Support slim switch for cfg graph dump
[official-gcc.git] / gcc / hash-table.h
blob206423dc58b305b1ba44b98634029b5472e5e62e
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2013 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
26 INTRODUCTION TO TYPES
28 Users of the hash table generally need to be aware of three types.
30 1. The type being placed into the hash table. This type is called
31 the value type.
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
37 - A typedef named 'value_type' to the value type (from above).
39 - A static member function named 'hash' that takes a value_type
40 pointer and returns a hashval_t value.
42 - A typedef named 'compare_type' that is used to test when an value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
47 - A static member function named 'equal' that takes a value_type
48 pointer and a compare_type pointer, and returns a bool.
50 - A static function named 'remove' that takes an value_type pointer
51 and frees the memory allocated by it. This function is used when
52 individual elements of the table need to be disposed of (e.g.,
53 when deleting a hash table, removing elements from the table, etc).
55 3. The type of the hash table itself. (More later.)
57 In very special circumstances, users may need to know about a fourth type.
59 4. The template type used to describe how hash table memory
60 is allocated. This type is called the allocator type. It is
61 parameterized on the value type. It provides four functions.
63 - A static member function named 'control_alloc'. This function
64 allocates the control data blocks for the table.
66 - A static member function named 'control_free'. This function
67 frees the control data blocks for the table.
69 - A static member function named 'data_alloc'. This function
70 allocates the data elements in the table.
72 - A static member function named 'data_free'. This function
73 deallocates the data elements in the table.
75 Hash table are instantiated with two type arguments.
77 * The descriptor type, (2) above.
79 * The allocator type, (4) above. In general, you will not need to
80 provide your own allocator type. By default, hash tables will use
81 the class template xcallocator, which uses malloc/free for allocation.
84 DEFINING A DESCRIPTOR TYPE
86 The first task in using the hash table is to describe the element type.
87 We compose this into a few steps.
89 1. Decide on a removal policy for values stored in the table.
90 This header provides class templates for the two most common
91 policies.
93 * typed_free_remove implements the static 'remove' member function
94 by calling free().
96 * typed_noop_remove implements the static 'remove' member function
97 by doing nothing.
99 You can use these policies by simply deriving the descriptor type
100 from one of those class template, with the appropriate argument.
102 Otherwise, you need to write the static 'remove' member function
103 in the descriptor class.
105 2. Choose a hash function. Write the static 'hash' member function.
107 3. Choose an equality testing function. In most cases, its two
108 arguments will be value_type pointers. If not, the first argument must
109 be a value_type pointer, and the second argument a compare_type pointer.
112 AN EXAMPLE DESCRIPTOR TYPE
114 Suppose you want to put some_type into the hash table. You could define
115 the descriptor type as follows.
117 struct some_type_hasher : typed_noop_remove <some_type>
118 // Deriving from typed_noop_remove means that we get a 'remove' that does
119 // nothing. This choice is good for raw values.
121 typedef some_type value_type;
122 typedef some_type compare_type;
123 static inline hashval_t hash (const value_type *);
124 static inline bool equal (const value_type *, const compare_type *);
127 inline hashval_t
128 some_type_hasher::hash (const value_type *e)
129 { ... compute and return a hash value for E ... }
131 inline bool
132 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
133 { ... compare P1 vs P2. Return true if they are the 'same' ... }
136 AN EXAMPLE HASH_TABLE DECLARATION
138 To instantiate a hash table for some_type:
140 hash_table <some_type_hasher> some_type_hash_table;
142 There is no need to mention some_type directly, as the hash table will
143 obtain it using some_type_hasher::value_type.
145 You can then used any of the functions in hash_table's public interface.
146 See hash_table for details. The interface is very similar to libiberty's
147 htab_t.
150 EASY DESCRIPTORS FOR POINTERS
152 The class template pointer_hash provides everything you need to hash
153 pointers (as opposed to what they point to). So, to instantiate a hash
154 table over pointers to whatever_type,
156 hash_table <pointer_hash <whatever_type>> whatever_type_hash_table;
161 #ifndef TYPED_HASHTAB_H
162 #define TYPED_HASHTAB_H
164 #include "hashtab.h"
167 /* The ordinary memory allocator. */
168 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
170 template <typename Type>
171 struct xcallocator
173 static Type *control_alloc (size_t count);
174 static Type *data_alloc (size_t count);
175 static void control_free (Type *memory);
176 static void data_free (Type *memory);
180 /* Allocate memory for COUNT control blocks. */
182 template <typename Type>
183 inline Type *
184 xcallocator <Type>::control_alloc (size_t count)
186 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
190 /* Allocate memory for COUNT data blocks. */
192 template <typename Type>
193 inline Type *
194 xcallocator <Type>::data_alloc (size_t count)
196 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
200 /* Free memory for control blocks. */
202 template <typename Type>
203 inline void
204 xcallocator <Type>::control_free (Type *memory)
206 return ::free (memory);
210 /* Free memory for data blocks. */
212 template <typename Type>
213 inline void
214 xcallocator <Type>::data_free (Type *memory)
216 return ::free (memory);
220 /* Helpful type for removing with free. */
222 template <typename Type>
223 struct typed_free_remove
225 static inline void remove (Type *p);
229 /* Remove with free. */
231 template <typename Type>
232 inline void
233 typed_free_remove <Type>::remove (Type *p)
235 free (p);
239 /* Helpful type for a no-op remove. */
241 template <typename Type>
242 struct typed_noop_remove
244 static inline void remove (Type *p);
248 /* Remove doing nothing. */
250 template <typename Type>
251 inline void
252 typed_noop_remove <Type>::remove (Type *p ATTRIBUTE_UNUSED)
257 /* Pointer hash with a no-op remove method. */
259 template <typename Type>
260 struct pointer_hash : typed_noop_remove <Type>
262 typedef Type value_type;
263 typedef Type compare_type;
265 static inline hashval_t
266 hash (const value_type *);
268 static inline int
269 equal (const value_type *existing, const compare_type *candidate);
272 template <typename Type>
273 inline hashval_t
274 pointer_hash <Type>::hash (const value_type *candidate)
276 /* This is a really poor hash function, but it is what the current code uses,
277 so I am reusing it to avoid an additional axis in testing. */
278 return (hashval_t) ((intptr_t)candidate >> 3);
281 template <typename Type>
282 inline int
283 pointer_hash <Type>::equal (const value_type *existing,
284 const compare_type *candidate)
286 return existing == candidate;
290 /* Table of primes and their inversion information. */
292 struct prime_ent
294 hashval_t prime;
295 hashval_t inv;
296 hashval_t inv_m2; /* inverse of prime-2 */
297 hashval_t shift;
300 extern struct prime_ent const prime_tab[];
303 /* Functions for computing hash table indexes. */
305 extern unsigned int hash_table_higher_prime_index (unsigned long n);
306 extern hashval_t hash_table_mod1 (hashval_t hash, unsigned int index);
307 extern hashval_t hash_table_mod2 (hashval_t hash, unsigned int index);
310 /* Internal implementation type. */
312 template <typename T>
313 struct hash_table_control
315 /* Table itself. */
316 T **entries;
318 /* Current size (in entries) of the hash table. */
319 size_t size;
321 /* Current number of elements including also deleted elements. */
322 size_t n_elements;
324 /* Current number of deleted elements in the table. */
325 size_t n_deleted;
327 /* The following member is used for debugging. Its value is number
328 of all calls of `htab_find_slot' for the hash table. */
329 unsigned int searches;
331 /* The following member is used for debugging. Its value is number
332 of collisions fixed for time of work with the hash table. */
333 unsigned int collisions;
335 /* Current size (in entries) of the hash table, as an index into the
336 table of primes. */
337 unsigned int size_prime_index;
341 /* User-facing hash table type.
343 The table stores elements of type Descriptor::value_type.
345 It hashes values with the hash member function.
346 The table currently works with relatively weak hash functions.
347 Use typed_pointer_hash <Value> when hashing pointers instead of objects.
349 It compares elements with the equal member function.
350 Two elements with the same hash may not be equal.
351 Use typed_pointer_equal <Value> when hashing pointers instead of objects.
353 It removes elements with the remove member function.
354 This feature is useful for freeing memory.
355 Derive from typed_null_remove <Value> when not freeing objects.
356 Derive from typed_free_remove <Value> when doing a simple object free.
358 Specify the template Allocator to allocate and free memory.
359 The default is xcallocator.
363 template <typename Descriptor,
364 template <typename Type> class Allocator = xcallocator>
365 class hash_table
367 public:
368 typedef typename Descriptor::value_type value_type;
369 typedef typename Descriptor::compare_type compare_type;
371 private:
372 hash_table_control <value_type> *htab;
374 value_type **find_empty_slot_for_expand (hashval_t hash);
375 void expand ();
377 public:
378 hash_table ();
379 void create (size_t initial_slots);
380 bool is_created ();
381 void dispose ();
382 value_type *find (const compare_type *comparable);
383 value_type *find_with_hash (const compare_type *comparable, hashval_t hash);
384 value_type **find_slot (const compare_type *comparable,
385 enum insert_option insert);
386 value_type **find_slot_with_hash (const compare_type *comparable,
387 hashval_t hash, enum insert_option insert);
388 void empty ();
389 void clear_slot (value_type **slot);
390 void remove_elt (const compare_type *comparable);
391 void remove_elt_with_hash (const compare_type *comparable, hashval_t hash);
392 size_t size();
393 size_t elements();
394 double collisions();
396 template <typename Argument,
397 int (*Callback) (value_type **slot, Argument argument)>
398 void traverse_noresize (Argument argument);
400 template <typename Argument,
401 int (*Callback) (value_type **slot, Argument argument)>
402 void traverse (Argument argument);
406 /* Construct the hash table. The only useful operation next is create. */
408 template <typename Descriptor,
409 template <typename Type> class Allocator>
410 inline
411 hash_table <Descriptor, Allocator>::hash_table ()
412 : htab (NULL)
417 /* See if the table has been created, as opposed to constructed. */
419 template <typename Descriptor,
420 template <typename Type> class Allocator>
421 inline bool
422 hash_table <Descriptor, Allocator>::is_created ()
424 return htab != NULL;
428 /* Like find_with_hash, but compute the hash value from the element. */
430 template <typename Descriptor,
431 template <typename Type> class Allocator>
432 inline typename Descriptor::value_type *
433 hash_table <Descriptor, Allocator>::find (const compare_type *comparable)
435 return find_with_hash (comparable, Descriptor::hash (comparable));
439 /* Like find_slot_with_hash, but compute the hash value from the element. */
441 template <typename Descriptor,
442 template <typename Type> class Allocator>
443 inline typename Descriptor::value_type **
444 hash_table <Descriptor, Allocator>
445 ::find_slot (const compare_type *comparable, enum insert_option insert)
447 return find_slot_with_hash (comparable, Descriptor::hash (comparable), insert);
451 /* Like remove_elt_with_hash, but compute the hash value from the element. */
453 template <typename Descriptor,
454 template <typename Type> class Allocator>
455 inline void
456 hash_table <Descriptor, Allocator>::remove_elt (const compare_type *comparable)
458 remove_elt_with_hash (comparable, Descriptor::hash (comparable));
462 /* Return the current size of this hash table. */
464 template <typename Descriptor,
465 template <typename Type> class Allocator>
466 inline size_t
467 hash_table <Descriptor, Allocator>::size()
469 return htab->size;
473 /* Return the current number of elements in this hash table. */
475 template <typename Descriptor,
476 template <typename Type> class Allocator>
477 inline size_t
478 hash_table <Descriptor, Allocator>::elements()
480 return htab->n_elements - htab->n_deleted;
484 /* Return the fraction of fixed collisions during all work with given
485 hash table. */
487 template <typename Descriptor,
488 template <typename Type> class Allocator>
489 inline double
490 hash_table <Descriptor, Allocator>::collisions()
492 if (htab->searches == 0)
493 return 0.0;
495 return static_cast <double> (htab->collisions) / htab->searches;
499 /* Create a hash table with at least the given number of INITIAL_SLOTS. */
501 template <typename Descriptor,
502 template <typename Type> class Allocator>
503 void
504 hash_table <Descriptor, Allocator>::create (size_t size)
506 unsigned int size_prime_index;
508 size_prime_index = hash_table_higher_prime_index (size);
509 size = prime_tab[size_prime_index].prime;
511 htab = Allocator <hash_table_control <value_type> > ::control_alloc (1);
512 gcc_assert (htab != NULL);
513 htab->entries = Allocator <value_type*> ::data_alloc (size);
514 gcc_assert (htab->entries != NULL);
515 htab->size = size;
516 htab->size_prime_index = size_prime_index;
520 /* Dispose of a hash table. Free all memory and return this hash table to
521 the non-created state. Naturally the hash table must already exist. */
523 template <typename Descriptor,
524 template <typename Type> class Allocator>
525 void
526 hash_table <Descriptor, Allocator>::dispose ()
528 size_t size = htab->size;
529 value_type **entries = htab->entries;
531 for (int i = size - 1; i >= 0; i--)
532 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
533 Descriptor::remove (entries[i]);
535 Allocator <value_type *> ::data_free (entries);
536 Allocator <hash_table_control <value_type> > ::control_free (htab);
537 htab = NULL;
541 /* Similar to find_slot, but without several unwanted side effects:
542 - Does not call equal when it finds an existing entry.
543 - Does not change the count of elements/searches/collisions in the
544 hash table.
545 This function also assumes there are no deleted entries in the table.
546 HASH is the hash value for the element to be inserted. */
548 template <typename Descriptor,
549 template <typename Type> class Allocator>
550 typename Descriptor::value_type **
551 hash_table <Descriptor, Allocator>::find_empty_slot_for_expand (hashval_t hash)
553 hashval_t index = hash_table_mod1 (hash, htab->size_prime_index);
554 size_t size = htab->size;
555 value_type **slot = htab->entries + index;
556 hashval_t hash2;
558 if (*slot == HTAB_EMPTY_ENTRY)
559 return slot;
560 else if (*slot == HTAB_DELETED_ENTRY)
561 abort ();
563 hash2 = hash_table_mod2 (hash, htab->size_prime_index);
564 for (;;)
566 index += hash2;
567 if (index >= size)
568 index -= size;
570 slot = htab->entries + index;
571 if (*slot == HTAB_EMPTY_ENTRY)
572 return slot;
573 else if (*slot == HTAB_DELETED_ENTRY)
574 abort ();
579 /* The following function changes size of memory allocated for the
580 entries and repeatedly inserts the table elements. The occupancy
581 of the table after the call will be about 50%. Naturally the hash
582 table must already exist. Remember also that the place of the
583 table entries is changed. If memory allocation fails, this function
584 will abort. */
586 template <typename Descriptor,
587 template <typename Type> class Allocator>
588 void
589 hash_table <Descriptor, Allocator>::expand ()
591 value_type **oentries;
592 value_type **olimit;
593 value_type **p;
594 value_type **nentries;
595 size_t nsize, osize, elts;
596 unsigned int oindex, nindex;
598 oentries = htab->entries;
599 oindex = htab->size_prime_index;
600 osize = htab->size;
601 olimit = oentries + osize;
602 elts = elements ();
604 /* Resize only when table after removal of unused elements is either
605 too full or too empty. */
606 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
608 nindex = hash_table_higher_prime_index (elts * 2);
609 nsize = prime_tab[nindex].prime;
611 else
613 nindex = oindex;
614 nsize = osize;
617 nentries = Allocator <value_type *> ::data_alloc (nsize);
618 gcc_assert (nentries != NULL);
619 htab->entries = nentries;
620 htab->size = nsize;
621 htab->size_prime_index = nindex;
622 htab->n_elements -= htab->n_deleted;
623 htab->n_deleted = 0;
625 p = oentries;
628 value_type *x = *p;
630 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
632 value_type **q = find_empty_slot_for_expand (Descriptor::hash (x));
634 *q = x;
637 p++;
639 while (p < olimit);
641 Allocator <value_type *> ::data_free (oentries);
645 /* This function searches for a hash table entry equal to the given
646 COMPARABLE element starting with the given HASH value. It cannot
647 be used to insert or delete an element. */
649 template <typename Descriptor,
650 template <typename Type> class Allocator>
651 typename Descriptor::value_type *
652 hash_table <Descriptor, Allocator>
653 ::find_with_hash (const compare_type *comparable, hashval_t hash)
655 hashval_t index, hash2;
656 size_t size;
657 value_type *entry;
659 htab->searches++;
660 size = htab->size;
661 index = hash_table_mod1 (hash, htab->size_prime_index);
663 entry = htab->entries[index];
664 if (entry == HTAB_EMPTY_ENTRY
665 || (entry != HTAB_DELETED_ENTRY && Descriptor::equal (entry, comparable)))
666 return entry;
668 hash2 = hash_table_mod2 (hash, htab->size_prime_index);
669 for (;;)
671 htab->collisions++;
672 index += hash2;
673 if (index >= size)
674 index -= size;
676 entry = htab->entries[index];
677 if (entry == HTAB_EMPTY_ENTRY
678 || (entry != HTAB_DELETED_ENTRY
679 && Descriptor::equal (entry, comparable)))
680 return entry;
685 /* This function searches for a hash table slot containing an entry
686 equal to the given COMPARABLE element and starting with the given
687 HASH. To delete an entry, call this with insert=NO_INSERT, then
688 call clear_slot on the slot returned (possibly after doing some
689 checks). To insert an entry, call this with insert=INSERT, then
690 write the value you want into the returned slot. When inserting an
691 entry, NULL may be returned if memory allocation fails. */
693 template <typename Descriptor,
694 template <typename Type> class Allocator>
695 typename Descriptor::value_type **
696 hash_table <Descriptor, Allocator>
697 ::find_slot_with_hash (const compare_type *comparable, hashval_t hash,
698 enum insert_option insert)
700 value_type **first_deleted_slot;
701 hashval_t index, hash2;
702 size_t size;
703 value_type *entry;
705 size = htab->size;
706 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
708 expand ();
709 size = htab->size;
712 index = hash_table_mod1 (hash, htab->size_prime_index);
714 htab->searches++;
715 first_deleted_slot = NULL;
717 entry = htab->entries[index];
718 if (entry == HTAB_EMPTY_ENTRY)
719 goto empty_entry;
720 else if (entry == HTAB_DELETED_ENTRY)
721 first_deleted_slot = &htab->entries[index];
722 else if (Descriptor::equal (entry, comparable))
723 return &htab->entries[index];
725 hash2 = hash_table_mod2 (hash, htab->size_prime_index);
726 for (;;)
728 htab->collisions++;
729 index += hash2;
730 if (index >= size)
731 index -= size;
733 entry = htab->entries[index];
734 if (entry == HTAB_EMPTY_ENTRY)
735 goto empty_entry;
736 else if (entry == HTAB_DELETED_ENTRY)
738 if (!first_deleted_slot)
739 first_deleted_slot = &htab->entries[index];
741 else if (Descriptor::equal (entry, comparable))
742 return &htab->entries[index];
745 empty_entry:
746 if (insert == NO_INSERT)
747 return NULL;
749 if (first_deleted_slot)
751 htab->n_deleted--;
752 *first_deleted_slot = static_cast <value_type *> (HTAB_EMPTY_ENTRY);
753 return first_deleted_slot;
756 htab->n_elements++;
757 return &htab->entries[index];
761 /* This function clears all entries in the given hash table. */
763 template <typename Descriptor,
764 template <typename Type> class Allocator>
765 void
766 hash_table <Descriptor, Allocator>::empty ()
768 size_t size = htab->size;
769 value_type **entries = htab->entries;
770 int i;
772 for (i = size - 1; i >= 0; i--)
773 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
774 Descriptor::remove (entries[i]);
776 /* Instead of clearing megabyte, downsize the table. */
777 if (size > 1024*1024 / sizeof (PTR))
779 int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
780 int nsize = prime_tab[nindex].prime;
782 Allocator <value_type *> ::data_free (htab->entries);
783 htab->entries = Allocator <value_type *> ::data_alloc (nsize);
784 htab->size = nsize;
785 htab->size_prime_index = nindex;
787 else
788 memset (entries, 0, size * sizeof (value_type *));
789 htab->n_deleted = 0;
790 htab->n_elements = 0;
794 /* This function clears a specified SLOT in a hash table. It is
795 useful when you've already done the lookup and don't want to do it
796 again. */
798 template <typename Descriptor,
799 template <typename Type> class Allocator>
800 void
801 hash_table <Descriptor, Allocator>::clear_slot (value_type **slot)
803 if (slot < htab->entries || slot >= htab->entries + htab->size
804 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
805 abort ();
807 Descriptor::remove (*slot);
809 *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
810 htab->n_deleted++;
814 /* This function deletes an element with the given COMPARABLE value
815 from hash table starting with the given HASH. If there is no
816 matching element in the hash table, this function does nothing. */
818 template <typename Descriptor,
819 template <typename Type> class Allocator>
820 void
821 hash_table <Descriptor, Allocator>
822 ::remove_elt_with_hash (const compare_type *comparable, hashval_t hash)
824 value_type **slot;
826 slot = find_slot_with_hash (comparable, hash, NO_INSERT);
827 if (*slot == HTAB_EMPTY_ENTRY)
828 return;
830 Descriptor::remove (*slot);
832 *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
833 htab->n_deleted++;
837 /* This function scans over the entire hash table calling CALLBACK for
838 each live entry. If CALLBACK returns false, the iteration stops.
839 ARGUMENT is passed as CALLBACK's second argument. */
841 template <typename Descriptor,
842 template <typename Type> class Allocator>
843 template <typename Argument,
844 int (*Callback) (typename Descriptor::value_type **slot, Argument argument)>
845 void
846 hash_table <Descriptor, Allocator>::traverse_noresize (Argument argument)
848 value_type **slot;
849 value_type **limit;
851 slot = htab->entries;
852 limit = slot + htab->size;
856 value_type *x = *slot;
858 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
859 if (! Callback (slot, argument))
860 break;
862 while (++slot < limit);
866 /* Like traverse_noresize, but does resize the table when it is too empty
867 to improve effectivity of subsequent calls. */
869 template <typename Descriptor,
870 template <typename Type> class Allocator>
871 template <typename Argument,
872 int (*Callback) (typename Descriptor::value_type **slot,
873 Argument argument)>
874 void
875 hash_table <Descriptor, Allocator>::traverse (Argument argument)
877 size_t size = htab->size;
878 if (elements () * 8 < size && size > 32)
879 expand ();
881 traverse_noresize <Argument, Callback> (argument);
884 #endif /* TYPED_HASHTAB_H */