Support slim switch for cfg graph dump
[official-gcc.git] / gcc / ira-costs.c
blob508394e296242c1879bd392ac508bf5e5ad48275
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hard-reg-set.h"
26 #include "rtl.h"
27 #include "expr.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "regs.h"
32 #include "addresses.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "reload.h"
36 #include "diagnostic-core.h"
37 #include "target.h"
38 #include "params.h"
39 #include "ira-int.h"
41 /* The flags is set up every time when we calculate pseudo register
42 classes through function ira_set_pseudo_classes. */
43 static bool pseudo_classes_defined_p = false;
45 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
46 static bool allocno_p;
48 /* Number of elements in array `costs'. */
49 static int cost_elements_num;
51 /* The `costs' struct records the cost of using hard registers of each
52 class considered for the calculation and of using memory for each
53 allocno or pseudo. */
54 struct costs
56 int mem_cost;
57 /* Costs for register classes start here. We process only some
58 allocno classes. */
59 int cost[1];
62 #define max_struct_costs_size \
63 (this_target_ira_int->x_max_struct_costs_size)
64 #define init_cost \
65 (this_target_ira_int->x_init_cost)
66 #define temp_costs \
67 (this_target_ira_int->x_temp_costs)
68 #define op_costs \
69 (this_target_ira_int->x_op_costs)
70 #define this_op_costs \
71 (this_target_ira_int->x_this_op_costs)
73 /* Costs of each class for each allocno or pseudo. */
74 static struct costs *costs;
76 /* Accumulated costs of each class for each allocno. */
77 static struct costs *total_allocno_costs;
79 /* It is the current size of struct costs. */
80 static int struct_costs_size;
82 /* Return pointer to structure containing costs of allocno or pseudo
83 with given NUM in array ARR. */
84 #define COSTS(arr, num) \
85 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
87 /* Return index in COSTS when processing reg with REGNO. */
88 #define COST_INDEX(regno) (allocno_p \
89 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
90 : (int) regno)
92 /* Record register class preferences of each allocno or pseudo. Null
93 value means no preferences. It happens on the 1st iteration of the
94 cost calculation. */
95 static enum reg_class *pref;
97 /* Allocated buffers for pref. */
98 static enum reg_class *pref_buffer;
100 /* Record allocno class of each allocno with the same regno. */
101 static enum reg_class *regno_aclass;
103 /* Record cost gains for not allocating a register with an invariant
104 equivalence. */
105 static int *regno_equiv_gains;
107 /* Execution frequency of the current insn. */
108 static int frequency;
112 /* Info about reg classes whose costs are calculated for a pseudo. */
113 struct cost_classes
115 /* Number of the cost classes in the subsequent array. */
116 int num;
117 /* Container of the cost classes. */
118 enum reg_class classes[N_REG_CLASSES];
119 /* Map reg class -> index of the reg class in the previous array.
120 -1 if it is not a cost classe. */
121 int index[N_REG_CLASSES];
122 /* Map hard regno index of first class in array CLASSES containing
123 the hard regno, -1 otherwise. */
124 int hard_regno_index[FIRST_PSEUDO_REGISTER];
127 /* Types of pointers to the structure above. */
128 typedef struct cost_classes *cost_classes_t;
129 typedef const struct cost_classes *const_cost_classes_t;
131 /* Info about cost classes for each pseudo. */
132 static cost_classes_t *regno_cost_classes;
134 /* Returns hash value for cost classes info V. */
135 static hashval_t
136 cost_classes_hash (const void *v)
138 const_cost_classes_t hv = (const_cost_classes_t) v;
140 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
143 /* Compares cost classes info V1 and V2. */
144 static int
145 cost_classes_eq (const void *v1, const void *v2)
147 const_cost_classes_t hv1 = (const_cost_classes_t) v1;
148 const_cost_classes_t hv2 = (const_cost_classes_t) v2;
150 return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
151 sizeof (enum reg_class) * hv1->num);
154 /* Delete cost classes info V from the hash table. */
155 static void
156 cost_classes_del (void *v)
158 ira_free (v);
161 /* Hash table of unique cost classes. */
162 static htab_t cost_classes_htab;
164 /* Map allocno class -> cost classes for pseudo of given allocno
165 class. */
166 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
168 /* Map mode -> cost classes for pseudo of give mode. */
169 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
171 /* Initialize info about the cost classes for each pseudo. */
172 static void
173 initiate_regno_cost_classes (void)
175 int size = sizeof (cost_classes_t) * max_reg_num ();
177 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
178 memset (regno_cost_classes, 0, size);
179 memset (cost_classes_aclass_cache, 0,
180 sizeof (cost_classes_t) * N_REG_CLASSES);
181 memset (cost_classes_mode_cache, 0,
182 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
183 cost_classes_htab
184 = htab_create (200, cost_classes_hash, cost_classes_eq, cost_classes_del);
187 /* Create new cost classes from cost classes FROM and set up members
188 index and hard_regno_index. Return the new classes. The function
189 implements some common code of two functions
190 setup_regno_cost_classes_by_aclass and
191 setup_regno_cost_classes_by_mode. */
192 static cost_classes_t
193 setup_cost_classes (cost_classes_t from)
195 cost_classes_t classes_ptr;
196 enum reg_class cl;
197 int i, j, hard_regno;
199 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
200 classes_ptr->num = from->num;
201 for (i = 0; i < N_REG_CLASSES; i++)
202 classes_ptr->index[i] = -1;
203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
204 classes_ptr->hard_regno_index[i] = -1;
205 for (i = 0; i < from->num; i++)
207 cl = classes_ptr->classes[i] = from->classes[i];
208 classes_ptr->index[cl] = i;
209 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
211 hard_regno = ira_class_hard_regs[cl][j];
212 if (classes_ptr->hard_regno_index[hard_regno] < 0)
213 classes_ptr->hard_regno_index[hard_regno] = i;
216 return classes_ptr;
219 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
220 This function is used when we know an initial approximation of
221 allocno class of the pseudo already, e.g. on the second iteration
222 of class cost calculation or after class cost calculation in
223 register-pressure sensitive insn scheduling or register-pressure
224 sensitive loop-invariant motion. */
225 static void
226 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
228 static struct cost_classes classes;
229 cost_classes_t classes_ptr;
230 enum reg_class cl;
231 int i;
232 PTR *slot;
233 HARD_REG_SET temp, temp2;
234 bool exclude_p;
236 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
238 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
239 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
240 /* We exclude classes from consideration which are subsets of
241 ACLASS only if ACLASS is an uniform class. */
242 exclude_p = ira_uniform_class_p[aclass];
243 classes.num = 0;
244 for (i = 0; i < ira_important_classes_num; i++)
246 cl = ira_important_classes[i];
247 if (exclude_p)
249 /* Exclude non-uniform classes which are subsets of
250 ACLASS. */
251 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
252 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
253 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
254 continue;
256 classes.classes[classes.num++] = cl;
258 slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
259 if (*slot == NULL)
261 classes_ptr = setup_cost_classes (&classes);
262 *slot = classes_ptr;
264 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
266 regno_cost_classes[regno] = classes_ptr;
269 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
270 decrease number of cost classes for the pseudo, if hard registers
271 of some important classes can not hold a value of MODE. So the
272 pseudo can not get hard register of some important classes and cost
273 calculation for such important classes is only waisting CPU
274 time. */
275 static void
276 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
278 static struct cost_classes classes;
279 cost_classes_t classes_ptr;
280 enum reg_class cl;
281 int i;
282 PTR *slot;
283 HARD_REG_SET temp;
285 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
287 classes.num = 0;
288 for (i = 0; i < ira_important_classes_num; i++)
290 cl = ira_important_classes[i];
291 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
292 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
293 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
294 continue;
295 classes.classes[classes.num++] = cl;
297 slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
298 if (*slot == NULL)
300 classes_ptr = setup_cost_classes (&classes);
301 *slot = classes_ptr;
303 else
304 classes_ptr = (cost_classes_t) *slot;
305 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
307 regno_cost_classes[regno] = classes_ptr;
310 /* Finilize info about the cost classes for each pseudo. */
311 static void
312 finish_regno_cost_classes (void)
314 ira_free (regno_cost_classes);
315 htab_delete (cost_classes_htab);
320 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
321 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
322 be a pseudo register. */
323 static int
324 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
325 secondary_reload_info *prev_sri)
327 secondary_reload_info sri;
328 reg_class_t secondary_class = NO_REGS;
330 /* If X is a SCRATCH, there is actually nothing to move since we are
331 assuming optimal allocation. */
332 if (GET_CODE (x) == SCRATCH)
333 return 0;
335 /* Get the class we will actually use for a reload. */
336 rclass = targetm.preferred_reload_class (x, rclass);
338 /* If we need a secondary reload for an intermediate, the cost is
339 that to load the input into the intermediate register, then to
340 copy it. */
341 sri.prev_sri = prev_sri;
342 sri.extra_cost = 0;
343 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
345 if (secondary_class != NO_REGS)
347 ira_init_register_move_cost_if_necessary (mode);
348 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
349 + sri.extra_cost
350 + copy_cost (x, mode, secondary_class, to_p, &sri));
353 /* For memory, use the memory move cost, for (hard) registers, use
354 the cost to move between the register classes, and use 2 for
355 everything else (constants). */
356 if (MEM_P (x) || rclass == NO_REGS)
357 return sri.extra_cost
358 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
359 else if (REG_P (x))
361 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
363 ira_init_register_move_cost_if_necessary (mode);
364 return (sri.extra_cost
365 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
367 else
368 /* If this is a constant, we may eventually want to call rtx_cost
369 here. */
370 return sri.extra_cost + COSTS_N_INSNS (1);
375 /* Record the cost of using memory or hard registers of various
376 classes for the operands in INSN.
378 N_ALTS is the number of alternatives.
379 N_OPS is the number of operands.
380 OPS is an array of the operands.
381 MODES are the modes of the operands, in case any are VOIDmode.
382 CONSTRAINTS are the constraints to use for the operands. This array
383 is modified by this procedure.
385 This procedure works alternative by alternative. For each
386 alternative we assume that we will be able to allocate all allocnos
387 to their ideal register class and calculate the cost of using that
388 alternative. Then we compute, for each operand that is a
389 pseudo-register, the cost of having the allocno allocated to each
390 register class and using it in that alternative. To this cost is
391 added the cost of the alternative.
393 The cost of each class for this insn is its lowest cost among all
394 the alternatives. */
395 static void
396 record_reg_classes (int n_alts, int n_ops, rtx *ops,
397 enum machine_mode *modes, const char **constraints,
398 rtx insn, enum reg_class *pref)
400 int alt;
401 int i, j, k;
402 rtx set;
403 int insn_allows_mem[MAX_RECOG_OPERANDS];
405 for (i = 0; i < n_ops; i++)
406 insn_allows_mem[i] = 0;
408 /* Process each alternative, each time minimizing an operand's cost
409 with the cost for each operand in that alternative. */
410 for (alt = 0; alt < n_alts; alt++)
412 enum reg_class classes[MAX_RECOG_OPERANDS];
413 int allows_mem[MAX_RECOG_OPERANDS];
414 enum reg_class rclass;
415 int alt_fail = 0;
416 int alt_cost = 0, op_cost_add;
418 if (!recog_data.alternative_enabled_p[alt])
420 for (i = 0; i < recog_data.n_operands; i++)
421 constraints[i] = skip_alternative (constraints[i]);
423 continue;
426 for (i = 0; i < n_ops; i++)
428 unsigned char c;
429 const char *p = constraints[i];
430 rtx op = ops[i];
431 enum machine_mode mode = modes[i];
432 int allows_addr = 0;
433 int win = 0;
435 /* Initially show we know nothing about the register class. */
436 classes[i] = NO_REGS;
437 allows_mem[i] = 0;
439 /* If this operand has no constraints at all, we can
440 conclude nothing about it since anything is valid. */
441 if (*p == 0)
443 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
444 memset (this_op_costs[i], 0, struct_costs_size);
445 continue;
448 /* If this alternative is only relevant when this operand
449 matches a previous operand, we do different things
450 depending on whether this operand is a allocno-reg or not.
451 We must process any modifiers for the operand before we
452 can make this test. */
453 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
454 p++;
456 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
458 /* Copy class and whether memory is allowed from the
459 matching alternative. Then perform any needed cost
460 computations and/or adjustments. */
461 j = p[0] - '0';
462 classes[i] = classes[j];
463 allows_mem[i] = allows_mem[j];
464 if (allows_mem[i])
465 insn_allows_mem[i] = 1;
467 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
469 /* If this matches the other operand, we have no
470 added cost and we win. */
471 if (rtx_equal_p (ops[j], op))
472 win = 1;
473 /* If we can put the other operand into a register,
474 add to the cost of this alternative the cost to
475 copy this operand to the register used for the
476 other operand. */
477 else if (classes[j] != NO_REGS)
479 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
480 win = 1;
483 else if (! REG_P (ops[j])
484 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
486 /* This op is an allocno but the one it matches is
487 not. */
489 /* If we can't put the other operand into a
490 register, this alternative can't be used. */
492 if (classes[j] == NO_REGS)
493 alt_fail = 1;
494 /* Otherwise, add to the cost of this alternative
495 the cost to copy the other operand to the hard
496 register used for this operand. */
497 else
498 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
500 else
502 /* The costs of this operand are not the same as the
503 other operand since move costs are not symmetric.
504 Moreover, if we cannot tie them, this alternative
505 needs to do a copy, which is one insn. */
506 struct costs *pp = this_op_costs[i];
507 int *pp_costs = pp->cost;
508 cost_classes_t cost_classes_ptr
509 = regno_cost_classes[REGNO (op)];
510 enum reg_class *cost_classes = cost_classes_ptr->classes;
511 bool in_p = recog_data.operand_type[i] != OP_OUT;
512 bool out_p = recog_data.operand_type[i] != OP_IN;
513 enum reg_class op_class = classes[i];
514 move_table *move_in_cost, *move_out_cost;
516 ira_init_register_move_cost_if_necessary (mode);
517 if (! in_p)
519 ira_assert (out_p);
520 move_out_cost = ira_may_move_out_cost[mode];
521 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
523 rclass = cost_classes[k];
524 pp_costs[k]
525 = move_out_cost[op_class][rclass] * frequency;
528 else if (! out_p)
530 ira_assert (in_p);
531 move_in_cost = ira_may_move_in_cost[mode];
532 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
534 rclass = cost_classes[k];
535 pp_costs[k]
536 = move_in_cost[rclass][op_class] * frequency;
539 else
541 move_in_cost = ira_may_move_in_cost[mode];
542 move_out_cost = ira_may_move_out_cost[mode];
543 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
545 rclass = cost_classes[k];
546 pp_costs[k] = ((move_in_cost[rclass][op_class]
547 + move_out_cost[op_class][rclass])
548 * frequency);
552 /* If the alternative actually allows memory, make
553 things a bit cheaper since we won't need an extra
554 insn to load it. */
555 pp->mem_cost
556 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
557 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
558 - allows_mem[i]) * frequency;
560 /* If we have assigned a class to this allocno in
561 our first pass, add a cost to this alternative
562 corresponding to what we would add if this
563 allocno were not in the appropriate class. */
564 if (pref)
566 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
568 if (pref_class == NO_REGS)
569 alt_cost
570 += ((out_p
571 ? ira_memory_move_cost[mode][op_class][0] : 0)
572 + (in_p
573 ? ira_memory_move_cost[mode][op_class][1]
574 : 0));
575 else if (ira_reg_class_intersect
576 [pref_class][op_class] == NO_REGS)
577 alt_cost
578 += ira_register_move_cost[mode][pref_class][op_class];
580 if (REGNO (ops[i]) != REGNO (ops[j])
581 && ! find_reg_note (insn, REG_DEAD, op))
582 alt_cost += 2;
584 /* This is in place of ordinary cost computation for
585 this operand, so skip to the end of the
586 alternative (should be just one character). */
587 while (*p && *p++ != ',')
590 constraints[i] = p;
591 continue;
595 /* Scan all the constraint letters. See if the operand
596 matches any of the constraints. Collect the valid
597 register classes and see if this operand accepts
598 memory. */
599 while ((c = *p))
601 switch (c)
603 case ',':
604 break;
605 case '*':
606 /* Ignore the next letter for this pass. */
607 c = *++p;
608 break;
610 case '?':
611 alt_cost += 2;
612 case '!': case '#': case '&':
613 case '0': case '1': case '2': case '3': case '4':
614 case '5': case '6': case '7': case '8': case '9':
615 break;
617 case 'p':
618 allows_addr = 1;
619 win = address_operand (op, GET_MODE (op));
620 /* We know this operand is an address, so we want it
621 to be allocated to a register that can be the
622 base of an address, i.e. BASE_REG_CLASS. */
623 classes[i]
624 = ira_reg_class_subunion[classes[i]]
625 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
626 ADDRESS, SCRATCH)];
627 break;
629 case 'm': case 'o': case 'V':
630 /* It doesn't seem worth distinguishing between
631 offsettable and non-offsettable addresses
632 here. */
633 insn_allows_mem[i] = allows_mem[i] = 1;
634 if (MEM_P (op))
635 win = 1;
636 break;
638 case '<':
639 if (MEM_P (op)
640 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
641 || GET_CODE (XEXP (op, 0)) == POST_DEC))
642 win = 1;
643 break;
645 case '>':
646 if (MEM_P (op)
647 && (GET_CODE (XEXP (op, 0)) == PRE_INC
648 || GET_CODE (XEXP (op, 0)) == POST_INC))
649 win = 1;
650 break;
652 case 'E':
653 case 'F':
654 if (CONST_DOUBLE_AS_FLOAT_P (op)
655 || (GET_CODE (op) == CONST_VECTOR
656 && (GET_MODE_CLASS (GET_MODE (op))
657 == MODE_VECTOR_FLOAT)))
658 win = 1;
659 break;
661 case 'G':
662 case 'H':
663 if (CONST_DOUBLE_AS_FLOAT_P (op)
664 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
665 win = 1;
666 break;
668 case 's':
669 if (CONST_SCALAR_INT_P (op))
670 break;
672 case 'i':
673 if (CONSTANT_P (op)
674 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
675 win = 1;
676 break;
678 case 'n':
679 if (CONST_SCALAR_INT_P (op))
680 win = 1;
681 break;
683 case 'I':
684 case 'J':
685 case 'K':
686 case 'L':
687 case 'M':
688 case 'N':
689 case 'O':
690 case 'P':
691 if (CONST_INT_P (op)
692 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
693 win = 1;
694 break;
696 case 'X':
697 win = 1;
698 break;
700 case 'g':
701 if (MEM_P (op)
702 || (CONSTANT_P (op)
703 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
704 win = 1;
705 insn_allows_mem[i] = allows_mem[i] = 1;
706 case 'r':
707 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
708 break;
710 default:
711 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
712 classes[i] = ira_reg_class_subunion[classes[i]]
713 [REG_CLASS_FROM_CONSTRAINT (c, p)];
714 #ifdef EXTRA_CONSTRAINT_STR
715 else if (EXTRA_CONSTRAINT_STR (op, c, p))
716 win = 1;
718 if (EXTRA_MEMORY_CONSTRAINT (c, p))
720 /* Every MEM can be reloaded to fit. */
721 insn_allows_mem[i] = allows_mem[i] = 1;
722 if (MEM_P (op))
723 win = 1;
725 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
727 /* Every address can be reloaded to fit. */
728 allows_addr = 1;
729 if (address_operand (op, GET_MODE (op)))
730 win = 1;
731 /* We know this operand is an address, so we
732 want it to be allocated to a hard register
733 that can be the base of an address,
734 i.e. BASE_REG_CLASS. */
735 classes[i]
736 = ira_reg_class_subunion[classes[i]]
737 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
738 ADDRESS, SCRATCH)];
740 #endif
741 break;
743 p += CONSTRAINT_LEN (c, p);
744 if (c == ',')
745 break;
748 constraints[i] = p;
750 /* How we account for this operand now depends on whether it
751 is a pseudo register or not. If it is, we first check if
752 any register classes are valid. If not, we ignore this
753 alternative, since we want to assume that all allocnos get
754 allocated for register preferencing. If some register
755 class is valid, compute the costs of moving the allocno
756 into that class. */
757 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
759 if (classes[i] == NO_REGS)
761 /* We must always fail if the operand is a REG, but
762 we did not find a suitable class.
764 Otherwise we may perform an uninitialized read
765 from this_op_costs after the `continue' statement
766 below. */
767 alt_fail = 1;
769 else
771 unsigned int regno = REGNO (op);
772 struct costs *pp = this_op_costs[i];
773 int *pp_costs = pp->cost;
774 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
775 enum reg_class *cost_classes = cost_classes_ptr->classes;
776 bool in_p = recog_data.operand_type[i] != OP_OUT;
777 bool out_p = recog_data.operand_type[i] != OP_IN;
778 enum reg_class op_class = classes[i];
779 move_table *move_in_cost, *move_out_cost;
781 ira_init_register_move_cost_if_necessary (mode);
782 if (! in_p)
784 ira_assert (out_p);
785 move_out_cost = ira_may_move_out_cost[mode];
786 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
788 rclass = cost_classes[k];
789 pp_costs[k]
790 = move_out_cost[op_class][rclass] * frequency;
793 else if (! out_p)
795 ira_assert (in_p);
796 move_in_cost = ira_may_move_in_cost[mode];
797 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
799 rclass = cost_classes[k];
800 pp_costs[k]
801 = move_in_cost[rclass][op_class] * frequency;
804 else
806 move_in_cost = ira_may_move_in_cost[mode];
807 move_out_cost = ira_may_move_out_cost[mode];
808 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
810 rclass = cost_classes[k];
811 pp_costs[k] = ((move_in_cost[rclass][op_class]
812 + move_out_cost[op_class][rclass])
813 * frequency);
817 /* If the alternative actually allows memory, make
818 things a bit cheaper since we won't need an extra
819 insn to load it. */
820 pp->mem_cost
821 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
822 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
823 - allows_mem[i]) * frequency;
824 /* If we have assigned a class to this allocno in
825 our first pass, add a cost to this alternative
826 corresponding to what we would add if this
827 allocno were not in the appropriate class. */
828 if (pref)
830 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
832 if (pref_class == NO_REGS)
833 alt_cost
834 += ((out_p
835 ? ira_memory_move_cost[mode][op_class][0] : 0)
836 + (in_p
837 ? ira_memory_move_cost[mode][op_class][1]
838 : 0));
839 else if (ira_reg_class_intersect[pref_class][op_class]
840 == NO_REGS)
841 alt_cost += ira_register_move_cost[mode][pref_class][op_class];
846 /* Otherwise, if this alternative wins, either because we
847 have already determined that or if we have a hard
848 register of the proper class, there is no cost for this
849 alternative. */
850 else if (win || (REG_P (op)
851 && reg_fits_class_p (op, classes[i],
852 0, GET_MODE (op))))
855 /* If registers are valid, the cost of this alternative
856 includes copying the object to and/or from a
857 register. */
858 else if (classes[i] != NO_REGS)
860 if (recog_data.operand_type[i] != OP_OUT)
861 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
863 if (recog_data.operand_type[i] != OP_IN)
864 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
866 /* The only other way this alternative can be used is if
867 this is a constant that could be placed into memory. */
868 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
869 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
870 else
871 alt_fail = 1;
874 if (alt_fail)
875 continue;
877 op_cost_add = alt_cost * frequency;
878 /* Finally, update the costs with the information we've
879 calculated about this alternative. */
880 for (i = 0; i < n_ops; i++)
881 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
883 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
884 int *pp_costs = pp->cost, *qq_costs = qq->cost;
885 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
886 cost_classes_t cost_classes_ptr
887 = regno_cost_classes[REGNO (ops[i])];
889 pp->mem_cost = MIN (pp->mem_cost,
890 (qq->mem_cost + op_cost_add) * scale);
892 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
893 pp_costs[k]
894 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
898 if (allocno_p)
899 for (i = 0; i < n_ops; i++)
901 ira_allocno_t a;
902 rtx op = ops[i];
904 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
905 continue;
906 a = ira_curr_regno_allocno_map [REGNO (op)];
907 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
908 ALLOCNO_BAD_SPILL_P (a) = true;
911 /* If this insn is a single set copying operand 1 to operand 0 and
912 one operand is an allocno with the other a hard reg or an allocno
913 that prefers a hard register that is in its own register class
914 then we may want to adjust the cost of that register class to -1.
916 Avoid the adjustment if the source does not die to avoid
917 stressing of register allocator by preferrencing two colliding
918 registers into single class.
920 Also avoid the adjustment if a copy between hard registers of the
921 class is expensive (ten times the cost of a default copy is
922 considered arbitrarily expensive). This avoids losing when the
923 preferred class is very expensive as the source of a copy
924 instruction. */
925 if ((set = single_set (insn)) != 0
926 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
927 && REG_P (ops[0]) && REG_P (ops[1])
928 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
929 for (i = 0; i <= 1; i++)
930 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER
931 && REGNO (ops[!i]) < FIRST_PSEUDO_REGISTER)
933 unsigned int regno = REGNO (ops[i]);
934 unsigned int other_regno = REGNO (ops[!i]);
935 enum machine_mode mode = GET_MODE (ops[!i]);
936 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
937 enum reg_class *cost_classes = cost_classes_ptr->classes;
938 reg_class_t rclass;
939 int nr;
941 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
943 rclass = cost_classes[k];
944 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
945 && (reg_class_size[(int) rclass]
946 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
948 if (reg_class_size[rclass] == 1)
949 op_costs[i]->cost[k] = -frequency;
950 else
952 for (nr = 0;
953 nr < hard_regno_nregs[other_regno][mode];
954 nr++)
955 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
956 other_regno + nr))
957 break;
959 if (nr == hard_regno_nregs[other_regno][mode])
960 op_costs[i]->cost[k] = -frequency;
969 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
970 static inline bool
971 ok_for_index_p_nonstrict (rtx reg)
973 unsigned regno = REGNO (reg);
975 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
978 /* A version of regno_ok_for_base_p for use here, when all
979 pseudo-registers should count as OK. Arguments as for
980 regno_ok_for_base_p. */
981 static inline bool
982 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
983 enum rtx_code outer_code, enum rtx_code index_code)
985 unsigned regno = REGNO (reg);
987 if (regno >= FIRST_PSEUDO_REGISTER)
988 return true;
989 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
992 /* Record the pseudo registers we must reload into hard registers in a
993 subexpression of a memory address, X.
995 If CONTEXT is 0, we are looking at the base part of an address,
996 otherwise we are looking at the index part.
998 MODE and AS are the mode and address space of the memory reference;
999 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1000 These four arguments are passed down to base_reg_class.
1002 SCALE is twice the amount to multiply the cost by (it is twice so
1003 we can represent half-cost adjustments). */
1004 static void
1005 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
1006 int context, enum rtx_code outer_code,
1007 enum rtx_code index_code, int scale)
1009 enum rtx_code code = GET_CODE (x);
1010 enum reg_class rclass;
1012 if (context == 1)
1013 rclass = INDEX_REG_CLASS;
1014 else
1015 rclass = base_reg_class (mode, as, outer_code, index_code);
1017 switch (code)
1019 case CONST_INT:
1020 case CONST:
1021 case CC0:
1022 case PC:
1023 case SYMBOL_REF:
1024 case LABEL_REF:
1025 return;
1027 case PLUS:
1028 /* When we have an address that is a sum, we must determine
1029 whether registers are "base" or "index" regs. If there is a
1030 sum of two registers, we must choose one to be the "base".
1031 Luckily, we can use the REG_POINTER to make a good choice
1032 most of the time. We only need to do this on machines that
1033 can have two registers in an address and where the base and
1034 index register classes are different.
1036 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1037 but that seems bogus since it should only be set when we are
1038 sure the register is being used as a pointer. */
1040 rtx arg0 = XEXP (x, 0);
1041 rtx arg1 = XEXP (x, 1);
1042 enum rtx_code code0 = GET_CODE (arg0);
1043 enum rtx_code code1 = GET_CODE (arg1);
1045 /* Look inside subregs. */
1046 if (code0 == SUBREG)
1047 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1048 if (code1 == SUBREG)
1049 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1051 /* If this machine only allows one register per address, it
1052 must be in the first operand. */
1053 if (MAX_REGS_PER_ADDRESS == 1)
1054 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1056 /* If index and base registers are the same on this machine,
1057 just record registers in any non-constant operands. We
1058 assume here, as well as in the tests below, that all
1059 addresses are in canonical form. */
1060 else if (INDEX_REG_CLASS
1061 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1063 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1064 if (! CONSTANT_P (arg1))
1065 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1068 /* If the second operand is a constant integer, it doesn't
1069 change what class the first operand must be. */
1070 else if (CONST_SCALAR_INT_P (arg1))
1071 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1072 /* If the second operand is a symbolic constant, the first
1073 operand must be an index register. */
1074 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1075 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1076 /* If both operands are registers but one is already a hard
1077 register of index or reg-base class, give the other the
1078 class that the hard register is not. */
1079 else if (code0 == REG && code1 == REG
1080 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1081 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1082 || ok_for_index_p_nonstrict (arg0)))
1083 record_address_regs (mode, as, arg1,
1084 ok_for_base_p_nonstrict (arg0, mode, as,
1085 PLUS, REG) ? 1 : 0,
1086 PLUS, REG, scale);
1087 else if (code0 == REG && code1 == REG
1088 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1089 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1090 || ok_for_index_p_nonstrict (arg1)))
1091 record_address_regs (mode, as, arg0,
1092 ok_for_base_p_nonstrict (arg1, mode, as,
1093 PLUS, REG) ? 1 : 0,
1094 PLUS, REG, scale);
1095 /* If one operand is known to be a pointer, it must be the
1096 base with the other operand the index. Likewise if the
1097 other operand is a MULT. */
1098 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1100 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1101 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1103 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1105 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1106 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1108 /* Otherwise, count equal chances that each might be a base or
1109 index register. This case should be rare. */
1110 else
1112 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1113 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1114 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1115 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1118 break;
1120 /* Double the importance of an allocno that is incremented or
1121 decremented, since it would take two extra insns if it ends
1122 up in the wrong place. */
1123 case POST_MODIFY:
1124 case PRE_MODIFY:
1125 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1126 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1127 if (REG_P (XEXP (XEXP (x, 1), 1)))
1128 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1129 2 * scale);
1130 break;
1132 case POST_INC:
1133 case PRE_INC:
1134 case POST_DEC:
1135 case PRE_DEC:
1136 /* Double the importance of an allocno that is incremented or
1137 decremented, since it would take two extra insns if it ends
1138 up in the wrong place. */
1139 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1140 break;
1142 case REG:
1144 struct costs *pp;
1145 int *pp_costs;
1146 enum reg_class i;
1147 int k, regno, add_cost;
1148 cost_classes_t cost_classes_ptr;
1149 enum reg_class *cost_classes;
1150 move_table *move_in_cost;
1152 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1153 break;
1155 regno = REGNO (x);
1156 if (allocno_p)
1157 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1158 pp = COSTS (costs, COST_INDEX (regno));
1159 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1160 if (INT_MAX - add_cost < pp->mem_cost)
1161 pp->mem_cost = INT_MAX;
1162 else
1163 pp->mem_cost += add_cost;
1164 cost_classes_ptr = regno_cost_classes[regno];
1165 cost_classes = cost_classes_ptr->classes;
1166 pp_costs = pp->cost;
1167 ira_init_register_move_cost_if_necessary (Pmode);
1168 move_in_cost = ira_may_move_in_cost[Pmode];
1169 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1171 i = cost_classes[k];
1172 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1173 if (INT_MAX - add_cost < pp_costs[k])
1174 pp_costs[k] = INT_MAX;
1175 else
1176 pp_costs[k] += add_cost;
1179 break;
1181 default:
1183 const char *fmt = GET_RTX_FORMAT (code);
1184 int i;
1185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1186 if (fmt[i] == 'e')
1187 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1188 scale);
1195 /* Calculate the costs of insn operands. */
1196 static void
1197 record_operand_costs (rtx insn, enum reg_class *pref)
1199 const char *constraints[MAX_RECOG_OPERANDS];
1200 enum machine_mode modes[MAX_RECOG_OPERANDS];
1201 int i;
1203 for (i = 0; i < recog_data.n_operands; i++)
1205 constraints[i] = recog_data.constraints[i];
1206 modes[i] = recog_data.operand_mode[i];
1209 /* If we get here, we are set up to record the costs of all the
1210 operands for this insn. Start by initializing the costs. Then
1211 handle any address registers. Finally record the desired classes
1212 for any allocnos, doing it twice if some pair of operands are
1213 commutative. */
1214 for (i = 0; i < recog_data.n_operands; i++)
1216 memcpy (op_costs[i], init_cost, struct_costs_size);
1218 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1219 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1221 if (MEM_P (recog_data.operand[i]))
1222 record_address_regs (GET_MODE (recog_data.operand[i]),
1223 MEM_ADDR_SPACE (recog_data.operand[i]),
1224 XEXP (recog_data.operand[i], 0),
1225 0, MEM, SCRATCH, frequency * 2);
1226 else if (constraints[i][0] == 'p'
1227 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1228 constraints[i]))
1229 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1230 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1231 frequency * 2);
1234 /* Check for commutative in a separate loop so everything will have
1235 been initialized. We must do this even if one operand is a
1236 constant--see addsi3 in m68k.md. */
1237 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1238 if (constraints[i][0] == '%')
1240 const char *xconstraints[MAX_RECOG_OPERANDS];
1241 int j;
1243 /* Handle commutative operands by swapping the constraints.
1244 We assume the modes are the same. */
1245 for (j = 0; j < recog_data.n_operands; j++)
1246 xconstraints[j] = constraints[j];
1248 xconstraints[i] = constraints[i+1];
1249 xconstraints[i+1] = constraints[i];
1250 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1251 recog_data.operand, modes,
1252 xconstraints, insn, pref);
1254 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1255 recog_data.operand, modes,
1256 constraints, insn, pref);
1261 /* Process one insn INSN. Scan it and record each time it would save
1262 code to put a certain allocnos in a certain class. Return the last
1263 insn processed, so that the scan can be continued from there. */
1264 static rtx
1265 scan_one_insn (rtx insn)
1267 enum rtx_code pat_code;
1268 rtx set, note;
1269 int i, k;
1270 bool counted_mem;
1272 if (!NONDEBUG_INSN_P (insn))
1273 return insn;
1275 pat_code = GET_CODE (PATTERN (insn));
1276 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1277 return insn;
1279 counted_mem = false;
1280 set = single_set (insn);
1281 extract_insn (insn);
1283 /* If this insn loads a parameter from its stack slot, then it
1284 represents a savings, rather than a cost, if the parameter is
1285 stored in memory. Record this fact.
1287 Similarly if we're loading other constants from memory (constant
1288 pool, TOC references, small data areas, etc) and this is the only
1289 assignment to the destination pseudo.
1291 Don't do this if SET_SRC (set) isn't a general operand, if it is
1292 a memory requiring special instructions to load it, decreasing
1293 mem_cost might result in it being loaded using the specialized
1294 instruction into a register, then stored into stack and loaded
1295 again from the stack. See PR52208.
1297 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1298 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1299 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1300 && ((MEM_P (XEXP (note, 0))
1301 && !side_effects_p (SET_SRC (set)))
1302 || (CONSTANT_P (XEXP (note, 0))
1303 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1304 XEXP (note, 0))
1305 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1306 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1308 enum reg_class cl = GENERAL_REGS;
1309 rtx reg = SET_DEST (set);
1310 int num = COST_INDEX (REGNO (reg));
1312 COSTS (costs, num)->mem_cost
1313 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1314 record_address_regs (GET_MODE (SET_SRC (set)),
1315 MEM_ADDR_SPACE (SET_SRC (set)),
1316 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1317 frequency * 2);
1318 counted_mem = true;
1321 record_operand_costs (insn, pref);
1323 /* Now add the cost for each operand to the total costs for its
1324 allocno. */
1325 for (i = 0; i < recog_data.n_operands; i++)
1326 if (REG_P (recog_data.operand[i])
1327 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1329 int regno = REGNO (recog_data.operand[i]);
1330 struct costs *p = COSTS (costs, COST_INDEX (regno));
1331 struct costs *q = op_costs[i];
1332 int *p_costs = p->cost, *q_costs = q->cost;
1333 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1334 int add_cost;
1336 /* If the already accounted for the memory "cost" above, don't
1337 do so again. */
1338 if (!counted_mem)
1340 add_cost = q->mem_cost;
1341 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1342 p->mem_cost = INT_MAX;
1343 else
1344 p->mem_cost += add_cost;
1346 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1348 add_cost = q_costs[k];
1349 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1350 p_costs[k] = INT_MAX;
1351 else
1352 p_costs[k] += add_cost;
1356 return insn;
1361 /* Print allocnos costs to file F. */
1362 static void
1363 print_allocno_costs (FILE *f)
1365 int k;
1366 ira_allocno_t a;
1367 ira_allocno_iterator ai;
1369 ira_assert (allocno_p);
1370 fprintf (f, "\n");
1371 FOR_EACH_ALLOCNO (a, ai)
1373 int i, rclass;
1374 basic_block bb;
1375 int regno = ALLOCNO_REGNO (a);
1376 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1377 enum reg_class *cost_classes = cost_classes_ptr->classes;
1379 i = ALLOCNO_NUM (a);
1380 fprintf (f, " a%d(r%d,", i, regno);
1381 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1382 fprintf (f, "b%d", bb->index);
1383 else
1384 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1385 fprintf (f, ") costs:");
1386 for (k = 0; k < cost_classes_ptr->num; k++)
1388 rclass = cost_classes[k];
1389 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1390 #ifdef CANNOT_CHANGE_MODE_CLASS
1391 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1392 #endif
1395 fprintf (f, " %s:%d", reg_class_names[rclass],
1396 COSTS (costs, i)->cost[k]);
1397 if (flag_ira_region == IRA_REGION_ALL
1398 || flag_ira_region == IRA_REGION_MIXED)
1399 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1402 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1403 if (flag_ira_region == IRA_REGION_ALL
1404 || flag_ira_region == IRA_REGION_MIXED)
1405 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1406 fprintf (f, "\n");
1410 /* Print pseudo costs to file F. */
1411 static void
1412 print_pseudo_costs (FILE *f)
1414 int regno, k;
1415 int rclass;
1416 cost_classes_t cost_classes_ptr;
1417 enum reg_class *cost_classes;
1419 ira_assert (! allocno_p);
1420 fprintf (f, "\n");
1421 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1423 if (REG_N_REFS (regno) <= 0)
1424 continue;
1425 cost_classes_ptr = regno_cost_classes[regno];
1426 cost_classes = cost_classes_ptr->classes;
1427 fprintf (f, " r%d costs:", regno);
1428 for (k = 0; k < cost_classes_ptr->num; k++)
1430 rclass = cost_classes[k];
1431 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1432 #ifdef CANNOT_CHANGE_MODE_CLASS
1433 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1434 #endif
1436 fprintf (f, " %s:%d", reg_class_names[rclass],
1437 COSTS (costs, regno)->cost[k]);
1439 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1443 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1444 costs. */
1445 static void
1446 process_bb_for_costs (basic_block bb)
1448 rtx insn;
1450 frequency = REG_FREQ_FROM_BB (bb);
1451 if (frequency == 0)
1452 frequency = 1;
1453 FOR_BB_INSNS (bb, insn)
1454 insn = scan_one_insn (insn);
1457 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1458 costs. */
1459 static void
1460 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1462 basic_block bb;
1464 bb = loop_tree_node->bb;
1465 if (bb != NULL)
1466 process_bb_for_costs (bb);
1469 /* Find costs of register classes and memory for allocnos or pseudos
1470 and their best costs. Set up preferred, alternative and allocno
1471 classes for pseudos. */
1472 static void
1473 find_costs_and_classes (FILE *dump_file)
1475 int i, k, start, max_cost_classes_num;
1476 int pass;
1477 basic_block bb;
1478 enum reg_class *regno_best_class;
1480 init_recog ();
1481 regno_best_class
1482 = (enum reg_class *) ira_allocate (max_reg_num ()
1483 * sizeof (enum reg_class));
1484 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1485 regno_best_class[i] = NO_REGS;
1486 if (!resize_reg_info () && allocno_p
1487 && pseudo_classes_defined_p && flag_expensive_optimizations)
1489 ira_allocno_t a;
1490 ira_allocno_iterator ai;
1492 pref = pref_buffer;
1493 max_cost_classes_num = 1;
1494 FOR_EACH_ALLOCNO (a, ai)
1496 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1497 setup_regno_cost_classes_by_aclass
1498 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1499 max_cost_classes_num
1500 = MAX (max_cost_classes_num,
1501 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1503 start = 1;
1505 else
1507 pref = NULL;
1508 max_cost_classes_num = ira_important_classes_num;
1509 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1510 if (regno_reg_rtx[i] != NULL_RTX)
1511 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1512 else
1513 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1514 start = 0;
1516 if (allocno_p)
1517 /* Clear the flag for the next compiled function. */
1518 pseudo_classes_defined_p = false;
1519 /* Normally we scan the insns once and determine the best class to
1520 use for each allocno. However, if -fexpensive-optimizations are
1521 on, we do so twice, the second time using the tentative best
1522 classes to guide the selection. */
1523 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1525 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1526 fprintf (dump_file,
1527 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1529 if (pass != start)
1531 max_cost_classes_num = 1;
1532 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1534 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1535 max_cost_classes_num
1536 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1540 struct_costs_size
1541 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1542 /* Zero out our accumulation of the cost of each class for each
1543 allocno. */
1544 memset (costs, 0, cost_elements_num * struct_costs_size);
1546 if (allocno_p)
1548 /* Scan the instructions and record each time it would save code
1549 to put a certain allocno in a certain class. */
1550 ira_traverse_loop_tree (true, ira_loop_tree_root,
1551 process_bb_node_for_costs, NULL);
1553 memcpy (total_allocno_costs, costs,
1554 max_struct_costs_size * ira_allocnos_num);
1556 else
1558 basic_block bb;
1560 FOR_EACH_BB (bb)
1561 process_bb_for_costs (bb);
1564 if (pass == 0)
1565 pref = pref_buffer;
1567 /* Now for each allocno look at how desirable each class is and
1568 find which class is preferred. */
1569 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1571 ira_allocno_t a, parent_a;
1572 int rclass, a_num, parent_a_num, add_cost;
1573 ira_loop_tree_node_t parent;
1574 int best_cost, allocno_cost;
1575 enum reg_class best, alt_class;
1576 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1577 enum reg_class *cost_classes = cost_classes_ptr->classes;
1578 int *i_costs = temp_costs->cost;
1579 int i_mem_cost;
1580 int equiv_savings = regno_equiv_gains[i];
1582 if (! allocno_p)
1584 if (regno_reg_rtx[i] == NULL_RTX)
1585 continue;
1586 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1587 i_mem_cost = temp_costs->mem_cost;
1589 else
1591 if (ira_regno_allocno_map[i] == NULL)
1592 continue;
1593 memset (temp_costs, 0, struct_costs_size);
1594 i_mem_cost = 0;
1595 /* Find cost of all allocnos with the same regno. */
1596 for (a = ira_regno_allocno_map[i];
1597 a != NULL;
1598 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1600 int *a_costs, *p_costs;
1602 a_num = ALLOCNO_NUM (a);
1603 if ((flag_ira_region == IRA_REGION_ALL
1604 || flag_ira_region == IRA_REGION_MIXED)
1605 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1606 && (parent_a = parent->regno_allocno_map[i]) != NULL
1607 /* There are no caps yet. */
1608 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1609 (a)->border_allocnos,
1610 ALLOCNO_NUM (a)))
1612 /* Propagate costs to upper levels in the region
1613 tree. */
1614 parent_a_num = ALLOCNO_NUM (parent_a);
1615 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1616 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1617 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1619 add_cost = a_costs[k];
1620 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1621 p_costs[k] = INT_MAX;
1622 else
1623 p_costs[k] += add_cost;
1625 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1626 if (add_cost > 0
1627 && (INT_MAX - add_cost
1628 < COSTS (total_allocno_costs,
1629 parent_a_num)->mem_cost))
1630 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1631 = INT_MAX;
1632 else
1633 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1634 += add_cost;
1636 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1637 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1639 a_costs = COSTS (costs, a_num)->cost;
1640 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1642 add_cost = a_costs[k];
1643 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1644 i_costs[k] = INT_MAX;
1645 else
1646 i_costs[k] += add_cost;
1648 add_cost = COSTS (costs, a_num)->mem_cost;
1649 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1650 i_mem_cost = INT_MAX;
1651 else
1652 i_mem_cost += add_cost;
1655 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1656 i_mem_cost = 0;
1657 else if (equiv_savings < 0)
1658 i_mem_cost = -equiv_savings;
1659 else if (equiv_savings > 0)
1661 i_mem_cost = 0;
1662 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1663 i_costs[k] += equiv_savings;
1666 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1667 best = ALL_REGS;
1668 alt_class = NO_REGS;
1669 /* Find best common class for all allocnos with the same
1670 regno. */
1671 for (k = 0; k < cost_classes_ptr->num; k++)
1673 rclass = cost_classes[k];
1674 /* Ignore classes that are too small or invalid for this
1675 operand. */
1676 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1677 #ifdef CANNOT_CHANGE_MODE_CLASS
1678 || invalid_mode_change_p (i, (enum reg_class) rclass)
1679 #endif
1681 continue;
1682 if (i_costs[k] < best_cost)
1684 best_cost = i_costs[k];
1685 best = (enum reg_class) rclass;
1687 else if (i_costs[k] == best_cost)
1688 best = ira_reg_class_subunion[best][rclass];
1689 if (pass == flag_expensive_optimizations
1690 /* We still prefer registers to memory even at this
1691 stage if their costs are the same. We will make
1692 a final decision during assigning hard registers
1693 when we have all info including more accurate
1694 costs which might be affected by assigning hard
1695 registers to other pseudos because the pseudos
1696 involved in moves can be coalesced. */
1697 && i_costs[k] <= i_mem_cost
1698 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1699 > reg_class_size[alt_class]))
1700 alt_class = reg_class_subunion[alt_class][rclass];
1702 alt_class = ira_allocno_class_translate[alt_class];
1703 if (best_cost > i_mem_cost)
1704 regno_aclass[i] = NO_REGS;
1705 else
1707 /* Make the common class the biggest class of best and
1708 alt_class. */
1709 regno_aclass[i]
1710 = ira_reg_class_superunion[best][alt_class];
1711 ira_assert (regno_aclass[i] != NO_REGS
1712 && ira_reg_allocno_class_p[regno_aclass[i]]);
1714 if (pass == flag_expensive_optimizations)
1716 if (best_cost > i_mem_cost)
1717 best = alt_class = NO_REGS;
1718 else if (best == alt_class)
1719 alt_class = NO_REGS;
1720 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1721 if ((!allocno_p || internal_flag_ira_verbose > 2)
1722 && dump_file != NULL)
1723 fprintf (dump_file,
1724 " r%d: preferred %s, alternative %s, allocno %s\n",
1725 i, reg_class_names[best], reg_class_names[alt_class],
1726 reg_class_names[regno_aclass[i]]);
1728 regno_best_class[i] = best;
1729 if (! allocno_p)
1731 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1732 continue;
1734 for (a = ira_regno_allocno_map[i];
1735 a != NULL;
1736 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1738 a_num = ALLOCNO_NUM (a);
1739 if (regno_aclass[i] == NO_REGS)
1740 best = NO_REGS;
1741 else
1743 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1744 int *a_costs = COSTS (costs, a_num)->cost;
1746 /* Finding best class which is subset of the common
1747 class. */
1748 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1749 allocno_cost = best_cost;
1750 best = ALL_REGS;
1751 for (k = 0; k < cost_classes_ptr->num; k++)
1753 rclass = cost_classes[k];
1754 if (! ira_class_subset_p[rclass][regno_aclass[i]])
1755 continue;
1756 /* Ignore classes that are too small or invalid
1757 for this operand. */
1758 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1759 #ifdef CANNOT_CHANGE_MODE_CLASS
1760 || invalid_mode_change_p (i, (enum reg_class) rclass)
1761 #endif
1764 else if (total_a_costs[k] < best_cost)
1766 best_cost = total_a_costs[k];
1767 allocno_cost = a_costs[k];
1768 best = (enum reg_class) rclass;
1770 else if (total_a_costs[k] == best_cost)
1772 best = ira_reg_class_subunion[best][rclass];
1773 allocno_cost = MAX (allocno_cost, a_costs[k]);
1776 ALLOCNO_CLASS_COST (a) = allocno_cost;
1778 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1779 && (pass == 0 || pref[a_num] != best))
1781 fprintf (dump_file, " a%d (r%d,", a_num, i);
1782 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1783 fprintf (dump_file, "b%d", bb->index);
1784 else
1785 fprintf (dump_file, "l%d",
1786 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1787 fprintf (dump_file, ") best %s, allocno %s\n",
1788 reg_class_names[best],
1789 reg_class_names[regno_aclass[i]]);
1791 pref[a_num] = best;
1795 if (internal_flag_ira_verbose > 4 && dump_file)
1797 if (allocno_p)
1798 print_allocno_costs (dump_file);
1799 else
1800 print_pseudo_costs (dump_file);
1801 fprintf (dump_file,"\n");
1804 ira_free (regno_best_class);
1809 /* Process moves involving hard regs to modify allocno hard register
1810 costs. We can do this only after determining allocno class. If a
1811 hard register forms a register class, than moves with the hard
1812 register are already taken into account in class costs for the
1813 allocno. */
1814 static void
1815 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1817 int i, freq, cost, src_regno, dst_regno, hard_regno;
1818 bool to_p;
1819 ira_allocno_t a;
1820 enum reg_class rclass, hard_reg_class;
1821 enum machine_mode mode;
1822 basic_block bb;
1823 rtx insn, set, src, dst;
1825 bb = loop_tree_node->bb;
1826 if (bb == NULL)
1827 return;
1828 freq = REG_FREQ_FROM_BB (bb);
1829 if (freq == 0)
1830 freq = 1;
1831 FOR_BB_INSNS (bb, insn)
1833 if (!NONDEBUG_INSN_P (insn))
1834 continue;
1835 set = single_set (insn);
1836 if (set == NULL_RTX)
1837 continue;
1838 dst = SET_DEST (set);
1839 src = SET_SRC (set);
1840 if (! REG_P (dst) || ! REG_P (src))
1841 continue;
1842 dst_regno = REGNO (dst);
1843 src_regno = REGNO (src);
1844 if (dst_regno >= FIRST_PSEUDO_REGISTER
1845 && src_regno < FIRST_PSEUDO_REGISTER)
1847 hard_regno = src_regno;
1848 to_p = true;
1849 a = ira_curr_regno_allocno_map[dst_regno];
1851 else if (src_regno >= FIRST_PSEUDO_REGISTER
1852 && dst_regno < FIRST_PSEUDO_REGISTER)
1854 hard_regno = dst_regno;
1855 to_p = false;
1856 a = ira_curr_regno_allocno_map[src_regno];
1858 else
1859 continue;
1860 rclass = ALLOCNO_CLASS (a);
1861 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1862 continue;
1863 i = ira_class_hard_reg_index[rclass][hard_regno];
1864 if (i < 0)
1865 continue;
1866 mode = ALLOCNO_MODE (a);
1867 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1868 ira_init_register_move_cost_if_necessary (mode);
1869 cost
1870 = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1871 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1872 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1873 ALLOCNO_CLASS_COST (a));
1874 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1875 rclass, 0);
1876 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1877 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1878 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1879 ALLOCNO_HARD_REG_COSTS (a)[i]);
1883 /* After we find hard register and memory costs for allocnos, define
1884 its class and modify hard register cost because insns moving
1885 allocno to/from hard registers. */
1886 static void
1887 setup_allocno_class_and_costs (void)
1889 int i, j, n, regno, hard_regno, num;
1890 int *reg_costs;
1891 enum reg_class aclass, rclass;
1892 ira_allocno_t a;
1893 ira_allocno_iterator ai;
1894 cost_classes_t cost_classes_ptr;
1896 ira_assert (allocno_p);
1897 FOR_EACH_ALLOCNO (a, ai)
1899 i = ALLOCNO_NUM (a);
1900 regno = ALLOCNO_REGNO (a);
1901 aclass = regno_aclass[regno];
1902 cost_classes_ptr = regno_cost_classes[regno];
1903 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1904 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1905 ira_set_allocno_class (a, aclass);
1906 if (aclass == NO_REGS)
1907 continue;
1908 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1910 n = ira_class_hard_regs_num[aclass];
1911 ALLOCNO_HARD_REG_COSTS (a)
1912 = reg_costs = ira_allocate_cost_vector (aclass);
1913 for (j = n - 1; j >= 0; j--)
1915 hard_regno = ira_class_hard_regs[aclass][j];
1916 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1917 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1918 else
1920 rclass = REGNO_REG_CLASS (hard_regno);
1921 num = cost_classes_ptr->index[rclass];
1922 if (num < 0)
1924 num = cost_classes_ptr->hard_regno_index[hard_regno];
1925 ira_assert (num >= 0);
1927 reg_costs[j] = COSTS (costs, i)->cost[num];
1932 if (optimize)
1933 ira_traverse_loop_tree (true, ira_loop_tree_root,
1934 process_bb_node_for_hard_reg_moves, NULL);
1939 /* Function called once during compiler work. */
1940 void
1941 ira_init_costs_once (void)
1943 int i;
1945 init_cost = NULL;
1946 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1948 op_costs[i] = NULL;
1949 this_op_costs[i] = NULL;
1951 temp_costs = NULL;
1954 /* Free allocated temporary cost vectors. */
1955 static void
1956 free_ira_costs (void)
1958 int i;
1960 free (init_cost);
1961 init_cost = NULL;
1962 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1964 free (op_costs[i]);
1965 free (this_op_costs[i]);
1966 op_costs[i] = this_op_costs[i] = NULL;
1968 free (temp_costs);
1969 temp_costs = NULL;
1972 /* This is called each time register related information is
1973 changed. */
1974 void
1975 ira_init_costs (void)
1977 int i;
1979 free_ira_costs ();
1980 max_struct_costs_size
1981 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1982 /* Don't use ira_allocate because vectors live through several IRA
1983 calls. */
1984 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1985 init_cost->mem_cost = 1000000;
1986 for (i = 0; i < ira_important_classes_num; i++)
1987 init_cost->cost[i] = 1000000;
1988 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1990 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1991 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1993 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
1996 /* Function called once at the end of compiler work. */
1997 void
1998 ira_finish_costs_once (void)
2000 free_ira_costs ();
2005 /* Common initialization function for ira_costs and
2006 ira_set_pseudo_classes. */
2007 static void
2008 init_costs (void)
2010 init_subregs_of_mode ();
2011 costs = (struct costs *) ira_allocate (max_struct_costs_size
2012 * cost_elements_num);
2013 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2014 * cost_elements_num);
2015 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2016 * max_reg_num ());
2017 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2018 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2021 /* Common finalization function for ira_costs and
2022 ira_set_pseudo_classes. */
2023 static void
2024 finish_costs (void)
2026 finish_subregs_of_mode ();
2027 ira_free (regno_equiv_gains);
2028 ira_free (regno_aclass);
2029 ira_free (pref_buffer);
2030 ira_free (costs);
2033 /* Entry function which defines register class, memory and hard
2034 register costs for each allocno. */
2035 void
2036 ira_costs (void)
2038 allocno_p = true;
2039 cost_elements_num = ira_allocnos_num;
2040 init_costs ();
2041 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2042 * ira_allocnos_num);
2043 initiate_regno_cost_classes ();
2044 calculate_elim_costs_all_insns ();
2045 find_costs_and_classes (ira_dump_file);
2046 setup_allocno_class_and_costs ();
2047 finish_regno_cost_classes ();
2048 finish_costs ();
2049 ira_free (total_allocno_costs);
2052 /* Entry function which defines classes for pseudos.
2053 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2054 void
2055 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2057 allocno_p = false;
2058 internal_flag_ira_verbose = flag_ira_verbose;
2059 cost_elements_num = max_reg_num ();
2060 init_costs ();
2061 initiate_regno_cost_classes ();
2062 find_costs_and_classes (dump_file);
2063 finish_regno_cost_classes ();
2064 if (define_pseudo_classes)
2065 pseudo_classes_defined_p = true;
2067 finish_costs ();
2072 /* Change hard register costs for allocnos which lives through
2073 function calls. This is called only when we found all intersected
2074 calls during building allocno live ranges. */
2075 void
2076 ira_tune_allocno_costs (void)
2078 int j, n, regno;
2079 int cost, min_cost, *reg_costs;
2080 enum reg_class aclass, rclass;
2081 enum machine_mode mode;
2082 ira_allocno_t a;
2083 ira_allocno_iterator ai;
2084 ira_allocno_object_iterator oi;
2085 ira_object_t obj;
2086 bool skip_p;
2088 FOR_EACH_ALLOCNO (a, ai)
2090 aclass = ALLOCNO_CLASS (a);
2091 if (aclass == NO_REGS)
2092 continue;
2093 mode = ALLOCNO_MODE (a);
2094 n = ira_class_hard_regs_num[aclass];
2095 min_cost = INT_MAX;
2096 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2097 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2099 ira_allocate_and_set_costs
2100 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2101 ALLOCNO_CLASS_COST (a));
2102 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2103 for (j = n - 1; j >= 0; j--)
2105 regno = ira_class_hard_regs[aclass][j];
2106 skip_p = false;
2107 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2109 if (ira_hard_reg_set_intersection_p (regno, mode,
2110 OBJECT_CONFLICT_HARD_REGS
2111 (obj)))
2113 skip_p = true;
2114 break;
2117 if (skip_p)
2118 continue;
2119 rclass = REGNO_REG_CLASS (regno);
2120 cost = 0;
2121 if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2122 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2123 cost += (ALLOCNO_CALL_FREQ (a)
2124 * (ira_memory_move_cost[mode][rclass][0]
2125 + ira_memory_move_cost[mode][rclass][1]));
2126 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2127 cost += ((ira_memory_move_cost[mode][rclass][0]
2128 + ira_memory_move_cost[mode][rclass][1])
2129 * ALLOCNO_FREQ (a)
2130 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2131 #endif
2132 if (INT_MAX - cost < reg_costs[j])
2133 reg_costs[j] = INT_MAX;
2134 else
2135 reg_costs[j] += cost;
2136 if (min_cost > reg_costs[j])
2137 min_cost = reg_costs[j];
2140 if (min_cost != INT_MAX)
2141 ALLOCNO_CLASS_COST (a) = min_cost;
2143 /* Some targets allow pseudos to be allocated to unaligned sequences
2144 of hard registers. However, selecting an unaligned sequence can
2145 unnecessarily restrict later allocations. So increase the cost of
2146 unaligned hard regs to encourage the use of aligned hard regs. */
2148 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2150 if (nregs > 1)
2152 ira_allocate_and_set_costs
2153 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2154 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2155 for (j = n - 1; j >= 0; j--)
2157 regno = ira_non_ordered_class_hard_regs[aclass][j];
2158 if ((regno % nregs) != 0)
2160 int index = ira_class_hard_reg_index[aclass][regno];
2161 ira_assert (index != -1);
2162 reg_costs[index] += ALLOCNO_FREQ (a);
2170 /* Add COST to the estimated gain for eliminating REGNO with its
2171 equivalence. If COST is zero, record that no such elimination is
2172 possible. */
2174 void
2175 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2177 if (cost == 0)
2178 regno_equiv_gains[regno] = 0;
2179 else
2180 regno_equiv_gains[regno] += cost;