.type = ADDRESSOF;
4328 rhs.var = anything_id;
4329 rhs.offset = 0;
4330 var_anything->address_taken = true;
4332 /* This specifically does not use process_constraint because
4333 process_constraint ignores all anything = anything constraints, since all
4334 but this one are redundant. */
4335 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
4337 /* Create the READONLY variable, used to represent that a variable
4338 points to readonly memory. */
4339 readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
4340 var_readonly = new_var_info (readonly_tree, 2, "READONLY", 2);
4341 var_readonly->is_artificial_var = 1;
4342 var_readonly->offset = 0;
4343 var_readonly->size = ~0;
4344 var_readonly->fullsize = ~0;
4345 var_readonly->next = NULL;
4346 var_readonly->is_special_var = 1;
4347 insert_id_for_tree (readonly_tree, 2);
4348 readonly_id = 2;
4349 VEC_safe_push (varinfo_t, heap, varmap, var_readonly);
4351 /* readonly memory points to anything, in order to make deref
4352 easier. In reality, it points to anything the particular
4353 readonly variable can point to, but we don't track this
4354 separately. */
4355 lhs.type = SCALAR;
4356 lhs.var = readonly_id;
4357 lhs.offset = 0;
4358 rhs.type = ADDRESSOF;
4359 rhs.var = anything_id;
4360 rhs.offset = 0;
4362 process_constraint (new_constraint (lhs, rhs));
4364 /* Create the INTEGER variable, used to represent that a variable points
4365 to an INTEGER. */
4366 integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
4367 var_integer = new_var_info (integer_tree, 3, "INTEGER", 3);
4368 insert_id_for_tree (integer_tree, 3);
4369 var_integer->is_artificial_var = 1;
4370 var_integer->size = ~0;
4371 var_integer->fullsize = ~0;
4372 var_integer->offset = 0;
4373 var_integer->next = NULL;
4374 var_integer->is_special_var = 1;
4375 integer_id = 3;
4376 VEC_safe_push (varinfo_t, heap, varmap, var_integer);
4378 /* *INTEGER = ANYTHING, because we don't know where a dereference of a random
4379 integer will point to. */
4380 lhs.type = SCALAR;
4381 lhs.var = integer_id;
4382 lhs.offset = 0;
4383 rhs.type = ADDRESSOF;
4384 rhs.var = anything_id;
4385 rhs.offset = 0;
4386 process_constraint (new_constraint (lhs, rhs));
4389 /* Return true if we actually need to solve the constraint graph in order to
4390 get our points-to sets. This is false when, for example, no addresses are
4391 taken other than special vars, or all points-to sets with members already
4392 contain the anything variable and there are no predecessors for other
4393 sets. */
4395 static bool
4396 need_to_solve (void)
4398 int i;
4399 varinfo_t v;
4400 bool found_address_taken = false;
4401 bool found_non_anything = false;
4403 for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
4405 if (v->is_special_var)
4406 continue;
4408 if (v->address_taken)
4409 found_address_taken = true;
4411 if (v->solution
4412 && !bitmap_empty_p (v->solution)
4413 && !bitmap_bit_p (v->solution, anything_id))
4414 found_non_anything = true;
4415 else if (bitmap_empty_p (v->solution)
4416 && (VEC_length (constraint_edge_t, graph->preds[v->id]) != 0
4417 || (graph->zero_weight_preds[v->id] && !bitmap_empty_p (graph->zero_weight_preds[v->id]))))
4418 found_non_anything = true;
4420 if (found_address_taken && found_non_anything)
4421 return true;
4424 return false;
4427 /* Initialize things necessary to perform PTA */
4429 static void
4430 init_alias_vars (void)
4432 bitmap_obstack_initialize (&ptabitmap_obstack);
4433 bitmap_obstack_initialize (&predbitmap_obstack);
4435 constraint_pool = create_alloc_pool ("Constraint pool",
4436 sizeof (struct constraint), 30);
4437 variable_info_pool = create_alloc_pool ("Variable info pool",
4438 sizeof (struct variable_info), 30);
4439 constraint_edge_pool = create_alloc_pool ("Constraint edges",
4440 sizeof (struct constraint_edge), 30);
4442 constraints = VEC_alloc (constraint_t, heap, 8);
4443 varmap = VEC_alloc (varinfo_t, heap, 8);
4444 id_for_tree = htab_create (10, tree_id_hash, tree_id_eq, free);
4445 memset (&stats, 0, sizeof (stats));
4447 init_base_vars ();
4451 /* Create points-to sets for the current function. See the comments
4452 at the start of the file for an algorithmic overview. */
4454 void
4455 compute_points_to_sets (struct alias_info *ai)
4457 basic_block bb;
4459 timevar_push (TV_TREE_PTA);
4461 init_alias_vars ();
4463 intra_create_variable_infos ();
4465 /* Now walk all statements and derive aliases. */
4466 FOR_EACH_BB (bb)
4468 block_stmt_iterator bsi;
4469 tree phi;
4471 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
4473 if (is_gimple_reg (PHI_RESULT (phi)))
4475 find_func_aliases (phi);
4476 /* Update various related attributes like escaped
4477 addresses, pointer dereferences for loads and stores.
4478 This is used when creating name tags and alias
4479 sets. */
4480 update_alias_info (phi, ai);
4484 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4486 tree stmt = bsi_stmt (bsi);
4487 find_func_aliases (stmt);
4488 /* Update various related attributes like escaped
4489 addresses, pointer dereferences for loads and stores.
4490 This is used when creating name tags and alias
4491 sets. */
4492 update_alias_info (stmt, ai);
4496 build_constraint_graph ();
4498 if (dump_file)
4500 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
4501 dump_constraints (dump_file);
4504 if (1 || need_to_solve ())
4506 if (dump_file)
4507 fprintf (dump_file,
4508 "\nCollapsing static cycles and doing variable "
4509 "substitution:\n");
4511 find_and_collapse_graph_cycles (graph, false);
4512 perform_var_substitution (graph);
4514 if (dump_file)
4515 fprintf (dump_file, "\nSolving graph:\n");
4517 solve_graph (graph);
4520 if (dump_file)
4521 dump_sa_points_to_info (dump_file);
4523 have_alias_info = true;
4525 timevar_pop (TV_TREE_PTA);
4529 /* Delete created points-to sets. */
4531 void
4532 delete_points_to_sets (void)
4534 varinfo_t v;
4535 int i;
4537 htab_delete (id_for_tree);
4538 bitmap_obstack_release (&ptabitmap_obstack);
4539 bitmap_obstack_release (&predbitmap_obstack);
4540 VEC_free (constraint_t, heap, constraints);
4542 for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
4544 VEC_free (constraint_edge_t, heap, graph->succs[i]);
4545 VEC_free (constraint_edge_t, heap, graph->preds[i]);
4546 VEC_free (constraint_t, heap, v->complex);
4548 free (graph->zero_weight_preds);
4549 free (graph->zero_weight_succs);
4550 free (graph->succs);
4551 free (graph->preds);
4552 free (graph);
4554 VEC_free (varinfo_t, heap, varmap);
4555 free_alloc_pool (variable_info_pool);
4556 free_alloc_pool (constraint_pool);
4557 free_alloc_pool (constraint_edge_pool);
4559 have_alias_info = false;
4562 /* Return true if we should execute IPA PTA. */
4563 static bool
4564 gate_ipa_pta (void)
4566 return (flag_unit_at_a_time != 0
4567 && flag_ipa_pta
4568 /* Don't bother doing anything if the program has errors. */
4569 && !(errorcount || sorrycount));
4572 /* Execute the driver for IPA PTA. */
4573 static unsigned int
4574 ipa_pta_execute (void)
4576 struct cgraph_node *node;
4577 in_ipa_mode = 1;
4578 init_alias_heapvars ();
4579 init_alias_vars ();
4581 for (node = cgraph_nodes; node; node = node->next)
4583 if (!node->analyzed || cgraph_is_master_clone (node))
4585 unsigned int varid;
4587 varid = create_function_info_for (node->decl,
4588 cgraph_node_name (node));
4589 if (node->local.externally_visible)
4591 varinfo_t fi = get_varinfo (varid);
4592 for (; fi; fi = fi->next)
4593 make_constraint_to_anything (fi);
4597 for (node = cgraph_nodes; node; node = node->next)
4599 if (node->analyzed && cgraph_is_master_clone (node))
4601 struct function *cfun = DECL_STRUCT_FUNCTION (node->decl);
4602 basic_block bb;
4603 tree old_func_decl = current_function_decl;
4604 if (dump_file)
4605 fprintf (dump_file,
4606 "Generating constraints for %s\n",
4607 cgraph_node_name (node));
4608 push_cfun (cfun);
4609 current_function_decl = node->decl;
4611 FOR_EACH_BB_FN (bb, cfun)
4613 block_stmt_iterator bsi;
4614 tree phi;
4616 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
4618 if (is_gimple_reg (PHI_RESULT (phi)))
4620 find_func_aliases (phi);
4624 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4626 tree stmt = bsi_stmt (bsi);
4627 find_func_aliases (stmt);
4630 current_function_decl = old_func_decl;
4631 pop_cfun ();
4633 else
4635 /* Make point to anything. */
4639 build_constraint_graph ();
4641 if (dump_file)
4643 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
4644 dump_constraints (dump_file);
4647 if (need_to_solve ())
4649 if (dump_file)
4650 fprintf (dump_file,
4651 "\nCollapsing static cycles and doing variable "
4652 "substitution:\n");
4654 find_and_collapse_graph_cycles (graph, false);
4655 perform_var_substitution (graph);
4657 if (dump_file)
4658 fprintf (dump_file, "\nSolving graph:\n");
4660 solve_graph (graph);
4663 if (dump_file)
4664 dump_sa_points_to_info (dump_file);
4665 in_ipa_mode = 0;
4666 delete_alias_heapvars ();
4667 delete_points_to_sets ();
4668 return 0;
4671 struct tree_opt_pass pass_ipa_pta =
4673 "pta", /* name */
4674 gate_ipa_pta, /* gate */
4675 ipa_pta_execute, /* execute */
4676 NULL, /* sub */
4677 NULL, /* next */
4678 0, /* static_pass_number */
4679 TV_IPA_PTA, /* tv_id */
4680 0, /* properties_required */
4681 0, /* properties_provided */
4682 0, /* properties_destroyed */
4683 0, /* todo_flags_start */
4684 0, /* todo_flags_finish */
4685 0 /* letter */
4688 /* Initialize the heapvar for statement mapping. */
4689 void
4690 init_alias_heapvars (void)
4692 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq, NULL);
4695 void
4696 delete_alias_heapvars (void)
4698 htab_delete (heapvar_for_stmt);
4702 #include "gt-tree-ssa-structalias.h"