Support slim switch for cfg graph dump
[official-gcc.git] / gcc / combine.c
blob6d58b19dbe924649eebc8d4038c931eff804debf
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "df.h"
103 #include "valtrack.h"
104 #include "cgraph.h"
105 #include "obstack.h"
107 /* Number of attempts to combine instructions in this function. */
109 static int combine_attempts;
111 /* Number of attempts that got as far as substitution in this function. */
113 static int combine_merges;
115 /* Number of instructions combined with added SETs in this function. */
117 static int combine_extras;
119 /* Number of instructions combined in this function. */
121 static int combine_successes;
123 /* Totals over entire compilation. */
125 static int total_attempts, total_merges, total_extras, total_successes;
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
134 static rtx i2mod;
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138 static rtx i2mod_old_rhs;
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142 static rtx i2mod_new_rhs;
144 typedef struct reg_stat_struct {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
243 int truncation_label;
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 } reg_stat_type;
254 static vec<reg_stat_type> reg_stat;
256 /* Record the luid of the last insn that invalidated memory
257 (anything that writes memory, and subroutine calls, but not pushes). */
259 static int mem_last_set;
261 /* Record the luid of the last CALL_INSN
262 so we can tell whether a potential combination crosses any calls. */
264 static int last_call_luid;
266 /* When `subst' is called, this is the insn that is being modified
267 (by combining in a previous insn). The PATTERN of this insn
268 is still the old pattern partially modified and it should not be
269 looked at, but this may be used to examine the successors of the insn
270 to judge whether a simplification is valid. */
272 static rtx subst_insn;
274 /* This is the lowest LUID that `subst' is currently dealing with.
275 get_last_value will not return a value if the register was set at or
276 after this LUID. If not for this mechanism, we could get confused if
277 I2 or I1 in try_combine were an insn that used the old value of a register
278 to obtain a new value. In that case, we might erroneously get the
279 new value of the register when we wanted the old one. */
281 static int subst_low_luid;
283 /* This contains any hard registers that are used in newpat; reg_dead_at_p
284 must consider all these registers to be always live. */
286 static HARD_REG_SET newpat_used_regs;
288 /* This is an insn to which a LOG_LINKS entry has been added. If this
289 insn is the earlier than I2 or I3, combine should rescan starting at
290 that location. */
292 static rtx added_links_insn;
294 /* Basic block in which we are performing combines. */
295 static basic_block this_basic_block;
296 static bool optimize_this_for_speed_p;
299 /* Length of the currently allocated uid_insn_cost array. */
301 static int max_uid_known;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost;
308 /* The following array records the LOG_LINKS for every insn in the
309 instruction stream as struct insn_link pointers. */
311 struct insn_link {
312 rtx insn;
313 struct insn_link *next;
316 static struct insn_link **uid_log_links;
318 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
319 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
321 #define FOR_EACH_LOG_LINK(L, INSN) \
322 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
324 /* Links for LOG_LINKS are allocated from this obstack. */
326 static struct obstack insn_link_obstack;
328 /* Allocate a link. */
330 static inline struct insn_link *
331 alloc_insn_link (rtx insn, struct insn_link *next)
333 struct insn_link *l
334 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
335 sizeof (struct insn_link));
336 l->insn = insn;
337 l->next = next;
338 return l;
341 /* Incremented for each basic block. */
343 static int label_tick;
345 /* Reset to label_tick for each extended basic block in scanning order. */
347 static int label_tick_ebb_start;
349 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
350 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
352 static enum machine_mode nonzero_bits_mode;
354 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
355 be safely used. It is zero while computing them and after combine has
356 completed. This former test prevents propagating values based on
357 previously set values, which can be incorrect if a variable is modified
358 in a loop. */
360 static int nonzero_sign_valid;
363 /* Record one modification to rtl structure
364 to be undone by storing old_contents into *where. */
366 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
368 struct undo
370 struct undo *next;
371 enum undo_kind kind;
372 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
373 union { rtx *r; int *i; struct insn_link **l; } where;
376 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
377 num_undo says how many are currently recorded.
379 other_insn is nonzero if we have modified some other insn in the process
380 of working on subst_insn. It must be verified too. */
382 struct undobuf
384 struct undo *undos;
385 struct undo *frees;
386 rtx other_insn;
389 static struct undobuf undobuf;
391 /* Number of times the pseudo being substituted for
392 was found and replaced. */
394 static int n_occurrences;
396 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
397 enum machine_mode,
398 unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned int, unsigned int *);
403 static void do_SUBST (rtx *, rtx);
404 static void do_SUBST_INT (int *, int);
405 static void init_reg_last (void);
406 static void setup_incoming_promotions (rtx);
407 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
408 static int cant_combine_insn_p (rtx);
409 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
410 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
411 static int contains_muldiv (rtx);
412 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
413 static void undo_all (void);
414 static void undo_commit (void);
415 static rtx *find_split_point (rtx *, rtx, bool);
416 static rtx subst (rtx, rtx, rtx, int, int, int);
417 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
418 static rtx simplify_if_then_else (rtx);
419 static rtx simplify_set (rtx);
420 static rtx simplify_logical (rtx);
421 static rtx expand_compound_operation (rtx);
422 static const_rtx expand_field_assignment (const_rtx);
423 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
424 rtx, unsigned HOST_WIDE_INT, int, int, int);
425 static rtx extract_left_shift (rtx, int);
426 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx canon_reg_for_combine (rtx, rtx);
429 static rtx force_to_mode (rtx, enum machine_mode,
430 unsigned HOST_WIDE_INT, int);
431 static rtx if_then_else_cond (rtx, rtx *, rtx *);
432 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
433 static int rtx_equal_for_field_assignment_p (rtx, rtx);
434 static rtx make_field_assignment (rtx);
435 static rtx apply_distributive_law (rtx);
436 static rtx distribute_and_simplify_rtx (rtx, int);
437 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
438 unsigned HOST_WIDE_INT);
439 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
440 unsigned HOST_WIDE_INT);
441 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
442 HOST_WIDE_INT, enum machine_mode, int *);
443 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
444 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
445 int);
446 static int recog_for_combine (rtx *, rtx, rtx *);
447 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
448 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
449 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
450 static void update_table_tick (rtx);
451 static void record_value_for_reg (rtx, rtx, rtx);
452 static void check_promoted_subreg (rtx, rtx);
453 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
454 static void record_dead_and_set_regs (rtx);
455 static int get_last_value_validate (rtx *, rtx, int, int);
456 static rtx get_last_value (const_rtx);
457 static int use_crosses_set_p (const_rtx, int);
458 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
459 static int reg_dead_at_p (rtx, rtx);
460 static void move_deaths (rtx, rtx, int, rtx, rtx *);
461 static int reg_bitfield_target_p (rtx, rtx);
462 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
463 static void distribute_links (struct insn_link *);
464 static void mark_used_regs_combine (rtx);
465 static void record_promoted_value (rtx, rtx);
466 static int unmentioned_reg_p_1 (rtx *, void *);
467 static bool unmentioned_reg_p (rtx, rtx);
468 static int record_truncated_value (rtx *, void *);
469 static void record_truncated_values (rtx *, void *);
470 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
471 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
474 /* It is not safe to use ordinary gen_lowpart in combine.
475 See comments in gen_lowpart_for_combine. */
476 #undef RTL_HOOKS_GEN_LOWPART
477 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
479 /* Our implementation of gen_lowpart never emits a new pseudo. */
480 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
481 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
483 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
484 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
486 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
487 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
489 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
490 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
492 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
495 /* Convenience wrapper for the canonicalize_comparison target hook.
496 Target hooks cannot use enum rtx_code. */
497 static inline void
498 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
499 bool op0_preserve_value)
501 int code_int = (int)*code;
502 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
503 *code = (enum rtx_code)code_int;
506 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
507 PATTERN can not be split. Otherwise, it returns an insn sequence.
508 This is a wrapper around split_insns which ensures that the
509 reg_stat vector is made larger if the splitter creates a new
510 register. */
512 static rtx
513 combine_split_insns (rtx pattern, rtx insn)
515 rtx ret;
516 unsigned int nregs;
518 ret = split_insns (pattern, insn);
519 nregs = max_reg_num ();
520 if (nregs > reg_stat.length ())
521 reg_stat.safe_grow_cleared (nregs);
522 return ret;
525 /* This is used by find_single_use to locate an rtx in LOC that
526 contains exactly one use of DEST, which is typically either a REG
527 or CC0. It returns a pointer to the innermost rtx expression
528 containing DEST. Appearances of DEST that are being used to
529 totally replace it are not counted. */
531 static rtx *
532 find_single_use_1 (rtx dest, rtx *loc)
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx *result = NULL;
537 rtx *this_result;
538 int i;
539 const char *fmt;
541 switch (code)
543 case CONST:
544 case LABEL_REF:
545 case SYMBOL_REF:
546 CASE_CONST_ANY:
547 case CLOBBER:
548 return 0;
550 case SET:
551 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
552 of a REG that occupies all of the REG, the insn uses DEST if
553 it is mentioned in the destination or the source. Otherwise, we
554 need just check the source. */
555 if (GET_CODE (SET_DEST (x)) != CC0
556 && GET_CODE (SET_DEST (x)) != PC
557 && !REG_P (SET_DEST (x))
558 && ! (GET_CODE (SET_DEST (x)) == SUBREG
559 && REG_P (SUBREG_REG (SET_DEST (x)))
560 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
562 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
564 break;
566 return find_single_use_1 (dest, &SET_SRC (x));
568 case MEM:
569 case SUBREG:
570 return find_single_use_1 (dest, &XEXP (x, 0));
572 default:
573 break;
576 /* If it wasn't one of the common cases above, check each expression and
577 vector of this code. Look for a unique usage of DEST. */
579 fmt = GET_RTX_FORMAT (code);
580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
582 if (fmt[i] == 'e')
584 if (dest == XEXP (x, i)
585 || (REG_P (dest) && REG_P (XEXP (x, i))
586 && REGNO (dest) == REGNO (XEXP (x, i))))
587 this_result = loc;
588 else
589 this_result = find_single_use_1 (dest, &XEXP (x, i));
591 if (result == NULL)
592 result = this_result;
593 else if (this_result)
594 /* Duplicate usage. */
595 return NULL;
597 else if (fmt[i] == 'E')
599 int j;
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
603 if (XVECEXP (x, i, j) == dest
604 || (REG_P (dest)
605 && REG_P (XVECEXP (x, i, j))
606 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
607 this_result = loc;
608 else
609 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
611 if (result == NULL)
612 result = this_result;
613 else if (this_result)
614 return NULL;
619 return result;
623 /* See if DEST, produced in INSN, is used only a single time in the
624 sequel. If so, return a pointer to the innermost rtx expression in which
625 it is used.
627 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
629 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
630 care about REG_DEAD notes or LOG_LINKS.
632 Otherwise, we find the single use by finding an insn that has a
633 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
634 only referenced once in that insn, we know that it must be the first
635 and last insn referencing DEST. */
637 static rtx *
638 find_single_use (rtx dest, rtx insn, rtx *ploc)
640 basic_block bb;
641 rtx next;
642 rtx *result;
643 struct insn_link *link;
645 #ifdef HAVE_cc0
646 if (dest == cc0_rtx)
648 next = NEXT_INSN (insn);
649 if (next == 0
650 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
651 return 0;
653 result = find_single_use_1 (dest, &PATTERN (next));
654 if (result && ploc)
655 *ploc = next;
656 return result;
658 #endif
660 if (!REG_P (dest))
661 return 0;
663 bb = BLOCK_FOR_INSN (insn);
664 for (next = NEXT_INSN (insn);
665 next && BLOCK_FOR_INSN (next) == bb;
666 next = NEXT_INSN (next))
667 if (INSN_P (next) && dead_or_set_p (next, dest))
669 FOR_EACH_LOG_LINK (link, next)
670 if (link->insn == insn)
671 break;
673 if (link)
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (ploc)
677 *ploc = next;
678 return result;
682 return 0;
685 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
686 insn. The substitution can be undone by undo_all. If INTO is already
687 set to NEWVAL, do not record this change. Because computing NEWVAL might
688 also call SUBST, we have to compute it before we put anything into
689 the undo table. */
691 static void
692 do_SUBST (rtx *into, rtx newval)
694 struct undo *buf;
695 rtx oldval = *into;
697 if (oldval == newval)
698 return;
700 /* We'd like to catch as many invalid transformations here as
701 possible. Unfortunately, there are way too many mode changes
702 that are perfectly valid, so we'd waste too much effort for
703 little gain doing the checks here. Focus on catching invalid
704 transformations involving integer constants. */
705 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
706 && CONST_INT_P (newval))
708 /* Sanity check that we're replacing oldval with a CONST_INT
709 that is a valid sign-extension for the original mode. */
710 gcc_assert (INTVAL (newval)
711 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
713 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
714 CONST_INT is not valid, because after the replacement, the
715 original mode would be gone. Unfortunately, we can't tell
716 when do_SUBST is called to replace the operand thereof, so we
717 perform this test on oldval instead, checking whether an
718 invalid replacement took place before we got here. */
719 gcc_assert (!(GET_CODE (oldval) == SUBREG
720 && CONST_INT_P (SUBREG_REG (oldval))));
721 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
722 && CONST_INT_P (XEXP (oldval, 0))));
725 if (undobuf.frees)
726 buf = undobuf.frees, undobuf.frees = buf->next;
727 else
728 buf = XNEW (struct undo);
730 buf->kind = UNDO_RTX;
731 buf->where.r = into;
732 buf->old_contents.r = oldval;
733 *into = newval;
735 buf->next = undobuf.undos, undobuf.undos = buf;
738 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
740 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
741 for the value of a HOST_WIDE_INT value (including CONST_INT) is
742 not safe. */
744 static void
745 do_SUBST_INT (int *into, int newval)
747 struct undo *buf;
748 int oldval = *into;
750 if (oldval == newval)
751 return;
753 if (undobuf.frees)
754 buf = undobuf.frees, undobuf.frees = buf->next;
755 else
756 buf = XNEW (struct undo);
758 buf->kind = UNDO_INT;
759 buf->where.i = into;
760 buf->old_contents.i = oldval;
761 *into = newval;
763 buf->next = undobuf.undos, undobuf.undos = buf;
766 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
768 /* Similar to SUBST, but just substitute the mode. This is used when
769 changing the mode of a pseudo-register, so that any other
770 references to the entry in the regno_reg_rtx array will change as
771 well. */
773 static void
774 do_SUBST_MODE (rtx *into, enum machine_mode newval)
776 struct undo *buf;
777 enum machine_mode oldval = GET_MODE (*into);
779 if (oldval == newval)
780 return;
782 if (undobuf.frees)
783 buf = undobuf.frees, undobuf.frees = buf->next;
784 else
785 buf = XNEW (struct undo);
787 buf->kind = UNDO_MODE;
788 buf->where.r = into;
789 buf->old_contents.m = oldval;
790 adjust_reg_mode (*into, newval);
792 buf->next = undobuf.undos, undobuf.undos = buf;
795 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
797 #ifndef HAVE_cc0
798 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
800 static void
801 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
803 struct undo *buf;
804 struct insn_link * oldval = *into;
806 if (oldval == newval)
807 return;
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
814 buf->kind = UNDO_LINKS;
815 buf->where.l = into;
816 buf->old_contents.l = oldval;
817 *into = newval;
819 buf->next = undobuf.undos, undobuf.undos = buf;
822 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
823 #endif
825 /* Subroutine of try_combine. Determine whether the replacement patterns
826 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
827 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
828 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
829 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
830 of all the instructions can be estimated and the replacements are more
831 expensive than the original sequence. */
833 static bool
834 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
835 rtx newi2pat, rtx newotherpat)
837 int i0_cost, i1_cost, i2_cost, i3_cost;
838 int new_i2_cost, new_i3_cost;
839 int old_cost, new_cost;
841 /* Lookup the original insn_rtx_costs. */
842 i2_cost = INSN_COST (i2);
843 i3_cost = INSN_COST (i3);
845 if (i1)
847 i1_cost = INSN_COST (i1);
848 if (i0)
850 i0_cost = INSN_COST (i0);
851 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
852 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
854 else
856 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
857 ? i1_cost + i2_cost + i3_cost : 0);
858 i0_cost = 0;
861 else
863 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
864 i1_cost = i0_cost = 0;
867 /* Calculate the replacement insn_rtx_costs. */
868 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
869 if (newi2pat)
871 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
872 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
873 ? new_i2_cost + new_i3_cost : 0;
875 else
877 new_cost = new_i3_cost;
878 new_i2_cost = 0;
881 if (undobuf.other_insn)
883 int old_other_cost, new_other_cost;
885 old_other_cost = INSN_COST (undobuf.other_insn);
886 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
887 if (old_other_cost > 0 && new_other_cost > 0)
889 old_cost += old_other_cost;
890 new_cost += new_other_cost;
892 else
893 old_cost = 0;
896 /* Disallow this combination if both new_cost and old_cost are greater than
897 zero, and new_cost is greater than old cost. */
898 if (old_cost > 0 && new_cost > old_cost)
900 if (dump_file)
902 if (i0)
904 fprintf (dump_file,
905 "rejecting combination of insns %d, %d, %d and %d\n",
906 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
907 INSN_UID (i3));
908 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
909 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
911 else if (i1)
913 fprintf (dump_file,
914 "rejecting combination of insns %d, %d and %d\n",
915 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
916 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
917 i1_cost, i2_cost, i3_cost, old_cost);
919 else
921 fprintf (dump_file,
922 "rejecting combination of insns %d and %d\n",
923 INSN_UID (i2), INSN_UID (i3));
924 fprintf (dump_file, "original costs %d + %d = %d\n",
925 i2_cost, i3_cost, old_cost);
928 if (newi2pat)
930 fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 new_i2_cost, new_i3_cost, new_cost);
933 else
934 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 return false;
940 /* Update the uid_insn_cost array with the replacement costs. */
941 INSN_COST (i2) = new_i2_cost;
942 INSN_COST (i3) = new_i3_cost;
943 if (i1)
945 INSN_COST (i1) = 0;
946 if (i0)
947 INSN_COST (i0) = 0;
950 return true;
954 /* Delete any insns that copy a register to itself. */
956 static void
957 delete_noop_moves (void)
959 rtx insn, next;
960 basic_block bb;
962 FOR_EACH_BB (bb)
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972 delete_insn_and_edges (insn);
979 /* Fill in log links field for all insns. */
981 static void
982 create_log_links (void)
984 basic_block bb;
985 rtx *next_use, insn;
986 df_ref *def_vec, *use_vec;
988 next_use = XCNEWVEC (rtx, max_reg_num ());
990 /* Pass through each block from the end, recording the uses of each
991 register and establishing log links when def is encountered.
992 Note that we do not clear next_use array in order to save time,
993 so we have to test whether the use is in the same basic block as def.
995 There are a few cases below when we do not consider the definition or
996 usage -- these are taken from original flow.c did. Don't ask me why it is
997 done this way; I don't know and if it works, I don't want to know. */
999 FOR_EACH_BB (bb)
1001 FOR_BB_INSNS_REVERSE (bb, insn)
1003 if (!NONDEBUG_INSN_P (insn))
1004 continue;
1006 /* Log links are created only once. */
1007 gcc_assert (!LOG_LINKS (insn));
1009 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1011 df_ref def = *def_vec;
1012 int regno = DF_REF_REGNO (def);
1013 rtx use_insn;
1015 if (!next_use[regno])
1016 continue;
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 continue;
1022 /* Do not make the log link for frame pointer. */
1023 if ((regno == FRAME_POINTER_REGNUM
1024 && (! reload_completed || frame_pointer_needed))
1025 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1026 || (regno == HARD_FRAME_POINTER_REGNUM
1027 && (! reload_completed || frame_pointer_needed))
1028 #endif
1029 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1030 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1031 #endif
1033 continue;
1035 use_insn = next_use[regno];
1036 if (BLOCK_FOR_INSN (use_insn) == bb)
1038 /* flow.c claimed:
1040 We don't build a LOG_LINK for hard registers contained
1041 in ASM_OPERANDs. If these registers get replaced,
1042 we might wind up changing the semantics of the insn,
1043 even if reload can make what appear to be valid
1044 assignments later. */
1045 if (regno >= FIRST_PSEUDO_REGISTER
1046 || asm_noperands (PATTERN (use_insn)) < 0)
1048 /* Don't add duplicate links between instructions. */
1049 struct insn_link *links;
1050 FOR_EACH_LOG_LINK (links, use_insn)
1051 if (insn == links->insn)
1052 break;
1054 if (!links)
1055 LOG_LINKS (use_insn)
1056 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1059 next_use[regno] = NULL_RTX;
1062 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1064 df_ref use = *use_vec;
1065 int regno = DF_REF_REGNO (use);
1067 /* Do not consider the usage of the stack pointer
1068 by function call. */
1069 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1070 continue;
1072 next_use[regno] = insn;
1077 free (next_use);
1080 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1081 true if we found a LOG_LINK that proves that A feeds B. This only works
1082 if there are no instructions between A and B which could have a link
1083 depending on A, since in that case we would not record a link for B.
1084 We also check the implicit dependency created by a cc0 setter/user
1085 pair. */
1087 static bool
1088 insn_a_feeds_b (rtx a, rtx b)
1090 struct insn_link *links;
1091 FOR_EACH_LOG_LINK (links, b)
1092 if (links->insn == a)
1093 return true;
1094 #ifdef HAVE_cc0
1095 if (sets_cc0_p (a))
1096 return true;
1097 #endif
1098 return false;
1101 /* Main entry point for combiner. F is the first insn of the function.
1102 NREGS is the first unused pseudo-reg number.
1104 Return nonzero if the combiner has turned an indirect jump
1105 instruction into a direct jump. */
1106 static int
1107 combine_instructions (rtx f, unsigned int nregs)
1109 rtx insn, next;
1110 #ifdef HAVE_cc0
1111 rtx prev;
1112 #endif
1113 struct insn_link *links, *nextlinks;
1114 rtx first;
1115 basic_block last_bb;
1117 int new_direct_jump_p = 0;
1119 for (first = f; first && !INSN_P (first); )
1120 first = NEXT_INSN (first);
1121 if (!first)
1122 return 0;
1124 combine_attempts = 0;
1125 combine_merges = 0;
1126 combine_extras = 0;
1127 combine_successes = 0;
1129 rtl_hooks = combine_rtl_hooks;
1131 reg_stat.safe_grow_cleared (nregs);
1133 init_recog_no_volatile ();
1135 /* Allocate array for insn info. */
1136 max_uid_known = get_max_uid ();
1137 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1138 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1139 gcc_obstack_init (&insn_link_obstack);
1141 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1143 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1144 problems when, for example, we have j <<= 1 in a loop. */
1146 nonzero_sign_valid = 0;
1147 label_tick = label_tick_ebb_start = 1;
1149 /* Scan all SETs and see if we can deduce anything about what
1150 bits are known to be zero for some registers and how many copies
1151 of the sign bit are known to exist for those registers.
1153 Also set any known values so that we can use it while searching
1154 for what bits are known to be set. */
1156 setup_incoming_promotions (first);
1157 /* Allow the entry block and the first block to fall into the same EBB.
1158 Conceptually the incoming promotions are assigned to the entry block. */
1159 last_bb = ENTRY_BLOCK_PTR;
1161 create_log_links ();
1162 FOR_EACH_BB (this_basic_block)
1164 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1165 last_call_luid = 0;
1166 mem_last_set = -1;
1168 label_tick++;
1169 if (!single_pred_p (this_basic_block)
1170 || single_pred (this_basic_block) != last_bb)
1171 label_tick_ebb_start = label_tick;
1172 last_bb = this_basic_block;
1174 FOR_BB_INSNS (this_basic_block, insn)
1175 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1177 #ifdef AUTO_INC_DEC
1178 rtx links;
1179 #endif
1181 subst_low_luid = DF_INSN_LUID (insn);
1182 subst_insn = insn;
1184 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1185 insn);
1186 record_dead_and_set_regs (insn);
1188 #ifdef AUTO_INC_DEC
1189 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1190 if (REG_NOTE_KIND (links) == REG_INC)
1191 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1192 insn);
1193 #endif
1195 /* Record the current insn_rtx_cost of this instruction. */
1196 if (NONJUMP_INSN_P (insn))
1197 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1198 optimize_this_for_speed_p);
1199 if (dump_file)
1200 fprintf(dump_file, "insn_cost %d: %d\n",
1201 INSN_UID (insn), INSN_COST (insn));
1205 nonzero_sign_valid = 1;
1207 /* Now scan all the insns in forward order. */
1208 label_tick = label_tick_ebb_start = 1;
1209 init_reg_last ();
1210 setup_incoming_promotions (first);
1211 last_bb = ENTRY_BLOCK_PTR;
1213 FOR_EACH_BB (this_basic_block)
1215 rtx last_combined_insn = NULL_RTX;
1216 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217 last_call_luid = 0;
1218 mem_last_set = -1;
1220 label_tick++;
1221 if (!single_pred_p (this_basic_block)
1222 || single_pred (this_basic_block) != last_bb)
1223 label_tick_ebb_start = label_tick;
1224 last_bb = this_basic_block;
1226 rtl_profile_for_bb (this_basic_block);
1227 for (insn = BB_HEAD (this_basic_block);
1228 insn != NEXT_INSN (BB_END (this_basic_block));
1229 insn = next ? next : NEXT_INSN (insn))
1231 next = 0;
1232 if (NONDEBUG_INSN_P (insn))
1234 while (last_combined_insn
1235 && INSN_DELETED_P (last_combined_insn))
1236 last_combined_insn = PREV_INSN (last_combined_insn);
1237 if (last_combined_insn == NULL_RTX
1238 || BARRIER_P (last_combined_insn)
1239 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1240 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1241 last_combined_insn = insn;
1243 /* See if we know about function return values before this
1244 insn based upon SUBREG flags. */
1245 check_promoted_subreg (insn, PATTERN (insn));
1247 /* See if we can find hardregs and subreg of pseudos in
1248 narrower modes. This could help turning TRUNCATEs
1249 into SUBREGs. */
1250 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1252 /* Try this insn with each insn it links back to. */
1254 FOR_EACH_LOG_LINK (links, insn)
1255 if ((next = try_combine (insn, links->insn, NULL_RTX,
1256 NULL_RTX, &new_direct_jump_p,
1257 last_combined_insn)) != 0)
1258 goto retry;
1260 /* Try each sequence of three linked insns ending with this one. */
1262 FOR_EACH_LOG_LINK (links, insn)
1264 rtx link = links->insn;
1266 /* If the linked insn has been replaced by a note, then there
1267 is no point in pursuing this chain any further. */
1268 if (NOTE_P (link))
1269 continue;
1271 FOR_EACH_LOG_LINK (nextlinks, link)
1272 if ((next = try_combine (insn, link, nextlinks->insn,
1273 NULL_RTX, &new_direct_jump_p,
1274 last_combined_insn)) != 0)
1275 goto retry;
1278 #ifdef HAVE_cc0
1279 /* Try to combine a jump insn that uses CC0
1280 with a preceding insn that sets CC0, and maybe with its
1281 logical predecessor as well.
1282 This is how we make decrement-and-branch insns.
1283 We need this special code because data flow connections
1284 via CC0 do not get entered in LOG_LINKS. */
1286 if (JUMP_P (insn)
1287 && (prev = prev_nonnote_insn (insn)) != 0
1288 && NONJUMP_INSN_P (prev)
1289 && sets_cc0_p (PATTERN (prev)))
1291 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1292 &new_direct_jump_p,
1293 last_combined_insn)) != 0)
1294 goto retry;
1296 FOR_EACH_LOG_LINK (nextlinks, prev)
1297 if ((next = try_combine (insn, prev, nextlinks->insn,
1298 NULL_RTX, &new_direct_jump_p,
1299 last_combined_insn)) != 0)
1300 goto retry;
1303 /* Do the same for an insn that explicitly references CC0. */
1304 if (NONJUMP_INSN_P (insn)
1305 && (prev = prev_nonnote_insn (insn)) != 0
1306 && NONJUMP_INSN_P (prev)
1307 && sets_cc0_p (PATTERN (prev))
1308 && GET_CODE (PATTERN (insn)) == SET
1309 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1311 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1312 &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 goto retry;
1316 FOR_EACH_LOG_LINK (nextlinks, prev)
1317 if ((next = try_combine (insn, prev, nextlinks->insn,
1318 NULL_RTX, &new_direct_jump_p,
1319 last_combined_insn)) != 0)
1320 goto retry;
1323 /* Finally, see if any of the insns that this insn links to
1324 explicitly references CC0. If so, try this insn, that insn,
1325 and its predecessor if it sets CC0. */
1326 FOR_EACH_LOG_LINK (links, insn)
1327 if (NONJUMP_INSN_P (links->insn)
1328 && GET_CODE (PATTERN (links->insn)) == SET
1329 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1330 && (prev = prev_nonnote_insn (links->insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && (next = try_combine (insn, links->insn,
1334 prev, NULL_RTX, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 #endif
1339 /* Try combining an insn with two different insns whose results it
1340 uses. */
1341 FOR_EACH_LOG_LINK (links, insn)
1342 for (nextlinks = links->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, links->insn,
1345 nextlinks->insn, NULL_RTX,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1350 /* Try four-instruction combinations. */
1351 FOR_EACH_LOG_LINK (links, insn)
1353 struct insn_link *next1;
1354 rtx link = links->insn;
1356 /* If the linked insn has been replaced by a note, then there
1357 is no point in pursuing this chain any further. */
1358 if (NOTE_P (link))
1359 continue;
1361 FOR_EACH_LOG_LINK (next1, link)
1363 rtx link1 = next1->insn;
1364 if (NOTE_P (link1))
1365 continue;
1366 /* I0 -> I1 -> I2 -> I3. */
1367 FOR_EACH_LOG_LINK (nextlinks, link1)
1368 if ((next = try_combine (insn, link, link1,
1369 nextlinks->insn,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373 /* I0, I1 -> I2, I2 -> I3. */
1374 for (nextlinks = next1->next; nextlinks;
1375 nextlinks = nextlinks->next)
1376 if ((next = try_combine (insn, link, link1,
1377 nextlinks->insn,
1378 &new_direct_jump_p,
1379 last_combined_insn)) != 0)
1380 goto retry;
1383 for (next1 = links->next; next1; next1 = next1->next)
1385 rtx link1 = next1->insn;
1386 if (NOTE_P (link1))
1387 continue;
1388 /* I0 -> I2; I1, I2 -> I3. */
1389 FOR_EACH_LOG_LINK (nextlinks, link)
1390 if ((next = try_combine (insn, link, link1,
1391 nextlinks->insn,
1392 &new_direct_jump_p,
1393 last_combined_insn)) != 0)
1394 goto retry;
1395 /* I0 -> I1; I1, I2 -> I3. */
1396 FOR_EACH_LOG_LINK (nextlinks, link1)
1397 if ((next = try_combine (insn, link, link1,
1398 nextlinks->insn,
1399 &new_direct_jump_p,
1400 last_combined_insn)) != 0)
1401 goto retry;
1405 /* Try this insn with each REG_EQUAL note it links back to. */
1406 FOR_EACH_LOG_LINK (links, insn)
1408 rtx set, note;
1409 rtx temp = links->insn;
1410 if ((set = single_set (temp)) != 0
1411 && (note = find_reg_equal_equiv_note (temp)) != 0
1412 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1413 /* Avoid using a register that may already been marked
1414 dead by an earlier instruction. */
1415 && ! unmentioned_reg_p (note, SET_SRC (set))
1416 && (GET_MODE (note) == VOIDmode
1417 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1418 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1420 /* Temporarily replace the set's source with the
1421 contents of the REG_EQUAL note. The insn will
1422 be deleted or recognized by try_combine. */
1423 rtx orig = SET_SRC (set);
1424 SET_SRC (set) = note;
1425 i2mod = temp;
1426 i2mod_old_rhs = copy_rtx (orig);
1427 i2mod_new_rhs = copy_rtx (note);
1428 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1429 &new_direct_jump_p,
1430 last_combined_insn);
1431 i2mod = NULL_RTX;
1432 if (next)
1433 goto retry;
1434 SET_SRC (set) = orig;
1438 if (!NOTE_P (insn))
1439 record_dead_and_set_regs (insn);
1441 retry:
1447 default_rtl_profile ();
1448 clear_bb_flags ();
1449 new_direct_jump_p |= purge_all_dead_edges ();
1450 delete_noop_moves ();
1452 /* Clean up. */
1453 obstack_free (&insn_link_obstack, NULL);
1454 free (uid_log_links);
1455 free (uid_insn_cost);
1456 reg_stat.release ();
1459 struct undo *undo, *next;
1460 for (undo = undobuf.frees; undo; undo = next)
1462 next = undo->next;
1463 free (undo);
1465 undobuf.frees = 0;
1468 total_attempts += combine_attempts;
1469 total_merges += combine_merges;
1470 total_extras += combine_extras;
1471 total_successes += combine_successes;
1473 nonzero_sign_valid = 0;
1474 rtl_hooks = general_rtl_hooks;
1476 /* Make recognizer allow volatile MEMs again. */
1477 init_recog ();
1479 return new_direct_jump_p;
1482 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1484 static void
1485 init_reg_last (void)
1487 unsigned int i;
1488 reg_stat_type *p;
1490 FOR_EACH_VEC_ELT (reg_stat, i, p)
1491 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1494 /* Set up any promoted values for incoming argument registers. */
1496 static void
1497 setup_incoming_promotions (rtx first)
1499 tree arg;
1500 bool strictly_local = false;
1502 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1503 arg = DECL_CHAIN (arg))
1505 rtx x, reg = DECL_INCOMING_RTL (arg);
1506 int uns1, uns3;
1507 enum machine_mode mode1, mode2, mode3, mode4;
1509 /* Only continue if the incoming argument is in a register. */
1510 if (!REG_P (reg))
1511 continue;
1513 /* Determine, if possible, whether all call sites of the current
1514 function lie within the current compilation unit. (This does
1515 take into account the exporting of a function via taking its
1516 address, and so forth.) */
1517 strictly_local = cgraph_local_info (current_function_decl)->local;
1519 /* The mode and signedness of the argument before any promotions happen
1520 (equal to the mode of the pseudo holding it at that stage). */
1521 mode1 = TYPE_MODE (TREE_TYPE (arg));
1522 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1524 /* The mode and signedness of the argument after any source language and
1525 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1526 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1527 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1529 /* The mode and signedness of the argument as it is actually passed,
1530 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1531 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1532 TREE_TYPE (cfun->decl), 0);
1534 /* The mode of the register in which the argument is being passed. */
1535 mode4 = GET_MODE (reg);
1537 /* Eliminate sign extensions in the callee when:
1538 (a) A mode promotion has occurred; */
1539 if (mode1 == mode3)
1540 continue;
1541 /* (b) The mode of the register is the same as the mode of
1542 the argument as it is passed; */
1543 if (mode3 != mode4)
1544 continue;
1545 /* (c) There's no language level extension; */
1546 if (mode1 == mode2)
1548 /* (c.1) All callers are from the current compilation unit. If that's
1549 the case we don't have to rely on an ABI, we only have to know
1550 what we're generating right now, and we know that we will do the
1551 mode1 to mode2 promotion with the given sign. */
1552 else if (!strictly_local)
1553 continue;
1554 /* (c.2) The combination of the two promotions is useful. This is
1555 true when the signs match, or if the first promotion is unsigned.
1556 In the later case, (sign_extend (zero_extend x)) is the same as
1557 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1558 else if (uns1)
1559 uns3 = true;
1560 else if (uns3)
1561 continue;
1563 /* Record that the value was promoted from mode1 to mode3,
1564 so that any sign extension at the head of the current
1565 function may be eliminated. */
1566 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1567 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1568 record_value_for_reg (reg, first, x);
1572 /* Called via note_stores. If X is a pseudo that is narrower than
1573 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1575 If we are setting only a portion of X and we can't figure out what
1576 portion, assume all bits will be used since we don't know what will
1577 be happening.
1579 Similarly, set how many bits of X are known to be copies of the sign bit
1580 at all locations in the function. This is the smallest number implied
1581 by any set of X. */
1583 static void
1584 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1586 rtx insn = (rtx) data;
1587 unsigned int num;
1589 if (REG_P (x)
1590 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1591 /* If this register is undefined at the start of the file, we can't
1592 say what its contents were. */
1593 && ! REGNO_REG_SET_P
1594 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1597 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1599 if (set == 0 || GET_CODE (set) == CLOBBER)
1601 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1602 rsp->sign_bit_copies = 1;
1603 return;
1606 /* If this register is being initialized using itself, and the
1607 register is uninitialized in this basic block, and there are
1608 no LOG_LINKS which set the register, then part of the
1609 register is uninitialized. In that case we can't assume
1610 anything about the number of nonzero bits.
1612 ??? We could do better if we checked this in
1613 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1614 could avoid making assumptions about the insn which initially
1615 sets the register, while still using the information in other
1616 insns. We would have to be careful to check every insn
1617 involved in the combination. */
1619 if (insn
1620 && reg_referenced_p (x, PATTERN (insn))
1621 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1622 REGNO (x)))
1624 struct insn_link *link;
1626 FOR_EACH_LOG_LINK (link, insn)
1627 if (dead_or_set_p (link->insn, x))
1628 break;
1629 if (!link)
1631 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1632 rsp->sign_bit_copies = 1;
1633 return;
1637 /* If this is a complex assignment, see if we can convert it into a
1638 simple assignment. */
1639 set = expand_field_assignment (set);
1641 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1642 set what we know about X. */
1644 if (SET_DEST (set) == x
1645 || (paradoxical_subreg_p (SET_DEST (set))
1646 && SUBREG_REG (SET_DEST (set)) == x))
1648 rtx src = SET_SRC (set);
1650 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1651 /* If X is narrower than a word and SRC is a non-negative
1652 constant that would appear negative in the mode of X,
1653 sign-extend it for use in reg_stat[].nonzero_bits because some
1654 machines (maybe most) will actually do the sign-extension
1655 and this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard
1658 instead of this kludge. */
1660 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1661 && CONST_INT_P (src)
1662 && INTVAL (src) > 0
1663 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1664 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1665 #endif
1667 /* Don't call nonzero_bits if it cannot change anything. */
1668 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1669 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1670 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1671 if (rsp->sign_bit_copies == 0
1672 || rsp->sign_bit_copies > num)
1673 rsp->sign_bit_copies = num;
1675 else
1677 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1678 rsp->sign_bit_copies = 1;
1683 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1684 optionally insns that were previously combined into I3 or that will be
1685 combined into the merger of INSN and I3. The order is PRED, PRED2,
1686 INSN, SUCC, SUCC2, I3.
1688 Return 0 if the combination is not allowed for any reason.
1690 If the combination is allowed, *PDEST will be set to the single
1691 destination of INSN and *PSRC to the single source, and this function
1692 will return 1. */
1694 static int
1695 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1696 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1697 rtx *pdest, rtx *psrc)
1699 int i;
1700 const_rtx set = 0;
1701 rtx src, dest;
1702 rtx p;
1703 #ifdef AUTO_INC_DEC
1704 rtx link;
1705 #endif
1706 bool all_adjacent = true;
1707 int (*is_volatile_p) (const_rtx);
1709 if (succ)
1711 if (succ2)
1713 if (next_active_insn (succ2) != i3)
1714 all_adjacent = false;
1715 if (next_active_insn (succ) != succ2)
1716 all_adjacent = false;
1718 else if (next_active_insn (succ) != i3)
1719 all_adjacent = false;
1720 if (next_active_insn (insn) != succ)
1721 all_adjacent = false;
1723 else if (next_active_insn (insn) != i3)
1724 all_adjacent = false;
1726 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1727 or a PARALLEL consisting of such a SET and CLOBBERs.
1729 If INSN has CLOBBER parallel parts, ignore them for our processing.
1730 By definition, these happen during the execution of the insn. When it
1731 is merged with another insn, all bets are off. If they are, in fact,
1732 needed and aren't also supplied in I3, they may be added by
1733 recog_for_combine. Otherwise, it won't match.
1735 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1736 note.
1738 Get the source and destination of INSN. If more than one, can't
1739 combine. */
1741 if (GET_CODE (PATTERN (insn)) == SET)
1742 set = PATTERN (insn);
1743 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1744 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1746 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1748 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1750 switch (GET_CODE (elt))
1752 /* This is important to combine floating point insns
1753 for the SH4 port. */
1754 case USE:
1755 /* Combining an isolated USE doesn't make sense.
1756 We depend here on combinable_i3pat to reject them. */
1757 /* The code below this loop only verifies that the inputs of
1758 the SET in INSN do not change. We call reg_set_between_p
1759 to verify that the REG in the USE does not change between
1760 I3 and INSN.
1761 If the USE in INSN was for a pseudo register, the matching
1762 insn pattern will likely match any register; combining this
1763 with any other USE would only be safe if we knew that the
1764 used registers have identical values, or if there was
1765 something to tell them apart, e.g. different modes. For
1766 now, we forgo such complicated tests and simply disallow
1767 combining of USES of pseudo registers with any other USE. */
1768 if (REG_P (XEXP (elt, 0))
1769 && GET_CODE (PATTERN (i3)) == PARALLEL)
1771 rtx i3pat = PATTERN (i3);
1772 int i = XVECLEN (i3pat, 0) - 1;
1773 unsigned int regno = REGNO (XEXP (elt, 0));
1777 rtx i3elt = XVECEXP (i3pat, 0, i);
1779 if (GET_CODE (i3elt) == USE
1780 && REG_P (XEXP (i3elt, 0))
1781 && (REGNO (XEXP (i3elt, 0)) == regno
1782 ? reg_set_between_p (XEXP (elt, 0),
1783 PREV_INSN (insn), i3)
1784 : regno >= FIRST_PSEUDO_REGISTER))
1785 return 0;
1787 while (--i >= 0);
1789 break;
1791 /* We can ignore CLOBBERs. */
1792 case CLOBBER:
1793 break;
1795 case SET:
1796 /* Ignore SETs whose result isn't used but not those that
1797 have side-effects. */
1798 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1799 && insn_nothrow_p (insn)
1800 && !side_effects_p (elt))
1801 break;
1803 /* If we have already found a SET, this is a second one and
1804 so we cannot combine with this insn. */
1805 if (set)
1806 return 0;
1808 set = elt;
1809 break;
1811 default:
1812 /* Anything else means we can't combine. */
1813 return 0;
1817 if (set == 0
1818 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1819 so don't do anything with it. */
1820 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1821 return 0;
1823 else
1824 return 0;
1826 if (set == 0)
1827 return 0;
1829 /* The simplification in expand_field_assignment may call back to
1830 get_last_value, so set safe guard here. */
1831 subst_low_luid = DF_INSN_LUID (insn);
1833 set = expand_field_assignment (set);
1834 src = SET_SRC (set), dest = SET_DEST (set);
1836 /* Don't eliminate a store in the stack pointer. */
1837 if (dest == stack_pointer_rtx
1838 /* Don't combine with an insn that sets a register to itself if it has
1839 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1840 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1841 /* Can't merge an ASM_OPERANDS. */
1842 || GET_CODE (src) == ASM_OPERANDS
1843 /* Can't merge a function call. */
1844 || GET_CODE (src) == CALL
1845 /* Don't eliminate a function call argument. */
1846 || (CALL_P (i3)
1847 && (find_reg_fusage (i3, USE, dest)
1848 || (REG_P (dest)
1849 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1850 && global_regs[REGNO (dest)])))
1851 /* Don't substitute into an incremented register. */
1852 || FIND_REG_INC_NOTE (i3, dest)
1853 || (succ && FIND_REG_INC_NOTE (succ, dest))
1854 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1855 /* Don't substitute into a non-local goto, this confuses CFG. */
1856 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1857 /* Make sure that DEST is not used after SUCC but before I3. */
1858 || (!all_adjacent
1859 && ((succ2
1860 && (reg_used_between_p (dest, succ2, i3)
1861 || reg_used_between_p (dest, succ, succ2)))
1862 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1863 /* Make sure that the value that is to be substituted for the register
1864 does not use any registers whose values alter in between. However,
1865 If the insns are adjacent, a use can't cross a set even though we
1866 think it might (this can happen for a sequence of insns each setting
1867 the same destination; last_set of that register might point to
1868 a NOTE). If INSN has a REG_EQUIV note, the register is always
1869 equivalent to the memory so the substitution is valid even if there
1870 are intervening stores. Also, don't move a volatile asm or
1871 UNSPEC_VOLATILE across any other insns. */
1872 || (! all_adjacent
1873 && (((!MEM_P (src)
1874 || ! find_reg_note (insn, REG_EQUIV, src))
1875 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1876 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1877 || GET_CODE (src) == UNSPEC_VOLATILE))
1878 /* Don't combine across a CALL_INSN, because that would possibly
1879 change whether the life span of some REGs crosses calls or not,
1880 and it is a pain to update that information.
1881 Exception: if source is a constant, moving it later can't hurt.
1882 Accept that as a special case. */
1883 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1884 return 0;
1886 /* DEST must either be a REG or CC0. */
1887 if (REG_P (dest))
1889 /* If register alignment is being enforced for multi-word items in all
1890 cases except for parameters, it is possible to have a register copy
1891 insn referencing a hard register that is not allowed to contain the
1892 mode being copied and which would not be valid as an operand of most
1893 insns. Eliminate this problem by not combining with such an insn.
1895 Also, on some machines we don't want to extend the life of a hard
1896 register. */
1898 if (REG_P (src)
1899 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1901 /* Don't extend the life of a hard register unless it is
1902 user variable (if we have few registers) or it can't
1903 fit into the desired register (meaning something special
1904 is going on).
1905 Also avoid substituting a return register into I3, because
1906 reload can't handle a conflict with constraints of other
1907 inputs. */
1908 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1909 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1910 return 0;
1912 else if (GET_CODE (dest) != CC0)
1913 return 0;
1916 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1917 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1918 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1920 /* Don't substitute for a register intended as a clobberable
1921 operand. */
1922 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1923 if (rtx_equal_p (reg, dest))
1924 return 0;
1926 /* If the clobber represents an earlyclobber operand, we must not
1927 substitute an expression containing the clobbered register.
1928 As we do not analyze the constraint strings here, we have to
1929 make the conservative assumption. However, if the register is
1930 a fixed hard reg, the clobber cannot represent any operand;
1931 we leave it up to the machine description to either accept or
1932 reject use-and-clobber patterns. */
1933 if (!REG_P (reg)
1934 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1935 || !fixed_regs[REGNO (reg)])
1936 if (reg_overlap_mentioned_p (reg, src))
1937 return 0;
1940 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1941 or not), reject, unless nothing volatile comes between it and I3 */
1943 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1945 /* Make sure neither succ nor succ2 contains a volatile reference. */
1946 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1947 return 0;
1948 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1949 return 0;
1950 /* We'll check insns between INSN and I3 below. */
1953 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1954 to be an explicit register variable, and was chosen for a reason. */
1956 if (GET_CODE (src) == ASM_OPERANDS
1957 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1958 return 0;
1960 /* If INSN contains volatile references (specifically volatile MEMs),
1961 we cannot combine across any other volatile references.
1962 Even if INSN doesn't contain volatile references, any intervening
1963 volatile insn might affect machine state. */
1965 is_volatile_p = volatile_refs_p (PATTERN (insn))
1966 ? volatile_refs_p
1967 : volatile_insn_p;
1969 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1970 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1971 return 0;
1973 /* If INSN contains an autoincrement or autodecrement, make sure that
1974 register is not used between there and I3, and not already used in
1975 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1976 Also insist that I3 not be a jump; if it were one
1977 and the incremented register were spilled, we would lose. */
1979 #ifdef AUTO_INC_DEC
1980 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1981 if (REG_NOTE_KIND (link) == REG_INC
1982 && (JUMP_P (i3)
1983 || reg_used_between_p (XEXP (link, 0), insn, i3)
1984 || (pred != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1986 || (pred2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1988 || (succ != NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1990 || (succ2 != NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1992 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1993 return 0;
1994 #endif
1996 #ifdef HAVE_cc0
1997 /* Don't combine an insn that follows a CC0-setting insn.
1998 An insn that uses CC0 must not be separated from the one that sets it.
1999 We do, however, allow I2 to follow a CC0-setting insn if that insn
2000 is passed as I1; in that case it will be deleted also.
2001 We also allow combining in this case if all the insns are adjacent
2002 because that would leave the two CC0 insns adjacent as well.
2003 It would be more logical to test whether CC0 occurs inside I1 or I2,
2004 but that would be much slower, and this ought to be equivalent. */
2006 p = prev_nonnote_insn (insn);
2007 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2008 && ! all_adjacent)
2009 return 0;
2010 #endif
2012 /* If we get here, we have passed all the tests and the combination is
2013 to be allowed. */
2015 *pdest = dest;
2016 *psrc = src;
2018 return 1;
2021 /* LOC is the location within I3 that contains its pattern or the component
2022 of a PARALLEL of the pattern. We validate that it is valid for combining.
2024 One problem is if I3 modifies its output, as opposed to replacing it
2025 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2026 doing so would produce an insn that is not equivalent to the original insns.
2028 Consider:
2030 (set (reg:DI 101) (reg:DI 100))
2031 (set (subreg:SI (reg:DI 101) 0) <foo>)
2033 This is NOT equivalent to:
2035 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2036 (set (reg:DI 101) (reg:DI 100))])
2038 Not only does this modify 100 (in which case it might still be valid
2039 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2041 We can also run into a problem if I2 sets a register that I1
2042 uses and I1 gets directly substituted into I3 (not via I2). In that
2043 case, we would be getting the wrong value of I2DEST into I3, so we
2044 must reject the combination. This case occurs when I2 and I1 both
2045 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2046 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2047 of a SET must prevent combination from occurring. The same situation
2048 can occur for I0, in which case I0_NOT_IN_SRC is set.
2050 Before doing the above check, we first try to expand a field assignment
2051 into a set of logical operations.
2053 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2054 we place a register that is both set and used within I3. If more than one
2055 such register is detected, we fail.
2057 Return 1 if the combination is valid, zero otherwise. */
2059 static int
2060 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2061 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2063 rtx x = *loc;
2065 if (GET_CODE (x) == SET)
2067 rtx set = x ;
2068 rtx dest = SET_DEST (set);
2069 rtx src = SET_SRC (set);
2070 rtx inner_dest = dest;
2071 rtx subdest;
2073 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2074 || GET_CODE (inner_dest) == SUBREG
2075 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2076 inner_dest = XEXP (inner_dest, 0);
2078 /* Check for the case where I3 modifies its output, as discussed
2079 above. We don't want to prevent pseudos from being combined
2080 into the address of a MEM, so only prevent the combination if
2081 i1 or i2 set the same MEM. */
2082 if ((inner_dest != dest &&
2083 (!MEM_P (inner_dest)
2084 || rtx_equal_p (i2dest, inner_dest)
2085 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2086 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2087 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2088 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2089 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2091 /* This is the same test done in can_combine_p except we can't test
2092 all_adjacent; we don't have to, since this instruction will stay
2093 in place, thus we are not considering increasing the lifetime of
2094 INNER_DEST.
2096 Also, if this insn sets a function argument, combining it with
2097 something that might need a spill could clobber a previous
2098 function argument; the all_adjacent test in can_combine_p also
2099 checks this; here, we do a more specific test for this case. */
2101 || (REG_P (inner_dest)
2102 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2103 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2104 GET_MODE (inner_dest))))
2105 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2106 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2107 return 0;
2109 /* If DEST is used in I3, it is being killed in this insn, so
2110 record that for later. We have to consider paradoxical
2111 subregs here, since they kill the whole register, but we
2112 ignore partial subregs, STRICT_LOW_PART, etc.
2113 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2114 STACK_POINTER_REGNUM, since these are always considered to be
2115 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2116 subdest = dest;
2117 if (GET_CODE (subdest) == SUBREG
2118 && (GET_MODE_SIZE (GET_MODE (subdest))
2119 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2120 subdest = SUBREG_REG (subdest);
2121 if (pi3dest_killed
2122 && REG_P (subdest)
2123 && reg_referenced_p (subdest, PATTERN (i3))
2124 && REGNO (subdest) != FRAME_POINTER_REGNUM
2125 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2126 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2127 #endif
2128 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2129 && (REGNO (subdest) != ARG_POINTER_REGNUM
2130 || ! fixed_regs [REGNO (subdest)])
2131 #endif
2132 && REGNO (subdest) != STACK_POINTER_REGNUM)
2134 if (*pi3dest_killed)
2135 return 0;
2137 *pi3dest_killed = subdest;
2141 else if (GET_CODE (x) == PARALLEL)
2143 int i;
2145 for (i = 0; i < XVECLEN (x, 0); i++)
2146 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2147 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2148 return 0;
2151 return 1;
2154 /* Return 1 if X is an arithmetic expression that contains a multiplication
2155 and division. We don't count multiplications by powers of two here. */
2157 static int
2158 contains_muldiv (rtx x)
2160 switch (GET_CODE (x))
2162 case MOD: case DIV: case UMOD: case UDIV:
2163 return 1;
2165 case MULT:
2166 return ! (CONST_INT_P (XEXP (x, 1))
2167 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2168 default:
2169 if (BINARY_P (x))
2170 return contains_muldiv (XEXP (x, 0))
2171 || contains_muldiv (XEXP (x, 1));
2173 if (UNARY_P (x))
2174 return contains_muldiv (XEXP (x, 0));
2176 return 0;
2180 /* Determine whether INSN can be used in a combination. Return nonzero if
2181 not. This is used in try_combine to detect early some cases where we
2182 can't perform combinations. */
2184 static int
2185 cant_combine_insn_p (rtx insn)
2187 rtx set;
2188 rtx src, dest;
2190 /* If this isn't really an insn, we can't do anything.
2191 This can occur when flow deletes an insn that it has merged into an
2192 auto-increment address. */
2193 if (! INSN_P (insn))
2194 return 1;
2196 /* Never combine loads and stores involving hard regs that are likely
2197 to be spilled. The register allocator can usually handle such
2198 reg-reg moves by tying. If we allow the combiner to make
2199 substitutions of likely-spilled regs, reload might die.
2200 As an exception, we allow combinations involving fixed regs; these are
2201 not available to the register allocator so there's no risk involved. */
2203 set = single_set (insn);
2204 if (! set)
2205 return 0;
2206 src = SET_SRC (set);
2207 dest = SET_DEST (set);
2208 if (GET_CODE (src) == SUBREG)
2209 src = SUBREG_REG (src);
2210 if (GET_CODE (dest) == SUBREG)
2211 dest = SUBREG_REG (dest);
2212 if (REG_P (src) && REG_P (dest)
2213 && ((HARD_REGISTER_P (src)
2214 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2215 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2216 || (HARD_REGISTER_P (dest)
2217 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2218 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2219 return 1;
2221 return 0;
2224 struct likely_spilled_retval_info
2226 unsigned regno, nregs;
2227 unsigned mask;
2230 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2231 hard registers that are known to be written to / clobbered in full. */
2232 static void
2233 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2235 struct likely_spilled_retval_info *const info =
2236 (struct likely_spilled_retval_info *) data;
2237 unsigned regno, nregs;
2238 unsigned new_mask;
2240 if (!REG_P (XEXP (set, 0)))
2241 return;
2242 regno = REGNO (x);
2243 if (regno >= info->regno + info->nregs)
2244 return;
2245 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2246 if (regno + nregs <= info->regno)
2247 return;
2248 new_mask = (2U << (nregs - 1)) - 1;
2249 if (regno < info->regno)
2250 new_mask >>= info->regno - regno;
2251 else
2252 new_mask <<= regno - info->regno;
2253 info->mask &= ~new_mask;
2256 /* Return nonzero iff part of the return value is live during INSN, and
2257 it is likely spilled. This can happen when more than one insn is needed
2258 to copy the return value, e.g. when we consider to combine into the
2259 second copy insn for a complex value. */
2261 static int
2262 likely_spilled_retval_p (rtx insn)
2264 rtx use = BB_END (this_basic_block);
2265 rtx reg, p;
2266 unsigned regno, nregs;
2267 /* We assume here that no machine mode needs more than
2268 32 hard registers when the value overlaps with a register
2269 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2270 unsigned mask;
2271 struct likely_spilled_retval_info info;
2273 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2274 return 0;
2275 reg = XEXP (PATTERN (use), 0);
2276 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2277 return 0;
2278 regno = REGNO (reg);
2279 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2280 if (nregs == 1)
2281 return 0;
2282 mask = (2U << (nregs - 1)) - 1;
2284 /* Disregard parts of the return value that are set later. */
2285 info.regno = regno;
2286 info.nregs = nregs;
2287 info.mask = mask;
2288 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2289 if (INSN_P (p))
2290 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2291 mask = info.mask;
2293 /* Check if any of the (probably) live return value registers is
2294 likely spilled. */
2295 nregs --;
2298 if ((mask & 1 << nregs)
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2300 return 1;
2301 } while (nregs--);
2302 return 0;
2305 /* Adjust INSN after we made a change to its destination.
2307 Changing the destination can invalidate notes that say something about
2308 the results of the insn and a LOG_LINK pointing to the insn. */
2310 static void
2311 adjust_for_new_dest (rtx insn)
2313 /* For notes, be conservative and simply remove them. */
2314 remove_reg_equal_equiv_notes (insn);
2316 /* The new insn will have a destination that was previously the destination
2317 of an insn just above it. Call distribute_links to make a LOG_LINK from
2318 the next use of that destination. */
2319 distribute_links (alloc_insn_link (insn, NULL));
2321 df_insn_rescan (insn);
2324 /* Return TRUE if combine can reuse reg X in mode MODE.
2325 ADDED_SETS is nonzero if the original set is still required. */
2326 static bool
2327 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2329 unsigned int regno;
2331 if (!REG_P(x))
2332 return false;
2334 regno = REGNO (x);
2335 /* Allow hard registers if the new mode is legal, and occupies no more
2336 registers than the old mode. */
2337 if (regno < FIRST_PSEUDO_REGISTER)
2338 return (HARD_REGNO_MODE_OK (regno, mode)
2339 && (hard_regno_nregs[regno][GET_MODE (x)]
2340 >= hard_regno_nregs[regno][mode]));
2342 /* Or a pseudo that is only used once. */
2343 return (REG_N_SETS (regno) == 1 && !added_sets
2344 && !REG_USERVAR_P (x));
2348 /* Check whether X, the destination of a set, refers to part of
2349 the register specified by REG. */
2351 static bool
2352 reg_subword_p (rtx x, rtx reg)
2354 /* Check that reg is an integer mode register. */
2355 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2356 return false;
2358 if (GET_CODE (x) == STRICT_LOW_PART
2359 || GET_CODE (x) == ZERO_EXTRACT)
2360 x = XEXP (x, 0);
2362 return GET_CODE (x) == SUBREG
2363 && SUBREG_REG (x) == reg
2364 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2367 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2368 Note that the INSN should be deleted *after* removing dead edges, so
2369 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2370 but not for a (set (pc) (label_ref FOO)). */
2372 static void
2373 update_cfg_for_uncondjump (rtx insn)
2375 basic_block bb = BLOCK_FOR_INSN (insn);
2376 gcc_assert (BB_END (bb) == insn);
2378 purge_dead_edges (bb);
2380 delete_insn (insn);
2381 if (EDGE_COUNT (bb->succs) == 1)
2383 rtx insn;
2385 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2387 /* Remove barriers from the footer if there are any. */
2388 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2389 if (BARRIER_P (insn))
2391 if (PREV_INSN (insn))
2392 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2393 else
2394 BB_FOOTER (bb) = NEXT_INSN (insn);
2395 if (NEXT_INSN (insn))
2396 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2398 else if (LABEL_P (insn))
2399 break;
2403 /* Try to combine the insns I0, I1 and I2 into I3.
2404 Here I0, I1 and I2 appear earlier than I3.
2405 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2408 If we are combining more than two insns and the resulting insn is not
2409 recognized, try splitting it into two insns. If that happens, I2 and I3
2410 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2411 Otherwise, I0, I1 and I2 are pseudo-deleted.
2413 Return 0 if the combination does not work. Then nothing is changed.
2414 If we did the combination, return the insn at which combine should
2415 resume scanning.
2417 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2418 new direct jump instruction.
2420 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2421 been I3 passed to an earlier try_combine within the same basic
2422 block. */
2424 static rtx
2425 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2426 rtx last_combined_insn)
2428 /* New patterns for I3 and I2, respectively. */
2429 rtx newpat, newi2pat = 0;
2430 rtvec newpat_vec_with_clobbers = 0;
2431 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2432 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2433 dead. */
2434 int added_sets_0, added_sets_1, added_sets_2;
2435 /* Total number of SETs to put into I3. */
2436 int total_sets;
2437 /* Nonzero if I2's or I1's body now appears in I3. */
2438 int i2_is_used = 0, i1_is_used = 0;
2439 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2440 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2441 /* Contains I3 if the destination of I3 is used in its source, which means
2442 that the old life of I3 is being killed. If that usage is placed into
2443 I2 and not in I3, a REG_DEAD note must be made. */
2444 rtx i3dest_killed = 0;
2445 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2446 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2447 /* Copy of SET_SRC of I1 and I0, if needed. */
2448 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2449 /* Set if I2DEST was reused as a scratch register. */
2450 bool i2scratch = false;
2451 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2452 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2454 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2455 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2456 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2457 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2458 /* Notes that must be added to REG_NOTES in I3 and I2. */
2459 rtx new_i3_notes, new_i2_notes;
2460 /* Notes that we substituted I3 into I2 instead of the normal case. */
2461 int i3_subst_into_i2 = 0;
2462 /* Notes that I1, I2 or I3 is a MULT operation. */
2463 int have_mult = 0;
2464 int swap_i2i3 = 0;
2465 int changed_i3_dest = 0;
2467 int maxreg;
2468 rtx temp;
2469 struct insn_link *link;
2470 rtx other_pat = 0;
2471 rtx new_other_notes;
2472 int i;
2474 /* Only try four-insn combinations when there's high likelihood of
2475 success. Look for simple insns, such as loads of constants or
2476 binary operations involving a constant. */
2477 if (i0)
2479 int i;
2480 int ngood = 0;
2481 int nshift = 0;
2483 if (!flag_expensive_optimizations)
2484 return 0;
2486 for (i = 0; i < 4; i++)
2488 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2489 rtx set = single_set (insn);
2490 rtx src;
2491 if (!set)
2492 continue;
2493 src = SET_SRC (set);
2494 if (CONSTANT_P (src))
2496 ngood += 2;
2497 break;
2499 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2500 ngood++;
2501 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2502 || GET_CODE (src) == LSHIFTRT)
2503 nshift++;
2505 if (ngood < 2 && nshift < 2)
2506 return 0;
2509 /* Exit early if one of the insns involved can't be used for
2510 combinations. */
2511 if (cant_combine_insn_p (i3)
2512 || cant_combine_insn_p (i2)
2513 || (i1 && cant_combine_insn_p (i1))
2514 || (i0 && cant_combine_insn_p (i0))
2515 || likely_spilled_retval_p (i3))
2516 return 0;
2518 combine_attempts++;
2519 undobuf.other_insn = 0;
2521 /* Reset the hard register usage information. */
2522 CLEAR_HARD_REG_SET (newpat_used_regs);
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2526 if (i0)
2527 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2528 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2529 else if (i1)
2530 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2531 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2532 else
2533 fprintf (dump_file, "\nTrying %d -> %d:\n",
2534 INSN_UID (i2), INSN_UID (i3));
2537 /* If multiple insns feed into one of I2 or I3, they can be in any
2538 order. To simplify the code below, reorder them in sequence. */
2539 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2540 temp = i2, i2 = i0, i0 = temp;
2541 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2542 temp = i1, i1 = i0, i0 = temp;
2543 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2544 temp = i1, i1 = i2, i2 = temp;
2546 added_links_insn = 0;
2548 /* First check for one important special case that the code below will
2549 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2550 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2551 we may be able to replace that destination with the destination of I3.
2552 This occurs in the common code where we compute both a quotient and
2553 remainder into a structure, in which case we want to do the computation
2554 directly into the structure to avoid register-register copies.
2556 Note that this case handles both multiple sets in I2 and also cases
2557 where I2 has a number of CLOBBERs inside the PARALLEL.
2559 We make very conservative checks below and only try to handle the
2560 most common cases of this. For example, we only handle the case
2561 where I2 and I3 are adjacent to avoid making difficult register
2562 usage tests. */
2564 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2565 && REG_P (SET_SRC (PATTERN (i3)))
2566 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2567 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2568 && GET_CODE (PATTERN (i2)) == PARALLEL
2569 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2570 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2571 below would need to check what is inside (and reg_overlap_mentioned_p
2572 doesn't support those codes anyway). Don't allow those destinations;
2573 the resulting insn isn't likely to be recognized anyway. */
2574 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2576 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2577 SET_DEST (PATTERN (i3)))
2578 && next_active_insn (i2) == i3)
2580 rtx p2 = PATTERN (i2);
2582 /* Make sure that the destination of I3,
2583 which we are going to substitute into one output of I2,
2584 is not used within another output of I2. We must avoid making this:
2585 (parallel [(set (mem (reg 69)) ...)
2586 (set (reg 69) ...)])
2587 which is not well-defined as to order of actions.
2588 (Besides, reload can't handle output reloads for this.)
2590 The problem can also happen if the dest of I3 is a memory ref,
2591 if another dest in I2 is an indirect memory ref. */
2592 for (i = 0; i < XVECLEN (p2, 0); i++)
2593 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2594 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2595 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2596 SET_DEST (XVECEXP (p2, 0, i))))
2597 break;
2599 if (i == XVECLEN (p2, 0))
2600 for (i = 0; i < XVECLEN (p2, 0); i++)
2601 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2602 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2604 combine_merges++;
2606 subst_insn = i3;
2607 subst_low_luid = DF_INSN_LUID (i2);
2609 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2610 i2src = SET_SRC (XVECEXP (p2, 0, i));
2611 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2612 i2dest_killed = dead_or_set_p (i2, i2dest);
2614 /* Replace the dest in I2 with our dest and make the resulting
2615 insn the new pattern for I3. Then skip to where we validate
2616 the pattern. Everything was set up above. */
2617 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2618 newpat = p2;
2619 i3_subst_into_i2 = 1;
2620 goto validate_replacement;
2624 /* If I2 is setting a pseudo to a constant and I3 is setting some
2625 sub-part of it to another constant, merge them by making a new
2626 constant. */
2627 if (i1 == 0
2628 && (temp = single_set (i2)) != 0
2629 && CONST_SCALAR_INT_P (SET_SRC (temp))
2630 && GET_CODE (PATTERN (i3)) == SET
2631 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2632 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2634 rtx dest = SET_DEST (PATTERN (i3));
2635 int offset = -1;
2636 int width = 0;
2638 if (GET_CODE (dest) == ZERO_EXTRACT)
2640 if (CONST_INT_P (XEXP (dest, 1))
2641 && CONST_INT_P (XEXP (dest, 2)))
2643 width = INTVAL (XEXP (dest, 1));
2644 offset = INTVAL (XEXP (dest, 2));
2645 dest = XEXP (dest, 0);
2646 if (BITS_BIG_ENDIAN)
2647 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2650 else
2652 if (GET_CODE (dest) == STRICT_LOW_PART)
2653 dest = XEXP (dest, 0);
2654 width = GET_MODE_PRECISION (GET_MODE (dest));
2655 offset = 0;
2658 if (offset >= 0)
2660 /* If this is the low part, we're done. */
2661 if (subreg_lowpart_p (dest))
2663 /* Handle the case where inner is twice the size of outer. */
2664 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2665 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2666 offset += GET_MODE_PRECISION (GET_MODE (dest));
2667 /* Otherwise give up for now. */
2668 else
2669 offset = -1;
2672 if (offset >= 0
2673 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2674 <= HOST_BITS_PER_DOUBLE_INT))
2676 double_int m, o, i;
2677 rtx inner = SET_SRC (PATTERN (i3));
2678 rtx outer = SET_SRC (temp);
2680 o = rtx_to_double_int (outer);
2681 i = rtx_to_double_int (inner);
2683 m = double_int::mask (width);
2684 i &= m;
2685 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2686 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2687 o = o.and_not (m) | i;
2689 combine_merges++;
2690 subst_insn = i3;
2691 subst_low_luid = DF_INSN_LUID (i2);
2692 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2693 i2dest = SET_DEST (temp);
2694 i2dest_killed = dead_or_set_p (i2, i2dest);
2696 /* Replace the source in I2 with the new constant and make the
2697 resulting insn the new pattern for I3. Then skip to where we
2698 validate the pattern. Everything was set up above. */
2699 SUBST (SET_SRC (temp),
2700 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2702 newpat = PATTERN (i2);
2704 /* The dest of I3 has been replaced with the dest of I2. */
2705 changed_i3_dest = 1;
2706 goto validate_replacement;
2710 #ifndef HAVE_cc0
2711 /* If we have no I1 and I2 looks like:
2712 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2713 (set Y OP)])
2714 make up a dummy I1 that is
2715 (set Y OP)
2716 and change I2 to be
2717 (set (reg:CC X) (compare:CC Y (const_int 0)))
2719 (We can ignore any trailing CLOBBERs.)
2721 This undoes a previous combination and allows us to match a branch-and-
2722 decrement insn. */
2724 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2725 && XVECLEN (PATTERN (i2), 0) >= 2
2726 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2727 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2728 == MODE_CC)
2729 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2730 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2731 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2732 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2733 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2734 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2736 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2737 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2738 break;
2740 if (i == 1)
2742 /* We make I1 with the same INSN_UID as I2. This gives it
2743 the same DF_INSN_LUID for value tracking. Our fake I1 will
2744 never appear in the insn stream so giving it the same INSN_UID
2745 as I2 will not cause a problem. */
2747 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2748 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2749 INSN_LOCATION (i2), -1, NULL_RTX);
2751 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2752 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2753 SET_DEST (PATTERN (i1)));
2754 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2757 #endif
2759 /* Verify that I2 and I1 are valid for combining. */
2760 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2761 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2762 &i1dest, &i1src))
2763 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2764 &i0dest, &i0src)))
2766 undo_all ();
2767 return 0;
2770 /* Record whether I2DEST is used in I2SRC and similarly for the other
2771 cases. Knowing this will help in register status updating below. */
2772 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2773 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2774 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2775 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2776 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2777 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2778 i2dest_killed = dead_or_set_p (i2, i2dest);
2779 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2780 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2782 /* For the earlier insns, determine which of the subsequent ones they
2783 feed. */
2784 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2785 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2786 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2787 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2788 && reg_overlap_mentioned_p (i0dest, i2src))));
2790 /* Ensure that I3's pattern can be the destination of combines. */
2791 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2792 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2793 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2794 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2795 &i3dest_killed))
2797 undo_all ();
2798 return 0;
2801 /* See if any of the insns is a MULT operation. Unless one is, we will
2802 reject a combination that is, since it must be slower. Be conservative
2803 here. */
2804 if (GET_CODE (i2src) == MULT
2805 || (i1 != 0 && GET_CODE (i1src) == MULT)
2806 || (i0 != 0 && GET_CODE (i0src) == MULT)
2807 || (GET_CODE (PATTERN (i3)) == SET
2808 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2809 have_mult = 1;
2811 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2812 We used to do this EXCEPT in one case: I3 has a post-inc in an
2813 output operand. However, that exception can give rise to insns like
2814 mov r3,(r3)+
2815 which is a famous insn on the PDP-11 where the value of r3 used as the
2816 source was model-dependent. Avoid this sort of thing. */
2818 #if 0
2819 if (!(GET_CODE (PATTERN (i3)) == SET
2820 && REG_P (SET_SRC (PATTERN (i3)))
2821 && MEM_P (SET_DEST (PATTERN (i3)))
2822 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2823 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2824 /* It's not the exception. */
2825 #endif
2826 #ifdef AUTO_INC_DEC
2828 rtx link;
2829 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2830 if (REG_NOTE_KIND (link) == REG_INC
2831 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2832 || (i1 != 0
2833 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2835 undo_all ();
2836 return 0;
2839 #endif
2841 /* See if the SETs in I1 or I2 need to be kept around in the merged
2842 instruction: whenever the value set there is still needed past I3.
2843 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2845 For the SET in I1, we have two cases: if I1 and I2 independently feed
2846 into I3, the set in I1 needs to be kept around unless I1DEST dies
2847 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2848 in I1 needs to be kept around unless I1DEST dies or is set in either
2849 I2 or I3. The same considerations apply to I0. */
2851 added_sets_2 = !dead_or_set_p (i3, i2dest);
2853 if (i1)
2854 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2855 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2856 else
2857 added_sets_1 = 0;
2859 if (i0)
2860 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2861 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
2862 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
2863 && dead_or_set_p (i2, i0dest)));
2864 else
2865 added_sets_0 = 0;
2867 /* We are about to copy insns for the case where they need to be kept
2868 around. Check that they can be copied in the merged instruction. */
2870 if (targetm.cannot_copy_insn_p
2871 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2872 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2873 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2875 undo_all ();
2876 return 0;
2879 /* If the set in I2 needs to be kept around, we must make a copy of
2880 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2881 PATTERN (I2), we are only substituting for the original I1DEST, not into
2882 an already-substituted copy. This also prevents making self-referential
2883 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2884 I2DEST. */
2886 if (added_sets_2)
2888 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2889 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2890 else
2891 i2pat = copy_rtx (PATTERN (i2));
2894 if (added_sets_1)
2896 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2897 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2898 else
2899 i1pat = copy_rtx (PATTERN (i1));
2902 if (added_sets_0)
2904 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2905 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2906 else
2907 i0pat = copy_rtx (PATTERN (i0));
2910 combine_merges++;
2912 /* Substitute in the latest insn for the regs set by the earlier ones. */
2914 maxreg = max_reg_num ();
2916 subst_insn = i3;
2918 #ifndef HAVE_cc0
2919 /* Many machines that don't use CC0 have insns that can both perform an
2920 arithmetic operation and set the condition code. These operations will
2921 be represented as a PARALLEL with the first element of the vector
2922 being a COMPARE of an arithmetic operation with the constant zero.
2923 The second element of the vector will set some pseudo to the result
2924 of the same arithmetic operation. If we simplify the COMPARE, we won't
2925 match such a pattern and so will generate an extra insn. Here we test
2926 for this case, where both the comparison and the operation result are
2927 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2928 I2SRC. Later we will make the PARALLEL that contains I2. */
2930 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2931 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2932 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2933 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2935 rtx newpat_dest;
2936 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2937 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2938 enum machine_mode compare_mode, orig_compare_mode;
2939 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2941 newpat = PATTERN (i3);
2942 newpat_dest = SET_DEST (newpat);
2943 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2945 if (undobuf.other_insn == 0
2946 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2947 &cc_use_insn)))
2949 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2950 compare_code = simplify_compare_const (compare_code,
2951 op0, &op1);
2952 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2955 /* Do the rest only if op1 is const0_rtx, which may be the
2956 result of simplification. */
2957 if (op1 == const0_rtx)
2959 /* If a single use of the CC is found, prepare to modify it
2960 when SELECT_CC_MODE returns a new CC-class mode, or when
2961 the above simplify_compare_const() returned a new comparison
2962 operator. undobuf.other_insn is assigned the CC use insn
2963 when modifying it. */
2964 if (cc_use_loc)
2966 #ifdef SELECT_CC_MODE
2967 enum machine_mode new_mode
2968 = SELECT_CC_MODE (compare_code, op0, op1);
2969 if (new_mode != orig_compare_mode
2970 && can_change_dest_mode (SET_DEST (newpat),
2971 added_sets_2, new_mode))
2973 unsigned int regno = REGNO (newpat_dest);
2974 compare_mode = new_mode;
2975 if (regno < FIRST_PSEUDO_REGISTER)
2976 newpat_dest = gen_rtx_REG (compare_mode, regno);
2977 else
2979 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2980 newpat_dest = regno_reg_rtx[regno];
2983 #endif
2984 /* Cases for modifying the CC-using comparison. */
2985 if (compare_code != orig_compare_code
2986 /* ??? Do we need to verify the zero rtx? */
2987 && XEXP (*cc_use_loc, 1) == const0_rtx)
2989 /* Replace cc_use_loc with entire new RTX. */
2990 SUBST (*cc_use_loc,
2991 gen_rtx_fmt_ee (compare_code, compare_mode,
2992 newpat_dest, const0_rtx));
2993 undobuf.other_insn = cc_use_insn;
2995 else if (compare_mode != orig_compare_mode)
2997 /* Just replace the CC reg with a new mode. */
2998 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
2999 undobuf.other_insn = cc_use_insn;
3003 /* Now we modify the current newpat:
3004 First, SET_DEST(newpat) is updated if the CC mode has been
3005 altered. For targets without SELECT_CC_MODE, this should be
3006 optimized away. */
3007 if (compare_mode != orig_compare_mode)
3008 SUBST (SET_DEST (newpat), newpat_dest);
3009 /* This is always done to propagate i2src into newpat. */
3010 SUBST (SET_SRC (newpat),
3011 gen_rtx_COMPARE (compare_mode, op0, op1));
3012 /* Create new version of i2pat if needed; the below PARALLEL
3013 creation needs this to work correctly. */
3014 if (! rtx_equal_p (i2src, op0))
3015 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3016 i2_is_used = 1;
3019 #endif
3021 if (i2_is_used == 0)
3023 /* It is possible that the source of I2 or I1 may be performing
3024 an unneeded operation, such as a ZERO_EXTEND of something
3025 that is known to have the high part zero. Handle that case
3026 by letting subst look at the inner insns.
3028 Another way to do this would be to have a function that tries
3029 to simplify a single insn instead of merging two or more
3030 insns. We don't do this because of the potential of infinite
3031 loops and because of the potential extra memory required.
3032 However, doing it the way we are is a bit of a kludge and
3033 doesn't catch all cases.
3035 But only do this if -fexpensive-optimizations since it slows
3036 things down and doesn't usually win.
3038 This is not done in the COMPARE case above because the
3039 unmodified I2PAT is used in the PARALLEL and so a pattern
3040 with a modified I2SRC would not match. */
3042 if (flag_expensive_optimizations)
3044 /* Pass pc_rtx so no substitutions are done, just
3045 simplifications. */
3046 if (i1)
3048 subst_low_luid = DF_INSN_LUID (i1);
3049 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3052 subst_low_luid = DF_INSN_LUID (i2);
3053 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3056 n_occurrences = 0; /* `subst' counts here */
3057 subst_low_luid = DF_INSN_LUID (i2);
3059 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3060 copy of I2SRC each time we substitute it, in order to avoid creating
3061 self-referential RTL when we will be substituting I1SRC for I1DEST
3062 later. Likewise if I0 feeds into I2, either directly or indirectly
3063 through I1, and I0DEST is in I0SRC. */
3064 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3065 (i1_feeds_i2_n && i1dest_in_i1src)
3066 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3067 && i0dest_in_i0src));
3068 substed_i2 = 1;
3070 /* Record whether I2's body now appears within I3's body. */
3071 i2_is_used = n_occurrences;
3074 /* If we already got a failure, don't try to do more. Otherwise, try to
3075 substitute I1 if we have it. */
3077 if (i1 && GET_CODE (newpat) != CLOBBER)
3079 /* Check that an autoincrement side-effect on I1 has not been lost.
3080 This happens if I1DEST is mentioned in I2 and dies there, and
3081 has disappeared from the new pattern. */
3082 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3083 && i1_feeds_i2_n
3084 && dead_or_set_p (i2, i1dest)
3085 && !reg_overlap_mentioned_p (i1dest, newpat))
3086 /* Before we can do this substitution, we must redo the test done
3087 above (see detailed comments there) that ensures I1DEST isn't
3088 mentioned in any SETs in NEWPAT that are field assignments. */
3089 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3090 0, 0, 0))
3092 undo_all ();
3093 return 0;
3096 n_occurrences = 0;
3097 subst_low_luid = DF_INSN_LUID (i1);
3099 /* If the following substitution will modify I1SRC, make a copy of it
3100 for the case where it is substituted for I1DEST in I2PAT later. */
3101 if (added_sets_2 && i1_feeds_i2_n)
3102 i1src_copy = copy_rtx (i1src);
3104 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3105 copy of I1SRC each time we substitute it, in order to avoid creating
3106 self-referential RTL when we will be substituting I0SRC for I0DEST
3107 later. */
3108 newpat = subst (newpat, i1dest, i1src, 0, 0,
3109 i0_feeds_i1_n && i0dest_in_i0src);
3110 substed_i1 = 1;
3112 /* Record whether I1's body now appears within I3's body. */
3113 i1_is_used = n_occurrences;
3116 /* Likewise for I0 if we have it. */
3118 if (i0 && GET_CODE (newpat) != CLOBBER)
3120 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3121 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3122 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3123 && !reg_overlap_mentioned_p (i0dest, newpat))
3124 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3125 0, 0, 0))
3127 undo_all ();
3128 return 0;
3131 /* If the following substitution will modify I0SRC, make a copy of it
3132 for the case where it is substituted for I0DEST in I1PAT later. */
3133 if (added_sets_1 && i0_feeds_i1_n)
3134 i0src_copy = copy_rtx (i0src);
3135 /* And a copy for I0DEST in I2PAT substitution. */
3136 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3137 || (i0_feeds_i2_n)))
3138 i0src_copy2 = copy_rtx (i0src);
3140 n_occurrences = 0;
3141 subst_low_luid = DF_INSN_LUID (i0);
3142 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3143 substed_i0 = 1;
3146 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3147 to count all the ways that I2SRC and I1SRC can be used. */
3148 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3149 && i2_is_used + added_sets_2 > 1)
3150 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3151 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3152 > 1))
3153 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3154 && (n_occurrences + added_sets_0
3155 + (added_sets_1 && i0_feeds_i1_n)
3156 + (added_sets_2 && i0_feeds_i2_n)
3157 > 1))
3158 /* Fail if we tried to make a new register. */
3159 || max_reg_num () != maxreg
3160 /* Fail if we couldn't do something and have a CLOBBER. */
3161 || GET_CODE (newpat) == CLOBBER
3162 /* Fail if this new pattern is a MULT and we didn't have one before
3163 at the outer level. */
3164 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3165 && ! have_mult))
3167 undo_all ();
3168 return 0;
3171 /* If the actions of the earlier insns must be kept
3172 in addition to substituting them into the latest one,
3173 we must make a new PARALLEL for the latest insn
3174 to hold additional the SETs. */
3176 if (added_sets_0 || added_sets_1 || added_sets_2)
3178 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3179 combine_extras++;
3181 if (GET_CODE (newpat) == PARALLEL)
3183 rtvec old = XVEC (newpat, 0);
3184 total_sets = XVECLEN (newpat, 0) + extra_sets;
3185 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3186 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3187 sizeof (old->elem[0]) * old->num_elem);
3189 else
3191 rtx old = newpat;
3192 total_sets = 1 + extra_sets;
3193 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3194 XVECEXP (newpat, 0, 0) = old;
3197 if (added_sets_0)
3198 XVECEXP (newpat, 0, --total_sets) = i0pat;
3200 if (added_sets_1)
3202 rtx t = i1pat;
3203 if (i0_feeds_i1_n)
3204 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3206 XVECEXP (newpat, 0, --total_sets) = t;
3208 if (added_sets_2)
3210 rtx t = i2pat;
3211 if (i1_feeds_i2_n)
3212 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3213 i0_feeds_i1_n && i0dest_in_i0src);
3214 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3215 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3217 XVECEXP (newpat, 0, --total_sets) = t;
3221 validate_replacement:
3223 /* Note which hard regs this insn has as inputs. */
3224 mark_used_regs_combine (newpat);
3226 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3227 consider splitting this pattern, we might need these clobbers. */
3228 if (i1 && GET_CODE (newpat) == PARALLEL
3229 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3231 int len = XVECLEN (newpat, 0);
3233 newpat_vec_with_clobbers = rtvec_alloc (len);
3234 for (i = 0; i < len; i++)
3235 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3238 /* Is the result of combination a valid instruction? */
3239 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3241 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3242 the second SET's destination is a register that is unused and isn't
3243 marked as an instruction that might trap in an EH region. In that case,
3244 we just need the first SET. This can occur when simplifying a divmod
3245 insn. We *must* test for this case here because the code below that
3246 splits two independent SETs doesn't handle this case correctly when it
3247 updates the register status.
3249 It's pointless doing this if we originally had two sets, one from
3250 i3, and one from i2. Combining then splitting the parallel results
3251 in the original i2 again plus an invalid insn (which we delete).
3252 The net effect is only to move instructions around, which makes
3253 debug info less accurate.
3255 Also check the case where the first SET's destination is unused.
3256 That would not cause incorrect code, but does cause an unneeded
3257 insn to remain. */
3259 if (insn_code_number < 0
3260 && !(added_sets_2 && i1 == 0)
3261 && GET_CODE (newpat) == PARALLEL
3262 && XVECLEN (newpat, 0) == 2
3263 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3264 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3265 && asm_noperands (newpat) < 0)
3267 rtx set0 = XVECEXP (newpat, 0, 0);
3268 rtx set1 = XVECEXP (newpat, 0, 1);
3270 if (((REG_P (SET_DEST (set1))
3271 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3272 || (GET_CODE (SET_DEST (set1)) == SUBREG
3273 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3274 && insn_nothrow_p (i3)
3275 && !side_effects_p (SET_SRC (set1)))
3277 newpat = set0;
3278 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3281 else if (((REG_P (SET_DEST (set0))
3282 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3283 || (GET_CODE (SET_DEST (set0)) == SUBREG
3284 && find_reg_note (i3, REG_UNUSED,
3285 SUBREG_REG (SET_DEST (set0)))))
3286 && insn_nothrow_p (i3)
3287 && !side_effects_p (SET_SRC (set0)))
3289 newpat = set1;
3290 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3292 if (insn_code_number >= 0)
3293 changed_i3_dest = 1;
3297 /* If we were combining three insns and the result is a simple SET
3298 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3299 insns. There are two ways to do this. It can be split using a
3300 machine-specific method (like when you have an addition of a large
3301 constant) or by combine in the function find_split_point. */
3303 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3304 && asm_noperands (newpat) < 0)
3306 rtx parallel, m_split, *split;
3308 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3309 use I2DEST as a scratch register will help. In the latter case,
3310 convert I2DEST to the mode of the source of NEWPAT if we can. */
3312 m_split = combine_split_insns (newpat, i3);
3314 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3315 inputs of NEWPAT. */
3317 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3318 possible to try that as a scratch reg. This would require adding
3319 more code to make it work though. */
3321 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3323 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3325 /* First try to split using the original register as a
3326 scratch register. */
3327 parallel = gen_rtx_PARALLEL (VOIDmode,
3328 gen_rtvec (2, newpat,
3329 gen_rtx_CLOBBER (VOIDmode,
3330 i2dest)));
3331 m_split = combine_split_insns (parallel, i3);
3333 /* If that didn't work, try changing the mode of I2DEST if
3334 we can. */
3335 if (m_split == 0
3336 && new_mode != GET_MODE (i2dest)
3337 && new_mode != VOIDmode
3338 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3340 enum machine_mode old_mode = GET_MODE (i2dest);
3341 rtx ni2dest;
3343 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3344 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3345 else
3347 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3348 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3351 parallel = (gen_rtx_PARALLEL
3352 (VOIDmode,
3353 gen_rtvec (2, newpat,
3354 gen_rtx_CLOBBER (VOIDmode,
3355 ni2dest))));
3356 m_split = combine_split_insns (parallel, i3);
3358 if (m_split == 0
3359 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3361 struct undo *buf;
3363 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3364 buf = undobuf.undos;
3365 undobuf.undos = buf->next;
3366 buf->next = undobuf.frees;
3367 undobuf.frees = buf;
3371 i2scratch = m_split != 0;
3374 /* If recog_for_combine has discarded clobbers, try to use them
3375 again for the split. */
3376 if (m_split == 0 && newpat_vec_with_clobbers)
3378 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3379 m_split = combine_split_insns (parallel, i3);
3382 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3384 m_split = PATTERN (m_split);
3385 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3386 if (insn_code_number >= 0)
3387 newpat = m_split;
3389 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3390 && (next_nonnote_nondebug_insn (i2) == i3
3391 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3393 rtx i2set, i3set;
3394 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3395 newi2pat = PATTERN (m_split);
3397 i3set = single_set (NEXT_INSN (m_split));
3398 i2set = single_set (m_split);
3400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3402 /* If I2 or I3 has multiple SETs, we won't know how to track
3403 register status, so don't use these insns. If I2's destination
3404 is used between I2 and I3, we also can't use these insns. */
3406 if (i2_code_number >= 0 && i2set && i3set
3407 && (next_nonnote_nondebug_insn (i2) == i3
3408 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3409 insn_code_number = recog_for_combine (&newi3pat, i3,
3410 &new_i3_notes);
3411 if (insn_code_number >= 0)
3412 newpat = newi3pat;
3414 /* It is possible that both insns now set the destination of I3.
3415 If so, we must show an extra use of it. */
3417 if (insn_code_number >= 0)
3419 rtx new_i3_dest = SET_DEST (i3set);
3420 rtx new_i2_dest = SET_DEST (i2set);
3422 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3423 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3424 || GET_CODE (new_i3_dest) == SUBREG)
3425 new_i3_dest = XEXP (new_i3_dest, 0);
3427 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3428 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3429 || GET_CODE (new_i2_dest) == SUBREG)
3430 new_i2_dest = XEXP (new_i2_dest, 0);
3432 if (REG_P (new_i3_dest)
3433 && REG_P (new_i2_dest)
3434 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3435 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3439 /* If we can split it and use I2DEST, go ahead and see if that
3440 helps things be recognized. Verify that none of the registers
3441 are set between I2 and I3. */
3442 if (insn_code_number < 0
3443 && (split = find_split_point (&newpat, i3, false)) != 0
3444 #ifdef HAVE_cc0
3445 && REG_P (i2dest)
3446 #endif
3447 /* We need I2DEST in the proper mode. If it is a hard register
3448 or the only use of a pseudo, we can change its mode.
3449 Make sure we don't change a hard register to have a mode that
3450 isn't valid for it, or change the number of registers. */
3451 && (GET_MODE (*split) == GET_MODE (i2dest)
3452 || GET_MODE (*split) == VOIDmode
3453 || can_change_dest_mode (i2dest, added_sets_2,
3454 GET_MODE (*split)))
3455 && (next_nonnote_nondebug_insn (i2) == i3
3456 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3457 /* We can't overwrite I2DEST if its value is still used by
3458 NEWPAT. */
3459 && ! reg_referenced_p (i2dest, newpat))
3461 rtx newdest = i2dest;
3462 enum rtx_code split_code = GET_CODE (*split);
3463 enum machine_mode split_mode = GET_MODE (*split);
3464 bool subst_done = false;
3465 newi2pat = NULL_RTX;
3467 i2scratch = true;
3469 /* *SPLIT may be part of I2SRC, so make sure we have the
3470 original expression around for later debug processing.
3471 We should not need I2SRC any more in other cases. */
3472 if (MAY_HAVE_DEBUG_INSNS)
3473 i2src = copy_rtx (i2src);
3474 else
3475 i2src = NULL;
3477 /* Get NEWDEST as a register in the proper mode. We have already
3478 validated that we can do this. */
3479 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3481 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3482 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3483 else
3485 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3486 newdest = regno_reg_rtx[REGNO (i2dest)];
3490 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3491 an ASHIFT. This can occur if it was inside a PLUS and hence
3492 appeared to be a memory address. This is a kludge. */
3493 if (split_code == MULT
3494 && CONST_INT_P (XEXP (*split, 1))
3495 && INTVAL (XEXP (*split, 1)) > 0
3496 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3498 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3499 XEXP (*split, 0), GEN_INT (i)));
3500 /* Update split_code because we may not have a multiply
3501 anymore. */
3502 split_code = GET_CODE (*split);
3505 #ifdef INSN_SCHEDULING
3506 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3507 be written as a ZERO_EXTEND. */
3508 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3510 #ifdef LOAD_EXTEND_OP
3511 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3512 what it really is. */
3513 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3514 == SIGN_EXTEND)
3515 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3516 SUBREG_REG (*split)));
3517 else
3518 #endif
3519 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3522 #endif
3524 /* Attempt to split binary operators using arithmetic identities. */
3525 if (BINARY_P (SET_SRC (newpat))
3526 && split_mode == GET_MODE (SET_SRC (newpat))
3527 && ! side_effects_p (SET_SRC (newpat)))
3529 rtx setsrc = SET_SRC (newpat);
3530 enum machine_mode mode = GET_MODE (setsrc);
3531 enum rtx_code code = GET_CODE (setsrc);
3532 rtx src_op0 = XEXP (setsrc, 0);
3533 rtx src_op1 = XEXP (setsrc, 1);
3535 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3536 if (rtx_equal_p (src_op0, src_op1))
3538 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3539 SUBST (XEXP (setsrc, 0), newdest);
3540 SUBST (XEXP (setsrc, 1), newdest);
3541 subst_done = true;
3543 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3544 else if ((code == PLUS || code == MULT)
3545 && GET_CODE (src_op0) == code
3546 && GET_CODE (XEXP (src_op0, 0)) == code
3547 && (INTEGRAL_MODE_P (mode)
3548 || (FLOAT_MODE_P (mode)
3549 && flag_unsafe_math_optimizations)))
3551 rtx p = XEXP (XEXP (src_op0, 0), 0);
3552 rtx q = XEXP (XEXP (src_op0, 0), 1);
3553 rtx r = XEXP (src_op0, 1);
3554 rtx s = src_op1;
3556 /* Split both "((X op Y) op X) op Y" and
3557 "((X op Y) op Y) op X" as "T op T" where T is
3558 "X op Y". */
3559 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3560 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3562 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3563 XEXP (src_op0, 0));
3564 SUBST (XEXP (setsrc, 0), newdest);
3565 SUBST (XEXP (setsrc, 1), newdest);
3566 subst_done = true;
3568 /* Split "((X op X) op Y) op Y)" as "T op T" where
3569 T is "X op Y". */
3570 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3572 rtx tmp = simplify_gen_binary (code, mode, p, r);
3573 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3574 SUBST (XEXP (setsrc, 0), newdest);
3575 SUBST (XEXP (setsrc, 1), newdest);
3576 subst_done = true;
3581 if (!subst_done)
3583 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3584 SUBST (*split, newdest);
3587 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3589 /* recog_for_combine might have added CLOBBERs to newi2pat.
3590 Make sure NEWPAT does not depend on the clobbered regs. */
3591 if (GET_CODE (newi2pat) == PARALLEL)
3592 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3593 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3595 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3596 if (reg_overlap_mentioned_p (reg, newpat))
3598 undo_all ();
3599 return 0;
3603 /* If the split point was a MULT and we didn't have one before,
3604 don't use one now. */
3605 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3606 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3610 /* Check for a case where we loaded from memory in a narrow mode and
3611 then sign extended it, but we need both registers. In that case,
3612 we have a PARALLEL with both loads from the same memory location.
3613 We can split this into a load from memory followed by a register-register
3614 copy. This saves at least one insn, more if register allocation can
3615 eliminate the copy.
3617 We cannot do this if the destination of the first assignment is a
3618 condition code register or cc0. We eliminate this case by making sure
3619 the SET_DEST and SET_SRC have the same mode.
3621 We cannot do this if the destination of the second assignment is
3622 a register that we have already assumed is zero-extended. Similarly
3623 for a SUBREG of such a register. */
3625 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3626 && GET_CODE (newpat) == PARALLEL
3627 && XVECLEN (newpat, 0) == 2
3628 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3629 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3630 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3631 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3632 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3633 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3634 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3635 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3636 DF_INSN_LUID (i2))
3637 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3639 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3640 (REG_P (temp)
3641 && reg_stat[REGNO (temp)].nonzero_bits != 0
3642 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3643 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3644 && (reg_stat[REGNO (temp)].nonzero_bits
3645 != GET_MODE_MASK (word_mode))))
3646 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3647 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3648 (REG_P (temp)
3649 && reg_stat[REGNO (temp)].nonzero_bits != 0
3650 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3651 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3652 && (reg_stat[REGNO (temp)].nonzero_bits
3653 != GET_MODE_MASK (word_mode)))))
3654 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3655 SET_SRC (XVECEXP (newpat, 0, 1)))
3656 && ! find_reg_note (i3, REG_UNUSED,
3657 SET_DEST (XVECEXP (newpat, 0, 0))))
3659 rtx ni2dest;
3661 newi2pat = XVECEXP (newpat, 0, 0);
3662 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3663 newpat = XVECEXP (newpat, 0, 1);
3664 SUBST (SET_SRC (newpat),
3665 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3666 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3668 if (i2_code_number >= 0)
3669 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3671 if (insn_code_number >= 0)
3672 swap_i2i3 = 1;
3675 /* Similarly, check for a case where we have a PARALLEL of two independent
3676 SETs but we started with three insns. In this case, we can do the sets
3677 as two separate insns. This case occurs when some SET allows two
3678 other insns to combine, but the destination of that SET is still live. */
3680 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3681 && GET_CODE (newpat) == PARALLEL
3682 && XVECLEN (newpat, 0) == 2
3683 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3684 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3685 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3686 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3687 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3689 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3690 XVECEXP (newpat, 0, 0))
3691 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3692 XVECEXP (newpat, 0, 1))
3693 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3694 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3696 /* Normally, it doesn't matter which of the two is done first,
3697 but the one that references cc0 can't be the second, and
3698 one which uses any regs/memory set in between i2 and i3 can't
3699 be first. */
3700 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3701 DF_INSN_LUID (i2))
3702 #ifdef HAVE_cc0
3703 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3704 #endif
3707 newi2pat = XVECEXP (newpat, 0, 1);
3708 newpat = XVECEXP (newpat, 0, 0);
3710 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3711 DF_INSN_LUID (i2))
3712 #ifdef HAVE_cc0
3713 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3714 #endif
3717 newi2pat = XVECEXP (newpat, 0, 0);
3718 newpat = XVECEXP (newpat, 0, 1);
3720 else
3722 undo_all ();
3723 return 0;
3726 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3728 if (i2_code_number >= 0)
3730 /* recog_for_combine might have added CLOBBERs to newi2pat.
3731 Make sure NEWPAT does not depend on the clobbered regs. */
3732 if (GET_CODE (newi2pat) == PARALLEL)
3734 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3735 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3737 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3738 if (reg_overlap_mentioned_p (reg, newpat))
3740 undo_all ();
3741 return 0;
3746 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3750 /* If it still isn't recognized, fail and change things back the way they
3751 were. */
3752 if ((insn_code_number < 0
3753 /* Is the result a reasonable ASM_OPERANDS? */
3754 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3756 undo_all ();
3757 return 0;
3760 /* If we had to change another insn, make sure it is valid also. */
3761 if (undobuf.other_insn)
3763 CLEAR_HARD_REG_SET (newpat_used_regs);
3765 other_pat = PATTERN (undobuf.other_insn);
3766 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3767 &new_other_notes);
3769 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3771 undo_all ();
3772 return 0;
3776 #ifdef HAVE_cc0
3777 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3778 they are adjacent to each other or not. */
3780 rtx p = prev_nonnote_insn (i3);
3781 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3782 && sets_cc0_p (newi2pat))
3784 undo_all ();
3785 return 0;
3788 #endif
3790 /* Only allow this combination if insn_rtx_costs reports that the
3791 replacement instructions are cheaper than the originals. */
3792 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3794 undo_all ();
3795 return 0;
3798 if (MAY_HAVE_DEBUG_INSNS)
3800 struct undo *undo;
3802 for (undo = undobuf.undos; undo; undo = undo->next)
3803 if (undo->kind == UNDO_MODE)
3805 rtx reg = *undo->where.r;
3806 enum machine_mode new_mode = GET_MODE (reg);
3807 enum machine_mode old_mode = undo->old_contents.m;
3809 /* Temporarily revert mode back. */
3810 adjust_reg_mode (reg, old_mode);
3812 if (reg == i2dest && i2scratch)
3814 /* If we used i2dest as a scratch register with a
3815 different mode, substitute it for the original
3816 i2src while its original mode is temporarily
3817 restored, and then clear i2scratch so that we don't
3818 do it again later. */
3819 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3820 this_basic_block);
3821 i2scratch = false;
3822 /* Put back the new mode. */
3823 adjust_reg_mode (reg, new_mode);
3825 else
3827 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3828 rtx first, last;
3830 if (reg == i2dest)
3832 first = i2;
3833 last = last_combined_insn;
3835 else
3837 first = i3;
3838 last = undobuf.other_insn;
3839 gcc_assert (last);
3840 if (DF_INSN_LUID (last)
3841 < DF_INSN_LUID (last_combined_insn))
3842 last = last_combined_insn;
3845 /* We're dealing with a reg that changed mode but not
3846 meaning, so we want to turn it into a subreg for
3847 the new mode. However, because of REG sharing and
3848 because its mode had already changed, we have to do
3849 it in two steps. First, replace any debug uses of
3850 reg, with its original mode temporarily restored,
3851 with this copy we have created; then, replace the
3852 copy with the SUBREG of the original shared reg,
3853 once again changed to the new mode. */
3854 propagate_for_debug (first, last, reg, tempreg,
3855 this_basic_block);
3856 adjust_reg_mode (reg, new_mode);
3857 propagate_for_debug (first, last, tempreg,
3858 lowpart_subreg (old_mode, reg, new_mode),
3859 this_basic_block);
3864 /* If we will be able to accept this, we have made a
3865 change to the destination of I3. This requires us to
3866 do a few adjustments. */
3868 if (changed_i3_dest)
3870 PATTERN (i3) = newpat;
3871 adjust_for_new_dest (i3);
3874 /* We now know that we can do this combination. Merge the insns and
3875 update the status of registers and LOG_LINKS. */
3877 if (undobuf.other_insn)
3879 rtx note, next;
3881 PATTERN (undobuf.other_insn) = other_pat;
3883 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3884 are still valid. Then add any non-duplicate notes added by
3885 recog_for_combine. */
3886 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3888 next = XEXP (note, 1);
3890 if (REG_NOTE_KIND (note) == REG_UNUSED
3891 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3892 remove_note (undobuf.other_insn, note);
3895 distribute_notes (new_other_notes, undobuf.other_insn,
3896 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3897 NULL_RTX);
3900 if (swap_i2i3)
3902 rtx insn;
3903 struct insn_link *link;
3904 rtx ni2dest;
3906 /* I3 now uses what used to be its destination and which is now
3907 I2's destination. This requires us to do a few adjustments. */
3908 PATTERN (i3) = newpat;
3909 adjust_for_new_dest (i3);
3911 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3912 so we still will.
3914 However, some later insn might be using I2's dest and have
3915 a LOG_LINK pointing at I3. We must remove this link.
3916 The simplest way to remove the link is to point it at I1,
3917 which we know will be a NOTE. */
3919 /* newi2pat is usually a SET here; however, recog_for_combine might
3920 have added some clobbers. */
3921 if (GET_CODE (newi2pat) == PARALLEL)
3922 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3923 else
3924 ni2dest = SET_DEST (newi2pat);
3926 for (insn = NEXT_INSN (i3);
3927 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3928 || insn != BB_HEAD (this_basic_block->next_bb));
3929 insn = NEXT_INSN (insn))
3931 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3933 FOR_EACH_LOG_LINK (link, insn)
3934 if (link->insn == i3)
3935 link->insn = i1;
3937 break;
3943 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3944 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3945 rtx midnotes = 0;
3946 int from_luid;
3947 /* Compute which registers we expect to eliminate. newi2pat may be setting
3948 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3949 same as i3dest, in which case newi2pat may be setting i1dest. */
3950 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3951 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3952 || !i2dest_killed
3953 ? 0 : i2dest);
3954 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3955 || (newi2pat && reg_set_p (i1dest, newi2pat))
3956 || !i1dest_killed
3957 ? 0 : i1dest);
3958 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3959 || (newi2pat && reg_set_p (i0dest, newi2pat))
3960 || !i0dest_killed
3961 ? 0 : i0dest);
3963 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3964 clear them. */
3965 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3966 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3967 if (i1)
3968 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3969 if (i0)
3970 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3972 /* Ensure that we do not have something that should not be shared but
3973 occurs multiple times in the new insns. Check this by first
3974 resetting all the `used' flags and then copying anything is shared. */
3976 reset_used_flags (i3notes);
3977 reset_used_flags (i2notes);
3978 reset_used_flags (i1notes);
3979 reset_used_flags (i0notes);
3980 reset_used_flags (newpat);
3981 reset_used_flags (newi2pat);
3982 if (undobuf.other_insn)
3983 reset_used_flags (PATTERN (undobuf.other_insn));
3985 i3notes = copy_rtx_if_shared (i3notes);
3986 i2notes = copy_rtx_if_shared (i2notes);
3987 i1notes = copy_rtx_if_shared (i1notes);
3988 i0notes = copy_rtx_if_shared (i0notes);
3989 newpat = copy_rtx_if_shared (newpat);
3990 newi2pat = copy_rtx_if_shared (newi2pat);
3991 if (undobuf.other_insn)
3992 reset_used_flags (PATTERN (undobuf.other_insn));
3994 INSN_CODE (i3) = insn_code_number;
3995 PATTERN (i3) = newpat;
3997 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3999 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4001 reset_used_flags (call_usage);
4002 call_usage = copy_rtx (call_usage);
4004 if (substed_i2)
4006 /* I2SRC must still be meaningful at this point. Some splitting
4007 operations can invalidate I2SRC, but those operations do not
4008 apply to calls. */
4009 gcc_assert (i2src);
4010 replace_rtx (call_usage, i2dest, i2src);
4013 if (substed_i1)
4014 replace_rtx (call_usage, i1dest, i1src);
4015 if (substed_i0)
4016 replace_rtx (call_usage, i0dest, i0src);
4018 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4021 if (undobuf.other_insn)
4022 INSN_CODE (undobuf.other_insn) = other_code_number;
4024 /* We had one special case above where I2 had more than one set and
4025 we replaced a destination of one of those sets with the destination
4026 of I3. In that case, we have to update LOG_LINKS of insns later
4027 in this basic block. Note that this (expensive) case is rare.
4029 Also, in this case, we must pretend that all REG_NOTEs for I2
4030 actually came from I3, so that REG_UNUSED notes from I2 will be
4031 properly handled. */
4033 if (i3_subst_into_i2)
4035 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4036 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4037 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4038 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4039 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4040 && ! find_reg_note (i2, REG_UNUSED,
4041 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4042 for (temp = NEXT_INSN (i2);
4043 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4044 || BB_HEAD (this_basic_block) != temp);
4045 temp = NEXT_INSN (temp))
4046 if (temp != i3 && INSN_P (temp))
4047 FOR_EACH_LOG_LINK (link, temp)
4048 if (link->insn == i2)
4049 link->insn = i3;
4051 if (i3notes)
4053 rtx link = i3notes;
4054 while (XEXP (link, 1))
4055 link = XEXP (link, 1);
4056 XEXP (link, 1) = i2notes;
4058 else
4059 i3notes = i2notes;
4060 i2notes = 0;
4063 LOG_LINKS (i3) = NULL;
4064 REG_NOTES (i3) = 0;
4065 LOG_LINKS (i2) = NULL;
4066 REG_NOTES (i2) = 0;
4068 if (newi2pat)
4070 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4071 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4072 this_basic_block);
4073 INSN_CODE (i2) = i2_code_number;
4074 PATTERN (i2) = newi2pat;
4076 else
4078 if (MAY_HAVE_DEBUG_INSNS && i2src)
4079 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4080 this_basic_block);
4081 SET_INSN_DELETED (i2);
4084 if (i1)
4086 LOG_LINKS (i1) = NULL;
4087 REG_NOTES (i1) = 0;
4088 if (MAY_HAVE_DEBUG_INSNS)
4089 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4090 this_basic_block);
4091 SET_INSN_DELETED (i1);
4094 if (i0)
4096 LOG_LINKS (i0) = NULL;
4097 REG_NOTES (i0) = 0;
4098 if (MAY_HAVE_DEBUG_INSNS)
4099 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4100 this_basic_block);
4101 SET_INSN_DELETED (i0);
4104 /* Get death notes for everything that is now used in either I3 or
4105 I2 and used to die in a previous insn. If we built two new
4106 patterns, move from I1 to I2 then I2 to I3 so that we get the
4107 proper movement on registers that I2 modifies. */
4109 if (i0)
4110 from_luid = DF_INSN_LUID (i0);
4111 else if (i1)
4112 from_luid = DF_INSN_LUID (i1);
4113 else
4114 from_luid = DF_INSN_LUID (i2);
4115 if (newi2pat)
4116 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4117 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4119 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4120 if (i3notes)
4121 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4122 elim_i2, elim_i1, elim_i0);
4123 if (i2notes)
4124 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4125 elim_i2, elim_i1, elim_i0);
4126 if (i1notes)
4127 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4128 elim_i2, elim_i1, elim_i0);
4129 if (i0notes)
4130 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4131 elim_i2, elim_i1, elim_i0);
4132 if (midnotes)
4133 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4134 elim_i2, elim_i1, elim_i0);
4136 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4137 know these are REG_UNUSED and want them to go to the desired insn,
4138 so we always pass it as i3. */
4140 if (newi2pat && new_i2_notes)
4141 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4142 NULL_RTX);
4144 if (new_i3_notes)
4145 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4146 NULL_RTX);
4148 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4149 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4150 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4151 in that case, it might delete I2. Similarly for I2 and I1.
4152 Show an additional death due to the REG_DEAD note we make here. If
4153 we discard it in distribute_notes, we will decrement it again. */
4155 if (i3dest_killed)
4157 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4158 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4159 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, elim_i2,
4160 elim_i1, elim_i0);
4161 else
4162 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4163 elim_i2, elim_i1, elim_i0);
4166 if (i2dest_in_i2src)
4168 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4169 if (newi2pat && reg_set_p (i2dest, newi2pat))
4170 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4171 NULL_RTX, NULL_RTX);
4172 else
4173 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4174 NULL_RTX, NULL_RTX, NULL_RTX);
4177 if (i1dest_in_i1src)
4179 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4180 if (newi2pat && reg_set_p (i1dest, newi2pat))
4181 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4182 NULL_RTX, NULL_RTX);
4183 else
4184 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4185 NULL_RTX, NULL_RTX, NULL_RTX);
4188 if (i0dest_in_i0src)
4190 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4191 if (newi2pat && reg_set_p (i0dest, newi2pat))
4192 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4193 NULL_RTX, NULL_RTX);
4194 else
4195 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4196 NULL_RTX, NULL_RTX, NULL_RTX);
4199 distribute_links (i3links);
4200 distribute_links (i2links);
4201 distribute_links (i1links);
4202 distribute_links (i0links);
4204 if (REG_P (i2dest))
4206 struct insn_link *link;
4207 rtx i2_insn = 0, i2_val = 0, set;
4209 /* The insn that used to set this register doesn't exist, and
4210 this life of the register may not exist either. See if one of
4211 I3's links points to an insn that sets I2DEST. If it does,
4212 that is now the last known value for I2DEST. If we don't update
4213 this and I2 set the register to a value that depended on its old
4214 contents, we will get confused. If this insn is used, thing
4215 will be set correctly in combine_instructions. */
4216 FOR_EACH_LOG_LINK (link, i3)
4217 if ((set = single_set (link->insn)) != 0
4218 && rtx_equal_p (i2dest, SET_DEST (set)))
4219 i2_insn = link->insn, i2_val = SET_SRC (set);
4221 record_value_for_reg (i2dest, i2_insn, i2_val);
4223 /* If the reg formerly set in I2 died only once and that was in I3,
4224 zero its use count so it won't make `reload' do any work. */
4225 if (! added_sets_2
4226 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4227 && ! i2dest_in_i2src)
4228 INC_REG_N_SETS (REGNO (i2dest), -1);
4231 if (i1 && REG_P (i1dest))
4233 struct insn_link *link;
4234 rtx i1_insn = 0, i1_val = 0, set;
4236 FOR_EACH_LOG_LINK (link, i3)
4237 if ((set = single_set (link->insn)) != 0
4238 && rtx_equal_p (i1dest, SET_DEST (set)))
4239 i1_insn = link->insn, i1_val = SET_SRC (set);
4241 record_value_for_reg (i1dest, i1_insn, i1_val);
4243 if (! added_sets_1 && ! i1dest_in_i1src)
4244 INC_REG_N_SETS (REGNO (i1dest), -1);
4247 if (i0 && REG_P (i0dest))
4249 struct insn_link *link;
4250 rtx i0_insn = 0, i0_val = 0, set;
4252 FOR_EACH_LOG_LINK (link, i3)
4253 if ((set = single_set (link->insn)) != 0
4254 && rtx_equal_p (i0dest, SET_DEST (set)))
4255 i0_insn = link->insn, i0_val = SET_SRC (set);
4257 record_value_for_reg (i0dest, i0_insn, i0_val);
4259 if (! added_sets_0 && ! i0dest_in_i0src)
4260 INC_REG_N_SETS (REGNO (i0dest), -1);
4263 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4264 been made to this insn. The order of
4265 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4266 can affect nonzero_bits of newpat */
4267 if (newi2pat)
4268 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4269 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4272 if (undobuf.other_insn != NULL_RTX)
4274 if (dump_file)
4276 fprintf (dump_file, "modifying other_insn ");
4277 dump_insn_slim (dump_file, undobuf.other_insn);
4279 df_insn_rescan (undobuf.other_insn);
4282 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4284 if (dump_file)
4286 fprintf (dump_file, "modifying insn i1 ");
4287 dump_insn_slim (dump_file, i0);
4289 df_insn_rescan (i0);
4292 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4294 if (dump_file)
4296 fprintf (dump_file, "modifying insn i1 ");
4297 dump_insn_slim (dump_file, i1);
4299 df_insn_rescan (i1);
4302 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4304 if (dump_file)
4306 fprintf (dump_file, "modifying insn i2 ");
4307 dump_insn_slim (dump_file, i2);
4309 df_insn_rescan (i2);
4312 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4314 if (dump_file)
4316 fprintf (dump_file, "modifying insn i3 ");
4317 dump_insn_slim (dump_file, i3);
4319 df_insn_rescan (i3);
4322 /* Set new_direct_jump_p if a new return or simple jump instruction
4323 has been created. Adjust the CFG accordingly. */
4325 if (returnjump_p (i3) || any_uncondjump_p (i3))
4327 *new_direct_jump_p = 1;
4328 mark_jump_label (PATTERN (i3), i3, 0);
4329 update_cfg_for_uncondjump (i3);
4332 if (undobuf.other_insn != NULL_RTX
4333 && (returnjump_p (undobuf.other_insn)
4334 || any_uncondjump_p (undobuf.other_insn)))
4336 *new_direct_jump_p = 1;
4337 update_cfg_for_uncondjump (undobuf.other_insn);
4340 /* A noop might also need cleaning up of CFG, if it comes from the
4341 simplification of a jump. */
4342 if (JUMP_P (i3)
4343 && GET_CODE (newpat) == SET
4344 && SET_SRC (newpat) == pc_rtx
4345 && SET_DEST (newpat) == pc_rtx)
4347 *new_direct_jump_p = 1;
4348 update_cfg_for_uncondjump (i3);
4351 if (undobuf.other_insn != NULL_RTX
4352 && JUMP_P (undobuf.other_insn)
4353 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4354 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4355 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4357 *new_direct_jump_p = 1;
4358 update_cfg_for_uncondjump (undobuf.other_insn);
4361 combine_successes++;
4362 undo_commit ();
4364 if (added_links_insn
4365 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4366 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4367 return added_links_insn;
4368 else
4369 return newi2pat ? i2 : i3;
4372 /* Undo all the modifications recorded in undobuf. */
4374 static void
4375 undo_all (void)
4377 struct undo *undo, *next;
4379 for (undo = undobuf.undos; undo; undo = next)
4381 next = undo->next;
4382 switch (undo->kind)
4384 case UNDO_RTX:
4385 *undo->where.r = undo->old_contents.r;
4386 break;
4387 case UNDO_INT:
4388 *undo->where.i = undo->old_contents.i;
4389 break;
4390 case UNDO_MODE:
4391 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4392 break;
4393 case UNDO_LINKS:
4394 *undo->where.l = undo->old_contents.l;
4395 break;
4396 default:
4397 gcc_unreachable ();
4400 undo->next = undobuf.frees;
4401 undobuf.frees = undo;
4404 undobuf.undos = 0;
4407 /* We've committed to accepting the changes we made. Move all
4408 of the undos to the free list. */
4410 static void
4411 undo_commit (void)
4413 struct undo *undo, *next;
4415 for (undo = undobuf.undos; undo; undo = next)
4417 next = undo->next;
4418 undo->next = undobuf.frees;
4419 undobuf.frees = undo;
4421 undobuf.undos = 0;
4424 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4425 where we have an arithmetic expression and return that point. LOC will
4426 be inside INSN.
4428 try_combine will call this function to see if an insn can be split into
4429 two insns. */
4431 static rtx *
4432 find_split_point (rtx *loc, rtx insn, bool set_src)
4434 rtx x = *loc;
4435 enum rtx_code code = GET_CODE (x);
4436 rtx *split;
4437 unsigned HOST_WIDE_INT len = 0;
4438 HOST_WIDE_INT pos = 0;
4439 int unsignedp = 0;
4440 rtx inner = NULL_RTX;
4442 /* First special-case some codes. */
4443 switch (code)
4445 case SUBREG:
4446 #ifdef INSN_SCHEDULING
4447 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4448 point. */
4449 if (MEM_P (SUBREG_REG (x)))
4450 return loc;
4451 #endif
4452 return find_split_point (&SUBREG_REG (x), insn, false);
4454 case MEM:
4455 #ifdef HAVE_lo_sum
4456 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4457 using LO_SUM and HIGH. */
4458 if (GET_CODE (XEXP (x, 0)) == CONST
4459 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4461 enum machine_mode address_mode = get_address_mode (x);
4463 SUBST (XEXP (x, 0),
4464 gen_rtx_LO_SUM (address_mode,
4465 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4466 XEXP (x, 0)));
4467 return &XEXP (XEXP (x, 0), 0);
4469 #endif
4471 /* If we have a PLUS whose second operand is a constant and the
4472 address is not valid, perhaps will can split it up using
4473 the machine-specific way to split large constants. We use
4474 the first pseudo-reg (one of the virtual regs) as a placeholder;
4475 it will not remain in the result. */
4476 if (GET_CODE (XEXP (x, 0)) == PLUS
4477 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4478 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4479 MEM_ADDR_SPACE (x)))
4481 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4482 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4483 XEXP (x, 0)),
4484 subst_insn);
4486 /* This should have produced two insns, each of which sets our
4487 placeholder. If the source of the second is a valid address,
4488 we can make put both sources together and make a split point
4489 in the middle. */
4491 if (seq
4492 && NEXT_INSN (seq) != NULL_RTX
4493 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4494 && NONJUMP_INSN_P (seq)
4495 && GET_CODE (PATTERN (seq)) == SET
4496 && SET_DEST (PATTERN (seq)) == reg
4497 && ! reg_mentioned_p (reg,
4498 SET_SRC (PATTERN (seq)))
4499 && NONJUMP_INSN_P (NEXT_INSN (seq))
4500 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4501 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4502 && memory_address_addr_space_p
4503 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4504 MEM_ADDR_SPACE (x)))
4506 rtx src1 = SET_SRC (PATTERN (seq));
4507 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4509 /* Replace the placeholder in SRC2 with SRC1. If we can
4510 find where in SRC2 it was placed, that can become our
4511 split point and we can replace this address with SRC2.
4512 Just try two obvious places. */
4514 src2 = replace_rtx (src2, reg, src1);
4515 split = 0;
4516 if (XEXP (src2, 0) == src1)
4517 split = &XEXP (src2, 0);
4518 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4519 && XEXP (XEXP (src2, 0), 0) == src1)
4520 split = &XEXP (XEXP (src2, 0), 0);
4522 if (split)
4524 SUBST (XEXP (x, 0), src2);
4525 return split;
4529 /* If that didn't work, perhaps the first operand is complex and
4530 needs to be computed separately, so make a split point there.
4531 This will occur on machines that just support REG + CONST
4532 and have a constant moved through some previous computation. */
4534 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4535 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4536 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4537 return &XEXP (XEXP (x, 0), 0);
4540 /* If we have a PLUS whose first operand is complex, try computing it
4541 separately by making a split there. */
4542 if (GET_CODE (XEXP (x, 0)) == PLUS
4543 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4544 MEM_ADDR_SPACE (x))
4545 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4546 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4547 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4548 return &XEXP (XEXP (x, 0), 0);
4549 break;
4551 case SET:
4552 #ifdef HAVE_cc0
4553 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4554 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4555 we need to put the operand into a register. So split at that
4556 point. */
4558 if (SET_DEST (x) == cc0_rtx
4559 && GET_CODE (SET_SRC (x)) != COMPARE
4560 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4561 && !OBJECT_P (SET_SRC (x))
4562 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4563 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4564 return &SET_SRC (x);
4565 #endif
4567 /* See if we can split SET_SRC as it stands. */
4568 split = find_split_point (&SET_SRC (x), insn, true);
4569 if (split && split != &SET_SRC (x))
4570 return split;
4572 /* See if we can split SET_DEST as it stands. */
4573 split = find_split_point (&SET_DEST (x), insn, false);
4574 if (split && split != &SET_DEST (x))
4575 return split;
4577 /* See if this is a bitfield assignment with everything constant. If
4578 so, this is an IOR of an AND, so split it into that. */
4579 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4580 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4581 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4582 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4583 && CONST_INT_P (SET_SRC (x))
4584 && ((INTVAL (XEXP (SET_DEST (x), 1))
4585 + INTVAL (XEXP (SET_DEST (x), 2)))
4586 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4587 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4589 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4590 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4591 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4592 rtx dest = XEXP (SET_DEST (x), 0);
4593 enum machine_mode mode = GET_MODE (dest);
4594 unsigned HOST_WIDE_INT mask
4595 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4596 rtx or_mask;
4598 if (BITS_BIG_ENDIAN)
4599 pos = GET_MODE_PRECISION (mode) - len - pos;
4601 or_mask = gen_int_mode (src << pos, mode);
4602 if (src == mask)
4603 SUBST (SET_SRC (x),
4604 simplify_gen_binary (IOR, mode, dest, or_mask));
4605 else
4607 rtx negmask = gen_int_mode (~(mask << pos), mode);
4608 SUBST (SET_SRC (x),
4609 simplify_gen_binary (IOR, mode,
4610 simplify_gen_binary (AND, mode,
4611 dest, negmask),
4612 or_mask));
4615 SUBST (SET_DEST (x), dest);
4617 split = find_split_point (&SET_SRC (x), insn, true);
4618 if (split && split != &SET_SRC (x))
4619 return split;
4622 /* Otherwise, see if this is an operation that we can split into two.
4623 If so, try to split that. */
4624 code = GET_CODE (SET_SRC (x));
4626 switch (code)
4628 case AND:
4629 /* If we are AND'ing with a large constant that is only a single
4630 bit and the result is only being used in a context where we
4631 need to know if it is zero or nonzero, replace it with a bit
4632 extraction. This will avoid the large constant, which might
4633 have taken more than one insn to make. If the constant were
4634 not a valid argument to the AND but took only one insn to make,
4635 this is no worse, but if it took more than one insn, it will
4636 be better. */
4638 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4639 && REG_P (XEXP (SET_SRC (x), 0))
4640 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4641 && REG_P (SET_DEST (x))
4642 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4643 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4644 && XEXP (*split, 0) == SET_DEST (x)
4645 && XEXP (*split, 1) == const0_rtx)
4647 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4648 XEXP (SET_SRC (x), 0),
4649 pos, NULL_RTX, 1, 1, 0, 0);
4650 if (extraction != 0)
4652 SUBST (SET_SRC (x), extraction);
4653 return find_split_point (loc, insn, false);
4656 break;
4658 case NE:
4659 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4660 is known to be on, this can be converted into a NEG of a shift. */
4661 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4662 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4663 && 1 <= (pos = exact_log2
4664 (nonzero_bits (XEXP (SET_SRC (x), 0),
4665 GET_MODE (XEXP (SET_SRC (x), 0))))))
4667 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4669 SUBST (SET_SRC (x),
4670 gen_rtx_NEG (mode,
4671 gen_rtx_LSHIFTRT (mode,
4672 XEXP (SET_SRC (x), 0),
4673 GEN_INT (pos))));
4675 split = find_split_point (&SET_SRC (x), insn, true);
4676 if (split && split != &SET_SRC (x))
4677 return split;
4679 break;
4681 case SIGN_EXTEND:
4682 inner = XEXP (SET_SRC (x), 0);
4684 /* We can't optimize if either mode is a partial integer
4685 mode as we don't know how many bits are significant
4686 in those modes. */
4687 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4688 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4689 break;
4691 pos = 0;
4692 len = GET_MODE_PRECISION (GET_MODE (inner));
4693 unsignedp = 0;
4694 break;
4696 case SIGN_EXTRACT:
4697 case ZERO_EXTRACT:
4698 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4699 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4701 inner = XEXP (SET_SRC (x), 0);
4702 len = INTVAL (XEXP (SET_SRC (x), 1));
4703 pos = INTVAL (XEXP (SET_SRC (x), 2));
4705 if (BITS_BIG_ENDIAN)
4706 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4707 unsignedp = (code == ZERO_EXTRACT);
4709 break;
4711 default:
4712 break;
4715 if (len && pos >= 0
4716 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4718 enum machine_mode mode = GET_MODE (SET_SRC (x));
4720 /* For unsigned, we have a choice of a shift followed by an
4721 AND or two shifts. Use two shifts for field sizes where the
4722 constant might be too large. We assume here that we can
4723 always at least get 8-bit constants in an AND insn, which is
4724 true for every current RISC. */
4726 if (unsignedp && len <= 8)
4728 SUBST (SET_SRC (x),
4729 gen_rtx_AND (mode,
4730 gen_rtx_LSHIFTRT
4731 (mode, gen_lowpart (mode, inner),
4732 GEN_INT (pos)),
4733 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4734 - 1)));
4736 split = find_split_point (&SET_SRC (x), insn, true);
4737 if (split && split != &SET_SRC (x))
4738 return split;
4740 else
4742 SUBST (SET_SRC (x),
4743 gen_rtx_fmt_ee
4744 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4745 gen_rtx_ASHIFT (mode,
4746 gen_lowpart (mode, inner),
4747 GEN_INT (GET_MODE_PRECISION (mode)
4748 - len - pos)),
4749 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4751 split = find_split_point (&SET_SRC (x), insn, true);
4752 if (split && split != &SET_SRC (x))
4753 return split;
4757 /* See if this is a simple operation with a constant as the second
4758 operand. It might be that this constant is out of range and hence
4759 could be used as a split point. */
4760 if (BINARY_P (SET_SRC (x))
4761 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4762 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4763 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4764 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4765 return &XEXP (SET_SRC (x), 1);
4767 /* Finally, see if this is a simple operation with its first operand
4768 not in a register. The operation might require this operand in a
4769 register, so return it as a split point. We can always do this
4770 because if the first operand were another operation, we would have
4771 already found it as a split point. */
4772 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4773 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4774 return &XEXP (SET_SRC (x), 0);
4776 return 0;
4778 case AND:
4779 case IOR:
4780 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4781 it is better to write this as (not (ior A B)) so we can split it.
4782 Similarly for IOR. */
4783 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4785 SUBST (*loc,
4786 gen_rtx_NOT (GET_MODE (x),
4787 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4788 GET_MODE (x),
4789 XEXP (XEXP (x, 0), 0),
4790 XEXP (XEXP (x, 1), 0))));
4791 return find_split_point (loc, insn, set_src);
4794 /* Many RISC machines have a large set of logical insns. If the
4795 second operand is a NOT, put it first so we will try to split the
4796 other operand first. */
4797 if (GET_CODE (XEXP (x, 1)) == NOT)
4799 rtx tem = XEXP (x, 0);
4800 SUBST (XEXP (x, 0), XEXP (x, 1));
4801 SUBST (XEXP (x, 1), tem);
4803 break;
4805 case PLUS:
4806 case MINUS:
4807 /* Canonicalization can produce (minus A (mult B C)), where C is a
4808 constant. It may be better to try splitting (plus (mult B -C) A)
4809 instead if this isn't a multiply by a power of two. */
4810 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4811 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4812 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4814 enum machine_mode mode = GET_MODE (x);
4815 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4816 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4817 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4818 XEXP (XEXP (x, 1), 0),
4819 GEN_INT (other_int)),
4820 XEXP (x, 0)));
4821 return find_split_point (loc, insn, set_src);
4824 /* Split at a multiply-accumulate instruction. However if this is
4825 the SET_SRC, we likely do not have such an instruction and it's
4826 worthless to try this split. */
4827 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4828 return loc;
4830 default:
4831 break;
4834 /* Otherwise, select our actions depending on our rtx class. */
4835 switch (GET_RTX_CLASS (code))
4837 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4838 case RTX_TERNARY:
4839 split = find_split_point (&XEXP (x, 2), insn, false);
4840 if (split)
4841 return split;
4842 /* ... fall through ... */
4843 case RTX_BIN_ARITH:
4844 case RTX_COMM_ARITH:
4845 case RTX_COMPARE:
4846 case RTX_COMM_COMPARE:
4847 split = find_split_point (&XEXP (x, 1), insn, false);
4848 if (split)
4849 return split;
4850 /* ... fall through ... */
4851 case RTX_UNARY:
4852 /* Some machines have (and (shift ...) ...) insns. If X is not
4853 an AND, but XEXP (X, 0) is, use it as our split point. */
4854 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4855 return &XEXP (x, 0);
4857 split = find_split_point (&XEXP (x, 0), insn, false);
4858 if (split)
4859 return split;
4860 return loc;
4862 default:
4863 /* Otherwise, we don't have a split point. */
4864 return 0;
4868 /* Throughout X, replace FROM with TO, and return the result.
4869 The result is TO if X is FROM;
4870 otherwise the result is X, but its contents may have been modified.
4871 If they were modified, a record was made in undobuf so that
4872 undo_all will (among other things) return X to its original state.
4874 If the number of changes necessary is too much to record to undo,
4875 the excess changes are not made, so the result is invalid.
4876 The changes already made can still be undone.
4877 undobuf.num_undo is incremented for such changes, so by testing that
4878 the caller can tell whether the result is valid.
4880 `n_occurrences' is incremented each time FROM is replaced.
4882 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4884 IN_COND is nonzero if we are at the top level of a condition.
4886 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4887 by copying if `n_occurrences' is nonzero. */
4889 static rtx
4890 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4892 enum rtx_code code = GET_CODE (x);
4893 enum machine_mode op0_mode = VOIDmode;
4894 const char *fmt;
4895 int len, i;
4896 rtx new_rtx;
4898 /* Two expressions are equal if they are identical copies of a shared
4899 RTX or if they are both registers with the same register number
4900 and mode. */
4902 #define COMBINE_RTX_EQUAL_P(X,Y) \
4903 ((X) == (Y) \
4904 || (REG_P (X) && REG_P (Y) \
4905 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4907 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4909 n_occurrences++;
4910 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4913 /* If X and FROM are the same register but different modes, they
4914 will not have been seen as equal above. However, the log links code
4915 will make a LOG_LINKS entry for that case. If we do nothing, we
4916 will try to rerecognize our original insn and, when it succeeds,
4917 we will delete the feeding insn, which is incorrect.
4919 So force this insn not to match in this (rare) case. */
4920 if (! in_dest && code == REG && REG_P (from)
4921 && reg_overlap_mentioned_p (x, from))
4922 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4924 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4925 of which may contain things that can be combined. */
4926 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4927 return x;
4929 /* It is possible to have a subexpression appear twice in the insn.
4930 Suppose that FROM is a register that appears within TO.
4931 Then, after that subexpression has been scanned once by `subst',
4932 the second time it is scanned, TO may be found. If we were
4933 to scan TO here, we would find FROM within it and create a
4934 self-referent rtl structure which is completely wrong. */
4935 if (COMBINE_RTX_EQUAL_P (x, to))
4936 return to;
4938 /* Parallel asm_operands need special attention because all of the
4939 inputs are shared across the arms. Furthermore, unsharing the
4940 rtl results in recognition failures. Failure to handle this case
4941 specially can result in circular rtl.
4943 Solve this by doing a normal pass across the first entry of the
4944 parallel, and only processing the SET_DESTs of the subsequent
4945 entries. Ug. */
4947 if (code == PARALLEL
4948 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4949 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4951 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4953 /* If this substitution failed, this whole thing fails. */
4954 if (GET_CODE (new_rtx) == CLOBBER
4955 && XEXP (new_rtx, 0) == const0_rtx)
4956 return new_rtx;
4958 SUBST (XVECEXP (x, 0, 0), new_rtx);
4960 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4962 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4964 if (!REG_P (dest)
4965 && GET_CODE (dest) != CC0
4966 && GET_CODE (dest) != PC)
4968 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4970 /* If this substitution failed, this whole thing fails. */
4971 if (GET_CODE (new_rtx) == CLOBBER
4972 && XEXP (new_rtx, 0) == const0_rtx)
4973 return new_rtx;
4975 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4979 else
4981 len = GET_RTX_LENGTH (code);
4982 fmt = GET_RTX_FORMAT (code);
4984 /* We don't need to process a SET_DEST that is a register, CC0,
4985 or PC, so set up to skip this common case. All other cases
4986 where we want to suppress replacing something inside a
4987 SET_SRC are handled via the IN_DEST operand. */
4988 if (code == SET
4989 && (REG_P (SET_DEST (x))
4990 || GET_CODE (SET_DEST (x)) == CC0
4991 || GET_CODE (SET_DEST (x)) == PC))
4992 fmt = "ie";
4994 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4995 constant. */
4996 if (fmt[0] == 'e')
4997 op0_mode = GET_MODE (XEXP (x, 0));
4999 for (i = 0; i < len; i++)
5001 if (fmt[i] == 'E')
5003 int j;
5004 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5006 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5008 new_rtx = (unique_copy && n_occurrences
5009 ? copy_rtx (to) : to);
5010 n_occurrences++;
5012 else
5014 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5015 unique_copy);
5017 /* If this substitution failed, this whole thing
5018 fails. */
5019 if (GET_CODE (new_rtx) == CLOBBER
5020 && XEXP (new_rtx, 0) == const0_rtx)
5021 return new_rtx;
5024 SUBST (XVECEXP (x, i, j), new_rtx);
5027 else if (fmt[i] == 'e')
5029 /* If this is a register being set, ignore it. */
5030 new_rtx = XEXP (x, i);
5031 if (in_dest
5032 && i == 0
5033 && (((code == SUBREG || code == ZERO_EXTRACT)
5034 && REG_P (new_rtx))
5035 || code == STRICT_LOW_PART))
5038 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5040 /* In general, don't install a subreg involving two
5041 modes not tieable. It can worsen register
5042 allocation, and can even make invalid reload
5043 insns, since the reg inside may need to be copied
5044 from in the outside mode, and that may be invalid
5045 if it is an fp reg copied in integer mode.
5047 We allow two exceptions to this: It is valid if
5048 it is inside another SUBREG and the mode of that
5049 SUBREG and the mode of the inside of TO is
5050 tieable and it is valid if X is a SET that copies
5051 FROM to CC0. */
5053 if (GET_CODE (to) == SUBREG
5054 && ! MODES_TIEABLE_P (GET_MODE (to),
5055 GET_MODE (SUBREG_REG (to)))
5056 && ! (code == SUBREG
5057 && MODES_TIEABLE_P (GET_MODE (x),
5058 GET_MODE (SUBREG_REG (to))))
5059 #ifdef HAVE_cc0
5060 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5061 #endif
5063 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5065 #ifdef CANNOT_CHANGE_MODE_CLASS
5066 if (code == SUBREG
5067 && REG_P (to)
5068 && REGNO (to) < FIRST_PSEUDO_REGISTER
5069 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5070 GET_MODE (to),
5071 GET_MODE (x)))
5072 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5073 #endif
5075 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5076 n_occurrences++;
5078 else
5079 /* If we are in a SET_DEST, suppress most cases unless we
5080 have gone inside a MEM, in which case we want to
5081 simplify the address. We assume here that things that
5082 are actually part of the destination have their inner
5083 parts in the first expression. This is true for SUBREG,
5084 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5085 things aside from REG and MEM that should appear in a
5086 SET_DEST. */
5087 new_rtx = subst (XEXP (x, i), from, to,
5088 (((in_dest
5089 && (code == SUBREG || code == STRICT_LOW_PART
5090 || code == ZERO_EXTRACT))
5091 || code == SET)
5092 && i == 0),
5093 code == IF_THEN_ELSE && i == 0,
5094 unique_copy);
5096 /* If we found that we will have to reject this combination,
5097 indicate that by returning the CLOBBER ourselves, rather than
5098 an expression containing it. This will speed things up as
5099 well as prevent accidents where two CLOBBERs are considered
5100 to be equal, thus producing an incorrect simplification. */
5102 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5103 return new_rtx;
5105 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5107 enum machine_mode mode = GET_MODE (x);
5109 x = simplify_subreg (GET_MODE (x), new_rtx,
5110 GET_MODE (SUBREG_REG (x)),
5111 SUBREG_BYTE (x));
5112 if (! x)
5113 x = gen_rtx_CLOBBER (mode, const0_rtx);
5115 else if (CONST_INT_P (new_rtx)
5116 && GET_CODE (x) == ZERO_EXTEND)
5118 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5119 new_rtx, GET_MODE (XEXP (x, 0)));
5120 gcc_assert (x);
5122 else
5123 SUBST (XEXP (x, i), new_rtx);
5128 /* Check if we are loading something from the constant pool via float
5129 extension; in this case we would undo compress_float_constant
5130 optimization and degenerate constant load to an immediate value. */
5131 if (GET_CODE (x) == FLOAT_EXTEND
5132 && MEM_P (XEXP (x, 0))
5133 && MEM_READONLY_P (XEXP (x, 0)))
5135 rtx tmp = avoid_constant_pool_reference (x);
5136 if (x != tmp)
5137 return x;
5140 /* Try to simplify X. If the simplification changed the code, it is likely
5141 that further simplification will help, so loop, but limit the number
5142 of repetitions that will be performed. */
5144 for (i = 0; i < 4; i++)
5146 /* If X is sufficiently simple, don't bother trying to do anything
5147 with it. */
5148 if (code != CONST_INT && code != REG && code != CLOBBER)
5149 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5151 if (GET_CODE (x) == code)
5152 break;
5154 code = GET_CODE (x);
5156 /* We no longer know the original mode of operand 0 since we
5157 have changed the form of X) */
5158 op0_mode = VOIDmode;
5161 return x;
5164 /* Simplify X, a piece of RTL. We just operate on the expression at the
5165 outer level; call `subst' to simplify recursively. Return the new
5166 expression.
5168 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5169 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5170 of a condition. */
5172 static rtx
5173 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5174 int in_cond)
5176 enum rtx_code code = GET_CODE (x);
5177 enum machine_mode mode = GET_MODE (x);
5178 rtx temp;
5179 int i;
5181 /* If this is a commutative operation, put a constant last and a complex
5182 expression first. We don't need to do this for comparisons here. */
5183 if (COMMUTATIVE_ARITH_P (x)
5184 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5186 temp = XEXP (x, 0);
5187 SUBST (XEXP (x, 0), XEXP (x, 1));
5188 SUBST (XEXP (x, 1), temp);
5191 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5192 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5193 things. Check for cases where both arms are testing the same
5194 condition.
5196 Don't do anything if all operands are very simple. */
5198 if ((BINARY_P (x)
5199 && ((!OBJECT_P (XEXP (x, 0))
5200 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5201 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5202 || (!OBJECT_P (XEXP (x, 1))
5203 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5204 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5205 || (UNARY_P (x)
5206 && (!OBJECT_P (XEXP (x, 0))
5207 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5208 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5210 rtx cond, true_rtx, false_rtx;
5212 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5213 if (cond != 0
5214 /* If everything is a comparison, what we have is highly unlikely
5215 to be simpler, so don't use it. */
5216 && ! (COMPARISON_P (x)
5217 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5219 rtx cop1 = const0_rtx;
5220 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5222 if (cond_code == NE && COMPARISON_P (cond))
5223 return x;
5225 /* Simplify the alternative arms; this may collapse the true and
5226 false arms to store-flag values. Be careful to use copy_rtx
5227 here since true_rtx or false_rtx might share RTL with x as a
5228 result of the if_then_else_cond call above. */
5229 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5230 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5232 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5233 is unlikely to be simpler. */
5234 if (general_operand (true_rtx, VOIDmode)
5235 && general_operand (false_rtx, VOIDmode))
5237 enum rtx_code reversed;
5239 /* Restarting if we generate a store-flag expression will cause
5240 us to loop. Just drop through in this case. */
5242 /* If the result values are STORE_FLAG_VALUE and zero, we can
5243 just make the comparison operation. */
5244 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5245 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5246 cond, cop1);
5247 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5248 && ((reversed = reversed_comparison_code_parts
5249 (cond_code, cond, cop1, NULL))
5250 != UNKNOWN))
5251 x = simplify_gen_relational (reversed, mode, VOIDmode,
5252 cond, cop1);
5254 /* Likewise, we can make the negate of a comparison operation
5255 if the result values are - STORE_FLAG_VALUE and zero. */
5256 else if (CONST_INT_P (true_rtx)
5257 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5258 && false_rtx == const0_rtx)
5259 x = simplify_gen_unary (NEG, mode,
5260 simplify_gen_relational (cond_code,
5261 mode, VOIDmode,
5262 cond, cop1),
5263 mode);
5264 else if (CONST_INT_P (false_rtx)
5265 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5266 && true_rtx == const0_rtx
5267 && ((reversed = reversed_comparison_code_parts
5268 (cond_code, cond, cop1, NULL))
5269 != UNKNOWN))
5270 x = simplify_gen_unary (NEG, mode,
5271 simplify_gen_relational (reversed,
5272 mode, VOIDmode,
5273 cond, cop1),
5274 mode);
5275 else
5276 return gen_rtx_IF_THEN_ELSE (mode,
5277 simplify_gen_relational (cond_code,
5278 mode,
5279 VOIDmode,
5280 cond,
5281 cop1),
5282 true_rtx, false_rtx);
5284 code = GET_CODE (x);
5285 op0_mode = VOIDmode;
5290 /* Try to fold this expression in case we have constants that weren't
5291 present before. */
5292 temp = 0;
5293 switch (GET_RTX_CLASS (code))
5295 case RTX_UNARY:
5296 if (op0_mode == VOIDmode)
5297 op0_mode = GET_MODE (XEXP (x, 0));
5298 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5299 break;
5300 case RTX_COMPARE:
5301 case RTX_COMM_COMPARE:
5303 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5304 if (cmp_mode == VOIDmode)
5306 cmp_mode = GET_MODE (XEXP (x, 1));
5307 if (cmp_mode == VOIDmode)
5308 cmp_mode = op0_mode;
5310 temp = simplify_relational_operation (code, mode, cmp_mode,
5311 XEXP (x, 0), XEXP (x, 1));
5313 break;
5314 case RTX_COMM_ARITH:
5315 case RTX_BIN_ARITH:
5316 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5317 break;
5318 case RTX_BITFIELD_OPS:
5319 case RTX_TERNARY:
5320 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5321 XEXP (x, 1), XEXP (x, 2));
5322 break;
5323 default:
5324 break;
5327 if (temp)
5329 x = temp;
5330 code = GET_CODE (temp);
5331 op0_mode = VOIDmode;
5332 mode = GET_MODE (temp);
5335 /* First see if we can apply the inverse distributive law. */
5336 if (code == PLUS || code == MINUS
5337 || code == AND || code == IOR || code == XOR)
5339 x = apply_distributive_law (x);
5340 code = GET_CODE (x);
5341 op0_mode = VOIDmode;
5344 /* If CODE is an associative operation not otherwise handled, see if we
5345 can associate some operands. This can win if they are constants or
5346 if they are logically related (i.e. (a & b) & a). */
5347 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5348 || code == AND || code == IOR || code == XOR
5349 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5350 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5351 || (flag_associative_math && FLOAT_MODE_P (mode))))
5353 if (GET_CODE (XEXP (x, 0)) == code)
5355 rtx other = XEXP (XEXP (x, 0), 0);
5356 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5357 rtx inner_op1 = XEXP (x, 1);
5358 rtx inner;
5360 /* Make sure we pass the constant operand if any as the second
5361 one if this is a commutative operation. */
5362 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5364 rtx tem = inner_op0;
5365 inner_op0 = inner_op1;
5366 inner_op1 = tem;
5368 inner = simplify_binary_operation (code == MINUS ? PLUS
5369 : code == DIV ? MULT
5370 : code,
5371 mode, inner_op0, inner_op1);
5373 /* For commutative operations, try the other pair if that one
5374 didn't simplify. */
5375 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5377 other = XEXP (XEXP (x, 0), 1);
5378 inner = simplify_binary_operation (code, mode,
5379 XEXP (XEXP (x, 0), 0),
5380 XEXP (x, 1));
5383 if (inner)
5384 return simplify_gen_binary (code, mode, other, inner);
5388 /* A little bit of algebraic simplification here. */
5389 switch (code)
5391 case MEM:
5392 /* Ensure that our address has any ASHIFTs converted to MULT in case
5393 address-recognizing predicates are called later. */
5394 temp = make_compound_operation (XEXP (x, 0), MEM);
5395 SUBST (XEXP (x, 0), temp);
5396 break;
5398 case SUBREG:
5399 if (op0_mode == VOIDmode)
5400 op0_mode = GET_MODE (SUBREG_REG (x));
5402 /* See if this can be moved to simplify_subreg. */
5403 if (CONSTANT_P (SUBREG_REG (x))
5404 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5405 /* Don't call gen_lowpart if the inner mode
5406 is VOIDmode and we cannot simplify it, as SUBREG without
5407 inner mode is invalid. */
5408 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5409 || gen_lowpart_common (mode, SUBREG_REG (x))))
5410 return gen_lowpart (mode, SUBREG_REG (x));
5412 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5413 break;
5415 rtx temp;
5416 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5417 SUBREG_BYTE (x));
5418 if (temp)
5419 return temp;
5422 /* Don't change the mode of the MEM if that would change the meaning
5423 of the address. */
5424 if (MEM_P (SUBREG_REG (x))
5425 && (MEM_VOLATILE_P (SUBREG_REG (x))
5426 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5427 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5428 return gen_rtx_CLOBBER (mode, const0_rtx);
5430 /* Note that we cannot do any narrowing for non-constants since
5431 we might have been counting on using the fact that some bits were
5432 zero. We now do this in the SET. */
5434 break;
5436 case NEG:
5437 temp = expand_compound_operation (XEXP (x, 0));
5439 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5440 replaced by (lshiftrt X C). This will convert
5441 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5443 if (GET_CODE (temp) == ASHIFTRT
5444 && CONST_INT_P (XEXP (temp, 1))
5445 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5446 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5447 INTVAL (XEXP (temp, 1)));
5449 /* If X has only a single bit that might be nonzero, say, bit I, convert
5450 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5451 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5452 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5453 or a SUBREG of one since we'd be making the expression more
5454 complex if it was just a register. */
5456 if (!REG_P (temp)
5457 && ! (GET_CODE (temp) == SUBREG
5458 && REG_P (SUBREG_REG (temp)))
5459 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5461 rtx temp1 = simplify_shift_const
5462 (NULL_RTX, ASHIFTRT, mode,
5463 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5464 GET_MODE_PRECISION (mode) - 1 - i),
5465 GET_MODE_PRECISION (mode) - 1 - i);
5467 /* If all we did was surround TEMP with the two shifts, we
5468 haven't improved anything, so don't use it. Otherwise,
5469 we are better off with TEMP1. */
5470 if (GET_CODE (temp1) != ASHIFTRT
5471 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5472 || XEXP (XEXP (temp1, 0), 0) != temp)
5473 return temp1;
5475 break;
5477 case TRUNCATE:
5478 /* We can't handle truncation to a partial integer mode here
5479 because we don't know the real bitsize of the partial
5480 integer mode. */
5481 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5482 break;
5484 if (HWI_COMPUTABLE_MODE_P (mode))
5485 SUBST (XEXP (x, 0),
5486 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5487 GET_MODE_MASK (mode), 0));
5489 /* We can truncate a constant value and return it. */
5490 if (CONST_INT_P (XEXP (x, 0)))
5491 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5493 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5494 whose value is a comparison can be replaced with a subreg if
5495 STORE_FLAG_VALUE permits. */
5496 if (HWI_COMPUTABLE_MODE_P (mode)
5497 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5498 && (temp = get_last_value (XEXP (x, 0)))
5499 && COMPARISON_P (temp))
5500 return gen_lowpart (mode, XEXP (x, 0));
5501 break;
5503 case CONST:
5504 /* (const (const X)) can become (const X). Do it this way rather than
5505 returning the inner CONST since CONST can be shared with a
5506 REG_EQUAL note. */
5507 if (GET_CODE (XEXP (x, 0)) == CONST)
5508 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5509 break;
5511 #ifdef HAVE_lo_sum
5512 case LO_SUM:
5513 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5514 can add in an offset. find_split_point will split this address up
5515 again if it doesn't match. */
5516 if (GET_CODE (XEXP (x, 0)) == HIGH
5517 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5518 return XEXP (x, 1);
5519 break;
5520 #endif
5522 case PLUS:
5523 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5524 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5525 bit-field and can be replaced by either a sign_extend or a
5526 sign_extract. The `and' may be a zero_extend and the two
5527 <c>, -<c> constants may be reversed. */
5528 if (GET_CODE (XEXP (x, 0)) == XOR
5529 && CONST_INT_P (XEXP (x, 1))
5530 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5531 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5532 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5533 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5534 && HWI_COMPUTABLE_MODE_P (mode)
5535 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5536 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5537 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5538 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5539 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5540 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5541 == (unsigned int) i + 1))))
5542 return simplify_shift_const
5543 (NULL_RTX, ASHIFTRT, mode,
5544 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5545 XEXP (XEXP (XEXP (x, 0), 0), 0),
5546 GET_MODE_PRECISION (mode) - (i + 1)),
5547 GET_MODE_PRECISION (mode) - (i + 1));
5549 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5550 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5551 the bitsize of the mode - 1. This allows simplification of
5552 "a = (b & 8) == 0;" */
5553 if (XEXP (x, 1) == constm1_rtx
5554 && !REG_P (XEXP (x, 0))
5555 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5556 && REG_P (SUBREG_REG (XEXP (x, 0))))
5557 && nonzero_bits (XEXP (x, 0), mode) == 1)
5558 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5559 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5560 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5561 GET_MODE_PRECISION (mode) - 1),
5562 GET_MODE_PRECISION (mode) - 1);
5564 /* If we are adding two things that have no bits in common, convert
5565 the addition into an IOR. This will often be further simplified,
5566 for example in cases like ((a & 1) + (a & 2)), which can
5567 become a & 3. */
5569 if (HWI_COMPUTABLE_MODE_P (mode)
5570 && (nonzero_bits (XEXP (x, 0), mode)
5571 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5573 /* Try to simplify the expression further. */
5574 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5575 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5577 /* If we could, great. If not, do not go ahead with the IOR
5578 replacement, since PLUS appears in many special purpose
5579 address arithmetic instructions. */
5580 if (GET_CODE (temp) != CLOBBER
5581 && (GET_CODE (temp) != IOR
5582 || ((XEXP (temp, 0) != XEXP (x, 0)
5583 || XEXP (temp, 1) != XEXP (x, 1))
5584 && (XEXP (temp, 0) != XEXP (x, 1)
5585 || XEXP (temp, 1) != XEXP (x, 0)))))
5586 return temp;
5588 break;
5590 case MINUS:
5591 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5592 (and <foo> (const_int pow2-1)) */
5593 if (GET_CODE (XEXP (x, 1)) == AND
5594 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5595 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5596 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5597 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5598 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5599 break;
5601 case MULT:
5602 /* If we have (mult (plus A B) C), apply the distributive law and then
5603 the inverse distributive law to see if things simplify. This
5604 occurs mostly in addresses, often when unrolling loops. */
5606 if (GET_CODE (XEXP (x, 0)) == PLUS)
5608 rtx result = distribute_and_simplify_rtx (x, 0);
5609 if (result)
5610 return result;
5613 /* Try simplify a*(b/c) as (a*b)/c. */
5614 if (FLOAT_MODE_P (mode) && flag_associative_math
5615 && GET_CODE (XEXP (x, 0)) == DIV)
5617 rtx tem = simplify_binary_operation (MULT, mode,
5618 XEXP (XEXP (x, 0), 0),
5619 XEXP (x, 1));
5620 if (tem)
5621 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5623 break;
5625 case UDIV:
5626 /* If this is a divide by a power of two, treat it as a shift if
5627 its first operand is a shift. */
5628 if (CONST_INT_P (XEXP (x, 1))
5629 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5630 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5631 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5632 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5633 || GET_CODE (XEXP (x, 0)) == ROTATE
5634 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5635 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5636 break;
5638 case EQ: case NE:
5639 case GT: case GTU: case GE: case GEU:
5640 case LT: case LTU: case LE: case LEU:
5641 case UNEQ: case LTGT:
5642 case UNGT: case UNGE:
5643 case UNLT: case UNLE:
5644 case UNORDERED: case ORDERED:
5645 /* If the first operand is a condition code, we can't do anything
5646 with it. */
5647 if (GET_CODE (XEXP (x, 0)) == COMPARE
5648 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5649 && ! CC0_P (XEXP (x, 0))))
5651 rtx op0 = XEXP (x, 0);
5652 rtx op1 = XEXP (x, 1);
5653 enum rtx_code new_code;
5655 if (GET_CODE (op0) == COMPARE)
5656 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5658 /* Simplify our comparison, if possible. */
5659 new_code = simplify_comparison (code, &op0, &op1);
5661 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5662 if only the low-order bit is possibly nonzero in X (such as when
5663 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5664 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5665 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5666 (plus X 1).
5668 Remove any ZERO_EXTRACT we made when thinking this was a
5669 comparison. It may now be simpler to use, e.g., an AND. If a
5670 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5671 the call to make_compound_operation in the SET case.
5673 Don't apply these optimizations if the caller would
5674 prefer a comparison rather than a value.
5675 E.g., for the condition in an IF_THEN_ELSE most targets need
5676 an explicit comparison. */
5678 if (in_cond)
5681 else if (STORE_FLAG_VALUE == 1
5682 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5683 && op1 == const0_rtx
5684 && mode == GET_MODE (op0)
5685 && nonzero_bits (op0, mode) == 1)
5686 return gen_lowpart (mode,
5687 expand_compound_operation (op0));
5689 else if (STORE_FLAG_VALUE == 1
5690 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5691 && op1 == const0_rtx
5692 && mode == GET_MODE (op0)
5693 && (num_sign_bit_copies (op0, mode)
5694 == GET_MODE_PRECISION (mode)))
5696 op0 = expand_compound_operation (op0);
5697 return simplify_gen_unary (NEG, mode,
5698 gen_lowpart (mode, op0),
5699 mode);
5702 else if (STORE_FLAG_VALUE == 1
5703 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5704 && op1 == const0_rtx
5705 && mode == GET_MODE (op0)
5706 && nonzero_bits (op0, mode) == 1)
5708 op0 = expand_compound_operation (op0);
5709 return simplify_gen_binary (XOR, mode,
5710 gen_lowpart (mode, op0),
5711 const1_rtx);
5714 else if (STORE_FLAG_VALUE == 1
5715 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5716 && op1 == const0_rtx
5717 && mode == GET_MODE (op0)
5718 && (num_sign_bit_copies (op0, mode)
5719 == GET_MODE_PRECISION (mode)))
5721 op0 = expand_compound_operation (op0);
5722 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5725 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5726 those above. */
5727 if (in_cond)
5730 else if (STORE_FLAG_VALUE == -1
5731 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5732 && op1 == const0_rtx
5733 && (num_sign_bit_copies (op0, mode)
5734 == GET_MODE_PRECISION (mode)))
5735 return gen_lowpart (mode,
5736 expand_compound_operation (op0));
5738 else if (STORE_FLAG_VALUE == -1
5739 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5740 && op1 == const0_rtx
5741 && mode == GET_MODE (op0)
5742 && nonzero_bits (op0, mode) == 1)
5744 op0 = expand_compound_operation (op0);
5745 return simplify_gen_unary (NEG, mode,
5746 gen_lowpart (mode, op0),
5747 mode);
5750 else if (STORE_FLAG_VALUE == -1
5751 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5752 && op1 == const0_rtx
5753 && mode == GET_MODE (op0)
5754 && (num_sign_bit_copies (op0, mode)
5755 == GET_MODE_PRECISION (mode)))
5757 op0 = expand_compound_operation (op0);
5758 return simplify_gen_unary (NOT, mode,
5759 gen_lowpart (mode, op0),
5760 mode);
5763 /* If X is 0/1, (eq X 0) is X-1. */
5764 else if (STORE_FLAG_VALUE == -1
5765 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5766 && op1 == const0_rtx
5767 && mode == GET_MODE (op0)
5768 && nonzero_bits (op0, mode) == 1)
5770 op0 = expand_compound_operation (op0);
5771 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5774 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5775 one bit that might be nonzero, we can convert (ne x 0) to
5776 (ashift x c) where C puts the bit in the sign bit. Remove any
5777 AND with STORE_FLAG_VALUE when we are done, since we are only
5778 going to test the sign bit. */
5779 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5780 && HWI_COMPUTABLE_MODE_P (mode)
5781 && val_signbit_p (mode, STORE_FLAG_VALUE)
5782 && op1 == const0_rtx
5783 && mode == GET_MODE (op0)
5784 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5786 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5787 expand_compound_operation (op0),
5788 GET_MODE_PRECISION (mode) - 1 - i);
5789 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5790 return XEXP (x, 0);
5791 else
5792 return x;
5795 /* If the code changed, return a whole new comparison. */
5796 if (new_code != code)
5797 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5799 /* Otherwise, keep this operation, but maybe change its operands.
5800 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5801 SUBST (XEXP (x, 0), op0);
5802 SUBST (XEXP (x, 1), op1);
5804 break;
5806 case IF_THEN_ELSE:
5807 return simplify_if_then_else (x);
5809 case ZERO_EXTRACT:
5810 case SIGN_EXTRACT:
5811 case ZERO_EXTEND:
5812 case SIGN_EXTEND:
5813 /* If we are processing SET_DEST, we are done. */
5814 if (in_dest)
5815 return x;
5817 return expand_compound_operation (x);
5819 case SET:
5820 return simplify_set (x);
5822 case AND:
5823 case IOR:
5824 return simplify_logical (x);
5826 case ASHIFT:
5827 case LSHIFTRT:
5828 case ASHIFTRT:
5829 case ROTATE:
5830 case ROTATERT:
5831 /* If this is a shift by a constant amount, simplify it. */
5832 if (CONST_INT_P (XEXP (x, 1)))
5833 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5834 INTVAL (XEXP (x, 1)));
5836 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5837 SUBST (XEXP (x, 1),
5838 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5839 ((unsigned HOST_WIDE_INT) 1
5840 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5841 - 1,
5842 0));
5843 break;
5845 default:
5846 break;
5849 return x;
5852 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5854 static rtx
5855 simplify_if_then_else (rtx x)
5857 enum machine_mode mode = GET_MODE (x);
5858 rtx cond = XEXP (x, 0);
5859 rtx true_rtx = XEXP (x, 1);
5860 rtx false_rtx = XEXP (x, 2);
5861 enum rtx_code true_code = GET_CODE (cond);
5862 int comparison_p = COMPARISON_P (cond);
5863 rtx temp;
5864 int i;
5865 enum rtx_code false_code;
5866 rtx reversed;
5868 /* Simplify storing of the truth value. */
5869 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5870 return simplify_gen_relational (true_code, mode, VOIDmode,
5871 XEXP (cond, 0), XEXP (cond, 1));
5873 /* Also when the truth value has to be reversed. */
5874 if (comparison_p
5875 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5876 && (reversed = reversed_comparison (cond, mode)))
5877 return reversed;
5879 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5880 in it is being compared against certain values. Get the true and false
5881 comparisons and see if that says anything about the value of each arm. */
5883 if (comparison_p
5884 && ((false_code = reversed_comparison_code (cond, NULL))
5885 != UNKNOWN)
5886 && REG_P (XEXP (cond, 0)))
5888 HOST_WIDE_INT nzb;
5889 rtx from = XEXP (cond, 0);
5890 rtx true_val = XEXP (cond, 1);
5891 rtx false_val = true_val;
5892 int swapped = 0;
5894 /* If FALSE_CODE is EQ, swap the codes and arms. */
5896 if (false_code == EQ)
5898 swapped = 1, true_code = EQ, false_code = NE;
5899 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5902 /* If we are comparing against zero and the expression being tested has
5903 only a single bit that might be nonzero, that is its value when it is
5904 not equal to zero. Similarly if it is known to be -1 or 0. */
5906 if (true_code == EQ && true_val == const0_rtx
5907 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5909 false_code = EQ;
5910 false_val = gen_int_mode (nzb, GET_MODE (from));
5912 else if (true_code == EQ && true_val == const0_rtx
5913 && (num_sign_bit_copies (from, GET_MODE (from))
5914 == GET_MODE_PRECISION (GET_MODE (from))))
5916 false_code = EQ;
5917 false_val = constm1_rtx;
5920 /* Now simplify an arm if we know the value of the register in the
5921 branch and it is used in the arm. Be careful due to the potential
5922 of locally-shared RTL. */
5924 if (reg_mentioned_p (from, true_rtx))
5925 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5926 from, true_val),
5927 pc_rtx, pc_rtx, 0, 0, 0);
5928 if (reg_mentioned_p (from, false_rtx))
5929 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5930 from, false_val),
5931 pc_rtx, pc_rtx, 0, 0, 0);
5933 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5934 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5936 true_rtx = XEXP (x, 1);
5937 false_rtx = XEXP (x, 2);
5938 true_code = GET_CODE (cond);
5941 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5942 reversed, do so to avoid needing two sets of patterns for
5943 subtract-and-branch insns. Similarly if we have a constant in the true
5944 arm, the false arm is the same as the first operand of the comparison, or
5945 the false arm is more complicated than the true arm. */
5947 if (comparison_p
5948 && reversed_comparison_code (cond, NULL) != UNKNOWN
5949 && (true_rtx == pc_rtx
5950 || (CONSTANT_P (true_rtx)
5951 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5952 || true_rtx == const0_rtx
5953 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5954 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5955 && !OBJECT_P (false_rtx))
5956 || reg_mentioned_p (true_rtx, false_rtx)
5957 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5959 true_code = reversed_comparison_code (cond, NULL);
5960 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5961 SUBST (XEXP (x, 1), false_rtx);
5962 SUBST (XEXP (x, 2), true_rtx);
5964 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5965 cond = XEXP (x, 0);
5967 /* It is possible that the conditional has been simplified out. */
5968 true_code = GET_CODE (cond);
5969 comparison_p = COMPARISON_P (cond);
5972 /* If the two arms are identical, we don't need the comparison. */
5974 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5975 return true_rtx;
5977 /* Convert a == b ? b : a to "a". */
5978 if (true_code == EQ && ! side_effects_p (cond)
5979 && !HONOR_NANS (mode)
5980 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5981 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5982 return false_rtx;
5983 else if (true_code == NE && ! side_effects_p (cond)
5984 && !HONOR_NANS (mode)
5985 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5986 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5987 return true_rtx;
5989 /* Look for cases where we have (abs x) or (neg (abs X)). */
5991 if (GET_MODE_CLASS (mode) == MODE_INT
5992 && comparison_p
5993 && XEXP (cond, 1) == const0_rtx
5994 && GET_CODE (false_rtx) == NEG
5995 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5996 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5997 && ! side_effects_p (true_rtx))
5998 switch (true_code)
6000 case GT:
6001 case GE:
6002 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6003 case LT:
6004 case LE:
6005 return
6006 simplify_gen_unary (NEG, mode,
6007 simplify_gen_unary (ABS, mode, true_rtx, mode),
6008 mode);
6009 default:
6010 break;
6013 /* Look for MIN or MAX. */
6015 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6016 && comparison_p
6017 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6018 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6019 && ! side_effects_p (cond))
6020 switch (true_code)
6022 case GE:
6023 case GT:
6024 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6025 case LE:
6026 case LT:
6027 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6028 case GEU:
6029 case GTU:
6030 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6031 case LEU:
6032 case LTU:
6033 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6034 default:
6035 break;
6038 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6039 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6040 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6041 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6042 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6043 neither 1 or -1, but it isn't worth checking for. */
6045 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6046 && comparison_p
6047 && GET_MODE_CLASS (mode) == MODE_INT
6048 && ! side_effects_p (x))
6050 rtx t = make_compound_operation (true_rtx, SET);
6051 rtx f = make_compound_operation (false_rtx, SET);
6052 rtx cond_op0 = XEXP (cond, 0);
6053 rtx cond_op1 = XEXP (cond, 1);
6054 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6055 enum machine_mode m = mode;
6056 rtx z = 0, c1 = NULL_RTX;
6058 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6059 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6060 || GET_CODE (t) == ASHIFT
6061 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6062 && rtx_equal_p (XEXP (t, 0), f))
6063 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6065 /* If an identity-zero op is commutative, check whether there
6066 would be a match if we swapped the operands. */
6067 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6068 || GET_CODE (t) == XOR)
6069 && rtx_equal_p (XEXP (t, 1), f))
6070 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6071 else if (GET_CODE (t) == SIGN_EXTEND
6072 && (GET_CODE (XEXP (t, 0)) == PLUS
6073 || GET_CODE (XEXP (t, 0)) == MINUS
6074 || GET_CODE (XEXP (t, 0)) == IOR
6075 || GET_CODE (XEXP (t, 0)) == XOR
6076 || GET_CODE (XEXP (t, 0)) == ASHIFT
6077 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6078 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6079 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6080 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6081 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6082 && (num_sign_bit_copies (f, GET_MODE (f))
6083 > (unsigned int)
6084 (GET_MODE_PRECISION (mode)
6085 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6087 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6088 extend_op = SIGN_EXTEND;
6089 m = GET_MODE (XEXP (t, 0));
6091 else if (GET_CODE (t) == SIGN_EXTEND
6092 && (GET_CODE (XEXP (t, 0)) == PLUS
6093 || GET_CODE (XEXP (t, 0)) == IOR
6094 || GET_CODE (XEXP (t, 0)) == XOR)
6095 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6096 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6097 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6098 && (num_sign_bit_copies (f, GET_MODE (f))
6099 > (unsigned int)
6100 (GET_MODE_PRECISION (mode)
6101 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6103 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6104 extend_op = SIGN_EXTEND;
6105 m = GET_MODE (XEXP (t, 0));
6107 else if (GET_CODE (t) == ZERO_EXTEND
6108 && (GET_CODE (XEXP (t, 0)) == PLUS
6109 || GET_CODE (XEXP (t, 0)) == MINUS
6110 || GET_CODE (XEXP (t, 0)) == IOR
6111 || GET_CODE (XEXP (t, 0)) == XOR
6112 || GET_CODE (XEXP (t, 0)) == ASHIFT
6113 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6114 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6115 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6116 && HWI_COMPUTABLE_MODE_P (mode)
6117 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6118 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6119 && ((nonzero_bits (f, GET_MODE (f))
6120 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6121 == 0))
6123 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6124 extend_op = ZERO_EXTEND;
6125 m = GET_MODE (XEXP (t, 0));
6127 else if (GET_CODE (t) == ZERO_EXTEND
6128 && (GET_CODE (XEXP (t, 0)) == PLUS
6129 || GET_CODE (XEXP (t, 0)) == IOR
6130 || GET_CODE (XEXP (t, 0)) == XOR)
6131 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6132 && HWI_COMPUTABLE_MODE_P (mode)
6133 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6134 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6135 && ((nonzero_bits (f, GET_MODE (f))
6136 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6137 == 0))
6139 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6140 extend_op = ZERO_EXTEND;
6141 m = GET_MODE (XEXP (t, 0));
6144 if (z)
6146 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6147 cond_op0, cond_op1),
6148 pc_rtx, pc_rtx, 0, 0, 0);
6149 temp = simplify_gen_binary (MULT, m, temp,
6150 simplify_gen_binary (MULT, m, c1,
6151 const_true_rtx));
6152 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6153 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6155 if (extend_op != UNKNOWN)
6156 temp = simplify_gen_unary (extend_op, mode, temp, m);
6158 return temp;
6162 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6163 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6164 negation of a single bit, we can convert this operation to a shift. We
6165 can actually do this more generally, but it doesn't seem worth it. */
6167 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6168 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6169 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6170 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6171 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6172 == GET_MODE_PRECISION (mode))
6173 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6174 return
6175 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6176 gen_lowpart (mode, XEXP (cond, 0)), i);
6178 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6179 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6180 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6181 && GET_MODE (XEXP (cond, 0)) == mode
6182 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6183 == nonzero_bits (XEXP (cond, 0), mode)
6184 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6185 return XEXP (cond, 0);
6187 return x;
6190 /* Simplify X, a SET expression. Return the new expression. */
6192 static rtx
6193 simplify_set (rtx x)
6195 rtx src = SET_SRC (x);
6196 rtx dest = SET_DEST (x);
6197 enum machine_mode mode
6198 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6199 rtx other_insn;
6200 rtx *cc_use;
6202 /* (set (pc) (return)) gets written as (return). */
6203 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6204 return src;
6206 /* Now that we know for sure which bits of SRC we are using, see if we can
6207 simplify the expression for the object knowing that we only need the
6208 low-order bits. */
6210 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6212 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6213 SUBST (SET_SRC (x), src);
6216 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6217 the comparison result and try to simplify it unless we already have used
6218 undobuf.other_insn. */
6219 if ((GET_MODE_CLASS (mode) == MODE_CC
6220 || GET_CODE (src) == COMPARE
6221 || CC0_P (dest))
6222 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6223 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6224 && COMPARISON_P (*cc_use)
6225 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6227 enum rtx_code old_code = GET_CODE (*cc_use);
6228 enum rtx_code new_code;
6229 rtx op0, op1, tmp;
6230 int other_changed = 0;
6231 rtx inner_compare = NULL_RTX;
6232 enum machine_mode compare_mode = GET_MODE (dest);
6234 if (GET_CODE (src) == COMPARE)
6236 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6237 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6239 inner_compare = op0;
6240 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6243 else
6244 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6246 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6247 op0, op1);
6248 if (!tmp)
6249 new_code = old_code;
6250 else if (!CONSTANT_P (tmp))
6252 new_code = GET_CODE (tmp);
6253 op0 = XEXP (tmp, 0);
6254 op1 = XEXP (tmp, 1);
6256 else
6258 rtx pat = PATTERN (other_insn);
6259 undobuf.other_insn = other_insn;
6260 SUBST (*cc_use, tmp);
6262 /* Attempt to simplify CC user. */
6263 if (GET_CODE (pat) == SET)
6265 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6266 if (new_rtx != NULL_RTX)
6267 SUBST (SET_SRC (pat), new_rtx);
6270 /* Convert X into a no-op move. */
6271 SUBST (SET_DEST (x), pc_rtx);
6272 SUBST (SET_SRC (x), pc_rtx);
6273 return x;
6276 /* Simplify our comparison, if possible. */
6277 new_code = simplify_comparison (new_code, &op0, &op1);
6279 #ifdef SELECT_CC_MODE
6280 /* If this machine has CC modes other than CCmode, check to see if we
6281 need to use a different CC mode here. */
6282 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6283 compare_mode = GET_MODE (op0);
6284 else if (inner_compare
6285 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6286 && new_code == old_code
6287 && op0 == XEXP (inner_compare, 0)
6288 && op1 == XEXP (inner_compare, 1))
6289 compare_mode = GET_MODE (inner_compare);
6290 else
6291 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6293 #ifndef HAVE_cc0
6294 /* If the mode changed, we have to change SET_DEST, the mode in the
6295 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6296 a hard register, just build new versions with the proper mode. If it
6297 is a pseudo, we lose unless it is only time we set the pseudo, in
6298 which case we can safely change its mode. */
6299 if (compare_mode != GET_MODE (dest))
6301 if (can_change_dest_mode (dest, 0, compare_mode))
6303 unsigned int regno = REGNO (dest);
6304 rtx new_dest;
6306 if (regno < FIRST_PSEUDO_REGISTER)
6307 new_dest = gen_rtx_REG (compare_mode, regno);
6308 else
6310 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6311 new_dest = regno_reg_rtx[regno];
6314 SUBST (SET_DEST (x), new_dest);
6315 SUBST (XEXP (*cc_use, 0), new_dest);
6316 other_changed = 1;
6318 dest = new_dest;
6321 #endif /* cc0 */
6322 #endif /* SELECT_CC_MODE */
6324 /* If the code changed, we have to build a new comparison in
6325 undobuf.other_insn. */
6326 if (new_code != old_code)
6328 int other_changed_previously = other_changed;
6329 unsigned HOST_WIDE_INT mask;
6330 rtx old_cc_use = *cc_use;
6332 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6333 dest, const0_rtx));
6334 other_changed = 1;
6336 /* If the only change we made was to change an EQ into an NE or
6337 vice versa, OP0 has only one bit that might be nonzero, and OP1
6338 is zero, check if changing the user of the condition code will
6339 produce a valid insn. If it won't, we can keep the original code
6340 in that insn by surrounding our operation with an XOR. */
6342 if (((old_code == NE && new_code == EQ)
6343 || (old_code == EQ && new_code == NE))
6344 && ! other_changed_previously && op1 == const0_rtx
6345 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6346 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6348 rtx pat = PATTERN (other_insn), note = 0;
6350 if ((recog_for_combine (&pat, other_insn, &note) < 0
6351 && ! check_asm_operands (pat)))
6353 *cc_use = old_cc_use;
6354 other_changed = 0;
6356 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6357 op0, GEN_INT (mask));
6362 if (other_changed)
6363 undobuf.other_insn = other_insn;
6365 /* Otherwise, if we didn't previously have a COMPARE in the
6366 correct mode, we need one. */
6367 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6369 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6370 src = SET_SRC (x);
6372 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6374 SUBST (SET_SRC (x), op0);
6375 src = SET_SRC (x);
6377 /* Otherwise, update the COMPARE if needed. */
6378 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6380 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6381 src = SET_SRC (x);
6384 else
6386 /* Get SET_SRC in a form where we have placed back any
6387 compound expressions. Then do the checks below. */
6388 src = make_compound_operation (src, SET);
6389 SUBST (SET_SRC (x), src);
6392 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6393 and X being a REG or (subreg (reg)), we may be able to convert this to
6394 (set (subreg:m2 x) (op)).
6396 We can always do this if M1 is narrower than M2 because that means that
6397 we only care about the low bits of the result.
6399 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6400 perform a narrower operation than requested since the high-order bits will
6401 be undefined. On machine where it is defined, this transformation is safe
6402 as long as M1 and M2 have the same number of words. */
6404 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6405 && !OBJECT_P (SUBREG_REG (src))
6406 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6407 / UNITS_PER_WORD)
6408 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6409 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6410 #ifndef WORD_REGISTER_OPERATIONS
6411 && (GET_MODE_SIZE (GET_MODE (src))
6412 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6413 #endif
6414 #ifdef CANNOT_CHANGE_MODE_CLASS
6415 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6416 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6417 GET_MODE (SUBREG_REG (src)),
6418 GET_MODE (src)))
6419 #endif
6420 && (REG_P (dest)
6421 || (GET_CODE (dest) == SUBREG
6422 && REG_P (SUBREG_REG (dest)))))
6424 SUBST (SET_DEST (x),
6425 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6426 dest));
6427 SUBST (SET_SRC (x), SUBREG_REG (src));
6429 src = SET_SRC (x), dest = SET_DEST (x);
6432 #ifdef HAVE_cc0
6433 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6434 in SRC. */
6435 if (dest == cc0_rtx
6436 && GET_CODE (src) == SUBREG
6437 && subreg_lowpart_p (src)
6438 && (GET_MODE_PRECISION (GET_MODE (src))
6439 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6441 rtx inner = SUBREG_REG (src);
6442 enum machine_mode inner_mode = GET_MODE (inner);
6444 /* Here we make sure that we don't have a sign bit on. */
6445 if (val_signbit_known_clear_p (GET_MODE (src),
6446 nonzero_bits (inner, inner_mode)))
6448 SUBST (SET_SRC (x), inner);
6449 src = SET_SRC (x);
6452 #endif
6454 #ifdef LOAD_EXTEND_OP
6455 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6456 would require a paradoxical subreg. Replace the subreg with a
6457 zero_extend to avoid the reload that would otherwise be required. */
6459 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6460 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6461 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6462 && SUBREG_BYTE (src) == 0
6463 && paradoxical_subreg_p (src)
6464 && MEM_P (SUBREG_REG (src)))
6466 SUBST (SET_SRC (x),
6467 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6468 GET_MODE (src), SUBREG_REG (src)));
6470 src = SET_SRC (x);
6472 #endif
6474 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6475 are comparing an item known to be 0 or -1 against 0, use a logical
6476 operation instead. Check for one of the arms being an IOR of the other
6477 arm with some value. We compute three terms to be IOR'ed together. In
6478 practice, at most two will be nonzero. Then we do the IOR's. */
6480 if (GET_CODE (dest) != PC
6481 && GET_CODE (src) == IF_THEN_ELSE
6482 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6483 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6484 && XEXP (XEXP (src, 0), 1) == const0_rtx
6485 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6486 #ifdef HAVE_conditional_move
6487 && ! can_conditionally_move_p (GET_MODE (src))
6488 #endif
6489 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6490 GET_MODE (XEXP (XEXP (src, 0), 0)))
6491 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6492 && ! side_effects_p (src))
6494 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6495 ? XEXP (src, 1) : XEXP (src, 2));
6496 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6497 ? XEXP (src, 2) : XEXP (src, 1));
6498 rtx term1 = const0_rtx, term2, term3;
6500 if (GET_CODE (true_rtx) == IOR
6501 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6502 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6503 else if (GET_CODE (true_rtx) == IOR
6504 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6505 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6506 else if (GET_CODE (false_rtx) == IOR
6507 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6508 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6509 else if (GET_CODE (false_rtx) == IOR
6510 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6511 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6513 term2 = simplify_gen_binary (AND, GET_MODE (src),
6514 XEXP (XEXP (src, 0), 0), true_rtx);
6515 term3 = simplify_gen_binary (AND, GET_MODE (src),
6516 simplify_gen_unary (NOT, GET_MODE (src),
6517 XEXP (XEXP (src, 0), 0),
6518 GET_MODE (src)),
6519 false_rtx);
6521 SUBST (SET_SRC (x),
6522 simplify_gen_binary (IOR, GET_MODE (src),
6523 simplify_gen_binary (IOR, GET_MODE (src),
6524 term1, term2),
6525 term3));
6527 src = SET_SRC (x);
6530 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6531 whole thing fail. */
6532 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6533 return src;
6534 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6535 return dest;
6536 else
6537 /* Convert this into a field assignment operation, if possible. */
6538 return make_field_assignment (x);
6541 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6542 result. */
6544 static rtx
6545 simplify_logical (rtx x)
6547 enum machine_mode mode = GET_MODE (x);
6548 rtx op0 = XEXP (x, 0);
6549 rtx op1 = XEXP (x, 1);
6551 switch (GET_CODE (x))
6553 case AND:
6554 /* We can call simplify_and_const_int only if we don't lose
6555 any (sign) bits when converting INTVAL (op1) to
6556 "unsigned HOST_WIDE_INT". */
6557 if (CONST_INT_P (op1)
6558 && (HWI_COMPUTABLE_MODE_P (mode)
6559 || INTVAL (op1) > 0))
6561 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6562 if (GET_CODE (x) != AND)
6563 return x;
6565 op0 = XEXP (x, 0);
6566 op1 = XEXP (x, 1);
6569 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6570 apply the distributive law and then the inverse distributive
6571 law to see if things simplify. */
6572 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6574 rtx result = distribute_and_simplify_rtx (x, 0);
6575 if (result)
6576 return result;
6578 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6580 rtx result = distribute_and_simplify_rtx (x, 1);
6581 if (result)
6582 return result;
6584 break;
6586 case IOR:
6587 /* If we have (ior (and A B) C), apply the distributive law and then
6588 the inverse distributive law to see if things simplify. */
6590 if (GET_CODE (op0) == AND)
6592 rtx result = distribute_and_simplify_rtx (x, 0);
6593 if (result)
6594 return result;
6597 if (GET_CODE (op1) == AND)
6599 rtx result = distribute_and_simplify_rtx (x, 1);
6600 if (result)
6601 return result;
6603 break;
6605 default:
6606 gcc_unreachable ();
6609 return x;
6612 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6613 operations" because they can be replaced with two more basic operations.
6614 ZERO_EXTEND is also considered "compound" because it can be replaced with
6615 an AND operation, which is simpler, though only one operation.
6617 The function expand_compound_operation is called with an rtx expression
6618 and will convert it to the appropriate shifts and AND operations,
6619 simplifying at each stage.
6621 The function make_compound_operation is called to convert an expression
6622 consisting of shifts and ANDs into the equivalent compound expression.
6623 It is the inverse of this function, loosely speaking. */
6625 static rtx
6626 expand_compound_operation (rtx x)
6628 unsigned HOST_WIDE_INT pos = 0, len;
6629 int unsignedp = 0;
6630 unsigned int modewidth;
6631 rtx tem;
6633 switch (GET_CODE (x))
6635 case ZERO_EXTEND:
6636 unsignedp = 1;
6637 case SIGN_EXTEND:
6638 /* We can't necessarily use a const_int for a multiword mode;
6639 it depends on implicitly extending the value.
6640 Since we don't know the right way to extend it,
6641 we can't tell whether the implicit way is right.
6643 Even for a mode that is no wider than a const_int,
6644 we can't win, because we need to sign extend one of its bits through
6645 the rest of it, and we don't know which bit. */
6646 if (CONST_INT_P (XEXP (x, 0)))
6647 return x;
6649 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6650 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6651 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6652 reloaded. If not for that, MEM's would very rarely be safe.
6654 Reject MODEs bigger than a word, because we might not be able
6655 to reference a two-register group starting with an arbitrary register
6656 (and currently gen_lowpart might crash for a SUBREG). */
6658 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6659 return x;
6661 /* Reject MODEs that aren't scalar integers because turning vector
6662 or complex modes into shifts causes problems. */
6664 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6665 return x;
6667 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6668 /* If the inner object has VOIDmode (the only way this can happen
6669 is if it is an ASM_OPERANDS), we can't do anything since we don't
6670 know how much masking to do. */
6671 if (len == 0)
6672 return x;
6674 break;
6676 case ZERO_EXTRACT:
6677 unsignedp = 1;
6679 /* ... fall through ... */
6681 case SIGN_EXTRACT:
6682 /* If the operand is a CLOBBER, just return it. */
6683 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6684 return XEXP (x, 0);
6686 if (!CONST_INT_P (XEXP (x, 1))
6687 || !CONST_INT_P (XEXP (x, 2))
6688 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6689 return x;
6691 /* Reject MODEs that aren't scalar integers because turning vector
6692 or complex modes into shifts causes problems. */
6694 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6695 return x;
6697 len = INTVAL (XEXP (x, 1));
6698 pos = INTVAL (XEXP (x, 2));
6700 /* This should stay within the object being extracted, fail otherwise. */
6701 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6702 return x;
6704 if (BITS_BIG_ENDIAN)
6705 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6707 break;
6709 default:
6710 return x;
6712 /* Convert sign extension to zero extension, if we know that the high
6713 bit is not set, as this is easier to optimize. It will be converted
6714 back to cheaper alternative in make_extraction. */
6715 if (GET_CODE (x) == SIGN_EXTEND
6716 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6717 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6718 & ~(((unsigned HOST_WIDE_INT)
6719 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6720 >> 1))
6721 == 0)))
6723 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6724 rtx temp2 = expand_compound_operation (temp);
6726 /* Make sure this is a profitable operation. */
6727 if (set_src_cost (x, optimize_this_for_speed_p)
6728 > set_src_cost (temp2, optimize_this_for_speed_p))
6729 return temp2;
6730 else if (set_src_cost (x, optimize_this_for_speed_p)
6731 > set_src_cost (temp, optimize_this_for_speed_p))
6732 return temp;
6733 else
6734 return x;
6737 /* We can optimize some special cases of ZERO_EXTEND. */
6738 if (GET_CODE (x) == ZERO_EXTEND)
6740 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6741 know that the last value didn't have any inappropriate bits
6742 set. */
6743 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6744 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6745 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6746 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6747 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6748 return XEXP (XEXP (x, 0), 0);
6750 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6751 if (GET_CODE (XEXP (x, 0)) == SUBREG
6752 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6753 && subreg_lowpart_p (XEXP (x, 0))
6754 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6755 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6756 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6757 return SUBREG_REG (XEXP (x, 0));
6759 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6760 is a comparison and STORE_FLAG_VALUE permits. This is like
6761 the first case, but it works even when GET_MODE (x) is larger
6762 than HOST_WIDE_INT. */
6763 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6764 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6765 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6766 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6767 <= HOST_BITS_PER_WIDE_INT)
6768 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6769 return XEXP (XEXP (x, 0), 0);
6771 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6772 if (GET_CODE (XEXP (x, 0)) == SUBREG
6773 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6774 && subreg_lowpart_p (XEXP (x, 0))
6775 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6776 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6777 <= HOST_BITS_PER_WIDE_INT)
6778 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6779 return SUBREG_REG (XEXP (x, 0));
6783 /* If we reach here, we want to return a pair of shifts. The inner
6784 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6785 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6786 logical depending on the value of UNSIGNEDP.
6788 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6789 converted into an AND of a shift.
6791 We must check for the case where the left shift would have a negative
6792 count. This can happen in a case like (x >> 31) & 255 on machines
6793 that can't shift by a constant. On those machines, we would first
6794 combine the shift with the AND to produce a variable-position
6795 extraction. Then the constant of 31 would be substituted in
6796 to produce such a position. */
6798 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6799 if (modewidth >= pos + len)
6801 enum machine_mode mode = GET_MODE (x);
6802 tem = gen_lowpart (mode, XEXP (x, 0));
6803 if (!tem || GET_CODE (tem) == CLOBBER)
6804 return x;
6805 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6806 tem, modewidth - pos - len);
6807 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6808 mode, tem, modewidth - len);
6810 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6811 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6812 simplify_shift_const (NULL_RTX, LSHIFTRT,
6813 GET_MODE (x),
6814 XEXP (x, 0), pos),
6815 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6816 else
6817 /* Any other cases we can't handle. */
6818 return x;
6820 /* If we couldn't do this for some reason, return the original
6821 expression. */
6822 if (GET_CODE (tem) == CLOBBER)
6823 return x;
6825 return tem;
6828 /* X is a SET which contains an assignment of one object into
6829 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6830 or certain SUBREGS). If possible, convert it into a series of
6831 logical operations.
6833 We half-heartedly support variable positions, but do not at all
6834 support variable lengths. */
6836 static const_rtx
6837 expand_field_assignment (const_rtx x)
6839 rtx inner;
6840 rtx pos; /* Always counts from low bit. */
6841 int len;
6842 rtx mask, cleared, masked;
6843 enum machine_mode compute_mode;
6845 /* Loop until we find something we can't simplify. */
6846 while (1)
6848 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6849 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6851 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6852 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6853 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6855 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6856 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6858 inner = XEXP (SET_DEST (x), 0);
6859 len = INTVAL (XEXP (SET_DEST (x), 1));
6860 pos = XEXP (SET_DEST (x), 2);
6862 /* A constant position should stay within the width of INNER. */
6863 if (CONST_INT_P (pos)
6864 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6865 break;
6867 if (BITS_BIG_ENDIAN)
6869 if (CONST_INT_P (pos))
6870 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6871 - INTVAL (pos));
6872 else if (GET_CODE (pos) == MINUS
6873 && CONST_INT_P (XEXP (pos, 1))
6874 && (INTVAL (XEXP (pos, 1))
6875 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6876 /* If position is ADJUST - X, new position is X. */
6877 pos = XEXP (pos, 0);
6878 else
6879 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6880 GEN_INT (GET_MODE_PRECISION (
6881 GET_MODE (inner))
6882 - len),
6883 pos);
6887 /* A SUBREG between two modes that occupy the same numbers of words
6888 can be done by moving the SUBREG to the source. */
6889 else if (GET_CODE (SET_DEST (x)) == SUBREG
6890 /* We need SUBREGs to compute nonzero_bits properly. */
6891 && nonzero_sign_valid
6892 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6893 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6894 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6895 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6897 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6898 gen_lowpart
6899 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6900 SET_SRC (x)));
6901 continue;
6903 else
6904 break;
6906 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6907 inner = SUBREG_REG (inner);
6909 compute_mode = GET_MODE (inner);
6911 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6912 if (! SCALAR_INT_MODE_P (compute_mode))
6914 enum machine_mode imode;
6916 /* Don't do anything for vector or complex integral types. */
6917 if (! FLOAT_MODE_P (compute_mode))
6918 break;
6920 /* Try to find an integral mode to pun with. */
6921 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6922 if (imode == BLKmode)
6923 break;
6925 compute_mode = imode;
6926 inner = gen_lowpart (imode, inner);
6929 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6930 if (len >= HOST_BITS_PER_WIDE_INT)
6931 break;
6933 /* Now compute the equivalent expression. Make a copy of INNER
6934 for the SET_DEST in case it is a MEM into which we will substitute;
6935 we don't want shared RTL in that case. */
6936 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6937 cleared = simplify_gen_binary (AND, compute_mode,
6938 simplify_gen_unary (NOT, compute_mode,
6939 simplify_gen_binary (ASHIFT,
6940 compute_mode,
6941 mask, pos),
6942 compute_mode),
6943 inner);
6944 masked = simplify_gen_binary (ASHIFT, compute_mode,
6945 simplify_gen_binary (
6946 AND, compute_mode,
6947 gen_lowpart (compute_mode, SET_SRC (x)),
6948 mask),
6949 pos);
6951 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6952 simplify_gen_binary (IOR, compute_mode,
6953 cleared, masked));
6956 return x;
6959 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6960 it is an RTX that represents the (variable) starting position; otherwise,
6961 POS is the (constant) starting bit position. Both are counted from the LSB.
6963 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
6965 IN_DEST is nonzero if this is a reference in the destination of a SET.
6966 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6967 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6968 be used.
6970 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6971 ZERO_EXTRACT should be built even for bits starting at bit 0.
6973 MODE is the desired mode of the result (if IN_DEST == 0).
6975 The result is an RTX for the extraction or NULL_RTX if the target
6976 can't handle it. */
6978 static rtx
6979 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6980 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6981 int in_dest, int in_compare)
6983 /* This mode describes the size of the storage area
6984 to fetch the overall value from. Within that, we
6985 ignore the POS lowest bits, etc. */
6986 enum machine_mode is_mode = GET_MODE (inner);
6987 enum machine_mode inner_mode;
6988 enum machine_mode wanted_inner_mode;
6989 enum machine_mode wanted_inner_reg_mode = word_mode;
6990 enum machine_mode pos_mode = word_mode;
6991 enum machine_mode extraction_mode = word_mode;
6992 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6993 rtx new_rtx = 0;
6994 rtx orig_pos_rtx = pos_rtx;
6995 HOST_WIDE_INT orig_pos;
6997 if (pos_rtx && CONST_INT_P (pos_rtx))
6998 pos = INTVAL (pos_rtx), pos_rtx = 0;
7000 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7002 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7003 consider just the QI as the memory to extract from.
7004 The subreg adds or removes high bits; its mode is
7005 irrelevant to the meaning of this extraction,
7006 since POS and LEN count from the lsb. */
7007 if (MEM_P (SUBREG_REG (inner)))
7008 is_mode = GET_MODE (SUBREG_REG (inner));
7009 inner = SUBREG_REG (inner);
7011 else if (GET_CODE (inner) == ASHIFT
7012 && CONST_INT_P (XEXP (inner, 1))
7013 && pos_rtx == 0 && pos == 0
7014 && len > UINTVAL (XEXP (inner, 1)))
7016 /* We're extracting the least significant bits of an rtx
7017 (ashift X (const_int C)), where LEN > C. Extract the
7018 least significant (LEN - C) bits of X, giving an rtx
7019 whose mode is MODE, then shift it left C times. */
7020 new_rtx = make_extraction (mode, XEXP (inner, 0),
7021 0, 0, len - INTVAL (XEXP (inner, 1)),
7022 unsignedp, in_dest, in_compare);
7023 if (new_rtx != 0)
7024 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7026 else if (GET_CODE (inner) == TRUNCATE)
7027 inner = XEXP (inner, 0);
7029 inner_mode = GET_MODE (inner);
7031 /* See if this can be done without an extraction. We never can if the
7032 width of the field is not the same as that of some integer mode. For
7033 registers, we can only avoid the extraction if the position is at the
7034 low-order bit and this is either not in the destination or we have the
7035 appropriate STRICT_LOW_PART operation available.
7037 For MEM, we can avoid an extract if the field starts on an appropriate
7038 boundary and we can change the mode of the memory reference. */
7040 if (tmode != BLKmode
7041 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7042 && !MEM_P (inner)
7043 && (inner_mode == tmode
7044 || !REG_P (inner)
7045 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7046 || reg_truncated_to_mode (tmode, inner))
7047 && (! in_dest
7048 || (REG_P (inner)
7049 && have_insn_for (STRICT_LOW_PART, tmode))))
7050 || (MEM_P (inner) && pos_rtx == 0
7051 && (pos
7052 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7053 : BITS_PER_UNIT)) == 0
7054 /* We can't do this if we are widening INNER_MODE (it
7055 may not be aligned, for one thing). */
7056 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7057 && (inner_mode == tmode
7058 || (! mode_dependent_address_p (XEXP (inner, 0),
7059 MEM_ADDR_SPACE (inner))
7060 && ! MEM_VOLATILE_P (inner))))))
7062 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7063 field. If the original and current mode are the same, we need not
7064 adjust the offset. Otherwise, we do if bytes big endian.
7066 If INNER is not a MEM, get a piece consisting of just the field
7067 of interest (in this case POS % BITS_PER_WORD must be 0). */
7069 if (MEM_P (inner))
7071 HOST_WIDE_INT offset;
7073 /* POS counts from lsb, but make OFFSET count in memory order. */
7074 if (BYTES_BIG_ENDIAN)
7075 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7076 else
7077 offset = pos / BITS_PER_UNIT;
7079 new_rtx = adjust_address_nv (inner, tmode, offset);
7081 else if (REG_P (inner))
7083 if (tmode != inner_mode)
7085 /* We can't call gen_lowpart in a DEST since we
7086 always want a SUBREG (see below) and it would sometimes
7087 return a new hard register. */
7088 if (pos || in_dest)
7090 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7092 if (WORDS_BIG_ENDIAN
7093 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7094 final_word = ((GET_MODE_SIZE (inner_mode)
7095 - GET_MODE_SIZE (tmode))
7096 / UNITS_PER_WORD) - final_word;
7098 final_word *= UNITS_PER_WORD;
7099 if (BYTES_BIG_ENDIAN &&
7100 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7101 final_word += (GET_MODE_SIZE (inner_mode)
7102 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7104 /* Avoid creating invalid subregs, for example when
7105 simplifying (x>>32)&255. */
7106 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7107 return NULL_RTX;
7109 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7111 else
7112 new_rtx = gen_lowpart (tmode, inner);
7114 else
7115 new_rtx = inner;
7117 else
7118 new_rtx = force_to_mode (inner, tmode,
7119 len >= HOST_BITS_PER_WIDE_INT
7120 ? ~(unsigned HOST_WIDE_INT) 0
7121 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7124 /* If this extraction is going into the destination of a SET,
7125 make a STRICT_LOW_PART unless we made a MEM. */
7127 if (in_dest)
7128 return (MEM_P (new_rtx) ? new_rtx
7129 : (GET_CODE (new_rtx) != SUBREG
7130 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7131 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7133 if (mode == tmode)
7134 return new_rtx;
7136 if (CONST_SCALAR_INT_P (new_rtx))
7137 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7138 mode, new_rtx, tmode);
7140 /* If we know that no extraneous bits are set, and that the high
7141 bit is not set, convert the extraction to the cheaper of
7142 sign and zero extension, that are equivalent in these cases. */
7143 if (flag_expensive_optimizations
7144 && (HWI_COMPUTABLE_MODE_P (tmode)
7145 && ((nonzero_bits (new_rtx, tmode)
7146 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7147 == 0)))
7149 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7150 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7152 /* Prefer ZERO_EXTENSION, since it gives more information to
7153 backends. */
7154 if (set_src_cost (temp, optimize_this_for_speed_p)
7155 <= set_src_cost (temp1, optimize_this_for_speed_p))
7156 return temp;
7157 return temp1;
7160 /* Otherwise, sign- or zero-extend unless we already are in the
7161 proper mode. */
7163 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7164 mode, new_rtx));
7167 /* Unless this is a COMPARE or we have a funny memory reference,
7168 don't do anything with zero-extending field extracts starting at
7169 the low-order bit since they are simple AND operations. */
7170 if (pos_rtx == 0 && pos == 0 && ! in_dest
7171 && ! in_compare && unsignedp)
7172 return 0;
7174 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7175 if the position is not a constant and the length is not 1. In all
7176 other cases, we would only be going outside our object in cases when
7177 an original shift would have been undefined. */
7178 if (MEM_P (inner)
7179 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7180 || (pos_rtx != 0 && len != 1)))
7181 return 0;
7183 enum extraction_pattern pattern = (in_dest ? EP_insv
7184 : unsignedp ? EP_extzv : EP_extv);
7186 /* If INNER is not from memory, we want it to have the mode of a register
7187 extraction pattern's structure operand, or word_mode if there is no
7188 such pattern. The same applies to extraction_mode and pos_mode
7189 and their respective operands.
7191 For memory, assume that the desired extraction_mode and pos_mode
7192 are the same as for a register operation, since at present we don't
7193 have named patterns for aligned memory structures. */
7194 struct extraction_insn insn;
7195 if (get_best_reg_extraction_insn (&insn, pattern,
7196 GET_MODE_BITSIZE (inner_mode), mode))
7198 wanted_inner_reg_mode = insn.struct_mode;
7199 pos_mode = insn.pos_mode;
7200 extraction_mode = insn.field_mode;
7203 /* Never narrow an object, since that might not be safe. */
7205 if (mode != VOIDmode
7206 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7207 extraction_mode = mode;
7209 if (!MEM_P (inner))
7210 wanted_inner_mode = wanted_inner_reg_mode;
7211 else
7213 /* Be careful not to go beyond the extracted object and maintain the
7214 natural alignment of the memory. */
7215 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7216 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7217 > GET_MODE_BITSIZE (wanted_inner_mode))
7219 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7220 gcc_assert (wanted_inner_mode != VOIDmode);
7224 orig_pos = pos;
7226 if (BITS_BIG_ENDIAN)
7228 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7229 BITS_BIG_ENDIAN style. If position is constant, compute new
7230 position. Otherwise, build subtraction.
7231 Note that POS is relative to the mode of the original argument.
7232 If it's a MEM we need to recompute POS relative to that.
7233 However, if we're extracting from (or inserting into) a register,
7234 we want to recompute POS relative to wanted_inner_mode. */
7235 int width = (MEM_P (inner)
7236 ? GET_MODE_BITSIZE (is_mode)
7237 : GET_MODE_BITSIZE (wanted_inner_mode));
7239 if (pos_rtx == 0)
7240 pos = width - len - pos;
7241 else
7242 pos_rtx
7243 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7244 /* POS may be less than 0 now, but we check for that below.
7245 Note that it can only be less than 0 if !MEM_P (inner). */
7248 /* If INNER has a wider mode, and this is a constant extraction, try to
7249 make it smaller and adjust the byte to point to the byte containing
7250 the value. */
7251 if (wanted_inner_mode != VOIDmode
7252 && inner_mode != wanted_inner_mode
7253 && ! pos_rtx
7254 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7255 && MEM_P (inner)
7256 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7257 && ! MEM_VOLATILE_P (inner))
7259 int offset = 0;
7261 /* The computations below will be correct if the machine is big
7262 endian in both bits and bytes or little endian in bits and bytes.
7263 If it is mixed, we must adjust. */
7265 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7266 adjust OFFSET to compensate. */
7267 if (BYTES_BIG_ENDIAN
7268 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7269 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7271 /* We can now move to the desired byte. */
7272 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7273 * GET_MODE_SIZE (wanted_inner_mode);
7274 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7276 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7277 && is_mode != wanted_inner_mode)
7278 offset = (GET_MODE_SIZE (is_mode)
7279 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7281 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7284 /* If INNER is not memory, get it into the proper mode. If we are changing
7285 its mode, POS must be a constant and smaller than the size of the new
7286 mode. */
7287 else if (!MEM_P (inner))
7289 /* On the LHS, don't create paradoxical subregs implicitely truncating
7290 the register unless TRULY_NOOP_TRUNCATION. */
7291 if (in_dest
7292 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7293 wanted_inner_mode))
7294 return NULL_RTX;
7296 if (GET_MODE (inner) != wanted_inner_mode
7297 && (pos_rtx != 0
7298 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7299 return NULL_RTX;
7301 if (orig_pos < 0)
7302 return NULL_RTX;
7304 inner = force_to_mode (inner, wanted_inner_mode,
7305 pos_rtx
7306 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7307 ? ~(unsigned HOST_WIDE_INT) 0
7308 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7309 << orig_pos),
7313 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7314 have to zero extend. Otherwise, we can just use a SUBREG. */
7315 if (pos_rtx != 0
7316 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7318 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7320 /* If we know that no extraneous bits are set, and that the high
7321 bit is not set, convert extraction to cheaper one - either
7322 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7323 cases. */
7324 if (flag_expensive_optimizations
7325 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7326 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7327 & ~(((unsigned HOST_WIDE_INT)
7328 GET_MODE_MASK (GET_MODE (pos_rtx)))
7329 >> 1))
7330 == 0)))
7332 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7334 /* Prefer ZERO_EXTENSION, since it gives more information to
7335 backends. */
7336 if (set_src_cost (temp1, optimize_this_for_speed_p)
7337 < set_src_cost (temp, optimize_this_for_speed_p))
7338 temp = temp1;
7340 pos_rtx = temp;
7343 /* Make POS_RTX unless we already have it and it is correct. If we don't
7344 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7345 be a CONST_INT. */
7346 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7347 pos_rtx = orig_pos_rtx;
7349 else if (pos_rtx == 0)
7350 pos_rtx = GEN_INT (pos);
7352 /* Make the required operation. See if we can use existing rtx. */
7353 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7354 extraction_mode, inner, GEN_INT (len), pos_rtx);
7355 if (! in_dest)
7356 new_rtx = gen_lowpart (mode, new_rtx);
7358 return new_rtx;
7361 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7362 with any other operations in X. Return X without that shift if so. */
7364 static rtx
7365 extract_left_shift (rtx x, int count)
7367 enum rtx_code code = GET_CODE (x);
7368 enum machine_mode mode = GET_MODE (x);
7369 rtx tem;
7371 switch (code)
7373 case ASHIFT:
7374 /* This is the shift itself. If it is wide enough, we will return
7375 either the value being shifted if the shift count is equal to
7376 COUNT or a shift for the difference. */
7377 if (CONST_INT_P (XEXP (x, 1))
7378 && INTVAL (XEXP (x, 1)) >= count)
7379 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7380 INTVAL (XEXP (x, 1)) - count);
7381 break;
7383 case NEG: case NOT:
7384 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7385 return simplify_gen_unary (code, mode, tem, mode);
7387 break;
7389 case PLUS: case IOR: case XOR: case AND:
7390 /* If we can safely shift this constant and we find the inner shift,
7391 make a new operation. */
7392 if (CONST_INT_P (XEXP (x, 1))
7393 && (UINTVAL (XEXP (x, 1))
7394 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7395 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7396 return simplify_gen_binary (code, mode, tem,
7397 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7399 break;
7401 default:
7402 break;
7405 return 0;
7408 /* Look at the expression rooted at X. Look for expressions
7409 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7410 Form these expressions.
7412 Return the new rtx, usually just X.
7414 Also, for machines like the VAX that don't have logical shift insns,
7415 try to convert logical to arithmetic shift operations in cases where
7416 they are equivalent. This undoes the canonicalizations to logical
7417 shifts done elsewhere.
7419 We try, as much as possible, to re-use rtl expressions to save memory.
7421 IN_CODE says what kind of expression we are processing. Normally, it is
7422 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7423 being kludges), it is MEM. When processing the arguments of a comparison
7424 or a COMPARE against zero, it is COMPARE. */
7427 make_compound_operation (rtx x, enum rtx_code in_code)
7429 enum rtx_code code = GET_CODE (x);
7430 enum machine_mode mode = GET_MODE (x);
7431 int mode_width = GET_MODE_PRECISION (mode);
7432 rtx rhs, lhs;
7433 enum rtx_code next_code;
7434 int i, j;
7435 rtx new_rtx = 0;
7436 rtx tem;
7437 const char *fmt;
7439 /* Select the code to be used in recursive calls. Once we are inside an
7440 address, we stay there. If we have a comparison, set to COMPARE,
7441 but once inside, go back to our default of SET. */
7443 next_code = (code == MEM ? MEM
7444 : ((code == PLUS || code == MINUS)
7445 && SCALAR_INT_MODE_P (mode)) ? MEM
7446 : ((code == COMPARE || COMPARISON_P (x))
7447 && XEXP (x, 1) == const0_rtx) ? COMPARE
7448 : in_code == COMPARE ? SET : in_code);
7450 /* Process depending on the code of this operation. If NEW is set
7451 nonzero, it will be returned. */
7453 switch (code)
7455 case ASHIFT:
7456 /* Convert shifts by constants into multiplications if inside
7457 an address. */
7458 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7459 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7460 && INTVAL (XEXP (x, 1)) >= 0
7461 && SCALAR_INT_MODE_P (mode))
7463 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7464 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7466 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7467 if (GET_CODE (new_rtx) == NEG)
7469 new_rtx = XEXP (new_rtx, 0);
7470 multval = -multval;
7472 multval = trunc_int_for_mode (multval, mode);
7473 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7475 break;
7477 case PLUS:
7478 lhs = XEXP (x, 0);
7479 rhs = XEXP (x, 1);
7480 lhs = make_compound_operation (lhs, next_code);
7481 rhs = make_compound_operation (rhs, next_code);
7482 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7483 && SCALAR_INT_MODE_P (mode))
7485 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7486 XEXP (lhs, 1));
7487 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7489 else if (GET_CODE (lhs) == MULT
7490 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7492 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7493 simplify_gen_unary (NEG, mode,
7494 XEXP (lhs, 1),
7495 mode));
7496 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7498 else
7500 SUBST (XEXP (x, 0), lhs);
7501 SUBST (XEXP (x, 1), rhs);
7502 goto maybe_swap;
7504 x = gen_lowpart (mode, new_rtx);
7505 goto maybe_swap;
7507 case MINUS:
7508 lhs = XEXP (x, 0);
7509 rhs = XEXP (x, 1);
7510 lhs = make_compound_operation (lhs, next_code);
7511 rhs = make_compound_operation (rhs, next_code);
7512 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7513 && SCALAR_INT_MODE_P (mode))
7515 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7516 XEXP (rhs, 1));
7517 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7519 else if (GET_CODE (rhs) == MULT
7520 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7522 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7523 simplify_gen_unary (NEG, mode,
7524 XEXP (rhs, 1),
7525 mode));
7526 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7528 else
7530 SUBST (XEXP (x, 0), lhs);
7531 SUBST (XEXP (x, 1), rhs);
7532 return x;
7534 return gen_lowpart (mode, new_rtx);
7536 case AND:
7537 /* If the second operand is not a constant, we can't do anything
7538 with it. */
7539 if (!CONST_INT_P (XEXP (x, 1)))
7540 break;
7542 /* If the constant is a power of two minus one and the first operand
7543 is a logical right shift, make an extraction. */
7544 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7545 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7547 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7548 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7549 0, in_code == COMPARE);
7552 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7553 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7554 && subreg_lowpart_p (XEXP (x, 0))
7555 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7556 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7558 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7559 next_code);
7560 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7561 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7562 0, in_code == COMPARE);
7564 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7565 else if ((GET_CODE (XEXP (x, 0)) == XOR
7566 || GET_CODE (XEXP (x, 0)) == IOR)
7567 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7568 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7569 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7571 /* Apply the distributive law, and then try to make extractions. */
7572 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7573 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7574 XEXP (x, 1)),
7575 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7576 XEXP (x, 1)));
7577 new_rtx = make_compound_operation (new_rtx, in_code);
7580 /* If we are have (and (rotate X C) M) and C is larger than the number
7581 of bits in M, this is an extraction. */
7583 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7584 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7585 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7586 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7588 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7589 new_rtx = make_extraction (mode, new_rtx,
7590 (GET_MODE_PRECISION (mode)
7591 - INTVAL (XEXP (XEXP (x, 0), 1))),
7592 NULL_RTX, i, 1, 0, in_code == COMPARE);
7595 /* On machines without logical shifts, if the operand of the AND is
7596 a logical shift and our mask turns off all the propagated sign
7597 bits, we can replace the logical shift with an arithmetic shift. */
7598 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7599 && !have_insn_for (LSHIFTRT, mode)
7600 && have_insn_for (ASHIFTRT, mode)
7601 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7602 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7603 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7604 && mode_width <= HOST_BITS_PER_WIDE_INT)
7606 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7608 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7609 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7610 SUBST (XEXP (x, 0),
7611 gen_rtx_ASHIFTRT (mode,
7612 make_compound_operation
7613 (XEXP (XEXP (x, 0), 0), next_code),
7614 XEXP (XEXP (x, 0), 1)));
7617 /* If the constant is one less than a power of two, this might be
7618 representable by an extraction even if no shift is present.
7619 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7620 we are in a COMPARE. */
7621 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7622 new_rtx = make_extraction (mode,
7623 make_compound_operation (XEXP (x, 0),
7624 next_code),
7625 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7627 /* If we are in a comparison and this is an AND with a power of two,
7628 convert this into the appropriate bit extract. */
7629 else if (in_code == COMPARE
7630 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7631 new_rtx = make_extraction (mode,
7632 make_compound_operation (XEXP (x, 0),
7633 next_code),
7634 i, NULL_RTX, 1, 1, 0, 1);
7636 break;
7638 case LSHIFTRT:
7639 /* If the sign bit is known to be zero, replace this with an
7640 arithmetic shift. */
7641 if (have_insn_for (ASHIFTRT, mode)
7642 && ! have_insn_for (LSHIFTRT, mode)
7643 && mode_width <= HOST_BITS_PER_WIDE_INT
7644 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7646 new_rtx = gen_rtx_ASHIFTRT (mode,
7647 make_compound_operation (XEXP (x, 0),
7648 next_code),
7649 XEXP (x, 1));
7650 break;
7653 /* ... fall through ... */
7655 case ASHIFTRT:
7656 lhs = XEXP (x, 0);
7657 rhs = XEXP (x, 1);
7659 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7660 this is a SIGN_EXTRACT. */
7661 if (CONST_INT_P (rhs)
7662 && GET_CODE (lhs) == ASHIFT
7663 && CONST_INT_P (XEXP (lhs, 1))
7664 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7665 && INTVAL (XEXP (lhs, 1)) >= 0
7666 && INTVAL (rhs) < mode_width)
7668 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7669 new_rtx = make_extraction (mode, new_rtx,
7670 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7671 NULL_RTX, mode_width - INTVAL (rhs),
7672 code == LSHIFTRT, 0, in_code == COMPARE);
7673 break;
7676 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7677 If so, try to merge the shifts into a SIGN_EXTEND. We could
7678 also do this for some cases of SIGN_EXTRACT, but it doesn't
7679 seem worth the effort; the case checked for occurs on Alpha. */
7681 if (!OBJECT_P (lhs)
7682 && ! (GET_CODE (lhs) == SUBREG
7683 && (OBJECT_P (SUBREG_REG (lhs))))
7684 && CONST_INT_P (rhs)
7685 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7686 && INTVAL (rhs) < mode_width
7687 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7688 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7689 0, NULL_RTX, mode_width - INTVAL (rhs),
7690 code == LSHIFTRT, 0, in_code == COMPARE);
7692 break;
7694 case SUBREG:
7695 /* Call ourselves recursively on the inner expression. If we are
7696 narrowing the object and it has a different RTL code from
7697 what it originally did, do this SUBREG as a force_to_mode. */
7699 rtx inner = SUBREG_REG (x), simplified;
7701 tem = make_compound_operation (inner, in_code);
7703 simplified
7704 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7705 if (simplified)
7706 tem = simplified;
7708 if (GET_CODE (tem) != GET_CODE (inner)
7709 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7710 && subreg_lowpart_p (x))
7712 rtx newer
7713 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7715 /* If we have something other than a SUBREG, we might have
7716 done an expansion, so rerun ourselves. */
7717 if (GET_CODE (newer) != SUBREG)
7718 newer = make_compound_operation (newer, in_code);
7720 /* force_to_mode can expand compounds. If it just re-expanded the
7721 compound, use gen_lowpart to convert to the desired mode. */
7722 if (rtx_equal_p (newer, x)
7723 /* Likewise if it re-expanded the compound only partially.
7724 This happens for SUBREG of ZERO_EXTRACT if they extract
7725 the same number of bits. */
7726 || (GET_CODE (newer) == SUBREG
7727 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7728 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7729 && GET_CODE (inner) == AND
7730 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7731 return gen_lowpart (GET_MODE (x), tem);
7733 return newer;
7736 if (simplified)
7737 return tem;
7739 break;
7741 default:
7742 break;
7745 if (new_rtx)
7747 x = gen_lowpart (mode, new_rtx);
7748 code = GET_CODE (x);
7751 /* Now recursively process each operand of this operation. We need to
7752 handle ZERO_EXTEND specially so that we don't lose track of the
7753 inner mode. */
7754 if (GET_CODE (x) == ZERO_EXTEND)
7756 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7757 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7758 new_rtx, GET_MODE (XEXP (x, 0)));
7759 if (tem)
7760 return tem;
7761 SUBST (XEXP (x, 0), new_rtx);
7762 return x;
7765 fmt = GET_RTX_FORMAT (code);
7766 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7767 if (fmt[i] == 'e')
7769 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7770 SUBST (XEXP (x, i), new_rtx);
7772 else if (fmt[i] == 'E')
7773 for (j = 0; j < XVECLEN (x, i); j++)
7775 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7776 SUBST (XVECEXP (x, i, j), new_rtx);
7779 maybe_swap:
7780 /* If this is a commutative operation, the changes to the operands
7781 may have made it noncanonical. */
7782 if (COMMUTATIVE_ARITH_P (x)
7783 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7785 tem = XEXP (x, 0);
7786 SUBST (XEXP (x, 0), XEXP (x, 1));
7787 SUBST (XEXP (x, 1), tem);
7790 return x;
7793 /* Given M see if it is a value that would select a field of bits
7794 within an item, but not the entire word. Return -1 if not.
7795 Otherwise, return the starting position of the field, where 0 is the
7796 low-order bit.
7798 *PLEN is set to the length of the field. */
7800 static int
7801 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7803 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7804 int pos = m ? ctz_hwi (m) : -1;
7805 int len = 0;
7807 if (pos >= 0)
7808 /* Now shift off the low-order zero bits and see if we have a
7809 power of two minus 1. */
7810 len = exact_log2 ((m >> pos) + 1);
7812 if (len <= 0)
7813 pos = -1;
7815 *plen = len;
7816 return pos;
7819 /* If X refers to a register that equals REG in value, replace these
7820 references with REG. */
7821 static rtx
7822 canon_reg_for_combine (rtx x, rtx reg)
7824 rtx op0, op1, op2;
7825 const char *fmt;
7826 int i;
7827 bool copied;
7829 enum rtx_code code = GET_CODE (x);
7830 switch (GET_RTX_CLASS (code))
7832 case RTX_UNARY:
7833 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7834 if (op0 != XEXP (x, 0))
7835 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7836 GET_MODE (reg));
7837 break;
7839 case RTX_BIN_ARITH:
7840 case RTX_COMM_ARITH:
7841 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7842 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7843 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7844 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7845 break;
7847 case RTX_COMPARE:
7848 case RTX_COMM_COMPARE:
7849 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7850 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7851 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7852 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7853 GET_MODE (op0), op0, op1);
7854 break;
7856 case RTX_TERNARY:
7857 case RTX_BITFIELD_OPS:
7858 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7859 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7860 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7861 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7862 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7863 GET_MODE (op0), op0, op1, op2);
7865 case RTX_OBJ:
7866 if (REG_P (x))
7868 if (rtx_equal_p (get_last_value (reg), x)
7869 || rtx_equal_p (reg, get_last_value (x)))
7870 return reg;
7871 else
7872 break;
7875 /* fall through */
7877 default:
7878 fmt = GET_RTX_FORMAT (code);
7879 copied = false;
7880 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7881 if (fmt[i] == 'e')
7883 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7884 if (op != XEXP (x, i))
7886 if (!copied)
7888 copied = true;
7889 x = copy_rtx (x);
7891 XEXP (x, i) = op;
7894 else if (fmt[i] == 'E')
7896 int j;
7897 for (j = 0; j < XVECLEN (x, i); j++)
7899 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7900 if (op != XVECEXP (x, i, j))
7902 if (!copied)
7904 copied = true;
7905 x = copy_rtx (x);
7907 XVECEXP (x, i, j) = op;
7912 break;
7915 return x;
7918 /* Return X converted to MODE. If the value is already truncated to
7919 MODE we can just return a subreg even though in the general case we
7920 would need an explicit truncation. */
7922 static rtx
7923 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7925 if (!CONST_INT_P (x)
7926 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7927 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7928 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7930 /* Bit-cast X into an integer mode. */
7931 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7932 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7933 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7934 x, GET_MODE (x));
7937 return gen_lowpart (mode, x);
7940 /* See if X can be simplified knowing that we will only refer to it in
7941 MODE and will only refer to those bits that are nonzero in MASK.
7942 If other bits are being computed or if masking operations are done
7943 that select a superset of the bits in MASK, they can sometimes be
7944 ignored.
7946 Return a possibly simplified expression, but always convert X to
7947 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7949 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7950 are all off in X. This is used when X will be complemented, by either
7951 NOT, NEG, or XOR. */
7953 static rtx
7954 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7955 int just_select)
7957 enum rtx_code code = GET_CODE (x);
7958 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7959 enum machine_mode op_mode;
7960 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7961 rtx op0, op1, temp;
7963 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7964 code below will do the wrong thing since the mode of such an
7965 expression is VOIDmode.
7967 Also do nothing if X is a CLOBBER; this can happen if X was
7968 the return value from a call to gen_lowpart. */
7969 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7970 return x;
7972 /* We want to perform the operation is its present mode unless we know
7973 that the operation is valid in MODE, in which case we do the operation
7974 in MODE. */
7975 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7976 && have_insn_for (code, mode))
7977 ? mode : GET_MODE (x));
7979 /* It is not valid to do a right-shift in a narrower mode
7980 than the one it came in with. */
7981 if ((code == LSHIFTRT || code == ASHIFTRT)
7982 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
7983 op_mode = GET_MODE (x);
7985 /* Truncate MASK to fit OP_MODE. */
7986 if (op_mode)
7987 mask &= GET_MODE_MASK (op_mode);
7989 /* When we have an arithmetic operation, or a shift whose count we
7990 do not know, we need to assume that all bits up to the highest-order
7991 bit in MASK will be needed. This is how we form such a mask. */
7992 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7993 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7994 else
7995 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7996 - 1);
7998 /* Determine what bits of X are guaranteed to be (non)zero. */
7999 nonzero = nonzero_bits (x, mode);
8001 /* If none of the bits in X are needed, return a zero. */
8002 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8003 x = const0_rtx;
8005 /* If X is a CONST_INT, return a new one. Do this here since the
8006 test below will fail. */
8007 if (CONST_INT_P (x))
8009 if (SCALAR_INT_MODE_P (mode))
8010 return gen_int_mode (INTVAL (x) & mask, mode);
8011 else
8013 x = GEN_INT (INTVAL (x) & mask);
8014 return gen_lowpart_common (mode, x);
8018 /* If X is narrower than MODE and we want all the bits in X's mode, just
8019 get X in the proper mode. */
8020 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8021 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8022 return gen_lowpart (mode, x);
8024 /* We can ignore the effect of a SUBREG if it narrows the mode or
8025 if the constant masks to zero all the bits the mode doesn't have. */
8026 if (GET_CODE (x) == SUBREG
8027 && subreg_lowpart_p (x)
8028 && ((GET_MODE_SIZE (GET_MODE (x))
8029 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8030 || (0 == (mask
8031 & GET_MODE_MASK (GET_MODE (x))
8032 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8033 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8035 /* The arithmetic simplifications here only work for scalar integer modes. */
8036 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8037 return gen_lowpart_or_truncate (mode, x);
8039 switch (code)
8041 case CLOBBER:
8042 /* If X is a (clobber (const_int)), return it since we know we are
8043 generating something that won't match. */
8044 return x;
8046 case SIGN_EXTEND:
8047 case ZERO_EXTEND:
8048 case ZERO_EXTRACT:
8049 case SIGN_EXTRACT:
8050 x = expand_compound_operation (x);
8051 if (GET_CODE (x) != code)
8052 return force_to_mode (x, mode, mask, next_select);
8053 break;
8055 case TRUNCATE:
8056 /* Similarly for a truncate. */
8057 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8059 case AND:
8060 /* If this is an AND with a constant, convert it into an AND
8061 whose constant is the AND of that constant with MASK. If it
8062 remains an AND of MASK, delete it since it is redundant. */
8064 if (CONST_INT_P (XEXP (x, 1)))
8066 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8067 mask & INTVAL (XEXP (x, 1)));
8069 /* If X is still an AND, see if it is an AND with a mask that
8070 is just some low-order bits. If so, and it is MASK, we don't
8071 need it. */
8073 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8074 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8075 == mask))
8076 x = XEXP (x, 0);
8078 /* If it remains an AND, try making another AND with the bits
8079 in the mode mask that aren't in MASK turned on. If the
8080 constant in the AND is wide enough, this might make a
8081 cheaper constant. */
8083 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8084 && GET_MODE_MASK (GET_MODE (x)) != mask
8085 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8087 unsigned HOST_WIDE_INT cval
8088 = UINTVAL (XEXP (x, 1))
8089 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8090 int width = GET_MODE_PRECISION (GET_MODE (x));
8091 rtx y;
8093 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8094 number, sign extend it. */
8095 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8096 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8097 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8099 y = simplify_gen_binary (AND, GET_MODE (x),
8100 XEXP (x, 0), GEN_INT (cval));
8101 if (set_src_cost (y, optimize_this_for_speed_p)
8102 < set_src_cost (x, optimize_this_for_speed_p))
8103 x = y;
8106 break;
8109 goto binop;
8111 case PLUS:
8112 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8113 low-order bits (as in an alignment operation) and FOO is already
8114 aligned to that boundary, mask C1 to that boundary as well.
8115 This may eliminate that PLUS and, later, the AND. */
8118 unsigned int width = GET_MODE_PRECISION (mode);
8119 unsigned HOST_WIDE_INT smask = mask;
8121 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8122 number, sign extend it. */
8124 if (width < HOST_BITS_PER_WIDE_INT
8125 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8126 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8128 if (CONST_INT_P (XEXP (x, 1))
8129 && exact_log2 (- smask) >= 0
8130 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8131 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8132 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8133 (INTVAL (XEXP (x, 1)) & smask)),
8134 mode, smask, next_select);
8137 /* ... fall through ... */
8139 case MULT:
8140 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8141 most significant bit in MASK since carries from those bits will
8142 affect the bits we are interested in. */
8143 mask = fuller_mask;
8144 goto binop;
8146 case MINUS:
8147 /* If X is (minus C Y) where C's least set bit is larger than any bit
8148 in the mask, then we may replace with (neg Y). */
8149 if (CONST_INT_P (XEXP (x, 0))
8150 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8151 & -INTVAL (XEXP (x, 0))))
8152 > mask))
8154 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8155 GET_MODE (x));
8156 return force_to_mode (x, mode, mask, next_select);
8159 /* Similarly, if C contains every bit in the fuller_mask, then we may
8160 replace with (not Y). */
8161 if (CONST_INT_P (XEXP (x, 0))
8162 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8164 x = simplify_gen_unary (NOT, GET_MODE (x),
8165 XEXP (x, 1), GET_MODE (x));
8166 return force_to_mode (x, mode, mask, next_select);
8169 mask = fuller_mask;
8170 goto binop;
8172 case IOR:
8173 case XOR:
8174 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8175 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8176 operation which may be a bitfield extraction. Ensure that the
8177 constant we form is not wider than the mode of X. */
8179 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8180 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8181 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8182 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8183 && CONST_INT_P (XEXP (x, 1))
8184 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8185 + floor_log2 (INTVAL (XEXP (x, 1))))
8186 < GET_MODE_PRECISION (GET_MODE (x)))
8187 && (UINTVAL (XEXP (x, 1))
8188 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8190 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8191 << INTVAL (XEXP (XEXP (x, 0), 1)));
8192 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8193 XEXP (XEXP (x, 0), 0), temp);
8194 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8195 XEXP (XEXP (x, 0), 1));
8196 return force_to_mode (x, mode, mask, next_select);
8199 binop:
8200 /* For most binary operations, just propagate into the operation and
8201 change the mode if we have an operation of that mode. */
8203 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8204 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8206 /* If we ended up truncating both operands, truncate the result of the
8207 operation instead. */
8208 if (GET_CODE (op0) == TRUNCATE
8209 && GET_CODE (op1) == TRUNCATE)
8211 op0 = XEXP (op0, 0);
8212 op1 = XEXP (op1, 0);
8215 op0 = gen_lowpart_or_truncate (op_mode, op0);
8216 op1 = gen_lowpart_or_truncate (op_mode, op1);
8218 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8219 x = simplify_gen_binary (code, op_mode, op0, op1);
8220 break;
8222 case ASHIFT:
8223 /* For left shifts, do the same, but just for the first operand.
8224 However, we cannot do anything with shifts where we cannot
8225 guarantee that the counts are smaller than the size of the mode
8226 because such a count will have a different meaning in a
8227 wider mode. */
8229 if (! (CONST_INT_P (XEXP (x, 1))
8230 && INTVAL (XEXP (x, 1)) >= 0
8231 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8232 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8233 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8234 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8235 break;
8237 /* If the shift count is a constant and we can do arithmetic in
8238 the mode of the shift, refine which bits we need. Otherwise, use the
8239 conservative form of the mask. */
8240 if (CONST_INT_P (XEXP (x, 1))
8241 && INTVAL (XEXP (x, 1)) >= 0
8242 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8243 && HWI_COMPUTABLE_MODE_P (op_mode))
8244 mask >>= INTVAL (XEXP (x, 1));
8245 else
8246 mask = fuller_mask;
8248 op0 = gen_lowpart_or_truncate (op_mode,
8249 force_to_mode (XEXP (x, 0), op_mode,
8250 mask, next_select));
8252 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8253 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8254 break;
8256 case LSHIFTRT:
8257 /* Here we can only do something if the shift count is a constant,
8258 this shift constant is valid for the host, and we can do arithmetic
8259 in OP_MODE. */
8261 if (CONST_INT_P (XEXP (x, 1))
8262 && INTVAL (XEXP (x, 1)) >= 0
8263 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8264 && HWI_COMPUTABLE_MODE_P (op_mode))
8266 rtx inner = XEXP (x, 0);
8267 unsigned HOST_WIDE_INT inner_mask;
8269 /* Select the mask of the bits we need for the shift operand. */
8270 inner_mask = mask << INTVAL (XEXP (x, 1));
8272 /* We can only change the mode of the shift if we can do arithmetic
8273 in the mode of the shift and INNER_MASK is no wider than the
8274 width of X's mode. */
8275 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8276 op_mode = GET_MODE (x);
8278 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8280 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8281 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8284 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8285 shift and AND produces only copies of the sign bit (C2 is one less
8286 than a power of two), we can do this with just a shift. */
8288 if (GET_CODE (x) == LSHIFTRT
8289 && CONST_INT_P (XEXP (x, 1))
8290 /* The shift puts one of the sign bit copies in the least significant
8291 bit. */
8292 && ((INTVAL (XEXP (x, 1))
8293 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8294 >= GET_MODE_PRECISION (GET_MODE (x)))
8295 && exact_log2 (mask + 1) >= 0
8296 /* Number of bits left after the shift must be more than the mask
8297 needs. */
8298 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8299 <= GET_MODE_PRECISION (GET_MODE (x)))
8300 /* Must be more sign bit copies than the mask needs. */
8301 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8302 >= exact_log2 (mask + 1)))
8303 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8304 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8305 - exact_log2 (mask + 1)));
8307 goto shiftrt;
8309 case ASHIFTRT:
8310 /* If we are just looking for the sign bit, we don't need this shift at
8311 all, even if it has a variable count. */
8312 if (val_signbit_p (GET_MODE (x), mask))
8313 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8315 /* If this is a shift by a constant, get a mask that contains those bits
8316 that are not copies of the sign bit. We then have two cases: If
8317 MASK only includes those bits, this can be a logical shift, which may
8318 allow simplifications. If MASK is a single-bit field not within
8319 those bits, we are requesting a copy of the sign bit and hence can
8320 shift the sign bit to the appropriate location. */
8322 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8323 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8325 int i;
8327 /* If the considered data is wider than HOST_WIDE_INT, we can't
8328 represent a mask for all its bits in a single scalar.
8329 But we only care about the lower bits, so calculate these. */
8331 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8333 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8335 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8336 is the number of bits a full-width mask would have set.
8337 We need only shift if these are fewer than nonzero can
8338 hold. If not, we must keep all bits set in nonzero. */
8340 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8341 < HOST_BITS_PER_WIDE_INT)
8342 nonzero >>= INTVAL (XEXP (x, 1))
8343 + HOST_BITS_PER_WIDE_INT
8344 - GET_MODE_PRECISION (GET_MODE (x)) ;
8346 else
8348 nonzero = GET_MODE_MASK (GET_MODE (x));
8349 nonzero >>= INTVAL (XEXP (x, 1));
8352 if ((mask & ~nonzero) == 0)
8354 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8355 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8356 if (GET_CODE (x) != ASHIFTRT)
8357 return force_to_mode (x, mode, mask, next_select);
8360 else if ((i = exact_log2 (mask)) >= 0)
8362 x = simplify_shift_const
8363 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8364 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8366 if (GET_CODE (x) != ASHIFTRT)
8367 return force_to_mode (x, mode, mask, next_select);
8371 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8372 even if the shift count isn't a constant. */
8373 if (mask == 1)
8374 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8375 XEXP (x, 0), XEXP (x, 1));
8377 shiftrt:
8379 /* If this is a zero- or sign-extension operation that just affects bits
8380 we don't care about, remove it. Be sure the call above returned
8381 something that is still a shift. */
8383 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8384 && CONST_INT_P (XEXP (x, 1))
8385 && INTVAL (XEXP (x, 1)) >= 0
8386 && (INTVAL (XEXP (x, 1))
8387 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8388 && GET_CODE (XEXP (x, 0)) == ASHIFT
8389 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8390 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8391 next_select);
8393 break;
8395 case ROTATE:
8396 case ROTATERT:
8397 /* If the shift count is constant and we can do computations
8398 in the mode of X, compute where the bits we care about are.
8399 Otherwise, we can't do anything. Don't change the mode of
8400 the shift or propagate MODE into the shift, though. */
8401 if (CONST_INT_P (XEXP (x, 1))
8402 && INTVAL (XEXP (x, 1)) >= 0)
8404 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8405 GET_MODE (x), GEN_INT (mask),
8406 XEXP (x, 1));
8407 if (temp && CONST_INT_P (temp))
8408 SUBST (XEXP (x, 0),
8409 force_to_mode (XEXP (x, 0), GET_MODE (x),
8410 INTVAL (temp), next_select));
8412 break;
8414 case NEG:
8415 /* If we just want the low-order bit, the NEG isn't needed since it
8416 won't change the low-order bit. */
8417 if (mask == 1)
8418 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8420 /* We need any bits less significant than the most significant bit in
8421 MASK since carries from those bits will affect the bits we are
8422 interested in. */
8423 mask = fuller_mask;
8424 goto unop;
8426 case NOT:
8427 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8428 same as the XOR case above. Ensure that the constant we form is not
8429 wider than the mode of X. */
8431 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8432 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8433 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8434 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8435 < GET_MODE_PRECISION (GET_MODE (x)))
8436 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8438 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8439 GET_MODE (x));
8440 temp = simplify_gen_binary (XOR, GET_MODE (x),
8441 XEXP (XEXP (x, 0), 0), temp);
8442 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8443 temp, XEXP (XEXP (x, 0), 1));
8445 return force_to_mode (x, mode, mask, next_select);
8448 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8449 use the full mask inside the NOT. */
8450 mask = fuller_mask;
8452 unop:
8453 op0 = gen_lowpart_or_truncate (op_mode,
8454 force_to_mode (XEXP (x, 0), mode, mask,
8455 next_select));
8456 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8457 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8458 break;
8460 case NE:
8461 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8462 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8463 which is equal to STORE_FLAG_VALUE. */
8464 if ((mask & ~STORE_FLAG_VALUE) == 0
8465 && XEXP (x, 1) == const0_rtx
8466 && GET_MODE (XEXP (x, 0)) == mode
8467 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8468 && (nonzero_bits (XEXP (x, 0), mode)
8469 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8470 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8472 break;
8474 case IF_THEN_ELSE:
8475 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8476 written in a narrower mode. We play it safe and do not do so. */
8478 SUBST (XEXP (x, 1),
8479 gen_lowpart_or_truncate (GET_MODE (x),
8480 force_to_mode (XEXP (x, 1), mode,
8481 mask, next_select)));
8482 SUBST (XEXP (x, 2),
8483 gen_lowpart_or_truncate (GET_MODE (x),
8484 force_to_mode (XEXP (x, 2), mode,
8485 mask, next_select)));
8486 break;
8488 default:
8489 break;
8492 /* Ensure we return a value of the proper mode. */
8493 return gen_lowpart_or_truncate (mode, x);
8496 /* Return nonzero if X is an expression that has one of two values depending on
8497 whether some other value is zero or nonzero. In that case, we return the
8498 value that is being tested, *PTRUE is set to the value if the rtx being
8499 returned has a nonzero value, and *PFALSE is set to the other alternative.
8501 If we return zero, we set *PTRUE and *PFALSE to X. */
8503 static rtx
8504 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8506 enum machine_mode mode = GET_MODE (x);
8507 enum rtx_code code = GET_CODE (x);
8508 rtx cond0, cond1, true0, true1, false0, false1;
8509 unsigned HOST_WIDE_INT nz;
8511 /* If we are comparing a value against zero, we are done. */
8512 if ((code == NE || code == EQ)
8513 && XEXP (x, 1) == const0_rtx)
8515 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8516 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8517 return XEXP (x, 0);
8520 /* If this is a unary operation whose operand has one of two values, apply
8521 our opcode to compute those values. */
8522 else if (UNARY_P (x)
8523 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8525 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8526 *pfalse = simplify_gen_unary (code, mode, false0,
8527 GET_MODE (XEXP (x, 0)));
8528 return cond0;
8531 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8532 make can't possibly match and would suppress other optimizations. */
8533 else if (code == COMPARE)
8536 /* If this is a binary operation, see if either side has only one of two
8537 values. If either one does or if both do and they are conditional on
8538 the same value, compute the new true and false values. */
8539 else if (BINARY_P (x))
8541 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8542 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8544 if ((cond0 != 0 || cond1 != 0)
8545 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8547 /* If if_then_else_cond returned zero, then true/false are the
8548 same rtl. We must copy one of them to prevent invalid rtl
8549 sharing. */
8550 if (cond0 == 0)
8551 true0 = copy_rtx (true0);
8552 else if (cond1 == 0)
8553 true1 = copy_rtx (true1);
8555 if (COMPARISON_P (x))
8557 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8558 true0, true1);
8559 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8560 false0, false1);
8562 else
8564 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8565 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8568 return cond0 ? cond0 : cond1;
8571 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8572 operands is zero when the other is nonzero, and vice-versa,
8573 and STORE_FLAG_VALUE is 1 or -1. */
8575 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8576 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8577 || code == UMAX)
8578 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8580 rtx op0 = XEXP (XEXP (x, 0), 1);
8581 rtx op1 = XEXP (XEXP (x, 1), 1);
8583 cond0 = XEXP (XEXP (x, 0), 0);
8584 cond1 = XEXP (XEXP (x, 1), 0);
8586 if (COMPARISON_P (cond0)
8587 && COMPARISON_P (cond1)
8588 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8589 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8590 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8591 || ((swap_condition (GET_CODE (cond0))
8592 == reversed_comparison_code (cond1, NULL))
8593 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8594 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8595 && ! side_effects_p (x))
8597 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8598 *pfalse = simplify_gen_binary (MULT, mode,
8599 (code == MINUS
8600 ? simplify_gen_unary (NEG, mode,
8601 op1, mode)
8602 : op1),
8603 const_true_rtx);
8604 return cond0;
8608 /* Similarly for MULT, AND and UMIN, except that for these the result
8609 is always zero. */
8610 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8611 && (code == MULT || code == AND || code == UMIN)
8612 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8614 cond0 = XEXP (XEXP (x, 0), 0);
8615 cond1 = XEXP (XEXP (x, 1), 0);
8617 if (COMPARISON_P (cond0)
8618 && COMPARISON_P (cond1)
8619 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8620 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8621 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8622 || ((swap_condition (GET_CODE (cond0))
8623 == reversed_comparison_code (cond1, NULL))
8624 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8625 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8626 && ! side_effects_p (x))
8628 *ptrue = *pfalse = const0_rtx;
8629 return cond0;
8634 else if (code == IF_THEN_ELSE)
8636 /* If we have IF_THEN_ELSE already, extract the condition and
8637 canonicalize it if it is NE or EQ. */
8638 cond0 = XEXP (x, 0);
8639 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8640 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8641 return XEXP (cond0, 0);
8642 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8644 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8645 return XEXP (cond0, 0);
8647 else
8648 return cond0;
8651 /* If X is a SUBREG, we can narrow both the true and false values
8652 if the inner expression, if there is a condition. */
8653 else if (code == SUBREG
8654 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8655 &true0, &false0)))
8657 true0 = simplify_gen_subreg (mode, true0,
8658 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8659 false0 = simplify_gen_subreg (mode, false0,
8660 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8661 if (true0 && false0)
8663 *ptrue = true0;
8664 *pfalse = false0;
8665 return cond0;
8669 /* If X is a constant, this isn't special and will cause confusions
8670 if we treat it as such. Likewise if it is equivalent to a constant. */
8671 else if (CONSTANT_P (x)
8672 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8675 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8676 will be least confusing to the rest of the compiler. */
8677 else if (mode == BImode)
8679 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8680 return x;
8683 /* If X is known to be either 0 or -1, those are the true and
8684 false values when testing X. */
8685 else if (x == constm1_rtx || x == const0_rtx
8686 || (mode != VOIDmode
8687 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8689 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8690 return x;
8693 /* Likewise for 0 or a single bit. */
8694 else if (HWI_COMPUTABLE_MODE_P (mode)
8695 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8697 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8698 return x;
8701 /* Otherwise fail; show no condition with true and false values the same. */
8702 *ptrue = *pfalse = x;
8703 return 0;
8706 /* Return the value of expression X given the fact that condition COND
8707 is known to be true when applied to REG as its first operand and VAL
8708 as its second. X is known to not be shared and so can be modified in
8709 place.
8711 We only handle the simplest cases, and specifically those cases that
8712 arise with IF_THEN_ELSE expressions. */
8714 static rtx
8715 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8717 enum rtx_code code = GET_CODE (x);
8718 rtx temp;
8719 const char *fmt;
8720 int i, j;
8722 if (side_effects_p (x))
8723 return x;
8725 /* If either operand of the condition is a floating point value,
8726 then we have to avoid collapsing an EQ comparison. */
8727 if (cond == EQ
8728 && rtx_equal_p (x, reg)
8729 && ! FLOAT_MODE_P (GET_MODE (x))
8730 && ! FLOAT_MODE_P (GET_MODE (val)))
8731 return val;
8733 if (cond == UNEQ && rtx_equal_p (x, reg))
8734 return val;
8736 /* If X is (abs REG) and we know something about REG's relationship
8737 with zero, we may be able to simplify this. */
8739 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8740 switch (cond)
8742 case GE: case GT: case EQ:
8743 return XEXP (x, 0);
8744 case LT: case LE:
8745 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8746 XEXP (x, 0),
8747 GET_MODE (XEXP (x, 0)));
8748 default:
8749 break;
8752 /* The only other cases we handle are MIN, MAX, and comparisons if the
8753 operands are the same as REG and VAL. */
8755 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8757 if (rtx_equal_p (XEXP (x, 0), val))
8758 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8760 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8762 if (COMPARISON_P (x))
8764 if (comparison_dominates_p (cond, code))
8765 return const_true_rtx;
8767 code = reversed_comparison_code (x, NULL);
8768 if (code != UNKNOWN
8769 && comparison_dominates_p (cond, code))
8770 return const0_rtx;
8771 else
8772 return x;
8774 else if (code == SMAX || code == SMIN
8775 || code == UMIN || code == UMAX)
8777 int unsignedp = (code == UMIN || code == UMAX);
8779 /* Do not reverse the condition when it is NE or EQ.
8780 This is because we cannot conclude anything about
8781 the value of 'SMAX (x, y)' when x is not equal to y,
8782 but we can when x equals y. */
8783 if ((code == SMAX || code == UMAX)
8784 && ! (cond == EQ || cond == NE))
8785 cond = reverse_condition (cond);
8787 switch (cond)
8789 case GE: case GT:
8790 return unsignedp ? x : XEXP (x, 1);
8791 case LE: case LT:
8792 return unsignedp ? x : XEXP (x, 0);
8793 case GEU: case GTU:
8794 return unsignedp ? XEXP (x, 1) : x;
8795 case LEU: case LTU:
8796 return unsignedp ? XEXP (x, 0) : x;
8797 default:
8798 break;
8803 else if (code == SUBREG)
8805 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8806 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8808 if (SUBREG_REG (x) != r)
8810 /* We must simplify subreg here, before we lose track of the
8811 original inner_mode. */
8812 new_rtx = simplify_subreg (GET_MODE (x), r,
8813 inner_mode, SUBREG_BYTE (x));
8814 if (new_rtx)
8815 return new_rtx;
8816 else
8817 SUBST (SUBREG_REG (x), r);
8820 return x;
8822 /* We don't have to handle SIGN_EXTEND here, because even in the
8823 case of replacing something with a modeless CONST_INT, a
8824 CONST_INT is already (supposed to be) a valid sign extension for
8825 its narrower mode, which implies it's already properly
8826 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8827 story is different. */
8828 else if (code == ZERO_EXTEND)
8830 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8831 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8833 if (XEXP (x, 0) != r)
8835 /* We must simplify the zero_extend here, before we lose
8836 track of the original inner_mode. */
8837 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8838 r, inner_mode);
8839 if (new_rtx)
8840 return new_rtx;
8841 else
8842 SUBST (XEXP (x, 0), r);
8845 return x;
8848 fmt = GET_RTX_FORMAT (code);
8849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8851 if (fmt[i] == 'e')
8852 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8853 else if (fmt[i] == 'E')
8854 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8855 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8856 cond, reg, val));
8859 return x;
8862 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8863 assignment as a field assignment. */
8865 static int
8866 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8868 if (x == y || rtx_equal_p (x, y))
8869 return 1;
8871 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8872 return 0;
8874 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8875 Note that all SUBREGs of MEM are paradoxical; otherwise they
8876 would have been rewritten. */
8877 if (MEM_P (x) && GET_CODE (y) == SUBREG
8878 && MEM_P (SUBREG_REG (y))
8879 && rtx_equal_p (SUBREG_REG (y),
8880 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8881 return 1;
8883 if (MEM_P (y) && GET_CODE (x) == SUBREG
8884 && MEM_P (SUBREG_REG (x))
8885 && rtx_equal_p (SUBREG_REG (x),
8886 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8887 return 1;
8889 /* We used to see if get_last_value of X and Y were the same but that's
8890 not correct. In one direction, we'll cause the assignment to have
8891 the wrong destination and in the case, we'll import a register into this
8892 insn that might have already have been dead. So fail if none of the
8893 above cases are true. */
8894 return 0;
8897 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8898 Return that assignment if so.
8900 We only handle the most common cases. */
8902 static rtx
8903 make_field_assignment (rtx x)
8905 rtx dest = SET_DEST (x);
8906 rtx src = SET_SRC (x);
8907 rtx assign;
8908 rtx rhs, lhs;
8909 HOST_WIDE_INT c1;
8910 HOST_WIDE_INT pos;
8911 unsigned HOST_WIDE_INT len;
8912 rtx other;
8913 enum machine_mode mode;
8915 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8916 a clear of a one-bit field. We will have changed it to
8917 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8918 for a SUBREG. */
8920 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8921 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8922 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8923 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8925 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8926 1, 1, 1, 0);
8927 if (assign != 0)
8928 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8929 return x;
8932 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8933 && subreg_lowpart_p (XEXP (src, 0))
8934 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8935 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8936 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8937 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8938 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8939 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8941 assign = make_extraction (VOIDmode, dest, 0,
8942 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8943 1, 1, 1, 0);
8944 if (assign != 0)
8945 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8946 return x;
8949 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8950 one-bit field. */
8951 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8952 && XEXP (XEXP (src, 0), 0) == const1_rtx
8953 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8955 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8956 1, 1, 1, 0);
8957 if (assign != 0)
8958 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8959 return x;
8962 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8963 SRC is an AND with all bits of that field set, then we can discard
8964 the AND. */
8965 if (GET_CODE (dest) == ZERO_EXTRACT
8966 && CONST_INT_P (XEXP (dest, 1))
8967 && GET_CODE (src) == AND
8968 && CONST_INT_P (XEXP (src, 1)))
8970 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8971 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8972 unsigned HOST_WIDE_INT ze_mask;
8974 if (width >= HOST_BITS_PER_WIDE_INT)
8975 ze_mask = -1;
8976 else
8977 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8979 /* Complete overlap. We can remove the source AND. */
8980 if ((and_mask & ze_mask) == ze_mask)
8981 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8983 /* Partial overlap. We can reduce the source AND. */
8984 if ((and_mask & ze_mask) != and_mask)
8986 mode = GET_MODE (src);
8987 src = gen_rtx_AND (mode, XEXP (src, 0),
8988 gen_int_mode (and_mask & ze_mask, mode));
8989 return gen_rtx_SET (VOIDmode, dest, src);
8993 /* The other case we handle is assignments into a constant-position
8994 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8995 a mask that has all one bits except for a group of zero bits and
8996 OTHER is known to have zeros where C1 has ones, this is such an
8997 assignment. Compute the position and length from C1. Shift OTHER
8998 to the appropriate position, force it to the required mode, and
8999 make the extraction. Check for the AND in both operands. */
9001 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9002 return x;
9004 rhs = expand_compound_operation (XEXP (src, 0));
9005 lhs = expand_compound_operation (XEXP (src, 1));
9007 if (GET_CODE (rhs) == AND
9008 && CONST_INT_P (XEXP (rhs, 1))
9009 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9010 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9011 else if (GET_CODE (lhs) == AND
9012 && CONST_INT_P (XEXP (lhs, 1))
9013 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9014 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9015 else
9016 return x;
9018 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9019 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9020 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9021 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9022 return x;
9024 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9025 if (assign == 0)
9026 return x;
9028 /* The mode to use for the source is the mode of the assignment, or of
9029 what is inside a possible STRICT_LOW_PART. */
9030 mode = (GET_CODE (assign) == STRICT_LOW_PART
9031 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9033 /* Shift OTHER right POS places and make it the source, restricting it
9034 to the proper length and mode. */
9036 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9037 GET_MODE (src),
9038 other, pos),
9039 dest);
9040 src = force_to_mode (src, mode,
9041 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9042 ? ~(unsigned HOST_WIDE_INT) 0
9043 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9046 /* If SRC is masked by an AND that does not make a difference in
9047 the value being stored, strip it. */
9048 if (GET_CODE (assign) == ZERO_EXTRACT
9049 && CONST_INT_P (XEXP (assign, 1))
9050 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9051 && GET_CODE (src) == AND
9052 && CONST_INT_P (XEXP (src, 1))
9053 && UINTVAL (XEXP (src, 1))
9054 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9055 src = XEXP (src, 0);
9057 return gen_rtx_SET (VOIDmode, assign, src);
9060 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9061 if so. */
9063 static rtx
9064 apply_distributive_law (rtx x)
9066 enum rtx_code code = GET_CODE (x);
9067 enum rtx_code inner_code;
9068 rtx lhs, rhs, other;
9069 rtx tem;
9071 /* Distributivity is not true for floating point as it can change the
9072 value. So we don't do it unless -funsafe-math-optimizations. */
9073 if (FLOAT_MODE_P (GET_MODE (x))
9074 && ! flag_unsafe_math_optimizations)
9075 return x;
9077 /* The outer operation can only be one of the following: */
9078 if (code != IOR && code != AND && code != XOR
9079 && code != PLUS && code != MINUS)
9080 return x;
9082 lhs = XEXP (x, 0);
9083 rhs = XEXP (x, 1);
9085 /* If either operand is a primitive we can't do anything, so get out
9086 fast. */
9087 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9088 return x;
9090 lhs = expand_compound_operation (lhs);
9091 rhs = expand_compound_operation (rhs);
9092 inner_code = GET_CODE (lhs);
9093 if (inner_code != GET_CODE (rhs))
9094 return x;
9096 /* See if the inner and outer operations distribute. */
9097 switch (inner_code)
9099 case LSHIFTRT:
9100 case ASHIFTRT:
9101 case AND:
9102 case IOR:
9103 /* These all distribute except over PLUS. */
9104 if (code == PLUS || code == MINUS)
9105 return x;
9106 break;
9108 case MULT:
9109 if (code != PLUS && code != MINUS)
9110 return x;
9111 break;
9113 case ASHIFT:
9114 /* This is also a multiply, so it distributes over everything. */
9115 break;
9117 /* This used to handle SUBREG, but this turned out to be counter-
9118 productive, since (subreg (op ...)) usually is not handled by
9119 insn patterns, and this "optimization" therefore transformed
9120 recognizable patterns into unrecognizable ones. Therefore the
9121 SUBREG case was removed from here.
9123 It is possible that distributing SUBREG over arithmetic operations
9124 leads to an intermediate result than can then be optimized further,
9125 e.g. by moving the outer SUBREG to the other side of a SET as done
9126 in simplify_set. This seems to have been the original intent of
9127 handling SUBREGs here.
9129 However, with current GCC this does not appear to actually happen,
9130 at least on major platforms. If some case is found where removing
9131 the SUBREG case here prevents follow-on optimizations, distributing
9132 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9134 default:
9135 return x;
9138 /* Set LHS and RHS to the inner operands (A and B in the example
9139 above) and set OTHER to the common operand (C in the example).
9140 There is only one way to do this unless the inner operation is
9141 commutative. */
9142 if (COMMUTATIVE_ARITH_P (lhs)
9143 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9144 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9145 else if (COMMUTATIVE_ARITH_P (lhs)
9146 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9147 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9148 else if (COMMUTATIVE_ARITH_P (lhs)
9149 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9150 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9151 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9152 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9153 else
9154 return x;
9156 /* Form the new inner operation, seeing if it simplifies first. */
9157 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9159 /* There is one exception to the general way of distributing:
9160 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9161 if (code == XOR && inner_code == IOR)
9163 inner_code = AND;
9164 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9167 /* We may be able to continuing distributing the result, so call
9168 ourselves recursively on the inner operation before forming the
9169 outer operation, which we return. */
9170 return simplify_gen_binary (inner_code, GET_MODE (x),
9171 apply_distributive_law (tem), other);
9174 /* See if X is of the form (* (+ A B) C), and if so convert to
9175 (+ (* A C) (* B C)) and try to simplify.
9177 Most of the time, this results in no change. However, if some of
9178 the operands are the same or inverses of each other, simplifications
9179 will result.
9181 For example, (and (ior A B) (not B)) can occur as the result of
9182 expanding a bit field assignment. When we apply the distributive
9183 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9184 which then simplifies to (and (A (not B))).
9186 Note that no checks happen on the validity of applying the inverse
9187 distributive law. This is pointless since we can do it in the
9188 few places where this routine is called.
9190 N is the index of the term that is decomposed (the arithmetic operation,
9191 i.e. (+ A B) in the first example above). !N is the index of the term that
9192 is distributed, i.e. of C in the first example above. */
9193 static rtx
9194 distribute_and_simplify_rtx (rtx x, int n)
9196 enum machine_mode mode;
9197 enum rtx_code outer_code, inner_code;
9198 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9200 /* Distributivity is not true for floating point as it can change the
9201 value. So we don't do it unless -funsafe-math-optimizations. */
9202 if (FLOAT_MODE_P (GET_MODE (x))
9203 && ! flag_unsafe_math_optimizations)
9204 return NULL_RTX;
9206 decomposed = XEXP (x, n);
9207 if (!ARITHMETIC_P (decomposed))
9208 return NULL_RTX;
9210 mode = GET_MODE (x);
9211 outer_code = GET_CODE (x);
9212 distributed = XEXP (x, !n);
9214 inner_code = GET_CODE (decomposed);
9215 inner_op0 = XEXP (decomposed, 0);
9216 inner_op1 = XEXP (decomposed, 1);
9218 /* Special case (and (xor B C) (not A)), which is equivalent to
9219 (xor (ior A B) (ior A C)) */
9220 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9222 distributed = XEXP (distributed, 0);
9223 outer_code = IOR;
9226 if (n == 0)
9228 /* Distribute the second term. */
9229 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9230 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9232 else
9234 /* Distribute the first term. */
9235 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9236 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9239 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9240 new_op0, new_op1));
9241 if (GET_CODE (tmp) != outer_code
9242 && (set_src_cost (tmp, optimize_this_for_speed_p)
9243 < set_src_cost (x, optimize_this_for_speed_p)))
9244 return tmp;
9246 return NULL_RTX;
9249 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9250 in MODE. Return an equivalent form, if different from (and VAROP
9251 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9253 static rtx
9254 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9255 unsigned HOST_WIDE_INT constop)
9257 unsigned HOST_WIDE_INT nonzero;
9258 unsigned HOST_WIDE_INT orig_constop;
9259 rtx orig_varop;
9260 int i;
9262 orig_varop = varop;
9263 orig_constop = constop;
9264 if (GET_CODE (varop) == CLOBBER)
9265 return NULL_RTX;
9267 /* Simplify VAROP knowing that we will be only looking at some of the
9268 bits in it.
9270 Note by passing in CONSTOP, we guarantee that the bits not set in
9271 CONSTOP are not significant and will never be examined. We must
9272 ensure that is the case by explicitly masking out those bits
9273 before returning. */
9274 varop = force_to_mode (varop, mode, constop, 0);
9276 /* If VAROP is a CLOBBER, we will fail so return it. */
9277 if (GET_CODE (varop) == CLOBBER)
9278 return varop;
9280 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9281 to VAROP and return the new constant. */
9282 if (CONST_INT_P (varop))
9283 return gen_int_mode (INTVAL (varop) & constop, mode);
9285 /* See what bits may be nonzero in VAROP. Unlike the general case of
9286 a call to nonzero_bits, here we don't care about bits outside
9287 MODE. */
9289 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9291 /* Turn off all bits in the constant that are known to already be zero.
9292 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9293 which is tested below. */
9295 constop &= nonzero;
9297 /* If we don't have any bits left, return zero. */
9298 if (constop == 0)
9299 return const0_rtx;
9301 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9302 a power of two, we can replace this with an ASHIFT. */
9303 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9304 && (i = exact_log2 (constop)) >= 0)
9305 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9307 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9308 or XOR, then try to apply the distributive law. This may eliminate
9309 operations if either branch can be simplified because of the AND.
9310 It may also make some cases more complex, but those cases probably
9311 won't match a pattern either with or without this. */
9313 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9314 return
9315 gen_lowpart
9316 (mode,
9317 apply_distributive_law
9318 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9319 simplify_and_const_int (NULL_RTX,
9320 GET_MODE (varop),
9321 XEXP (varop, 0),
9322 constop),
9323 simplify_and_const_int (NULL_RTX,
9324 GET_MODE (varop),
9325 XEXP (varop, 1),
9326 constop))));
9328 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9329 the AND and see if one of the operands simplifies to zero. If so, we
9330 may eliminate it. */
9332 if (GET_CODE (varop) == PLUS
9333 && exact_log2 (constop + 1) >= 0)
9335 rtx o0, o1;
9337 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9338 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9339 if (o0 == const0_rtx)
9340 return o1;
9341 if (o1 == const0_rtx)
9342 return o0;
9345 /* Make a SUBREG if necessary. If we can't make it, fail. */
9346 varop = gen_lowpart (mode, varop);
9347 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9348 return NULL_RTX;
9350 /* If we are only masking insignificant bits, return VAROP. */
9351 if (constop == nonzero)
9352 return varop;
9354 if (varop == orig_varop && constop == orig_constop)
9355 return NULL_RTX;
9357 /* Otherwise, return an AND. */
9358 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9362 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9363 in MODE.
9365 Return an equivalent form, if different from X. Otherwise, return X. If
9366 X is zero, we are to always construct the equivalent form. */
9368 static rtx
9369 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9370 unsigned HOST_WIDE_INT constop)
9372 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9373 if (tem)
9374 return tem;
9376 if (!x)
9377 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9378 gen_int_mode (constop, mode));
9379 if (GET_MODE (x) != mode)
9380 x = gen_lowpart (mode, x);
9381 return x;
9384 /* Given a REG, X, compute which bits in X can be nonzero.
9385 We don't care about bits outside of those defined in MODE.
9387 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9388 a shift, AND, or zero_extract, we can do better. */
9390 static rtx
9391 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9392 const_rtx known_x ATTRIBUTE_UNUSED,
9393 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9394 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9395 unsigned HOST_WIDE_INT *nonzero)
9397 rtx tem;
9398 reg_stat_type *rsp;
9400 /* If X is a register whose nonzero bits value is current, use it.
9401 Otherwise, if X is a register whose value we can find, use that
9402 value. Otherwise, use the previously-computed global nonzero bits
9403 for this register. */
9405 rsp = &reg_stat[REGNO (x)];
9406 if (rsp->last_set_value != 0
9407 && (rsp->last_set_mode == mode
9408 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9409 && GET_MODE_CLASS (mode) == MODE_INT))
9410 && ((rsp->last_set_label >= label_tick_ebb_start
9411 && rsp->last_set_label < label_tick)
9412 || (rsp->last_set_label == label_tick
9413 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9414 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9415 && REG_N_SETS (REGNO (x)) == 1
9416 && !REGNO_REG_SET_P
9417 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9419 *nonzero &= rsp->last_set_nonzero_bits;
9420 return NULL;
9423 tem = get_last_value (x);
9425 if (tem)
9427 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9428 /* If X is narrower than MODE and TEM is a non-negative
9429 constant that would appear negative in the mode of X,
9430 sign-extend it for use in reg_nonzero_bits because some
9431 machines (maybe most) will actually do the sign-extension
9432 and this is the conservative approach.
9434 ??? For 2.5, try to tighten up the MD files in this regard
9435 instead of this kludge. */
9437 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9438 && CONST_INT_P (tem)
9439 && INTVAL (tem) > 0
9440 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9441 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9442 #endif
9443 return tem;
9445 else if (nonzero_sign_valid && rsp->nonzero_bits)
9447 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9449 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9450 /* We don't know anything about the upper bits. */
9451 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9452 *nonzero &= mask;
9455 return NULL;
9458 /* Return the number of bits at the high-order end of X that are known to
9459 be equal to the sign bit. X will be used in mode MODE; if MODE is
9460 VOIDmode, X will be used in its own mode. The returned value will always
9461 be between 1 and the number of bits in MODE. */
9463 static rtx
9464 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9465 const_rtx known_x ATTRIBUTE_UNUSED,
9466 enum machine_mode known_mode
9467 ATTRIBUTE_UNUSED,
9468 unsigned int known_ret ATTRIBUTE_UNUSED,
9469 unsigned int *result)
9471 rtx tem;
9472 reg_stat_type *rsp;
9474 rsp = &reg_stat[REGNO (x)];
9475 if (rsp->last_set_value != 0
9476 && rsp->last_set_mode == mode
9477 && ((rsp->last_set_label >= label_tick_ebb_start
9478 && rsp->last_set_label < label_tick)
9479 || (rsp->last_set_label == label_tick
9480 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9481 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9482 && REG_N_SETS (REGNO (x)) == 1
9483 && !REGNO_REG_SET_P
9484 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9486 *result = rsp->last_set_sign_bit_copies;
9487 return NULL;
9490 tem = get_last_value (x);
9491 if (tem != 0)
9492 return tem;
9494 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9495 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9496 *result = rsp->sign_bit_copies;
9498 return NULL;
9501 /* Return the number of "extended" bits there are in X, when interpreted
9502 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9503 unsigned quantities, this is the number of high-order zero bits.
9504 For signed quantities, this is the number of copies of the sign bit
9505 minus 1. In both case, this function returns the number of "spare"
9506 bits. For example, if two quantities for which this function returns
9507 at least 1 are added, the addition is known not to overflow.
9509 This function will always return 0 unless called during combine, which
9510 implies that it must be called from a define_split. */
9512 unsigned int
9513 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9515 if (nonzero_sign_valid == 0)
9516 return 0;
9518 return (unsignedp
9519 ? (HWI_COMPUTABLE_MODE_P (mode)
9520 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9521 - floor_log2 (nonzero_bits (x, mode)))
9522 : 0)
9523 : num_sign_bit_copies (x, mode) - 1);
9526 /* This function is called from `simplify_shift_const' to merge two
9527 outer operations. Specifically, we have already found that we need
9528 to perform operation *POP0 with constant *PCONST0 at the outermost
9529 position. We would now like to also perform OP1 with constant CONST1
9530 (with *POP0 being done last).
9532 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9533 the resulting operation. *PCOMP_P is set to 1 if we would need to
9534 complement the innermost operand, otherwise it is unchanged.
9536 MODE is the mode in which the operation will be done. No bits outside
9537 the width of this mode matter. It is assumed that the width of this mode
9538 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9540 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9541 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9542 result is simply *PCONST0.
9544 If the resulting operation cannot be expressed as one operation, we
9545 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9547 static int
9548 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9550 enum rtx_code op0 = *pop0;
9551 HOST_WIDE_INT const0 = *pconst0;
9553 const0 &= GET_MODE_MASK (mode);
9554 const1 &= GET_MODE_MASK (mode);
9556 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9557 if (op0 == AND)
9558 const1 &= const0;
9560 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9561 if OP0 is SET. */
9563 if (op1 == UNKNOWN || op0 == SET)
9564 return 1;
9566 else if (op0 == UNKNOWN)
9567 op0 = op1, const0 = const1;
9569 else if (op0 == op1)
9571 switch (op0)
9573 case AND:
9574 const0 &= const1;
9575 break;
9576 case IOR:
9577 const0 |= const1;
9578 break;
9579 case XOR:
9580 const0 ^= const1;
9581 break;
9582 case PLUS:
9583 const0 += const1;
9584 break;
9585 case NEG:
9586 op0 = UNKNOWN;
9587 break;
9588 default:
9589 break;
9593 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9594 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9595 return 0;
9597 /* If the two constants aren't the same, we can't do anything. The
9598 remaining six cases can all be done. */
9599 else if (const0 != const1)
9600 return 0;
9602 else
9603 switch (op0)
9605 case IOR:
9606 if (op1 == AND)
9607 /* (a & b) | b == b */
9608 op0 = SET;
9609 else /* op1 == XOR */
9610 /* (a ^ b) | b == a | b */
9612 break;
9614 case XOR:
9615 if (op1 == AND)
9616 /* (a & b) ^ b == (~a) & b */
9617 op0 = AND, *pcomp_p = 1;
9618 else /* op1 == IOR */
9619 /* (a | b) ^ b == a & ~b */
9620 op0 = AND, const0 = ~const0;
9621 break;
9623 case AND:
9624 if (op1 == IOR)
9625 /* (a | b) & b == b */
9626 op0 = SET;
9627 else /* op1 == XOR */
9628 /* (a ^ b) & b) == (~a) & b */
9629 *pcomp_p = 1;
9630 break;
9631 default:
9632 break;
9635 /* Check for NO-OP cases. */
9636 const0 &= GET_MODE_MASK (mode);
9637 if (const0 == 0
9638 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9639 op0 = UNKNOWN;
9640 else if (const0 == 0 && op0 == AND)
9641 op0 = SET;
9642 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9643 && op0 == AND)
9644 op0 = UNKNOWN;
9646 *pop0 = op0;
9648 /* ??? Slightly redundant with the above mask, but not entirely.
9649 Moving this above means we'd have to sign-extend the mode mask
9650 for the final test. */
9651 if (op0 != UNKNOWN && op0 != NEG)
9652 *pconst0 = trunc_int_for_mode (const0, mode);
9654 return 1;
9657 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9658 the shift in. The original shift operation CODE is performed on OP in
9659 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9660 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9661 result of the shift is subject to operation OUTER_CODE with operand
9662 OUTER_CONST. */
9664 static enum machine_mode
9665 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9666 enum machine_mode orig_mode, enum machine_mode mode,
9667 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9669 if (orig_mode == mode)
9670 return mode;
9671 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9673 /* In general we can't perform in wider mode for right shift and rotate. */
9674 switch (code)
9676 case ASHIFTRT:
9677 /* We can still widen if the bits brought in from the left are identical
9678 to the sign bit of ORIG_MODE. */
9679 if (num_sign_bit_copies (op, mode)
9680 > (unsigned) (GET_MODE_PRECISION (mode)
9681 - GET_MODE_PRECISION (orig_mode)))
9682 return mode;
9683 return orig_mode;
9685 case LSHIFTRT:
9686 /* Similarly here but with zero bits. */
9687 if (HWI_COMPUTABLE_MODE_P (mode)
9688 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9689 return mode;
9691 /* We can also widen if the bits brought in will be masked off. This
9692 operation is performed in ORIG_MODE. */
9693 if (outer_code == AND)
9695 int care_bits = low_bitmask_len (orig_mode, outer_const);
9697 if (care_bits >= 0
9698 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9699 return mode;
9701 /* fall through */
9703 case ROTATE:
9704 return orig_mode;
9706 case ROTATERT:
9707 gcc_unreachable ();
9709 default:
9710 return mode;
9714 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9715 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9716 if we cannot simplify it. Otherwise, return a simplified value.
9718 The shift is normally computed in the widest mode we find in VAROP, as
9719 long as it isn't a different number of words than RESULT_MODE. Exceptions
9720 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9722 static rtx
9723 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9724 rtx varop, int orig_count)
9726 enum rtx_code orig_code = code;
9727 rtx orig_varop = varop;
9728 int count;
9729 enum machine_mode mode = result_mode;
9730 enum machine_mode shift_mode, tmode;
9731 unsigned int mode_words
9732 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9733 /* We form (outer_op (code varop count) (outer_const)). */
9734 enum rtx_code outer_op = UNKNOWN;
9735 HOST_WIDE_INT outer_const = 0;
9736 int complement_p = 0;
9737 rtx new_rtx, x;
9739 /* Make sure and truncate the "natural" shift on the way in. We don't
9740 want to do this inside the loop as it makes it more difficult to
9741 combine shifts. */
9742 if (SHIFT_COUNT_TRUNCATED)
9743 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9745 /* If we were given an invalid count, don't do anything except exactly
9746 what was requested. */
9748 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9749 return NULL_RTX;
9751 count = orig_count;
9753 /* Unless one of the branches of the `if' in this loop does a `continue',
9754 we will `break' the loop after the `if'. */
9756 while (count != 0)
9758 /* If we have an operand of (clobber (const_int 0)), fail. */
9759 if (GET_CODE (varop) == CLOBBER)
9760 return NULL_RTX;
9762 /* Convert ROTATERT to ROTATE. */
9763 if (code == ROTATERT)
9765 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9766 code = ROTATE;
9767 if (VECTOR_MODE_P (result_mode))
9768 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9769 else
9770 count = bitsize - count;
9773 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9774 mode, outer_op, outer_const);
9776 /* Handle cases where the count is greater than the size of the mode
9777 minus 1. For ASHIFT, use the size minus one as the count (this can
9778 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9779 take the count modulo the size. For other shifts, the result is
9780 zero.
9782 Since these shifts are being produced by the compiler by combining
9783 multiple operations, each of which are defined, we know what the
9784 result is supposed to be. */
9786 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9788 if (code == ASHIFTRT)
9789 count = GET_MODE_PRECISION (shift_mode) - 1;
9790 else if (code == ROTATE || code == ROTATERT)
9791 count %= GET_MODE_PRECISION (shift_mode);
9792 else
9794 /* We can't simply return zero because there may be an
9795 outer op. */
9796 varop = const0_rtx;
9797 count = 0;
9798 break;
9802 /* If we discovered we had to complement VAROP, leave. Making a NOT
9803 here would cause an infinite loop. */
9804 if (complement_p)
9805 break;
9807 /* An arithmetic right shift of a quantity known to be -1 or 0
9808 is a no-op. */
9809 if (code == ASHIFTRT
9810 && (num_sign_bit_copies (varop, shift_mode)
9811 == GET_MODE_PRECISION (shift_mode)))
9813 count = 0;
9814 break;
9817 /* If we are doing an arithmetic right shift and discarding all but
9818 the sign bit copies, this is equivalent to doing a shift by the
9819 bitsize minus one. Convert it into that shift because it will often
9820 allow other simplifications. */
9822 if (code == ASHIFTRT
9823 && (count + num_sign_bit_copies (varop, shift_mode)
9824 >= GET_MODE_PRECISION (shift_mode)))
9825 count = GET_MODE_PRECISION (shift_mode) - 1;
9827 /* We simplify the tests below and elsewhere by converting
9828 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9829 `make_compound_operation' will convert it to an ASHIFTRT for
9830 those machines (such as VAX) that don't have an LSHIFTRT. */
9831 if (code == ASHIFTRT
9832 && val_signbit_known_clear_p (shift_mode,
9833 nonzero_bits (varop, shift_mode)))
9834 code = LSHIFTRT;
9836 if (((code == LSHIFTRT
9837 && HWI_COMPUTABLE_MODE_P (shift_mode)
9838 && !(nonzero_bits (varop, shift_mode) >> count))
9839 || (code == ASHIFT
9840 && HWI_COMPUTABLE_MODE_P (shift_mode)
9841 && !((nonzero_bits (varop, shift_mode) << count)
9842 & GET_MODE_MASK (shift_mode))))
9843 && !side_effects_p (varop))
9844 varop = const0_rtx;
9846 switch (GET_CODE (varop))
9848 case SIGN_EXTEND:
9849 case ZERO_EXTEND:
9850 case SIGN_EXTRACT:
9851 case ZERO_EXTRACT:
9852 new_rtx = expand_compound_operation (varop);
9853 if (new_rtx != varop)
9855 varop = new_rtx;
9856 continue;
9858 break;
9860 case MEM:
9861 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9862 minus the width of a smaller mode, we can do this with a
9863 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9864 if ((code == ASHIFTRT || code == LSHIFTRT)
9865 && ! mode_dependent_address_p (XEXP (varop, 0),
9866 MEM_ADDR_SPACE (varop))
9867 && ! MEM_VOLATILE_P (varop)
9868 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9869 MODE_INT, 1)) != BLKmode)
9871 new_rtx = adjust_address_nv (varop, tmode,
9872 BYTES_BIG_ENDIAN ? 0
9873 : count / BITS_PER_UNIT);
9875 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9876 : ZERO_EXTEND, mode, new_rtx);
9877 count = 0;
9878 continue;
9880 break;
9882 case SUBREG:
9883 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9884 the same number of words as what we've seen so far. Then store
9885 the widest mode in MODE. */
9886 if (subreg_lowpart_p (varop)
9887 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9888 > GET_MODE_SIZE (GET_MODE (varop)))
9889 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9890 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9891 == mode_words
9892 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9893 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9895 varop = SUBREG_REG (varop);
9896 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9897 mode = GET_MODE (varop);
9898 continue;
9900 break;
9902 case MULT:
9903 /* Some machines use MULT instead of ASHIFT because MULT
9904 is cheaper. But it is still better on those machines to
9905 merge two shifts into one. */
9906 if (CONST_INT_P (XEXP (varop, 1))
9907 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9909 varop
9910 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9911 XEXP (varop, 0),
9912 GEN_INT (exact_log2 (
9913 UINTVAL (XEXP (varop, 1)))));
9914 continue;
9916 break;
9918 case UDIV:
9919 /* Similar, for when divides are cheaper. */
9920 if (CONST_INT_P (XEXP (varop, 1))
9921 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9923 varop
9924 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9925 XEXP (varop, 0),
9926 GEN_INT (exact_log2 (
9927 UINTVAL (XEXP (varop, 1)))));
9928 continue;
9930 break;
9932 case ASHIFTRT:
9933 /* If we are extracting just the sign bit of an arithmetic
9934 right shift, that shift is not needed. However, the sign
9935 bit of a wider mode may be different from what would be
9936 interpreted as the sign bit in a narrower mode, so, if
9937 the result is narrower, don't discard the shift. */
9938 if (code == LSHIFTRT
9939 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9940 && (GET_MODE_BITSIZE (result_mode)
9941 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9943 varop = XEXP (varop, 0);
9944 continue;
9947 /* ... fall through ... */
9949 case LSHIFTRT:
9950 case ASHIFT:
9951 case ROTATE:
9952 /* Here we have two nested shifts. The result is usually the
9953 AND of a new shift with a mask. We compute the result below. */
9954 if (CONST_INT_P (XEXP (varop, 1))
9955 && INTVAL (XEXP (varop, 1)) >= 0
9956 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
9957 && HWI_COMPUTABLE_MODE_P (result_mode)
9958 && HWI_COMPUTABLE_MODE_P (mode)
9959 && !VECTOR_MODE_P (result_mode))
9961 enum rtx_code first_code = GET_CODE (varop);
9962 unsigned int first_count = INTVAL (XEXP (varop, 1));
9963 unsigned HOST_WIDE_INT mask;
9964 rtx mask_rtx;
9966 /* We have one common special case. We can't do any merging if
9967 the inner code is an ASHIFTRT of a smaller mode. However, if
9968 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9969 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9970 we can convert it to
9971 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
9972 This simplifies certain SIGN_EXTEND operations. */
9973 if (code == ASHIFT && first_code == ASHIFTRT
9974 && count == (GET_MODE_PRECISION (result_mode)
9975 - GET_MODE_PRECISION (GET_MODE (varop))))
9977 /* C3 has the low-order C1 bits zero. */
9979 mask = GET_MODE_MASK (mode)
9980 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
9982 varop = simplify_and_const_int (NULL_RTX, result_mode,
9983 XEXP (varop, 0), mask);
9984 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9985 varop, count);
9986 count = first_count;
9987 code = ASHIFTRT;
9988 continue;
9991 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9992 than C1 high-order bits equal to the sign bit, we can convert
9993 this to either an ASHIFT or an ASHIFTRT depending on the
9994 two counts.
9996 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9998 if (code == ASHIFTRT && first_code == ASHIFT
9999 && GET_MODE (varop) == shift_mode
10000 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10001 > first_count))
10003 varop = XEXP (varop, 0);
10004 count -= first_count;
10005 if (count < 0)
10007 count = -count;
10008 code = ASHIFT;
10011 continue;
10014 /* There are some cases we can't do. If CODE is ASHIFTRT,
10015 we can only do this if FIRST_CODE is also ASHIFTRT.
10017 We can't do the case when CODE is ROTATE and FIRST_CODE is
10018 ASHIFTRT.
10020 If the mode of this shift is not the mode of the outer shift,
10021 we can't do this if either shift is a right shift or ROTATE.
10023 Finally, we can't do any of these if the mode is too wide
10024 unless the codes are the same.
10026 Handle the case where the shift codes are the same
10027 first. */
10029 if (code == first_code)
10031 if (GET_MODE (varop) != result_mode
10032 && (code == ASHIFTRT || code == LSHIFTRT
10033 || code == ROTATE))
10034 break;
10036 count += first_count;
10037 varop = XEXP (varop, 0);
10038 continue;
10041 if (code == ASHIFTRT
10042 || (code == ROTATE && first_code == ASHIFTRT)
10043 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10044 || (GET_MODE (varop) != result_mode
10045 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10046 || first_code == ROTATE
10047 || code == ROTATE)))
10048 break;
10050 /* To compute the mask to apply after the shift, shift the
10051 nonzero bits of the inner shift the same way the
10052 outer shift will. */
10054 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10056 mask_rtx
10057 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10058 GEN_INT (count));
10060 /* Give up if we can't compute an outer operation to use. */
10061 if (mask_rtx == 0
10062 || !CONST_INT_P (mask_rtx)
10063 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10064 INTVAL (mask_rtx),
10065 result_mode, &complement_p))
10066 break;
10068 /* If the shifts are in the same direction, we add the
10069 counts. Otherwise, we subtract them. */
10070 if ((code == ASHIFTRT || code == LSHIFTRT)
10071 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10072 count += first_count;
10073 else
10074 count -= first_count;
10076 /* If COUNT is positive, the new shift is usually CODE,
10077 except for the two exceptions below, in which case it is
10078 FIRST_CODE. If the count is negative, FIRST_CODE should
10079 always be used */
10080 if (count > 0
10081 && ((first_code == ROTATE && code == ASHIFT)
10082 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10083 code = first_code;
10084 else if (count < 0)
10085 code = first_code, count = -count;
10087 varop = XEXP (varop, 0);
10088 continue;
10091 /* If we have (A << B << C) for any shift, we can convert this to
10092 (A << C << B). This wins if A is a constant. Only try this if
10093 B is not a constant. */
10095 else if (GET_CODE (varop) == code
10096 && CONST_INT_P (XEXP (varop, 0))
10097 && !CONST_INT_P (XEXP (varop, 1)))
10099 rtx new_rtx = simplify_const_binary_operation (code, mode,
10100 XEXP (varop, 0),
10101 GEN_INT (count));
10102 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10103 count = 0;
10104 continue;
10106 break;
10108 case NOT:
10109 if (VECTOR_MODE_P (mode))
10110 break;
10112 /* Make this fit the case below. */
10113 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10114 continue;
10116 case IOR:
10117 case AND:
10118 case XOR:
10119 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10120 with C the size of VAROP - 1 and the shift is logical if
10121 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10122 we have an (le X 0) operation. If we have an arithmetic shift
10123 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10124 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10126 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10127 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10128 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10129 && (code == LSHIFTRT || code == ASHIFTRT)
10130 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10131 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10133 count = 0;
10134 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10135 const0_rtx);
10137 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10138 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10140 continue;
10143 /* If we have (shift (logical)), move the logical to the outside
10144 to allow it to possibly combine with another logical and the
10145 shift to combine with another shift. This also canonicalizes to
10146 what a ZERO_EXTRACT looks like. Also, some machines have
10147 (and (shift)) insns. */
10149 if (CONST_INT_P (XEXP (varop, 1))
10150 /* We can't do this if we have (ashiftrt (xor)) and the
10151 constant has its sign bit set in shift_mode. */
10152 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10153 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10154 shift_mode))
10155 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10156 XEXP (varop, 1),
10157 GEN_INT (count))) != 0
10158 && CONST_INT_P (new_rtx)
10159 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10160 INTVAL (new_rtx), result_mode, &complement_p))
10162 varop = XEXP (varop, 0);
10163 continue;
10166 /* If we can't do that, try to simplify the shift in each arm of the
10167 logical expression, make a new logical expression, and apply
10168 the inverse distributive law. This also can't be done
10169 for some (ashiftrt (xor)). */
10170 if (CONST_INT_P (XEXP (varop, 1))
10171 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10172 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10173 shift_mode)))
10175 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10176 XEXP (varop, 0), count);
10177 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10178 XEXP (varop, 1), count);
10180 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10181 lhs, rhs);
10182 varop = apply_distributive_law (varop);
10184 count = 0;
10185 continue;
10187 break;
10189 case EQ:
10190 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10191 says that the sign bit can be tested, FOO has mode MODE, C is
10192 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10193 that may be nonzero. */
10194 if (code == LSHIFTRT
10195 && XEXP (varop, 1) == const0_rtx
10196 && GET_MODE (XEXP (varop, 0)) == result_mode
10197 && count == (GET_MODE_PRECISION (result_mode) - 1)
10198 && HWI_COMPUTABLE_MODE_P (result_mode)
10199 && STORE_FLAG_VALUE == -1
10200 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10201 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10202 &complement_p))
10204 varop = XEXP (varop, 0);
10205 count = 0;
10206 continue;
10208 break;
10210 case NEG:
10211 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10212 than the number of bits in the mode is equivalent to A. */
10213 if (code == LSHIFTRT
10214 && count == (GET_MODE_PRECISION (result_mode) - 1)
10215 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10217 varop = XEXP (varop, 0);
10218 count = 0;
10219 continue;
10222 /* NEG commutes with ASHIFT since it is multiplication. Move the
10223 NEG outside to allow shifts to combine. */
10224 if (code == ASHIFT
10225 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10226 &complement_p))
10228 varop = XEXP (varop, 0);
10229 continue;
10231 break;
10233 case PLUS:
10234 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10235 is one less than the number of bits in the mode is
10236 equivalent to (xor A 1). */
10237 if (code == LSHIFTRT
10238 && count == (GET_MODE_PRECISION (result_mode) - 1)
10239 && XEXP (varop, 1) == constm1_rtx
10240 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10241 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10242 &complement_p))
10244 count = 0;
10245 varop = XEXP (varop, 0);
10246 continue;
10249 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10250 that might be nonzero in BAR are those being shifted out and those
10251 bits are known zero in FOO, we can replace the PLUS with FOO.
10252 Similarly in the other operand order. This code occurs when
10253 we are computing the size of a variable-size array. */
10255 if ((code == ASHIFTRT || code == LSHIFTRT)
10256 && count < HOST_BITS_PER_WIDE_INT
10257 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10258 && (nonzero_bits (XEXP (varop, 1), result_mode)
10259 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10261 varop = XEXP (varop, 0);
10262 continue;
10264 else if ((code == ASHIFTRT || code == LSHIFTRT)
10265 && count < HOST_BITS_PER_WIDE_INT
10266 && HWI_COMPUTABLE_MODE_P (result_mode)
10267 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10268 >> count)
10269 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10270 & nonzero_bits (XEXP (varop, 1),
10271 result_mode)))
10273 varop = XEXP (varop, 1);
10274 continue;
10277 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10278 if (code == ASHIFT
10279 && CONST_INT_P (XEXP (varop, 1))
10280 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10281 XEXP (varop, 1),
10282 GEN_INT (count))) != 0
10283 && CONST_INT_P (new_rtx)
10284 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10285 INTVAL (new_rtx), result_mode, &complement_p))
10287 varop = XEXP (varop, 0);
10288 continue;
10291 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10292 signbit', and attempt to change the PLUS to an XOR and move it to
10293 the outer operation as is done above in the AND/IOR/XOR case
10294 leg for shift(logical). See details in logical handling above
10295 for reasoning in doing so. */
10296 if (code == LSHIFTRT
10297 && CONST_INT_P (XEXP (varop, 1))
10298 && mode_signbit_p (result_mode, XEXP (varop, 1))
10299 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10300 XEXP (varop, 1),
10301 GEN_INT (count))) != 0
10302 && CONST_INT_P (new_rtx)
10303 && merge_outer_ops (&outer_op, &outer_const, XOR,
10304 INTVAL (new_rtx), result_mode, &complement_p))
10306 varop = XEXP (varop, 0);
10307 continue;
10310 break;
10312 case MINUS:
10313 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10314 with C the size of VAROP - 1 and the shift is logical if
10315 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10316 we have a (gt X 0) operation. If the shift is arithmetic with
10317 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10318 we have a (neg (gt X 0)) operation. */
10320 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10321 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10322 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10323 && (code == LSHIFTRT || code == ASHIFTRT)
10324 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10325 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10326 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10328 count = 0;
10329 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10330 const0_rtx);
10332 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10333 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10335 continue;
10337 break;
10339 case TRUNCATE:
10340 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10341 if the truncate does not affect the value. */
10342 if (code == LSHIFTRT
10343 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10344 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10345 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10346 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10347 - GET_MODE_PRECISION (GET_MODE (varop)))))
10349 rtx varop_inner = XEXP (varop, 0);
10351 varop_inner
10352 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10353 XEXP (varop_inner, 0),
10354 GEN_INT
10355 (count + INTVAL (XEXP (varop_inner, 1))));
10356 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10357 count = 0;
10358 continue;
10360 break;
10362 default:
10363 break;
10366 break;
10369 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10370 outer_op, outer_const);
10372 /* We have now finished analyzing the shift. The result should be
10373 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10374 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10375 to the result of the shift. OUTER_CONST is the relevant constant,
10376 but we must turn off all bits turned off in the shift. */
10378 if (outer_op == UNKNOWN
10379 && orig_code == code && orig_count == count
10380 && varop == orig_varop
10381 && shift_mode == GET_MODE (varop))
10382 return NULL_RTX;
10384 /* Make a SUBREG if necessary. If we can't make it, fail. */
10385 varop = gen_lowpart (shift_mode, varop);
10386 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10387 return NULL_RTX;
10389 /* If we have an outer operation and we just made a shift, it is
10390 possible that we could have simplified the shift were it not
10391 for the outer operation. So try to do the simplification
10392 recursively. */
10394 if (outer_op != UNKNOWN)
10395 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10396 else
10397 x = NULL_RTX;
10399 if (x == NULL_RTX)
10400 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10402 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10403 turn off all the bits that the shift would have turned off. */
10404 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10405 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10406 GET_MODE_MASK (result_mode) >> orig_count);
10408 /* Do the remainder of the processing in RESULT_MODE. */
10409 x = gen_lowpart_or_truncate (result_mode, x);
10411 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10412 operation. */
10413 if (complement_p)
10414 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10416 if (outer_op != UNKNOWN)
10418 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10419 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10420 outer_const = trunc_int_for_mode (outer_const, result_mode);
10422 if (outer_op == AND)
10423 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10424 else if (outer_op == SET)
10426 /* This means that we have determined that the result is
10427 equivalent to a constant. This should be rare. */
10428 if (!side_effects_p (x))
10429 x = GEN_INT (outer_const);
10431 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10432 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10433 else
10434 x = simplify_gen_binary (outer_op, result_mode, x,
10435 GEN_INT (outer_const));
10438 return x;
10441 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10442 The result of the shift is RESULT_MODE. If we cannot simplify it,
10443 return X or, if it is NULL, synthesize the expression with
10444 simplify_gen_binary. Otherwise, return a simplified value.
10446 The shift is normally computed in the widest mode we find in VAROP, as
10447 long as it isn't a different number of words than RESULT_MODE. Exceptions
10448 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10450 static rtx
10451 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10452 rtx varop, int count)
10454 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10455 if (tem)
10456 return tem;
10458 if (!x)
10459 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10460 if (GET_MODE (x) != result_mode)
10461 x = gen_lowpart (result_mode, x);
10462 return x;
10466 /* Like recog, but we receive the address of a pointer to a new pattern.
10467 We try to match the rtx that the pointer points to.
10468 If that fails, we may try to modify or replace the pattern,
10469 storing the replacement into the same pointer object.
10471 Modifications include deletion or addition of CLOBBERs.
10473 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10474 the CLOBBERs are placed.
10476 The value is the final insn code from the pattern ultimately matched,
10477 or -1. */
10479 static int
10480 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10482 rtx pat = *pnewpat;
10483 rtx pat_without_clobbers;
10484 int insn_code_number;
10485 int num_clobbers_to_add = 0;
10486 int i;
10487 rtx notes = NULL_RTX;
10488 rtx old_notes, old_pat;
10489 int old_icode;
10491 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10492 we use to indicate that something didn't match. If we find such a
10493 thing, force rejection. */
10494 if (GET_CODE (pat) == PARALLEL)
10495 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10496 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10497 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10498 return -1;
10500 old_pat = PATTERN (insn);
10501 old_notes = REG_NOTES (insn);
10502 PATTERN (insn) = pat;
10503 REG_NOTES (insn) = NULL_RTX;
10505 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10506 if (dump_file && (dump_flags & TDF_DETAILS))
10508 if (insn_code_number < 0)
10509 fputs ("Failed to match this instruction:\n", dump_file);
10510 else
10511 fputs ("Successfully matched this instruction:\n", dump_file);
10512 print_rtl_single (dump_file, pat);
10515 /* If it isn't, there is the possibility that we previously had an insn
10516 that clobbered some register as a side effect, but the combined
10517 insn doesn't need to do that. So try once more without the clobbers
10518 unless this represents an ASM insn. */
10520 if (insn_code_number < 0 && ! check_asm_operands (pat)
10521 && GET_CODE (pat) == PARALLEL)
10523 int pos;
10525 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10526 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10528 if (i != pos)
10529 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10530 pos++;
10533 SUBST_INT (XVECLEN (pat, 0), pos);
10535 if (pos == 1)
10536 pat = XVECEXP (pat, 0, 0);
10538 PATTERN (insn) = pat;
10539 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10540 if (dump_file && (dump_flags & TDF_DETAILS))
10542 if (insn_code_number < 0)
10543 fputs ("Failed to match this instruction:\n", dump_file);
10544 else
10545 fputs ("Successfully matched this instruction:\n", dump_file);
10546 print_rtl_single (dump_file, pat);
10550 pat_without_clobbers = pat;
10552 PATTERN (insn) = old_pat;
10553 REG_NOTES (insn) = old_notes;
10555 /* Recognize all noop sets, these will be killed by followup pass. */
10556 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10557 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10559 /* If we had any clobbers to add, make a new pattern than contains
10560 them. Then check to make sure that all of them are dead. */
10561 if (num_clobbers_to_add)
10563 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10564 rtvec_alloc (GET_CODE (pat) == PARALLEL
10565 ? (XVECLEN (pat, 0)
10566 + num_clobbers_to_add)
10567 : num_clobbers_to_add + 1));
10569 if (GET_CODE (pat) == PARALLEL)
10570 for (i = 0; i < XVECLEN (pat, 0); i++)
10571 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10572 else
10573 XVECEXP (newpat, 0, 0) = pat;
10575 add_clobbers (newpat, insn_code_number);
10577 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10578 i < XVECLEN (newpat, 0); i++)
10580 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10581 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10582 return -1;
10583 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10585 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10586 notes = alloc_reg_note (REG_UNUSED,
10587 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10590 pat = newpat;
10593 if (insn_code_number >= 0
10594 && insn_code_number != NOOP_MOVE_INSN_CODE)
10596 old_pat = PATTERN (insn);
10597 old_notes = REG_NOTES (insn);
10598 old_icode = INSN_CODE (insn);
10599 PATTERN (insn) = pat;
10600 REG_NOTES (insn) = notes;
10602 /* Allow targets to reject combined insn. */
10603 if (!targetm.legitimate_combined_insn (insn))
10605 if (dump_file && (dump_flags & TDF_DETAILS))
10606 fputs ("Instruction not appropriate for target.",
10607 dump_file);
10609 /* Callers expect recog_for_combine to strip
10610 clobbers from the pattern on failure. */
10611 pat = pat_without_clobbers;
10612 notes = NULL_RTX;
10614 insn_code_number = -1;
10617 PATTERN (insn) = old_pat;
10618 REG_NOTES (insn) = old_notes;
10619 INSN_CODE (insn) = old_icode;
10622 *pnewpat = pat;
10623 *pnotes = notes;
10625 return insn_code_number;
10628 /* Like gen_lowpart_general but for use by combine. In combine it
10629 is not possible to create any new pseudoregs. However, it is
10630 safe to create invalid memory addresses, because combine will
10631 try to recognize them and all they will do is make the combine
10632 attempt fail.
10634 If for some reason this cannot do its job, an rtx
10635 (clobber (const_int 0)) is returned.
10636 An insn containing that will not be recognized. */
10638 static rtx
10639 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10641 enum machine_mode imode = GET_MODE (x);
10642 unsigned int osize = GET_MODE_SIZE (omode);
10643 unsigned int isize = GET_MODE_SIZE (imode);
10644 rtx result;
10646 if (omode == imode)
10647 return x;
10649 /* We can only support MODE being wider than a word if X is a
10650 constant integer or has a mode the same size. */
10651 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10652 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10653 goto fail;
10655 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10656 won't know what to do. So we will strip off the SUBREG here and
10657 process normally. */
10658 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10660 x = SUBREG_REG (x);
10662 /* For use in case we fall down into the address adjustments
10663 further below, we need to adjust the known mode and size of
10664 x; imode and isize, since we just adjusted x. */
10665 imode = GET_MODE (x);
10667 if (imode == omode)
10668 return x;
10670 isize = GET_MODE_SIZE (imode);
10673 result = gen_lowpart_common (omode, x);
10675 if (result)
10676 return result;
10678 if (MEM_P (x))
10680 int offset = 0;
10682 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10683 address. */
10684 if (MEM_VOLATILE_P (x)
10685 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10686 goto fail;
10688 /* If we want to refer to something bigger than the original memref,
10689 generate a paradoxical subreg instead. That will force a reload
10690 of the original memref X. */
10691 if (isize < osize)
10692 return gen_rtx_SUBREG (omode, x, 0);
10694 if (WORDS_BIG_ENDIAN)
10695 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10697 /* Adjust the address so that the address-after-the-data is
10698 unchanged. */
10699 if (BYTES_BIG_ENDIAN)
10700 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10702 return adjust_address_nv (x, omode, offset);
10705 /* If X is a comparison operator, rewrite it in a new mode. This
10706 probably won't match, but may allow further simplifications. */
10707 else if (COMPARISON_P (x))
10708 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10710 /* If we couldn't simplify X any other way, just enclose it in a
10711 SUBREG. Normally, this SUBREG won't match, but some patterns may
10712 include an explicit SUBREG or we may simplify it further in combine. */
10713 else
10715 int offset = 0;
10716 rtx res;
10718 offset = subreg_lowpart_offset (omode, imode);
10719 if (imode == VOIDmode)
10721 imode = int_mode_for_mode (omode);
10722 x = gen_lowpart_common (imode, x);
10723 if (x == NULL)
10724 goto fail;
10726 res = simplify_gen_subreg (omode, x, imode, offset);
10727 if (res)
10728 return res;
10731 fail:
10732 return gen_rtx_CLOBBER (omode, const0_rtx);
10735 /* Try to simplify a comparison between OP0 and a constant OP1,
10736 where CODE is the comparison code that will be tested, into a
10737 (CODE OP0 const0_rtx) form.
10739 The result is a possibly different comparison code to use.
10740 *POP1 may be updated. */
10742 static enum rtx_code
10743 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10745 enum machine_mode mode = GET_MODE (op0);
10746 unsigned int mode_width = GET_MODE_PRECISION (mode);
10747 HOST_WIDE_INT const_op = INTVAL (*pop1);
10749 /* Get the constant we are comparing against and turn off all bits
10750 not on in our mode. */
10751 if (mode != VOIDmode)
10752 const_op = trunc_int_for_mode (const_op, mode);
10754 /* If we are comparing against a constant power of two and the value
10755 being compared can only have that single bit nonzero (e.g., it was
10756 `and'ed with that bit), we can replace this with a comparison
10757 with zero. */
10758 if (const_op
10759 && (code == EQ || code == NE || code == GE || code == GEU
10760 || code == LT || code == LTU)
10761 && mode_width <= HOST_BITS_PER_WIDE_INT
10762 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
10763 && (nonzero_bits (op0, mode)
10764 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
10766 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10767 const_op = 0;
10770 /* Similarly, if we are comparing a value known to be either -1 or
10771 0 with -1, change it to the opposite comparison against zero. */
10772 if (const_op == -1
10773 && (code == EQ || code == NE || code == GT || code == LE
10774 || code == GEU || code == LTU)
10775 && num_sign_bit_copies (op0, mode) == mode_width)
10777 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10778 const_op = 0;
10781 /* Do some canonicalizations based on the comparison code. We prefer
10782 comparisons against zero and then prefer equality comparisons.
10783 If we can reduce the size of a constant, we will do that too. */
10784 switch (code)
10786 case LT:
10787 /* < C is equivalent to <= (C - 1) */
10788 if (const_op > 0)
10790 const_op -= 1;
10791 code = LE;
10792 /* ... fall through to LE case below. */
10794 else
10795 break;
10797 case LE:
10798 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10799 if (const_op < 0)
10801 const_op += 1;
10802 code = LT;
10805 /* If we are doing a <= 0 comparison on a value known to have
10806 a zero sign bit, we can replace this with == 0. */
10807 else if (const_op == 0
10808 && mode_width <= HOST_BITS_PER_WIDE_INT
10809 && (nonzero_bits (op0, mode)
10810 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10811 == 0)
10812 code = EQ;
10813 break;
10815 case GE:
10816 /* >= C is equivalent to > (C - 1). */
10817 if (const_op > 0)
10819 const_op -= 1;
10820 code = GT;
10821 /* ... fall through to GT below. */
10823 else
10824 break;
10826 case GT:
10827 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10828 if (const_op < 0)
10830 const_op += 1;
10831 code = GE;
10834 /* If we are doing a > 0 comparison on a value known to have
10835 a zero sign bit, we can replace this with != 0. */
10836 else if (const_op == 0
10837 && mode_width <= HOST_BITS_PER_WIDE_INT
10838 && (nonzero_bits (op0, mode)
10839 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10840 == 0)
10841 code = NE;
10842 break;
10844 case LTU:
10845 /* < C is equivalent to <= (C - 1). */
10846 if (const_op > 0)
10848 const_op -= 1;
10849 code = LEU;
10850 /* ... fall through ... */
10852 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10853 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10854 && (unsigned HOST_WIDE_INT) const_op
10855 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10857 const_op = 0;
10858 code = GE;
10859 break;
10861 else
10862 break;
10864 case LEU:
10865 /* unsigned <= 0 is equivalent to == 0 */
10866 if (const_op == 0)
10867 code = EQ;
10868 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10869 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10870 && (unsigned HOST_WIDE_INT) const_op
10871 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10873 const_op = 0;
10874 code = GE;
10876 break;
10878 case GEU:
10879 /* >= C is equivalent to > (C - 1). */
10880 if (const_op > 1)
10882 const_op -= 1;
10883 code = GTU;
10884 /* ... fall through ... */
10887 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10888 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10889 && (unsigned HOST_WIDE_INT) const_op
10890 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10892 const_op = 0;
10893 code = LT;
10894 break;
10896 else
10897 break;
10899 case GTU:
10900 /* unsigned > 0 is equivalent to != 0 */
10901 if (const_op == 0)
10902 code = NE;
10903 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10904 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10905 && (unsigned HOST_WIDE_INT) const_op
10906 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10908 const_op = 0;
10909 code = LT;
10911 break;
10913 default:
10914 break;
10917 *pop1 = GEN_INT (const_op);
10918 return code;
10921 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10922 comparison code that will be tested.
10924 The result is a possibly different comparison code to use. *POP0 and
10925 *POP1 may be updated.
10927 It is possible that we might detect that a comparison is either always
10928 true or always false. However, we do not perform general constant
10929 folding in combine, so this knowledge isn't useful. Such tautologies
10930 should have been detected earlier. Hence we ignore all such cases. */
10932 static enum rtx_code
10933 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10935 rtx op0 = *pop0;
10936 rtx op1 = *pop1;
10937 rtx tem, tem1;
10938 int i;
10939 enum machine_mode mode, tmode;
10941 /* Try a few ways of applying the same transformation to both operands. */
10942 while (1)
10944 #ifndef WORD_REGISTER_OPERATIONS
10945 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10946 so check specially. */
10947 if (code != GTU && code != GEU && code != LTU && code != LEU
10948 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10949 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10950 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10951 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10952 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10953 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10954 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10955 && CONST_INT_P (XEXP (op0, 1))
10956 && XEXP (op0, 1) == XEXP (op1, 1)
10957 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10958 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10959 && (INTVAL (XEXP (op0, 1))
10960 == (GET_MODE_PRECISION (GET_MODE (op0))
10961 - (GET_MODE_PRECISION
10962 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10964 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10965 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10967 #endif
10969 /* If both operands are the same constant shift, see if we can ignore the
10970 shift. We can if the shift is a rotate or if the bits shifted out of
10971 this shift are known to be zero for both inputs and if the type of
10972 comparison is compatible with the shift. */
10973 if (GET_CODE (op0) == GET_CODE (op1)
10974 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
10975 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10976 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10977 && (code != GT && code != LT && code != GE && code != LE))
10978 || (GET_CODE (op0) == ASHIFTRT
10979 && (code != GTU && code != LTU
10980 && code != GEU && code != LEU)))
10981 && CONST_INT_P (XEXP (op0, 1))
10982 && INTVAL (XEXP (op0, 1)) >= 0
10983 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10984 && XEXP (op0, 1) == XEXP (op1, 1))
10986 enum machine_mode mode = GET_MODE (op0);
10987 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10988 int shift_count = INTVAL (XEXP (op0, 1));
10990 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10991 mask &= (mask >> shift_count) << shift_count;
10992 else if (GET_CODE (op0) == ASHIFT)
10993 mask = (mask & (mask << shift_count)) >> shift_count;
10995 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10996 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10997 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10998 else
10999 break;
11002 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11003 SUBREGs are of the same mode, and, in both cases, the AND would
11004 be redundant if the comparison was done in the narrower mode,
11005 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11006 and the operand's possibly nonzero bits are 0xffffff01; in that case
11007 if we only care about QImode, we don't need the AND). This case
11008 occurs if the output mode of an scc insn is not SImode and
11009 STORE_FLAG_VALUE == 1 (e.g., the 386).
11011 Similarly, check for a case where the AND's are ZERO_EXTEND
11012 operations from some narrower mode even though a SUBREG is not
11013 present. */
11015 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11016 && CONST_INT_P (XEXP (op0, 1))
11017 && CONST_INT_P (XEXP (op1, 1)))
11019 rtx inner_op0 = XEXP (op0, 0);
11020 rtx inner_op1 = XEXP (op1, 0);
11021 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11022 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11023 int changed = 0;
11025 if (paradoxical_subreg_p (inner_op0)
11026 && GET_CODE (inner_op1) == SUBREG
11027 && (GET_MODE (SUBREG_REG (inner_op0))
11028 == GET_MODE (SUBREG_REG (inner_op1)))
11029 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11030 <= HOST_BITS_PER_WIDE_INT)
11031 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11032 GET_MODE (SUBREG_REG (inner_op0)))))
11033 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11034 GET_MODE (SUBREG_REG (inner_op1))))))
11036 op0 = SUBREG_REG (inner_op0);
11037 op1 = SUBREG_REG (inner_op1);
11039 /* The resulting comparison is always unsigned since we masked
11040 off the original sign bit. */
11041 code = unsigned_condition (code);
11043 changed = 1;
11046 else if (c0 == c1)
11047 for (tmode = GET_CLASS_NARROWEST_MODE
11048 (GET_MODE_CLASS (GET_MODE (op0)));
11049 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11050 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11052 op0 = gen_lowpart (tmode, inner_op0);
11053 op1 = gen_lowpart (tmode, inner_op1);
11054 code = unsigned_condition (code);
11055 changed = 1;
11056 break;
11059 if (! changed)
11060 break;
11063 /* If both operands are NOT, we can strip off the outer operation
11064 and adjust the comparison code for swapped operands; similarly for
11065 NEG, except that this must be an equality comparison. */
11066 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11067 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11068 && (code == EQ || code == NE)))
11069 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11071 else
11072 break;
11075 /* If the first operand is a constant, swap the operands and adjust the
11076 comparison code appropriately, but don't do this if the second operand
11077 is already a constant integer. */
11078 if (swap_commutative_operands_p (op0, op1))
11080 tem = op0, op0 = op1, op1 = tem;
11081 code = swap_condition (code);
11084 /* We now enter a loop during which we will try to simplify the comparison.
11085 For the most part, we only are concerned with comparisons with zero,
11086 but some things may really be comparisons with zero but not start
11087 out looking that way. */
11089 while (CONST_INT_P (op1))
11091 enum machine_mode mode = GET_MODE (op0);
11092 unsigned int mode_width = GET_MODE_PRECISION (mode);
11093 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11094 int equality_comparison_p;
11095 int sign_bit_comparison_p;
11096 int unsigned_comparison_p;
11097 HOST_WIDE_INT const_op;
11099 /* We only want to handle integral modes. This catches VOIDmode,
11100 CCmode, and the floating-point modes. An exception is that we
11101 can handle VOIDmode if OP0 is a COMPARE or a comparison
11102 operation. */
11104 if (GET_MODE_CLASS (mode) != MODE_INT
11105 && ! (mode == VOIDmode
11106 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11107 break;
11109 /* Try to simplify the compare to constant, possibly changing the
11110 comparison op, and/or changing op1 to zero. */
11111 code = simplify_compare_const (code, op0, &op1);
11112 const_op = INTVAL (op1);
11114 /* Compute some predicates to simplify code below. */
11116 equality_comparison_p = (code == EQ || code == NE);
11117 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11118 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11119 || code == GEU);
11121 /* If this is a sign bit comparison and we can do arithmetic in
11122 MODE, say that we will only be needing the sign bit of OP0. */
11123 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11124 op0 = force_to_mode (op0, mode,
11125 (unsigned HOST_WIDE_INT) 1
11126 << (GET_MODE_PRECISION (mode) - 1),
11129 /* Now try cases based on the opcode of OP0. If none of the cases
11130 does a "continue", we exit this loop immediately after the
11131 switch. */
11133 switch (GET_CODE (op0))
11135 case ZERO_EXTRACT:
11136 /* If we are extracting a single bit from a variable position in
11137 a constant that has only a single bit set and are comparing it
11138 with zero, we can convert this into an equality comparison
11139 between the position and the location of the single bit. */
11140 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11141 have already reduced the shift count modulo the word size. */
11142 if (!SHIFT_COUNT_TRUNCATED
11143 && CONST_INT_P (XEXP (op0, 0))
11144 && XEXP (op0, 1) == const1_rtx
11145 && equality_comparison_p && const_op == 0
11146 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11148 if (BITS_BIG_ENDIAN)
11149 i = BITS_PER_WORD - 1 - i;
11151 op0 = XEXP (op0, 2);
11152 op1 = GEN_INT (i);
11153 const_op = i;
11155 /* Result is nonzero iff shift count is equal to I. */
11156 code = reverse_condition (code);
11157 continue;
11160 /* ... fall through ... */
11162 case SIGN_EXTRACT:
11163 tem = expand_compound_operation (op0);
11164 if (tem != op0)
11166 op0 = tem;
11167 continue;
11169 break;
11171 case NOT:
11172 /* If testing for equality, we can take the NOT of the constant. */
11173 if (equality_comparison_p
11174 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11176 op0 = XEXP (op0, 0);
11177 op1 = tem;
11178 continue;
11181 /* If just looking at the sign bit, reverse the sense of the
11182 comparison. */
11183 if (sign_bit_comparison_p)
11185 op0 = XEXP (op0, 0);
11186 code = (code == GE ? LT : GE);
11187 continue;
11189 break;
11191 case NEG:
11192 /* If testing for equality, we can take the NEG of the constant. */
11193 if (equality_comparison_p
11194 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11196 op0 = XEXP (op0, 0);
11197 op1 = tem;
11198 continue;
11201 /* The remaining cases only apply to comparisons with zero. */
11202 if (const_op != 0)
11203 break;
11205 /* When X is ABS or is known positive,
11206 (neg X) is < 0 if and only if X != 0. */
11208 if (sign_bit_comparison_p
11209 && (GET_CODE (XEXP (op0, 0)) == ABS
11210 || (mode_width <= HOST_BITS_PER_WIDE_INT
11211 && (nonzero_bits (XEXP (op0, 0), mode)
11212 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11213 == 0)))
11215 op0 = XEXP (op0, 0);
11216 code = (code == LT ? NE : EQ);
11217 continue;
11220 /* If we have NEG of something whose two high-order bits are the
11221 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11222 if (num_sign_bit_copies (op0, mode) >= 2)
11224 op0 = XEXP (op0, 0);
11225 code = swap_condition (code);
11226 continue;
11228 break;
11230 case ROTATE:
11231 /* If we are testing equality and our count is a constant, we
11232 can perform the inverse operation on our RHS. */
11233 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11234 && (tem = simplify_binary_operation (ROTATERT, mode,
11235 op1, XEXP (op0, 1))) != 0)
11237 op0 = XEXP (op0, 0);
11238 op1 = tem;
11239 continue;
11242 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11243 a particular bit. Convert it to an AND of a constant of that
11244 bit. This will be converted into a ZERO_EXTRACT. */
11245 if (const_op == 0 && sign_bit_comparison_p
11246 && CONST_INT_P (XEXP (op0, 1))
11247 && mode_width <= HOST_BITS_PER_WIDE_INT)
11249 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11250 ((unsigned HOST_WIDE_INT) 1
11251 << (mode_width - 1
11252 - INTVAL (XEXP (op0, 1)))));
11253 code = (code == LT ? NE : EQ);
11254 continue;
11257 /* Fall through. */
11259 case ABS:
11260 /* ABS is ignorable inside an equality comparison with zero. */
11261 if (const_op == 0 && equality_comparison_p)
11263 op0 = XEXP (op0, 0);
11264 continue;
11266 break;
11268 case SIGN_EXTEND:
11269 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11270 (compare FOO CONST) if CONST fits in FOO's mode and we
11271 are either testing inequality or have an unsigned
11272 comparison with ZERO_EXTEND or a signed comparison with
11273 SIGN_EXTEND. But don't do it if we don't have a compare
11274 insn of the given mode, since we'd have to revert it
11275 later on, and then we wouldn't know whether to sign- or
11276 zero-extend. */
11277 mode = GET_MODE (XEXP (op0, 0));
11278 if (GET_MODE_CLASS (mode) == MODE_INT
11279 && ! unsigned_comparison_p
11280 && HWI_COMPUTABLE_MODE_P (mode)
11281 && trunc_int_for_mode (const_op, mode) == const_op
11282 && have_insn_for (COMPARE, mode))
11284 op0 = XEXP (op0, 0);
11285 continue;
11287 break;
11289 case SUBREG:
11290 /* Check for the case where we are comparing A - C1 with C2, that is
11292 (subreg:MODE (plus (A) (-C1))) op (C2)
11294 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11295 comparison in the wider mode. One of the following two conditions
11296 must be true in order for this to be valid:
11298 1. The mode extension results in the same bit pattern being added
11299 on both sides and the comparison is equality or unsigned. As
11300 C2 has been truncated to fit in MODE, the pattern can only be
11301 all 0s or all 1s.
11303 2. The mode extension results in the sign bit being copied on
11304 each side.
11306 The difficulty here is that we have predicates for A but not for
11307 (A - C1) so we need to check that C1 is within proper bounds so
11308 as to perturbate A as little as possible. */
11310 if (mode_width <= HOST_BITS_PER_WIDE_INT
11311 && subreg_lowpart_p (op0)
11312 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11313 && GET_CODE (SUBREG_REG (op0)) == PLUS
11314 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11316 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11317 rtx a = XEXP (SUBREG_REG (op0), 0);
11318 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11320 if ((c1 > 0
11321 && (unsigned HOST_WIDE_INT) c1
11322 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11323 && (equality_comparison_p || unsigned_comparison_p)
11324 /* (A - C1) zero-extends if it is positive and sign-extends
11325 if it is negative, C2 both zero- and sign-extends. */
11326 && ((0 == (nonzero_bits (a, inner_mode)
11327 & ~GET_MODE_MASK (mode))
11328 && const_op >= 0)
11329 /* (A - C1) sign-extends if it is positive and 1-extends
11330 if it is negative, C2 both sign- and 1-extends. */
11331 || (num_sign_bit_copies (a, inner_mode)
11332 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11333 - mode_width)
11334 && const_op < 0)))
11335 || ((unsigned HOST_WIDE_INT) c1
11336 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11337 /* (A - C1) always sign-extends, like C2. */
11338 && num_sign_bit_copies (a, inner_mode)
11339 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11340 - (mode_width - 1))))
11342 op0 = SUBREG_REG (op0);
11343 continue;
11347 /* If the inner mode is narrower and we are extracting the low part,
11348 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11349 if (subreg_lowpart_p (op0)
11350 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11351 /* Fall through */ ;
11352 else
11353 break;
11355 /* ... fall through ... */
11357 case ZERO_EXTEND:
11358 mode = GET_MODE (XEXP (op0, 0));
11359 if (GET_MODE_CLASS (mode) == MODE_INT
11360 && (unsigned_comparison_p || equality_comparison_p)
11361 && HWI_COMPUTABLE_MODE_P (mode)
11362 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11363 && const_op >= 0
11364 && have_insn_for (COMPARE, mode))
11366 op0 = XEXP (op0, 0);
11367 continue;
11369 break;
11371 case PLUS:
11372 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11373 this for equality comparisons due to pathological cases involving
11374 overflows. */
11375 if (equality_comparison_p
11376 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11377 op1, XEXP (op0, 1))))
11379 op0 = XEXP (op0, 0);
11380 op1 = tem;
11381 continue;
11384 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11385 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11386 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11388 op0 = XEXP (XEXP (op0, 0), 0);
11389 code = (code == LT ? EQ : NE);
11390 continue;
11392 break;
11394 case MINUS:
11395 /* We used to optimize signed comparisons against zero, but that
11396 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11397 arrive here as equality comparisons, or (GEU, LTU) are
11398 optimized away. No need to special-case them. */
11400 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11401 (eq B (minus A C)), whichever simplifies. We can only do
11402 this for equality comparisons due to pathological cases involving
11403 overflows. */
11404 if (equality_comparison_p
11405 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11406 XEXP (op0, 1), op1)))
11408 op0 = XEXP (op0, 0);
11409 op1 = tem;
11410 continue;
11413 if (equality_comparison_p
11414 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11415 XEXP (op0, 0), op1)))
11417 op0 = XEXP (op0, 1);
11418 op1 = tem;
11419 continue;
11422 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11423 of bits in X minus 1, is one iff X > 0. */
11424 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11425 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11426 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11427 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11429 op0 = XEXP (op0, 1);
11430 code = (code == GE ? LE : GT);
11431 continue;
11433 break;
11435 case XOR:
11436 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11437 if C is zero or B is a constant. */
11438 if (equality_comparison_p
11439 && 0 != (tem = simplify_binary_operation (XOR, mode,
11440 XEXP (op0, 1), op1)))
11442 op0 = XEXP (op0, 0);
11443 op1 = tem;
11444 continue;
11446 break;
11448 case EQ: case NE:
11449 case UNEQ: case LTGT:
11450 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11451 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11452 case UNORDERED: case ORDERED:
11453 /* We can't do anything if OP0 is a condition code value, rather
11454 than an actual data value. */
11455 if (const_op != 0
11456 || CC0_P (XEXP (op0, 0))
11457 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11458 break;
11460 /* Get the two operands being compared. */
11461 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11462 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11463 else
11464 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11466 /* Check for the cases where we simply want the result of the
11467 earlier test or the opposite of that result. */
11468 if (code == NE || code == EQ
11469 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11470 && (code == LT || code == GE)))
11472 enum rtx_code new_code;
11473 if (code == LT || code == NE)
11474 new_code = GET_CODE (op0);
11475 else
11476 new_code = reversed_comparison_code (op0, NULL);
11478 if (new_code != UNKNOWN)
11480 code = new_code;
11481 op0 = tem;
11482 op1 = tem1;
11483 continue;
11486 break;
11488 case IOR:
11489 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11490 iff X <= 0. */
11491 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11492 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11493 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11495 op0 = XEXP (op0, 1);
11496 code = (code == GE ? GT : LE);
11497 continue;
11499 break;
11501 case AND:
11502 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11503 will be converted to a ZERO_EXTRACT later. */
11504 if (const_op == 0 && equality_comparison_p
11505 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11506 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11508 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11509 XEXP (XEXP (op0, 0), 1));
11510 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11511 continue;
11514 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11515 zero and X is a comparison and C1 and C2 describe only bits set
11516 in STORE_FLAG_VALUE, we can compare with X. */
11517 if (const_op == 0 && equality_comparison_p
11518 && mode_width <= HOST_BITS_PER_WIDE_INT
11519 && CONST_INT_P (XEXP (op0, 1))
11520 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11521 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11522 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11523 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11525 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11526 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11527 if ((~STORE_FLAG_VALUE & mask) == 0
11528 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11529 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11530 && COMPARISON_P (tem))))
11532 op0 = XEXP (XEXP (op0, 0), 0);
11533 continue;
11537 /* If we are doing an equality comparison of an AND of a bit equal
11538 to the sign bit, replace this with a LT or GE comparison of
11539 the underlying value. */
11540 if (equality_comparison_p
11541 && const_op == 0
11542 && CONST_INT_P (XEXP (op0, 1))
11543 && mode_width <= HOST_BITS_PER_WIDE_INT
11544 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11545 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11547 op0 = XEXP (op0, 0);
11548 code = (code == EQ ? GE : LT);
11549 continue;
11552 /* If this AND operation is really a ZERO_EXTEND from a narrower
11553 mode, the constant fits within that mode, and this is either an
11554 equality or unsigned comparison, try to do this comparison in
11555 the narrower mode.
11557 Note that in:
11559 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11560 -> (ne:DI (reg:SI 4) (const_int 0))
11562 unless TRULY_NOOP_TRUNCATION allows it or the register is
11563 known to hold a value of the required mode the
11564 transformation is invalid. */
11565 if ((equality_comparison_p || unsigned_comparison_p)
11566 && CONST_INT_P (XEXP (op0, 1))
11567 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11568 & GET_MODE_MASK (mode))
11569 + 1)) >= 0
11570 && const_op >> i == 0
11571 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11572 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11573 || (REG_P (XEXP (op0, 0))
11574 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11576 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11577 continue;
11580 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11581 fits in both M1 and M2 and the SUBREG is either paradoxical
11582 or represents the low part, permute the SUBREG and the AND
11583 and try again. */
11584 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11586 unsigned HOST_WIDE_INT c1;
11587 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11588 /* Require an integral mode, to avoid creating something like
11589 (AND:SF ...). */
11590 if (SCALAR_INT_MODE_P (tmode)
11591 /* It is unsafe to commute the AND into the SUBREG if the
11592 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11593 not defined. As originally written the upper bits
11594 have a defined value due to the AND operation.
11595 However, if we commute the AND inside the SUBREG then
11596 they no longer have defined values and the meaning of
11597 the code has been changed. */
11598 && (0
11599 #ifdef WORD_REGISTER_OPERATIONS
11600 || (mode_width > GET_MODE_PRECISION (tmode)
11601 && mode_width <= BITS_PER_WORD)
11602 #endif
11603 || (mode_width <= GET_MODE_PRECISION (tmode)
11604 && subreg_lowpart_p (XEXP (op0, 0))))
11605 && CONST_INT_P (XEXP (op0, 1))
11606 && mode_width <= HOST_BITS_PER_WIDE_INT
11607 && HWI_COMPUTABLE_MODE_P (tmode)
11608 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11609 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11610 && c1 != mask
11611 && c1 != GET_MODE_MASK (tmode))
11613 op0 = simplify_gen_binary (AND, tmode,
11614 SUBREG_REG (XEXP (op0, 0)),
11615 gen_int_mode (c1, tmode));
11616 op0 = gen_lowpart (mode, op0);
11617 continue;
11621 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11622 if (const_op == 0 && equality_comparison_p
11623 && XEXP (op0, 1) == const1_rtx
11624 && GET_CODE (XEXP (op0, 0)) == NOT)
11626 op0 = simplify_and_const_int (NULL_RTX, mode,
11627 XEXP (XEXP (op0, 0), 0), 1);
11628 code = (code == NE ? EQ : NE);
11629 continue;
11632 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11633 (eq (and (lshiftrt X) 1) 0).
11634 Also handle the case where (not X) is expressed using xor. */
11635 if (const_op == 0 && equality_comparison_p
11636 && XEXP (op0, 1) == const1_rtx
11637 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11639 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11640 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11642 if (GET_CODE (shift_op) == NOT
11643 || (GET_CODE (shift_op) == XOR
11644 && CONST_INT_P (XEXP (shift_op, 1))
11645 && CONST_INT_P (shift_count)
11646 && HWI_COMPUTABLE_MODE_P (mode)
11647 && (UINTVAL (XEXP (shift_op, 1))
11648 == (unsigned HOST_WIDE_INT) 1
11649 << INTVAL (shift_count))))
11652 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11653 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11654 code = (code == NE ? EQ : NE);
11655 continue;
11658 break;
11660 case ASHIFT:
11661 /* If we have (compare (ashift FOO N) (const_int C)) and
11662 the high order N bits of FOO (N+1 if an inequality comparison)
11663 are known to be zero, we can do this by comparing FOO with C
11664 shifted right N bits so long as the low-order N bits of C are
11665 zero. */
11666 if (CONST_INT_P (XEXP (op0, 1))
11667 && INTVAL (XEXP (op0, 1)) >= 0
11668 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11669 < HOST_BITS_PER_WIDE_INT)
11670 && (((unsigned HOST_WIDE_INT) const_op
11671 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11672 - 1)) == 0)
11673 && mode_width <= HOST_BITS_PER_WIDE_INT
11674 && (nonzero_bits (XEXP (op0, 0), mode)
11675 & ~(mask >> (INTVAL (XEXP (op0, 1))
11676 + ! equality_comparison_p))) == 0)
11678 /* We must perform a logical shift, not an arithmetic one,
11679 as we want the top N bits of C to be zero. */
11680 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11682 temp >>= INTVAL (XEXP (op0, 1));
11683 op1 = gen_int_mode (temp, mode);
11684 op0 = XEXP (op0, 0);
11685 continue;
11688 /* If we are doing a sign bit comparison, it means we are testing
11689 a particular bit. Convert it to the appropriate AND. */
11690 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11691 && mode_width <= HOST_BITS_PER_WIDE_INT)
11693 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11694 ((unsigned HOST_WIDE_INT) 1
11695 << (mode_width - 1
11696 - INTVAL (XEXP (op0, 1)))));
11697 code = (code == LT ? NE : EQ);
11698 continue;
11701 /* If this an equality comparison with zero and we are shifting
11702 the low bit to the sign bit, we can convert this to an AND of the
11703 low-order bit. */
11704 if (const_op == 0 && equality_comparison_p
11705 && CONST_INT_P (XEXP (op0, 1))
11706 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11708 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11709 continue;
11711 break;
11713 case ASHIFTRT:
11714 /* If this is an equality comparison with zero, we can do this
11715 as a logical shift, which might be much simpler. */
11716 if (equality_comparison_p && const_op == 0
11717 && CONST_INT_P (XEXP (op0, 1)))
11719 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11720 XEXP (op0, 0),
11721 INTVAL (XEXP (op0, 1)));
11722 continue;
11725 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11726 do the comparison in a narrower mode. */
11727 if (! unsigned_comparison_p
11728 && CONST_INT_P (XEXP (op0, 1))
11729 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11730 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11731 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11732 MODE_INT, 1)) != BLKmode
11733 && (((unsigned HOST_WIDE_INT) const_op
11734 + (GET_MODE_MASK (tmode) >> 1) + 1)
11735 <= GET_MODE_MASK (tmode)))
11737 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11738 continue;
11741 /* Likewise if OP0 is a PLUS of a sign extension with a
11742 constant, which is usually represented with the PLUS
11743 between the shifts. */
11744 if (! unsigned_comparison_p
11745 && CONST_INT_P (XEXP (op0, 1))
11746 && GET_CODE (XEXP (op0, 0)) == PLUS
11747 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11748 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11749 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11750 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11751 MODE_INT, 1)) != BLKmode
11752 && (((unsigned HOST_WIDE_INT) const_op
11753 + (GET_MODE_MASK (tmode) >> 1) + 1)
11754 <= GET_MODE_MASK (tmode)))
11756 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11757 rtx add_const = XEXP (XEXP (op0, 0), 1);
11758 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11759 add_const, XEXP (op0, 1));
11761 op0 = simplify_gen_binary (PLUS, tmode,
11762 gen_lowpart (tmode, inner),
11763 new_const);
11764 continue;
11767 /* ... fall through ... */
11768 case LSHIFTRT:
11769 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11770 the low order N bits of FOO are known to be zero, we can do this
11771 by comparing FOO with C shifted left N bits so long as no
11772 overflow occurs. Even if the low order N bits of FOO aren't known
11773 to be zero, if the comparison is >= or < we can use the same
11774 optimization and for > or <= by setting all the low
11775 order N bits in the comparison constant. */
11776 if (CONST_INT_P (XEXP (op0, 1))
11777 && INTVAL (XEXP (op0, 1)) > 0
11778 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11779 && mode_width <= HOST_BITS_PER_WIDE_INT
11780 && (((unsigned HOST_WIDE_INT) const_op
11781 + (GET_CODE (op0) != LSHIFTRT
11782 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11783 + 1)
11784 : 0))
11785 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11787 unsigned HOST_WIDE_INT low_bits
11788 = (nonzero_bits (XEXP (op0, 0), mode)
11789 & (((unsigned HOST_WIDE_INT) 1
11790 << INTVAL (XEXP (op0, 1))) - 1));
11791 if (low_bits == 0 || !equality_comparison_p)
11793 /* If the shift was logical, then we must make the condition
11794 unsigned. */
11795 if (GET_CODE (op0) == LSHIFTRT)
11796 code = unsigned_condition (code);
11798 const_op <<= INTVAL (XEXP (op0, 1));
11799 if (low_bits != 0
11800 && (code == GT || code == GTU
11801 || code == LE || code == LEU))
11802 const_op
11803 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11804 op1 = GEN_INT (const_op);
11805 op0 = XEXP (op0, 0);
11806 continue;
11810 /* If we are using this shift to extract just the sign bit, we
11811 can replace this with an LT or GE comparison. */
11812 if (const_op == 0
11813 && (equality_comparison_p || sign_bit_comparison_p)
11814 && CONST_INT_P (XEXP (op0, 1))
11815 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11817 op0 = XEXP (op0, 0);
11818 code = (code == NE || code == GT ? LT : GE);
11819 continue;
11821 break;
11823 default:
11824 break;
11827 break;
11830 /* Now make any compound operations involved in this comparison. Then,
11831 check for an outmost SUBREG on OP0 that is not doing anything or is
11832 paradoxical. The latter transformation must only be performed when
11833 it is known that the "extra" bits will be the same in op0 and op1 or
11834 that they don't matter. There are three cases to consider:
11836 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11837 care bits and we can assume they have any convenient value. So
11838 making the transformation is safe.
11840 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11841 In this case the upper bits of op0 are undefined. We should not make
11842 the simplification in that case as we do not know the contents of
11843 those bits.
11845 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11846 UNKNOWN. In that case we know those bits are zeros or ones. We must
11847 also be sure that they are the same as the upper bits of op1.
11849 We can never remove a SUBREG for a non-equality comparison because
11850 the sign bit is in a different place in the underlying object. */
11852 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11853 op1 = make_compound_operation (op1, SET);
11855 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11856 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11857 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11858 && (code == NE || code == EQ))
11860 if (paradoxical_subreg_p (op0))
11862 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11863 implemented. */
11864 if (REG_P (SUBREG_REG (op0)))
11866 op0 = SUBREG_REG (op0);
11867 op1 = gen_lowpart (GET_MODE (op0), op1);
11870 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11871 <= HOST_BITS_PER_WIDE_INT)
11872 && (nonzero_bits (SUBREG_REG (op0),
11873 GET_MODE (SUBREG_REG (op0)))
11874 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11876 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11878 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11879 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11880 op0 = SUBREG_REG (op0), op1 = tem;
11884 /* We now do the opposite procedure: Some machines don't have compare
11885 insns in all modes. If OP0's mode is an integer mode smaller than a
11886 word and we can't do a compare in that mode, see if there is a larger
11887 mode for which we can do the compare. There are a number of cases in
11888 which we can use the wider mode. */
11890 mode = GET_MODE (op0);
11891 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11892 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11893 && ! have_insn_for (COMPARE, mode))
11894 for (tmode = GET_MODE_WIDER_MODE (mode);
11895 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11896 tmode = GET_MODE_WIDER_MODE (tmode))
11897 if (have_insn_for (COMPARE, tmode))
11899 int zero_extended;
11901 /* If this is a test for negative, we can make an explicit
11902 test of the sign bit. Test this first so we can use
11903 a paradoxical subreg to extend OP0. */
11905 if (op1 == const0_rtx && (code == LT || code == GE)
11906 && HWI_COMPUTABLE_MODE_P (mode))
11908 op0 = simplify_gen_binary (AND, tmode,
11909 gen_lowpart (tmode, op0),
11910 GEN_INT ((unsigned HOST_WIDE_INT) 1
11911 << (GET_MODE_BITSIZE (mode)
11912 - 1)));
11913 code = (code == LT) ? NE : EQ;
11914 break;
11917 /* If the only nonzero bits in OP0 and OP1 are those in the
11918 narrower mode and this is an equality or unsigned comparison,
11919 we can use the wider mode. Similarly for sign-extended
11920 values, in which case it is true for all comparisons. */
11921 zero_extended = ((code == EQ || code == NE
11922 || code == GEU || code == GTU
11923 || code == LEU || code == LTU)
11924 && (nonzero_bits (op0, tmode)
11925 & ~GET_MODE_MASK (mode)) == 0
11926 && ((CONST_INT_P (op1)
11927 || (nonzero_bits (op1, tmode)
11928 & ~GET_MODE_MASK (mode)) == 0)));
11930 if (zero_extended
11931 || ((num_sign_bit_copies (op0, tmode)
11932 > (unsigned int) (GET_MODE_PRECISION (tmode)
11933 - GET_MODE_PRECISION (mode)))
11934 && (num_sign_bit_copies (op1, tmode)
11935 > (unsigned int) (GET_MODE_PRECISION (tmode)
11936 - GET_MODE_PRECISION (mode)))))
11938 /* If OP0 is an AND and we don't have an AND in MODE either,
11939 make a new AND in the proper mode. */
11940 if (GET_CODE (op0) == AND
11941 && !have_insn_for (AND, mode))
11942 op0 = simplify_gen_binary (AND, tmode,
11943 gen_lowpart (tmode,
11944 XEXP (op0, 0)),
11945 gen_lowpart (tmode,
11946 XEXP (op0, 1)));
11947 else
11949 if (zero_extended)
11951 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11952 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11954 else
11956 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11957 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11959 break;
11964 /* If this machine only supports a subset of valid comparisons, see if we
11965 can convert an unsupported one into a supported one. */
11966 target_canonicalize_comparison (&code, &op0, &op1, 0);
11968 *pop0 = op0;
11969 *pop1 = op1;
11971 return code;
11974 /* Utility function for record_value_for_reg. Count number of
11975 rtxs in X. */
11976 static int
11977 count_rtxs (rtx x)
11979 enum rtx_code code = GET_CODE (x);
11980 const char *fmt;
11981 int i, j, ret = 1;
11983 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
11984 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
11986 rtx x0 = XEXP (x, 0);
11987 rtx x1 = XEXP (x, 1);
11989 if (x0 == x1)
11990 return 1 + 2 * count_rtxs (x0);
11992 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
11993 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
11994 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11995 return 2 + 2 * count_rtxs (x0)
11996 + count_rtxs (x == XEXP (x1, 0)
11997 ? XEXP (x1, 1) : XEXP (x1, 0));
11999 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12000 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12001 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12002 return 2 + 2 * count_rtxs (x1)
12003 + count_rtxs (x == XEXP (x0, 0)
12004 ? XEXP (x0, 1) : XEXP (x0, 0));
12007 fmt = GET_RTX_FORMAT (code);
12008 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12009 if (fmt[i] == 'e')
12010 ret += count_rtxs (XEXP (x, i));
12011 else if (fmt[i] == 'E')
12012 for (j = 0; j < XVECLEN (x, i); j++)
12013 ret += count_rtxs (XVECEXP (x, i, j));
12015 return ret;
12018 /* Utility function for following routine. Called when X is part of a value
12019 being stored into last_set_value. Sets last_set_table_tick
12020 for each register mentioned. Similar to mention_regs in cse.c */
12022 static void
12023 update_table_tick (rtx x)
12025 enum rtx_code code = GET_CODE (x);
12026 const char *fmt = GET_RTX_FORMAT (code);
12027 int i, j;
12029 if (code == REG)
12031 unsigned int regno = REGNO (x);
12032 unsigned int endregno = END_REGNO (x);
12033 unsigned int r;
12035 for (r = regno; r < endregno; r++)
12037 reg_stat_type *rsp = &reg_stat[r];
12038 rsp->last_set_table_tick = label_tick;
12041 return;
12044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12045 if (fmt[i] == 'e')
12047 /* Check for identical subexpressions. If x contains
12048 identical subexpression we only have to traverse one of
12049 them. */
12050 if (i == 0 && ARITHMETIC_P (x))
12052 /* Note that at this point x1 has already been
12053 processed. */
12054 rtx x0 = XEXP (x, 0);
12055 rtx x1 = XEXP (x, 1);
12057 /* If x0 and x1 are identical then there is no need to
12058 process x0. */
12059 if (x0 == x1)
12060 break;
12062 /* If x0 is identical to a subexpression of x1 then while
12063 processing x1, x0 has already been processed. Thus we
12064 are done with x. */
12065 if (ARITHMETIC_P (x1)
12066 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12067 break;
12069 /* If x1 is identical to a subexpression of x0 then we
12070 still have to process the rest of x0. */
12071 if (ARITHMETIC_P (x0)
12072 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12074 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12075 break;
12079 update_table_tick (XEXP (x, i));
12081 else if (fmt[i] == 'E')
12082 for (j = 0; j < XVECLEN (x, i); j++)
12083 update_table_tick (XVECEXP (x, i, j));
12086 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12087 are saying that the register is clobbered and we no longer know its
12088 value. If INSN is zero, don't update reg_stat[].last_set; this is
12089 only permitted with VALUE also zero and is used to invalidate the
12090 register. */
12092 static void
12093 record_value_for_reg (rtx reg, rtx insn, rtx value)
12095 unsigned int regno = REGNO (reg);
12096 unsigned int endregno = END_REGNO (reg);
12097 unsigned int i;
12098 reg_stat_type *rsp;
12100 /* If VALUE contains REG and we have a previous value for REG, substitute
12101 the previous value. */
12102 if (value && insn && reg_overlap_mentioned_p (reg, value))
12104 rtx tem;
12106 /* Set things up so get_last_value is allowed to see anything set up to
12107 our insn. */
12108 subst_low_luid = DF_INSN_LUID (insn);
12109 tem = get_last_value (reg);
12111 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12112 it isn't going to be useful and will take a lot of time to process,
12113 so just use the CLOBBER. */
12115 if (tem)
12117 if (ARITHMETIC_P (tem)
12118 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12119 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12120 tem = XEXP (tem, 0);
12121 else if (count_occurrences (value, reg, 1) >= 2)
12123 /* If there are two or more occurrences of REG in VALUE,
12124 prevent the value from growing too much. */
12125 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12126 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12129 value = replace_rtx (copy_rtx (value), reg, tem);
12133 /* For each register modified, show we don't know its value, that
12134 we don't know about its bitwise content, that its value has been
12135 updated, and that we don't know the location of the death of the
12136 register. */
12137 for (i = regno; i < endregno; i++)
12139 rsp = &reg_stat[i];
12141 if (insn)
12142 rsp->last_set = insn;
12144 rsp->last_set_value = 0;
12145 rsp->last_set_mode = VOIDmode;
12146 rsp->last_set_nonzero_bits = 0;
12147 rsp->last_set_sign_bit_copies = 0;
12148 rsp->last_death = 0;
12149 rsp->truncated_to_mode = VOIDmode;
12152 /* Mark registers that are being referenced in this value. */
12153 if (value)
12154 update_table_tick (value);
12156 /* Now update the status of each register being set.
12157 If someone is using this register in this block, set this register
12158 to invalid since we will get confused between the two lives in this
12159 basic block. This makes using this register always invalid. In cse, we
12160 scan the table to invalidate all entries using this register, but this
12161 is too much work for us. */
12163 for (i = regno; i < endregno; i++)
12165 rsp = &reg_stat[i];
12166 rsp->last_set_label = label_tick;
12167 if (!insn
12168 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12169 rsp->last_set_invalid = 1;
12170 else
12171 rsp->last_set_invalid = 0;
12174 /* The value being assigned might refer to X (like in "x++;"). In that
12175 case, we must replace it with (clobber (const_int 0)) to prevent
12176 infinite loops. */
12177 rsp = &reg_stat[regno];
12178 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12180 value = copy_rtx (value);
12181 if (!get_last_value_validate (&value, insn, label_tick, 1))
12182 value = 0;
12185 /* For the main register being modified, update the value, the mode, the
12186 nonzero bits, and the number of sign bit copies. */
12188 rsp->last_set_value = value;
12190 if (value)
12192 enum machine_mode mode = GET_MODE (reg);
12193 subst_low_luid = DF_INSN_LUID (insn);
12194 rsp->last_set_mode = mode;
12195 if (GET_MODE_CLASS (mode) == MODE_INT
12196 && HWI_COMPUTABLE_MODE_P (mode))
12197 mode = nonzero_bits_mode;
12198 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12199 rsp->last_set_sign_bit_copies
12200 = num_sign_bit_copies (value, GET_MODE (reg));
12204 /* Called via note_stores from record_dead_and_set_regs to handle one
12205 SET or CLOBBER in an insn. DATA is the instruction in which the
12206 set is occurring. */
12208 static void
12209 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12211 rtx record_dead_insn = (rtx) data;
12213 if (GET_CODE (dest) == SUBREG)
12214 dest = SUBREG_REG (dest);
12216 if (!record_dead_insn)
12218 if (REG_P (dest))
12219 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12220 return;
12223 if (REG_P (dest))
12225 /* If we are setting the whole register, we know its value. Otherwise
12226 show that we don't know the value. We can handle SUBREG in
12227 some cases. */
12228 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12229 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12230 else if (GET_CODE (setter) == SET
12231 && GET_CODE (SET_DEST (setter)) == SUBREG
12232 && SUBREG_REG (SET_DEST (setter)) == dest
12233 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12234 && subreg_lowpart_p (SET_DEST (setter)))
12235 record_value_for_reg (dest, record_dead_insn,
12236 gen_lowpart (GET_MODE (dest),
12237 SET_SRC (setter)));
12238 else
12239 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12241 else if (MEM_P (dest)
12242 /* Ignore pushes, they clobber nothing. */
12243 && ! push_operand (dest, GET_MODE (dest)))
12244 mem_last_set = DF_INSN_LUID (record_dead_insn);
12247 /* Update the records of when each REG was most recently set or killed
12248 for the things done by INSN. This is the last thing done in processing
12249 INSN in the combiner loop.
12251 We update reg_stat[], in particular fields last_set, last_set_value,
12252 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12253 last_death, and also the similar information mem_last_set (which insn
12254 most recently modified memory) and last_call_luid (which insn was the
12255 most recent subroutine call). */
12257 static void
12258 record_dead_and_set_regs (rtx insn)
12260 rtx link;
12261 unsigned int i;
12263 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12265 if (REG_NOTE_KIND (link) == REG_DEAD
12266 && REG_P (XEXP (link, 0)))
12268 unsigned int regno = REGNO (XEXP (link, 0));
12269 unsigned int endregno = END_REGNO (XEXP (link, 0));
12271 for (i = regno; i < endregno; i++)
12273 reg_stat_type *rsp;
12275 rsp = &reg_stat[i];
12276 rsp->last_death = insn;
12279 else if (REG_NOTE_KIND (link) == REG_INC)
12280 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12283 if (CALL_P (insn))
12285 hard_reg_set_iterator hrsi;
12286 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12288 reg_stat_type *rsp;
12290 rsp = &reg_stat[i];
12291 rsp->last_set_invalid = 1;
12292 rsp->last_set = insn;
12293 rsp->last_set_value = 0;
12294 rsp->last_set_mode = VOIDmode;
12295 rsp->last_set_nonzero_bits = 0;
12296 rsp->last_set_sign_bit_copies = 0;
12297 rsp->last_death = 0;
12298 rsp->truncated_to_mode = VOIDmode;
12301 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12303 /* We can't combine into a call pattern. Remember, though, that
12304 the return value register is set at this LUID. We could
12305 still replace a register with the return value from the
12306 wrong subroutine call! */
12307 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12309 else
12310 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12313 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12314 register present in the SUBREG, so for each such SUBREG go back and
12315 adjust nonzero and sign bit information of the registers that are
12316 known to have some zero/sign bits set.
12318 This is needed because when combine blows the SUBREGs away, the
12319 information on zero/sign bits is lost and further combines can be
12320 missed because of that. */
12322 static void
12323 record_promoted_value (rtx insn, rtx subreg)
12325 struct insn_link *links;
12326 rtx set;
12327 unsigned int regno = REGNO (SUBREG_REG (subreg));
12328 enum machine_mode mode = GET_MODE (subreg);
12330 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12331 return;
12333 for (links = LOG_LINKS (insn); links;)
12335 reg_stat_type *rsp;
12337 insn = links->insn;
12338 set = single_set (insn);
12340 if (! set || !REG_P (SET_DEST (set))
12341 || REGNO (SET_DEST (set)) != regno
12342 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12344 links = links->next;
12345 continue;
12348 rsp = &reg_stat[regno];
12349 if (rsp->last_set == insn)
12351 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12352 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12355 if (REG_P (SET_SRC (set)))
12357 regno = REGNO (SET_SRC (set));
12358 links = LOG_LINKS (insn);
12360 else
12361 break;
12365 /* Check if X, a register, is known to contain a value already
12366 truncated to MODE. In this case we can use a subreg to refer to
12367 the truncated value even though in the generic case we would need
12368 an explicit truncation. */
12370 static bool
12371 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12373 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12374 enum machine_mode truncated = rsp->truncated_to_mode;
12376 if (truncated == 0
12377 || rsp->truncation_label < label_tick_ebb_start)
12378 return false;
12379 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12380 return true;
12381 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12382 return true;
12383 return false;
12386 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12387 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12388 might be able to turn a truncate into a subreg using this information.
12389 Return -1 if traversing *P is complete or 0 otherwise. */
12391 static int
12392 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12394 rtx x = *p;
12395 enum machine_mode truncated_mode;
12396 reg_stat_type *rsp;
12398 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12400 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12401 truncated_mode = GET_MODE (x);
12403 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12404 return -1;
12406 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12407 return -1;
12409 x = SUBREG_REG (x);
12411 /* ??? For hard-regs we now record everything. We might be able to
12412 optimize this using last_set_mode. */
12413 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12414 truncated_mode = GET_MODE (x);
12415 else
12416 return 0;
12418 rsp = &reg_stat[REGNO (x)];
12419 if (rsp->truncated_to_mode == 0
12420 || rsp->truncation_label < label_tick_ebb_start
12421 || (GET_MODE_SIZE (truncated_mode)
12422 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12424 rsp->truncated_to_mode = truncated_mode;
12425 rsp->truncation_label = label_tick;
12428 return -1;
12431 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12432 the modes they are used in. This can help truning TRUNCATEs into
12433 SUBREGs. */
12435 static void
12436 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12438 for_each_rtx (x, record_truncated_value, NULL);
12441 /* Scan X for promoted SUBREGs. For each one found,
12442 note what it implies to the registers used in it. */
12444 static void
12445 check_promoted_subreg (rtx insn, rtx x)
12447 if (GET_CODE (x) == SUBREG
12448 && SUBREG_PROMOTED_VAR_P (x)
12449 && REG_P (SUBREG_REG (x)))
12450 record_promoted_value (insn, x);
12451 else
12453 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12454 int i, j;
12456 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12457 switch (format[i])
12459 case 'e':
12460 check_promoted_subreg (insn, XEXP (x, i));
12461 break;
12462 case 'V':
12463 case 'E':
12464 if (XVEC (x, i) != 0)
12465 for (j = 0; j < XVECLEN (x, i); j++)
12466 check_promoted_subreg (insn, XVECEXP (x, i, j));
12467 break;
12472 /* Verify that all the registers and memory references mentioned in *LOC are
12473 still valid. *LOC was part of a value set in INSN when label_tick was
12474 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12475 the invalid references with (clobber (const_int 0)) and return 1. This
12476 replacement is useful because we often can get useful information about
12477 the form of a value (e.g., if it was produced by a shift that always
12478 produces -1 or 0) even though we don't know exactly what registers it
12479 was produced from. */
12481 static int
12482 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12484 rtx x = *loc;
12485 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12486 int len = GET_RTX_LENGTH (GET_CODE (x));
12487 int i, j;
12489 if (REG_P (x))
12491 unsigned int regno = REGNO (x);
12492 unsigned int endregno = END_REGNO (x);
12493 unsigned int j;
12495 for (j = regno; j < endregno; j++)
12497 reg_stat_type *rsp = &reg_stat[j];
12498 if (rsp->last_set_invalid
12499 /* If this is a pseudo-register that was only set once and not
12500 live at the beginning of the function, it is always valid. */
12501 || (! (regno >= FIRST_PSEUDO_REGISTER
12502 && REG_N_SETS (regno) == 1
12503 && (!REGNO_REG_SET_P
12504 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12505 && rsp->last_set_label > tick))
12507 if (replace)
12508 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12509 return replace;
12513 return 1;
12515 /* If this is a memory reference, make sure that there were no stores after
12516 it that might have clobbered the value. We don't have alias info, so we
12517 assume any store invalidates it. Moreover, we only have local UIDs, so
12518 we also assume that there were stores in the intervening basic blocks. */
12519 else if (MEM_P (x) && !MEM_READONLY_P (x)
12520 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12522 if (replace)
12523 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12524 return replace;
12527 for (i = 0; i < len; i++)
12529 if (fmt[i] == 'e')
12531 /* Check for identical subexpressions. If x contains
12532 identical subexpression we only have to traverse one of
12533 them. */
12534 if (i == 1 && ARITHMETIC_P (x))
12536 /* Note that at this point x0 has already been checked
12537 and found valid. */
12538 rtx x0 = XEXP (x, 0);
12539 rtx x1 = XEXP (x, 1);
12541 /* If x0 and x1 are identical then x is also valid. */
12542 if (x0 == x1)
12543 return 1;
12545 /* If x1 is identical to a subexpression of x0 then
12546 while checking x0, x1 has already been checked. Thus
12547 it is valid and so as x. */
12548 if (ARITHMETIC_P (x0)
12549 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12550 return 1;
12552 /* If x0 is identical to a subexpression of x1 then x is
12553 valid iff the rest of x1 is valid. */
12554 if (ARITHMETIC_P (x1)
12555 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12556 return
12557 get_last_value_validate (&XEXP (x1,
12558 x0 == XEXP (x1, 0) ? 1 : 0),
12559 insn, tick, replace);
12562 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12563 replace) == 0)
12564 return 0;
12566 else if (fmt[i] == 'E')
12567 for (j = 0; j < XVECLEN (x, i); j++)
12568 if (get_last_value_validate (&XVECEXP (x, i, j),
12569 insn, tick, replace) == 0)
12570 return 0;
12573 /* If we haven't found a reason for it to be invalid, it is valid. */
12574 return 1;
12577 /* Get the last value assigned to X, if known. Some registers
12578 in the value may be replaced with (clobber (const_int 0)) if their value
12579 is known longer known reliably. */
12581 static rtx
12582 get_last_value (const_rtx x)
12584 unsigned int regno;
12585 rtx value;
12586 reg_stat_type *rsp;
12588 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12589 then convert it to the desired mode. If this is a paradoxical SUBREG,
12590 we cannot predict what values the "extra" bits might have. */
12591 if (GET_CODE (x) == SUBREG
12592 && subreg_lowpart_p (x)
12593 && !paradoxical_subreg_p (x)
12594 && (value = get_last_value (SUBREG_REG (x))) != 0)
12595 return gen_lowpart (GET_MODE (x), value);
12597 if (!REG_P (x))
12598 return 0;
12600 regno = REGNO (x);
12601 rsp = &reg_stat[regno];
12602 value = rsp->last_set_value;
12604 /* If we don't have a value, or if it isn't for this basic block and
12605 it's either a hard register, set more than once, or it's a live
12606 at the beginning of the function, return 0.
12608 Because if it's not live at the beginning of the function then the reg
12609 is always set before being used (is never used without being set).
12610 And, if it's set only once, and it's always set before use, then all
12611 uses must have the same last value, even if it's not from this basic
12612 block. */
12614 if (value == 0
12615 || (rsp->last_set_label < label_tick_ebb_start
12616 && (regno < FIRST_PSEUDO_REGISTER
12617 || REG_N_SETS (regno) != 1
12618 || REGNO_REG_SET_P
12619 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12620 return 0;
12622 /* If the value was set in a later insn than the ones we are processing,
12623 we can't use it even if the register was only set once. */
12624 if (rsp->last_set_label == label_tick
12625 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12626 return 0;
12628 /* If the value has all its registers valid, return it. */
12629 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12630 return value;
12632 /* Otherwise, make a copy and replace any invalid register with
12633 (clobber (const_int 0)). If that fails for some reason, return 0. */
12635 value = copy_rtx (value);
12636 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12637 return value;
12639 return 0;
12642 /* Return nonzero if expression X refers to a REG or to memory
12643 that is set in an instruction more recent than FROM_LUID. */
12645 static int
12646 use_crosses_set_p (const_rtx x, int from_luid)
12648 const char *fmt;
12649 int i;
12650 enum rtx_code code = GET_CODE (x);
12652 if (code == REG)
12654 unsigned int regno = REGNO (x);
12655 unsigned endreg = END_REGNO (x);
12657 #ifdef PUSH_ROUNDING
12658 /* Don't allow uses of the stack pointer to be moved,
12659 because we don't know whether the move crosses a push insn. */
12660 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12661 return 1;
12662 #endif
12663 for (; regno < endreg; regno++)
12665 reg_stat_type *rsp = &reg_stat[regno];
12666 if (rsp->last_set
12667 && rsp->last_set_label == label_tick
12668 && DF_INSN_LUID (rsp->last_set) > from_luid)
12669 return 1;
12671 return 0;
12674 if (code == MEM && mem_last_set > from_luid)
12675 return 1;
12677 fmt = GET_RTX_FORMAT (code);
12679 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12681 if (fmt[i] == 'E')
12683 int j;
12684 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12685 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12686 return 1;
12688 else if (fmt[i] == 'e'
12689 && use_crosses_set_p (XEXP (x, i), from_luid))
12690 return 1;
12692 return 0;
12695 /* Define three variables used for communication between the following
12696 routines. */
12698 static unsigned int reg_dead_regno, reg_dead_endregno;
12699 static int reg_dead_flag;
12701 /* Function called via note_stores from reg_dead_at_p.
12703 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12704 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12706 static void
12707 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12709 unsigned int regno, endregno;
12711 if (!REG_P (dest))
12712 return;
12714 regno = REGNO (dest);
12715 endregno = END_REGNO (dest);
12716 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12717 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12720 /* Return nonzero if REG is known to be dead at INSN.
12722 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12723 referencing REG, it is dead. If we hit a SET referencing REG, it is
12724 live. Otherwise, see if it is live or dead at the start of the basic
12725 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12726 must be assumed to be always live. */
12728 static int
12729 reg_dead_at_p (rtx reg, rtx insn)
12731 basic_block block;
12732 unsigned int i;
12734 /* Set variables for reg_dead_at_p_1. */
12735 reg_dead_regno = REGNO (reg);
12736 reg_dead_endregno = END_REGNO (reg);
12738 reg_dead_flag = 0;
12740 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12741 we allow the machine description to decide whether use-and-clobber
12742 patterns are OK. */
12743 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12745 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12746 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12747 return 0;
12750 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12751 beginning of basic block. */
12752 block = BLOCK_FOR_INSN (insn);
12753 for (;;)
12755 if (INSN_P (insn))
12757 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12758 if (reg_dead_flag)
12759 return reg_dead_flag == 1 ? 1 : 0;
12761 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12762 return 1;
12765 if (insn == BB_HEAD (block))
12766 break;
12768 insn = PREV_INSN (insn);
12771 /* Look at live-in sets for the basic block that we were in. */
12772 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12773 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12774 return 0;
12776 return 1;
12779 /* Note hard registers in X that are used. */
12781 static void
12782 mark_used_regs_combine (rtx x)
12784 RTX_CODE code = GET_CODE (x);
12785 unsigned int regno;
12786 int i;
12788 switch (code)
12790 case LABEL_REF:
12791 case SYMBOL_REF:
12792 case CONST:
12793 CASE_CONST_ANY:
12794 case PC:
12795 case ADDR_VEC:
12796 case ADDR_DIFF_VEC:
12797 case ASM_INPUT:
12798 #ifdef HAVE_cc0
12799 /* CC0 must die in the insn after it is set, so we don't need to take
12800 special note of it here. */
12801 case CC0:
12802 #endif
12803 return;
12805 case CLOBBER:
12806 /* If we are clobbering a MEM, mark any hard registers inside the
12807 address as used. */
12808 if (MEM_P (XEXP (x, 0)))
12809 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12810 return;
12812 case REG:
12813 regno = REGNO (x);
12814 /* A hard reg in a wide mode may really be multiple registers.
12815 If so, mark all of them just like the first. */
12816 if (regno < FIRST_PSEUDO_REGISTER)
12818 /* None of this applies to the stack, frame or arg pointers. */
12819 if (regno == STACK_POINTER_REGNUM
12820 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12821 || regno == HARD_FRAME_POINTER_REGNUM
12822 #endif
12823 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12824 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12825 #endif
12826 || regno == FRAME_POINTER_REGNUM)
12827 return;
12829 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12831 return;
12833 case SET:
12835 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12836 the address. */
12837 rtx testreg = SET_DEST (x);
12839 while (GET_CODE (testreg) == SUBREG
12840 || GET_CODE (testreg) == ZERO_EXTRACT
12841 || GET_CODE (testreg) == STRICT_LOW_PART)
12842 testreg = XEXP (testreg, 0);
12844 if (MEM_P (testreg))
12845 mark_used_regs_combine (XEXP (testreg, 0));
12847 mark_used_regs_combine (SET_SRC (x));
12849 return;
12851 default:
12852 break;
12855 /* Recursively scan the operands of this expression. */
12858 const char *fmt = GET_RTX_FORMAT (code);
12860 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12862 if (fmt[i] == 'e')
12863 mark_used_regs_combine (XEXP (x, i));
12864 else if (fmt[i] == 'E')
12866 int j;
12868 for (j = 0; j < XVECLEN (x, i); j++)
12869 mark_used_regs_combine (XVECEXP (x, i, j));
12875 /* Remove register number REGNO from the dead registers list of INSN.
12877 Return the note used to record the death, if there was one. */
12880 remove_death (unsigned int regno, rtx insn)
12882 rtx note = find_regno_note (insn, REG_DEAD, regno);
12884 if (note)
12885 remove_note (insn, note);
12887 return note;
12890 /* For each register (hardware or pseudo) used within expression X, if its
12891 death is in an instruction with luid between FROM_LUID (inclusive) and
12892 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12893 list headed by PNOTES.
12895 That said, don't move registers killed by maybe_kill_insn.
12897 This is done when X is being merged by combination into TO_INSN. These
12898 notes will then be distributed as needed. */
12900 static void
12901 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12902 rtx *pnotes)
12904 const char *fmt;
12905 int len, i;
12906 enum rtx_code code = GET_CODE (x);
12908 if (code == REG)
12910 unsigned int regno = REGNO (x);
12911 rtx where_dead = reg_stat[regno].last_death;
12913 /* Don't move the register if it gets killed in between from and to. */
12914 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12915 && ! reg_referenced_p (x, maybe_kill_insn))
12916 return;
12918 if (where_dead
12919 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12920 && DF_INSN_LUID (where_dead) >= from_luid
12921 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12923 rtx note = remove_death (regno, where_dead);
12925 /* It is possible for the call above to return 0. This can occur
12926 when last_death points to I2 or I1 that we combined with.
12927 In that case make a new note.
12929 We must also check for the case where X is a hard register
12930 and NOTE is a death note for a range of hard registers
12931 including X. In that case, we must put REG_DEAD notes for
12932 the remaining registers in place of NOTE. */
12934 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12935 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12936 > GET_MODE_SIZE (GET_MODE (x))))
12938 unsigned int deadregno = REGNO (XEXP (note, 0));
12939 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12940 unsigned int ourend = END_HARD_REGNO (x);
12941 unsigned int i;
12943 for (i = deadregno; i < deadend; i++)
12944 if (i < regno || i >= ourend)
12945 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12948 /* If we didn't find any note, or if we found a REG_DEAD note that
12949 covers only part of the given reg, and we have a multi-reg hard
12950 register, then to be safe we must check for REG_DEAD notes
12951 for each register other than the first. They could have
12952 their own REG_DEAD notes lying around. */
12953 else if ((note == 0
12954 || (note != 0
12955 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12956 < GET_MODE_SIZE (GET_MODE (x)))))
12957 && regno < FIRST_PSEUDO_REGISTER
12958 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12960 unsigned int ourend = END_HARD_REGNO (x);
12961 unsigned int i, offset;
12962 rtx oldnotes = 0;
12964 if (note)
12965 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12966 else
12967 offset = 1;
12969 for (i = regno + offset; i < ourend; i++)
12970 move_deaths (regno_reg_rtx[i],
12971 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12974 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12976 XEXP (note, 1) = *pnotes;
12977 *pnotes = note;
12979 else
12980 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12983 return;
12986 else if (GET_CODE (x) == SET)
12988 rtx dest = SET_DEST (x);
12990 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12992 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12993 that accesses one word of a multi-word item, some
12994 piece of everything register in the expression is used by
12995 this insn, so remove any old death. */
12996 /* ??? So why do we test for equality of the sizes? */
12998 if (GET_CODE (dest) == ZERO_EXTRACT
12999 || GET_CODE (dest) == STRICT_LOW_PART
13000 || (GET_CODE (dest) == SUBREG
13001 && (((GET_MODE_SIZE (GET_MODE (dest))
13002 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13003 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13004 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13006 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13007 return;
13010 /* If this is some other SUBREG, we know it replaces the entire
13011 value, so use that as the destination. */
13012 if (GET_CODE (dest) == SUBREG)
13013 dest = SUBREG_REG (dest);
13015 /* If this is a MEM, adjust deaths of anything used in the address.
13016 For a REG (the only other possibility), the entire value is
13017 being replaced so the old value is not used in this insn. */
13019 if (MEM_P (dest))
13020 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13021 to_insn, pnotes);
13022 return;
13025 else if (GET_CODE (x) == CLOBBER)
13026 return;
13028 len = GET_RTX_LENGTH (code);
13029 fmt = GET_RTX_FORMAT (code);
13031 for (i = 0; i < len; i++)
13033 if (fmt[i] == 'E')
13035 int j;
13036 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13037 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13038 to_insn, pnotes);
13040 else if (fmt[i] == 'e')
13041 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13045 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13046 pattern of an insn. X must be a REG. */
13048 static int
13049 reg_bitfield_target_p (rtx x, rtx body)
13051 int i;
13053 if (GET_CODE (body) == SET)
13055 rtx dest = SET_DEST (body);
13056 rtx target;
13057 unsigned int regno, tregno, endregno, endtregno;
13059 if (GET_CODE (dest) == ZERO_EXTRACT)
13060 target = XEXP (dest, 0);
13061 else if (GET_CODE (dest) == STRICT_LOW_PART)
13062 target = SUBREG_REG (XEXP (dest, 0));
13063 else
13064 return 0;
13066 if (GET_CODE (target) == SUBREG)
13067 target = SUBREG_REG (target);
13069 if (!REG_P (target))
13070 return 0;
13072 tregno = REGNO (target), regno = REGNO (x);
13073 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13074 return target == x;
13076 endtregno = end_hard_regno (GET_MODE (target), tregno);
13077 endregno = end_hard_regno (GET_MODE (x), regno);
13079 return endregno > tregno && regno < endtregno;
13082 else if (GET_CODE (body) == PARALLEL)
13083 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13084 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13085 return 1;
13087 return 0;
13090 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13091 as appropriate. I3 and I2 are the insns resulting from the combination
13092 insns including FROM (I2 may be zero).
13094 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13095 not need REG_DEAD notes because they are being substituted for. This
13096 saves searching in the most common cases.
13098 Each note in the list is either ignored or placed on some insns, depending
13099 on the type of note. */
13101 static void
13102 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13103 rtx elim_i1, rtx elim_i0)
13105 rtx note, next_note;
13106 rtx tem;
13108 for (note = notes; note; note = next_note)
13110 rtx place = 0, place2 = 0;
13112 next_note = XEXP (note, 1);
13113 switch (REG_NOTE_KIND (note))
13115 case REG_BR_PROB:
13116 case REG_BR_PRED:
13117 /* Doesn't matter much where we put this, as long as it's somewhere.
13118 It is preferable to keep these notes on branches, which is most
13119 likely to be i3. */
13120 place = i3;
13121 break;
13123 case REG_NON_LOCAL_GOTO:
13124 if (JUMP_P (i3))
13125 place = i3;
13126 else
13128 gcc_assert (i2 && JUMP_P (i2));
13129 place = i2;
13131 break;
13133 case REG_EH_REGION:
13134 /* These notes must remain with the call or trapping instruction. */
13135 if (CALL_P (i3))
13136 place = i3;
13137 else if (i2 && CALL_P (i2))
13138 place = i2;
13139 else
13141 gcc_assert (cfun->can_throw_non_call_exceptions);
13142 if (may_trap_p (i3))
13143 place = i3;
13144 else if (i2 && may_trap_p (i2))
13145 place = i2;
13146 /* ??? Otherwise assume we've combined things such that we
13147 can now prove that the instructions can't trap. Drop the
13148 note in this case. */
13150 break;
13152 case REG_ARGS_SIZE:
13153 /* ??? How to distribute between i3-i1. Assume i3 contains the
13154 entire adjustment. Assert i3 contains at least some adjust. */
13155 if (!noop_move_p (i3))
13157 int old_size, args_size = INTVAL (XEXP (note, 0));
13158 /* fixup_args_size_notes looks at REG_NORETURN note,
13159 so ensure the note is placed there first. */
13160 if (CALL_P (i3))
13162 rtx *np;
13163 for (np = &next_note; *np; np = &XEXP (*np, 1))
13164 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13166 rtx n = *np;
13167 *np = XEXP (n, 1);
13168 XEXP (n, 1) = REG_NOTES (i3);
13169 REG_NOTES (i3) = n;
13170 break;
13173 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13174 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13175 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13176 gcc_assert (old_size != args_size
13177 || (CALL_P (i3)
13178 && !ACCUMULATE_OUTGOING_ARGS
13179 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13181 break;
13183 case REG_NORETURN:
13184 case REG_SETJMP:
13185 case REG_TM:
13186 /* These notes must remain with the call. It should not be
13187 possible for both I2 and I3 to be a call. */
13188 if (CALL_P (i3))
13189 place = i3;
13190 else
13192 gcc_assert (i2 && CALL_P (i2));
13193 place = i2;
13195 break;
13197 case REG_UNUSED:
13198 /* Any clobbers for i3 may still exist, and so we must process
13199 REG_UNUSED notes from that insn.
13201 Any clobbers from i2 or i1 can only exist if they were added by
13202 recog_for_combine. In that case, recog_for_combine created the
13203 necessary REG_UNUSED notes. Trying to keep any original
13204 REG_UNUSED notes from these insns can cause incorrect output
13205 if it is for the same register as the original i3 dest.
13206 In that case, we will notice that the register is set in i3,
13207 and then add a REG_UNUSED note for the destination of i3, which
13208 is wrong. However, it is possible to have REG_UNUSED notes from
13209 i2 or i1 for register which were both used and clobbered, so
13210 we keep notes from i2 or i1 if they will turn into REG_DEAD
13211 notes. */
13213 /* If this register is set or clobbered in I3, put the note there
13214 unless there is one already. */
13215 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13217 if (from_insn != i3)
13218 break;
13220 if (! (REG_P (XEXP (note, 0))
13221 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13222 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13223 place = i3;
13225 /* Otherwise, if this register is used by I3, then this register
13226 now dies here, so we must put a REG_DEAD note here unless there
13227 is one already. */
13228 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13229 && ! (REG_P (XEXP (note, 0))
13230 ? find_regno_note (i3, REG_DEAD,
13231 REGNO (XEXP (note, 0)))
13232 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13234 PUT_REG_NOTE_KIND (note, REG_DEAD);
13235 place = i3;
13237 break;
13239 case REG_EQUAL:
13240 case REG_EQUIV:
13241 case REG_NOALIAS:
13242 /* These notes say something about results of an insn. We can
13243 only support them if they used to be on I3 in which case they
13244 remain on I3. Otherwise they are ignored.
13246 If the note refers to an expression that is not a constant, we
13247 must also ignore the note since we cannot tell whether the
13248 equivalence is still true. It might be possible to do
13249 slightly better than this (we only have a problem if I2DEST
13250 or I1DEST is present in the expression), but it doesn't
13251 seem worth the trouble. */
13253 if (from_insn == i3
13254 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13255 place = i3;
13256 break;
13258 case REG_INC:
13259 /* These notes say something about how a register is used. They must
13260 be present on any use of the register in I2 or I3. */
13261 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13262 place = i3;
13264 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13266 if (place)
13267 place2 = i2;
13268 else
13269 place = i2;
13271 break;
13273 case REG_LABEL_TARGET:
13274 case REG_LABEL_OPERAND:
13275 /* This can show up in several ways -- either directly in the
13276 pattern, or hidden off in the constant pool with (or without?)
13277 a REG_EQUAL note. */
13278 /* ??? Ignore the without-reg_equal-note problem for now. */
13279 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13280 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13281 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13282 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13283 place = i3;
13285 if (i2
13286 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13287 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13288 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13289 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13291 if (place)
13292 place2 = i2;
13293 else
13294 place = i2;
13297 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13298 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13299 there. */
13300 if (place && JUMP_P (place)
13301 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13302 && (JUMP_LABEL (place) == NULL
13303 || JUMP_LABEL (place) == XEXP (note, 0)))
13305 rtx label = JUMP_LABEL (place);
13307 if (!label)
13308 JUMP_LABEL (place) = XEXP (note, 0);
13309 else if (LABEL_P (label))
13310 LABEL_NUSES (label)--;
13313 if (place2 && JUMP_P (place2)
13314 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13315 && (JUMP_LABEL (place2) == NULL
13316 || JUMP_LABEL (place2) == XEXP (note, 0)))
13318 rtx label = JUMP_LABEL (place2);
13320 if (!label)
13321 JUMP_LABEL (place2) = XEXP (note, 0);
13322 else if (LABEL_P (label))
13323 LABEL_NUSES (label)--;
13324 place2 = 0;
13326 break;
13328 case REG_NONNEG:
13329 /* This note says something about the value of a register prior
13330 to the execution of an insn. It is too much trouble to see
13331 if the note is still correct in all situations. It is better
13332 to simply delete it. */
13333 break;
13335 case REG_DEAD:
13336 /* If we replaced the right hand side of FROM_INSN with a
13337 REG_EQUAL note, the original use of the dying register
13338 will not have been combined into I3 and I2. In such cases,
13339 FROM_INSN is guaranteed to be the first of the combined
13340 instructions, so we simply need to search back before
13341 FROM_INSN for the previous use or set of this register,
13342 then alter the notes there appropriately.
13344 If the register is used as an input in I3, it dies there.
13345 Similarly for I2, if it is nonzero and adjacent to I3.
13347 If the register is not used as an input in either I3 or I2
13348 and it is not one of the registers we were supposed to eliminate,
13349 there are two possibilities. We might have a non-adjacent I2
13350 or we might have somehow eliminated an additional register
13351 from a computation. For example, we might have had A & B where
13352 we discover that B will always be zero. In this case we will
13353 eliminate the reference to A.
13355 In both cases, we must search to see if we can find a previous
13356 use of A and put the death note there. */
13358 if (from_insn
13359 && from_insn == i2mod
13360 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13361 tem = from_insn;
13362 else
13364 if (from_insn
13365 && CALL_P (from_insn)
13366 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13367 place = from_insn;
13368 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13369 place = i3;
13370 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13371 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13372 place = i2;
13373 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13374 && !(i2mod
13375 && reg_overlap_mentioned_p (XEXP (note, 0),
13376 i2mod_old_rhs)))
13377 || rtx_equal_p (XEXP (note, 0), elim_i1)
13378 || rtx_equal_p (XEXP (note, 0), elim_i0))
13379 break;
13380 tem = i3;
13383 if (place == 0)
13385 basic_block bb = this_basic_block;
13387 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13389 if (!NONDEBUG_INSN_P (tem))
13391 if (tem == BB_HEAD (bb))
13392 break;
13393 continue;
13396 /* If the register is being set at TEM, see if that is all
13397 TEM is doing. If so, delete TEM. Otherwise, make this
13398 into a REG_UNUSED note instead. Don't delete sets to
13399 global register vars. */
13400 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13401 || !global_regs[REGNO (XEXP (note, 0))])
13402 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13404 rtx set = single_set (tem);
13405 rtx inner_dest = 0;
13406 #ifdef HAVE_cc0
13407 rtx cc0_setter = NULL_RTX;
13408 #endif
13410 if (set != 0)
13411 for (inner_dest = SET_DEST (set);
13412 (GET_CODE (inner_dest) == STRICT_LOW_PART
13413 || GET_CODE (inner_dest) == SUBREG
13414 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13415 inner_dest = XEXP (inner_dest, 0))
13418 /* Verify that it was the set, and not a clobber that
13419 modified the register.
13421 CC0 targets must be careful to maintain setter/user
13422 pairs. If we cannot delete the setter due to side
13423 effects, mark the user with an UNUSED note instead
13424 of deleting it. */
13426 if (set != 0 && ! side_effects_p (SET_SRC (set))
13427 && rtx_equal_p (XEXP (note, 0), inner_dest)
13428 #ifdef HAVE_cc0
13429 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13430 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13431 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13432 #endif
13435 /* Move the notes and links of TEM elsewhere.
13436 This might delete other dead insns recursively.
13437 First set the pattern to something that won't use
13438 any register. */
13439 rtx old_notes = REG_NOTES (tem);
13441 PATTERN (tem) = pc_rtx;
13442 REG_NOTES (tem) = NULL;
13444 distribute_notes (old_notes, tem, tem, NULL_RTX,
13445 NULL_RTX, NULL_RTX, NULL_RTX);
13446 distribute_links (LOG_LINKS (tem));
13448 SET_INSN_DELETED (tem);
13449 if (tem == i2)
13450 i2 = NULL_RTX;
13452 #ifdef HAVE_cc0
13453 /* Delete the setter too. */
13454 if (cc0_setter)
13456 PATTERN (cc0_setter) = pc_rtx;
13457 old_notes = REG_NOTES (cc0_setter);
13458 REG_NOTES (cc0_setter) = NULL;
13460 distribute_notes (old_notes, cc0_setter,
13461 cc0_setter, NULL_RTX,
13462 NULL_RTX, NULL_RTX, NULL_RTX);
13463 distribute_links (LOG_LINKS (cc0_setter));
13465 SET_INSN_DELETED (cc0_setter);
13466 if (cc0_setter == i2)
13467 i2 = NULL_RTX;
13469 #endif
13471 else
13473 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13475 /* If there isn't already a REG_UNUSED note, put one
13476 here. Do not place a REG_DEAD note, even if
13477 the register is also used here; that would not
13478 match the algorithm used in lifetime analysis
13479 and can cause the consistency check in the
13480 scheduler to fail. */
13481 if (! find_regno_note (tem, REG_UNUSED,
13482 REGNO (XEXP (note, 0))))
13483 place = tem;
13484 break;
13487 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13488 || (CALL_P (tem)
13489 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13491 place = tem;
13493 /* If we are doing a 3->2 combination, and we have a
13494 register which formerly died in i3 and was not used
13495 by i2, which now no longer dies in i3 and is used in
13496 i2 but does not die in i2, and place is between i2
13497 and i3, then we may need to move a link from place to
13498 i2. */
13499 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13500 && from_insn
13501 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13502 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13504 struct insn_link *links = LOG_LINKS (place);
13505 LOG_LINKS (place) = NULL;
13506 distribute_links (links);
13508 break;
13511 if (tem == BB_HEAD (bb))
13512 break;
13517 /* If the register is set or already dead at PLACE, we needn't do
13518 anything with this note if it is still a REG_DEAD note.
13519 We check here if it is set at all, not if is it totally replaced,
13520 which is what `dead_or_set_p' checks, so also check for it being
13521 set partially. */
13523 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13525 unsigned int regno = REGNO (XEXP (note, 0));
13526 reg_stat_type *rsp = &reg_stat[regno];
13528 if (dead_or_set_p (place, XEXP (note, 0))
13529 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13531 /* Unless the register previously died in PLACE, clear
13532 last_death. [I no longer understand why this is
13533 being done.] */
13534 if (rsp->last_death != place)
13535 rsp->last_death = 0;
13536 place = 0;
13538 else
13539 rsp->last_death = place;
13541 /* If this is a death note for a hard reg that is occupying
13542 multiple registers, ensure that we are still using all
13543 parts of the object. If we find a piece of the object
13544 that is unused, we must arrange for an appropriate REG_DEAD
13545 note to be added for it. However, we can't just emit a USE
13546 and tag the note to it, since the register might actually
13547 be dead; so we recourse, and the recursive call then finds
13548 the previous insn that used this register. */
13550 if (place && regno < FIRST_PSEUDO_REGISTER
13551 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13553 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13554 int all_used = 1;
13555 unsigned int i;
13557 for (i = regno; i < endregno; i++)
13558 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13559 && ! find_regno_fusage (place, USE, i))
13560 || dead_or_set_regno_p (place, i))
13561 all_used = 0;
13563 if (! all_used)
13565 /* Put only REG_DEAD notes for pieces that are
13566 not already dead or set. */
13568 for (i = regno; i < endregno;
13569 i += hard_regno_nregs[i][reg_raw_mode[i]])
13571 rtx piece = regno_reg_rtx[i];
13572 basic_block bb = this_basic_block;
13574 if (! dead_or_set_p (place, piece)
13575 && ! reg_bitfield_target_p (piece,
13576 PATTERN (place)))
13578 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13579 NULL_RTX);
13581 distribute_notes (new_note, place, place,
13582 NULL_RTX, NULL_RTX, NULL_RTX,
13583 NULL_RTX);
13585 else if (! refers_to_regno_p (i, i + 1,
13586 PATTERN (place), 0)
13587 && ! find_regno_fusage (place, USE, i))
13588 for (tem = PREV_INSN (place); ;
13589 tem = PREV_INSN (tem))
13591 if (!NONDEBUG_INSN_P (tem))
13593 if (tem == BB_HEAD (bb))
13594 break;
13595 continue;
13597 if (dead_or_set_p (tem, piece)
13598 || reg_bitfield_target_p (piece,
13599 PATTERN (tem)))
13601 add_reg_note (tem, REG_UNUSED, piece);
13602 break;
13608 place = 0;
13612 break;
13614 default:
13615 /* Any other notes should not be present at this point in the
13616 compilation. */
13617 gcc_unreachable ();
13620 if (place)
13622 XEXP (note, 1) = REG_NOTES (place);
13623 REG_NOTES (place) = note;
13626 if (place2)
13627 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13631 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13632 I3, I2, and I1 to new locations. This is also called to add a link
13633 pointing at I3 when I3's destination is changed. */
13635 static void
13636 distribute_links (struct insn_link *links)
13638 struct insn_link *link, *next_link;
13640 for (link = links; link; link = next_link)
13642 rtx place = 0;
13643 rtx insn;
13644 rtx set, reg;
13646 next_link = link->next;
13648 /* If the insn that this link points to is a NOTE or isn't a single
13649 set, ignore it. In the latter case, it isn't clear what we
13650 can do other than ignore the link, since we can't tell which
13651 register it was for. Such links wouldn't be used by combine
13652 anyway.
13654 It is not possible for the destination of the target of the link to
13655 have been changed by combine. The only potential of this is if we
13656 replace I3, I2, and I1 by I3 and I2. But in that case the
13657 destination of I2 also remains unchanged. */
13659 if (NOTE_P (link->insn)
13660 || (set = single_set (link->insn)) == 0)
13661 continue;
13663 reg = SET_DEST (set);
13664 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13665 || GET_CODE (reg) == STRICT_LOW_PART)
13666 reg = XEXP (reg, 0);
13668 /* A LOG_LINK is defined as being placed on the first insn that uses
13669 a register and points to the insn that sets the register. Start
13670 searching at the next insn after the target of the link and stop
13671 when we reach a set of the register or the end of the basic block.
13673 Note that this correctly handles the link that used to point from
13674 I3 to I2. Also note that not much searching is typically done here
13675 since most links don't point very far away. */
13677 for (insn = NEXT_INSN (link->insn);
13678 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13679 || BB_HEAD (this_basic_block->next_bb) != insn));
13680 insn = NEXT_INSN (insn))
13681 if (DEBUG_INSN_P (insn))
13682 continue;
13683 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13685 if (reg_referenced_p (reg, PATTERN (insn)))
13686 place = insn;
13687 break;
13689 else if (CALL_P (insn)
13690 && find_reg_fusage (insn, USE, reg))
13692 place = insn;
13693 break;
13695 else if (INSN_P (insn) && reg_set_p (reg, insn))
13696 break;
13698 /* If we found a place to put the link, place it there unless there
13699 is already a link to the same insn as LINK at that point. */
13701 if (place)
13703 struct insn_link *link2;
13705 FOR_EACH_LOG_LINK (link2, place)
13706 if (link2->insn == link->insn)
13707 break;
13709 if (link2 == NULL)
13711 link->next = LOG_LINKS (place);
13712 LOG_LINKS (place) = link;
13714 /* Set added_links_insn to the earliest insn we added a
13715 link to. */
13716 if (added_links_insn == 0
13717 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13718 added_links_insn = place;
13724 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13725 Check whether the expression pointer to by LOC is a register or
13726 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13727 Otherwise return zero. */
13729 static int
13730 unmentioned_reg_p_1 (rtx *loc, void *expr)
13732 rtx x = *loc;
13734 if (x != NULL_RTX
13735 && (REG_P (x) || MEM_P (x))
13736 && ! reg_mentioned_p (x, (rtx) expr))
13737 return 1;
13738 return 0;
13741 /* Check for any register or memory mentioned in EQUIV that is not
13742 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13743 of EXPR where some registers may have been replaced by constants. */
13745 static bool
13746 unmentioned_reg_p (rtx equiv, rtx expr)
13748 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13751 DEBUG_FUNCTION void
13752 dump_combine_stats (FILE *file)
13754 fprintf
13755 (file,
13756 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13757 combine_attempts, combine_merges, combine_extras, combine_successes);
13760 void
13761 dump_combine_total_stats (FILE *file)
13763 fprintf
13764 (file,
13765 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13766 total_attempts, total_merges, total_extras, total_successes);
13769 static bool
13770 gate_handle_combine (void)
13772 return (optimize > 0);
13775 /* Try combining insns through substitution. */
13776 static unsigned int
13777 rest_of_handle_combine (void)
13779 int rebuild_jump_labels_after_combine;
13781 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13782 df_note_add_problem ();
13783 df_analyze ();
13785 regstat_init_n_sets_and_refs ();
13787 rebuild_jump_labels_after_combine
13788 = combine_instructions (get_insns (), max_reg_num ());
13790 /* Combining insns may have turned an indirect jump into a
13791 direct jump. Rebuild the JUMP_LABEL fields of jumping
13792 instructions. */
13793 if (rebuild_jump_labels_after_combine)
13795 timevar_push (TV_JUMP);
13796 rebuild_jump_labels (get_insns ());
13797 cleanup_cfg (0);
13798 timevar_pop (TV_JUMP);
13801 regstat_free_n_sets_and_refs ();
13802 return 0;
13805 struct rtl_opt_pass pass_combine =
13808 RTL_PASS,
13809 "combine", /* name */
13810 OPTGROUP_NONE, /* optinfo_flags */
13811 gate_handle_combine, /* gate */
13812 rest_of_handle_combine, /* execute */
13813 NULL, /* sub */
13814 NULL, /* next */
13815 0, /* static_pass_number */
13816 TV_COMBINE, /* tv_id */
13817 PROP_cfglayout, /* properties_required */
13818 0, /* properties_provided */
13819 0, /* properties_destroyed */
13820 0, /* todo_flags_start */
13821 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */