* config/m68k/m68k.md (bungt_rev): New pattern.
[official-gcc.git] / gcc / function.c
blob12e391abf24b5a227acb2dcc2a31e1a7cc218dd2
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
66 #include "vecprim.h"
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 life_analysis has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
153 struct temp_slot GTY(())
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
190 /* Forward declarations. */
192 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
193 struct function *);
194 static struct temp_slot *find_temp_slot_from_address (rtx);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
198 static int all_blocks (tree, tree *);
199 static tree *get_block_vector (tree, int *);
200 extern tree debug_find_var_in_block_tree (tree, tree);
201 /* We always define `record_insns' even if it's not used so that we
202 can always export `prologue_epilogue_contains'. */
203 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
204 static int contains (rtx, VEC(int,heap) **);
205 #ifdef HAVE_return
206 static void emit_return_into_block (basic_block, rtx);
207 #endif
208 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
209 static rtx keep_stack_depressed (rtx);
210 #endif
211 static void prepare_function_start (tree);
212 static void do_clobber_return_reg (rtx, void *);
213 static void do_use_return_reg (rtx, void *);
214 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
216 /* Pointer to chain of `struct function' for containing functions. */
217 struct function *outer_function_chain;
219 /* Given a function decl for a containing function,
220 return the `struct function' for it. */
222 struct function *
223 find_function_data (tree decl)
225 struct function *p;
227 for (p = outer_function_chain; p; p = p->outer)
228 if (p->decl == decl)
229 return p;
231 gcc_unreachable ();
234 /* Save the current context for compilation of a nested function.
235 This is called from language-specific code. The caller should use
236 the enter_nested langhook to save any language-specific state,
237 since this function knows only about language-independent
238 variables. */
240 void
241 push_function_context_to (tree context ATTRIBUTE_UNUSED)
243 struct function *p;
245 if (cfun == 0)
246 init_dummy_function_start ();
247 p = cfun;
249 p->outer = outer_function_chain;
250 outer_function_chain = p;
252 lang_hooks.function.enter_nested (p);
254 cfun = 0;
257 void
258 push_function_context (void)
260 push_function_context_to (current_function_decl);
263 /* Restore the last saved context, at the end of a nested function.
264 This function is called from language-specific code. */
266 void
267 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
269 struct function *p = outer_function_chain;
271 cfun = p;
272 outer_function_chain = p->outer;
274 current_function_decl = p->decl;
276 lang_hooks.function.leave_nested (p);
278 /* Reset variables that have known state during rtx generation. */
279 virtuals_instantiated = 0;
280 generating_concat_p = 1;
283 void
284 pop_function_context (void)
286 pop_function_context_from (current_function_decl);
289 /* Clear out all parts of the state in F that can safely be discarded
290 after the function has been parsed, but not compiled, to let
291 garbage collection reclaim the memory. */
293 void
294 free_after_parsing (struct function *f)
296 /* f->expr->forced_labels is used by code generation. */
297 /* f->emit->regno_reg_rtx is used by code generation. */
298 /* f->varasm is used by code generation. */
299 /* f->eh->eh_return_stub_label is used by code generation. */
301 lang_hooks.function.final (f);
304 /* Clear out all parts of the state in F that can safely be discarded
305 after the function has been compiled, to let garbage collection
306 reclaim the memory. */
308 void
309 free_after_compilation (struct function *f)
311 VEC_free (int, heap, prologue);
312 VEC_free (int, heap, epilogue);
313 VEC_free (int, heap, sibcall_epilogue);
315 f->eh = NULL;
316 f->expr = NULL;
317 f->emit = NULL;
318 f->varasm = NULL;
319 f->machine = NULL;
320 f->cfg = NULL;
322 f->x_avail_temp_slots = NULL;
323 f->x_used_temp_slots = NULL;
324 f->arg_offset_rtx = NULL;
325 f->return_rtx = NULL;
326 f->internal_arg_pointer = NULL;
327 f->x_nonlocal_goto_handler_labels = NULL;
328 f->x_return_label = NULL;
329 f->x_naked_return_label = NULL;
330 f->x_stack_slot_list = NULL;
331 f->x_stack_check_probe_note = NULL;
332 f->x_arg_pointer_save_area = NULL;
333 f->x_parm_birth_insn = NULL;
334 f->epilogue_delay_list = NULL;
337 /* Allocate fixed slots in the stack frame of the current function. */
339 /* Return size needed for stack frame based on slots so far allocated in
340 function F.
341 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
342 the caller may have to do that. */
344 static HOST_WIDE_INT
345 get_func_frame_size (struct function *f)
347 if (FRAME_GROWS_DOWNWARD)
348 return -f->x_frame_offset;
349 else
350 return f->x_frame_offset;
353 /* Return size needed for stack frame based on slots so far allocated.
354 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
355 the caller may have to do that. */
357 HOST_WIDE_INT
358 get_frame_size (void)
360 return get_func_frame_size (cfun);
363 /* Issue an error message and return TRUE if frame OFFSET overflows in
364 the signed target pointer arithmetics for function FUNC. Otherwise
365 return FALSE. */
367 bool
368 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
370 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
372 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
373 /* Leave room for the fixed part of the frame. */
374 - 64 * UNITS_PER_WORD)
376 error ("%Jtotal size of local objects too large", func);
377 return TRUE;
380 return FALSE;
383 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
384 with machine mode MODE.
386 ALIGN controls the amount of alignment for the address of the slot:
387 0 means according to MODE,
388 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
389 -2 means use BITS_PER_UNIT,
390 positive specifies alignment boundary in bits.
392 We do not round to stack_boundary here.
394 FUNCTION specifies the function to allocate in. */
396 static rtx
397 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
398 struct function *function)
400 rtx x, addr;
401 int bigend_correction = 0;
402 unsigned int alignment;
403 int frame_off, frame_alignment, frame_phase;
405 if (align == 0)
407 tree type;
409 if (mode == BLKmode)
410 alignment = BIGGEST_ALIGNMENT;
411 else
412 alignment = GET_MODE_ALIGNMENT (mode);
414 /* Allow the target to (possibly) increase the alignment of this
415 stack slot. */
416 type = lang_hooks.types.type_for_mode (mode, 0);
417 if (type)
418 alignment = LOCAL_ALIGNMENT (type, alignment);
420 alignment /= BITS_PER_UNIT;
422 else if (align == -1)
424 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
425 size = CEIL_ROUND (size, alignment);
427 else if (align == -2)
428 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
429 else
430 alignment = align / BITS_PER_UNIT;
432 if (FRAME_GROWS_DOWNWARD)
433 function->x_frame_offset -= size;
435 /* Ignore alignment we can't do with expected alignment of the boundary. */
436 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
437 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
440 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
442 /* Calculate how many bytes the start of local variables is off from
443 stack alignment. */
444 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
445 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
446 frame_phase = frame_off ? frame_alignment - frame_off : 0;
448 /* Round the frame offset to the specified alignment. The default is
449 to always honor requests to align the stack but a port may choose to
450 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
451 if (STACK_ALIGNMENT_NEEDED
452 || mode != BLKmode
453 || size != 0)
455 /* We must be careful here, since FRAME_OFFSET might be negative and
456 division with a negative dividend isn't as well defined as we might
457 like. So we instead assume that ALIGNMENT is a power of two and
458 use logical operations which are unambiguous. */
459 if (FRAME_GROWS_DOWNWARD)
460 function->x_frame_offset
461 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
462 (unsigned HOST_WIDE_INT) alignment)
463 + frame_phase);
464 else
465 function->x_frame_offset
466 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
467 (unsigned HOST_WIDE_INT) alignment)
468 + frame_phase);
471 /* On a big-endian machine, if we are allocating more space than we will use,
472 use the least significant bytes of those that are allocated. */
473 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
474 bigend_correction = size - GET_MODE_SIZE (mode);
476 /* If we have already instantiated virtual registers, return the actual
477 address relative to the frame pointer. */
478 if (function == cfun && virtuals_instantiated)
479 addr = plus_constant (frame_pointer_rtx,
480 trunc_int_for_mode
481 (frame_offset + bigend_correction
482 + STARTING_FRAME_OFFSET, Pmode));
483 else
484 addr = plus_constant (virtual_stack_vars_rtx,
485 trunc_int_for_mode
486 (function->x_frame_offset + bigend_correction,
487 Pmode));
489 if (!FRAME_GROWS_DOWNWARD)
490 function->x_frame_offset += size;
492 x = gen_rtx_MEM (mode, addr);
493 MEM_NOTRAP_P (x) = 1;
495 function->x_stack_slot_list
496 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
498 if (frame_offset_overflow (function->x_frame_offset, function->decl))
499 function->x_frame_offset = 0;
501 return x;
504 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
505 current function. */
508 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
510 return assign_stack_local_1 (mode, size, align, cfun);
514 /* Removes temporary slot TEMP from LIST. */
516 static void
517 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
519 if (temp->next)
520 temp->next->prev = temp->prev;
521 if (temp->prev)
522 temp->prev->next = temp->next;
523 else
524 *list = temp->next;
526 temp->prev = temp->next = NULL;
529 /* Inserts temporary slot TEMP to LIST. */
531 static void
532 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
534 temp->next = *list;
535 if (*list)
536 (*list)->prev = temp;
537 temp->prev = NULL;
538 *list = temp;
541 /* Returns the list of used temp slots at LEVEL. */
543 static struct temp_slot **
544 temp_slots_at_level (int level)
546 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
548 size_t old_length = VEC_length (temp_slot_p, used_temp_slots);
549 temp_slot_p *p;
551 VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1);
552 p = VEC_address (temp_slot_p, used_temp_slots);
553 memset (&p[old_length], 0,
554 sizeof (temp_slot_p) * (level + 1 - old_length));
557 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
560 /* Returns the maximal temporary slot level. */
562 static int
563 max_slot_level (void)
565 if (!used_temp_slots)
566 return -1;
568 return VEC_length (temp_slot_p, used_temp_slots) - 1;
571 /* Moves temporary slot TEMP to LEVEL. */
573 static void
574 move_slot_to_level (struct temp_slot *temp, int level)
576 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
577 insert_slot_to_list (temp, temp_slots_at_level (level));
578 temp->level = level;
581 /* Make temporary slot TEMP available. */
583 static void
584 make_slot_available (struct temp_slot *temp)
586 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
587 insert_slot_to_list (temp, &avail_temp_slots);
588 temp->in_use = 0;
589 temp->level = -1;
592 /* Allocate a temporary stack slot and record it for possible later
593 reuse.
595 MODE is the machine mode to be given to the returned rtx.
597 SIZE is the size in units of the space required. We do no rounding here
598 since assign_stack_local will do any required rounding.
600 KEEP is 1 if this slot is to be retained after a call to
601 free_temp_slots. Automatic variables for a block are allocated
602 with this flag. KEEP values of 2 or 3 were needed respectively
603 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
604 or for SAVE_EXPRs, but they are now unused.
606 TYPE is the type that will be used for the stack slot. */
609 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
610 int keep, tree type)
612 unsigned int align;
613 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
614 rtx slot;
616 /* If SIZE is -1 it means that somebody tried to allocate a temporary
617 of a variable size. */
618 gcc_assert (size != -1);
620 /* These are now unused. */
621 gcc_assert (keep <= 1);
623 if (mode == BLKmode)
624 align = BIGGEST_ALIGNMENT;
625 else
626 align = GET_MODE_ALIGNMENT (mode);
628 if (! type)
629 type = lang_hooks.types.type_for_mode (mode, 0);
631 if (type)
632 align = LOCAL_ALIGNMENT (type, align);
634 /* Try to find an available, already-allocated temporary of the proper
635 mode which meets the size and alignment requirements. Choose the
636 smallest one with the closest alignment.
638 If assign_stack_temp is called outside of the tree->rtl expansion,
639 we cannot reuse the stack slots (that may still refer to
640 VIRTUAL_STACK_VARS_REGNUM). */
641 if (!virtuals_instantiated)
643 for (p = avail_temp_slots; p; p = p->next)
645 if (p->align >= align && p->size >= size
646 && GET_MODE (p->slot) == mode
647 && objects_must_conflict_p (p->type, type)
648 && (best_p == 0 || best_p->size > p->size
649 || (best_p->size == p->size && best_p->align > p->align)))
651 if (p->align == align && p->size == size)
653 selected = p;
654 cut_slot_from_list (selected, &avail_temp_slots);
655 best_p = 0;
656 break;
658 best_p = p;
663 /* Make our best, if any, the one to use. */
664 if (best_p)
666 selected = best_p;
667 cut_slot_from_list (selected, &avail_temp_slots);
669 /* If there are enough aligned bytes left over, make them into a new
670 temp_slot so that the extra bytes don't get wasted. Do this only
671 for BLKmode slots, so that we can be sure of the alignment. */
672 if (GET_MODE (best_p->slot) == BLKmode)
674 int alignment = best_p->align / BITS_PER_UNIT;
675 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
677 if (best_p->size - rounded_size >= alignment)
679 p = ggc_alloc (sizeof (struct temp_slot));
680 p->in_use = p->addr_taken = 0;
681 p->size = best_p->size - rounded_size;
682 p->base_offset = best_p->base_offset + rounded_size;
683 p->full_size = best_p->full_size - rounded_size;
684 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
685 p->align = best_p->align;
686 p->address = 0;
687 p->type = best_p->type;
688 insert_slot_to_list (p, &avail_temp_slots);
690 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
691 stack_slot_list);
693 best_p->size = rounded_size;
694 best_p->full_size = rounded_size;
699 /* If we still didn't find one, make a new temporary. */
700 if (selected == 0)
702 HOST_WIDE_INT frame_offset_old = frame_offset;
704 p = ggc_alloc (sizeof (struct temp_slot));
706 /* We are passing an explicit alignment request to assign_stack_local.
707 One side effect of that is assign_stack_local will not round SIZE
708 to ensure the frame offset remains suitably aligned.
710 So for requests which depended on the rounding of SIZE, we go ahead
711 and round it now. We also make sure ALIGNMENT is at least
712 BIGGEST_ALIGNMENT. */
713 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
714 p->slot = assign_stack_local (mode,
715 (mode == BLKmode
716 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
717 : size),
718 align);
720 p->align = align;
722 /* The following slot size computation is necessary because we don't
723 know the actual size of the temporary slot until assign_stack_local
724 has performed all the frame alignment and size rounding for the
725 requested temporary. Note that extra space added for alignment
726 can be either above or below this stack slot depending on which
727 way the frame grows. We include the extra space if and only if it
728 is above this slot. */
729 if (FRAME_GROWS_DOWNWARD)
730 p->size = frame_offset_old - frame_offset;
731 else
732 p->size = size;
734 /* Now define the fields used by combine_temp_slots. */
735 if (FRAME_GROWS_DOWNWARD)
737 p->base_offset = frame_offset;
738 p->full_size = frame_offset_old - frame_offset;
740 else
742 p->base_offset = frame_offset_old;
743 p->full_size = frame_offset - frame_offset_old;
745 p->address = 0;
747 selected = p;
750 p = selected;
751 p->in_use = 1;
752 p->addr_taken = 0;
753 p->type = type;
754 p->level = temp_slot_level;
755 p->keep = keep;
757 pp = temp_slots_at_level (p->level);
758 insert_slot_to_list (p, pp);
760 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
761 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
762 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
764 /* If we know the alias set for the memory that will be used, use
765 it. If there's no TYPE, then we don't know anything about the
766 alias set for the memory. */
767 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
768 set_mem_align (slot, align);
770 /* If a type is specified, set the relevant flags. */
771 if (type != 0)
773 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
774 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
776 MEM_NOTRAP_P (slot) = 1;
778 return slot;
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse. First three arguments are same as in preceding function. */
785 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
787 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
790 /* Assign a temporary.
791 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
792 and so that should be used in error messages. In either case, we
793 allocate of the given type.
794 KEEP is as for assign_stack_temp.
795 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
796 it is 0 if a register is OK.
797 DONT_PROMOTE is 1 if we should not promote values in register
798 to wider modes. */
801 assign_temp (tree type_or_decl, int keep, int memory_required,
802 int dont_promote ATTRIBUTE_UNUSED)
804 tree type, decl;
805 enum machine_mode mode;
806 #ifdef PROMOTE_MODE
807 int unsignedp;
808 #endif
810 if (DECL_P (type_or_decl))
811 decl = type_or_decl, type = TREE_TYPE (decl);
812 else
813 decl = NULL, type = type_or_decl;
815 mode = TYPE_MODE (type);
816 #ifdef PROMOTE_MODE
817 unsignedp = TYPE_UNSIGNED (type);
818 #endif
820 if (mode == BLKmode || memory_required)
822 HOST_WIDE_INT size = int_size_in_bytes (type);
823 rtx tmp;
825 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
826 problems with allocating the stack space. */
827 if (size == 0)
828 size = 1;
830 /* Unfortunately, we don't yet know how to allocate variable-sized
831 temporaries. However, sometimes we can find a fixed upper limit on
832 the size, so try that instead. */
833 else if (size == -1)
834 size = max_int_size_in_bytes (type);
836 /* The size of the temporary may be too large to fit into an integer. */
837 /* ??? Not sure this should happen except for user silliness, so limit
838 this to things that aren't compiler-generated temporaries. The
839 rest of the time we'll die in assign_stack_temp_for_type. */
840 if (decl && size == -1
841 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
843 error ("size of variable %q+D is too large", decl);
844 size = 1;
847 tmp = assign_stack_temp_for_type (mode, size, keep, type);
848 return tmp;
851 #ifdef PROMOTE_MODE
852 if (! dont_promote)
853 mode = promote_mode (type, mode, &unsignedp, 0);
854 #endif
856 return gen_reg_rtx (mode);
859 /* Combine temporary stack slots which are adjacent on the stack.
861 This allows for better use of already allocated stack space. This is only
862 done for BLKmode slots because we can be sure that we won't have alignment
863 problems in this case. */
865 static void
866 combine_temp_slots (void)
868 struct temp_slot *p, *q, *next, *next_q;
869 int num_slots;
871 /* We can't combine slots, because the information about which slot
872 is in which alias set will be lost. */
873 if (flag_strict_aliasing)
874 return;
876 /* If there are a lot of temp slots, don't do anything unless
877 high levels of optimization. */
878 if (! flag_expensive_optimizations)
879 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
880 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
881 return;
883 for (p = avail_temp_slots; p; p = next)
885 int delete_p = 0;
887 next = p->next;
889 if (GET_MODE (p->slot) != BLKmode)
890 continue;
892 for (q = p->next; q; q = next_q)
894 int delete_q = 0;
896 next_q = q->next;
898 if (GET_MODE (q->slot) != BLKmode)
899 continue;
901 if (p->base_offset + p->full_size == q->base_offset)
903 /* Q comes after P; combine Q into P. */
904 p->size += q->size;
905 p->full_size += q->full_size;
906 delete_q = 1;
908 else if (q->base_offset + q->full_size == p->base_offset)
910 /* P comes after Q; combine P into Q. */
911 q->size += p->size;
912 q->full_size += p->full_size;
913 delete_p = 1;
914 break;
916 if (delete_q)
917 cut_slot_from_list (q, &avail_temp_slots);
920 /* Either delete P or advance past it. */
921 if (delete_p)
922 cut_slot_from_list (p, &avail_temp_slots);
926 /* Find the temp slot corresponding to the object at address X. */
928 static struct temp_slot *
929 find_temp_slot_from_address (rtx x)
931 struct temp_slot *p;
932 rtx next;
933 int i;
935 for (i = max_slot_level (); i >= 0; i--)
936 for (p = *temp_slots_at_level (i); p; p = p->next)
938 if (XEXP (p->slot, 0) == x
939 || p->address == x
940 || (GET_CODE (x) == PLUS
941 && XEXP (x, 0) == virtual_stack_vars_rtx
942 && GET_CODE (XEXP (x, 1)) == CONST_INT
943 && INTVAL (XEXP (x, 1)) >= p->base_offset
944 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
945 return p;
947 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
948 for (next = p->address; next; next = XEXP (next, 1))
949 if (XEXP (next, 0) == x)
950 return p;
953 /* If we have a sum involving a register, see if it points to a temp
954 slot. */
955 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
956 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
957 return p;
958 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
959 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
960 return p;
962 return 0;
965 /* Indicate that NEW is an alternate way of referring to the temp slot
966 that previously was known by OLD. */
968 void
969 update_temp_slot_address (rtx old, rtx new)
971 struct temp_slot *p;
973 if (rtx_equal_p (old, new))
974 return;
976 p = find_temp_slot_from_address (old);
978 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
979 is a register, see if one operand of the PLUS is a temporary
980 location. If so, NEW points into it. Otherwise, if both OLD and
981 NEW are a PLUS and if there is a register in common between them.
982 If so, try a recursive call on those values. */
983 if (p == 0)
985 if (GET_CODE (old) != PLUS)
986 return;
988 if (REG_P (new))
990 update_temp_slot_address (XEXP (old, 0), new);
991 update_temp_slot_address (XEXP (old, 1), new);
992 return;
994 else if (GET_CODE (new) != PLUS)
995 return;
997 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
998 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
999 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1000 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1001 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1002 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1003 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1004 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1006 return;
1009 /* Otherwise add an alias for the temp's address. */
1010 else if (p->address == 0)
1011 p->address = new;
1012 else
1014 if (GET_CODE (p->address) != EXPR_LIST)
1015 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1017 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1021 /* If X could be a reference to a temporary slot, mark the fact that its
1022 address was taken. */
1024 void
1025 mark_temp_addr_taken (rtx x)
1027 struct temp_slot *p;
1029 if (x == 0)
1030 return;
1032 /* If X is not in memory or is at a constant address, it cannot be in
1033 a temporary slot. */
1034 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1035 return;
1037 p = find_temp_slot_from_address (XEXP (x, 0));
1038 if (p != 0)
1039 p->addr_taken = 1;
1042 /* If X could be a reference to a temporary slot, mark that slot as
1043 belonging to the to one level higher than the current level. If X
1044 matched one of our slots, just mark that one. Otherwise, we can't
1045 easily predict which it is, so upgrade all of them. Kept slots
1046 need not be touched.
1048 This is called when an ({...}) construct occurs and a statement
1049 returns a value in memory. */
1051 void
1052 preserve_temp_slots (rtx x)
1054 struct temp_slot *p = 0, *next;
1056 /* If there is no result, we still might have some objects whose address
1057 were taken, so we need to make sure they stay around. */
1058 if (x == 0)
1060 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1062 next = p->next;
1064 if (p->addr_taken)
1065 move_slot_to_level (p, temp_slot_level - 1);
1068 return;
1071 /* If X is a register that is being used as a pointer, see if we have
1072 a temporary slot we know it points to. To be consistent with
1073 the code below, we really should preserve all non-kept slots
1074 if we can't find a match, but that seems to be much too costly. */
1075 if (REG_P (x) && REG_POINTER (x))
1076 p = find_temp_slot_from_address (x);
1078 /* If X is not in memory or is at a constant address, it cannot be in
1079 a temporary slot, but it can contain something whose address was
1080 taken. */
1081 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1083 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1085 next = p->next;
1087 if (p->addr_taken)
1088 move_slot_to_level (p, temp_slot_level - 1);
1091 return;
1094 /* First see if we can find a match. */
1095 if (p == 0)
1096 p = find_temp_slot_from_address (XEXP (x, 0));
1098 if (p != 0)
1100 /* Move everything at our level whose address was taken to our new
1101 level in case we used its address. */
1102 struct temp_slot *q;
1104 if (p->level == temp_slot_level)
1106 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1108 next = q->next;
1110 if (p != q && q->addr_taken)
1111 move_slot_to_level (q, temp_slot_level - 1);
1114 move_slot_to_level (p, temp_slot_level - 1);
1115 p->addr_taken = 0;
1117 return;
1120 /* Otherwise, preserve all non-kept slots at this level. */
1121 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1123 next = p->next;
1125 if (!p->keep)
1126 move_slot_to_level (p, temp_slot_level - 1);
1130 /* Free all temporaries used so far. This is normally called at the
1131 end of generating code for a statement. */
1133 void
1134 free_temp_slots (void)
1136 struct temp_slot *p, *next;
1138 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1140 next = p->next;
1142 if (!p->keep)
1143 make_slot_available (p);
1146 combine_temp_slots ();
1149 /* Push deeper into the nesting level for stack temporaries. */
1151 void
1152 push_temp_slots (void)
1154 temp_slot_level++;
1157 /* Pop a temporary nesting level. All slots in use in the current level
1158 are freed. */
1160 void
1161 pop_temp_slots (void)
1163 struct temp_slot *p, *next;
1165 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1167 next = p->next;
1168 make_slot_available (p);
1171 combine_temp_slots ();
1173 temp_slot_level--;
1176 /* Initialize temporary slots. */
1178 void
1179 init_temp_slots (void)
1181 /* We have not allocated any temporaries yet. */
1182 avail_temp_slots = 0;
1183 used_temp_slots = 0;
1184 temp_slot_level = 0;
1187 /* These routines are responsible for converting virtual register references
1188 to the actual hard register references once RTL generation is complete.
1190 The following four variables are used for communication between the
1191 routines. They contain the offsets of the virtual registers from their
1192 respective hard registers. */
1194 static int in_arg_offset;
1195 static int var_offset;
1196 static int dynamic_offset;
1197 static int out_arg_offset;
1198 static int cfa_offset;
1200 /* In most machines, the stack pointer register is equivalent to the bottom
1201 of the stack. */
1203 #ifndef STACK_POINTER_OFFSET
1204 #define STACK_POINTER_OFFSET 0
1205 #endif
1207 /* If not defined, pick an appropriate default for the offset of dynamically
1208 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1209 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1211 #ifndef STACK_DYNAMIC_OFFSET
1213 /* The bottom of the stack points to the actual arguments. If
1214 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1215 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1216 stack space for register parameters is not pushed by the caller, but
1217 rather part of the fixed stack areas and hence not included in
1218 `current_function_outgoing_args_size'. Nevertheless, we must allow
1219 for it when allocating stack dynamic objects. */
1221 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1222 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1223 ((ACCUMULATE_OUTGOING_ARGS \
1224 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1225 + (STACK_POINTER_OFFSET)) \
1227 #else
1228 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1229 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1230 + (STACK_POINTER_OFFSET))
1231 #endif
1232 #endif
1235 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1236 is a virtual register, return the equivalent hard register and set the
1237 offset indirectly through the pointer. Otherwise, return 0. */
1239 static rtx
1240 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1242 rtx new;
1243 HOST_WIDE_INT offset;
1245 if (x == virtual_incoming_args_rtx)
1246 new = arg_pointer_rtx, offset = in_arg_offset;
1247 else if (x == virtual_stack_vars_rtx)
1248 new = frame_pointer_rtx, offset = var_offset;
1249 else if (x == virtual_stack_dynamic_rtx)
1250 new = stack_pointer_rtx, offset = dynamic_offset;
1251 else if (x == virtual_outgoing_args_rtx)
1252 new = stack_pointer_rtx, offset = out_arg_offset;
1253 else if (x == virtual_cfa_rtx)
1255 #ifdef FRAME_POINTER_CFA_OFFSET
1256 new = frame_pointer_rtx;
1257 #else
1258 new = arg_pointer_rtx;
1259 #endif
1260 offset = cfa_offset;
1262 else
1263 return NULL_RTX;
1265 *poffset = offset;
1266 return new;
1269 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1270 Instantiate any virtual registers present inside of *LOC. The expression
1271 is simplified, as much as possible, but is not to be considered "valid"
1272 in any sense implied by the target. If any change is made, set CHANGED
1273 to true. */
1275 static int
1276 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1278 HOST_WIDE_INT offset;
1279 bool *changed = (bool *) data;
1280 rtx x, new;
1282 x = *loc;
1283 if (x == 0)
1284 return 0;
1286 switch (GET_CODE (x))
1288 case REG:
1289 new = instantiate_new_reg (x, &offset);
1290 if (new)
1292 *loc = plus_constant (new, offset);
1293 if (changed)
1294 *changed = true;
1296 return -1;
1298 case PLUS:
1299 new = instantiate_new_reg (XEXP (x, 0), &offset);
1300 if (new)
1302 new = plus_constant (new, offset);
1303 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1304 if (changed)
1305 *changed = true;
1306 return -1;
1309 /* FIXME -- from old code */
1310 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1311 we can commute the PLUS and SUBREG because pointers into the
1312 frame are well-behaved. */
1313 break;
1315 default:
1316 break;
1319 return 0;
1322 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1323 matches the predicate for insn CODE operand OPERAND. */
1325 static int
1326 safe_insn_predicate (int code, int operand, rtx x)
1328 const struct insn_operand_data *op_data;
1330 if (code < 0)
1331 return true;
1333 op_data = &insn_data[code].operand[operand];
1334 if (op_data->predicate == NULL)
1335 return true;
1337 return op_data->predicate (x, op_data->mode);
1340 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1341 registers present inside of insn. The result will be a valid insn. */
1343 static void
1344 instantiate_virtual_regs_in_insn (rtx insn)
1346 HOST_WIDE_INT offset;
1347 int insn_code, i;
1348 bool any_change = false;
1349 rtx set, new, x, seq;
1351 /* There are some special cases to be handled first. */
1352 set = single_set (insn);
1353 if (set)
1355 /* We're allowed to assign to a virtual register. This is interpreted
1356 to mean that the underlying register gets assigned the inverse
1357 transformation. This is used, for example, in the handling of
1358 non-local gotos. */
1359 new = instantiate_new_reg (SET_DEST (set), &offset);
1360 if (new)
1362 start_sequence ();
1364 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1365 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1366 GEN_INT (-offset));
1367 x = force_operand (x, new);
1368 if (x != new)
1369 emit_move_insn (new, x);
1371 seq = get_insns ();
1372 end_sequence ();
1374 emit_insn_before (seq, insn);
1375 delete_insn (insn);
1376 return;
1379 /* Handle a straight copy from a virtual register by generating a
1380 new add insn. The difference between this and falling through
1381 to the generic case is avoiding a new pseudo and eliminating a
1382 move insn in the initial rtl stream. */
1383 new = instantiate_new_reg (SET_SRC (set), &offset);
1384 if (new && offset != 0
1385 && REG_P (SET_DEST (set))
1386 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1388 start_sequence ();
1390 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1391 new, GEN_INT (offset), SET_DEST (set),
1392 1, OPTAB_LIB_WIDEN);
1393 if (x != SET_DEST (set))
1394 emit_move_insn (SET_DEST (set), x);
1396 seq = get_insns ();
1397 end_sequence ();
1399 emit_insn_before (seq, insn);
1400 delete_insn (insn);
1401 return;
1404 extract_insn (insn);
1405 insn_code = INSN_CODE (insn);
1407 /* Handle a plus involving a virtual register by determining if the
1408 operands remain valid if they're modified in place. */
1409 if (GET_CODE (SET_SRC (set)) == PLUS
1410 && recog_data.n_operands >= 3
1411 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1412 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1413 && GET_CODE (recog_data.operand[2]) == CONST_INT
1414 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1416 offset += INTVAL (recog_data.operand[2]);
1418 /* If the sum is zero, then replace with a plain move. */
1419 if (offset == 0
1420 && REG_P (SET_DEST (set))
1421 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1423 start_sequence ();
1424 emit_move_insn (SET_DEST (set), new);
1425 seq = get_insns ();
1426 end_sequence ();
1428 emit_insn_before (seq, insn);
1429 delete_insn (insn);
1430 return;
1433 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1435 /* Using validate_change and apply_change_group here leaves
1436 recog_data in an invalid state. Since we know exactly what
1437 we want to check, do those two by hand. */
1438 if (safe_insn_predicate (insn_code, 1, new)
1439 && safe_insn_predicate (insn_code, 2, x))
1441 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1442 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1443 any_change = true;
1445 /* Fall through into the regular operand fixup loop in
1446 order to take care of operands other than 1 and 2. */
1450 else
1452 extract_insn (insn);
1453 insn_code = INSN_CODE (insn);
1456 /* In the general case, we expect virtual registers to appear only in
1457 operands, and then only as either bare registers or inside memories. */
1458 for (i = 0; i < recog_data.n_operands; ++i)
1460 x = recog_data.operand[i];
1461 switch (GET_CODE (x))
1463 case MEM:
1465 rtx addr = XEXP (x, 0);
1466 bool changed = false;
1468 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1469 if (!changed)
1470 continue;
1472 start_sequence ();
1473 x = replace_equiv_address (x, addr);
1474 seq = get_insns ();
1475 end_sequence ();
1476 if (seq)
1477 emit_insn_before (seq, insn);
1479 break;
1481 case REG:
1482 new = instantiate_new_reg (x, &offset);
1483 if (new == NULL)
1484 continue;
1485 if (offset == 0)
1486 x = new;
1487 else
1489 start_sequence ();
1491 /* Careful, special mode predicates may have stuff in
1492 insn_data[insn_code].operand[i].mode that isn't useful
1493 to us for computing a new value. */
1494 /* ??? Recognize address_operand and/or "p" constraints
1495 to see if (plus new offset) is a valid before we put
1496 this through expand_simple_binop. */
1497 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1498 GEN_INT (offset), NULL_RTX,
1499 1, OPTAB_LIB_WIDEN);
1500 seq = get_insns ();
1501 end_sequence ();
1502 emit_insn_before (seq, insn);
1504 break;
1506 case SUBREG:
1507 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1508 if (new == NULL)
1509 continue;
1510 if (offset != 0)
1512 start_sequence ();
1513 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1514 GEN_INT (offset), NULL_RTX,
1515 1, OPTAB_LIB_WIDEN);
1516 seq = get_insns ();
1517 end_sequence ();
1518 emit_insn_before (seq, insn);
1520 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1521 GET_MODE (new), SUBREG_BYTE (x));
1522 break;
1524 default:
1525 continue;
1528 /* At this point, X contains the new value for the operand.
1529 Validate the new value vs the insn predicate. Note that
1530 asm insns will have insn_code -1 here. */
1531 if (!safe_insn_predicate (insn_code, i, x))
1532 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1534 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1535 any_change = true;
1538 if (any_change)
1540 /* Propagate operand changes into the duplicates. */
1541 for (i = 0; i < recog_data.n_dups; ++i)
1542 *recog_data.dup_loc[i]
1543 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1545 /* Force re-recognition of the instruction for validation. */
1546 INSN_CODE (insn) = -1;
1549 if (asm_noperands (PATTERN (insn)) >= 0)
1551 if (!check_asm_operands (PATTERN (insn)))
1553 error_for_asm (insn, "impossible constraint in %<asm%>");
1554 delete_insn (insn);
1557 else
1559 if (recog_memoized (insn) < 0)
1560 fatal_insn_not_found (insn);
1564 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1565 do any instantiation required. */
1567 static void
1568 instantiate_decl (rtx x)
1570 rtx addr;
1572 if (x == 0)
1573 return;
1575 /* If this is a CONCAT, recurse for the pieces. */
1576 if (GET_CODE (x) == CONCAT)
1578 instantiate_decl (XEXP (x, 0));
1579 instantiate_decl (XEXP (x, 1));
1580 return;
1583 /* If this is not a MEM, no need to do anything. Similarly if the
1584 address is a constant or a register that is not a virtual register. */
1585 if (!MEM_P (x))
1586 return;
1588 addr = XEXP (x, 0);
1589 if (CONSTANT_P (addr)
1590 || (REG_P (addr)
1591 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1592 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1593 return;
1595 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1598 /* Helper for instantiate_decls called via walk_tree: Process all decls
1599 in the given DECL_VALUE_EXPR. */
1601 static tree
1602 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1604 tree t = *tp;
1605 if (! EXPR_P (t))
1607 *walk_subtrees = 0;
1608 if (DECL_P (t) && DECL_RTL_SET_P (t))
1609 instantiate_decl (DECL_RTL (t));
1611 return NULL;
1614 /* Subroutine of instantiate_decls: Process all decls in the given
1615 BLOCK node and all its subblocks. */
1617 static void
1618 instantiate_decls_1 (tree let)
1620 tree t;
1622 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1624 if (DECL_RTL_SET_P (t))
1625 instantiate_decl (DECL_RTL (t));
1626 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1628 tree v = DECL_VALUE_EXPR (t);
1629 walk_tree (&v, instantiate_expr, NULL, NULL);
1633 /* Process all subblocks. */
1634 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1635 instantiate_decls_1 (t);
1638 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1639 all virtual registers in their DECL_RTL's. */
1641 static void
1642 instantiate_decls (tree fndecl)
1644 tree decl;
1646 /* Process all parameters of the function. */
1647 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1649 instantiate_decl (DECL_RTL (decl));
1650 instantiate_decl (DECL_INCOMING_RTL (decl));
1651 if (DECL_HAS_VALUE_EXPR_P (decl))
1653 tree v = DECL_VALUE_EXPR (decl);
1654 walk_tree (&v, instantiate_expr, NULL, NULL);
1658 /* Now process all variables defined in the function or its subblocks. */
1659 instantiate_decls_1 (DECL_INITIAL (fndecl));
1662 /* Pass through the INSNS of function FNDECL and convert virtual register
1663 references to hard register references. */
1665 static unsigned int
1666 instantiate_virtual_regs (void)
1668 rtx insn;
1670 /* Compute the offsets to use for this function. */
1671 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1672 var_offset = STARTING_FRAME_OFFSET;
1673 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1674 out_arg_offset = STACK_POINTER_OFFSET;
1675 #ifdef FRAME_POINTER_CFA_OFFSET
1676 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1677 #else
1678 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1679 #endif
1681 /* Initialize recognition, indicating that volatile is OK. */
1682 init_recog ();
1684 /* Scan through all the insns, instantiating every virtual register still
1685 present. */
1686 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1687 if (INSN_P (insn))
1689 /* These patterns in the instruction stream can never be recognized.
1690 Fortunately, they shouldn't contain virtual registers either. */
1691 if (GET_CODE (PATTERN (insn)) == USE
1692 || GET_CODE (PATTERN (insn)) == CLOBBER
1693 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1694 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1695 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1696 continue;
1698 instantiate_virtual_regs_in_insn (insn);
1700 if (INSN_DELETED_P (insn))
1701 continue;
1703 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1705 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1706 if (GET_CODE (insn) == CALL_INSN)
1707 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1708 instantiate_virtual_regs_in_rtx, NULL);
1711 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1712 instantiate_decls (current_function_decl);
1714 /* Indicate that, from now on, assign_stack_local should use
1715 frame_pointer_rtx. */
1716 virtuals_instantiated = 1;
1717 return 0;
1720 struct tree_opt_pass pass_instantiate_virtual_regs =
1722 "vregs", /* name */
1723 NULL, /* gate */
1724 instantiate_virtual_regs, /* execute */
1725 NULL, /* sub */
1726 NULL, /* next */
1727 0, /* static_pass_number */
1728 0, /* tv_id */
1729 0, /* properties_required */
1730 0, /* properties_provided */
1731 0, /* properties_destroyed */
1732 0, /* todo_flags_start */
1733 TODO_dump_func, /* todo_flags_finish */
1734 0 /* letter */
1738 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1739 This means a type for which function calls must pass an address to the
1740 function or get an address back from the function.
1741 EXP may be a type node or an expression (whose type is tested). */
1744 aggregate_value_p (tree exp, tree fntype)
1746 int i, regno, nregs;
1747 rtx reg;
1749 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1751 /* DECL node associated with FNTYPE when relevant, which we might need to
1752 check for by-invisible-reference returns, typically for CALL_EXPR input
1753 EXPressions. */
1754 tree fndecl = NULL_TREE;
1756 if (fntype)
1757 switch (TREE_CODE (fntype))
1759 case CALL_EXPR:
1760 fndecl = get_callee_fndecl (fntype);
1761 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1762 break;
1763 case FUNCTION_DECL:
1764 fndecl = fntype;
1765 fntype = TREE_TYPE (fndecl);
1766 break;
1767 case FUNCTION_TYPE:
1768 case METHOD_TYPE:
1769 break;
1770 case IDENTIFIER_NODE:
1771 fntype = 0;
1772 break;
1773 default:
1774 /* We don't expect other rtl types here. */
1775 gcc_unreachable ();
1778 if (TREE_CODE (type) == VOID_TYPE)
1779 return 0;
1781 /* If the front end has decided that this needs to be passed by
1782 reference, do so. */
1783 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1784 && DECL_BY_REFERENCE (exp))
1785 return 1;
1787 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1788 called function RESULT_DECL, meaning the function returns in memory by
1789 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1790 on the function type, which used to be the way to request such a return
1791 mechanism but might now be causing troubles at gimplification time if
1792 temporaries with the function type need to be created. */
1793 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1794 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1795 return 1;
1797 if (targetm.calls.return_in_memory (type, fntype))
1798 return 1;
1799 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1800 and thus can't be returned in registers. */
1801 if (TREE_ADDRESSABLE (type))
1802 return 1;
1803 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1804 return 1;
1805 /* Make sure we have suitable call-clobbered regs to return
1806 the value in; if not, we must return it in memory. */
1807 reg = hard_function_value (type, 0, fntype, 0);
1809 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1810 it is OK. */
1811 if (!REG_P (reg))
1812 return 0;
1814 regno = REGNO (reg);
1815 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1816 for (i = 0; i < nregs; i++)
1817 if (! call_used_regs[regno + i])
1818 return 1;
1819 return 0;
1822 /* Return true if we should assign DECL a pseudo register; false if it
1823 should live on the local stack. */
1825 bool
1826 use_register_for_decl (tree decl)
1828 /* Honor volatile. */
1829 if (TREE_SIDE_EFFECTS (decl))
1830 return false;
1832 /* Honor addressability. */
1833 if (TREE_ADDRESSABLE (decl))
1834 return false;
1836 /* Only register-like things go in registers. */
1837 if (DECL_MODE (decl) == BLKmode)
1838 return false;
1840 /* If -ffloat-store specified, don't put explicit float variables
1841 into registers. */
1842 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1843 propagates values across these stores, and it probably shouldn't. */
1844 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1845 return false;
1847 /* If we're not interested in tracking debugging information for
1848 this decl, then we can certainly put it in a register. */
1849 if (DECL_IGNORED_P (decl))
1850 return true;
1852 return (optimize || DECL_REGISTER (decl));
1855 /* Return true if TYPE should be passed by invisible reference. */
1857 bool
1858 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1859 tree type, bool named_arg)
1861 if (type)
1863 /* If this type contains non-trivial constructors, then it is
1864 forbidden for the middle-end to create any new copies. */
1865 if (TREE_ADDRESSABLE (type))
1866 return true;
1868 /* GCC post 3.4 passes *all* variable sized types by reference. */
1869 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1870 return true;
1873 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1876 /* Return true if TYPE, which is passed by reference, should be callee
1877 copied instead of caller copied. */
1879 bool
1880 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1881 tree type, bool named_arg)
1883 if (type && TREE_ADDRESSABLE (type))
1884 return false;
1885 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1888 /* Structures to communicate between the subroutines of assign_parms.
1889 The first holds data persistent across all parameters, the second
1890 is cleared out for each parameter. */
1892 struct assign_parm_data_all
1894 CUMULATIVE_ARGS args_so_far;
1895 struct args_size stack_args_size;
1896 tree function_result_decl;
1897 tree orig_fnargs;
1898 rtx conversion_insns;
1899 HOST_WIDE_INT pretend_args_size;
1900 HOST_WIDE_INT extra_pretend_bytes;
1901 int reg_parm_stack_space;
1904 struct assign_parm_data_one
1906 tree nominal_type;
1907 tree passed_type;
1908 rtx entry_parm;
1909 rtx stack_parm;
1910 enum machine_mode nominal_mode;
1911 enum machine_mode passed_mode;
1912 enum machine_mode promoted_mode;
1913 struct locate_and_pad_arg_data locate;
1914 int partial;
1915 BOOL_BITFIELD named_arg : 1;
1916 BOOL_BITFIELD passed_pointer : 1;
1917 BOOL_BITFIELD on_stack : 1;
1918 BOOL_BITFIELD loaded_in_reg : 1;
1921 /* A subroutine of assign_parms. Initialize ALL. */
1923 static void
1924 assign_parms_initialize_all (struct assign_parm_data_all *all)
1926 tree fntype;
1928 memset (all, 0, sizeof (*all));
1930 fntype = TREE_TYPE (current_function_decl);
1932 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1933 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1934 #else
1935 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1936 current_function_decl, -1);
1937 #endif
1939 #ifdef REG_PARM_STACK_SPACE
1940 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1941 #endif
1944 /* If ARGS contains entries with complex types, split the entry into two
1945 entries of the component type. Return a new list of substitutions are
1946 needed, else the old list. */
1948 static tree
1949 split_complex_args (tree args)
1951 tree p;
1953 /* Before allocating memory, check for the common case of no complex. */
1954 for (p = args; p; p = TREE_CHAIN (p))
1956 tree type = TREE_TYPE (p);
1957 if (TREE_CODE (type) == COMPLEX_TYPE
1958 && targetm.calls.split_complex_arg (type))
1959 goto found;
1961 return args;
1963 found:
1964 args = copy_list (args);
1966 for (p = args; p; p = TREE_CHAIN (p))
1968 tree type = TREE_TYPE (p);
1969 if (TREE_CODE (type) == COMPLEX_TYPE
1970 && targetm.calls.split_complex_arg (type))
1972 tree decl;
1973 tree subtype = TREE_TYPE (type);
1974 bool addressable = TREE_ADDRESSABLE (p);
1976 /* Rewrite the PARM_DECL's type with its component. */
1977 TREE_TYPE (p) = subtype;
1978 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1979 DECL_MODE (p) = VOIDmode;
1980 DECL_SIZE (p) = NULL;
1981 DECL_SIZE_UNIT (p) = NULL;
1982 /* If this arg must go in memory, put it in a pseudo here.
1983 We can't allow it to go in memory as per normal parms,
1984 because the usual place might not have the imag part
1985 adjacent to the real part. */
1986 DECL_ARTIFICIAL (p) = addressable;
1987 DECL_IGNORED_P (p) = addressable;
1988 TREE_ADDRESSABLE (p) = 0;
1989 layout_decl (p, 0);
1991 /* Build a second synthetic decl. */
1992 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1993 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1994 DECL_ARTIFICIAL (decl) = addressable;
1995 DECL_IGNORED_P (decl) = addressable;
1996 layout_decl (decl, 0);
1998 /* Splice it in; skip the new decl. */
1999 TREE_CHAIN (decl) = TREE_CHAIN (p);
2000 TREE_CHAIN (p) = decl;
2001 p = decl;
2005 return args;
2008 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2009 the hidden struct return argument, and (abi willing) complex args.
2010 Return the new parameter list. */
2012 static tree
2013 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2015 tree fndecl = current_function_decl;
2016 tree fntype = TREE_TYPE (fndecl);
2017 tree fnargs = DECL_ARGUMENTS (fndecl);
2019 /* If struct value address is treated as the first argument, make it so. */
2020 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2021 && ! current_function_returns_pcc_struct
2022 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2024 tree type = build_pointer_type (TREE_TYPE (fntype));
2025 tree decl;
2027 decl = build_decl (PARM_DECL, NULL_TREE, type);
2028 DECL_ARG_TYPE (decl) = type;
2029 DECL_ARTIFICIAL (decl) = 1;
2030 DECL_IGNORED_P (decl) = 1;
2032 TREE_CHAIN (decl) = fnargs;
2033 fnargs = decl;
2034 all->function_result_decl = decl;
2037 all->orig_fnargs = fnargs;
2039 /* If the target wants to split complex arguments into scalars, do so. */
2040 if (targetm.calls.split_complex_arg)
2041 fnargs = split_complex_args (fnargs);
2043 return fnargs;
2046 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2047 data for the parameter. Incorporate ABI specifics such as pass-by-
2048 reference and type promotion. */
2050 static void
2051 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2052 struct assign_parm_data_one *data)
2054 tree nominal_type, passed_type;
2055 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2057 memset (data, 0, sizeof (*data));
2059 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2060 if (!current_function_stdarg)
2061 data->named_arg = 1; /* No varadic parms. */
2062 else if (TREE_CHAIN (parm))
2063 data->named_arg = 1; /* Not the last non-varadic parm. */
2064 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2065 data->named_arg = 1; /* Only varadic ones are unnamed. */
2066 else
2067 data->named_arg = 0; /* Treat as varadic. */
2069 nominal_type = TREE_TYPE (parm);
2070 passed_type = DECL_ARG_TYPE (parm);
2072 /* Look out for errors propagating this far. Also, if the parameter's
2073 type is void then its value doesn't matter. */
2074 if (TREE_TYPE (parm) == error_mark_node
2075 /* This can happen after weird syntax errors
2076 or if an enum type is defined among the parms. */
2077 || TREE_CODE (parm) != PARM_DECL
2078 || passed_type == NULL
2079 || VOID_TYPE_P (nominal_type))
2081 nominal_type = passed_type = void_type_node;
2082 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2083 goto egress;
2086 /* Find mode of arg as it is passed, and mode of arg as it should be
2087 during execution of this function. */
2088 passed_mode = TYPE_MODE (passed_type);
2089 nominal_mode = TYPE_MODE (nominal_type);
2091 /* If the parm is to be passed as a transparent union, use the type of
2092 the first field for the tests below. We have already verified that
2093 the modes are the same. */
2094 if (TREE_CODE (passed_type) == UNION_TYPE
2095 && TYPE_TRANSPARENT_UNION (passed_type))
2096 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2098 /* See if this arg was passed by invisible reference. */
2099 if (pass_by_reference (&all->args_so_far, passed_mode,
2100 passed_type, data->named_arg))
2102 passed_type = nominal_type = build_pointer_type (passed_type);
2103 data->passed_pointer = true;
2104 passed_mode = nominal_mode = Pmode;
2107 /* Find mode as it is passed by the ABI. */
2108 promoted_mode = passed_mode;
2109 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2111 int unsignedp = TYPE_UNSIGNED (passed_type);
2112 promoted_mode = promote_mode (passed_type, promoted_mode,
2113 &unsignedp, 1);
2116 egress:
2117 data->nominal_type = nominal_type;
2118 data->passed_type = passed_type;
2119 data->nominal_mode = nominal_mode;
2120 data->passed_mode = passed_mode;
2121 data->promoted_mode = promoted_mode;
2124 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2126 static void
2127 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2128 struct assign_parm_data_one *data, bool no_rtl)
2130 int varargs_pretend_bytes = 0;
2132 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2133 data->promoted_mode,
2134 data->passed_type,
2135 &varargs_pretend_bytes, no_rtl);
2137 /* If the back-end has requested extra stack space, record how much is
2138 needed. Do not change pretend_args_size otherwise since it may be
2139 nonzero from an earlier partial argument. */
2140 if (varargs_pretend_bytes > 0)
2141 all->pretend_args_size = varargs_pretend_bytes;
2144 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2145 the incoming location of the current parameter. */
2147 static void
2148 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2149 struct assign_parm_data_one *data)
2151 HOST_WIDE_INT pretend_bytes = 0;
2152 rtx entry_parm;
2153 bool in_regs;
2155 if (data->promoted_mode == VOIDmode)
2157 data->entry_parm = data->stack_parm = const0_rtx;
2158 return;
2161 #ifdef FUNCTION_INCOMING_ARG
2162 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2163 data->passed_type, data->named_arg);
2164 #else
2165 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2166 data->passed_type, data->named_arg);
2167 #endif
2169 if (entry_parm == 0)
2170 data->promoted_mode = data->passed_mode;
2172 /* Determine parm's home in the stack, in case it arrives in the stack
2173 or we should pretend it did. Compute the stack position and rtx where
2174 the argument arrives and its size.
2176 There is one complexity here: If this was a parameter that would
2177 have been passed in registers, but wasn't only because it is
2178 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2179 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2180 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2181 as it was the previous time. */
2182 in_regs = entry_parm != 0;
2183 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2184 in_regs = true;
2185 #endif
2186 if (!in_regs && !data->named_arg)
2188 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2190 rtx tem;
2191 #ifdef FUNCTION_INCOMING_ARG
2192 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2193 data->passed_type, true);
2194 #else
2195 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2196 data->passed_type, true);
2197 #endif
2198 in_regs = tem != NULL;
2202 /* If this parameter was passed both in registers and in the stack, use
2203 the copy on the stack. */
2204 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2205 data->passed_type))
2206 entry_parm = 0;
2208 if (entry_parm)
2210 int partial;
2212 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2213 data->promoted_mode,
2214 data->passed_type,
2215 data->named_arg);
2216 data->partial = partial;
2218 /* The caller might already have allocated stack space for the
2219 register parameters. */
2220 if (partial != 0 && all->reg_parm_stack_space == 0)
2222 /* Part of this argument is passed in registers and part
2223 is passed on the stack. Ask the prologue code to extend
2224 the stack part so that we can recreate the full value.
2226 PRETEND_BYTES is the size of the registers we need to store.
2227 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2228 stack space that the prologue should allocate.
2230 Internally, gcc assumes that the argument pointer is aligned
2231 to STACK_BOUNDARY bits. This is used both for alignment
2232 optimizations (see init_emit) and to locate arguments that are
2233 aligned to more than PARM_BOUNDARY bits. We must preserve this
2234 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2235 a stack boundary. */
2237 /* We assume at most one partial arg, and it must be the first
2238 argument on the stack. */
2239 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2241 pretend_bytes = partial;
2242 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2244 /* We want to align relative to the actual stack pointer, so
2245 don't include this in the stack size until later. */
2246 all->extra_pretend_bytes = all->pretend_args_size;
2250 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2251 entry_parm ? data->partial : 0, current_function_decl,
2252 &all->stack_args_size, &data->locate);
2254 /* Adjust offsets to include the pretend args. */
2255 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2256 data->locate.slot_offset.constant += pretend_bytes;
2257 data->locate.offset.constant += pretend_bytes;
2259 data->entry_parm = entry_parm;
2262 /* A subroutine of assign_parms. If there is actually space on the stack
2263 for this parm, count it in stack_args_size and return true. */
2265 static bool
2266 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2267 struct assign_parm_data_one *data)
2269 /* Trivially true if we've no incoming register. */
2270 if (data->entry_parm == NULL)
2272 /* Also true if we're partially in registers and partially not,
2273 since we've arranged to drop the entire argument on the stack. */
2274 else if (data->partial != 0)
2276 /* Also true if the target says that it's passed in both registers
2277 and on the stack. */
2278 else if (GET_CODE (data->entry_parm) == PARALLEL
2279 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2281 /* Also true if the target says that there's stack allocated for
2282 all register parameters. */
2283 else if (all->reg_parm_stack_space > 0)
2285 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2286 else
2287 return false;
2289 all->stack_args_size.constant += data->locate.size.constant;
2290 if (data->locate.size.var)
2291 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2293 return true;
2296 /* A subroutine of assign_parms. Given that this parameter is allocated
2297 stack space by the ABI, find it. */
2299 static void
2300 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2302 rtx offset_rtx, stack_parm;
2303 unsigned int align, boundary;
2305 /* If we're passing this arg using a reg, make its stack home the
2306 aligned stack slot. */
2307 if (data->entry_parm)
2308 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2309 else
2310 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2312 stack_parm = current_function_internal_arg_pointer;
2313 if (offset_rtx != const0_rtx)
2314 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2315 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2317 set_mem_attributes (stack_parm, parm, 1);
2319 boundary = data->locate.boundary;
2320 align = BITS_PER_UNIT;
2322 /* If we're padding upward, we know that the alignment of the slot
2323 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2324 intentionally forcing upward padding. Otherwise we have to come
2325 up with a guess at the alignment based on OFFSET_RTX. */
2326 if (data->locate.where_pad != downward || data->entry_parm)
2327 align = boundary;
2328 else if (GET_CODE (offset_rtx) == CONST_INT)
2330 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2331 align = align & -align;
2333 set_mem_align (stack_parm, align);
2335 if (data->entry_parm)
2336 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2338 data->stack_parm = stack_parm;
2341 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2342 always valid and contiguous. */
2344 static void
2345 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2347 rtx entry_parm = data->entry_parm;
2348 rtx stack_parm = data->stack_parm;
2350 /* If this parm was passed part in regs and part in memory, pretend it
2351 arrived entirely in memory by pushing the register-part onto the stack.
2352 In the special case of a DImode or DFmode that is split, we could put
2353 it together in a pseudoreg directly, but for now that's not worth
2354 bothering with. */
2355 if (data->partial != 0)
2357 /* Handle calls that pass values in multiple non-contiguous
2358 locations. The Irix 6 ABI has examples of this. */
2359 if (GET_CODE (entry_parm) == PARALLEL)
2360 emit_group_store (validize_mem (stack_parm), entry_parm,
2361 data->passed_type,
2362 int_size_in_bytes (data->passed_type));
2363 else
2365 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2366 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2367 data->partial / UNITS_PER_WORD);
2370 entry_parm = stack_parm;
2373 /* If we didn't decide this parm came in a register, by default it came
2374 on the stack. */
2375 else if (entry_parm == NULL)
2376 entry_parm = stack_parm;
2378 /* When an argument is passed in multiple locations, we can't make use
2379 of this information, but we can save some copying if the whole argument
2380 is passed in a single register. */
2381 else if (GET_CODE (entry_parm) == PARALLEL
2382 && data->nominal_mode != BLKmode
2383 && data->passed_mode != BLKmode)
2385 size_t i, len = XVECLEN (entry_parm, 0);
2387 for (i = 0; i < len; i++)
2388 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2389 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2390 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2391 == data->passed_mode)
2392 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2394 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2395 break;
2399 data->entry_parm = entry_parm;
2402 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2403 always valid and properly aligned. */
2405 static void
2406 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2408 rtx stack_parm = data->stack_parm;
2410 /* If we can't trust the parm stack slot to be aligned enough for its
2411 ultimate type, don't use that slot after entry. We'll make another
2412 stack slot, if we need one. */
2413 if (stack_parm
2414 && ((STRICT_ALIGNMENT
2415 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2416 || (data->nominal_type
2417 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2418 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2419 stack_parm = NULL;
2421 /* If parm was passed in memory, and we need to convert it on entry,
2422 don't store it back in that same slot. */
2423 else if (data->entry_parm == stack_parm
2424 && data->nominal_mode != BLKmode
2425 && data->nominal_mode != data->passed_mode)
2426 stack_parm = NULL;
2428 /* If stack protection is in effect for this function, don't leave any
2429 pointers in their passed stack slots. */
2430 else if (cfun->stack_protect_guard
2431 && (flag_stack_protect == 2
2432 || data->passed_pointer
2433 || POINTER_TYPE_P (data->nominal_type)))
2434 stack_parm = NULL;
2436 data->stack_parm = stack_parm;
2439 /* A subroutine of assign_parms. Return true if the current parameter
2440 should be stored as a BLKmode in the current frame. */
2442 static bool
2443 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2445 if (data->nominal_mode == BLKmode)
2446 return true;
2447 if (GET_CODE (data->entry_parm) == PARALLEL)
2448 return true;
2450 #ifdef BLOCK_REG_PADDING
2451 /* Only assign_parm_setup_block knows how to deal with register arguments
2452 that are padded at the least significant end. */
2453 if (REG_P (data->entry_parm)
2454 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2455 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2456 == (BYTES_BIG_ENDIAN ? upward : downward)))
2457 return true;
2458 #endif
2460 return false;
2463 /* A subroutine of assign_parms. Arrange for the parameter to be
2464 present and valid in DATA->STACK_RTL. */
2466 static void
2467 assign_parm_setup_block (struct assign_parm_data_all *all,
2468 tree parm, struct assign_parm_data_one *data)
2470 rtx entry_parm = data->entry_parm;
2471 rtx stack_parm = data->stack_parm;
2472 HOST_WIDE_INT size;
2473 HOST_WIDE_INT size_stored;
2474 rtx orig_entry_parm = entry_parm;
2476 if (GET_CODE (entry_parm) == PARALLEL)
2477 entry_parm = emit_group_move_into_temps (entry_parm);
2479 /* If we've a non-block object that's nevertheless passed in parts,
2480 reconstitute it in register operations rather than on the stack. */
2481 if (GET_CODE (entry_parm) == PARALLEL
2482 && data->nominal_mode != BLKmode)
2484 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2486 if ((XVECLEN (entry_parm, 0) > 1
2487 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2488 && use_register_for_decl (parm))
2490 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2492 push_to_sequence (all->conversion_insns);
2494 /* For values returned in multiple registers, handle possible
2495 incompatible calls to emit_group_store.
2497 For example, the following would be invalid, and would have to
2498 be fixed by the conditional below:
2500 emit_group_store ((reg:SF), (parallel:DF))
2501 emit_group_store ((reg:SI), (parallel:DI))
2503 An example of this are doubles in e500 v2:
2504 (parallel:DF (expr_list (reg:SI) (const_int 0))
2505 (expr_list (reg:SI) (const_int 4))). */
2506 if (data->nominal_mode != data->passed_mode)
2508 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2509 emit_group_store (t, entry_parm, NULL_TREE,
2510 GET_MODE_SIZE (GET_MODE (entry_parm)));
2511 convert_move (parmreg, t, 0);
2513 else
2514 emit_group_store (parmreg, entry_parm, data->nominal_type,
2515 int_size_in_bytes (data->nominal_type));
2517 all->conversion_insns = get_insns ();
2518 end_sequence ();
2520 SET_DECL_RTL (parm, parmreg);
2521 return;
2525 size = int_size_in_bytes (data->passed_type);
2526 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2527 if (stack_parm == 0)
2529 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2530 stack_parm = assign_stack_local (BLKmode, size_stored,
2531 DECL_ALIGN (parm));
2532 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2533 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2534 set_mem_attributes (stack_parm, parm, 1);
2537 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2538 calls that pass values in multiple non-contiguous locations. */
2539 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2541 rtx mem;
2543 /* Note that we will be storing an integral number of words.
2544 So we have to be careful to ensure that we allocate an
2545 integral number of words. We do this above when we call
2546 assign_stack_local if space was not allocated in the argument
2547 list. If it was, this will not work if PARM_BOUNDARY is not
2548 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2549 if it becomes a problem. Exception is when BLKmode arrives
2550 with arguments not conforming to word_mode. */
2552 if (data->stack_parm == 0)
2554 else if (GET_CODE (entry_parm) == PARALLEL)
2556 else
2557 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2559 mem = validize_mem (stack_parm);
2561 /* Handle values in multiple non-contiguous locations. */
2562 if (GET_CODE (entry_parm) == PARALLEL)
2564 push_to_sequence (all->conversion_insns);
2565 emit_group_store (mem, entry_parm, data->passed_type, size);
2566 all->conversion_insns = get_insns ();
2567 end_sequence ();
2570 else if (size == 0)
2573 /* If SIZE is that of a mode no bigger than a word, just use
2574 that mode's store operation. */
2575 else if (size <= UNITS_PER_WORD)
2577 enum machine_mode mode
2578 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2580 if (mode != BLKmode
2581 #ifdef BLOCK_REG_PADDING
2582 && (size == UNITS_PER_WORD
2583 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2584 != (BYTES_BIG_ENDIAN ? upward : downward)))
2585 #endif
2588 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2589 emit_move_insn (change_address (mem, mode, 0), reg);
2592 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2593 machine must be aligned to the left before storing
2594 to memory. Note that the previous test doesn't
2595 handle all cases (e.g. SIZE == 3). */
2596 else if (size != UNITS_PER_WORD
2597 #ifdef BLOCK_REG_PADDING
2598 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2599 == downward)
2600 #else
2601 && BYTES_BIG_ENDIAN
2602 #endif
2605 rtx tem, x;
2606 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2607 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2609 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2610 build_int_cst (NULL_TREE, by),
2611 NULL_RTX, 1);
2612 tem = change_address (mem, word_mode, 0);
2613 emit_move_insn (tem, x);
2615 else
2616 move_block_from_reg (REGNO (entry_parm), mem,
2617 size_stored / UNITS_PER_WORD);
2619 else
2620 move_block_from_reg (REGNO (entry_parm), mem,
2621 size_stored / UNITS_PER_WORD);
2623 else if (data->stack_parm == 0)
2625 push_to_sequence (all->conversion_insns);
2626 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2627 BLOCK_OP_NORMAL);
2628 all->conversion_insns = get_insns ();
2629 end_sequence ();
2632 data->stack_parm = stack_parm;
2633 SET_DECL_RTL (parm, stack_parm);
2636 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2637 parameter. Get it there. Perform all ABI specified conversions. */
2639 static void
2640 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2641 struct assign_parm_data_one *data)
2643 rtx parmreg;
2644 enum machine_mode promoted_nominal_mode;
2645 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2646 bool did_conversion = false;
2648 /* Store the parm in a pseudoregister during the function, but we may
2649 need to do it in a wider mode. */
2651 /* This is not really promoting for a call. However we need to be
2652 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2653 promoted_nominal_mode
2654 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2656 parmreg = gen_reg_rtx (promoted_nominal_mode);
2658 if (!DECL_ARTIFICIAL (parm))
2659 mark_user_reg (parmreg);
2661 /* If this was an item that we received a pointer to,
2662 set DECL_RTL appropriately. */
2663 if (data->passed_pointer)
2665 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2666 set_mem_attributes (x, parm, 1);
2667 SET_DECL_RTL (parm, x);
2669 else
2670 SET_DECL_RTL (parm, parmreg);
2672 /* Copy the value into the register. */
2673 if (data->nominal_mode != data->passed_mode
2674 || promoted_nominal_mode != data->promoted_mode)
2676 int save_tree_used;
2678 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2679 mode, by the caller. We now have to convert it to
2680 NOMINAL_MODE, if different. However, PARMREG may be in
2681 a different mode than NOMINAL_MODE if it is being stored
2682 promoted.
2684 If ENTRY_PARM is a hard register, it might be in a register
2685 not valid for operating in its mode (e.g., an odd-numbered
2686 register for a DFmode). In that case, moves are the only
2687 thing valid, so we can't do a convert from there. This
2688 occurs when the calling sequence allow such misaligned
2689 usages.
2691 In addition, the conversion may involve a call, which could
2692 clobber parameters which haven't been copied to pseudo
2693 registers yet. Therefore, we must first copy the parm to
2694 a pseudo reg here, and save the conversion until after all
2695 parameters have been moved. */
2697 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2699 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2701 push_to_sequence (all->conversion_insns);
2702 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2704 if (GET_CODE (tempreg) == SUBREG
2705 && GET_MODE (tempreg) == data->nominal_mode
2706 && REG_P (SUBREG_REG (tempreg))
2707 && data->nominal_mode == data->passed_mode
2708 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2709 && GET_MODE_SIZE (GET_MODE (tempreg))
2710 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2712 /* The argument is already sign/zero extended, so note it
2713 into the subreg. */
2714 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2715 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2718 /* TREE_USED gets set erroneously during expand_assignment. */
2719 save_tree_used = TREE_USED (parm);
2720 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2721 TREE_USED (parm) = save_tree_used;
2722 all->conversion_insns = get_insns ();
2723 end_sequence ();
2725 did_conversion = true;
2727 else
2728 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2730 /* If we were passed a pointer but the actual value can safely live
2731 in a register, put it in one. */
2732 if (data->passed_pointer
2733 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2734 /* If by-reference argument was promoted, demote it. */
2735 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2736 || use_register_for_decl (parm)))
2738 /* We can't use nominal_mode, because it will have been set to
2739 Pmode above. We must use the actual mode of the parm. */
2740 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2741 mark_user_reg (parmreg);
2743 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2745 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2746 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2748 push_to_sequence (all->conversion_insns);
2749 emit_move_insn (tempreg, DECL_RTL (parm));
2750 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2751 emit_move_insn (parmreg, tempreg);
2752 all->conversion_insns = get_insns ();
2753 end_sequence ();
2755 did_conversion = true;
2757 else
2758 emit_move_insn (parmreg, DECL_RTL (parm));
2760 SET_DECL_RTL (parm, parmreg);
2762 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2763 now the parm. */
2764 data->stack_parm = NULL;
2767 /* Mark the register as eliminable if we did no conversion and it was
2768 copied from memory at a fixed offset, and the arg pointer was not
2769 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2770 offset formed an invalid address, such memory-equivalences as we
2771 make here would screw up life analysis for it. */
2772 if (data->nominal_mode == data->passed_mode
2773 && !did_conversion
2774 && data->stack_parm != 0
2775 && MEM_P (data->stack_parm)
2776 && data->locate.offset.var == 0
2777 && reg_mentioned_p (virtual_incoming_args_rtx,
2778 XEXP (data->stack_parm, 0)))
2780 rtx linsn = get_last_insn ();
2781 rtx sinsn, set;
2783 /* Mark complex types separately. */
2784 if (GET_CODE (parmreg) == CONCAT)
2786 enum machine_mode submode
2787 = GET_MODE_INNER (GET_MODE (parmreg));
2788 int regnor = REGNO (XEXP (parmreg, 0));
2789 int regnoi = REGNO (XEXP (parmreg, 1));
2790 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2791 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2792 GET_MODE_SIZE (submode));
2794 /* Scan backwards for the set of the real and
2795 imaginary parts. */
2796 for (sinsn = linsn; sinsn != 0;
2797 sinsn = prev_nonnote_insn (sinsn))
2799 set = single_set (sinsn);
2800 if (set == 0)
2801 continue;
2803 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2804 REG_NOTES (sinsn)
2805 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2806 REG_NOTES (sinsn));
2807 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2808 REG_NOTES (sinsn)
2809 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2810 REG_NOTES (sinsn));
2813 else if ((set = single_set (linsn)) != 0
2814 && SET_DEST (set) == parmreg)
2815 REG_NOTES (linsn)
2816 = gen_rtx_EXPR_LIST (REG_EQUIV,
2817 data->stack_parm, REG_NOTES (linsn));
2820 /* For pointer data type, suggest pointer register. */
2821 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2822 mark_reg_pointer (parmreg,
2823 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2826 /* A subroutine of assign_parms. Allocate stack space to hold the current
2827 parameter. Get it there. Perform all ABI specified conversions. */
2829 static void
2830 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2831 struct assign_parm_data_one *data)
2833 /* Value must be stored in the stack slot STACK_PARM during function
2834 execution. */
2835 bool to_conversion = false;
2837 if (data->promoted_mode != data->nominal_mode)
2839 /* Conversion is required. */
2840 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2842 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2844 push_to_sequence (all->conversion_insns);
2845 to_conversion = true;
2847 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2848 TYPE_UNSIGNED (TREE_TYPE (parm)));
2850 if (data->stack_parm)
2851 /* ??? This may need a big-endian conversion on sparc64. */
2852 data->stack_parm
2853 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2856 if (data->entry_parm != data->stack_parm)
2858 rtx src, dest;
2860 if (data->stack_parm == 0)
2862 data->stack_parm
2863 = assign_stack_local (GET_MODE (data->entry_parm),
2864 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2865 TYPE_ALIGN (data->passed_type));
2866 set_mem_attributes (data->stack_parm, parm, 1);
2869 dest = validize_mem (data->stack_parm);
2870 src = validize_mem (data->entry_parm);
2872 if (MEM_P (src))
2874 /* Use a block move to handle potentially misaligned entry_parm. */
2875 if (!to_conversion)
2876 push_to_sequence (all->conversion_insns);
2877 to_conversion = true;
2879 emit_block_move (dest, src,
2880 GEN_INT (int_size_in_bytes (data->passed_type)),
2881 BLOCK_OP_NORMAL);
2883 else
2884 emit_move_insn (dest, src);
2887 if (to_conversion)
2889 all->conversion_insns = get_insns ();
2890 end_sequence ();
2893 SET_DECL_RTL (parm, data->stack_parm);
2896 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2897 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2899 static void
2900 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2902 tree parm;
2903 tree orig_fnargs = all->orig_fnargs;
2905 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2907 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2908 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2910 rtx tmp, real, imag;
2911 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2913 real = DECL_RTL (fnargs);
2914 imag = DECL_RTL (TREE_CHAIN (fnargs));
2915 if (inner != GET_MODE (real))
2917 real = gen_lowpart_SUBREG (inner, real);
2918 imag = gen_lowpart_SUBREG (inner, imag);
2921 if (TREE_ADDRESSABLE (parm))
2923 rtx rmem, imem;
2924 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2926 /* split_complex_arg put the real and imag parts in
2927 pseudos. Move them to memory. */
2928 tmp = assign_stack_local (DECL_MODE (parm), size,
2929 TYPE_ALIGN (TREE_TYPE (parm)));
2930 set_mem_attributes (tmp, parm, 1);
2931 rmem = adjust_address_nv (tmp, inner, 0);
2932 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2933 push_to_sequence (all->conversion_insns);
2934 emit_move_insn (rmem, real);
2935 emit_move_insn (imem, imag);
2936 all->conversion_insns = get_insns ();
2937 end_sequence ();
2939 else
2940 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2941 SET_DECL_RTL (parm, tmp);
2943 real = DECL_INCOMING_RTL (fnargs);
2944 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2945 if (inner != GET_MODE (real))
2947 real = gen_lowpart_SUBREG (inner, real);
2948 imag = gen_lowpart_SUBREG (inner, imag);
2950 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2951 set_decl_incoming_rtl (parm, tmp);
2952 fnargs = TREE_CHAIN (fnargs);
2954 else
2956 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2957 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2959 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2960 instead of the copy of decl, i.e. FNARGS. */
2961 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2962 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2965 fnargs = TREE_CHAIN (fnargs);
2969 /* Assign RTL expressions to the function's parameters. This may involve
2970 copying them into registers and using those registers as the DECL_RTL. */
2972 static void
2973 assign_parms (tree fndecl)
2975 struct assign_parm_data_all all;
2976 tree fnargs, parm;
2978 current_function_internal_arg_pointer
2979 = targetm.calls.internal_arg_pointer ();
2981 assign_parms_initialize_all (&all);
2982 fnargs = assign_parms_augmented_arg_list (&all);
2984 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2986 struct assign_parm_data_one data;
2988 /* Extract the type of PARM; adjust it according to ABI. */
2989 assign_parm_find_data_types (&all, parm, &data);
2991 /* Early out for errors and void parameters. */
2992 if (data.passed_mode == VOIDmode)
2994 SET_DECL_RTL (parm, const0_rtx);
2995 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2996 continue;
2999 if (current_function_stdarg && !TREE_CHAIN (parm))
3000 assign_parms_setup_varargs (&all, &data, false);
3002 /* Find out where the parameter arrives in this function. */
3003 assign_parm_find_entry_rtl (&all, &data);
3005 /* Find out where stack space for this parameter might be. */
3006 if (assign_parm_is_stack_parm (&all, &data))
3008 assign_parm_find_stack_rtl (parm, &data);
3009 assign_parm_adjust_entry_rtl (&data);
3012 /* Record permanently how this parm was passed. */
3013 set_decl_incoming_rtl (parm, data.entry_parm);
3015 /* Update info on where next arg arrives in registers. */
3016 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3017 data.passed_type, data.named_arg);
3019 assign_parm_adjust_stack_rtl (&data);
3021 if (assign_parm_setup_block_p (&data))
3022 assign_parm_setup_block (&all, parm, &data);
3023 else if (data.passed_pointer || use_register_for_decl (parm))
3024 assign_parm_setup_reg (&all, parm, &data);
3025 else
3026 assign_parm_setup_stack (&all, parm, &data);
3029 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3030 assign_parms_unsplit_complex (&all, fnargs);
3032 /* Output all parameter conversion instructions (possibly including calls)
3033 now that all parameters have been copied out of hard registers. */
3034 emit_insn (all.conversion_insns);
3036 /* If we are receiving a struct value address as the first argument, set up
3037 the RTL for the function result. As this might require code to convert
3038 the transmitted address to Pmode, we do this here to ensure that possible
3039 preliminary conversions of the address have been emitted already. */
3040 if (all.function_result_decl)
3042 tree result = DECL_RESULT (current_function_decl);
3043 rtx addr = DECL_RTL (all.function_result_decl);
3044 rtx x;
3046 if (DECL_BY_REFERENCE (result))
3047 x = addr;
3048 else
3050 addr = convert_memory_address (Pmode, addr);
3051 x = gen_rtx_MEM (DECL_MODE (result), addr);
3052 set_mem_attributes (x, result, 1);
3054 SET_DECL_RTL (result, x);
3057 /* We have aligned all the args, so add space for the pretend args. */
3058 current_function_pretend_args_size = all.pretend_args_size;
3059 all.stack_args_size.constant += all.extra_pretend_bytes;
3060 current_function_args_size = all.stack_args_size.constant;
3062 /* Adjust function incoming argument size for alignment and
3063 minimum length. */
3065 #ifdef REG_PARM_STACK_SPACE
3066 current_function_args_size = MAX (current_function_args_size,
3067 REG_PARM_STACK_SPACE (fndecl));
3068 #endif
3070 current_function_args_size = CEIL_ROUND (current_function_args_size,
3071 PARM_BOUNDARY / BITS_PER_UNIT);
3073 #ifdef ARGS_GROW_DOWNWARD
3074 current_function_arg_offset_rtx
3075 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3076 : expand_expr (size_diffop (all.stack_args_size.var,
3077 size_int (-all.stack_args_size.constant)),
3078 NULL_RTX, VOIDmode, 0));
3079 #else
3080 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3081 #endif
3083 /* See how many bytes, if any, of its args a function should try to pop
3084 on return. */
3086 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3087 current_function_args_size);
3089 /* For stdarg.h function, save info about
3090 regs and stack space used by the named args. */
3092 current_function_args_info = all.args_so_far;
3094 /* Set the rtx used for the function return value. Put this in its
3095 own variable so any optimizers that need this information don't have
3096 to include tree.h. Do this here so it gets done when an inlined
3097 function gets output. */
3099 current_function_return_rtx
3100 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3101 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3103 /* If scalar return value was computed in a pseudo-reg, or was a named
3104 return value that got dumped to the stack, copy that to the hard
3105 return register. */
3106 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3108 tree decl_result = DECL_RESULT (fndecl);
3109 rtx decl_rtl = DECL_RTL (decl_result);
3111 if (REG_P (decl_rtl)
3112 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3113 : DECL_REGISTER (decl_result))
3115 rtx real_decl_rtl;
3117 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3118 fndecl, true);
3119 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3120 /* The delay slot scheduler assumes that current_function_return_rtx
3121 holds the hard register containing the return value, not a
3122 temporary pseudo. */
3123 current_function_return_rtx = real_decl_rtl;
3128 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3129 For all seen types, gimplify their sizes. */
3131 static tree
3132 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3134 tree t = *tp;
3136 *walk_subtrees = 0;
3137 if (TYPE_P (t))
3139 if (POINTER_TYPE_P (t))
3140 *walk_subtrees = 1;
3141 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3142 && !TYPE_SIZES_GIMPLIFIED (t))
3144 gimplify_type_sizes (t, (tree *) data);
3145 *walk_subtrees = 1;
3149 return NULL;
3152 /* Gimplify the parameter list for current_function_decl. This involves
3153 evaluating SAVE_EXPRs of variable sized parameters and generating code
3154 to implement callee-copies reference parameters. Returns a list of
3155 statements to add to the beginning of the function, or NULL if nothing
3156 to do. */
3158 tree
3159 gimplify_parameters (void)
3161 struct assign_parm_data_all all;
3162 tree fnargs, parm, stmts = NULL;
3164 assign_parms_initialize_all (&all);
3165 fnargs = assign_parms_augmented_arg_list (&all);
3167 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3169 struct assign_parm_data_one data;
3171 /* Extract the type of PARM; adjust it according to ABI. */
3172 assign_parm_find_data_types (&all, parm, &data);
3174 /* Early out for errors and void parameters. */
3175 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3176 continue;
3178 /* Update info on where next arg arrives in registers. */
3179 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3180 data.passed_type, data.named_arg);
3182 /* ??? Once upon a time variable_size stuffed parameter list
3183 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3184 turned out to be less than manageable in the gimple world.
3185 Now we have to hunt them down ourselves. */
3186 walk_tree_without_duplicates (&data.passed_type,
3187 gimplify_parm_type, &stmts);
3189 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3191 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3192 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3195 if (data.passed_pointer)
3197 tree type = TREE_TYPE (data.passed_type);
3198 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3199 type, data.named_arg))
3201 tree local, t;
3203 /* For constant sized objects, this is trivial; for
3204 variable-sized objects, we have to play games. */
3205 if (TREE_CONSTANT (DECL_SIZE (parm)))
3207 local = create_tmp_var (type, get_name (parm));
3208 DECL_IGNORED_P (local) = 0;
3210 else
3212 tree ptr_type, addr, args;
3214 ptr_type = build_pointer_type (type);
3215 addr = create_tmp_var (ptr_type, get_name (parm));
3216 DECL_IGNORED_P (addr) = 0;
3217 local = build_fold_indirect_ref (addr);
3219 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3220 t = built_in_decls[BUILT_IN_ALLOCA];
3221 t = build_function_call_expr (t, args);
3222 t = fold_convert (ptr_type, t);
3223 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3224 gimplify_and_add (t, &stmts);
3227 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3228 gimplify_and_add (t, &stmts);
3230 SET_DECL_VALUE_EXPR (parm, local);
3231 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3236 return stmts;
3239 /* Indicate whether REGNO is an incoming argument to the current function
3240 that was promoted to a wider mode. If so, return the RTX for the
3241 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3242 that REGNO is promoted from and whether the promotion was signed or
3243 unsigned. */
3246 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3248 tree arg;
3250 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3251 arg = TREE_CHAIN (arg))
3252 if (REG_P (DECL_INCOMING_RTL (arg))
3253 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3254 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3256 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3257 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3259 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3260 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3261 && mode != DECL_MODE (arg))
3263 *pmode = DECL_MODE (arg);
3264 *punsignedp = unsignedp;
3265 return DECL_INCOMING_RTL (arg);
3269 return 0;
3273 /* Compute the size and offset from the start of the stacked arguments for a
3274 parm passed in mode PASSED_MODE and with type TYPE.
3276 INITIAL_OFFSET_PTR points to the current offset into the stacked
3277 arguments.
3279 The starting offset and size for this parm are returned in
3280 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3281 nonzero, the offset is that of stack slot, which is returned in
3282 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3283 padding required from the initial offset ptr to the stack slot.
3285 IN_REGS is nonzero if the argument will be passed in registers. It will
3286 never be set if REG_PARM_STACK_SPACE is not defined.
3288 FNDECL is the function in which the argument was defined.
3290 There are two types of rounding that are done. The first, controlled by
3291 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3292 list to be aligned to the specific boundary (in bits). This rounding
3293 affects the initial and starting offsets, but not the argument size.
3295 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3296 optionally rounds the size of the parm to PARM_BOUNDARY. The
3297 initial offset is not affected by this rounding, while the size always
3298 is and the starting offset may be. */
3300 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3301 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3302 callers pass in the total size of args so far as
3303 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3305 void
3306 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3307 int partial, tree fndecl ATTRIBUTE_UNUSED,
3308 struct args_size *initial_offset_ptr,
3309 struct locate_and_pad_arg_data *locate)
3311 tree sizetree;
3312 enum direction where_pad;
3313 unsigned int boundary;
3314 int reg_parm_stack_space = 0;
3315 int part_size_in_regs;
3317 #ifdef REG_PARM_STACK_SPACE
3318 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3320 /* If we have found a stack parm before we reach the end of the
3321 area reserved for registers, skip that area. */
3322 if (! in_regs)
3324 if (reg_parm_stack_space > 0)
3326 if (initial_offset_ptr->var)
3328 initial_offset_ptr->var
3329 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3330 ssize_int (reg_parm_stack_space));
3331 initial_offset_ptr->constant = 0;
3333 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3334 initial_offset_ptr->constant = reg_parm_stack_space;
3337 #endif /* REG_PARM_STACK_SPACE */
3339 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3341 sizetree
3342 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3343 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3344 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3345 locate->where_pad = where_pad;
3346 locate->boundary = boundary;
3348 /* Remember if the outgoing parameter requires extra alignment on the
3349 calling function side. */
3350 if (boundary > PREFERRED_STACK_BOUNDARY)
3351 boundary = PREFERRED_STACK_BOUNDARY;
3352 if (cfun->stack_alignment_needed < boundary)
3353 cfun->stack_alignment_needed = boundary;
3355 #ifdef ARGS_GROW_DOWNWARD
3356 locate->slot_offset.constant = -initial_offset_ptr->constant;
3357 if (initial_offset_ptr->var)
3358 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3359 initial_offset_ptr->var);
3362 tree s2 = sizetree;
3363 if (where_pad != none
3364 && (!host_integerp (sizetree, 1)
3365 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3366 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3367 SUB_PARM_SIZE (locate->slot_offset, s2);
3370 locate->slot_offset.constant += part_size_in_regs;
3372 if (!in_regs
3373 #ifdef REG_PARM_STACK_SPACE
3374 || REG_PARM_STACK_SPACE (fndecl) > 0
3375 #endif
3377 pad_to_arg_alignment (&locate->slot_offset, boundary,
3378 &locate->alignment_pad);
3380 locate->size.constant = (-initial_offset_ptr->constant
3381 - locate->slot_offset.constant);
3382 if (initial_offset_ptr->var)
3383 locate->size.var = size_binop (MINUS_EXPR,
3384 size_binop (MINUS_EXPR,
3385 ssize_int (0),
3386 initial_offset_ptr->var),
3387 locate->slot_offset.var);
3389 /* Pad_below needs the pre-rounded size to know how much to pad
3390 below. */
3391 locate->offset = locate->slot_offset;
3392 if (where_pad == downward)
3393 pad_below (&locate->offset, passed_mode, sizetree);
3395 #else /* !ARGS_GROW_DOWNWARD */
3396 if (!in_regs
3397 #ifdef REG_PARM_STACK_SPACE
3398 || REG_PARM_STACK_SPACE (fndecl) > 0
3399 #endif
3401 pad_to_arg_alignment (initial_offset_ptr, boundary,
3402 &locate->alignment_pad);
3403 locate->slot_offset = *initial_offset_ptr;
3405 #ifdef PUSH_ROUNDING
3406 if (passed_mode != BLKmode)
3407 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3408 #endif
3410 /* Pad_below needs the pre-rounded size to know how much to pad below
3411 so this must be done before rounding up. */
3412 locate->offset = locate->slot_offset;
3413 if (where_pad == downward)
3414 pad_below (&locate->offset, passed_mode, sizetree);
3416 if (where_pad != none
3417 && (!host_integerp (sizetree, 1)
3418 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3419 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3421 ADD_PARM_SIZE (locate->size, sizetree);
3423 locate->size.constant -= part_size_in_regs;
3424 #endif /* ARGS_GROW_DOWNWARD */
3427 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3428 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3430 static void
3431 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3432 struct args_size *alignment_pad)
3434 tree save_var = NULL_TREE;
3435 HOST_WIDE_INT save_constant = 0;
3436 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3437 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3439 #ifdef SPARC_STACK_BOUNDARY_HACK
3440 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3441 the real alignment of %sp. However, when it does this, the
3442 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3443 if (SPARC_STACK_BOUNDARY_HACK)
3444 sp_offset = 0;
3445 #endif
3447 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3449 save_var = offset_ptr->var;
3450 save_constant = offset_ptr->constant;
3453 alignment_pad->var = NULL_TREE;
3454 alignment_pad->constant = 0;
3456 if (boundary > BITS_PER_UNIT)
3458 if (offset_ptr->var)
3460 tree sp_offset_tree = ssize_int (sp_offset);
3461 tree offset = size_binop (PLUS_EXPR,
3462 ARGS_SIZE_TREE (*offset_ptr),
3463 sp_offset_tree);
3464 #ifdef ARGS_GROW_DOWNWARD
3465 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3466 #else
3467 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3468 #endif
3470 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3471 /* ARGS_SIZE_TREE includes constant term. */
3472 offset_ptr->constant = 0;
3473 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3474 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3475 save_var);
3477 else
3479 offset_ptr->constant = -sp_offset +
3480 #ifdef ARGS_GROW_DOWNWARD
3481 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3482 #else
3483 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3484 #endif
3485 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3486 alignment_pad->constant = offset_ptr->constant - save_constant;
3491 static void
3492 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3494 if (passed_mode != BLKmode)
3496 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3497 offset_ptr->constant
3498 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3499 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3500 - GET_MODE_SIZE (passed_mode));
3502 else
3504 if (TREE_CODE (sizetree) != INTEGER_CST
3505 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3507 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3508 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3509 /* Add it in. */
3510 ADD_PARM_SIZE (*offset_ptr, s2);
3511 SUB_PARM_SIZE (*offset_ptr, sizetree);
3516 /* Walk the tree of blocks describing the binding levels within a function
3517 and warn about variables the might be killed by setjmp or vfork.
3518 This is done after calling flow_analysis and before global_alloc
3519 clobbers the pseudo-regs to hard regs. */
3521 void
3522 setjmp_vars_warning (tree block)
3524 tree decl, sub;
3526 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3528 if (TREE_CODE (decl) == VAR_DECL
3529 && DECL_RTL_SET_P (decl)
3530 && REG_P (DECL_RTL (decl))
3531 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3532 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3533 " or %<vfork%>",
3534 decl);
3537 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3538 setjmp_vars_warning (sub);
3541 /* Do the appropriate part of setjmp_vars_warning
3542 but for arguments instead of local variables. */
3544 void
3545 setjmp_args_warning (void)
3547 tree decl;
3548 for (decl = DECL_ARGUMENTS (current_function_decl);
3549 decl; decl = TREE_CHAIN (decl))
3550 if (DECL_RTL (decl) != 0
3551 && REG_P (DECL_RTL (decl))
3552 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3553 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3554 decl);
3558 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3559 and create duplicate blocks. */
3560 /* ??? Need an option to either create block fragments or to create
3561 abstract origin duplicates of a source block. It really depends
3562 on what optimization has been performed. */
3564 void
3565 reorder_blocks (void)
3567 tree block = DECL_INITIAL (current_function_decl);
3568 VEC(tree,heap) *block_stack;
3570 if (block == NULL_TREE)
3571 return;
3573 block_stack = VEC_alloc (tree, heap, 10);
3575 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3576 clear_block_marks (block);
3578 /* Prune the old trees away, so that they don't get in the way. */
3579 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3580 BLOCK_CHAIN (block) = NULL_TREE;
3582 /* Recreate the block tree from the note nesting. */
3583 reorder_blocks_1 (get_insns (), block, &block_stack);
3584 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3586 VEC_free (tree, heap, block_stack);
3589 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3591 void
3592 clear_block_marks (tree block)
3594 while (block)
3596 TREE_ASM_WRITTEN (block) = 0;
3597 clear_block_marks (BLOCK_SUBBLOCKS (block));
3598 block = BLOCK_CHAIN (block);
3602 static void
3603 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3605 rtx insn;
3607 for (insn = insns; insn; insn = NEXT_INSN (insn))
3609 if (NOTE_P (insn))
3611 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3613 tree block = NOTE_BLOCK (insn);
3614 tree origin;
3616 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3617 ? BLOCK_FRAGMENT_ORIGIN (block)
3618 : block);
3620 /* If we have seen this block before, that means it now
3621 spans multiple address regions. Create a new fragment. */
3622 if (TREE_ASM_WRITTEN (block))
3624 tree new_block = copy_node (block);
3626 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3627 BLOCK_FRAGMENT_CHAIN (new_block)
3628 = BLOCK_FRAGMENT_CHAIN (origin);
3629 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3631 NOTE_BLOCK (insn) = new_block;
3632 block = new_block;
3635 BLOCK_SUBBLOCKS (block) = 0;
3636 TREE_ASM_WRITTEN (block) = 1;
3637 /* When there's only one block for the entire function,
3638 current_block == block and we mustn't do this, it
3639 will cause infinite recursion. */
3640 if (block != current_block)
3642 if (block != origin)
3643 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3645 BLOCK_SUPERCONTEXT (block) = current_block;
3646 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3647 BLOCK_SUBBLOCKS (current_block) = block;
3648 current_block = origin;
3650 VEC_safe_push (tree, heap, *p_block_stack, block);
3652 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3654 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3655 BLOCK_SUBBLOCKS (current_block)
3656 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3657 current_block = BLOCK_SUPERCONTEXT (current_block);
3663 /* Reverse the order of elements in the chain T of blocks,
3664 and return the new head of the chain (old last element). */
3666 tree
3667 blocks_nreverse (tree t)
3669 tree prev = 0, decl, next;
3670 for (decl = t; decl; decl = next)
3672 next = BLOCK_CHAIN (decl);
3673 BLOCK_CHAIN (decl) = prev;
3674 prev = decl;
3676 return prev;
3679 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3680 non-NULL, list them all into VECTOR, in a depth-first preorder
3681 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3682 blocks. */
3684 static int
3685 all_blocks (tree block, tree *vector)
3687 int n_blocks = 0;
3689 while (block)
3691 TREE_ASM_WRITTEN (block) = 0;
3693 /* Record this block. */
3694 if (vector)
3695 vector[n_blocks] = block;
3697 ++n_blocks;
3699 /* Record the subblocks, and their subblocks... */
3700 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3701 vector ? vector + n_blocks : 0);
3702 block = BLOCK_CHAIN (block);
3705 return n_blocks;
3708 /* Return a vector containing all the blocks rooted at BLOCK. The
3709 number of elements in the vector is stored in N_BLOCKS_P. The
3710 vector is dynamically allocated; it is the caller's responsibility
3711 to call `free' on the pointer returned. */
3713 static tree *
3714 get_block_vector (tree block, int *n_blocks_p)
3716 tree *block_vector;
3718 *n_blocks_p = all_blocks (block, NULL);
3719 block_vector = XNEWVEC (tree, *n_blocks_p);
3720 all_blocks (block, block_vector);
3722 return block_vector;
3725 static GTY(()) int next_block_index = 2;
3727 /* Set BLOCK_NUMBER for all the blocks in FN. */
3729 void
3730 number_blocks (tree fn)
3732 int i;
3733 int n_blocks;
3734 tree *block_vector;
3736 /* For SDB and XCOFF debugging output, we start numbering the blocks
3737 from 1 within each function, rather than keeping a running
3738 count. */
3739 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3740 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3741 next_block_index = 1;
3742 #endif
3744 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3746 /* The top-level BLOCK isn't numbered at all. */
3747 for (i = 1; i < n_blocks; ++i)
3748 /* We number the blocks from two. */
3749 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3751 free (block_vector);
3753 return;
3756 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3758 tree
3759 debug_find_var_in_block_tree (tree var, tree block)
3761 tree t;
3763 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3764 if (t == var)
3765 return block;
3767 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3769 tree ret = debug_find_var_in_block_tree (var, t);
3770 if (ret)
3771 return ret;
3774 return NULL_TREE;
3777 /* Allocate a function structure for FNDECL and set its contents
3778 to the defaults. */
3780 void
3781 allocate_struct_function (tree fndecl)
3783 tree result;
3784 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3786 cfun = ggc_alloc_cleared (sizeof (struct function));
3788 cfun->stack_alignment_needed = STACK_BOUNDARY;
3789 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3791 current_function_funcdef_no = funcdef_no++;
3793 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3795 init_eh_for_function ();
3797 lang_hooks.function.init (cfun);
3798 if (init_machine_status)
3799 cfun->machine = (*init_machine_status) ();
3801 if (fndecl == NULL)
3802 return;
3804 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3805 cfun->decl = fndecl;
3807 result = DECL_RESULT (fndecl);
3808 if (aggregate_value_p (result, fndecl))
3810 #ifdef PCC_STATIC_STRUCT_RETURN
3811 current_function_returns_pcc_struct = 1;
3812 #endif
3813 current_function_returns_struct = 1;
3816 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3818 current_function_stdarg
3819 = (fntype
3820 && TYPE_ARG_TYPES (fntype) != 0
3821 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3822 != void_type_node));
3824 /* Assume all registers in stdarg functions need to be saved. */
3825 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3826 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3829 /* Reset cfun, and other non-struct-function variables to defaults as
3830 appropriate for emitting rtl at the start of a function. */
3832 static void
3833 prepare_function_start (tree fndecl)
3835 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3836 cfun = DECL_STRUCT_FUNCTION (fndecl);
3837 else
3838 allocate_struct_function (fndecl);
3839 init_emit ();
3840 init_varasm_status (cfun);
3841 init_expr ();
3843 cse_not_expected = ! optimize;
3845 /* Caller save not needed yet. */
3846 caller_save_needed = 0;
3848 /* We haven't done register allocation yet. */
3849 reg_renumber = 0;
3851 /* Indicate that we have not instantiated virtual registers yet. */
3852 virtuals_instantiated = 0;
3854 /* Indicate that we want CONCATs now. */
3855 generating_concat_p = 1;
3857 /* Indicate we have no need of a frame pointer yet. */
3858 frame_pointer_needed = 0;
3861 /* Initialize the rtl expansion mechanism so that we can do simple things
3862 like generate sequences. This is used to provide a context during global
3863 initialization of some passes. */
3864 void
3865 init_dummy_function_start (void)
3867 prepare_function_start (NULL);
3870 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3871 and initialize static variables for generating RTL for the statements
3872 of the function. */
3874 void
3875 init_function_start (tree subr)
3877 prepare_function_start (subr);
3879 /* Prevent ever trying to delete the first instruction of a
3880 function. Also tell final how to output a linenum before the
3881 function prologue. Note linenums could be missing, e.g. when
3882 compiling a Java .class file. */
3883 if (! DECL_IS_BUILTIN (subr))
3884 emit_line_note (DECL_SOURCE_LOCATION (subr));
3886 /* Make sure first insn is a note even if we don't want linenums.
3887 This makes sure the first insn will never be deleted.
3888 Also, final expects a note to appear there. */
3889 emit_note (NOTE_INSN_DELETED);
3891 /* Warn if this value is an aggregate type,
3892 regardless of which calling convention we are using for it. */
3893 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3894 warning (OPT_Waggregate_return, "function returns an aggregate");
3897 /* Make sure all values used by the optimization passes have sane
3898 defaults. */
3899 unsigned int
3900 init_function_for_compilation (void)
3902 reg_renumber = 0;
3904 /* No prologue/epilogue insns yet. Make sure that these vectors are
3905 empty. */
3906 gcc_assert (VEC_length (int, prologue) == 0);
3907 gcc_assert (VEC_length (int, epilogue) == 0);
3908 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3909 return 0;
3912 struct tree_opt_pass pass_init_function =
3914 NULL, /* name */
3915 NULL, /* gate */
3916 init_function_for_compilation, /* execute */
3917 NULL, /* sub */
3918 NULL, /* next */
3919 0, /* static_pass_number */
3920 0, /* tv_id */
3921 0, /* properties_required */
3922 0, /* properties_provided */
3923 0, /* properties_destroyed */
3924 0, /* todo_flags_start */
3925 0, /* todo_flags_finish */
3926 0 /* letter */
3930 void
3931 expand_main_function (void)
3933 #if (defined(INVOKE__main) \
3934 || (!defined(HAS_INIT_SECTION) \
3935 && !defined(INIT_SECTION_ASM_OP) \
3936 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3937 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3938 #endif
3941 /* Expand code to initialize the stack_protect_guard. This is invoked at
3942 the beginning of a function to be protected. */
3944 #ifndef HAVE_stack_protect_set
3945 # define HAVE_stack_protect_set 0
3946 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3947 #endif
3949 void
3950 stack_protect_prologue (void)
3952 tree guard_decl = targetm.stack_protect_guard ();
3953 rtx x, y;
3955 /* Avoid expand_expr here, because we don't want guard_decl pulled
3956 into registers unless absolutely necessary. And we know that
3957 cfun->stack_protect_guard is a local stack slot, so this skips
3958 all the fluff. */
3959 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3960 y = validize_mem (DECL_RTL (guard_decl));
3962 /* Allow the target to copy from Y to X without leaking Y into a
3963 register. */
3964 if (HAVE_stack_protect_set)
3966 rtx insn = gen_stack_protect_set (x, y);
3967 if (insn)
3969 emit_insn (insn);
3970 return;
3974 /* Otherwise do a straight move. */
3975 emit_move_insn (x, y);
3978 /* Expand code to verify the stack_protect_guard. This is invoked at
3979 the end of a function to be protected. */
3981 #ifndef HAVE_stack_protect_test
3982 # define HAVE_stack_protect_test 0
3983 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3984 #endif
3986 void
3987 stack_protect_epilogue (void)
3989 tree guard_decl = targetm.stack_protect_guard ();
3990 rtx label = gen_label_rtx ();
3991 rtx x, y, tmp;
3993 /* Avoid expand_expr here, because we don't want guard_decl pulled
3994 into registers unless absolutely necessary. And we know that
3995 cfun->stack_protect_guard is a local stack slot, so this skips
3996 all the fluff. */
3997 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3998 y = validize_mem (DECL_RTL (guard_decl));
4000 /* Allow the target to compare Y with X without leaking either into
4001 a register. */
4002 switch (HAVE_stack_protect_test != 0)
4004 case 1:
4005 tmp = gen_stack_protect_test (x, y, label);
4006 if (tmp)
4008 emit_insn (tmp);
4009 break;
4011 /* FALLTHRU */
4013 default:
4014 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4015 break;
4018 /* The noreturn predictor has been moved to the tree level. The rtl-level
4019 predictors estimate this branch about 20%, which isn't enough to get
4020 things moved out of line. Since this is the only extant case of adding
4021 a noreturn function at the rtl level, it doesn't seem worth doing ought
4022 except adding the prediction by hand. */
4023 tmp = get_last_insn ();
4024 if (JUMP_P (tmp))
4025 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4027 expand_expr_stmt (targetm.stack_protect_fail ());
4028 emit_label (label);
4031 /* Start the RTL for a new function, and set variables used for
4032 emitting RTL.
4033 SUBR is the FUNCTION_DECL node.
4034 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4035 the function's parameters, which must be run at any return statement. */
4037 void
4038 expand_function_start (tree subr)
4040 /* Make sure volatile mem refs aren't considered
4041 valid operands of arithmetic insns. */
4042 init_recog_no_volatile ();
4044 current_function_profile
4045 = (profile_flag
4046 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4048 current_function_limit_stack
4049 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4051 /* Make the label for return statements to jump to. Do not special
4052 case machines with special return instructions -- they will be
4053 handled later during jump, ifcvt, or epilogue creation. */
4054 return_label = gen_label_rtx ();
4056 /* Initialize rtx used to return the value. */
4057 /* Do this before assign_parms so that we copy the struct value address
4058 before any library calls that assign parms might generate. */
4060 /* Decide whether to return the value in memory or in a register. */
4061 if (aggregate_value_p (DECL_RESULT (subr), subr))
4063 /* Returning something that won't go in a register. */
4064 rtx value_address = 0;
4066 #ifdef PCC_STATIC_STRUCT_RETURN
4067 if (current_function_returns_pcc_struct)
4069 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4070 value_address = assemble_static_space (size);
4072 else
4073 #endif
4075 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4076 /* Expect to be passed the address of a place to store the value.
4077 If it is passed as an argument, assign_parms will take care of
4078 it. */
4079 if (sv)
4081 value_address = gen_reg_rtx (Pmode);
4082 emit_move_insn (value_address, sv);
4085 if (value_address)
4087 rtx x = value_address;
4088 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4090 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4091 set_mem_attributes (x, DECL_RESULT (subr), 1);
4093 SET_DECL_RTL (DECL_RESULT (subr), x);
4096 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4097 /* If return mode is void, this decl rtl should not be used. */
4098 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4099 else
4101 /* Compute the return values into a pseudo reg, which we will copy
4102 into the true return register after the cleanups are done. */
4103 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4104 if (TYPE_MODE (return_type) != BLKmode
4105 && targetm.calls.return_in_msb (return_type))
4106 /* expand_function_end will insert the appropriate padding in
4107 this case. Use the return value's natural (unpadded) mode
4108 within the function proper. */
4109 SET_DECL_RTL (DECL_RESULT (subr),
4110 gen_reg_rtx (TYPE_MODE (return_type)));
4111 else
4113 /* In order to figure out what mode to use for the pseudo, we
4114 figure out what the mode of the eventual return register will
4115 actually be, and use that. */
4116 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4118 /* Structures that are returned in registers are not
4119 aggregate_value_p, so we may see a PARALLEL or a REG. */
4120 if (REG_P (hard_reg))
4121 SET_DECL_RTL (DECL_RESULT (subr),
4122 gen_reg_rtx (GET_MODE (hard_reg)));
4123 else
4125 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4126 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4130 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4131 result to the real return register(s). */
4132 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4135 /* Initialize rtx for parameters and local variables.
4136 In some cases this requires emitting insns. */
4137 assign_parms (subr);
4139 /* If function gets a static chain arg, store it. */
4140 if (cfun->static_chain_decl)
4142 tree parm = cfun->static_chain_decl;
4143 rtx local = gen_reg_rtx (Pmode);
4145 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4146 SET_DECL_RTL (parm, local);
4147 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4149 emit_move_insn (local, static_chain_incoming_rtx);
4152 /* If the function receives a non-local goto, then store the
4153 bits we need to restore the frame pointer. */
4154 if (cfun->nonlocal_goto_save_area)
4156 tree t_save;
4157 rtx r_save;
4159 /* ??? We need to do this save early. Unfortunately here is
4160 before the frame variable gets declared. Help out... */
4161 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4163 t_save = build4 (ARRAY_REF, ptr_type_node,
4164 cfun->nonlocal_goto_save_area,
4165 integer_zero_node, NULL_TREE, NULL_TREE);
4166 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4167 r_save = convert_memory_address (Pmode, r_save);
4169 emit_move_insn (r_save, virtual_stack_vars_rtx);
4170 update_nonlocal_goto_save_area ();
4173 /* The following was moved from init_function_start.
4174 The move is supposed to make sdb output more accurate. */
4175 /* Indicate the beginning of the function body,
4176 as opposed to parm setup. */
4177 emit_note (NOTE_INSN_FUNCTION_BEG);
4179 gcc_assert (NOTE_P (get_last_insn ()));
4181 parm_birth_insn = get_last_insn ();
4183 if (current_function_profile)
4185 #ifdef PROFILE_HOOK
4186 PROFILE_HOOK (current_function_funcdef_no);
4187 #endif
4190 /* After the display initializations is where the stack checking
4191 probe should go. */
4192 if(flag_stack_check)
4193 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4195 /* Make sure there is a line number after the function entry setup code. */
4196 force_next_line_note ();
4199 /* Undo the effects of init_dummy_function_start. */
4200 void
4201 expand_dummy_function_end (void)
4203 /* End any sequences that failed to be closed due to syntax errors. */
4204 while (in_sequence_p ())
4205 end_sequence ();
4207 /* Outside function body, can't compute type's actual size
4208 until next function's body starts. */
4210 free_after_parsing (cfun);
4211 free_after_compilation (cfun);
4212 cfun = 0;
4215 /* Call DOIT for each hard register used as a return value from
4216 the current function. */
4218 void
4219 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4221 rtx outgoing = current_function_return_rtx;
4223 if (! outgoing)
4224 return;
4226 if (REG_P (outgoing))
4227 (*doit) (outgoing, arg);
4228 else if (GET_CODE (outgoing) == PARALLEL)
4230 int i;
4232 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4234 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4236 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4237 (*doit) (x, arg);
4242 static void
4243 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4245 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4248 void
4249 clobber_return_register (void)
4251 diddle_return_value (do_clobber_return_reg, NULL);
4253 /* In case we do use pseudo to return value, clobber it too. */
4254 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4256 tree decl_result = DECL_RESULT (current_function_decl);
4257 rtx decl_rtl = DECL_RTL (decl_result);
4258 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4260 do_clobber_return_reg (decl_rtl, NULL);
4265 static void
4266 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4268 emit_insn (gen_rtx_USE (VOIDmode, reg));
4271 static void
4272 use_return_register (void)
4274 diddle_return_value (do_use_return_reg, NULL);
4277 /* Possibly warn about unused parameters. */
4278 void
4279 do_warn_unused_parameter (tree fn)
4281 tree decl;
4283 for (decl = DECL_ARGUMENTS (fn);
4284 decl; decl = TREE_CHAIN (decl))
4285 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4286 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4287 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4290 static GTY(()) rtx initial_trampoline;
4292 /* Generate RTL for the end of the current function. */
4294 void
4295 expand_function_end (void)
4297 rtx clobber_after;
4299 /* If arg_pointer_save_area was referenced only from a nested
4300 function, we will not have initialized it yet. Do that now. */
4301 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4302 get_arg_pointer_save_area (cfun);
4304 /* If we are doing stack checking and this function makes calls,
4305 do a stack probe at the start of the function to ensure we have enough
4306 space for another stack frame. */
4307 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4309 rtx insn, seq;
4311 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4312 if (CALL_P (insn))
4314 start_sequence ();
4315 probe_stack_range (STACK_CHECK_PROTECT,
4316 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4317 seq = get_insns ();
4318 end_sequence ();
4319 emit_insn_before (seq, stack_check_probe_note);
4320 break;
4324 /* Possibly warn about unused parameters.
4325 When frontend does unit-at-a-time, the warning is already
4326 issued at finalization time. */
4327 if (warn_unused_parameter
4328 && !lang_hooks.callgraph.expand_function)
4329 do_warn_unused_parameter (current_function_decl);
4331 /* End any sequences that failed to be closed due to syntax errors. */
4332 while (in_sequence_p ())
4333 end_sequence ();
4335 clear_pending_stack_adjust ();
4336 do_pending_stack_adjust ();
4338 /* Mark the end of the function body.
4339 If control reaches this insn, the function can drop through
4340 without returning a value. */
4341 emit_note (NOTE_INSN_FUNCTION_END);
4343 /* Must mark the last line number note in the function, so that the test
4344 coverage code can avoid counting the last line twice. This just tells
4345 the code to ignore the immediately following line note, since there
4346 already exists a copy of this note somewhere above. This line number
4347 note is still needed for debugging though, so we can't delete it. */
4348 if (flag_test_coverage)
4349 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4351 /* Output a linenumber for the end of the function.
4352 SDB depends on this. */
4353 force_next_line_note ();
4354 emit_line_note (input_location);
4356 /* Before the return label (if any), clobber the return
4357 registers so that they are not propagated live to the rest of
4358 the function. This can only happen with functions that drop
4359 through; if there had been a return statement, there would
4360 have either been a return rtx, or a jump to the return label.
4362 We delay actual code generation after the current_function_value_rtx
4363 is computed. */
4364 clobber_after = get_last_insn ();
4366 /* Output the label for the actual return from the function. */
4367 emit_label (return_label);
4369 if (USING_SJLJ_EXCEPTIONS)
4371 /* Let except.c know where it should emit the call to unregister
4372 the function context for sjlj exceptions. */
4373 if (flag_exceptions)
4374 sjlj_emit_function_exit_after (get_last_insn ());
4376 else
4378 /* @@@ This is a kludge. We want to ensure that instructions that
4379 may trap are not moved into the epilogue by scheduling, because
4380 we don't always emit unwind information for the epilogue.
4381 However, not all machine descriptions define a blockage insn, so
4382 emit an ASM_INPUT to act as one. */
4383 if (flag_non_call_exceptions)
4384 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4387 /* If this is an implementation of throw, do what's necessary to
4388 communicate between __builtin_eh_return and the epilogue. */
4389 expand_eh_return ();
4391 /* If scalar return value was computed in a pseudo-reg, or was a named
4392 return value that got dumped to the stack, copy that to the hard
4393 return register. */
4394 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4396 tree decl_result = DECL_RESULT (current_function_decl);
4397 rtx decl_rtl = DECL_RTL (decl_result);
4399 if (REG_P (decl_rtl)
4400 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4401 : DECL_REGISTER (decl_result))
4403 rtx real_decl_rtl = current_function_return_rtx;
4405 /* This should be set in assign_parms. */
4406 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4408 /* If this is a BLKmode structure being returned in registers,
4409 then use the mode computed in expand_return. Note that if
4410 decl_rtl is memory, then its mode may have been changed,
4411 but that current_function_return_rtx has not. */
4412 if (GET_MODE (real_decl_rtl) == BLKmode)
4413 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4415 /* If a non-BLKmode return value should be padded at the least
4416 significant end of the register, shift it left by the appropriate
4417 amount. BLKmode results are handled using the group load/store
4418 machinery. */
4419 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4420 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4422 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4423 REGNO (real_decl_rtl)),
4424 decl_rtl);
4425 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4427 /* If a named return value dumped decl_return to memory, then
4428 we may need to re-do the PROMOTE_MODE signed/unsigned
4429 extension. */
4430 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4432 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4434 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4435 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4436 &unsignedp, 1);
4438 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4440 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4442 /* If expand_function_start has created a PARALLEL for decl_rtl,
4443 move the result to the real return registers. Otherwise, do
4444 a group load from decl_rtl for a named return. */
4445 if (GET_CODE (decl_rtl) == PARALLEL)
4446 emit_group_move (real_decl_rtl, decl_rtl);
4447 else
4448 emit_group_load (real_decl_rtl, decl_rtl,
4449 TREE_TYPE (decl_result),
4450 int_size_in_bytes (TREE_TYPE (decl_result)));
4452 /* In the case of complex integer modes smaller than a word, we'll
4453 need to generate some non-trivial bitfield insertions. Do that
4454 on a pseudo and not the hard register. */
4455 else if (GET_CODE (decl_rtl) == CONCAT
4456 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4457 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4459 int old_generating_concat_p;
4460 rtx tmp;
4462 old_generating_concat_p = generating_concat_p;
4463 generating_concat_p = 0;
4464 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4465 generating_concat_p = old_generating_concat_p;
4467 emit_move_insn (tmp, decl_rtl);
4468 emit_move_insn (real_decl_rtl, tmp);
4470 else
4471 emit_move_insn (real_decl_rtl, decl_rtl);
4475 /* If returning a structure, arrange to return the address of the value
4476 in a place where debuggers expect to find it.
4478 If returning a structure PCC style,
4479 the caller also depends on this value.
4480 And current_function_returns_pcc_struct is not necessarily set. */
4481 if (current_function_returns_struct
4482 || current_function_returns_pcc_struct)
4484 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4485 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4486 rtx outgoing;
4488 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4489 type = TREE_TYPE (type);
4490 else
4491 value_address = XEXP (value_address, 0);
4493 outgoing = targetm.calls.function_value (build_pointer_type (type),
4494 current_function_decl, true);
4496 /* Mark this as a function return value so integrate will delete the
4497 assignment and USE below when inlining this function. */
4498 REG_FUNCTION_VALUE_P (outgoing) = 1;
4500 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4501 value_address = convert_memory_address (GET_MODE (outgoing),
4502 value_address);
4504 emit_move_insn (outgoing, value_address);
4506 /* Show return register used to hold result (in this case the address
4507 of the result. */
4508 current_function_return_rtx = outgoing;
4511 /* Emit the actual code to clobber return register. */
4513 rtx seq;
4515 start_sequence ();
4516 clobber_return_register ();
4517 expand_naked_return ();
4518 seq = get_insns ();
4519 end_sequence ();
4521 emit_insn_after (seq, clobber_after);
4524 /* Output the label for the naked return from the function. */
4525 emit_label (naked_return_label);
4527 /* If stack protection is enabled for this function, check the guard. */
4528 if (cfun->stack_protect_guard)
4529 stack_protect_epilogue ();
4531 /* If we had calls to alloca, and this machine needs
4532 an accurate stack pointer to exit the function,
4533 insert some code to save and restore the stack pointer. */
4534 if (! EXIT_IGNORE_STACK
4535 && current_function_calls_alloca)
4537 rtx tem = 0;
4539 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4540 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4543 /* ??? This should no longer be necessary since stupid is no longer with
4544 us, but there are some parts of the compiler (eg reload_combine, and
4545 sh mach_dep_reorg) that still try and compute their own lifetime info
4546 instead of using the general framework. */
4547 use_return_register ();
4551 get_arg_pointer_save_area (struct function *f)
4553 rtx ret = f->x_arg_pointer_save_area;
4555 if (! ret)
4557 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4558 f->x_arg_pointer_save_area = ret;
4561 if (f == cfun && ! f->arg_pointer_save_area_init)
4563 rtx seq;
4565 /* Save the arg pointer at the beginning of the function. The
4566 generated stack slot may not be a valid memory address, so we
4567 have to check it and fix it if necessary. */
4568 start_sequence ();
4569 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4570 seq = get_insns ();
4571 end_sequence ();
4573 push_topmost_sequence ();
4574 emit_insn_after (seq, entry_of_function ());
4575 pop_topmost_sequence ();
4578 return ret;
4581 /* Extend a vector that records the INSN_UIDs of INSNS
4582 (a list of one or more insns). */
4584 static void
4585 record_insns (rtx insns, VEC(int,heap) **vecp)
4587 rtx tmp;
4589 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4590 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4593 /* Set the locator of the insn chain starting at INSN to LOC. */
4594 static void
4595 set_insn_locators (rtx insn, int loc)
4597 while (insn != NULL_RTX)
4599 if (INSN_P (insn))
4600 INSN_LOCATOR (insn) = loc;
4601 insn = NEXT_INSN (insn);
4605 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4606 be running after reorg, SEQUENCE rtl is possible. */
4608 static int
4609 contains (rtx insn, VEC(int,heap) **vec)
4611 int i, j;
4613 if (NONJUMP_INSN_P (insn)
4614 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4616 int count = 0;
4617 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4618 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4619 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4620 == VEC_index (int, *vec, j))
4621 count++;
4622 return count;
4624 else
4626 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4627 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4628 return 1;
4630 return 0;
4634 prologue_epilogue_contains (rtx insn)
4636 if (contains (insn, &prologue))
4637 return 1;
4638 if (contains (insn, &epilogue))
4639 return 1;
4640 return 0;
4644 sibcall_epilogue_contains (rtx insn)
4646 if (sibcall_epilogue)
4647 return contains (insn, &sibcall_epilogue);
4648 return 0;
4651 #ifdef HAVE_return
4652 /* Insert gen_return at the end of block BB. This also means updating
4653 block_for_insn appropriately. */
4655 static void
4656 emit_return_into_block (basic_block bb, rtx line_note)
4658 emit_jump_insn_after (gen_return (), BB_END (bb));
4659 if (line_note)
4660 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4662 #endif /* HAVE_return */
4664 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4666 /* These functions convert the epilogue into a variant that does not
4667 modify the stack pointer. This is used in cases where a function
4668 returns an object whose size is not known until it is computed.
4669 The called function leaves the object on the stack, leaves the
4670 stack depressed, and returns a pointer to the object.
4672 What we need to do is track all modifications and references to the
4673 stack pointer, deleting the modifications and changing the
4674 references to point to the location the stack pointer would have
4675 pointed to had the modifications taken place.
4677 These functions need to be portable so we need to make as few
4678 assumptions about the epilogue as we can. However, the epilogue
4679 basically contains three things: instructions to reset the stack
4680 pointer, instructions to reload registers, possibly including the
4681 frame pointer, and an instruction to return to the caller.
4683 We must be sure of what a relevant epilogue insn is doing. We also
4684 make no attempt to validate the insns we make since if they are
4685 invalid, we probably can't do anything valid. The intent is that
4686 these routines get "smarter" as more and more machines start to use
4687 them and they try operating on different epilogues.
4689 We use the following structure to track what the part of the
4690 epilogue that we've already processed has done. We keep two copies
4691 of the SP equivalence, one for use during the insn we are
4692 processing and one for use in the next insn. The difference is
4693 because one part of a PARALLEL may adjust SP and the other may use
4694 it. */
4696 struct epi_info
4698 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4699 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4700 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4701 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4702 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4703 should be set to once we no longer need
4704 its value. */
4705 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4706 for registers. */
4709 static void handle_epilogue_set (rtx, struct epi_info *);
4710 static void update_epilogue_consts (rtx, rtx, void *);
4711 static void emit_equiv_load (struct epi_info *);
4713 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4714 no modifications to the stack pointer. Return the new list of insns. */
4716 static rtx
4717 keep_stack_depressed (rtx insns)
4719 int j;
4720 struct epi_info info;
4721 rtx insn, next;
4723 /* If the epilogue is just a single instruction, it must be OK as is. */
4724 if (NEXT_INSN (insns) == NULL_RTX)
4725 return insns;
4727 /* Otherwise, start a sequence, initialize the information we have, and
4728 process all the insns we were given. */
4729 start_sequence ();
4731 info.sp_equiv_reg = stack_pointer_rtx;
4732 info.sp_offset = 0;
4733 info.equiv_reg_src = 0;
4735 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4736 info.const_equiv[j] = 0;
4738 insn = insns;
4739 next = NULL_RTX;
4740 while (insn != NULL_RTX)
4742 next = NEXT_INSN (insn);
4744 if (!INSN_P (insn))
4746 add_insn (insn);
4747 insn = next;
4748 continue;
4751 /* If this insn references the register that SP is equivalent to and
4752 we have a pending load to that register, we must force out the load
4753 first and then indicate we no longer know what SP's equivalent is. */
4754 if (info.equiv_reg_src != 0
4755 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4757 emit_equiv_load (&info);
4758 info.sp_equiv_reg = 0;
4761 info.new_sp_equiv_reg = info.sp_equiv_reg;
4762 info.new_sp_offset = info.sp_offset;
4764 /* If this is a (RETURN) and the return address is on the stack,
4765 update the address and change to an indirect jump. */
4766 if (GET_CODE (PATTERN (insn)) == RETURN
4767 || (GET_CODE (PATTERN (insn)) == PARALLEL
4768 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4770 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4771 rtx base = 0;
4772 HOST_WIDE_INT offset = 0;
4773 rtx jump_insn, jump_set;
4775 /* If the return address is in a register, we can emit the insn
4776 unchanged. Otherwise, it must be a MEM and we see what the
4777 base register and offset are. In any case, we have to emit any
4778 pending load to the equivalent reg of SP, if any. */
4779 if (REG_P (retaddr))
4781 emit_equiv_load (&info);
4782 add_insn (insn);
4783 insn = next;
4784 continue;
4786 else
4788 rtx ret_ptr;
4789 gcc_assert (MEM_P (retaddr));
4791 ret_ptr = XEXP (retaddr, 0);
4793 if (REG_P (ret_ptr))
4795 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4796 offset = 0;
4798 else
4800 gcc_assert (GET_CODE (ret_ptr) == PLUS
4801 && REG_P (XEXP (ret_ptr, 0))
4802 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4803 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4804 offset = INTVAL (XEXP (ret_ptr, 1));
4808 /* If the base of the location containing the return pointer
4809 is SP, we must update it with the replacement address. Otherwise,
4810 just build the necessary MEM. */
4811 retaddr = plus_constant (base, offset);
4812 if (base == stack_pointer_rtx)
4813 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4814 plus_constant (info.sp_equiv_reg,
4815 info.sp_offset));
4817 retaddr = gen_rtx_MEM (Pmode, retaddr);
4818 MEM_NOTRAP_P (retaddr) = 1;
4820 /* If there is a pending load to the equivalent register for SP
4821 and we reference that register, we must load our address into
4822 a scratch register and then do that load. */
4823 if (info.equiv_reg_src
4824 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4826 unsigned int regno;
4827 rtx reg;
4829 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4830 if (HARD_REGNO_MODE_OK (regno, Pmode)
4831 && !fixed_regs[regno]
4832 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4833 && !REGNO_REG_SET_P
4834 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4835 && !refers_to_regno_p (regno,
4836 regno + hard_regno_nregs[regno]
4837 [Pmode],
4838 info.equiv_reg_src, NULL)
4839 && info.const_equiv[regno] == 0)
4840 break;
4842 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4844 reg = gen_rtx_REG (Pmode, regno);
4845 emit_move_insn (reg, retaddr);
4846 retaddr = reg;
4849 emit_equiv_load (&info);
4850 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4852 /* Show the SET in the above insn is a RETURN. */
4853 jump_set = single_set (jump_insn);
4854 gcc_assert (jump_set);
4855 SET_IS_RETURN_P (jump_set) = 1;
4858 /* If SP is not mentioned in the pattern and its equivalent register, if
4859 any, is not modified, just emit it. Otherwise, if neither is set,
4860 replace the reference to SP and emit the insn. If none of those are
4861 true, handle each SET individually. */
4862 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4863 && (info.sp_equiv_reg == stack_pointer_rtx
4864 || !reg_set_p (info.sp_equiv_reg, insn)))
4865 add_insn (insn);
4866 else if (! reg_set_p (stack_pointer_rtx, insn)
4867 && (info.sp_equiv_reg == stack_pointer_rtx
4868 || !reg_set_p (info.sp_equiv_reg, insn)))
4870 int changed;
4872 changed = validate_replace_rtx (stack_pointer_rtx,
4873 plus_constant (info.sp_equiv_reg,
4874 info.sp_offset),
4875 insn);
4876 gcc_assert (changed);
4878 add_insn (insn);
4880 else if (GET_CODE (PATTERN (insn)) == SET)
4881 handle_epilogue_set (PATTERN (insn), &info);
4882 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4884 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4885 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4886 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4888 else
4889 add_insn (insn);
4891 info.sp_equiv_reg = info.new_sp_equiv_reg;
4892 info.sp_offset = info.new_sp_offset;
4894 /* Now update any constants this insn sets. */
4895 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4896 insn = next;
4899 insns = get_insns ();
4900 end_sequence ();
4901 return insns;
4904 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4905 structure that contains information about what we've seen so far. We
4906 process this SET by either updating that data or by emitting one or
4907 more insns. */
4909 static void
4910 handle_epilogue_set (rtx set, struct epi_info *p)
4912 /* First handle the case where we are setting SP. Record what it is being
4913 set from, which we must be able to determine */
4914 if (reg_set_p (stack_pointer_rtx, set))
4916 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4918 if (GET_CODE (SET_SRC (set)) == PLUS)
4920 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4921 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4922 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4923 else
4925 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4926 && (REGNO (XEXP (SET_SRC (set), 1))
4927 < FIRST_PSEUDO_REGISTER)
4928 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4929 p->new_sp_offset
4930 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4933 else
4934 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4936 /* If we are adjusting SP, we adjust from the old data. */
4937 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4939 p->new_sp_equiv_reg = p->sp_equiv_reg;
4940 p->new_sp_offset += p->sp_offset;
4943 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4945 return;
4948 /* Next handle the case where we are setting SP's equivalent
4949 register. We must not already have a value to set it to. We
4950 could update, but there seems little point in handling that case.
4951 Note that we have to allow for the case where we are setting the
4952 register set in the previous part of a PARALLEL inside a single
4953 insn. But use the old offset for any updates within this insn.
4954 We must allow for the case where the register is being set in a
4955 different (usually wider) mode than Pmode). */
4956 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4958 gcc_assert (!p->equiv_reg_src
4959 && REG_P (p->new_sp_equiv_reg)
4960 && REG_P (SET_DEST (set))
4961 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4962 <= BITS_PER_WORD)
4963 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4964 p->equiv_reg_src
4965 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4966 plus_constant (p->sp_equiv_reg,
4967 p->sp_offset));
4970 /* Otherwise, replace any references to SP in the insn to its new value
4971 and emit the insn. */
4972 else
4974 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4975 plus_constant (p->sp_equiv_reg,
4976 p->sp_offset));
4977 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4978 plus_constant (p->sp_equiv_reg,
4979 p->sp_offset));
4980 emit_insn (set);
4984 /* Update the tracking information for registers set to constants. */
4986 static void
4987 update_epilogue_consts (rtx dest, rtx x, void *data)
4989 struct epi_info *p = (struct epi_info *) data;
4990 rtx new;
4992 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4993 return;
4995 /* If we are either clobbering a register or doing a partial set,
4996 show we don't know the value. */
4997 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4998 p->const_equiv[REGNO (dest)] = 0;
5000 /* If we are setting it to a constant, record that constant. */
5001 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5002 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5004 /* If this is a binary operation between a register we have been tracking
5005 and a constant, see if we can compute a new constant value. */
5006 else if (ARITHMETIC_P (SET_SRC (x))
5007 && REG_P (XEXP (SET_SRC (x), 0))
5008 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5009 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5010 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5011 && 0 != (new = simplify_binary_operation
5012 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5013 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5014 XEXP (SET_SRC (x), 1)))
5015 && GET_CODE (new) == CONST_INT)
5016 p->const_equiv[REGNO (dest)] = new;
5018 /* Otherwise, we can't do anything with this value. */
5019 else
5020 p->const_equiv[REGNO (dest)] = 0;
5023 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5025 static void
5026 emit_equiv_load (struct epi_info *p)
5028 if (p->equiv_reg_src != 0)
5030 rtx dest = p->sp_equiv_reg;
5032 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5033 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5034 REGNO (p->sp_equiv_reg));
5036 emit_move_insn (dest, p->equiv_reg_src);
5037 p->equiv_reg_src = 0;
5040 #endif
5042 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5043 this into place with notes indicating where the prologue ends and where
5044 the epilogue begins. Update the basic block information when possible. */
5046 void
5047 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5049 int inserted = 0;
5050 edge e;
5051 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5052 rtx seq;
5053 #endif
5054 #ifdef HAVE_prologue
5055 rtx prologue_end = NULL_RTX;
5056 #endif
5057 #if defined (HAVE_epilogue) || defined(HAVE_return)
5058 rtx epilogue_end = NULL_RTX;
5059 #endif
5060 edge_iterator ei;
5062 #ifdef HAVE_prologue
5063 if (HAVE_prologue)
5065 start_sequence ();
5066 seq = gen_prologue ();
5067 emit_insn (seq);
5069 /* Retain a map of the prologue insns. */
5070 record_insns (seq, &prologue);
5071 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5073 seq = get_insns ();
5074 end_sequence ();
5075 set_insn_locators (seq, prologue_locator);
5077 /* Can't deal with multiple successors of the entry block
5078 at the moment. Function should always have at least one
5079 entry point. */
5080 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5082 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5083 inserted = 1;
5085 #endif
5087 /* If the exit block has no non-fake predecessors, we don't need
5088 an epilogue. */
5089 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5090 if ((e->flags & EDGE_FAKE) == 0)
5091 break;
5092 if (e == NULL)
5093 goto epilogue_done;
5095 #ifdef HAVE_return
5096 if (optimize && HAVE_return)
5098 /* If we're allowed to generate a simple return instruction,
5099 then by definition we don't need a full epilogue. Examine
5100 the block that falls through to EXIT. If it does not
5101 contain any code, examine its predecessors and try to
5102 emit (conditional) return instructions. */
5104 basic_block last;
5105 rtx label;
5107 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5108 if (e->flags & EDGE_FALLTHRU)
5109 break;
5110 if (e == NULL)
5111 goto epilogue_done;
5112 last = e->src;
5114 /* Verify that there are no active instructions in the last block. */
5115 label = BB_END (last);
5116 while (label && !LABEL_P (label))
5118 if (active_insn_p (label))
5119 break;
5120 label = PREV_INSN (label);
5123 if (BB_HEAD (last) == label && LABEL_P (label))
5125 edge_iterator ei2;
5126 rtx epilogue_line_note = NULL_RTX;
5128 /* Locate the line number associated with the closing brace,
5129 if we can find one. */
5130 for (seq = get_last_insn ();
5131 seq && ! active_insn_p (seq);
5132 seq = PREV_INSN (seq))
5133 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5135 epilogue_line_note = seq;
5136 break;
5139 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5141 basic_block bb = e->src;
5142 rtx jump;
5144 if (bb == ENTRY_BLOCK_PTR)
5146 ei_next (&ei2);
5147 continue;
5150 jump = BB_END (bb);
5151 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5153 ei_next (&ei2);
5154 continue;
5157 /* If we have an unconditional jump, we can replace that
5158 with a simple return instruction. */
5159 if (simplejump_p (jump))
5161 emit_return_into_block (bb, epilogue_line_note);
5162 delete_insn (jump);
5165 /* If we have a conditional jump, we can try to replace
5166 that with a conditional return instruction. */
5167 else if (condjump_p (jump))
5169 if (! redirect_jump (jump, 0, 0))
5171 ei_next (&ei2);
5172 continue;
5175 /* If this block has only one successor, it both jumps
5176 and falls through to the fallthru block, so we can't
5177 delete the edge. */
5178 if (single_succ_p (bb))
5180 ei_next (&ei2);
5181 continue;
5184 else
5186 ei_next (&ei2);
5187 continue;
5190 /* Fix up the CFG for the successful change we just made. */
5191 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5194 /* Emit a return insn for the exit fallthru block. Whether
5195 this is still reachable will be determined later. */
5197 emit_barrier_after (BB_END (last));
5198 emit_return_into_block (last, epilogue_line_note);
5199 epilogue_end = BB_END (last);
5200 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5201 goto epilogue_done;
5204 #endif
5205 /* Find the edge that falls through to EXIT. Other edges may exist
5206 due to RETURN instructions, but those don't need epilogues.
5207 There really shouldn't be a mixture -- either all should have
5208 been converted or none, however... */
5210 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5211 if (e->flags & EDGE_FALLTHRU)
5212 break;
5213 if (e == NULL)
5214 goto epilogue_done;
5216 #ifdef HAVE_epilogue
5217 if (HAVE_epilogue)
5219 start_sequence ();
5220 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5222 seq = gen_epilogue ();
5224 #ifdef INCOMING_RETURN_ADDR_RTX
5225 /* If this function returns with the stack depressed and we can support
5226 it, massage the epilogue to actually do that. */
5227 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5228 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5229 seq = keep_stack_depressed (seq);
5230 #endif
5232 emit_jump_insn (seq);
5234 /* Retain a map of the epilogue insns. */
5235 record_insns (seq, &epilogue);
5236 set_insn_locators (seq, epilogue_locator);
5238 seq = get_insns ();
5239 end_sequence ();
5241 insert_insn_on_edge (seq, e);
5242 inserted = 1;
5244 else
5245 #endif
5247 basic_block cur_bb;
5249 if (! next_active_insn (BB_END (e->src)))
5250 goto epilogue_done;
5251 /* We have a fall-through edge to the exit block, the source is not
5252 at the end of the function, and there will be an assembler epilogue
5253 at the end of the function.
5254 We can't use force_nonfallthru here, because that would try to
5255 use return. Inserting a jump 'by hand' is extremely messy, so
5256 we take advantage of cfg_layout_finalize using
5257 fixup_fallthru_exit_predecessor. */
5258 cfg_layout_initialize (0);
5259 FOR_EACH_BB (cur_bb)
5260 if (cur_bb->index >= NUM_FIXED_BLOCKS
5261 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5262 cur_bb->aux = cur_bb->next_bb;
5263 cfg_layout_finalize ();
5265 epilogue_done:
5267 if (inserted)
5268 commit_edge_insertions ();
5270 #ifdef HAVE_sibcall_epilogue
5271 /* Emit sibling epilogues before any sibling call sites. */
5272 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5274 basic_block bb = e->src;
5275 rtx insn = BB_END (bb);
5277 if (!CALL_P (insn)
5278 || ! SIBLING_CALL_P (insn))
5280 ei_next (&ei);
5281 continue;
5284 start_sequence ();
5285 emit_insn (gen_sibcall_epilogue ());
5286 seq = get_insns ();
5287 end_sequence ();
5289 /* Retain a map of the epilogue insns. Used in life analysis to
5290 avoid getting rid of sibcall epilogue insns. Do this before we
5291 actually emit the sequence. */
5292 record_insns (seq, &sibcall_epilogue);
5293 set_insn_locators (seq, epilogue_locator);
5295 emit_insn_before (seq, insn);
5296 ei_next (&ei);
5298 #endif
5300 #ifdef HAVE_prologue
5301 /* This is probably all useless now that we use locators. */
5302 if (prologue_end)
5304 rtx insn, prev;
5306 /* GDB handles `break f' by setting a breakpoint on the first
5307 line note after the prologue. Which means (1) that if
5308 there are line number notes before where we inserted the
5309 prologue we should move them, and (2) we should generate a
5310 note before the end of the first basic block, if there isn't
5311 one already there.
5313 ??? This behavior is completely broken when dealing with
5314 multiple entry functions. We simply place the note always
5315 into first basic block and let alternate entry points
5316 to be missed.
5319 for (insn = prologue_end; insn; insn = prev)
5321 prev = PREV_INSN (insn);
5322 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5324 /* Note that we cannot reorder the first insn in the
5325 chain, since rest_of_compilation relies on that
5326 remaining constant. */
5327 if (prev == NULL)
5328 break;
5329 reorder_insns (insn, insn, prologue_end);
5333 /* Find the last line number note in the first block. */
5334 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5335 insn != prologue_end && insn;
5336 insn = PREV_INSN (insn))
5337 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5338 break;
5340 /* If we didn't find one, make a copy of the first line number
5341 we run across. */
5342 if (! insn)
5344 for (insn = next_active_insn (prologue_end);
5345 insn;
5346 insn = PREV_INSN (insn))
5347 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5349 emit_note_copy_after (insn, prologue_end);
5350 break;
5354 #endif
5355 #ifdef HAVE_epilogue
5356 if (epilogue_end)
5358 rtx insn, next;
5360 /* Similarly, move any line notes that appear after the epilogue.
5361 There is no need, however, to be quite so anal about the existence
5362 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5363 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5364 info generation. */
5365 for (insn = epilogue_end; insn; insn = next)
5367 next = NEXT_INSN (insn);
5368 if (NOTE_P (insn)
5369 && (NOTE_LINE_NUMBER (insn) > 0
5370 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5371 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5372 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5375 #endif
5378 /* Reposition the prologue-end and epilogue-begin notes after instruction
5379 scheduling and delayed branch scheduling. */
5381 void
5382 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5384 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5385 rtx insn, last, note;
5386 int len;
5388 if ((len = VEC_length (int, prologue)) > 0)
5390 last = 0, note = 0;
5392 /* Scan from the beginning until we reach the last prologue insn.
5393 We apparently can't depend on basic_block_{head,end} after
5394 reorg has run. */
5395 for (insn = f; insn; insn = NEXT_INSN (insn))
5397 if (NOTE_P (insn))
5399 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5400 note = insn;
5402 else if (contains (insn, &prologue))
5404 last = insn;
5405 if (--len == 0)
5406 break;
5410 if (last)
5412 /* Find the prologue-end note if we haven't already, and
5413 move it to just after the last prologue insn. */
5414 if (note == 0)
5416 for (note = last; (note = NEXT_INSN (note));)
5417 if (NOTE_P (note)
5418 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5419 break;
5422 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5423 if (LABEL_P (last))
5424 last = NEXT_INSN (last);
5425 reorder_insns (note, note, last);
5429 if ((len = VEC_length (int, epilogue)) > 0)
5431 last = 0, note = 0;
5433 /* Scan from the end until we reach the first epilogue insn.
5434 We apparently can't depend on basic_block_{head,end} after
5435 reorg has run. */
5436 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5438 if (NOTE_P (insn))
5440 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5441 note = insn;
5443 else if (contains (insn, &epilogue))
5445 last = insn;
5446 if (--len == 0)
5447 break;
5451 if (last)
5453 /* Find the epilogue-begin note if we haven't already, and
5454 move it to just before the first epilogue insn. */
5455 if (note == 0)
5457 for (note = insn; (note = PREV_INSN (note));)
5458 if (NOTE_P (note)
5459 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5460 break;
5463 if (PREV_INSN (last) != note)
5464 reorder_insns (note, note, PREV_INSN (last));
5467 #endif /* HAVE_prologue or HAVE_epilogue */
5470 /* Resets insn_block_boundaries array. */
5472 void
5473 reset_block_changes (void)
5475 cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
5476 VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
5479 /* Record the boundary for BLOCK. */
5480 void
5481 record_block_change (tree block)
5483 int i, n;
5484 tree last_block;
5486 if (!block)
5487 return;
5489 if(!cfun->ib_boundaries_block)
5490 return;
5492 last_block = VEC_pop (tree, cfun->ib_boundaries_block);
5493 n = get_max_uid ();
5494 for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
5495 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
5497 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
5500 /* Finishes record of boundaries. */
5501 void
5502 finalize_block_changes (void)
5504 record_block_change (DECL_INITIAL (current_function_decl));
5507 /* For INSN return the BLOCK it belongs to. */
5508 void
5509 check_block_change (rtx insn, tree *block)
5511 unsigned uid = INSN_UID (insn);
5513 if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
5514 return;
5516 *block = VEC_index (tree, cfun->ib_boundaries_block, uid);
5519 /* Releases the ib_boundaries_block records. */
5520 void
5521 free_block_changes (void)
5523 VEC_free (tree, gc, cfun->ib_boundaries_block);
5526 /* Returns the name of the current function. */
5527 const char *
5528 current_function_name (void)
5530 return lang_hooks.decl_printable_name (cfun->decl, 2);
5534 static unsigned int
5535 rest_of_handle_check_leaf_regs (void)
5537 #ifdef LEAF_REGISTERS
5538 current_function_uses_only_leaf_regs
5539 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5540 #endif
5541 return 0;
5544 /* Insert a TYPE into the used types hash table of CFUN. */
5545 static void
5546 used_types_insert_helper (tree type, struct function *func)
5548 if (type != NULL && func != NULL)
5550 void **slot;
5552 if (func->used_types_hash == NULL)
5553 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5554 htab_eq_pointer, NULL);
5555 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5556 if (*slot == NULL)
5557 *slot = type;
5561 /* Given a type, insert it into the used hash table in cfun. */
5562 void
5563 used_types_insert (tree t)
5565 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5566 t = TREE_TYPE (t);
5567 t = TYPE_MAIN_VARIANT (t);
5568 if (debug_info_level > DINFO_LEVEL_NONE)
5569 used_types_insert_helper (t, cfun);
5572 struct tree_opt_pass pass_leaf_regs =
5574 NULL, /* name */
5575 NULL, /* gate */
5576 rest_of_handle_check_leaf_regs, /* execute */
5577 NULL, /* sub */
5578 NULL, /* next */
5579 0, /* static_pass_number */
5580 0, /* tv_id */
5581 0, /* properties_required */
5582 0, /* properties_provided */
5583 0, /* properties_destroyed */
5584 0, /* todo_flags_start */
5585 0, /* todo_flags_finish */
5586 0 /* letter */
5590 #include "gt-function.h"