* config/m68k/m68k.md (bungt_rev): New pattern.
[official-gcc.git] / gcc / ifcvt.c
blob987a2fbe0bdc6842acdc0a604f2bcadf31bb286a
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
48 #ifndef HAVE_conditional_execution
49 #define HAVE_conditional_execution 0
50 #endif
51 #ifndef HAVE_conditional_move
52 #define HAVE_conditional_move 0
53 #endif
54 #ifndef HAVE_incscc
55 #define HAVE_incscc 0
56 #endif
57 #ifndef HAVE_decscc
58 #define HAVE_decscc 0
59 #endif
60 #ifndef HAVE_trap
61 #define HAVE_trap 0
62 #endif
63 #ifndef HAVE_conditional_trap
64 #define HAVE_conditional_trap 0
65 #endif
67 #ifndef MAX_CONDITIONAL_EXECUTE
68 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
69 #endif
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made which require life information to be updated. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* True if life data ok at present. */
87 static bool life_data_ok;
89 /* Forward references. */
90 static int count_bb_insns (basic_block);
91 static bool cheap_bb_rtx_cost_p (basic_block, int);
92 static rtx first_active_insn (basic_block);
93 static rtx last_active_insn (basic_block, int);
94 static basic_block block_fallthru (basic_block);
95 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
96 static rtx cond_exec_get_condition (rtx);
97 static int cond_exec_process_if_block (ce_if_block_t *, int);
98 static rtx noce_get_condition (rtx, rtx *);
99 static int noce_operand_ok (rtx);
100 static int noce_process_if_block (ce_if_block_t *);
101 static int process_if_block (ce_if_block_t *);
102 static void merge_if_block (ce_if_block_t *);
103 static int find_cond_trap (basic_block, edge, edge);
104 static basic_block find_if_header (basic_block, int);
105 static int block_jumps_and_fallthru_p (basic_block, basic_block);
106 static int find_if_block (ce_if_block_t *);
107 static int find_if_case_1 (basic_block, edge, edge);
108 static int find_if_case_2 (basic_block, edge, edge);
109 static int find_memory (rtx *, void *);
110 static int dead_or_predicable (basic_block, basic_block, basic_block,
111 basic_block, int);
112 static void noce_emit_move_insn (rtx, rtx);
113 static rtx block_has_only_trap (basic_block);
115 /* Count the number of non-jump active insns in BB. */
117 static int
118 count_bb_insns (basic_block bb)
120 int count = 0;
121 rtx insn = BB_HEAD (bb);
123 while (1)
125 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
126 count++;
128 if (insn == BB_END (bb))
129 break;
130 insn = NEXT_INSN (insn);
133 return count;
136 /* Determine whether the total insn_rtx_cost on non-jump insns in
137 basic block BB is less than MAX_COST. This function returns
138 false if the cost of any instruction could not be estimated. */
140 static bool
141 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
146 while (1)
148 if (NONJUMP_INSN_P (insn))
150 int cost = insn_rtx_cost (PATTERN (insn));
151 if (cost == 0)
152 return false;
154 /* If this instruction is the load or set of a "stack" register,
155 such as a floating point register on x87, then the cost of
156 speculatively executing this insn may need to include
157 the additional cost of popping its result off of the
158 register stack. Unfortunately, correctly recognizing and
159 accounting for this additional overhead is tricky, so for
160 now we simply prohibit such speculative execution. */
161 #ifdef STACK_REGS
163 rtx set = single_set (insn);
164 if (set && STACK_REG_P (SET_DEST (set)))
165 return false;
167 #endif
169 count += cost;
170 if (count >= max_cost)
171 return false;
173 else if (CALL_P (insn))
174 return false;
176 if (insn == BB_END (bb))
177 break;
178 insn = NEXT_INSN (insn);
181 return true;
184 /* Return the first non-jump active insn in the basic block. */
186 static rtx
187 first_active_insn (basic_block bb)
189 rtx insn = BB_HEAD (bb);
191 if (LABEL_P (insn))
193 if (insn == BB_END (bb))
194 return NULL_RTX;
195 insn = NEXT_INSN (insn);
198 while (NOTE_P (insn))
200 if (insn == BB_END (bb))
201 return NULL_RTX;
202 insn = NEXT_INSN (insn);
205 if (JUMP_P (insn))
206 return NULL_RTX;
208 return insn;
211 /* Return the last non-jump active (non-jump) insn in the basic block. */
213 static rtx
214 last_active_insn (basic_block bb, int skip_use_p)
216 rtx insn = BB_END (bb);
217 rtx head = BB_HEAD (bb);
219 while (NOTE_P (insn)
220 || JUMP_P (insn)
221 || (skip_use_p
222 && NONJUMP_INSN_P (insn)
223 && GET_CODE (PATTERN (insn)) == USE))
225 if (insn == head)
226 return NULL_RTX;
227 insn = PREV_INSN (insn);
230 if (LABEL_P (insn))
231 return NULL_RTX;
233 return insn;
236 /* Return the basic block reached by falling though the basic block BB. */
238 static basic_block
239 block_fallthru (basic_block bb)
241 edge e;
242 edge_iterator ei;
244 FOR_EACH_EDGE (e, ei, bb->succs)
245 if (e->flags & EDGE_FALLTHRU)
246 break;
248 return (e) ? e->dest : NULL_BLOCK;
251 /* Go through a bunch of insns, converting them to conditional
252 execution format if possible. Return TRUE if all of the non-note
253 insns were processed. */
255 static int
256 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
257 /* if block information */rtx start,
258 /* first insn to look at */rtx end,
259 /* last insn to look at */rtx test,
260 /* conditional execution test */rtx prob_val,
261 /* probability of branch taken. */int mod_ok)
263 int must_be_last = FALSE;
264 rtx insn;
265 rtx xtest;
266 rtx pattern;
268 if (!start || !end)
269 return FALSE;
271 for (insn = start; ; insn = NEXT_INSN (insn))
273 if (NOTE_P (insn))
274 goto insn_done;
276 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
278 /* Remove USE insns that get in the way. */
279 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
281 /* ??? Ug. Actually unlinking the thing is problematic,
282 given what we'd have to coordinate with our callers. */
283 SET_INSN_DELETED (insn);
284 goto insn_done;
287 /* Last insn wasn't last? */
288 if (must_be_last)
289 return FALSE;
291 if (modified_in_p (test, insn))
293 if (!mod_ok)
294 return FALSE;
295 must_be_last = TRUE;
298 /* Now build the conditional form of the instruction. */
299 pattern = PATTERN (insn);
300 xtest = copy_rtx (test);
302 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
303 two conditions. */
304 if (GET_CODE (pattern) == COND_EXEC)
306 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
307 return FALSE;
309 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
310 COND_EXEC_TEST (pattern));
311 pattern = COND_EXEC_CODE (pattern);
314 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
316 /* If the machine needs to modify the insn being conditionally executed,
317 say for example to force a constant integer operand into a temp
318 register, do so here. */
319 #ifdef IFCVT_MODIFY_INSN
320 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
321 if (! pattern)
322 return FALSE;
323 #endif
325 validate_change (insn, &PATTERN (insn), pattern, 1);
327 if (CALL_P (insn) && prob_val)
328 validate_change (insn, &REG_NOTES (insn),
329 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
330 REG_NOTES (insn)), 1);
332 insn_done:
333 if (insn == end)
334 break;
337 return TRUE;
340 /* Return the condition for a jump. Do not do any special processing. */
342 static rtx
343 cond_exec_get_condition (rtx jump)
345 rtx test_if, cond;
347 if (any_condjump_p (jump))
348 test_if = SET_SRC (pc_set (jump));
349 else
350 return NULL_RTX;
351 cond = XEXP (test_if, 0);
353 /* If this branches to JUMP_LABEL when the condition is false,
354 reverse the condition. */
355 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
356 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
358 enum rtx_code rev = reversed_comparison_code (cond, jump);
359 if (rev == UNKNOWN)
360 return NULL_RTX;
362 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
363 XEXP (cond, 1));
366 return cond;
369 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
370 to conditional execution. Return TRUE if we were successful at
371 converting the block. */
373 static int
374 cond_exec_process_if_block (ce_if_block_t * ce_info,
375 /* if block information */int do_multiple_p)
377 basic_block test_bb = ce_info->test_bb; /* last test block */
378 basic_block then_bb = ce_info->then_bb; /* THEN */
379 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
380 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
381 rtx then_start; /* first insn in THEN block */
382 rtx then_end; /* last insn + 1 in THEN block */
383 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
384 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
385 int max; /* max # of insns to convert. */
386 int then_mod_ok; /* whether conditional mods are ok in THEN */
387 rtx true_expr; /* test for else block insns */
388 rtx false_expr; /* test for then block insns */
389 rtx true_prob_val; /* probability of else block */
390 rtx false_prob_val; /* probability of then block */
391 int n_insns;
392 enum rtx_code false_code;
394 /* If test is comprised of && or || elements, and we've failed at handling
395 all of them together, just use the last test if it is the special case of
396 && elements without an ELSE block. */
397 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
399 if (else_bb || ! ce_info->and_and_p)
400 return FALSE;
402 ce_info->test_bb = test_bb = ce_info->last_test_bb;
403 ce_info->num_multiple_test_blocks = 0;
404 ce_info->num_and_and_blocks = 0;
405 ce_info->num_or_or_blocks = 0;
408 /* Find the conditional jump to the ELSE or JOIN part, and isolate
409 the test. */
410 test_expr = cond_exec_get_condition (BB_END (test_bb));
411 if (! test_expr)
412 return FALSE;
414 /* If the conditional jump is more than just a conditional jump,
415 then we can not do conditional execution conversion on this block. */
416 if (! onlyjump_p (BB_END (test_bb)))
417 return FALSE;
419 /* Collect the bounds of where we're to search, skipping any labels, jumps
420 and notes at the beginning and end of the block. Then count the total
421 number of insns and see if it is small enough to convert. */
422 then_start = first_active_insn (then_bb);
423 then_end = last_active_insn (then_bb, TRUE);
424 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
425 max = MAX_CONDITIONAL_EXECUTE;
427 if (else_bb)
429 max *= 2;
430 else_start = first_active_insn (else_bb);
431 else_end = last_active_insn (else_bb, TRUE);
432 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
435 if (n_insns > max)
436 return FALSE;
438 /* Map test_expr/test_jump into the appropriate MD tests to use on
439 the conditionally executed code. */
441 true_expr = test_expr;
443 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
444 if (false_code != UNKNOWN)
445 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
446 XEXP (true_expr, 0), XEXP (true_expr, 1));
447 else
448 false_expr = NULL_RTX;
450 #ifdef IFCVT_MODIFY_TESTS
451 /* If the machine description needs to modify the tests, such as setting a
452 conditional execution register from a comparison, it can do so here. */
453 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
455 /* See if the conversion failed. */
456 if (!true_expr || !false_expr)
457 goto fail;
458 #endif
460 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
461 if (true_prob_val)
463 true_prob_val = XEXP (true_prob_val, 0);
464 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
466 else
467 false_prob_val = NULL_RTX;
469 /* If we have && or || tests, do them here. These tests are in the adjacent
470 blocks after the first block containing the test. */
471 if (ce_info->num_multiple_test_blocks > 0)
473 basic_block bb = test_bb;
474 basic_block last_test_bb = ce_info->last_test_bb;
476 if (! false_expr)
477 goto fail;
481 rtx start, end;
482 rtx t, f;
483 enum rtx_code f_code;
485 bb = block_fallthru (bb);
486 start = first_active_insn (bb);
487 end = last_active_insn (bb, TRUE);
488 if (start
489 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
490 false_prob_val, FALSE))
491 goto fail;
493 /* If the conditional jump is more than just a conditional jump, then
494 we can not do conditional execution conversion on this block. */
495 if (! onlyjump_p (BB_END (bb)))
496 goto fail;
498 /* Find the conditional jump and isolate the test. */
499 t = cond_exec_get_condition (BB_END (bb));
500 if (! t)
501 goto fail;
503 f_code = reversed_comparison_code (t, BB_END (bb));
504 if (f_code == UNKNOWN)
505 goto fail;
507 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
508 if (ce_info->and_and_p)
510 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
511 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
513 else
515 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
516 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
519 /* If the machine description needs to modify the tests, such as
520 setting a conditional execution register from a comparison, it can
521 do so here. */
522 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
523 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
525 /* See if the conversion failed. */
526 if (!t || !f)
527 goto fail;
528 #endif
530 true_expr = t;
531 false_expr = f;
533 while (bb != last_test_bb);
536 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
537 on then THEN block. */
538 then_mod_ok = (else_bb == NULL_BLOCK);
540 /* Go through the THEN and ELSE blocks converting the insns if possible
541 to conditional execution. */
543 if (then_end
544 && (! false_expr
545 || ! cond_exec_process_insns (ce_info, then_start, then_end,
546 false_expr, false_prob_val,
547 then_mod_ok)))
548 goto fail;
550 if (else_bb && else_end
551 && ! cond_exec_process_insns (ce_info, else_start, else_end,
552 true_expr, true_prob_val, TRUE))
553 goto fail;
555 /* If we cannot apply the changes, fail. Do not go through the normal fail
556 processing, since apply_change_group will call cancel_changes. */
557 if (! apply_change_group ())
559 #ifdef IFCVT_MODIFY_CANCEL
560 /* Cancel any machine dependent changes. */
561 IFCVT_MODIFY_CANCEL (ce_info);
562 #endif
563 return FALSE;
566 #ifdef IFCVT_MODIFY_FINAL
567 /* Do any machine dependent final modifications. */
568 IFCVT_MODIFY_FINAL (ce_info);
569 #endif
571 /* Conversion succeeded. */
572 if (dump_file)
573 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
574 n_insns, (n_insns == 1) ? " was" : "s were");
576 /* Merge the blocks! */
577 merge_if_block (ce_info);
578 cond_exec_changed_p = TRUE;
579 return TRUE;
581 fail:
582 #ifdef IFCVT_MODIFY_CANCEL
583 /* Cancel any machine dependent changes. */
584 IFCVT_MODIFY_CANCEL (ce_info);
585 #endif
587 cancel_changes (0);
588 return FALSE;
591 /* Used by noce_process_if_block to communicate with its subroutines.
593 The subroutines know that A and B may be evaluated freely. They
594 know that X is a register. They should insert new instructions
595 before cond_earliest. */
597 struct noce_if_info
599 basic_block test_bb;
600 rtx insn_a, insn_b;
601 rtx x, a, b;
602 rtx jump, cond, cond_earliest;
603 /* True if "b" was originally evaluated unconditionally. */
604 bool b_unconditional;
607 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
608 static int noce_try_move (struct noce_if_info *);
609 static int noce_try_store_flag (struct noce_if_info *);
610 static int noce_try_addcc (struct noce_if_info *);
611 static int noce_try_store_flag_constants (struct noce_if_info *);
612 static int noce_try_store_flag_mask (struct noce_if_info *);
613 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
614 rtx, rtx, rtx);
615 static int noce_try_cmove (struct noce_if_info *);
616 static int noce_try_cmove_arith (struct noce_if_info *);
617 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
618 static int noce_try_minmax (struct noce_if_info *);
619 static int noce_try_abs (struct noce_if_info *);
620 static int noce_try_sign_mask (struct noce_if_info *);
622 /* Helper function for noce_try_store_flag*. */
624 static rtx
625 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
626 int normalize)
628 rtx cond = if_info->cond;
629 int cond_complex;
630 enum rtx_code code;
632 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
633 || ! general_operand (XEXP (cond, 1), VOIDmode));
635 /* If earliest == jump, or when the condition is complex, try to
636 build the store_flag insn directly. */
638 if (cond_complex)
639 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
641 if (reversep)
642 code = reversed_comparison_code (cond, if_info->jump);
643 else
644 code = GET_CODE (cond);
646 if ((if_info->cond_earliest == if_info->jump || cond_complex)
647 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
649 rtx tmp;
651 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
652 XEXP (cond, 1));
653 tmp = gen_rtx_SET (VOIDmode, x, tmp);
655 start_sequence ();
656 tmp = emit_insn (tmp);
658 if (recog_memoized (tmp) >= 0)
660 tmp = get_insns ();
661 end_sequence ();
662 emit_insn (tmp);
664 if_info->cond_earliest = if_info->jump;
666 return x;
669 end_sequence ();
672 /* Don't even try if the comparison operands or the mode of X are weird. */
673 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
674 return NULL_RTX;
676 return emit_store_flag (x, code, XEXP (cond, 0),
677 XEXP (cond, 1), VOIDmode,
678 (code == LTU || code == LEU
679 || code == GEU || code == GTU), normalize);
682 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
683 X is the destination/target and Y is the value to copy. */
685 static void
686 noce_emit_move_insn (rtx x, rtx y)
688 enum machine_mode outmode;
689 rtx outer, inner;
690 int bitpos;
692 if (GET_CODE (x) != STRICT_LOW_PART)
694 rtx seq, insn, target;
695 optab ot;
697 start_sequence ();
698 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
699 otherwise construct a suitable SET pattern ourselves. */
700 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
701 ? emit_move_insn (x, y)
702 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
703 seq = get_insns ();
704 end_sequence();
706 if (recog_memoized (insn) <= 0)
708 if (GET_CODE (x) == ZERO_EXTRACT)
710 rtx op = XEXP (x, 0);
711 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
712 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
714 /* store_bit_field expects START to be relative to
715 BYTES_BIG_ENDIAN and adjusts this value for machines with
716 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
717 invoke store_bit_field again it is necessary to have the START
718 value from the first call. */
719 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
721 if (MEM_P (op))
722 start = BITS_PER_UNIT - start - size;
723 else
725 gcc_assert (REG_P (op));
726 start = BITS_PER_WORD - start - size;
730 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
731 store_bit_field (op, size, start, GET_MODE (x), y);
732 return;
735 switch (GET_RTX_CLASS (GET_CODE (y)))
737 case RTX_UNARY:
738 ot = code_to_optab[GET_CODE (y)];
739 if (ot)
741 start_sequence ();
742 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
743 if (target != NULL_RTX)
745 if (target != x)
746 emit_move_insn (x, target);
747 seq = get_insns ();
749 end_sequence ();
751 break;
753 case RTX_BIN_ARITH:
754 case RTX_COMM_ARITH:
755 ot = code_to_optab[GET_CODE (y)];
756 if (ot)
758 start_sequence ();
759 target = expand_binop (GET_MODE (y), ot,
760 XEXP (y, 0), XEXP (y, 1),
761 x, 0, OPTAB_DIRECT);
762 if (target != NULL_RTX)
764 if (target != x)
765 emit_move_insn (x, target);
766 seq = get_insns ();
768 end_sequence ();
770 break;
772 default:
773 break;
777 emit_insn (seq);
778 return;
781 outer = XEXP (x, 0);
782 inner = XEXP (outer, 0);
783 outmode = GET_MODE (outer);
784 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
785 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
788 /* Return sequence of instructions generated by if conversion. This
789 function calls end_sequence() to end the current stream, ensures
790 that are instructions are unshared, recognizable non-jump insns.
791 On failure, this function returns a NULL_RTX. */
793 static rtx
794 end_ifcvt_sequence (struct noce_if_info *if_info)
796 rtx insn;
797 rtx seq = get_insns ();
799 set_used_flags (if_info->x);
800 set_used_flags (if_info->cond);
801 unshare_all_rtl_in_chain (seq);
802 end_sequence ();
804 /* Make sure that all of the instructions emitted are recognizable,
805 and that we haven't introduced a new jump instruction.
806 As an exercise for the reader, build a general mechanism that
807 allows proper placement of required clobbers. */
808 for (insn = seq; insn; insn = NEXT_INSN (insn))
809 if (JUMP_P (insn)
810 || recog_memoized (insn) == -1)
811 return NULL_RTX;
813 return seq;
816 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
817 "if (a == b) x = a; else x = b" into "x = b". */
819 static int
820 noce_try_move (struct noce_if_info *if_info)
822 rtx cond = if_info->cond;
823 enum rtx_code code = GET_CODE (cond);
824 rtx y, seq;
826 if (code != NE && code != EQ)
827 return FALSE;
829 /* This optimization isn't valid if either A or B could be a NaN
830 or a signed zero. */
831 if (HONOR_NANS (GET_MODE (if_info->x))
832 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
833 return FALSE;
835 /* Check whether the operands of the comparison are A and in
836 either order. */
837 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
838 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
839 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
840 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
842 y = (code == EQ) ? if_info->a : if_info->b;
844 /* Avoid generating the move if the source is the destination. */
845 if (! rtx_equal_p (if_info->x, y))
847 start_sequence ();
848 noce_emit_move_insn (if_info->x, y);
849 seq = end_ifcvt_sequence (if_info);
850 if (!seq)
851 return FALSE;
853 emit_insn_before_setloc (seq, if_info->jump,
854 INSN_LOCATOR (if_info->insn_a));
856 return TRUE;
858 return FALSE;
861 /* Convert "if (test) x = 1; else x = 0".
863 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
864 tried in noce_try_store_flag_constants after noce_try_cmove has had
865 a go at the conversion. */
867 static int
868 noce_try_store_flag (struct noce_if_info *if_info)
870 int reversep;
871 rtx target, seq;
873 if (GET_CODE (if_info->b) == CONST_INT
874 && INTVAL (if_info->b) == STORE_FLAG_VALUE
875 && if_info->a == const0_rtx)
876 reversep = 0;
877 else if (if_info->b == const0_rtx
878 && GET_CODE (if_info->a) == CONST_INT
879 && INTVAL (if_info->a) == STORE_FLAG_VALUE
880 && (reversed_comparison_code (if_info->cond, if_info->jump)
881 != UNKNOWN))
882 reversep = 1;
883 else
884 return FALSE;
886 start_sequence ();
888 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
889 if (target)
891 if (target != if_info->x)
892 noce_emit_move_insn (if_info->x, target);
894 seq = end_ifcvt_sequence (if_info);
895 if (! seq)
896 return FALSE;
898 emit_insn_before_setloc (seq, if_info->jump,
899 INSN_LOCATOR (if_info->insn_a));
900 return TRUE;
902 else
904 end_sequence ();
905 return FALSE;
909 /* Convert "if (test) x = a; else x = b", for A and B constant. */
911 static int
912 noce_try_store_flag_constants (struct noce_if_info *if_info)
914 rtx target, seq;
915 int reversep;
916 HOST_WIDE_INT itrue, ifalse, diff, tmp;
917 int normalize, can_reverse;
918 enum machine_mode mode;
920 if (! no_new_pseudos
921 && GET_CODE (if_info->a) == CONST_INT
922 && GET_CODE (if_info->b) == CONST_INT)
924 mode = GET_MODE (if_info->x);
925 ifalse = INTVAL (if_info->a);
926 itrue = INTVAL (if_info->b);
928 /* Make sure we can represent the difference between the two values. */
929 if ((itrue - ifalse > 0)
930 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
931 return FALSE;
933 diff = trunc_int_for_mode (itrue - ifalse, mode);
935 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
936 != UNKNOWN);
938 reversep = 0;
939 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
940 normalize = 0;
941 else if (ifalse == 0 && exact_log2 (itrue) >= 0
942 && (STORE_FLAG_VALUE == 1
943 || BRANCH_COST >= 2))
944 normalize = 1;
945 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
946 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
947 normalize = 1, reversep = 1;
948 else if (itrue == -1
949 && (STORE_FLAG_VALUE == -1
950 || BRANCH_COST >= 2))
951 normalize = -1;
952 else if (ifalse == -1 && can_reverse
953 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
954 normalize = -1, reversep = 1;
955 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
956 || BRANCH_COST >= 3)
957 normalize = -1;
958 else
959 return FALSE;
961 if (reversep)
963 tmp = itrue; itrue = ifalse; ifalse = tmp;
964 diff = trunc_int_for_mode (-diff, mode);
967 start_sequence ();
968 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
969 if (! target)
971 end_sequence ();
972 return FALSE;
975 /* if (test) x = 3; else x = 4;
976 => x = 3 + (test == 0); */
977 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
979 target = expand_simple_binop (mode,
980 (diff == STORE_FLAG_VALUE
981 ? PLUS : MINUS),
982 GEN_INT (ifalse), target, if_info->x, 0,
983 OPTAB_WIDEN);
986 /* if (test) x = 8; else x = 0;
987 => x = (test != 0) << 3; */
988 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
990 target = expand_simple_binop (mode, ASHIFT,
991 target, GEN_INT (tmp), if_info->x, 0,
992 OPTAB_WIDEN);
995 /* if (test) x = -1; else x = b;
996 => x = -(test != 0) | b; */
997 else if (itrue == -1)
999 target = expand_simple_binop (mode, IOR,
1000 target, GEN_INT (ifalse), if_info->x, 0,
1001 OPTAB_WIDEN);
1004 /* if (test) x = a; else x = b;
1005 => x = (-(test != 0) & (b - a)) + a; */
1006 else
1008 target = expand_simple_binop (mode, AND,
1009 target, GEN_INT (diff), if_info->x, 0,
1010 OPTAB_WIDEN);
1011 if (target)
1012 target = expand_simple_binop (mode, PLUS,
1013 target, GEN_INT (ifalse),
1014 if_info->x, 0, OPTAB_WIDEN);
1017 if (! target)
1019 end_sequence ();
1020 return FALSE;
1023 if (target != if_info->x)
1024 noce_emit_move_insn (if_info->x, target);
1026 seq = end_ifcvt_sequence (if_info);
1027 if (!seq)
1028 return FALSE;
1030 emit_insn_before_setloc (seq, if_info->jump,
1031 INSN_LOCATOR (if_info->insn_a));
1032 return TRUE;
1035 return FALSE;
1038 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1039 similarly for "foo--". */
1041 static int
1042 noce_try_addcc (struct noce_if_info *if_info)
1044 rtx target, seq;
1045 int subtract, normalize;
1047 if (! no_new_pseudos
1048 && GET_CODE (if_info->a) == PLUS
1049 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1050 && (reversed_comparison_code (if_info->cond, if_info->jump)
1051 != UNKNOWN))
1053 rtx cond = if_info->cond;
1054 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1056 /* First try to use addcc pattern. */
1057 if (general_operand (XEXP (cond, 0), VOIDmode)
1058 && general_operand (XEXP (cond, 1), VOIDmode))
1060 start_sequence ();
1061 target = emit_conditional_add (if_info->x, code,
1062 XEXP (cond, 0),
1063 XEXP (cond, 1),
1064 VOIDmode,
1065 if_info->b,
1066 XEXP (if_info->a, 1),
1067 GET_MODE (if_info->x),
1068 (code == LTU || code == GEU
1069 || code == LEU || code == GTU));
1070 if (target)
1072 if (target != if_info->x)
1073 noce_emit_move_insn (if_info->x, target);
1075 seq = end_ifcvt_sequence (if_info);
1076 if (!seq)
1077 return FALSE;
1079 emit_insn_before_setloc (seq, if_info->jump,
1080 INSN_LOCATOR (if_info->insn_a));
1081 return TRUE;
1083 end_sequence ();
1086 /* If that fails, construct conditional increment or decrement using
1087 setcc. */
1088 if (BRANCH_COST >= 2
1089 && (XEXP (if_info->a, 1) == const1_rtx
1090 || XEXP (if_info->a, 1) == constm1_rtx))
1092 start_sequence ();
1093 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1094 subtract = 0, normalize = 0;
1095 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1096 subtract = 1, normalize = 0;
1097 else
1098 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1101 target = noce_emit_store_flag (if_info,
1102 gen_reg_rtx (GET_MODE (if_info->x)),
1103 1, normalize);
1105 if (target)
1106 target = expand_simple_binop (GET_MODE (if_info->x),
1107 subtract ? MINUS : PLUS,
1108 if_info->b, target, if_info->x,
1109 0, OPTAB_WIDEN);
1110 if (target)
1112 if (target != if_info->x)
1113 noce_emit_move_insn (if_info->x, target);
1115 seq = end_ifcvt_sequence (if_info);
1116 if (!seq)
1117 return FALSE;
1119 emit_insn_before_setloc (seq, if_info->jump,
1120 INSN_LOCATOR (if_info->insn_a));
1121 return TRUE;
1123 end_sequence ();
1127 return FALSE;
1130 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1132 static int
1133 noce_try_store_flag_mask (struct noce_if_info *if_info)
1135 rtx target, seq;
1136 int reversep;
1138 reversep = 0;
1139 if (! no_new_pseudos
1140 && (BRANCH_COST >= 2
1141 || STORE_FLAG_VALUE == -1)
1142 && ((if_info->a == const0_rtx
1143 && rtx_equal_p (if_info->b, if_info->x))
1144 || ((reversep = (reversed_comparison_code (if_info->cond,
1145 if_info->jump)
1146 != UNKNOWN))
1147 && if_info->b == const0_rtx
1148 && rtx_equal_p (if_info->a, if_info->x))))
1150 start_sequence ();
1151 target = noce_emit_store_flag (if_info,
1152 gen_reg_rtx (GET_MODE (if_info->x)),
1153 reversep, -1);
1154 if (target)
1155 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1156 if_info->x,
1157 target, if_info->x, 0,
1158 OPTAB_WIDEN);
1160 if (target)
1162 if (target != if_info->x)
1163 noce_emit_move_insn (if_info->x, target);
1165 seq = end_ifcvt_sequence (if_info);
1166 if (!seq)
1167 return FALSE;
1169 emit_insn_before_setloc (seq, if_info->jump,
1170 INSN_LOCATOR (if_info->insn_a));
1171 return TRUE;
1174 end_sequence ();
1177 return FALSE;
1180 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1182 static rtx
1183 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1184 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1186 /* If earliest == jump, try to build the cmove insn directly.
1187 This is helpful when combine has created some complex condition
1188 (like for alpha's cmovlbs) that we can't hope to regenerate
1189 through the normal interface. */
1191 if (if_info->cond_earliest == if_info->jump)
1193 rtx tmp;
1195 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1196 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1197 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1199 start_sequence ();
1200 tmp = emit_insn (tmp);
1202 if (recog_memoized (tmp) >= 0)
1204 tmp = get_insns ();
1205 end_sequence ();
1206 emit_insn (tmp);
1208 return x;
1211 end_sequence ();
1214 /* Don't even try if the comparison operands are weird. */
1215 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1216 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1217 return NULL_RTX;
1219 #if HAVE_conditional_move
1220 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1221 vtrue, vfalse, GET_MODE (x),
1222 (code == LTU || code == GEU
1223 || code == LEU || code == GTU));
1224 #else
1225 /* We'll never get here, as noce_process_if_block doesn't call the
1226 functions involved. Ifdef code, however, should be discouraged
1227 because it leads to typos in the code not selected. However,
1228 emit_conditional_move won't exist either. */
1229 return NULL_RTX;
1230 #endif
1233 /* Try only simple constants and registers here. More complex cases
1234 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1235 has had a go at it. */
1237 static int
1238 noce_try_cmove (struct noce_if_info *if_info)
1240 enum rtx_code code;
1241 rtx target, seq;
1243 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1244 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1246 start_sequence ();
1248 code = GET_CODE (if_info->cond);
1249 target = noce_emit_cmove (if_info, if_info->x, code,
1250 XEXP (if_info->cond, 0),
1251 XEXP (if_info->cond, 1),
1252 if_info->a, if_info->b);
1254 if (target)
1256 if (target != if_info->x)
1257 noce_emit_move_insn (if_info->x, target);
1259 seq = end_ifcvt_sequence (if_info);
1260 if (!seq)
1261 return FALSE;
1263 emit_insn_before_setloc (seq, if_info->jump,
1264 INSN_LOCATOR (if_info->insn_a));
1265 return TRUE;
1267 else
1269 end_sequence ();
1270 return FALSE;
1274 return FALSE;
1277 /* Try more complex cases involving conditional_move. */
1279 static int
1280 noce_try_cmove_arith (struct noce_if_info *if_info)
1282 rtx a = if_info->a;
1283 rtx b = if_info->b;
1284 rtx x = if_info->x;
1285 rtx orig_a, orig_b;
1286 rtx insn_a, insn_b;
1287 rtx tmp, target;
1288 int is_mem = 0;
1289 int insn_cost;
1290 enum rtx_code code;
1292 /* A conditional move from two memory sources is equivalent to a
1293 conditional on their addresses followed by a load. Don't do this
1294 early because it'll screw alias analysis. Note that we've
1295 already checked for no side effects. */
1296 if (! no_new_pseudos && cse_not_expected
1297 && MEM_P (a) && MEM_P (b)
1298 && BRANCH_COST >= 5)
1300 a = XEXP (a, 0);
1301 b = XEXP (b, 0);
1302 x = gen_reg_rtx (Pmode);
1303 is_mem = 1;
1306 /* ??? We could handle this if we knew that a load from A or B could
1307 not fault. This is also true if we've already loaded
1308 from the address along the path from ENTRY. */
1309 else if (may_trap_p (a) || may_trap_p (b))
1310 return FALSE;
1312 /* if (test) x = a + b; else x = c - d;
1313 => y = a + b;
1314 x = c - d;
1315 if (test)
1316 x = y;
1319 code = GET_CODE (if_info->cond);
1320 insn_a = if_info->insn_a;
1321 insn_b = if_info->insn_b;
1323 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1324 if insn_rtx_cost can't be estimated. */
1325 if (insn_a)
1327 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1328 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1329 return FALSE;
1331 else
1333 insn_cost = 0;
1336 if (insn_b) {
1337 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1338 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1339 return FALSE;
1342 /* Possibly rearrange operands to make things come out more natural. */
1343 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1345 int reversep = 0;
1346 if (rtx_equal_p (b, x))
1347 reversep = 1;
1348 else if (general_operand (b, GET_MODE (b)))
1349 reversep = 1;
1351 if (reversep)
1353 code = reversed_comparison_code (if_info->cond, if_info->jump);
1354 tmp = a, a = b, b = tmp;
1355 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1359 start_sequence ();
1361 orig_a = a;
1362 orig_b = b;
1364 /* If either operand is complex, load it into a register first.
1365 The best way to do this is to copy the original insn. In this
1366 way we preserve any clobbers etc that the insn may have had.
1367 This is of course not possible in the IS_MEM case. */
1368 if (! general_operand (a, GET_MODE (a)))
1370 rtx set;
1372 if (no_new_pseudos)
1373 goto end_seq_and_fail;
1375 if (is_mem)
1377 tmp = gen_reg_rtx (GET_MODE (a));
1378 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1380 else if (! insn_a)
1381 goto end_seq_and_fail;
1382 else
1384 a = gen_reg_rtx (GET_MODE (a));
1385 tmp = copy_rtx (insn_a);
1386 set = single_set (tmp);
1387 SET_DEST (set) = a;
1388 tmp = emit_insn (PATTERN (tmp));
1390 if (recog_memoized (tmp) < 0)
1391 goto end_seq_and_fail;
1393 if (! general_operand (b, GET_MODE (b)))
1395 rtx set, last;
1397 if (no_new_pseudos)
1398 goto end_seq_and_fail;
1400 if (is_mem)
1402 tmp = gen_reg_rtx (GET_MODE (b));
1403 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1405 else if (! insn_b)
1406 goto end_seq_and_fail;
1407 else
1409 b = gen_reg_rtx (GET_MODE (b));
1410 tmp = copy_rtx (insn_b);
1411 set = single_set (tmp);
1412 SET_DEST (set) = b;
1413 tmp = PATTERN (tmp);
1416 /* If insn to set up A clobbers any registers B depends on, try to
1417 swap insn that sets up A with the one that sets up B. If even
1418 that doesn't help, punt. */
1419 last = get_last_insn ();
1420 if (last && modified_in_p (orig_b, last))
1422 tmp = emit_insn_before (tmp, get_insns ());
1423 if (modified_in_p (orig_a, tmp))
1424 goto end_seq_and_fail;
1426 else
1427 tmp = emit_insn (tmp);
1429 if (recog_memoized (tmp) < 0)
1430 goto end_seq_and_fail;
1433 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1434 XEXP (if_info->cond, 1), a, b);
1436 if (! target)
1437 goto end_seq_and_fail;
1439 /* If we're handling a memory for above, emit the load now. */
1440 if (is_mem)
1442 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1444 /* Copy over flags as appropriate. */
1445 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1446 MEM_VOLATILE_P (tmp) = 1;
1447 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1448 MEM_IN_STRUCT_P (tmp) = 1;
1449 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1450 MEM_SCALAR_P (tmp) = 1;
1451 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1452 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1453 set_mem_align (tmp,
1454 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1456 noce_emit_move_insn (if_info->x, tmp);
1458 else if (target != x)
1459 noce_emit_move_insn (x, target);
1461 tmp = end_ifcvt_sequence (if_info);
1462 if (!tmp)
1463 return FALSE;
1465 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1466 return TRUE;
1468 end_seq_and_fail:
1469 end_sequence ();
1470 return FALSE;
1473 /* For most cases, the simplified condition we found is the best
1474 choice, but this is not the case for the min/max/abs transforms.
1475 For these we wish to know that it is A or B in the condition. */
1477 static rtx
1478 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1479 rtx *earliest)
1481 rtx cond, set, insn;
1482 int reverse;
1484 /* If target is already mentioned in the known condition, return it. */
1485 if (reg_mentioned_p (target, if_info->cond))
1487 *earliest = if_info->cond_earliest;
1488 return if_info->cond;
1491 set = pc_set (if_info->jump);
1492 cond = XEXP (SET_SRC (set), 0);
1493 reverse
1494 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1495 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1497 /* If we're looking for a constant, try to make the conditional
1498 have that constant in it. There are two reasons why it may
1499 not have the constant we want:
1501 1. GCC may have needed to put the constant in a register, because
1502 the target can't compare directly against that constant. For
1503 this case, we look for a SET immediately before the comparison
1504 that puts a constant in that register.
1506 2. GCC may have canonicalized the conditional, for example
1507 replacing "if x < 4" with "if x <= 3". We can undo that (or
1508 make equivalent types of changes) to get the constants we need
1509 if they're off by one in the right direction. */
1511 if (GET_CODE (target) == CONST_INT)
1513 enum rtx_code code = GET_CODE (if_info->cond);
1514 rtx op_a = XEXP (if_info->cond, 0);
1515 rtx op_b = XEXP (if_info->cond, 1);
1516 rtx prev_insn;
1518 /* First, look to see if we put a constant in a register. */
1519 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1520 if (prev_insn
1521 && INSN_P (prev_insn)
1522 && GET_CODE (PATTERN (prev_insn)) == SET)
1524 rtx src = find_reg_equal_equiv_note (prev_insn);
1525 if (!src)
1526 src = SET_SRC (PATTERN (prev_insn));
1527 if (GET_CODE (src) == CONST_INT)
1529 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1530 op_a = src;
1531 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1532 op_b = src;
1534 if (GET_CODE (op_a) == CONST_INT)
1536 rtx tmp = op_a;
1537 op_a = op_b;
1538 op_b = tmp;
1539 code = swap_condition (code);
1544 /* Now, look to see if we can get the right constant by
1545 adjusting the conditional. */
1546 if (GET_CODE (op_b) == CONST_INT)
1548 HOST_WIDE_INT desired_val = INTVAL (target);
1549 HOST_WIDE_INT actual_val = INTVAL (op_b);
1551 switch (code)
1553 case LT:
1554 if (actual_val == desired_val + 1)
1556 code = LE;
1557 op_b = GEN_INT (desired_val);
1559 break;
1560 case LE:
1561 if (actual_val == desired_val - 1)
1563 code = LT;
1564 op_b = GEN_INT (desired_val);
1566 break;
1567 case GT:
1568 if (actual_val == desired_val - 1)
1570 code = GE;
1571 op_b = GEN_INT (desired_val);
1573 break;
1574 case GE:
1575 if (actual_val == desired_val + 1)
1577 code = GT;
1578 op_b = GEN_INT (desired_val);
1580 break;
1581 default:
1582 break;
1586 /* If we made any changes, generate a new conditional that is
1587 equivalent to what we started with, but has the right
1588 constants in it. */
1589 if (code != GET_CODE (if_info->cond)
1590 || op_a != XEXP (if_info->cond, 0)
1591 || op_b != XEXP (if_info->cond, 1))
1593 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1594 *earliest = if_info->cond_earliest;
1595 return cond;
1599 cond = canonicalize_condition (if_info->jump, cond, reverse,
1600 earliest, target, false, true);
1601 if (! cond || ! reg_mentioned_p (target, cond))
1602 return NULL;
1604 /* We almost certainly searched back to a different place.
1605 Need to re-verify correct lifetimes. */
1607 /* X may not be mentioned in the range (cond_earliest, jump]. */
1608 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1609 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1610 return NULL;
1612 /* A and B may not be modified in the range [cond_earliest, jump). */
1613 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1614 if (INSN_P (insn)
1615 && (modified_in_p (if_info->a, insn)
1616 || modified_in_p (if_info->b, insn)))
1617 return NULL;
1619 return cond;
1622 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1624 static int
1625 noce_try_minmax (struct noce_if_info *if_info)
1627 rtx cond, earliest, target, seq;
1628 enum rtx_code code, op;
1629 int unsignedp;
1631 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1632 if (no_new_pseudos)
1633 return FALSE;
1635 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1636 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1637 to get the target to tell us... */
1638 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1639 || HONOR_NANS (GET_MODE (if_info->x)))
1640 return FALSE;
1642 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1643 if (!cond)
1644 return FALSE;
1646 /* Verify the condition is of the form we expect, and canonicalize
1647 the comparison code. */
1648 code = GET_CODE (cond);
1649 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1651 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1652 return FALSE;
1654 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1656 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1657 return FALSE;
1658 code = swap_condition (code);
1660 else
1661 return FALSE;
1663 /* Determine what sort of operation this is. Note that the code is for
1664 a taken branch, so the code->operation mapping appears backwards. */
1665 switch (code)
1667 case LT:
1668 case LE:
1669 case UNLT:
1670 case UNLE:
1671 op = SMAX;
1672 unsignedp = 0;
1673 break;
1674 case GT:
1675 case GE:
1676 case UNGT:
1677 case UNGE:
1678 op = SMIN;
1679 unsignedp = 0;
1680 break;
1681 case LTU:
1682 case LEU:
1683 op = UMAX;
1684 unsignedp = 1;
1685 break;
1686 case GTU:
1687 case GEU:
1688 op = UMIN;
1689 unsignedp = 1;
1690 break;
1691 default:
1692 return FALSE;
1695 start_sequence ();
1697 target = expand_simple_binop (GET_MODE (if_info->x), op,
1698 if_info->a, if_info->b,
1699 if_info->x, unsignedp, OPTAB_WIDEN);
1700 if (! target)
1702 end_sequence ();
1703 return FALSE;
1705 if (target != if_info->x)
1706 noce_emit_move_insn (if_info->x, target);
1708 seq = end_ifcvt_sequence (if_info);
1709 if (!seq)
1710 return FALSE;
1712 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1713 if_info->cond = cond;
1714 if_info->cond_earliest = earliest;
1716 return TRUE;
1719 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1721 static int
1722 noce_try_abs (struct noce_if_info *if_info)
1724 rtx cond, earliest, target, seq, a, b, c;
1725 int negate;
1727 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1728 if (no_new_pseudos)
1729 return FALSE;
1731 /* Recognize A and B as constituting an ABS or NABS. The canonical
1732 form is a branch around the negation, taken when the object is the
1733 first operand of a comparison against 0 that evaluates to true. */
1734 a = if_info->a;
1735 b = if_info->b;
1736 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1737 negate = 0;
1738 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1740 c = a; a = b; b = c;
1741 negate = 1;
1743 else
1744 return FALSE;
1746 cond = noce_get_alt_condition (if_info, b, &earliest);
1747 if (!cond)
1748 return FALSE;
1750 /* Verify the condition is of the form we expect. */
1751 if (rtx_equal_p (XEXP (cond, 0), b))
1752 c = XEXP (cond, 1);
1753 else if (rtx_equal_p (XEXP (cond, 1), b))
1755 c = XEXP (cond, 0);
1756 negate = !negate;
1758 else
1759 return FALSE;
1761 /* Verify that C is zero. Search one step backward for a
1762 REG_EQUAL note or a simple source if necessary. */
1763 if (REG_P (c))
1765 rtx set, insn = prev_nonnote_insn (earliest);
1766 if (insn
1767 && (set = single_set (insn))
1768 && rtx_equal_p (SET_DEST (set), c))
1770 rtx note = find_reg_equal_equiv_note (insn);
1771 if (note)
1772 c = XEXP (note, 0);
1773 else
1774 c = SET_SRC (set);
1776 else
1777 return FALSE;
1779 if (MEM_P (c)
1780 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1781 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1782 c = get_pool_constant (XEXP (c, 0));
1784 /* Work around funny ideas get_condition has wrt canonicalization.
1785 Note that these rtx constants are known to be CONST_INT, and
1786 therefore imply integer comparisons. */
1787 if (c == constm1_rtx && GET_CODE (cond) == GT)
1789 else if (c == const1_rtx && GET_CODE (cond) == LT)
1791 else if (c != CONST0_RTX (GET_MODE (b)))
1792 return FALSE;
1794 /* Determine what sort of operation this is. */
1795 switch (GET_CODE (cond))
1797 case LT:
1798 case LE:
1799 case UNLT:
1800 case UNLE:
1801 negate = !negate;
1802 break;
1803 case GT:
1804 case GE:
1805 case UNGT:
1806 case UNGE:
1807 break;
1808 default:
1809 return FALSE;
1812 start_sequence ();
1814 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1816 /* ??? It's a quandary whether cmove would be better here, especially
1817 for integers. Perhaps combine will clean things up. */
1818 if (target && negate)
1819 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1821 if (! target)
1823 end_sequence ();
1824 return FALSE;
1827 if (target != if_info->x)
1828 noce_emit_move_insn (if_info->x, target);
1830 seq = end_ifcvt_sequence (if_info);
1831 if (!seq)
1832 return FALSE;
1834 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1835 if_info->cond = cond;
1836 if_info->cond_earliest = earliest;
1838 return TRUE;
1841 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1843 static int
1844 noce_try_sign_mask (struct noce_if_info *if_info)
1846 rtx cond, t, m, c, seq;
1847 enum machine_mode mode;
1848 enum rtx_code code;
1850 if (no_new_pseudos)
1851 return FALSE;
1853 cond = if_info->cond;
1854 code = GET_CODE (cond);
1855 m = XEXP (cond, 0);
1856 c = XEXP (cond, 1);
1858 t = NULL_RTX;
1859 if (if_info->a == const0_rtx)
1861 if ((code == LT && c == const0_rtx)
1862 || (code == LE && c == constm1_rtx))
1863 t = if_info->b;
1865 else if (if_info->b == const0_rtx)
1867 if ((code == GE && c == const0_rtx)
1868 || (code == GT && c == constm1_rtx))
1869 t = if_info->a;
1872 if (! t || side_effects_p (t))
1873 return FALSE;
1875 /* We currently don't handle different modes. */
1876 mode = GET_MODE (t);
1877 if (GET_MODE (m) != mode)
1878 return FALSE;
1880 /* This is only profitable if T is cheap, or T is unconditionally
1881 executed/evaluated in the original insn sequence. */
1882 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1883 && (!if_info->b_unconditional
1884 || t != if_info->b))
1885 return FALSE;
1887 start_sequence ();
1888 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1889 "(signed) m >> 31" directly. This benefits targets with specialized
1890 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1891 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1892 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1893 : NULL_RTX;
1895 if (!t)
1897 end_sequence ();
1898 return FALSE;
1901 noce_emit_move_insn (if_info->x, t);
1903 seq = end_ifcvt_sequence (if_info);
1904 if (!seq)
1905 return FALSE;
1907 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1908 return TRUE;
1912 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1913 transformations. */
1915 static int
1916 noce_try_bitop (struct noce_if_info *if_info)
1918 rtx cond, x, a, result, seq;
1919 enum machine_mode mode;
1920 enum rtx_code code;
1921 int bitnum;
1923 x = if_info->x;
1924 cond = if_info->cond;
1925 code = GET_CODE (cond);
1927 /* Check for no else condition. */
1928 if (! rtx_equal_p (x, if_info->b))
1929 return FALSE;
1931 /* Check for a suitable condition. */
1932 if (code != NE && code != EQ)
1933 return FALSE;
1934 if (XEXP (cond, 1) != const0_rtx)
1935 return FALSE;
1936 cond = XEXP (cond, 0);
1938 /* ??? We could also handle AND here. */
1939 if (GET_CODE (cond) == ZERO_EXTRACT)
1941 if (XEXP (cond, 1) != const1_rtx
1942 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1943 || ! rtx_equal_p (x, XEXP (cond, 0)))
1944 return FALSE;
1945 bitnum = INTVAL (XEXP (cond, 2));
1946 mode = GET_MODE (x);
1947 if (bitnum >= HOST_BITS_PER_WIDE_INT)
1948 return FALSE;
1950 else
1951 return FALSE;
1953 a = if_info->a;
1954 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1956 /* Check for "if (X & C) x = x op C". */
1957 if (! rtx_equal_p (x, XEXP (a, 0))
1958 || GET_CODE (XEXP (a, 1)) != CONST_INT
1959 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1960 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1961 return FALSE;
1963 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1964 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1965 if (GET_CODE (a) == IOR)
1966 result = (code == NE) ? a : NULL_RTX;
1967 else if (code == NE)
1969 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1970 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1971 result = simplify_gen_binary (IOR, mode, x, result);
1973 else
1975 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
1976 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1977 result = simplify_gen_binary (AND, mode, x, result);
1980 else if (GET_CODE (a) == AND)
1982 /* Check for "if (X & C) x &= ~C". */
1983 if (! rtx_equal_p (x, XEXP (a, 0))
1984 || GET_CODE (XEXP (a, 1)) != CONST_INT
1985 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1986 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
1987 return FALSE;
1989 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
1990 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
1991 result = (code == EQ) ? a : NULL_RTX;
1993 else
1994 return FALSE;
1996 if (result)
1998 start_sequence ();
1999 noce_emit_move_insn (x, result);
2000 seq = end_ifcvt_sequence (if_info);
2001 if (!seq)
2002 return FALSE;
2004 emit_insn_before_setloc (seq, if_info->jump,
2005 INSN_LOCATOR (if_info->insn_a));
2007 return TRUE;
2011 /* Similar to get_condition, only the resulting condition must be
2012 valid at JUMP, instead of at EARLIEST. */
2014 static rtx
2015 noce_get_condition (rtx jump, rtx *earliest)
2017 rtx cond, set, tmp;
2018 bool reverse;
2020 if (! any_condjump_p (jump))
2021 return NULL_RTX;
2023 set = pc_set (jump);
2025 /* If this branches to JUMP_LABEL when the condition is false,
2026 reverse the condition. */
2027 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2028 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2030 /* If the condition variable is a register and is MODE_INT, accept it. */
2032 cond = XEXP (SET_SRC (set), 0);
2033 tmp = XEXP (cond, 0);
2034 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2036 *earliest = jump;
2038 if (reverse)
2039 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2040 GET_MODE (cond), tmp, XEXP (cond, 1));
2041 return cond;
2044 /* Otherwise, fall back on canonicalize_condition to do the dirty
2045 work of manipulating MODE_CC values and COMPARE rtx codes. */
2046 return canonicalize_condition (jump, cond, reverse, earliest,
2047 NULL_RTX, false, true);
2050 /* Initialize for a simple IF-THEN or IF-THEN-ELSE block. We will not
2051 be using conditional execution. Set some fields of IF_INFO based
2052 on CE_INFO: test_bb, cond, jump, cond_earliest. Return TRUE if
2053 things look OK. */
2055 static int
2056 noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
2058 basic_block test_bb = ce_info->test_bb;
2059 rtx cond, jump;
2061 /* If test is comprised of && or || elements, don't handle it unless
2062 it is the special case of && elements without an ELSE block. */
2063 if (ce_info->num_multiple_test_blocks)
2065 if (ce_info->else_bb || !ce_info->and_and_p)
2066 return FALSE;
2068 ce_info->test_bb = test_bb = ce_info->last_test_bb;
2069 ce_info->num_multiple_test_blocks = 0;
2070 ce_info->num_and_and_blocks = 0;
2071 ce_info->num_or_or_blocks = 0;
2074 /* If this is not a standard conditional jump, we can't parse it. */
2075 jump = BB_END (test_bb);
2076 cond = noce_get_condition (jump, &if_info->cond_earliest);
2077 if (!cond)
2078 return FALSE;
2080 /* If the conditional jump is more than just a conditional
2081 jump, then we can not do if-conversion on this block. */
2082 if (! onlyjump_p (jump))
2083 return FALSE;
2085 /* We must be comparing objects whose modes imply the size. */
2086 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2087 return FALSE;
2089 if_info->test_bb = test_bb;
2090 if_info->cond = cond;
2091 if_info->jump = jump;
2093 return TRUE;
2096 /* Return true if OP is ok for if-then-else processing. */
2098 static int
2099 noce_operand_ok (rtx op)
2101 /* We special-case memories, so handle any of them with
2102 no address side effects. */
2103 if (MEM_P (op))
2104 return ! side_effects_p (XEXP (op, 0));
2106 if (side_effects_p (op))
2107 return FALSE;
2109 return ! may_trap_p (op);
2112 /* Return true if a write into MEM may trap or fault. */
2114 static bool
2115 noce_mem_write_may_trap_or_fault_p (rtx mem)
2117 rtx addr;
2119 if (MEM_READONLY_P (mem))
2120 return true;
2122 if (may_trap_or_fault_p (mem))
2123 return true;
2125 addr = XEXP (mem, 0);
2127 /* Call target hook to avoid the effects of -fpic etc.... */
2128 addr = targetm.delegitimize_address (addr);
2130 while (addr)
2131 switch (GET_CODE (addr))
2133 case CONST:
2134 case PRE_DEC:
2135 case PRE_INC:
2136 case POST_DEC:
2137 case POST_INC:
2138 case POST_MODIFY:
2139 addr = XEXP (addr, 0);
2140 break;
2141 case LO_SUM:
2142 case PRE_MODIFY:
2143 addr = XEXP (addr, 1);
2144 break;
2145 case PLUS:
2146 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2147 addr = XEXP (addr, 0);
2148 else
2149 return false;
2150 break;
2151 case LABEL_REF:
2152 return true;
2153 case SYMBOL_REF:
2154 if (SYMBOL_REF_DECL (addr)
2155 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2156 return true;
2157 return false;
2158 default:
2159 return false;
2162 return false;
2165 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2166 without using conditional execution. Return TRUE if we were
2167 successful at converting the block. */
2169 static int
2170 noce_process_if_block (struct ce_if_block * ce_info)
2172 basic_block test_bb = ce_info->test_bb; /* test block */
2173 basic_block then_bb = ce_info->then_bb; /* THEN */
2174 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2175 struct noce_if_info if_info;
2176 rtx insn_a, insn_b;
2177 rtx set_a, set_b;
2178 rtx orig_x, x, a, b;
2179 rtx jump, cond;
2181 /* We're looking for patterns of the form
2183 (1) if (...) x = a; else x = b;
2184 (2) x = b; if (...) x = a;
2185 (3) if (...) x = a; // as if with an initial x = x.
2187 The later patterns require jumps to be more expensive.
2189 ??? For future expansion, look for multiple X in such patterns. */
2191 if (!noce_init_if_info (ce_info, &if_info))
2192 return FALSE;
2194 cond = if_info.cond;
2195 jump = if_info.jump;
2197 /* Look for one of the potential sets. */
2198 insn_a = first_active_insn (then_bb);
2199 if (! insn_a
2200 || insn_a != last_active_insn (then_bb, FALSE)
2201 || (set_a = single_set (insn_a)) == NULL_RTX)
2202 return FALSE;
2204 x = SET_DEST (set_a);
2205 a = SET_SRC (set_a);
2207 /* Look for the other potential set. Make sure we've got equivalent
2208 destinations. */
2209 /* ??? This is overconservative. Storing to two different mems is
2210 as easy as conditionally computing the address. Storing to a
2211 single mem merely requires a scratch memory to use as one of the
2212 destination addresses; often the memory immediately below the
2213 stack pointer is available for this. */
2214 set_b = NULL_RTX;
2215 if (else_bb)
2217 insn_b = first_active_insn (else_bb);
2218 if (! insn_b
2219 || insn_b != last_active_insn (else_bb, FALSE)
2220 || (set_b = single_set (insn_b)) == NULL_RTX
2221 || ! rtx_equal_p (x, SET_DEST (set_b)))
2222 return FALSE;
2224 else
2226 insn_b = prev_nonnote_insn (if_info.cond_earliest);
2227 /* We're going to be moving the evaluation of B down from above
2228 COND_EARLIEST to JUMP. Make sure the relevant data is still
2229 intact. */
2230 if (! insn_b
2231 || !NONJUMP_INSN_P (insn_b)
2232 || (set_b = single_set (insn_b)) == NULL_RTX
2233 || ! rtx_equal_p (x, SET_DEST (set_b))
2234 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2235 || modified_between_p (SET_SRC (set_b),
2236 PREV_INSN (if_info.cond_earliest), jump)
2237 /* Likewise with X. In particular this can happen when
2238 noce_get_condition looks farther back in the instruction
2239 stream than one might expect. */
2240 || reg_overlap_mentioned_p (x, cond)
2241 || reg_overlap_mentioned_p (x, a)
2242 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
2243 insn_b = set_b = NULL_RTX;
2246 /* If x has side effects then only the if-then-else form is safe to
2247 convert. But even in that case we would need to restore any notes
2248 (such as REG_INC) at then end. That can be tricky if
2249 noce_emit_move_insn expands to more than one insn, so disable the
2250 optimization entirely for now if there are side effects. */
2251 if (side_effects_p (x))
2252 return FALSE;
2254 b = (set_b ? SET_SRC (set_b) : x);
2256 /* Only operate on register destinations, and even then avoid extending
2257 the lifetime of hard registers on small register class machines. */
2258 orig_x = x;
2259 if (!REG_P (x)
2260 || (SMALL_REGISTER_CLASSES
2261 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2263 if (no_new_pseudos || GET_MODE (x) == BLKmode)
2264 return FALSE;
2266 if (GET_MODE (x) == ZERO_EXTRACT
2267 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2268 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2269 return FALSE;
2271 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2272 ? XEXP (x, 0) : x));
2275 /* Don't operate on sources that may trap or are volatile. */
2276 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2277 return FALSE;
2279 /* Set up the info block for our subroutines. */
2280 if_info.insn_a = insn_a;
2281 if_info.insn_b = insn_b;
2282 if_info.x = x;
2283 if_info.a = a;
2284 if_info.b = b;
2285 if_info.b_unconditional = else_bb == 0;
2287 /* Try optimizations in some approximation of a useful order. */
2288 /* ??? Should first look to see if X is live incoming at all. If it
2289 isn't, we don't need anything but an unconditional set. */
2291 /* Look and see if A and B are really the same. Avoid creating silly
2292 cmove constructs that no one will fix up later. */
2293 if (rtx_equal_p (a, b))
2295 /* If we have an INSN_B, we don't have to create any new rtl. Just
2296 move the instruction that we already have. If we don't have an
2297 INSN_B, that means that A == X, and we've got a noop move. In
2298 that case don't do anything and let the code below delete INSN_A. */
2299 if (insn_b && else_bb)
2301 rtx note;
2303 if (else_bb && insn_b == BB_END (else_bb))
2304 BB_END (else_bb) = PREV_INSN (insn_b);
2305 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2307 /* If there was a REG_EQUAL note, delete it since it may have been
2308 true due to this insn being after a jump. */
2309 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2310 remove_note (insn_b, note);
2312 insn_b = NULL_RTX;
2314 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2315 x must be executed twice. */
2316 else if (insn_b && side_effects_p (orig_x))
2317 return FALSE;
2319 x = orig_x;
2320 goto success;
2323 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2324 for optimizations if writing to x may trap or fault, i.e. it's a memory
2325 other than a static var or a stack slot, is misaligned on strict
2326 aligned machines or is read-only.
2327 If x is a read-only memory, then the program is valid only if we
2328 avoid the store into it. If there are stores on both the THEN and
2329 ELSE arms, then we can go ahead with the conversion; either the
2330 program is broken, or the condition is always false such that the
2331 other memory is selected. */
2332 if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
2333 return FALSE;
2335 if (noce_try_move (&if_info))
2336 goto success;
2337 if (noce_try_store_flag (&if_info))
2338 goto success;
2339 if (noce_try_bitop (&if_info))
2340 goto success;
2341 if (noce_try_minmax (&if_info))
2342 goto success;
2343 if (noce_try_abs (&if_info))
2344 goto success;
2345 if (HAVE_conditional_move
2346 && noce_try_cmove (&if_info))
2347 goto success;
2348 if (! HAVE_conditional_execution)
2350 if (noce_try_store_flag_constants (&if_info))
2351 goto success;
2352 if (noce_try_addcc (&if_info))
2353 goto success;
2354 if (noce_try_store_flag_mask (&if_info))
2355 goto success;
2356 if (HAVE_conditional_move
2357 && noce_try_cmove_arith (&if_info))
2358 goto success;
2359 if (noce_try_sign_mask (&if_info))
2360 goto success;
2363 return FALSE;
2365 success:
2366 /* The original sets may now be killed. */
2367 delete_insn (insn_a);
2369 /* Several special cases here: First, we may have reused insn_b above,
2370 in which case insn_b is now NULL. Second, we want to delete insn_b
2371 if it came from the ELSE block, because follows the now correct
2372 write that appears in the TEST block. However, if we got insn_b from
2373 the TEST block, it may in fact be loading data needed for the comparison.
2374 We'll let life_analysis remove the insn if it's really dead. */
2375 if (insn_b && else_bb)
2376 delete_insn (insn_b);
2378 /* The new insns will have been inserted immediately before the jump. We
2379 should be able to remove the jump with impunity, but the condition itself
2380 may have been modified by gcse to be shared across basic blocks. */
2381 delete_insn (jump);
2383 /* If we used a temporary, fix it up now. */
2384 if (orig_x != x)
2386 start_sequence ();
2387 noce_emit_move_insn (orig_x, x);
2388 insn_b = get_insns ();
2389 set_used_flags (orig_x);
2390 unshare_all_rtl_in_chain (insn_b);
2391 end_sequence ();
2393 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2396 /* Merge the blocks! */
2397 merge_if_block (ce_info);
2399 return TRUE;
2402 /* Check whether a block is suitable for conditional move conversion.
2403 Every insn must be a simple set of a register to a constant or a
2404 register. For each assignment, store the value in the array VALS,
2405 indexed by register number. COND is the condition we will
2406 test. */
2408 static int
2409 check_cond_move_block (basic_block bb, rtx *vals, rtx cond)
2411 rtx insn;
2413 FOR_BB_INSNS (bb, insn)
2415 rtx set, dest, src;
2417 if (!INSN_P (insn) || JUMP_P (insn))
2418 continue;
2419 set = single_set (insn);
2420 if (!set)
2421 return FALSE;
2423 dest = SET_DEST (set);
2424 src = SET_SRC (set);
2425 if (!REG_P (dest)
2426 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2427 return false;
2429 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2430 return FALSE;
2432 if (side_effects_p (src) || side_effects_p (dest))
2433 return FALSE;
2435 if (may_trap_p (src) || may_trap_p (dest))
2436 return FALSE;
2438 /* Don't try to handle this if the destination register was
2439 modified earlier in the block. */
2440 if (vals[REGNO (dest)] != NULL)
2441 return FALSE;
2443 /* Don't try to handle this if the condition uses the
2444 destination register. */
2445 if (reg_overlap_mentioned_p (dest, cond))
2446 return FALSE;
2448 vals[REGNO (dest)] = src;
2450 /* Don't try to handle this if the source register is modified
2451 later in the block. */
2452 if (!CONSTANT_P (src)
2453 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2454 return FALSE;
2457 return TRUE;
2460 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2461 using only conditional moves. Return TRUE if we were successful at
2462 converting the block. */
2464 static int
2465 cond_move_process_if_block (struct ce_if_block *ce_info)
2467 basic_block then_bb = ce_info->then_bb;
2468 basic_block else_bb = ce_info->else_bb;
2469 struct noce_if_info if_info;
2470 rtx jump, cond, insn, seq, cond_arg0, cond_arg1, loc_insn;
2471 int max_reg, size, c, i;
2472 rtx *then_vals;
2473 rtx *else_vals;
2474 enum rtx_code code;
2476 if (!HAVE_conditional_move || no_new_pseudos)
2477 return FALSE;
2479 memset (&if_info, 0, sizeof if_info);
2481 if (!noce_init_if_info (ce_info, &if_info))
2482 return FALSE;
2484 cond = if_info.cond;
2485 jump = if_info.jump;
2487 /* Build a mapping for each block to the value used for each
2488 register. */
2489 max_reg = max_reg_num ();
2490 size = (max_reg + 1) * sizeof (rtx);
2491 then_vals = (rtx *) alloca (size);
2492 else_vals = (rtx *) alloca (size);
2493 memset (then_vals, 0, size);
2494 memset (else_vals, 0, size);
2496 /* Make sure the blocks are suitable. */
2497 if (!check_cond_move_block (then_bb, then_vals, cond)
2498 || (else_bb && !check_cond_move_block (else_bb, else_vals, cond)))
2499 return FALSE;
2501 /* Make sure the blocks can be used together. If the same register
2502 is set in both blocks, and is not set to a constant in both
2503 cases, then both blocks must set it to the same register. We
2504 have already verified that if it is set to a register, that the
2505 source register does not change after the assignment. Also count
2506 the number of registers set in only one of the blocks. */
2507 c = 0;
2508 for (i = 0; i <= max_reg; ++i)
2510 if (!then_vals[i] && !else_vals[i])
2511 continue;
2513 if (!then_vals[i] || !else_vals[i])
2514 ++c;
2515 else
2517 if (!CONSTANT_P (then_vals[i])
2518 && !CONSTANT_P (else_vals[i])
2519 && !rtx_equal_p (then_vals[i], else_vals[i]))
2520 return FALSE;
2524 /* Make sure it is reasonable to convert this block. What matters
2525 is the number of assignments currently made in only one of the
2526 branches, since if we convert we are going to always execute
2527 them. */
2528 if (c > MAX_CONDITIONAL_EXECUTE)
2529 return FALSE;
2531 /* Emit the conditional moves. First do the then block, then do
2532 anything left in the else blocks. */
2534 code = GET_CODE (cond);
2535 cond_arg0 = XEXP (cond, 0);
2536 cond_arg1 = XEXP (cond, 1);
2538 start_sequence ();
2540 FOR_BB_INSNS (then_bb, insn)
2542 rtx set, target, dest, t, e;
2543 unsigned int regno;
2545 if (!INSN_P (insn) || JUMP_P (insn))
2546 continue;
2547 set = single_set (insn);
2548 gcc_assert (set && REG_P (SET_DEST (set)));
2550 dest = SET_DEST (set);
2551 regno = REGNO (dest);
2552 t = then_vals[regno];
2553 e = else_vals[regno];
2554 gcc_assert (t);
2555 if (!e)
2556 e = dest;
2557 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2558 t, e);
2559 if (!target)
2561 end_sequence ();
2562 return FALSE;
2565 if (target != dest)
2566 noce_emit_move_insn (dest, target);
2569 if (else_bb)
2571 FOR_BB_INSNS (else_bb, insn)
2573 rtx set, target, dest;
2574 unsigned int regno;
2576 if (!INSN_P (insn) || JUMP_P (insn))
2577 continue;
2578 set = single_set (insn);
2579 gcc_assert (set && REG_P (SET_DEST (set)));
2581 dest = SET_DEST (set);
2582 regno = REGNO (dest);
2584 /* If this register was set in the then block, we already
2585 handled this case above. */
2586 if (then_vals[regno])
2587 continue;
2588 gcc_assert (else_vals[regno]);
2590 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2591 dest, else_vals[regno]);
2592 if (!target)
2594 end_sequence ();
2595 return FALSE;
2598 if (target != dest)
2599 noce_emit_move_insn (dest, target);
2603 seq = end_ifcvt_sequence (&if_info);
2604 if (!seq)
2605 return FALSE;
2607 loc_insn = first_active_insn (then_bb);
2608 if (!loc_insn)
2610 loc_insn = first_active_insn (else_bb);
2611 gcc_assert (loc_insn);
2613 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2615 FOR_BB_INSNS (then_bb, insn)
2616 if (INSN_P (insn) && !JUMP_P (insn))
2617 delete_insn (insn);
2618 if (else_bb)
2620 FOR_BB_INSNS (else_bb, insn)
2621 if (INSN_P (insn) && !JUMP_P (insn))
2622 delete_insn (insn);
2624 delete_insn (jump);
2626 merge_if_block (ce_info);
2628 return TRUE;
2631 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2632 straight line code. Return true if successful. */
2634 static int
2635 process_if_block (struct ce_if_block * ce_info)
2637 if (! reload_completed
2638 && noce_process_if_block (ce_info))
2639 return TRUE;
2641 if (HAVE_conditional_move
2642 && cond_move_process_if_block (ce_info))
2643 return TRUE;
2645 if (HAVE_conditional_execution && reload_completed)
2647 /* If we have && and || tests, try to first handle combining the && and
2648 || tests into the conditional code, and if that fails, go back and
2649 handle it without the && and ||, which at present handles the && case
2650 if there was no ELSE block. */
2651 if (cond_exec_process_if_block (ce_info, TRUE))
2652 return TRUE;
2654 if (ce_info->num_multiple_test_blocks)
2656 cancel_changes (0);
2658 if (cond_exec_process_if_block (ce_info, FALSE))
2659 return TRUE;
2663 return FALSE;
2666 /* Merge the blocks and mark for local life update. */
2668 static void
2669 merge_if_block (struct ce_if_block * ce_info)
2671 basic_block test_bb = ce_info->test_bb; /* last test block */
2672 basic_block then_bb = ce_info->then_bb; /* THEN */
2673 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2674 basic_block join_bb = ce_info->join_bb; /* join block */
2675 basic_block combo_bb;
2677 /* All block merging is done into the lower block numbers. */
2679 combo_bb = test_bb;
2681 /* Merge any basic blocks to handle && and || subtests. Each of
2682 the blocks are on the fallthru path from the predecessor block. */
2683 if (ce_info->num_multiple_test_blocks > 0)
2685 basic_block bb = test_bb;
2686 basic_block last_test_bb = ce_info->last_test_bb;
2687 basic_block fallthru = block_fallthru (bb);
2691 bb = fallthru;
2692 fallthru = block_fallthru (bb);
2693 merge_blocks (combo_bb, bb);
2694 num_true_changes++;
2696 while (bb != last_test_bb);
2699 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2700 label, but it might if there were || tests. That label's count should be
2701 zero, and it normally should be removed. */
2703 if (then_bb)
2705 if (combo_bb->il.rtl->global_live_at_end)
2706 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2707 then_bb->il.rtl->global_live_at_end);
2708 merge_blocks (combo_bb, then_bb);
2709 num_true_changes++;
2712 /* The ELSE block, if it existed, had a label. That label count
2713 will almost always be zero, but odd things can happen when labels
2714 get their addresses taken. */
2715 if (else_bb)
2717 merge_blocks (combo_bb, else_bb);
2718 num_true_changes++;
2721 /* If there was no join block reported, that means it was not adjacent
2722 to the others, and so we cannot merge them. */
2724 if (! join_bb)
2726 rtx last = BB_END (combo_bb);
2728 /* The outgoing edge for the current COMBO block should already
2729 be correct. Verify this. */
2730 if (EDGE_COUNT (combo_bb->succs) == 0)
2731 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2732 || (NONJUMP_INSN_P (last)
2733 && GET_CODE (PATTERN (last)) == TRAP_IF
2734 && (TRAP_CONDITION (PATTERN (last))
2735 == const_true_rtx)));
2737 else
2738 /* There should still be something at the end of the THEN or ELSE
2739 blocks taking us to our final destination. */
2740 gcc_assert (JUMP_P (last)
2741 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2742 && CALL_P (last)
2743 && SIBLING_CALL_P (last))
2744 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2745 && can_throw_internal (last)));
2748 /* The JOIN block may have had quite a number of other predecessors too.
2749 Since we've already merged the TEST, THEN and ELSE blocks, we should
2750 have only one remaining edge from our if-then-else diamond. If there
2751 is more than one remaining edge, it must come from elsewhere. There
2752 may be zero incoming edges if the THEN block didn't actually join
2753 back up (as with a call to a non-return function). */
2754 else if (EDGE_COUNT (join_bb->preds) < 2
2755 && join_bb != EXIT_BLOCK_PTR)
2757 /* We can merge the JOIN. */
2758 if (combo_bb->il.rtl->global_live_at_end)
2759 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2760 join_bb->il.rtl->global_live_at_end);
2762 merge_blocks (combo_bb, join_bb);
2763 num_true_changes++;
2765 else
2767 /* We cannot merge the JOIN. */
2769 /* The outgoing edge for the current COMBO block should already
2770 be correct. Verify this. */
2771 gcc_assert (single_succ_p (combo_bb)
2772 && single_succ (combo_bb) == join_bb);
2774 /* Remove the jump and cruft from the end of the COMBO block. */
2775 if (join_bb != EXIT_BLOCK_PTR)
2776 tidy_fallthru_edge (single_succ_edge (combo_bb));
2779 num_updated_if_blocks++;
2782 /* Find a block ending in a simple IF condition and try to transform it
2783 in some way. When converting a multi-block condition, put the new code
2784 in the first such block and delete the rest. Return a pointer to this
2785 first block if some transformation was done. Return NULL otherwise. */
2787 static basic_block
2788 find_if_header (basic_block test_bb, int pass)
2790 ce_if_block_t ce_info;
2791 edge then_edge;
2792 edge else_edge;
2794 /* The kind of block we're looking for has exactly two successors. */
2795 if (EDGE_COUNT (test_bb->succs) != 2)
2796 return NULL;
2798 then_edge = EDGE_SUCC (test_bb, 0);
2799 else_edge = EDGE_SUCC (test_bb, 1);
2801 /* Neither edge should be abnormal. */
2802 if ((then_edge->flags & EDGE_COMPLEX)
2803 || (else_edge->flags & EDGE_COMPLEX))
2804 return NULL;
2806 /* Nor exit the loop. */
2807 if ((then_edge->flags & EDGE_LOOP_EXIT)
2808 || (else_edge->flags & EDGE_LOOP_EXIT))
2809 return NULL;
2811 /* The THEN edge is canonically the one that falls through. */
2812 if (then_edge->flags & EDGE_FALLTHRU)
2814 else if (else_edge->flags & EDGE_FALLTHRU)
2816 edge e = else_edge;
2817 else_edge = then_edge;
2818 then_edge = e;
2820 else
2821 /* Otherwise this must be a multiway branch of some sort. */
2822 return NULL;
2824 memset (&ce_info, '\0', sizeof (ce_info));
2825 ce_info.test_bb = test_bb;
2826 ce_info.then_bb = then_edge->dest;
2827 ce_info.else_bb = else_edge->dest;
2828 ce_info.pass = pass;
2830 #ifdef IFCVT_INIT_EXTRA_FIELDS
2831 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2832 #endif
2834 if (find_if_block (&ce_info))
2835 goto success;
2837 if (HAVE_trap && HAVE_conditional_trap
2838 && find_cond_trap (test_bb, then_edge, else_edge))
2839 goto success;
2841 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2842 && (! HAVE_conditional_execution || reload_completed))
2844 if (find_if_case_1 (test_bb, then_edge, else_edge))
2845 goto success;
2846 if (find_if_case_2 (test_bb, then_edge, else_edge))
2847 goto success;
2850 return NULL;
2852 success:
2853 if (dump_file)
2854 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2855 return ce_info.test_bb;
2858 /* Return true if a block has two edges, one of which falls through to the next
2859 block, and the other jumps to a specific block, so that we can tell if the
2860 block is part of an && test or an || test. Returns either -1 or the number
2861 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2863 static int
2864 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2866 edge cur_edge;
2867 int fallthru_p = FALSE;
2868 int jump_p = FALSE;
2869 rtx insn;
2870 rtx end;
2871 int n_insns = 0;
2872 edge_iterator ei;
2874 if (!cur_bb || !target_bb)
2875 return -1;
2877 /* If no edges, obviously it doesn't jump or fallthru. */
2878 if (EDGE_COUNT (cur_bb->succs) == 0)
2879 return FALSE;
2881 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2883 if (cur_edge->flags & EDGE_COMPLEX)
2884 /* Anything complex isn't what we want. */
2885 return -1;
2887 else if (cur_edge->flags & EDGE_FALLTHRU)
2888 fallthru_p = TRUE;
2890 else if (cur_edge->dest == target_bb)
2891 jump_p = TRUE;
2893 else
2894 return -1;
2897 if ((jump_p & fallthru_p) == 0)
2898 return -1;
2900 /* Don't allow calls in the block, since this is used to group && and ||
2901 together for conditional execution support. ??? we should support
2902 conditional execution support across calls for IA-64 some day, but
2903 for now it makes the code simpler. */
2904 end = BB_END (cur_bb);
2905 insn = BB_HEAD (cur_bb);
2907 while (insn != NULL_RTX)
2909 if (CALL_P (insn))
2910 return -1;
2912 if (INSN_P (insn)
2913 && !JUMP_P (insn)
2914 && GET_CODE (PATTERN (insn)) != USE
2915 && GET_CODE (PATTERN (insn)) != CLOBBER)
2916 n_insns++;
2918 if (insn == end)
2919 break;
2921 insn = NEXT_INSN (insn);
2924 return n_insns;
2927 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2928 block. If so, we'll try to convert the insns to not require the branch.
2929 Return TRUE if we were successful at converting the block. */
2931 static int
2932 find_if_block (struct ce_if_block * ce_info)
2934 basic_block test_bb = ce_info->test_bb;
2935 basic_block then_bb = ce_info->then_bb;
2936 basic_block else_bb = ce_info->else_bb;
2937 basic_block join_bb = NULL_BLOCK;
2938 edge cur_edge;
2939 basic_block next;
2940 edge_iterator ei;
2942 ce_info->last_test_bb = test_bb;
2944 /* Discover if any fall through predecessors of the current test basic block
2945 were && tests (which jump to the else block) or || tests (which jump to
2946 the then block). */
2947 if (HAVE_conditional_execution && reload_completed
2948 && single_pred_p (test_bb)
2949 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
2951 basic_block bb = single_pred (test_bb);
2952 basic_block target_bb;
2953 int max_insns = MAX_CONDITIONAL_EXECUTE;
2954 int n_insns;
2956 /* Determine if the preceding block is an && or || block. */
2957 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2959 ce_info->and_and_p = TRUE;
2960 target_bb = else_bb;
2962 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2964 ce_info->and_and_p = FALSE;
2965 target_bb = then_bb;
2967 else
2968 target_bb = NULL_BLOCK;
2970 if (target_bb && n_insns <= max_insns)
2972 int total_insns = 0;
2973 int blocks = 0;
2975 ce_info->last_test_bb = test_bb;
2977 /* Found at least one && or || block, look for more. */
2980 ce_info->test_bb = test_bb = bb;
2981 total_insns += n_insns;
2982 blocks++;
2984 if (!single_pred_p (bb))
2985 break;
2987 bb = single_pred (bb);
2988 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2990 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2992 ce_info->num_multiple_test_blocks = blocks;
2993 ce_info->num_multiple_test_insns = total_insns;
2995 if (ce_info->and_and_p)
2996 ce_info->num_and_and_blocks = blocks;
2997 else
2998 ce_info->num_or_or_blocks = blocks;
3002 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3003 other than any || blocks which jump to the THEN block. */
3004 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3005 return FALSE;
3007 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3008 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3010 if (cur_edge->flags & EDGE_COMPLEX)
3011 return FALSE;
3014 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3016 if (cur_edge->flags & EDGE_COMPLEX)
3017 return FALSE;
3020 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3021 if (EDGE_COUNT (then_bb->succs) > 0
3022 && (!single_succ_p (then_bb)
3023 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3024 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3025 return FALSE;
3027 /* If the THEN block has no successors, conditional execution can still
3028 make a conditional call. Don't do this unless the ELSE block has
3029 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3030 Check for the last insn of the THEN block being an indirect jump, which
3031 is listed as not having any successors, but confuses the rest of the CE
3032 code processing. ??? we should fix this in the future. */
3033 if (EDGE_COUNT (then_bb->succs) == 0)
3035 if (single_pred_p (else_bb))
3037 rtx last_insn = BB_END (then_bb);
3039 while (last_insn
3040 && NOTE_P (last_insn)
3041 && last_insn != BB_HEAD (then_bb))
3042 last_insn = PREV_INSN (last_insn);
3044 if (last_insn
3045 && JUMP_P (last_insn)
3046 && ! simplejump_p (last_insn))
3047 return FALSE;
3049 join_bb = else_bb;
3050 else_bb = NULL_BLOCK;
3052 else
3053 return FALSE;
3056 /* If the THEN block's successor is the other edge out of the TEST block,
3057 then we have an IF-THEN combo without an ELSE. */
3058 else if (single_succ (then_bb) == else_bb)
3060 join_bb = else_bb;
3061 else_bb = NULL_BLOCK;
3064 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3065 has exactly one predecessor and one successor, and the outgoing edge
3066 is not complex, then we have an IF-THEN-ELSE combo. */
3067 else if (single_succ_p (else_bb)
3068 && single_succ (then_bb) == single_succ (else_bb)
3069 && single_pred_p (else_bb)
3070 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3071 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3072 join_bb = single_succ (else_bb);
3074 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3075 else
3076 return FALSE;
3078 num_possible_if_blocks++;
3080 if (dump_file)
3082 fprintf (dump_file,
3083 "\nIF-THEN%s block found, pass %d, start block %d "
3084 "[insn %d], then %d [%d]",
3085 (else_bb) ? "-ELSE" : "",
3086 ce_info->pass,
3087 test_bb->index,
3088 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3089 then_bb->index,
3090 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3092 if (else_bb)
3093 fprintf (dump_file, ", else %d [%d]",
3094 else_bb->index,
3095 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3097 fprintf (dump_file, ", join %d [%d]",
3098 join_bb->index,
3099 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3101 if (ce_info->num_multiple_test_blocks > 0)
3102 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3103 ce_info->num_multiple_test_blocks,
3104 (ce_info->and_and_p) ? "&&" : "||",
3105 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3106 ce_info->last_test_bb->index,
3107 ((BB_HEAD (ce_info->last_test_bb))
3108 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3109 : -1));
3111 fputc ('\n', dump_file);
3114 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3115 first condition for free, since we've already asserted that there's a
3116 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3117 we checked the FALLTHRU flag, those are already adjacent to the last IF
3118 block. */
3119 /* ??? As an enhancement, move the ELSE block. Have to deal with
3120 BLOCK notes, if by no other means than backing out the merge if they
3121 exist. Sticky enough I don't want to think about it now. */
3122 next = then_bb;
3123 if (else_bb && (next = next->next_bb) != else_bb)
3124 return FALSE;
3125 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3127 if (else_bb)
3128 join_bb = NULL;
3129 else
3130 return FALSE;
3133 /* Do the real work. */
3134 ce_info->else_bb = else_bb;
3135 ce_info->join_bb = join_bb;
3137 return process_if_block (ce_info);
3140 /* Convert a branch over a trap, or a branch
3141 to a trap, into a conditional trap. */
3143 static int
3144 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3146 basic_block then_bb = then_edge->dest;
3147 basic_block else_bb = else_edge->dest;
3148 basic_block other_bb, trap_bb;
3149 rtx trap, jump, cond, cond_earliest, seq;
3150 enum rtx_code code;
3152 /* Locate the block with the trap instruction. */
3153 /* ??? While we look for no successors, we really ought to allow
3154 EH successors. Need to fix merge_if_block for that to work. */
3155 if ((trap = block_has_only_trap (then_bb)) != NULL)
3156 trap_bb = then_bb, other_bb = else_bb;
3157 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3158 trap_bb = else_bb, other_bb = then_bb;
3159 else
3160 return FALSE;
3162 if (dump_file)
3164 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3165 test_bb->index, trap_bb->index);
3168 /* If this is not a standard conditional jump, we can't parse it. */
3169 jump = BB_END (test_bb);
3170 cond = noce_get_condition (jump, &cond_earliest);
3171 if (! cond)
3172 return FALSE;
3174 /* If the conditional jump is more than just a conditional jump, then
3175 we can not do if-conversion on this block. */
3176 if (! onlyjump_p (jump))
3177 return FALSE;
3179 /* We must be comparing objects whose modes imply the size. */
3180 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3181 return FALSE;
3183 /* Reverse the comparison code, if necessary. */
3184 code = GET_CODE (cond);
3185 if (then_bb == trap_bb)
3187 code = reversed_comparison_code (cond, jump);
3188 if (code == UNKNOWN)
3189 return FALSE;
3192 /* Attempt to generate the conditional trap. */
3193 seq = gen_cond_trap (code, XEXP (cond, 0),
3194 XEXP (cond, 1),
3195 TRAP_CODE (PATTERN (trap)));
3196 if (seq == NULL)
3197 return FALSE;
3199 num_true_changes++;
3201 /* Emit the new insns before cond_earliest. */
3202 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3204 /* Delete the trap block if possible. */
3205 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3206 if (EDGE_COUNT (trap_bb->preds) == 0)
3207 delete_basic_block (trap_bb);
3209 /* If the non-trap block and the test are now adjacent, merge them.
3210 Otherwise we must insert a direct branch. */
3211 if (test_bb->next_bb == other_bb)
3213 struct ce_if_block new_ce_info;
3214 delete_insn (jump);
3215 memset (&new_ce_info, '\0', sizeof (new_ce_info));
3216 new_ce_info.test_bb = test_bb;
3217 new_ce_info.then_bb = NULL;
3218 new_ce_info.else_bb = NULL;
3219 new_ce_info.join_bb = other_bb;
3220 merge_if_block (&new_ce_info);
3222 else
3224 rtx lab, newjump;
3226 lab = JUMP_LABEL (jump);
3227 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3228 LABEL_NUSES (lab) += 1;
3229 JUMP_LABEL (newjump) = lab;
3230 emit_barrier_after (newjump);
3232 delete_insn (jump);
3235 return TRUE;
3238 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3239 return it. */
3241 static rtx
3242 block_has_only_trap (basic_block bb)
3244 rtx trap;
3246 /* We're not the exit block. */
3247 if (bb == EXIT_BLOCK_PTR)
3248 return NULL_RTX;
3250 /* The block must have no successors. */
3251 if (EDGE_COUNT (bb->succs) > 0)
3252 return NULL_RTX;
3254 /* The only instruction in the THEN block must be the trap. */
3255 trap = first_active_insn (bb);
3256 if (! (trap == BB_END (bb)
3257 && GET_CODE (PATTERN (trap)) == TRAP_IF
3258 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3259 return NULL_RTX;
3261 return trap;
3264 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3265 transformable, but not necessarily the other. There need be no
3266 JOIN block.
3268 Return TRUE if we were successful at converting the block.
3270 Cases we'd like to look at:
3273 if (test) goto over; // x not live
3274 x = a;
3275 goto label;
3276 over:
3278 becomes
3280 x = a;
3281 if (! test) goto label;
3284 if (test) goto E; // x not live
3285 x = big();
3286 goto L;
3288 x = b;
3289 goto M;
3291 becomes
3293 x = b;
3294 if (test) goto M;
3295 x = big();
3296 goto L;
3298 (3) // This one's really only interesting for targets that can do
3299 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3300 // it results in multiple branches on a cache line, which often
3301 // does not sit well with predictors.
3303 if (test1) goto E; // predicted not taken
3304 x = a;
3305 if (test2) goto F;
3308 x = b;
3311 becomes
3313 x = a;
3314 if (test1) goto E;
3315 if (test2) goto F;
3317 Notes:
3319 (A) Don't do (2) if the branch is predicted against the block we're
3320 eliminating. Do it anyway if we can eliminate a branch; this requires
3321 that the sole successor of the eliminated block postdominate the other
3322 side of the if.
3324 (B) With CE, on (3) we can steal from both sides of the if, creating
3326 if (test1) x = a;
3327 if (!test1) x = b;
3328 if (test1) goto J;
3329 if (test2) goto F;
3333 Again, this is most useful if J postdominates.
3335 (C) CE substitutes for helpful life information.
3337 (D) These heuristics need a lot of work. */
3339 /* Tests for case 1 above. */
3341 static int
3342 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3344 basic_block then_bb = then_edge->dest;
3345 basic_block else_bb = else_edge->dest, new_bb;
3346 int then_bb_index;
3348 /* If we are partitioning hot/cold basic blocks, we don't want to
3349 mess up unconditional or indirect jumps that cross between hot
3350 and cold sections.
3352 Basic block partitioning may result in some jumps that appear to
3353 be optimizable (or blocks that appear to be mergeable), but which really
3354 must be left untouched (they are required to make it safely across
3355 partition boundaries). See the comments at the top of
3356 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3358 if ((BB_END (then_bb)
3359 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3360 || (BB_END (test_bb)
3361 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3362 || (BB_END (else_bb)
3363 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3364 NULL_RTX)))
3365 return FALSE;
3367 /* THEN has one successor. */
3368 if (!single_succ_p (then_bb))
3369 return FALSE;
3371 /* THEN does not fall through, but is not strange either. */
3372 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3373 return FALSE;
3375 /* THEN has one predecessor. */
3376 if (!single_pred_p (then_bb))
3377 return FALSE;
3379 /* THEN must do something. */
3380 if (forwarder_block_p (then_bb))
3381 return FALSE;
3383 num_possible_if_blocks++;
3384 if (dump_file)
3385 fprintf (dump_file,
3386 "\nIF-CASE-1 found, start %d, then %d\n",
3387 test_bb->index, then_bb->index);
3389 /* THEN is small. */
3390 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3391 return FALSE;
3393 /* Registers set are dead, or are predicable. */
3394 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3395 single_succ (then_bb), 1))
3396 return FALSE;
3398 /* Conversion went ok, including moving the insns and fixing up the
3399 jump. Adjust the CFG to match. */
3401 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3402 else_bb->il.rtl->global_live_at_start,
3403 then_bb->il.rtl->global_live_at_end);
3406 /* We can avoid creating a new basic block if then_bb is immediately
3407 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3408 thru to else_bb. */
3410 if (then_bb->next_bb == else_bb
3411 && then_bb->prev_bb == test_bb
3412 && else_bb != EXIT_BLOCK_PTR)
3414 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3415 new_bb = 0;
3417 else
3418 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3419 else_bb);
3421 then_bb_index = then_bb->index;
3422 delete_basic_block (then_bb);
3424 /* Make rest of code believe that the newly created block is the THEN_BB
3425 block we removed. */
3426 if (new_bb)
3428 new_bb->index = then_bb_index;
3429 SET_BASIC_BLOCK (then_bb_index, new_bb);
3430 /* Since the fallthru edge was redirected from test_bb to new_bb,
3431 we need to ensure that new_bb is in the same partition as
3432 test bb (you can not fall through across section boundaries). */
3433 BB_COPY_PARTITION (new_bb, test_bb);
3435 /* We've possibly created jump to next insn, cleanup_cfg will solve that
3436 later. */
3438 num_true_changes++;
3439 num_updated_if_blocks++;
3441 return TRUE;
3444 /* Test for case 2 above. */
3446 static int
3447 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3449 basic_block then_bb = then_edge->dest;
3450 basic_block else_bb = else_edge->dest;
3451 edge else_succ;
3452 rtx note;
3454 /* If we are partitioning hot/cold basic blocks, we don't want to
3455 mess up unconditional or indirect jumps that cross between hot
3456 and cold sections.
3458 Basic block partitioning may result in some jumps that appear to
3459 be optimizable (or blocks that appear to be mergeable), but which really
3460 must be left untouched (they are required to make it safely across
3461 partition boundaries). See the comments at the top of
3462 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3464 if ((BB_END (then_bb)
3465 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3466 || (BB_END (test_bb)
3467 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3468 || (BB_END (else_bb)
3469 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3470 NULL_RTX)))
3471 return FALSE;
3473 /* ELSE has one successor. */
3474 if (!single_succ_p (else_bb))
3475 return FALSE;
3476 else
3477 else_succ = single_succ_edge (else_bb);
3479 /* ELSE outgoing edge is not complex. */
3480 if (else_succ->flags & EDGE_COMPLEX)
3481 return FALSE;
3483 /* ELSE has one predecessor. */
3484 if (!single_pred_p (else_bb))
3485 return FALSE;
3487 /* THEN is not EXIT. */
3488 if (then_bb->index < NUM_FIXED_BLOCKS)
3489 return FALSE;
3491 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3492 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3493 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3495 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3496 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3497 else_succ->dest))
3499 else
3500 return FALSE;
3502 num_possible_if_blocks++;
3503 if (dump_file)
3504 fprintf (dump_file,
3505 "\nIF-CASE-2 found, start %d, else %d\n",
3506 test_bb->index, else_bb->index);
3508 /* ELSE is small. */
3509 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3510 return FALSE;
3512 /* Registers set are dead, or are predicable. */
3513 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3514 return FALSE;
3516 /* Conversion went ok, including moving the insns and fixing up the
3517 jump. Adjust the CFG to match. */
3519 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3520 then_bb->il.rtl->global_live_at_start,
3521 else_bb->il.rtl->global_live_at_end);
3523 delete_basic_block (else_bb);
3525 num_true_changes++;
3526 num_updated_if_blocks++;
3528 /* ??? We may now fallthru from one of THEN's successors into a join
3529 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3531 return TRUE;
3534 /* A subroutine of dead_or_predicable called through for_each_rtx.
3535 Return 1 if a memory is found. */
3537 static int
3538 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3540 return MEM_P (*px);
3543 /* Used by the code above to perform the actual rtl transformations.
3544 Return TRUE if successful.
3546 TEST_BB is the block containing the conditional branch. MERGE_BB
3547 is the block containing the code to manipulate. NEW_DEST is the
3548 label TEST_BB should be branching to after the conversion.
3549 REVERSEP is true if the sense of the branch should be reversed. */
3551 static int
3552 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3553 basic_block other_bb, basic_block new_dest, int reversep)
3555 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3557 jump = BB_END (test_bb);
3559 /* Find the extent of the real code in the merge block. */
3560 head = BB_HEAD (merge_bb);
3561 end = BB_END (merge_bb);
3563 if (LABEL_P (head))
3564 head = NEXT_INSN (head);
3565 if (NOTE_P (head))
3567 if (head == end)
3569 head = end = NULL_RTX;
3570 goto no_body;
3572 head = NEXT_INSN (head);
3575 if (JUMP_P (end))
3577 if (head == end)
3579 head = end = NULL_RTX;
3580 goto no_body;
3582 end = PREV_INSN (end);
3585 /* Disable handling dead code by conditional execution if the machine needs
3586 to do anything funny with the tests, etc. */
3587 #ifndef IFCVT_MODIFY_TESTS
3588 if (HAVE_conditional_execution)
3590 /* In the conditional execution case, we have things easy. We know
3591 the condition is reversible. We don't have to check life info
3592 because we're going to conditionally execute the code anyway.
3593 All that's left is making sure the insns involved can actually
3594 be predicated. */
3596 rtx cond, prob_val;
3598 cond = cond_exec_get_condition (jump);
3599 if (! cond)
3600 return FALSE;
3602 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3603 if (prob_val)
3604 prob_val = XEXP (prob_val, 0);
3606 if (reversep)
3608 enum rtx_code rev = reversed_comparison_code (cond, jump);
3609 if (rev == UNKNOWN)
3610 return FALSE;
3611 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3612 XEXP (cond, 1));
3613 if (prob_val)
3614 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3617 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3618 prob_val, 0))
3619 goto cancel;
3621 earliest = jump;
3623 else
3624 #endif
3626 /* In the non-conditional execution case, we have to verify that there
3627 are no trapping operations, no calls, no references to memory, and
3628 that any registers modified are dead at the branch site. */
3630 rtx insn, cond, prev;
3631 regset merge_set, tmp, test_live, test_set;
3632 struct propagate_block_info *pbi;
3633 unsigned i, fail = 0;
3634 bitmap_iterator bi;
3636 /* Check for no calls or trapping operations. */
3637 for (insn = head; ; insn = NEXT_INSN (insn))
3639 if (CALL_P (insn))
3640 return FALSE;
3641 if (INSN_P (insn))
3643 if (may_trap_p (PATTERN (insn)))
3644 return FALSE;
3646 /* ??? Even non-trapping memories such as stack frame
3647 references must be avoided. For stores, we collect
3648 no lifetime info; for reads, we'd have to assert
3649 true_dependence false against every store in the
3650 TEST range. */
3651 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3652 return FALSE;
3654 if (insn == end)
3655 break;
3658 if (! any_condjump_p (jump))
3659 return FALSE;
3661 /* Find the extent of the conditional. */
3662 cond = noce_get_condition (jump, &earliest);
3663 if (! cond)
3664 return FALSE;
3666 /* Collect:
3667 MERGE_SET = set of registers set in MERGE_BB
3668 TEST_LIVE = set of registers live at EARLIEST
3669 TEST_SET = set of registers set between EARLIEST and the
3670 end of the block. */
3672 tmp = ALLOC_REG_SET (&reg_obstack);
3673 merge_set = ALLOC_REG_SET (&reg_obstack);
3674 test_live = ALLOC_REG_SET (&reg_obstack);
3675 test_set = ALLOC_REG_SET (&reg_obstack);
3677 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3678 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3679 since we've already asserted that MERGE_BB is small. */
3680 /* If we allocated new pseudos (e.g. in the conditional move
3681 expander called from noce_emit_cmove), we must resize the
3682 array first. */
3683 if (max_regno < max_reg_num ())
3685 max_regno = max_reg_num ();
3686 allocate_reg_info (max_regno, FALSE, FALSE);
3688 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3690 /* For small register class machines, don't lengthen lifetimes of
3691 hard registers before reload. */
3692 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3694 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3696 if (i < FIRST_PSEUDO_REGISTER
3697 && ! fixed_regs[i]
3698 && ! global_regs[i])
3699 fail = 1;
3703 /* For TEST, we're interested in a range of insns, not a whole block.
3704 Moreover, we're interested in the insns live from OTHER_BB. */
3706 COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3707 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3710 for (insn = jump; ; insn = prev)
3712 prev = propagate_one_insn (pbi, insn);
3713 if (insn == earliest)
3714 break;
3717 free_propagate_block_info (pbi);
3719 /* We can perform the transformation if
3720 MERGE_SET & (TEST_SET | TEST_LIVE)
3722 TEST_SET & merge_bb->il.rtl->global_live_at_start
3723 are empty. */
3725 if (bitmap_intersect_p (test_set, merge_set)
3726 || bitmap_intersect_p (test_live, merge_set)
3727 || bitmap_intersect_p (test_set,
3728 merge_bb->il.rtl->global_live_at_start))
3729 fail = 1;
3731 FREE_REG_SET (tmp);
3732 FREE_REG_SET (merge_set);
3733 FREE_REG_SET (test_live);
3734 FREE_REG_SET (test_set);
3736 if (fail)
3737 return FALSE;
3740 no_body:
3741 /* We don't want to use normal invert_jump or redirect_jump because
3742 we don't want to delete_insn called. Also, we want to do our own
3743 change group management. */
3745 old_dest = JUMP_LABEL (jump);
3746 if (other_bb != new_dest)
3748 new_label = block_label (new_dest);
3749 if (reversep
3750 ? ! invert_jump_1 (jump, new_label)
3751 : ! redirect_jump_1 (jump, new_label))
3752 goto cancel;
3755 if (! apply_change_group ())
3756 return FALSE;
3758 if (other_bb != new_dest)
3760 redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3762 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3763 if (reversep)
3765 gcov_type count, probability;
3766 count = BRANCH_EDGE (test_bb)->count;
3767 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3768 FALLTHRU_EDGE (test_bb)->count = count;
3769 probability = BRANCH_EDGE (test_bb)->probability;
3770 BRANCH_EDGE (test_bb)->probability
3771 = FALLTHRU_EDGE (test_bb)->probability;
3772 FALLTHRU_EDGE (test_bb)->probability = probability;
3773 update_br_prob_note (test_bb);
3777 /* Move the insns out of MERGE_BB to before the branch. */
3778 if (head != NULL)
3780 rtx insn;
3782 if (end == BB_END (merge_bb))
3783 BB_END (merge_bb) = PREV_INSN (head);
3785 if (squeeze_notes (&head, &end))
3786 return TRUE;
3788 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3789 notes might become invalid. */
3790 insn = head;
3793 rtx note, set;
3795 if (! INSN_P (insn))
3796 continue;
3797 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3798 if (! note)
3799 continue;
3800 set = single_set (insn);
3801 if (!set || !function_invariant_p (SET_SRC (set)))
3802 remove_note (insn, note);
3803 } while (insn != end && (insn = NEXT_INSN (insn)));
3805 reorder_insns (head, end, PREV_INSN (earliest));
3808 /* Remove the jump and edge if we can. */
3809 if (other_bb == new_dest)
3811 delete_insn (jump);
3812 remove_edge (BRANCH_EDGE (test_bb));
3813 /* ??? Can't merge blocks here, as then_bb is still in use.
3814 At minimum, the merge will get done just before bb-reorder. */
3817 return TRUE;
3819 cancel:
3820 cancel_changes (0);
3821 return FALSE;
3824 /* Main entry point for all if-conversion. */
3826 static void
3827 if_convert (int x_life_data_ok)
3829 basic_block bb;
3830 int pass;
3832 num_possible_if_blocks = 0;
3833 num_updated_if_blocks = 0;
3834 num_true_changes = 0;
3835 life_data_ok = (x_life_data_ok != 0);
3837 if ((! targetm.cannot_modify_jumps_p ())
3838 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3839 || !targetm.have_named_sections))
3841 struct loops loops;
3843 flow_loops_find (&loops);
3844 mark_loop_exit_edges (&loops);
3845 flow_loops_free (&loops);
3846 free_dominance_info (CDI_DOMINATORS);
3849 /* Compute postdominators if we think we'll use them. */
3850 if (HAVE_conditional_execution || life_data_ok)
3851 calculate_dominance_info (CDI_POST_DOMINATORS);
3853 if (life_data_ok)
3854 clear_bb_flags ();
3856 /* Go through each of the basic blocks looking for things to convert. If we
3857 have conditional execution, we make multiple passes to allow us to handle
3858 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3859 pass = 0;
3862 cond_exec_changed_p = FALSE;
3863 pass++;
3865 #ifdef IFCVT_MULTIPLE_DUMPS
3866 if (dump_file && pass > 1)
3867 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3868 #endif
3870 FOR_EACH_BB (bb)
3872 basic_block new_bb;
3873 while ((new_bb = find_if_header (bb, pass)))
3874 bb = new_bb;
3877 #ifdef IFCVT_MULTIPLE_DUMPS
3878 if (dump_file && cond_exec_changed_p)
3879 print_rtl_with_bb (dump_file, get_insns ());
3880 #endif
3882 while (cond_exec_changed_p);
3884 #ifdef IFCVT_MULTIPLE_DUMPS
3885 if (dump_file)
3886 fprintf (dump_file, "\n\n========== no more changes\n");
3887 #endif
3889 free_dominance_info (CDI_POST_DOMINATORS);
3891 if (dump_file)
3892 fflush (dump_file);
3894 clear_aux_for_blocks ();
3896 /* Rebuild life info for basic blocks that require it. */
3897 if (num_true_changes && life_data_ok)
3899 /* If we allocated new pseudos, we must resize the array for sched1. */
3900 if (max_regno < max_reg_num ())
3902 max_regno = max_reg_num ();
3903 allocate_reg_info (max_regno, FALSE, FALSE);
3905 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3906 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3907 | PROP_KILL_DEAD_CODE);
3910 /* Write the final stats. */
3911 if (dump_file && num_possible_if_blocks > 0)
3913 fprintf (dump_file,
3914 "\n%d possible IF blocks searched.\n",
3915 num_possible_if_blocks);
3916 fprintf (dump_file,
3917 "%d IF blocks converted.\n",
3918 num_updated_if_blocks);
3919 fprintf (dump_file,
3920 "%d true changes made.\n\n\n",
3921 num_true_changes);
3924 #ifdef ENABLE_CHECKING
3925 verify_flow_info ();
3926 #endif
3929 static bool
3930 gate_handle_if_conversion (void)
3932 return (optimize > 0);
3935 /* If-conversion and CFG cleanup. */
3936 static unsigned int
3937 rest_of_handle_if_conversion (void)
3939 if (flag_if_conversion)
3941 if (dump_file)
3942 dump_flow_info (dump_file, dump_flags);
3943 cleanup_cfg (CLEANUP_EXPENSIVE);
3944 reg_scan (get_insns (), max_reg_num ());
3945 if_convert (0);
3948 timevar_push (TV_JUMP);
3949 cleanup_cfg (CLEANUP_EXPENSIVE);
3950 reg_scan (get_insns (), max_reg_num ());
3951 timevar_pop (TV_JUMP);
3952 return 0;
3955 struct tree_opt_pass pass_rtl_ifcvt =
3957 "ce1", /* name */
3958 gate_handle_if_conversion, /* gate */
3959 rest_of_handle_if_conversion, /* execute */
3960 NULL, /* sub */
3961 NULL, /* next */
3962 0, /* static_pass_number */
3963 TV_IFCVT, /* tv_id */
3964 0, /* properties_required */
3965 0, /* properties_provided */
3966 0, /* properties_destroyed */
3967 0, /* todo_flags_start */
3968 TODO_dump_func, /* todo_flags_finish */
3969 'C' /* letter */
3972 static bool
3973 gate_handle_if_after_combine (void)
3975 return (optimize > 0 && flag_if_conversion);
3979 /* Rerun if-conversion, as combine may have simplified things enough
3980 to now meet sequence length restrictions. */
3981 static unsigned int
3982 rest_of_handle_if_after_combine (void)
3984 no_new_pseudos = 0;
3985 if_convert (1);
3986 no_new_pseudos = 1;
3987 return 0;
3990 struct tree_opt_pass pass_if_after_combine =
3992 "ce2", /* name */
3993 gate_handle_if_after_combine, /* gate */
3994 rest_of_handle_if_after_combine, /* execute */
3995 NULL, /* sub */
3996 NULL, /* next */
3997 0, /* static_pass_number */
3998 TV_IFCVT, /* tv_id */
3999 0, /* properties_required */
4000 0, /* properties_provided */
4001 0, /* properties_destroyed */
4002 0, /* todo_flags_start */
4003 TODO_dump_func |
4004 TODO_ggc_collect, /* todo_flags_finish */
4005 'C' /* letter */
4009 static bool
4010 gate_handle_if_after_reload (void)
4012 return (optimize > 0);
4015 static unsigned int
4016 rest_of_handle_if_after_reload (void)
4018 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
4019 splitting possibly introduced more crossjumping opportunities. */
4020 cleanup_cfg (CLEANUP_EXPENSIVE
4021 | CLEANUP_UPDATE_LIFE
4022 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
4023 if (flag_if_conversion2)
4024 if_convert (1);
4025 return 0;
4029 struct tree_opt_pass pass_if_after_reload =
4031 "ce3", /* name */
4032 gate_handle_if_after_reload, /* gate */
4033 rest_of_handle_if_after_reload, /* execute */
4034 NULL, /* sub */
4035 NULL, /* next */
4036 0, /* static_pass_number */
4037 TV_IFCVT2, /* tv_id */
4038 0, /* properties_required */
4039 0, /* properties_provided */
4040 0, /* properties_destroyed */
4041 0, /* todo_flags_start */
4042 TODO_dump_func |
4043 TODO_ggc_collect, /* todo_flags_finish */
4044 'E' /* letter */