Update concepts branch to revision 131834
[official-gcc.git] / gcc / rtlanal.c
blobcf58c348489f679c6315b3f752e739d526e644cd
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
85 int target_flags;
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
109 rtx_unstable_p (const_rtx x)
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
115 switch (code)
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
148 /* Fall through. */
150 default:
151 break;
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
161 else if (fmt[i] == 'E')
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
169 return 0;
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
182 RTX_CODE code;
183 int i;
184 const char *fmt;
186 if (!x)
187 return 0;
189 code = GET_CODE (x);
190 switch (code)
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
222 return 0;
223 return 1;
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
257 return 0;
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
268 enum rtx_code code = GET_CODE (x);
270 switch (code)
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
275 case LABEL_REF:
276 return 0;
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
302 HOST_WIDE_INT offset;
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
309 offset = INTVAL (XEXP (x, 1));
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
321 return offset % GET_MODE_SIZE (mode) != 0;
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
328 return 1;
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
341 default:
342 break;
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
352 rtx_addr_can_trap_p (const_rtx x)
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
357 /* Return true if X is an address that is known to not be zero. */
359 bool
360 nonzero_address_p (const_rtx x)
362 const enum rtx_code code = GET_CODE (x);
364 switch (code)
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
369 case LABEL_REF:
370 return true;
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
418 default:
419 break;
422 /* If it isn't one of the case above, might be zero. */
423 return false;
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
435 enum rtx_code code;
436 int i;
437 const char *fmt;
439 if (x == 0)
440 return 0;
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
453 else if (fmt[i] == 'E')
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
460 return 0;
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
488 get_related_value (const_rtx x)
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
508 tree decl;
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
513 if (offset == 0)
514 return true;
516 if (offset > 0)
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
534 return false;
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
543 if (GET_CODE (x) == CONST)
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
553 *base_out = x;
554 *offset_out = const0_rtx;
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
568 if (x == find)
569 return 1;
571 code = GET_CODE (x);
573 switch (code)
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
602 default:
603 break;
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
611 switch (*format_ptr++)
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
623 return count;
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
632 reg_mentioned_p (const_rtx reg, const_rtx in)
634 const char *fmt;
635 int i;
636 enum rtx_code code;
638 if (in == 0)
639 return 0;
641 if (reg == in)
642 return 1;
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
647 code = GET_CODE (in);
649 switch (code)
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
669 default:
670 break;
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
676 fmt = GET_RTX_FORMAT (code);
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
680 if (fmt[i] == 'E')
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
691 return 0;
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
698 no_labels_between_p (const_rtx beg, const_rtx end)
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
715 rtx insn;
717 if (from_insn == to_insn)
718 return 0;
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
733 reg_referenced_p (const_rtx x, const_rtx body)
735 int i;
737 switch (GET_CODE (body))
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
800 default:
801 return 0;
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
811 const_rtx insn;
813 if (from_insn == to_insn)
814 return 0;
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
822 /* Internals of reg_set_between_p. */
824 reg_set_p (const_rtx reg, const_rtx insn)
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
839 return set_of (reg, insn) != NULL_RTX;
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does use memory aliasing. */
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
854 if (start == end)
855 return 0;
857 switch (code)
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
868 case PC:
869 case CC0:
870 return 1;
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
883 case REG:
884 return reg_set_between_p (x, start, end);
886 default:
887 break;
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
902 return 0;
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
910 modified_in_p (const_rtx x, const_rtx insn)
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
916 switch (code)
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
927 case PC:
928 case CC0:
929 return 1;
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
941 case REG:
942 return reg_set_p (x, insn);
944 default:
945 break;
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
960 return 0;
963 /* Helper function for set_of. */
964 struct set_of_data
966 const_rtx found;
967 const_rtx pat;
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
996 single_set_2 (const_rtx insn, const_rtx pat)
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1002 if (GET_CODE (pat) == PARALLEL)
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1009 case USE:
1010 case CLOBBER:
1011 break;
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1037 default:
1038 return NULL_RTX;
1042 return set;
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1049 multiple_sets (const_rtx insn)
1051 int found;
1052 int i;
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1072 /* Either zero or one SET. */
1073 return 0;
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1080 set_noop_p (const_rtx set)
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1115 noop_move_p (const_rtx insn)
1117 rtx pat = PATTERN (insn);
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1129 return 0;
1131 if (GET_CODE (pat) == SET && set_noop_p (pat))
1132 return 1;
1134 if (GET_CODE (pat) == PARALLEL)
1136 int i;
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i = 0; i < XVECLEN (pat, 0); i++)
1141 rtx tem = XVECEXP (pat, 0, i);
1143 if (GET_CODE (tem) == USE
1144 || GET_CODE (tem) == CLOBBER)
1145 continue;
1147 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1148 return 0;
1151 return 1;
1153 return 0;
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1162 be the src. */
1165 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1167 rtx p;
1169 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1170 p = PREV_INSN (p))
1171 if (INSN_P (p))
1173 rtx set = single_set (p);
1174 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1176 if (set && rtx_equal_p (x, SET_DEST (set)))
1178 rtx src = SET_SRC (set);
1180 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1181 src = XEXP (note, 0);
1183 if ((valid_to == NULL_RTX
1184 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1187 && (! (REG_P (src)
1188 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1190 *pinsn = p;
1191 return src;
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x, p))
1197 break;
1200 return x;
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1211 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1212 rtx *loc)
1214 int i;
1215 unsigned int x_regno;
1216 RTX_CODE code;
1217 const char *fmt;
1219 repeat:
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1222 if (x == 0)
1223 return 0;
1225 code = GET_CODE (x);
1227 switch (code)
1229 case REG:
1230 x_regno = REGNO (x);
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno == STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno == ARG_POINTER_REGNUM
1238 #endif
1239 || x_regno == FRAME_POINTER_REGNUM)
1240 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1241 return 1;
1243 return endregno > x_regno && regno < END_REGNO (x);
1245 case SUBREG:
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x))
1249 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1251 unsigned int inner_regno = subreg_regno (x);
1252 unsigned int inner_endregno
1253 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x) : 1);
1256 return endregno > inner_regno && regno < inner_endregno;
1258 break;
1260 case CLOBBER:
1261 case SET:
1262 if (&SET_DEST (x) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x)) == SUBREG
1267 && loc != &SUBREG_REG (SET_DEST (x))
1268 && REG_P (SUBREG_REG (SET_DEST (x)))
1269 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno, endregno,
1271 SUBREG_REG (SET_DEST (x)), loc))
1272 || (!REG_P (SET_DEST (x))
1273 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1274 return 1;
1276 if (code == CLOBBER || loc == &SET_SRC (x))
1277 return 0;
1278 x = SET_SRC (x);
1279 goto repeat;
1281 default:
1282 break;
1285 /* X does not match, so try its subexpressions. */
1287 fmt = GET_RTX_FORMAT (code);
1288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1290 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1292 if (i == 0)
1294 x = XEXP (x, 0);
1295 goto repeat;
1297 else
1298 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1299 return 1;
1301 else if (fmt[i] == 'E')
1303 int j;
1304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1305 if (loc != &XVECEXP (x, i, j)
1306 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1307 return 1;
1310 return 0;
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1320 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1322 unsigned int regno, endregno;
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in))
1328 return 0;
1330 recurse:
1331 switch (GET_CODE (x))
1333 case STRICT_LOW_PART:
1334 case ZERO_EXTRACT:
1335 case SIGN_EXTRACT:
1336 /* Overly conservative. */
1337 x = XEXP (x, 0);
1338 goto recurse;
1340 case SUBREG:
1341 regno = REGNO (SUBREG_REG (x));
1342 if (regno < FIRST_PSEUDO_REGISTER)
1343 regno = subreg_regno (x);
1344 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x) : 1);
1346 goto do_reg;
1348 case REG:
1349 regno = REGNO (x);
1350 endregno = END_REGNO (x);
1351 do_reg:
1352 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1354 case MEM:
1356 const char *fmt;
1357 int i;
1359 if (MEM_P (in))
1360 return 1;
1362 fmt = GET_RTX_FORMAT (GET_CODE (in));
1363 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1364 if (fmt[i] == 'e')
1366 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1367 return 1;
1369 else if (fmt[i] == 'E')
1371 int j;
1372 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1373 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1374 return 1;
1377 return 0;
1380 case SCRATCH:
1381 case PC:
1382 case CC0:
1383 return reg_mentioned_p (x, in);
1385 case PARALLEL:
1387 int i;
1389 /* If any register in here refers to it we return true. */
1390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1391 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1393 return 1;
1394 return 0;
1397 default:
1398 gcc_assert (CONSTANT_P (x));
1399 return 0;
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1415 void
1416 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1418 int i;
1420 if (GET_CODE (x) == COND_EXEC)
1421 x = COND_EXEC_CODE (x);
1423 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1425 rtx dest = SET_DEST (x);
1427 while ((GET_CODE (dest) == SUBREG
1428 && (!REG_P (SUBREG_REG (dest))
1429 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1430 || GET_CODE (dest) == ZERO_EXTRACT
1431 || GET_CODE (dest) == STRICT_LOW_PART)
1432 dest = XEXP (dest, 0);
1434 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1435 each of whose first operand is a register. */
1436 if (GET_CODE (dest) == PARALLEL)
1438 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1439 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1440 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1442 else
1443 (*fun) (dest, x, data);
1446 else if (GET_CODE (x) == PARALLEL)
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 note_stores (XVECEXP (x, 0, i), fun, data);
1451 /* Like notes_stores, but call FUN for each expression that is being
1452 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1453 FUN for each expression, not any interior subexpressions. FUN receives a
1454 pointer to the expression and the DATA passed to this function.
1456 Note that this is not quite the same test as that done in reg_referenced_p
1457 since that considers something as being referenced if it is being
1458 partially set, while we do not. */
1460 void
1461 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1463 rtx body = *pbody;
1464 int i;
1466 switch (GET_CODE (body))
1468 case COND_EXEC:
1469 (*fun) (&COND_EXEC_TEST (body), data);
1470 note_uses (&COND_EXEC_CODE (body), fun, data);
1471 return;
1473 case PARALLEL:
1474 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1475 note_uses (&XVECEXP (body, 0, i), fun, data);
1476 return;
1478 case SEQUENCE:
1479 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1480 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1481 return;
1483 case USE:
1484 (*fun) (&XEXP (body, 0), data);
1485 return;
1487 case ASM_OPERANDS:
1488 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1489 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1490 return;
1492 case TRAP_IF:
1493 (*fun) (&TRAP_CONDITION (body), data);
1494 return;
1496 case PREFETCH:
1497 (*fun) (&XEXP (body, 0), data);
1498 return;
1500 case UNSPEC:
1501 case UNSPEC_VOLATILE:
1502 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1503 (*fun) (&XVECEXP (body, 0, i), data);
1504 return;
1506 case CLOBBER:
1507 if (MEM_P (XEXP (body, 0)))
1508 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1509 return;
1511 case SET:
1513 rtx dest = SET_DEST (body);
1515 /* For sets we replace everything in source plus registers in memory
1516 expression in store and operands of a ZERO_EXTRACT. */
1517 (*fun) (&SET_SRC (body), data);
1519 if (GET_CODE (dest) == ZERO_EXTRACT)
1521 (*fun) (&XEXP (dest, 1), data);
1522 (*fun) (&XEXP (dest, 2), data);
1525 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1526 dest = XEXP (dest, 0);
1528 if (MEM_P (dest))
1529 (*fun) (&XEXP (dest, 0), data);
1531 return;
1533 default:
1534 /* All the other possibilities never store. */
1535 (*fun) (pbody, data);
1536 return;
1540 /* Return nonzero if X's old contents don't survive after INSN.
1541 This will be true if X is (cc0) or if X is a register and
1542 X dies in INSN or because INSN entirely sets X.
1544 "Entirely set" means set directly and not through a SUBREG, or
1545 ZERO_EXTRACT, so no trace of the old contents remains.
1546 Likewise, REG_INC does not count.
1548 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1549 but for this use that makes no difference, since regs don't overlap
1550 during their lifetimes. Therefore, this function may be used
1551 at any time after deaths have been computed.
1553 If REG is a hard reg that occupies multiple machine registers, this
1554 function will only return 1 if each of those registers will be replaced
1555 by INSN. */
1558 dead_or_set_p (const_rtx insn, const_rtx x)
1560 unsigned int regno, end_regno;
1561 unsigned int i;
1563 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1564 if (GET_CODE (x) == CC0)
1565 return 1;
1567 gcc_assert (REG_P (x));
1569 regno = REGNO (x);
1570 end_regno = END_REGNO (x);
1571 for (i = regno; i < end_regno; i++)
1572 if (! dead_or_set_regno_p (insn, i))
1573 return 0;
1575 return 1;
1578 /* Return TRUE iff DEST is a register or subreg of a register and
1579 doesn't change the number of words of the inner register, and any
1580 part of the register is TEST_REGNO. */
1582 static bool
1583 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1585 unsigned int regno, endregno;
1587 if (GET_CODE (dest) == SUBREG
1588 && (((GET_MODE_SIZE (GET_MODE (dest))
1589 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1590 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1592 dest = SUBREG_REG (dest);
1594 if (!REG_P (dest))
1595 return false;
1597 regno = REGNO (dest);
1598 endregno = END_REGNO (dest);
1599 return (test_regno >= regno && test_regno < endregno);
1602 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1603 any member matches the covers_regno_no_parallel_p criteria. */
1605 static bool
1606 covers_regno_p (const_rtx dest, unsigned int test_regno)
1608 if (GET_CODE (dest) == PARALLEL)
1610 /* Some targets place small structures in registers for return
1611 values of functions, and those registers are wrapped in
1612 PARALLELs that we may see as the destination of a SET. */
1613 int i;
1615 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1617 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1618 if (inner != NULL_RTX
1619 && covers_regno_no_parallel_p (inner, test_regno))
1620 return true;
1623 return false;
1625 else
1626 return covers_regno_no_parallel_p (dest, test_regno);
1629 /* Utility function for dead_or_set_p to check an individual register. */
1632 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1634 const_rtx pattern;
1636 /* See if there is a death note for something that includes TEST_REGNO. */
1637 if (find_regno_note (insn, REG_DEAD, test_regno))
1638 return 1;
1640 if (CALL_P (insn)
1641 && find_regno_fusage (insn, CLOBBER, test_regno))
1642 return 1;
1644 pattern = PATTERN (insn);
1646 if (GET_CODE (pattern) == COND_EXEC)
1647 pattern = COND_EXEC_CODE (pattern);
1649 if (GET_CODE (pattern) == SET)
1650 return covers_regno_p (SET_DEST (pattern), test_regno);
1651 else if (GET_CODE (pattern) == PARALLEL)
1653 int i;
1655 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1657 rtx body = XVECEXP (pattern, 0, i);
1659 if (GET_CODE (body) == COND_EXEC)
1660 body = COND_EXEC_CODE (body);
1662 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1663 && covers_regno_p (SET_DEST (body), test_regno))
1664 return 1;
1668 return 0;
1671 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1672 If DATUM is nonzero, look for one whose datum is DATUM. */
1675 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1677 rtx link;
1679 gcc_assert (insn);
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn))
1683 return 0;
1684 if (datum == 0)
1686 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1687 if (REG_NOTE_KIND (link) == kind)
1688 return link;
1689 return 0;
1692 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1693 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1694 return link;
1695 return 0;
1698 /* Return the reg-note of kind KIND in insn INSN which applies to register
1699 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1700 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1701 it might be the case that the note overlaps REGNO. */
1704 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1706 rtx link;
1708 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1709 if (! INSN_P (insn))
1710 return 0;
1712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1713 if (REG_NOTE_KIND (link) == kind
1714 /* Verify that it is a register, so that scratch and MEM won't cause a
1715 problem here. */
1716 && REG_P (XEXP (link, 0))
1717 && REGNO (XEXP (link, 0)) <= regno
1718 && END_REGNO (XEXP (link, 0)) > regno)
1719 return link;
1720 return 0;
1723 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1724 has such a note. */
1727 find_reg_equal_equiv_note (const_rtx insn)
1729 rtx link;
1731 if (!INSN_P (insn))
1732 return 0;
1734 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1735 if (REG_NOTE_KIND (link) == REG_EQUAL
1736 || REG_NOTE_KIND (link) == REG_EQUIV)
1738 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1739 insns that have multiple sets. Checking single_set to
1740 make sure of this is not the proper check, as explained
1741 in the comment in set_unique_reg_note.
1743 This should be changed into an assert. */
1744 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1745 return 0;
1746 return link;
1748 return NULL;
1751 /* Check whether INSN is a single_set whose source is known to be
1752 equivalent to a constant. Return that constant if so, otherwise
1753 return null. */
1756 find_constant_src (const_rtx insn)
1758 rtx note, set, x;
1760 set = single_set (insn);
1761 if (set)
1763 x = avoid_constant_pool_reference (SET_SRC (set));
1764 if (CONSTANT_P (x))
1765 return x;
1768 note = find_reg_equal_equiv_note (insn);
1769 if (note && CONSTANT_P (XEXP (note, 0)))
1770 return XEXP (note, 0);
1772 return NULL_RTX;
1775 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1776 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1779 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1781 /* If it's not a CALL_INSN, it can't possibly have a
1782 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1783 if (!CALL_P (insn))
1784 return 0;
1786 gcc_assert (datum);
1788 if (!REG_P (datum))
1790 rtx link;
1792 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1793 link;
1794 link = XEXP (link, 1))
1795 if (GET_CODE (XEXP (link, 0)) == code
1796 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1797 return 1;
1799 else
1801 unsigned int regno = REGNO (datum);
1803 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1804 to pseudo registers, so don't bother checking. */
1806 if (regno < FIRST_PSEUDO_REGISTER)
1808 unsigned int end_regno = END_HARD_REGNO (datum);
1809 unsigned int i;
1811 for (i = regno; i < end_regno; i++)
1812 if (find_regno_fusage (insn, code, i))
1813 return 1;
1817 return 0;
1820 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1821 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1824 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1826 rtx link;
1828 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1829 to pseudo registers, so don't bother checking. */
1831 if (regno >= FIRST_PSEUDO_REGISTER
1832 || !CALL_P (insn) )
1833 return 0;
1835 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1837 rtx op, reg;
1839 if (GET_CODE (op = XEXP (link, 0)) == code
1840 && REG_P (reg = XEXP (op, 0))
1841 && REGNO (reg) <= regno
1842 && END_HARD_REGNO (reg) > regno)
1843 return 1;
1846 return 0;
1850 /* Remove register note NOTE from the REG_NOTES of INSN. */
1852 void
1853 remove_note (rtx insn, const_rtx note)
1855 rtx link;
1857 if (note == NULL_RTX)
1858 return;
1860 if (REG_NOTES (insn) == note)
1861 REG_NOTES (insn) = XEXP (note, 1);
1862 else
1863 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1864 if (XEXP (link, 1) == note)
1866 XEXP (link, 1) = XEXP (note, 1);
1867 break;
1870 switch (REG_NOTE_KIND (note))
1872 case REG_EQUAL:
1873 case REG_EQUIV:
1874 df_notes_rescan (insn);
1875 break;
1876 default:
1877 break;
1881 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1883 void
1884 remove_reg_equal_equiv_notes (rtx insn)
1886 rtx *loc;
1888 loc = &REG_NOTES (insn);
1889 while (*loc)
1891 enum reg_note kind = REG_NOTE_KIND (*loc);
1892 if (kind == REG_EQUAL || kind == REG_EQUIV)
1893 *loc = XEXP (*loc, 1);
1894 else
1895 loc = &XEXP (*loc, 1);
1899 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1900 return 1 if it is found. A simple equality test is used to determine if
1901 NODE matches. */
1904 in_expr_list_p (const_rtx listp, const_rtx node)
1906 const_rtx x;
1908 for (x = listp; x; x = XEXP (x, 1))
1909 if (node == XEXP (x, 0))
1910 return 1;
1912 return 0;
1915 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1916 remove that entry from the list if it is found.
1918 A simple equality test is used to determine if NODE matches. */
1920 void
1921 remove_node_from_expr_list (const_rtx node, rtx *listp)
1923 rtx temp = *listp;
1924 rtx prev = NULL_RTX;
1926 while (temp)
1928 if (node == XEXP (temp, 0))
1930 /* Splice the node out of the list. */
1931 if (prev)
1932 XEXP (prev, 1) = XEXP (temp, 1);
1933 else
1934 *listp = XEXP (temp, 1);
1936 return;
1939 prev = temp;
1940 temp = XEXP (temp, 1);
1944 /* Nonzero if X contains any volatile instructions. These are instructions
1945 which may cause unpredictable machine state instructions, and thus no
1946 instructions should be moved or combined across them. This includes
1947 only volatile asms and UNSPEC_VOLATILE instructions. */
1950 volatile_insn_p (const_rtx x)
1952 const RTX_CODE code = GET_CODE (x);
1953 switch (code)
1955 case LABEL_REF:
1956 case SYMBOL_REF:
1957 case CONST_INT:
1958 case CONST:
1959 case CONST_DOUBLE:
1960 case CONST_FIXED:
1961 case CONST_VECTOR:
1962 case CC0:
1963 case PC:
1964 case REG:
1965 case SCRATCH:
1966 case CLOBBER:
1967 case ADDR_VEC:
1968 case ADDR_DIFF_VEC:
1969 case CALL:
1970 case MEM:
1971 return 0;
1973 case UNSPEC_VOLATILE:
1974 /* case TRAP_IF: This isn't clear yet. */
1975 return 1;
1977 case ASM_INPUT:
1978 case ASM_OPERANDS:
1979 if (MEM_VOLATILE_P (x))
1980 return 1;
1982 default:
1983 break;
1986 /* Recursively scan the operands of this expression. */
1989 const char *const fmt = GET_RTX_FORMAT (code);
1990 int i;
1992 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1994 if (fmt[i] == 'e')
1996 if (volatile_insn_p (XEXP (x, i)))
1997 return 1;
1999 else if (fmt[i] == 'E')
2001 int j;
2002 for (j = 0; j < XVECLEN (x, i); j++)
2003 if (volatile_insn_p (XVECEXP (x, i, j)))
2004 return 1;
2008 return 0;
2011 /* Nonzero if X contains any volatile memory references
2012 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2015 volatile_refs_p (const_rtx x)
2017 const RTX_CODE code = GET_CODE (x);
2018 switch (code)
2020 case LABEL_REF:
2021 case SYMBOL_REF:
2022 case CONST_INT:
2023 case CONST:
2024 case CONST_DOUBLE:
2025 case CONST_FIXED:
2026 case CONST_VECTOR:
2027 case CC0:
2028 case PC:
2029 case REG:
2030 case SCRATCH:
2031 case CLOBBER:
2032 case ADDR_VEC:
2033 case ADDR_DIFF_VEC:
2034 return 0;
2036 case UNSPEC_VOLATILE:
2037 return 1;
2039 case MEM:
2040 case ASM_INPUT:
2041 case ASM_OPERANDS:
2042 if (MEM_VOLATILE_P (x))
2043 return 1;
2045 default:
2046 break;
2049 /* Recursively scan the operands of this expression. */
2052 const char *const fmt = GET_RTX_FORMAT (code);
2053 int i;
2055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2057 if (fmt[i] == 'e')
2059 if (volatile_refs_p (XEXP (x, i)))
2060 return 1;
2062 else if (fmt[i] == 'E')
2064 int j;
2065 for (j = 0; j < XVECLEN (x, i); j++)
2066 if (volatile_refs_p (XVECEXP (x, i, j)))
2067 return 1;
2071 return 0;
2074 /* Similar to above, except that it also rejects register pre- and post-
2075 incrementing. */
2078 side_effects_p (const_rtx x)
2080 const RTX_CODE code = GET_CODE (x);
2081 switch (code)
2083 case LABEL_REF:
2084 case SYMBOL_REF:
2085 case CONST_INT:
2086 case CONST:
2087 case CONST_DOUBLE:
2088 case CONST_FIXED:
2089 case CONST_VECTOR:
2090 case CC0:
2091 case PC:
2092 case REG:
2093 case SCRATCH:
2094 case ADDR_VEC:
2095 case ADDR_DIFF_VEC:
2096 return 0;
2098 case CLOBBER:
2099 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2100 when some combination can't be done. If we see one, don't think
2101 that we can simplify the expression. */
2102 return (GET_MODE (x) != VOIDmode);
2104 case PRE_INC:
2105 case PRE_DEC:
2106 case POST_INC:
2107 case POST_DEC:
2108 case PRE_MODIFY:
2109 case POST_MODIFY:
2110 case CALL:
2111 case UNSPEC_VOLATILE:
2112 /* case TRAP_IF: This isn't clear yet. */
2113 return 1;
2115 case MEM:
2116 case ASM_INPUT:
2117 case ASM_OPERANDS:
2118 if (MEM_VOLATILE_P (x))
2119 return 1;
2121 default:
2122 break;
2125 /* Recursively scan the operands of this expression. */
2128 const char *fmt = GET_RTX_FORMAT (code);
2129 int i;
2131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2133 if (fmt[i] == 'e')
2135 if (side_effects_p (XEXP (x, i)))
2136 return 1;
2138 else if (fmt[i] == 'E')
2140 int j;
2141 for (j = 0; j < XVECLEN (x, i); j++)
2142 if (side_effects_p (XVECEXP (x, i, j)))
2143 return 1;
2147 return 0;
2150 enum may_trap_p_flags
2152 MTP_UNALIGNED_MEMS = 1,
2153 MTP_AFTER_MOVE = 2
2155 /* Return nonzero if evaluating rtx X might cause a trap.
2156 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2157 unaligned memory accesses on strict alignment machines. If
2158 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2159 cannot trap at its current location, but it might become trapping if moved
2160 elsewhere. */
2163 may_trap_p_1 (const_rtx x, unsigned flags)
2165 int i;
2166 enum rtx_code code;
2167 const char *fmt;
2168 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2170 if (x == 0)
2171 return 0;
2172 code = GET_CODE (x);
2173 switch (code)
2175 /* Handle these cases quickly. */
2176 case CONST_INT:
2177 case CONST_DOUBLE:
2178 case CONST_FIXED:
2179 case CONST_VECTOR:
2180 case SYMBOL_REF:
2181 case LABEL_REF:
2182 case CONST:
2183 case PC:
2184 case CC0:
2185 case REG:
2186 case SCRATCH:
2187 return 0;
2189 case UNSPEC:
2190 case UNSPEC_VOLATILE:
2191 return targetm.unspec_may_trap_p (x, flags);
2193 case ASM_INPUT:
2194 case TRAP_IF:
2195 return 1;
2197 case ASM_OPERANDS:
2198 return MEM_VOLATILE_P (x);
2200 /* Memory ref can trap unless it's a static var or a stack slot. */
2201 case MEM:
2202 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2203 reference; moving it out of condition might cause its address
2204 become invalid. */
2205 !(flags & MTP_AFTER_MOVE)
2206 && MEM_NOTRAP_P (x)
2207 && (!STRICT_ALIGNMENT || !unaligned_mems))
2208 return 0;
2209 return
2210 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2212 /* Division by a non-constant might trap. */
2213 case DIV:
2214 case MOD:
2215 case UDIV:
2216 case UMOD:
2217 if (HONOR_SNANS (GET_MODE (x)))
2218 return 1;
2219 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2220 return flag_trapping_math;
2221 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2222 return 1;
2223 break;
2225 case EXPR_LIST:
2226 /* An EXPR_LIST is used to represent a function call. This
2227 certainly may trap. */
2228 return 1;
2230 case GE:
2231 case GT:
2232 case LE:
2233 case LT:
2234 case LTGT:
2235 case COMPARE:
2236 /* Some floating point comparisons may trap. */
2237 if (!flag_trapping_math)
2238 break;
2239 /* ??? There is no machine independent way to check for tests that trap
2240 when COMPARE is used, though many targets do make this distinction.
2241 For instance, sparc uses CCFPE for compares which generate exceptions
2242 and CCFP for compares which do not generate exceptions. */
2243 if (HONOR_NANS (GET_MODE (x)))
2244 return 1;
2245 /* But often the compare has some CC mode, so check operand
2246 modes as well. */
2247 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2248 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2249 return 1;
2250 break;
2252 case EQ:
2253 case NE:
2254 if (HONOR_SNANS (GET_MODE (x)))
2255 return 1;
2256 /* Often comparison is CC mode, so check operand modes. */
2257 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2258 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2259 return 1;
2260 break;
2262 case FIX:
2263 /* Conversion of floating point might trap. */
2264 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2265 return 1;
2266 break;
2268 case NEG:
2269 case ABS:
2270 case SUBREG:
2271 /* These operations don't trap even with floating point. */
2272 break;
2274 default:
2275 /* Any floating arithmetic may trap. */
2276 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2277 && flag_trapping_math)
2278 return 1;
2281 fmt = GET_RTX_FORMAT (code);
2282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2284 if (fmt[i] == 'e')
2286 if (may_trap_p_1 (XEXP (x, i), flags))
2287 return 1;
2289 else if (fmt[i] == 'E')
2291 int j;
2292 for (j = 0; j < XVECLEN (x, i); j++)
2293 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2294 return 1;
2297 return 0;
2300 /* Return nonzero if evaluating rtx X might cause a trap. */
2303 may_trap_p (const_rtx x)
2305 return may_trap_p_1 (x, 0);
2308 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2309 is moved from its current location by some optimization. */
2312 may_trap_after_code_motion_p (const_rtx x)
2314 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2317 /* Same as above, but additionally return nonzero if evaluating rtx X might
2318 cause a fault. We define a fault for the purpose of this function as a
2319 erroneous execution condition that cannot be encountered during the normal
2320 execution of a valid program; the typical example is an unaligned memory
2321 access on a strict alignment machine. The compiler guarantees that it
2322 doesn't generate code that will fault from a valid program, but this
2323 guarantee doesn't mean anything for individual instructions. Consider
2324 the following example:
2326 struct S { int d; union { char *cp; int *ip; }; };
2328 int foo(struct S *s)
2330 if (s->d == 1)
2331 return *s->ip;
2332 else
2333 return *s->cp;
2336 on a strict alignment machine. In a valid program, foo will never be
2337 invoked on a structure for which d is equal to 1 and the underlying
2338 unique field of the union not aligned on a 4-byte boundary, but the
2339 expression *s->ip might cause a fault if considered individually.
2341 At the RTL level, potentially problematic expressions will almost always
2342 verify may_trap_p; for example, the above dereference can be emitted as
2343 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2344 However, suppose that foo is inlined in a caller that causes s->cp to
2345 point to a local character variable and guarantees that s->d is not set
2346 to 1; foo may have been effectively translated into pseudo-RTL as:
2348 if ((reg:SI) == 1)
2349 (set (reg:SI) (mem:SI (%fp - 7)))
2350 else
2351 (set (reg:QI) (mem:QI (%fp - 7)))
2353 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2354 memory reference to a stack slot, but it will certainly cause a fault
2355 on a strict alignment machine. */
2358 may_trap_or_fault_p (const_rtx x)
2360 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2363 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2364 i.e., an inequality. */
2367 inequality_comparisons_p (const_rtx x)
2369 const char *fmt;
2370 int len, i;
2371 const enum rtx_code code = GET_CODE (x);
2373 switch (code)
2375 case REG:
2376 case SCRATCH:
2377 case PC:
2378 case CC0:
2379 case CONST_INT:
2380 case CONST_DOUBLE:
2381 case CONST_FIXED:
2382 case CONST_VECTOR:
2383 case CONST:
2384 case LABEL_REF:
2385 case SYMBOL_REF:
2386 return 0;
2388 case LT:
2389 case LTU:
2390 case GT:
2391 case GTU:
2392 case LE:
2393 case LEU:
2394 case GE:
2395 case GEU:
2396 return 1;
2398 default:
2399 break;
2402 len = GET_RTX_LENGTH (code);
2403 fmt = GET_RTX_FORMAT (code);
2405 for (i = 0; i < len; i++)
2407 if (fmt[i] == 'e')
2409 if (inequality_comparisons_p (XEXP (x, i)))
2410 return 1;
2412 else if (fmt[i] == 'E')
2414 int j;
2415 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2416 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2417 return 1;
2421 return 0;
2424 /* Replace any occurrence of FROM in X with TO. The function does
2425 not enter into CONST_DOUBLE for the replace.
2427 Note that copying is not done so X must not be shared unless all copies
2428 are to be modified. */
2431 replace_rtx (rtx x, rtx from, rtx to)
2433 int i, j;
2434 const char *fmt;
2436 /* The following prevents loops occurrence when we change MEM in
2437 CONST_DOUBLE onto the same CONST_DOUBLE. */
2438 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2439 return x;
2441 if (x == from)
2442 return to;
2444 /* Allow this function to make replacements in EXPR_LISTs. */
2445 if (x == 0)
2446 return 0;
2448 if (GET_CODE (x) == SUBREG)
2450 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2452 if (GET_CODE (new) == CONST_INT)
2454 x = simplify_subreg (GET_MODE (x), new,
2455 GET_MODE (SUBREG_REG (x)),
2456 SUBREG_BYTE (x));
2457 gcc_assert (x);
2459 else
2460 SUBREG_REG (x) = new;
2462 return x;
2464 else if (GET_CODE (x) == ZERO_EXTEND)
2466 rtx new = replace_rtx (XEXP (x, 0), from, to);
2468 if (GET_CODE (new) == CONST_INT)
2470 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2471 new, GET_MODE (XEXP (x, 0)));
2472 gcc_assert (x);
2474 else
2475 XEXP (x, 0) = new;
2477 return x;
2480 fmt = GET_RTX_FORMAT (GET_CODE (x));
2481 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2483 if (fmt[i] == 'e')
2484 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2485 else if (fmt[i] == 'E')
2486 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2487 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2490 return x;
2493 /* Replace occurrences of the old label in *X with the new one.
2494 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2497 replace_label (rtx *x, void *data)
2499 rtx l = *x;
2500 rtx old_label = ((replace_label_data *) data)->r1;
2501 rtx new_label = ((replace_label_data *) data)->r2;
2502 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2504 if (l == NULL_RTX)
2505 return 0;
2507 if (GET_CODE (l) == SYMBOL_REF
2508 && CONSTANT_POOL_ADDRESS_P (l))
2510 rtx c = get_pool_constant (l);
2511 if (rtx_referenced_p (old_label, c))
2513 rtx new_c, new_l;
2514 replace_label_data *d = (replace_label_data *) data;
2516 /* Create a copy of constant C; replace the label inside
2517 but do not update LABEL_NUSES because uses in constant pool
2518 are not counted. */
2519 new_c = copy_rtx (c);
2520 d->update_label_nuses = false;
2521 for_each_rtx (&new_c, replace_label, data);
2522 d->update_label_nuses = update_label_nuses;
2524 /* Add the new constant NEW_C to constant pool and replace
2525 the old reference to constant by new reference. */
2526 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2527 *x = replace_rtx (l, l, new_l);
2529 return 0;
2532 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2533 field. This is not handled by for_each_rtx because it doesn't
2534 handle unprinted ('0') fields. */
2535 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2536 JUMP_LABEL (l) = new_label;
2538 if ((GET_CODE (l) == LABEL_REF
2539 || GET_CODE (l) == INSN_LIST)
2540 && XEXP (l, 0) == old_label)
2542 XEXP (l, 0) = new_label;
2543 if (update_label_nuses)
2545 ++LABEL_NUSES (new_label);
2546 --LABEL_NUSES (old_label);
2548 return 0;
2551 return 0;
2554 /* When *BODY is equal to X or X is directly referenced by *BODY
2555 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2556 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2558 static int
2559 rtx_referenced_p_1 (rtx *body, void *x)
2561 rtx y = (rtx) x;
2563 if (*body == NULL_RTX)
2564 return y == NULL_RTX;
2566 /* Return true if a label_ref *BODY refers to label Y. */
2567 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2568 return XEXP (*body, 0) == y;
2570 /* If *BODY is a reference to pool constant traverse the constant. */
2571 if (GET_CODE (*body) == SYMBOL_REF
2572 && CONSTANT_POOL_ADDRESS_P (*body))
2573 return rtx_referenced_p (y, get_pool_constant (*body));
2575 /* By default, compare the RTL expressions. */
2576 return rtx_equal_p (*body, y);
2579 /* Return true if X is referenced in BODY. */
2582 rtx_referenced_p (rtx x, rtx body)
2584 return for_each_rtx (&body, rtx_referenced_p_1, x);
2587 /* If INSN is a tablejump return true and store the label (before jump table) to
2588 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2590 bool
2591 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2593 rtx label, table;
2595 if (JUMP_P (insn)
2596 && (label = JUMP_LABEL (insn)) != NULL_RTX
2597 && (table = next_active_insn (label)) != NULL_RTX
2598 && JUMP_P (table)
2599 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2600 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2602 if (labelp)
2603 *labelp = label;
2604 if (tablep)
2605 *tablep = table;
2606 return true;
2608 return false;
2611 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2612 constant that is not in the constant pool and not in the condition
2613 of an IF_THEN_ELSE. */
2615 static int
2616 computed_jump_p_1 (const_rtx x)
2618 const enum rtx_code code = GET_CODE (x);
2619 int i, j;
2620 const char *fmt;
2622 switch (code)
2624 case LABEL_REF:
2625 case PC:
2626 return 0;
2628 case CONST:
2629 case CONST_INT:
2630 case CONST_DOUBLE:
2631 case CONST_FIXED:
2632 case CONST_VECTOR:
2633 case SYMBOL_REF:
2634 case REG:
2635 return 1;
2637 case MEM:
2638 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2639 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2641 case IF_THEN_ELSE:
2642 return (computed_jump_p_1 (XEXP (x, 1))
2643 || computed_jump_p_1 (XEXP (x, 2)));
2645 default:
2646 break;
2649 fmt = GET_RTX_FORMAT (code);
2650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2652 if (fmt[i] == 'e'
2653 && computed_jump_p_1 (XEXP (x, i)))
2654 return 1;
2656 else if (fmt[i] == 'E')
2657 for (j = 0; j < XVECLEN (x, i); j++)
2658 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2659 return 1;
2662 return 0;
2665 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2667 Tablejumps and casesi insns are not considered indirect jumps;
2668 we can recognize them by a (use (label_ref)). */
2671 computed_jump_p (const_rtx insn)
2673 int i;
2674 if (JUMP_P (insn))
2676 rtx pat = PATTERN (insn);
2678 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2679 if (JUMP_LABEL (insn) != NULL)
2680 return 0;
2682 if (GET_CODE (pat) == PARALLEL)
2684 int len = XVECLEN (pat, 0);
2685 int has_use_labelref = 0;
2687 for (i = len - 1; i >= 0; i--)
2688 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2689 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2690 == LABEL_REF))
2691 has_use_labelref = 1;
2693 if (! has_use_labelref)
2694 for (i = len - 1; i >= 0; i--)
2695 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2696 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2697 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2698 return 1;
2700 else if (GET_CODE (pat) == SET
2701 && SET_DEST (pat) == pc_rtx
2702 && computed_jump_p_1 (SET_SRC (pat)))
2703 return 1;
2705 return 0;
2708 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2709 calls. Processes the subexpressions of EXP and passes them to F. */
2710 static int
2711 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2713 int result, i, j;
2714 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2715 rtx *x;
2717 for (; format[n] != '\0'; n++)
2719 switch (format[n])
2721 case 'e':
2722 /* Call F on X. */
2723 x = &XEXP (exp, n);
2724 result = (*f) (x, data);
2725 if (result == -1)
2726 /* Do not traverse sub-expressions. */
2727 continue;
2728 else if (result != 0)
2729 /* Stop the traversal. */
2730 return result;
2732 if (*x == NULL_RTX)
2733 /* There are no sub-expressions. */
2734 continue;
2736 i = non_rtx_starting_operands[GET_CODE (*x)];
2737 if (i >= 0)
2739 result = for_each_rtx_1 (*x, i, f, data);
2740 if (result != 0)
2741 return result;
2743 break;
2745 case 'V':
2746 case 'E':
2747 if (XVEC (exp, n) == 0)
2748 continue;
2749 for (j = 0; j < XVECLEN (exp, n); ++j)
2751 /* Call F on X. */
2752 x = &XVECEXP (exp, n, j);
2753 result = (*f) (x, data);
2754 if (result == -1)
2755 /* Do not traverse sub-expressions. */
2756 continue;
2757 else if (result != 0)
2758 /* Stop the traversal. */
2759 return result;
2761 if (*x == NULL_RTX)
2762 /* There are no sub-expressions. */
2763 continue;
2765 i = non_rtx_starting_operands[GET_CODE (*x)];
2766 if (i >= 0)
2768 result = for_each_rtx_1 (*x, i, f, data);
2769 if (result != 0)
2770 return result;
2773 break;
2775 default:
2776 /* Nothing to do. */
2777 break;
2781 return 0;
2784 /* Traverse X via depth-first search, calling F for each
2785 sub-expression (including X itself). F is also passed the DATA.
2786 If F returns -1, do not traverse sub-expressions, but continue
2787 traversing the rest of the tree. If F ever returns any other
2788 nonzero value, stop the traversal, and return the value returned
2789 by F. Otherwise, return 0. This function does not traverse inside
2790 tree structure that contains RTX_EXPRs, or into sub-expressions
2791 whose format code is `0' since it is not known whether or not those
2792 codes are actually RTL.
2794 This routine is very general, and could (should?) be used to
2795 implement many of the other routines in this file. */
2798 for_each_rtx (rtx *x, rtx_function f, void *data)
2800 int result;
2801 int i;
2803 /* Call F on X. */
2804 result = (*f) (x, data);
2805 if (result == -1)
2806 /* Do not traverse sub-expressions. */
2807 return 0;
2808 else if (result != 0)
2809 /* Stop the traversal. */
2810 return result;
2812 if (*x == NULL_RTX)
2813 /* There are no sub-expressions. */
2814 return 0;
2816 i = non_rtx_starting_operands[GET_CODE (*x)];
2817 if (i < 0)
2818 return 0;
2820 return for_each_rtx_1 (*x, i, f, data);
2824 /* Searches X for any reference to REGNO, returning the rtx of the
2825 reference found if any. Otherwise, returns NULL_RTX. */
2828 regno_use_in (unsigned int regno, rtx x)
2830 const char *fmt;
2831 int i, j;
2832 rtx tem;
2834 if (REG_P (x) && REGNO (x) == regno)
2835 return x;
2837 fmt = GET_RTX_FORMAT (GET_CODE (x));
2838 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2840 if (fmt[i] == 'e')
2842 if ((tem = regno_use_in (regno, XEXP (x, i))))
2843 return tem;
2845 else if (fmt[i] == 'E')
2846 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2847 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2848 return tem;
2851 return NULL_RTX;
2854 /* Return a value indicating whether OP, an operand of a commutative
2855 operation, is preferred as the first or second operand. The higher
2856 the value, the stronger the preference for being the first operand.
2857 We use negative values to indicate a preference for the first operand
2858 and positive values for the second operand. */
2861 commutative_operand_precedence (rtx op)
2863 enum rtx_code code = GET_CODE (op);
2865 /* Constants always come the second operand. Prefer "nice" constants. */
2866 if (code == CONST_INT)
2867 return -8;
2868 if (code == CONST_DOUBLE)
2869 return -7;
2870 if (code == CONST_FIXED)
2871 return -7;
2872 op = avoid_constant_pool_reference (op);
2873 code = GET_CODE (op);
2875 switch (GET_RTX_CLASS (code))
2877 case RTX_CONST_OBJ:
2878 if (code == CONST_INT)
2879 return -6;
2880 if (code == CONST_DOUBLE)
2881 return -5;
2882 if (code == CONST_FIXED)
2883 return -5;
2884 return -4;
2886 case RTX_EXTRA:
2887 /* SUBREGs of objects should come second. */
2888 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2889 return -3;
2890 return 0;
2892 case RTX_OBJ:
2893 /* Complex expressions should be the first, so decrease priority
2894 of objects. Prefer pointer objects over non pointer objects. */
2895 if ((REG_P (op) && REG_POINTER (op))
2896 || (MEM_P (op) && MEM_POINTER (op)))
2897 return -1;
2898 return -2;
2900 case RTX_COMM_ARITH:
2901 /* Prefer operands that are themselves commutative to be first.
2902 This helps to make things linear. In particular,
2903 (and (and (reg) (reg)) (not (reg))) is canonical. */
2904 return 4;
2906 case RTX_BIN_ARITH:
2907 /* If only one operand is a binary expression, it will be the first
2908 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2909 is canonical, although it will usually be further simplified. */
2910 return 2;
2912 case RTX_UNARY:
2913 /* Then prefer NEG and NOT. */
2914 if (code == NEG || code == NOT)
2915 return 1;
2917 default:
2918 return 0;
2922 /* Return 1 iff it is necessary to swap operands of commutative operation
2923 in order to canonicalize expression. */
2925 bool
2926 swap_commutative_operands_p (rtx x, rtx y)
2928 return (commutative_operand_precedence (x)
2929 < commutative_operand_precedence (y));
2932 /* Return 1 if X is an autoincrement side effect and the register is
2933 not the stack pointer. */
2935 auto_inc_p (const_rtx x)
2937 switch (GET_CODE (x))
2939 case PRE_INC:
2940 case POST_INC:
2941 case PRE_DEC:
2942 case POST_DEC:
2943 case PRE_MODIFY:
2944 case POST_MODIFY:
2945 /* There are no REG_INC notes for SP. */
2946 if (XEXP (x, 0) != stack_pointer_rtx)
2947 return 1;
2948 default:
2949 break;
2951 return 0;
2954 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2956 loc_mentioned_in_p (rtx *loc, const_rtx in)
2958 enum rtx_code code;
2959 const char *fmt;
2960 int i, j;
2962 if (!in)
2963 return 0;
2965 code = GET_CODE (in);
2966 fmt = GET_RTX_FORMAT (code);
2967 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2969 if (fmt[i] == 'e')
2971 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
2972 return 1;
2974 else if (fmt[i] == 'E')
2975 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2976 if (loc == &XVECEXP (in, i, j)
2977 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2978 return 1;
2980 return 0;
2983 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2984 and SUBREG_BYTE, return the bit offset where the subreg begins
2985 (counting from the least significant bit of the operand). */
2987 unsigned int
2988 subreg_lsb_1 (enum machine_mode outer_mode,
2989 enum machine_mode inner_mode,
2990 unsigned int subreg_byte)
2992 unsigned int bitpos;
2993 unsigned int byte;
2994 unsigned int word;
2996 /* A paradoxical subreg begins at bit position 0. */
2997 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2998 return 0;
3000 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3001 /* If the subreg crosses a word boundary ensure that
3002 it also begins and ends on a word boundary. */
3003 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3004 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3005 && (subreg_byte % UNITS_PER_WORD
3006 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3008 if (WORDS_BIG_ENDIAN)
3009 word = (GET_MODE_SIZE (inner_mode)
3010 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3011 else
3012 word = subreg_byte / UNITS_PER_WORD;
3013 bitpos = word * BITS_PER_WORD;
3015 if (BYTES_BIG_ENDIAN)
3016 byte = (GET_MODE_SIZE (inner_mode)
3017 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3018 else
3019 byte = subreg_byte % UNITS_PER_WORD;
3020 bitpos += byte * BITS_PER_UNIT;
3022 return bitpos;
3025 /* Given a subreg X, return the bit offset where the subreg begins
3026 (counting from the least significant bit of the reg). */
3028 unsigned int
3029 subreg_lsb (const_rtx x)
3031 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3032 SUBREG_BYTE (x));
3035 /* Fill in information about a subreg of a hard register.
3036 xregno - A regno of an inner hard subreg_reg (or what will become one).
3037 xmode - The mode of xregno.
3038 offset - The byte offset.
3039 ymode - The mode of a top level SUBREG (or what may become one).
3040 info - Pointer to structure to fill in. */
3041 static void
3042 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3043 unsigned int offset, enum machine_mode ymode,
3044 struct subreg_info *info)
3046 int nregs_xmode, nregs_ymode;
3047 int mode_multiple, nregs_multiple;
3048 int offset_adj, y_offset, y_offset_adj;
3049 int regsize_xmode, regsize_ymode;
3050 bool rknown;
3052 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3054 rknown = false;
3056 /* If there are holes in a non-scalar mode in registers, we expect
3057 that it is made up of its units concatenated together. */
3058 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3060 enum machine_mode xmode_unit;
3062 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3063 if (GET_MODE_INNER (xmode) == VOIDmode)
3064 xmode_unit = xmode;
3065 else
3066 xmode_unit = GET_MODE_INNER (xmode);
3067 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3068 gcc_assert (nregs_xmode
3069 == (GET_MODE_NUNITS (xmode)
3070 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3071 gcc_assert (hard_regno_nregs[xregno][xmode]
3072 == (hard_regno_nregs[xregno][xmode_unit]
3073 * GET_MODE_NUNITS (xmode)));
3075 /* You can only ask for a SUBREG of a value with holes in the middle
3076 if you don't cross the holes. (Such a SUBREG should be done by
3077 picking a different register class, or doing it in memory if
3078 necessary.) An example of a value with holes is XCmode on 32-bit
3079 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3080 3 for each part, but in memory it's two 128-bit parts.
3081 Padding is assumed to be at the end (not necessarily the 'high part')
3082 of each unit. */
3083 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3084 < GET_MODE_NUNITS (xmode))
3085 && (offset / GET_MODE_SIZE (xmode_unit)
3086 != ((offset + GET_MODE_SIZE (ymode) - 1)
3087 / GET_MODE_SIZE (xmode_unit))))
3089 info->representable_p = false;
3090 rknown = true;
3093 else
3094 nregs_xmode = hard_regno_nregs[xregno][xmode];
3096 nregs_ymode = hard_regno_nregs[xregno][ymode];
3098 /* Paradoxical subregs are otherwise valid. */
3099 if (!rknown
3100 && offset == 0
3101 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3103 info->representable_p = true;
3104 /* If this is a big endian paradoxical subreg, which uses more
3105 actual hard registers than the original register, we must
3106 return a negative offset so that we find the proper highpart
3107 of the register. */
3108 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3109 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3110 info->offset = nregs_xmode - nregs_ymode;
3111 else
3112 info->offset = 0;
3113 info->nregs = nregs_ymode;
3114 return;
3117 /* If registers store different numbers of bits in the different
3118 modes, we cannot generally form this subreg. */
3119 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3120 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3121 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3122 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3124 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3125 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3126 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3128 info->representable_p = false;
3129 info->nregs
3130 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3131 info->offset = offset / regsize_xmode;
3132 return;
3134 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3136 info->representable_p = false;
3137 info->nregs
3138 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3139 info->offset = offset / regsize_xmode;
3140 return;
3144 /* Lowpart subregs are otherwise valid. */
3145 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3147 info->representable_p = true;
3148 rknown = true;
3150 if (offset == 0 || nregs_xmode == nregs_ymode)
3152 info->offset = 0;
3153 info->nregs = nregs_ymode;
3154 return;
3158 /* This should always pass, otherwise we don't know how to verify
3159 the constraint. These conditions may be relaxed but
3160 subreg_regno_offset would need to be redesigned. */
3161 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3162 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3164 /* The XMODE value can be seen as a vector of NREGS_XMODE
3165 values. The subreg must represent a lowpart of given field.
3166 Compute what field it is. */
3167 offset_adj = offset;
3168 offset_adj -= subreg_lowpart_offset (ymode,
3169 mode_for_size (GET_MODE_BITSIZE (xmode)
3170 / nregs_xmode,
3171 MODE_INT, 0));
3173 /* Size of ymode must not be greater than the size of xmode. */
3174 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3175 gcc_assert (mode_multiple != 0);
3177 y_offset = offset / GET_MODE_SIZE (ymode);
3178 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3179 nregs_multiple = nregs_xmode / nregs_ymode;
3181 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3182 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3184 if (!rknown)
3186 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3187 rknown = true;
3189 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3190 info->nregs = nregs_ymode;
3193 /* This function returns the regno offset of a subreg expression.
3194 xregno - A regno of an inner hard subreg_reg (or what will become one).
3195 xmode - The mode of xregno.
3196 offset - The byte offset.
3197 ymode - The mode of a top level SUBREG (or what may become one).
3198 RETURN - The regno offset which would be used. */
3199 unsigned int
3200 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3201 unsigned int offset, enum machine_mode ymode)
3203 struct subreg_info info;
3204 subreg_get_info (xregno, xmode, offset, ymode, &info);
3205 return info.offset;
3208 /* This function returns true when the offset is representable via
3209 subreg_offset in the given regno.
3210 xregno - A regno of an inner hard subreg_reg (or what will become one).
3211 xmode - The mode of xregno.
3212 offset - The byte offset.
3213 ymode - The mode of a top level SUBREG (or what may become one).
3214 RETURN - Whether the offset is representable. */
3215 bool
3216 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3217 unsigned int offset, enum machine_mode ymode)
3219 struct subreg_info info;
3220 subreg_get_info (xregno, xmode, offset, ymode, &info);
3221 return info.representable_p;
3224 /* Return the final regno that a subreg expression refers to. */
3225 unsigned int
3226 subreg_regno (const_rtx x)
3228 unsigned int ret;
3229 rtx subreg = SUBREG_REG (x);
3230 int regno = REGNO (subreg);
3232 ret = regno + subreg_regno_offset (regno,
3233 GET_MODE (subreg),
3234 SUBREG_BYTE (x),
3235 GET_MODE (x));
3236 return ret;
3240 /* Return the number of registers that a subreg expression refers
3241 to. */
3242 unsigned int
3243 subreg_nregs (const_rtx x)
3245 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3248 /* Return the number of registers that a subreg REG with REGNO
3249 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3250 changed so that the regno can be passed in. */
3252 unsigned int
3253 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3255 struct subreg_info info;
3256 rtx subreg = SUBREG_REG (x);
3258 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3259 &info);
3260 return info.nregs;
3264 struct parms_set_data
3266 int nregs;
3267 HARD_REG_SET regs;
3270 /* Helper function for noticing stores to parameter registers. */
3271 static void
3272 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3274 struct parms_set_data *d = data;
3275 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3276 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3278 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3279 d->nregs--;
3283 /* Look backward for first parameter to be loaded.
3284 Note that loads of all parameters will not necessarily be
3285 found if CSE has eliminated some of them (e.g., an argument
3286 to the outer function is passed down as a parameter).
3287 Do not skip BOUNDARY. */
3289 find_first_parameter_load (rtx call_insn, rtx boundary)
3291 struct parms_set_data parm;
3292 rtx p, before, first_set;
3294 /* Since different machines initialize their parameter registers
3295 in different orders, assume nothing. Collect the set of all
3296 parameter registers. */
3297 CLEAR_HARD_REG_SET (parm.regs);
3298 parm.nregs = 0;
3299 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3300 if (GET_CODE (XEXP (p, 0)) == USE
3301 && REG_P (XEXP (XEXP (p, 0), 0)))
3303 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3305 /* We only care about registers which can hold function
3306 arguments. */
3307 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3308 continue;
3310 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3311 parm.nregs++;
3313 before = call_insn;
3314 first_set = call_insn;
3316 /* Search backward for the first set of a register in this set. */
3317 while (parm.nregs && before != boundary)
3319 before = PREV_INSN (before);
3321 /* It is possible that some loads got CSEed from one call to
3322 another. Stop in that case. */
3323 if (CALL_P (before))
3324 break;
3326 /* Our caller needs either ensure that we will find all sets
3327 (in case code has not been optimized yet), or take care
3328 for possible labels in a way by setting boundary to preceding
3329 CODE_LABEL. */
3330 if (LABEL_P (before))
3332 gcc_assert (before == boundary);
3333 break;
3336 if (INSN_P (before))
3338 int nregs_old = parm.nregs;
3339 note_stores (PATTERN (before), parms_set, &parm);
3340 /* If we found something that did not set a parameter reg,
3341 we're done. Do not keep going, as that might result
3342 in hoisting an insn before the setting of a pseudo
3343 that is used by the hoisted insn. */
3344 if (nregs_old != parm.nregs)
3345 first_set = before;
3346 else
3347 break;
3350 return first_set;
3353 /* Return true if we should avoid inserting code between INSN and preceding
3354 call instruction. */
3356 bool
3357 keep_with_call_p (const_rtx insn)
3359 rtx set;
3361 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3363 if (REG_P (SET_DEST (set))
3364 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3365 && fixed_regs[REGNO (SET_DEST (set))]
3366 && general_operand (SET_SRC (set), VOIDmode))
3367 return true;
3368 if (REG_P (SET_SRC (set))
3369 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3370 && REG_P (SET_DEST (set))
3371 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3372 return true;
3373 /* There may be a stack pop just after the call and before the store
3374 of the return register. Search for the actual store when deciding
3375 if we can break or not. */
3376 if (SET_DEST (set) == stack_pointer_rtx)
3378 /* This CONST_CAST is okay because next_nonnote_insn just
3379 returns it's argument and we assign it to a const_rtx
3380 variable. */
3381 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3382 if (i2 && keep_with_call_p (i2))
3383 return true;
3386 return false;
3389 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3390 to non-complex jumps. That is, direct unconditional, conditional,
3391 and tablejumps, but not computed jumps or returns. It also does
3392 not apply to the fallthru case of a conditional jump. */
3394 bool
3395 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3397 rtx tmp = JUMP_LABEL (jump_insn);
3399 if (label == tmp)
3400 return true;
3402 if (tablejump_p (jump_insn, NULL, &tmp))
3404 rtvec vec = XVEC (PATTERN (tmp),
3405 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3406 int i, veclen = GET_NUM_ELEM (vec);
3408 for (i = 0; i < veclen; ++i)
3409 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3410 return true;
3413 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3414 return true;
3416 return false;
3420 /* Return an estimate of the cost of computing rtx X.
3421 One use is in cse, to decide which expression to keep in the hash table.
3422 Another is in rtl generation, to pick the cheapest way to multiply.
3423 Other uses like the latter are expected in the future. */
3426 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3428 int i, j;
3429 enum rtx_code code;
3430 const char *fmt;
3431 int total;
3433 if (x == 0)
3434 return 0;
3436 /* Compute the default costs of certain things.
3437 Note that targetm.rtx_costs can override the defaults. */
3439 code = GET_CODE (x);
3440 switch (code)
3442 case MULT:
3443 total = COSTS_N_INSNS (5);
3444 break;
3445 case DIV:
3446 case UDIV:
3447 case MOD:
3448 case UMOD:
3449 total = COSTS_N_INSNS (7);
3450 break;
3451 case USE:
3452 /* Used in combine.c as a marker. */
3453 total = 0;
3454 break;
3455 default:
3456 total = COSTS_N_INSNS (1);
3459 switch (code)
3461 case REG:
3462 return 0;
3464 case SUBREG:
3465 total = 0;
3466 /* If we can't tie these modes, make this expensive. The larger
3467 the mode, the more expensive it is. */
3468 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3469 return COSTS_N_INSNS (2
3470 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3471 break;
3473 default:
3474 if (targetm.rtx_costs (x, code, outer_code, &total))
3475 return total;
3476 break;
3479 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3480 which is already in total. */
3482 fmt = GET_RTX_FORMAT (code);
3483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3484 if (fmt[i] == 'e')
3485 total += rtx_cost (XEXP (x, i), code);
3486 else if (fmt[i] == 'E')
3487 for (j = 0; j < XVECLEN (x, i); j++)
3488 total += rtx_cost (XVECEXP (x, i, j), code);
3490 return total;
3493 /* Return cost of address expression X.
3494 Expect that X is properly formed address reference. */
3497 address_cost (rtx x, enum machine_mode mode)
3499 /* We may be asked for cost of various unusual addresses, such as operands
3500 of push instruction. It is not worthwhile to complicate writing
3501 of the target hook by such cases. */
3503 if (!memory_address_p (mode, x))
3504 return 1000;
3506 return targetm.address_cost (x);
3509 /* If the target doesn't override, compute the cost as with arithmetic. */
3512 default_address_cost (rtx x)
3514 return rtx_cost (x, MEM);
3518 unsigned HOST_WIDE_INT
3519 nonzero_bits (const_rtx x, enum machine_mode mode)
3521 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3524 unsigned int
3525 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3527 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3530 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3531 It avoids exponential behavior in nonzero_bits1 when X has
3532 identical subexpressions on the first or the second level. */
3534 static unsigned HOST_WIDE_INT
3535 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3536 enum machine_mode known_mode,
3537 unsigned HOST_WIDE_INT known_ret)
3539 if (x == known_x && mode == known_mode)
3540 return known_ret;
3542 /* Try to find identical subexpressions. If found call
3543 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3544 precomputed value for the subexpression as KNOWN_RET. */
3546 if (ARITHMETIC_P (x))
3548 rtx x0 = XEXP (x, 0);
3549 rtx x1 = XEXP (x, 1);
3551 /* Check the first level. */
3552 if (x0 == x1)
3553 return nonzero_bits1 (x, mode, x0, mode,
3554 cached_nonzero_bits (x0, mode, known_x,
3555 known_mode, known_ret));
3557 /* Check the second level. */
3558 if (ARITHMETIC_P (x0)
3559 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3560 return nonzero_bits1 (x, mode, x1, mode,
3561 cached_nonzero_bits (x1, mode, known_x,
3562 known_mode, known_ret));
3564 if (ARITHMETIC_P (x1)
3565 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3566 return nonzero_bits1 (x, mode, x0, mode,
3567 cached_nonzero_bits (x0, mode, known_x,
3568 known_mode, known_ret));
3571 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3574 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3575 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3576 is less useful. We can't allow both, because that results in exponential
3577 run time recursion. There is a nullstone testcase that triggered
3578 this. This macro avoids accidental uses of num_sign_bit_copies. */
3579 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3581 /* Given an expression, X, compute which bits in X can be nonzero.
3582 We don't care about bits outside of those defined in MODE.
3584 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3585 an arithmetic operation, we can do better. */
3587 static unsigned HOST_WIDE_INT
3588 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3589 enum machine_mode known_mode,
3590 unsigned HOST_WIDE_INT known_ret)
3592 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3593 unsigned HOST_WIDE_INT inner_nz;
3594 enum rtx_code code;
3595 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3597 /* For floating-point values, assume all bits are needed. */
3598 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3599 return nonzero;
3601 /* If X is wider than MODE, use its mode instead. */
3602 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3604 mode = GET_MODE (x);
3605 nonzero = GET_MODE_MASK (mode);
3606 mode_width = GET_MODE_BITSIZE (mode);
3609 if (mode_width > HOST_BITS_PER_WIDE_INT)
3610 /* Our only callers in this case look for single bit values. So
3611 just return the mode mask. Those tests will then be false. */
3612 return nonzero;
3614 #ifndef WORD_REGISTER_OPERATIONS
3615 /* If MODE is wider than X, but both are a single word for both the host
3616 and target machines, we can compute this from which bits of the
3617 object might be nonzero in its own mode, taking into account the fact
3618 that on many CISC machines, accessing an object in a wider mode
3619 causes the high-order bits to become undefined. So they are
3620 not known to be zero. */
3622 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3623 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3624 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3625 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3627 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3628 known_x, known_mode, known_ret);
3629 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3630 return nonzero;
3632 #endif
3634 code = GET_CODE (x);
3635 switch (code)
3637 case REG:
3638 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3639 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3640 all the bits above ptr_mode are known to be zero. */
3641 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3642 && REG_POINTER (x))
3643 nonzero &= GET_MODE_MASK (ptr_mode);
3644 #endif
3646 /* Include declared information about alignment of pointers. */
3647 /* ??? We don't properly preserve REG_POINTER changes across
3648 pointer-to-integer casts, so we can't trust it except for
3649 things that we know must be pointers. See execute/960116-1.c. */
3650 if ((x == stack_pointer_rtx
3651 || x == frame_pointer_rtx
3652 || x == arg_pointer_rtx)
3653 && REGNO_POINTER_ALIGN (REGNO (x)))
3655 unsigned HOST_WIDE_INT alignment
3656 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3658 #ifdef PUSH_ROUNDING
3659 /* If PUSH_ROUNDING is defined, it is possible for the
3660 stack to be momentarily aligned only to that amount,
3661 so we pick the least alignment. */
3662 if (x == stack_pointer_rtx && PUSH_ARGS)
3663 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3664 alignment);
3665 #endif
3667 nonzero &= ~(alignment - 1);
3671 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3672 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3673 known_mode, known_ret,
3674 &nonzero_for_hook);
3676 if (new)
3677 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3678 known_mode, known_ret);
3680 return nonzero_for_hook;
3683 case CONST_INT:
3684 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3685 /* If X is negative in MODE, sign-extend the value. */
3686 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3687 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3688 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3689 #endif
3691 return INTVAL (x);
3693 case MEM:
3694 #ifdef LOAD_EXTEND_OP
3695 /* In many, if not most, RISC machines, reading a byte from memory
3696 zeros the rest of the register. Noticing that fact saves a lot
3697 of extra zero-extends. */
3698 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3699 nonzero &= GET_MODE_MASK (GET_MODE (x));
3700 #endif
3701 break;
3703 case EQ: case NE:
3704 case UNEQ: case LTGT:
3705 case GT: case GTU: case UNGT:
3706 case LT: case LTU: case UNLT:
3707 case GE: case GEU: case UNGE:
3708 case LE: case LEU: case UNLE:
3709 case UNORDERED: case ORDERED:
3710 /* If this produces an integer result, we know which bits are set.
3711 Code here used to clear bits outside the mode of X, but that is
3712 now done above. */
3713 /* Mind that MODE is the mode the caller wants to look at this
3714 operation in, and not the actual operation mode. We can wind
3715 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3716 that describes the results of a vector compare. */
3717 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3718 && mode_width <= HOST_BITS_PER_WIDE_INT)
3719 nonzero = STORE_FLAG_VALUE;
3720 break;
3722 case NEG:
3723 #if 0
3724 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3725 and num_sign_bit_copies. */
3726 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3727 == GET_MODE_BITSIZE (GET_MODE (x)))
3728 nonzero = 1;
3729 #endif
3731 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3732 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3733 break;
3735 case ABS:
3736 #if 0
3737 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3738 and num_sign_bit_copies. */
3739 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3740 == GET_MODE_BITSIZE (GET_MODE (x)))
3741 nonzero = 1;
3742 #endif
3743 break;
3745 case TRUNCATE:
3746 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3747 known_x, known_mode, known_ret)
3748 & GET_MODE_MASK (mode));
3749 break;
3751 case ZERO_EXTEND:
3752 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3753 known_x, known_mode, known_ret);
3754 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3755 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3756 break;
3758 case SIGN_EXTEND:
3759 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3760 Otherwise, show all the bits in the outer mode but not the inner
3761 may be nonzero. */
3762 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3763 known_x, known_mode, known_ret);
3764 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3766 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3767 if (inner_nz
3768 & (((HOST_WIDE_INT) 1
3769 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3770 inner_nz |= (GET_MODE_MASK (mode)
3771 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3774 nonzero &= inner_nz;
3775 break;
3777 case AND:
3778 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3779 known_x, known_mode, known_ret)
3780 & cached_nonzero_bits (XEXP (x, 1), mode,
3781 known_x, known_mode, known_ret);
3782 break;
3784 case XOR: case IOR:
3785 case UMIN: case UMAX: case SMIN: case SMAX:
3787 unsigned HOST_WIDE_INT nonzero0 =
3788 cached_nonzero_bits (XEXP (x, 0), mode,
3789 known_x, known_mode, known_ret);
3791 /* Don't call nonzero_bits for the second time if it cannot change
3792 anything. */
3793 if ((nonzero & nonzero0) != nonzero)
3794 nonzero &= nonzero0
3795 | cached_nonzero_bits (XEXP (x, 1), mode,
3796 known_x, known_mode, known_ret);
3798 break;
3800 case PLUS: case MINUS:
3801 case MULT:
3802 case DIV: case UDIV:
3803 case MOD: case UMOD:
3804 /* We can apply the rules of arithmetic to compute the number of
3805 high- and low-order zero bits of these operations. We start by
3806 computing the width (position of the highest-order nonzero bit)
3807 and the number of low-order zero bits for each value. */
3809 unsigned HOST_WIDE_INT nz0 =
3810 cached_nonzero_bits (XEXP (x, 0), mode,
3811 known_x, known_mode, known_ret);
3812 unsigned HOST_WIDE_INT nz1 =
3813 cached_nonzero_bits (XEXP (x, 1), mode,
3814 known_x, known_mode, known_ret);
3815 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3816 int width0 = floor_log2 (nz0) + 1;
3817 int width1 = floor_log2 (nz1) + 1;
3818 int low0 = floor_log2 (nz0 & -nz0);
3819 int low1 = floor_log2 (nz1 & -nz1);
3820 HOST_WIDE_INT op0_maybe_minusp
3821 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3822 HOST_WIDE_INT op1_maybe_minusp
3823 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3824 unsigned int result_width = mode_width;
3825 int result_low = 0;
3827 switch (code)
3829 case PLUS:
3830 result_width = MAX (width0, width1) + 1;
3831 result_low = MIN (low0, low1);
3832 break;
3833 case MINUS:
3834 result_low = MIN (low0, low1);
3835 break;
3836 case MULT:
3837 result_width = width0 + width1;
3838 result_low = low0 + low1;
3839 break;
3840 case DIV:
3841 if (width1 == 0)
3842 break;
3843 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3844 result_width = width0;
3845 break;
3846 case UDIV:
3847 if (width1 == 0)
3848 break;
3849 result_width = width0;
3850 break;
3851 case MOD:
3852 if (width1 == 0)
3853 break;
3854 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3855 result_width = MIN (width0, width1);
3856 result_low = MIN (low0, low1);
3857 break;
3858 case UMOD:
3859 if (width1 == 0)
3860 break;
3861 result_width = MIN (width0, width1);
3862 result_low = MIN (low0, low1);
3863 break;
3864 default:
3865 gcc_unreachable ();
3868 if (result_width < mode_width)
3869 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3871 if (result_low > 0)
3872 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3874 #ifdef POINTERS_EXTEND_UNSIGNED
3875 /* If pointers extend unsigned and this is an addition or subtraction
3876 to a pointer in Pmode, all the bits above ptr_mode are known to be
3877 zero. */
3878 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3879 && (code == PLUS || code == MINUS)
3880 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3881 nonzero &= GET_MODE_MASK (ptr_mode);
3882 #endif
3884 break;
3886 case ZERO_EXTRACT:
3887 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3888 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3889 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3890 break;
3892 case SUBREG:
3893 /* If this is a SUBREG formed for a promoted variable that has
3894 been zero-extended, we know that at least the high-order bits
3895 are zero, though others might be too. */
3897 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3898 nonzero = GET_MODE_MASK (GET_MODE (x))
3899 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3900 known_x, known_mode, known_ret);
3902 /* If the inner mode is a single word for both the host and target
3903 machines, we can compute this from which bits of the inner
3904 object might be nonzero. */
3905 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3906 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3907 <= HOST_BITS_PER_WIDE_INT))
3909 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3910 known_x, known_mode, known_ret);
3912 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3913 /* If this is a typical RISC machine, we only have to worry
3914 about the way loads are extended. */
3915 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3916 ? (((nonzero
3917 & (((unsigned HOST_WIDE_INT) 1
3918 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3919 != 0))
3920 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3921 || !MEM_P (SUBREG_REG (x)))
3922 #endif
3924 /* On many CISC machines, accessing an object in a wider mode
3925 causes the high-order bits to become undefined. So they are
3926 not known to be zero. */
3927 if (GET_MODE_SIZE (GET_MODE (x))
3928 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3929 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3930 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3933 break;
3935 case ASHIFTRT:
3936 case LSHIFTRT:
3937 case ASHIFT:
3938 case ROTATE:
3939 /* The nonzero bits are in two classes: any bits within MODE
3940 that aren't in GET_MODE (x) are always significant. The rest of the
3941 nonzero bits are those that are significant in the operand of
3942 the shift when shifted the appropriate number of bits. This
3943 shows that high-order bits are cleared by the right shift and
3944 low-order bits by left shifts. */
3945 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3946 && INTVAL (XEXP (x, 1)) >= 0
3947 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3949 enum machine_mode inner_mode = GET_MODE (x);
3950 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3951 int count = INTVAL (XEXP (x, 1));
3952 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3953 unsigned HOST_WIDE_INT op_nonzero =
3954 cached_nonzero_bits (XEXP (x, 0), mode,
3955 known_x, known_mode, known_ret);
3956 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3957 unsigned HOST_WIDE_INT outer = 0;
3959 if (mode_width > width)
3960 outer = (op_nonzero & nonzero & ~mode_mask);
3962 if (code == LSHIFTRT)
3963 inner >>= count;
3964 else if (code == ASHIFTRT)
3966 inner >>= count;
3968 /* If the sign bit may have been nonzero before the shift, we
3969 need to mark all the places it could have been copied to
3970 by the shift as possibly nonzero. */
3971 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3972 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3974 else if (code == ASHIFT)
3975 inner <<= count;
3976 else
3977 inner = ((inner << (count % width)
3978 | (inner >> (width - (count % width)))) & mode_mask);
3980 nonzero &= (outer | inner);
3982 break;
3984 case FFS:
3985 case POPCOUNT:
3986 /* This is at most the number of bits in the mode. */
3987 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3988 break;
3990 case CLZ:
3991 /* If CLZ has a known value at zero, then the nonzero bits are
3992 that value, plus the number of bits in the mode minus one. */
3993 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3994 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3995 else
3996 nonzero = -1;
3997 break;
3999 case CTZ:
4000 /* If CTZ has a known value at zero, then the nonzero bits are
4001 that value, plus the number of bits in the mode minus one. */
4002 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4003 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4004 else
4005 nonzero = -1;
4006 break;
4008 case PARITY:
4009 nonzero = 1;
4010 break;
4012 case IF_THEN_ELSE:
4014 unsigned HOST_WIDE_INT nonzero_true =
4015 cached_nonzero_bits (XEXP (x, 1), mode,
4016 known_x, known_mode, known_ret);
4018 /* Don't call nonzero_bits for the second time if it cannot change
4019 anything. */
4020 if ((nonzero & nonzero_true) != nonzero)
4021 nonzero &= nonzero_true
4022 | cached_nonzero_bits (XEXP (x, 2), mode,
4023 known_x, known_mode, known_ret);
4025 break;
4027 default:
4028 break;
4031 return nonzero;
4034 /* See the macro definition above. */
4035 #undef cached_num_sign_bit_copies
4038 /* The function cached_num_sign_bit_copies is a wrapper around
4039 num_sign_bit_copies1. It avoids exponential behavior in
4040 num_sign_bit_copies1 when X has identical subexpressions on the
4041 first or the second level. */
4043 static unsigned int
4044 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4045 enum machine_mode known_mode,
4046 unsigned int known_ret)
4048 if (x == known_x && mode == known_mode)
4049 return known_ret;
4051 /* Try to find identical subexpressions. If found call
4052 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4053 the precomputed value for the subexpression as KNOWN_RET. */
4055 if (ARITHMETIC_P (x))
4057 rtx x0 = XEXP (x, 0);
4058 rtx x1 = XEXP (x, 1);
4060 /* Check the first level. */
4061 if (x0 == x1)
4062 return
4063 num_sign_bit_copies1 (x, mode, x0, mode,
4064 cached_num_sign_bit_copies (x0, mode, known_x,
4065 known_mode,
4066 known_ret));
4068 /* Check the second level. */
4069 if (ARITHMETIC_P (x0)
4070 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4071 return
4072 num_sign_bit_copies1 (x, mode, x1, mode,
4073 cached_num_sign_bit_copies (x1, mode, known_x,
4074 known_mode,
4075 known_ret));
4077 if (ARITHMETIC_P (x1)
4078 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4079 return
4080 num_sign_bit_copies1 (x, mode, x0, mode,
4081 cached_num_sign_bit_copies (x0, mode, known_x,
4082 known_mode,
4083 known_ret));
4086 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4089 /* Return the number of bits at the high-order end of X that are known to
4090 be equal to the sign bit. X will be used in mode MODE; if MODE is
4091 VOIDmode, X will be used in its own mode. The returned value will always
4092 be between 1 and the number of bits in MODE. */
4094 static unsigned int
4095 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4096 enum machine_mode known_mode,
4097 unsigned int known_ret)
4099 enum rtx_code code = GET_CODE (x);
4100 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4101 int num0, num1, result;
4102 unsigned HOST_WIDE_INT nonzero;
4104 /* If we weren't given a mode, use the mode of X. If the mode is still
4105 VOIDmode, we don't know anything. Likewise if one of the modes is
4106 floating-point. */
4108 if (mode == VOIDmode)
4109 mode = GET_MODE (x);
4111 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4112 return 1;
4114 /* For a smaller object, just ignore the high bits. */
4115 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4117 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4118 known_x, known_mode, known_ret);
4119 return MAX (1,
4120 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4123 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4125 #ifndef WORD_REGISTER_OPERATIONS
4126 /* If this machine does not do all register operations on the entire
4127 register and MODE is wider than the mode of X, we can say nothing
4128 at all about the high-order bits. */
4129 return 1;
4130 #else
4131 /* Likewise on machines that do, if the mode of the object is smaller
4132 than a word and loads of that size don't sign extend, we can say
4133 nothing about the high order bits. */
4134 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4135 #ifdef LOAD_EXTEND_OP
4136 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4137 #endif
4139 return 1;
4140 #endif
4143 switch (code)
4145 case REG:
4147 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4148 /* If pointers extend signed and this is a pointer in Pmode, say that
4149 all the bits above ptr_mode are known to be sign bit copies. */
4150 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4151 && REG_POINTER (x))
4152 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4153 #endif
4156 unsigned int copies_for_hook = 1, copies = 1;
4157 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4158 known_mode, known_ret,
4159 &copies_for_hook);
4161 if (new)
4162 copies = cached_num_sign_bit_copies (new, mode, known_x,
4163 known_mode, known_ret);
4165 if (copies > 1 || copies_for_hook > 1)
4166 return MAX (copies, copies_for_hook);
4168 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4170 break;
4172 case MEM:
4173 #ifdef LOAD_EXTEND_OP
4174 /* Some RISC machines sign-extend all loads of smaller than a word. */
4175 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4176 return MAX (1, ((int) bitwidth
4177 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4178 #endif
4179 break;
4181 case CONST_INT:
4182 /* If the constant is negative, take its 1's complement and remask.
4183 Then see how many zero bits we have. */
4184 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4185 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4186 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4187 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4189 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4191 case SUBREG:
4192 /* If this is a SUBREG for a promoted object that is sign-extended
4193 and we are looking at it in a wider mode, we know that at least the
4194 high-order bits are known to be sign bit copies. */
4196 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4198 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4199 known_x, known_mode, known_ret);
4200 return MAX ((int) bitwidth
4201 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4202 num0);
4205 /* For a smaller object, just ignore the high bits. */
4206 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4208 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4209 known_x, known_mode, known_ret);
4210 return MAX (1, (num0
4211 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4212 - bitwidth)));
4215 #ifdef WORD_REGISTER_OPERATIONS
4216 #ifdef LOAD_EXTEND_OP
4217 /* For paradoxical SUBREGs on machines where all register operations
4218 affect the entire register, just look inside. Note that we are
4219 passing MODE to the recursive call, so the number of sign bit copies
4220 will remain relative to that mode, not the inner mode. */
4222 /* This works only if loads sign extend. Otherwise, if we get a
4223 reload for the inner part, it may be loaded from the stack, and
4224 then we lose all sign bit copies that existed before the store
4225 to the stack. */
4227 if ((GET_MODE_SIZE (GET_MODE (x))
4228 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4229 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4230 && MEM_P (SUBREG_REG (x)))
4231 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4232 known_x, known_mode, known_ret);
4233 #endif
4234 #endif
4235 break;
4237 case SIGN_EXTRACT:
4238 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4239 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4240 break;
4242 case SIGN_EXTEND:
4243 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4244 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4245 known_x, known_mode, known_ret));
4247 case TRUNCATE:
4248 /* For a smaller object, just ignore the high bits. */
4249 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4250 known_x, known_mode, known_ret);
4251 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4252 - bitwidth)));
4254 case NOT:
4255 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4256 known_x, known_mode, known_ret);
4258 case ROTATE: case ROTATERT:
4259 /* If we are rotating left by a number of bits less than the number
4260 of sign bit copies, we can just subtract that amount from the
4261 number. */
4262 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4263 && INTVAL (XEXP (x, 1)) >= 0
4264 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4266 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4267 known_x, known_mode, known_ret);
4268 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4269 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4271 break;
4273 case NEG:
4274 /* In general, this subtracts one sign bit copy. But if the value
4275 is known to be positive, the number of sign bit copies is the
4276 same as that of the input. Finally, if the input has just one bit
4277 that might be nonzero, all the bits are copies of the sign bit. */
4278 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4279 known_x, known_mode, known_ret);
4280 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4281 return num0 > 1 ? num0 - 1 : 1;
4283 nonzero = nonzero_bits (XEXP (x, 0), mode);
4284 if (nonzero == 1)
4285 return bitwidth;
4287 if (num0 > 1
4288 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4289 num0--;
4291 return num0;
4293 case IOR: case AND: case XOR:
4294 case SMIN: case SMAX: case UMIN: case UMAX:
4295 /* Logical operations will preserve the number of sign-bit copies.
4296 MIN and MAX operations always return one of the operands. */
4297 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4298 known_x, known_mode, known_ret);
4299 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4300 known_x, known_mode, known_ret);
4302 /* If num1 is clearing some of the top bits then regardless of
4303 the other term, we are guaranteed to have at least that many
4304 high-order zero bits. */
4305 if (code == AND
4306 && num1 > 1
4307 && bitwidth <= HOST_BITS_PER_WIDE_INT
4308 && GET_CODE (XEXP (x, 1)) == CONST_INT
4309 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4310 return num1;
4312 /* Similarly for IOR when setting high-order bits. */
4313 if (code == IOR
4314 && num1 > 1
4315 && bitwidth <= HOST_BITS_PER_WIDE_INT
4316 && GET_CODE (XEXP (x, 1)) == CONST_INT
4317 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4318 return num1;
4320 return MIN (num0, num1);
4322 case PLUS: case MINUS:
4323 /* For addition and subtraction, we can have a 1-bit carry. However,
4324 if we are subtracting 1 from a positive number, there will not
4325 be such a carry. Furthermore, if the positive number is known to
4326 be 0 or 1, we know the result is either -1 or 0. */
4328 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4329 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4331 nonzero = nonzero_bits (XEXP (x, 0), mode);
4332 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4333 return (nonzero == 1 || nonzero == 0 ? bitwidth
4334 : bitwidth - floor_log2 (nonzero) - 1);
4337 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4338 known_x, known_mode, known_ret);
4339 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4340 known_x, known_mode, known_ret);
4341 result = MAX (1, MIN (num0, num1) - 1);
4343 #ifdef POINTERS_EXTEND_UNSIGNED
4344 /* If pointers extend signed and this is an addition or subtraction
4345 to a pointer in Pmode, all the bits above ptr_mode are known to be
4346 sign bit copies. */
4347 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4348 && (code == PLUS || code == MINUS)
4349 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4350 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4351 - GET_MODE_BITSIZE (ptr_mode) + 1),
4352 result);
4353 #endif
4354 return result;
4356 case MULT:
4357 /* The number of bits of the product is the sum of the number of
4358 bits of both terms. However, unless one of the terms if known
4359 to be positive, we must allow for an additional bit since negating
4360 a negative number can remove one sign bit copy. */
4362 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4363 known_x, known_mode, known_ret);
4364 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4365 known_x, known_mode, known_ret);
4367 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4368 if (result > 0
4369 && (bitwidth > HOST_BITS_PER_WIDE_INT
4370 || (((nonzero_bits (XEXP (x, 0), mode)
4371 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4372 && ((nonzero_bits (XEXP (x, 1), mode)
4373 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4374 result--;
4376 return MAX (1, result);
4378 case UDIV:
4379 /* The result must be <= the first operand. If the first operand
4380 has the high bit set, we know nothing about the number of sign
4381 bit copies. */
4382 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4383 return 1;
4384 else if ((nonzero_bits (XEXP (x, 0), mode)
4385 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4386 return 1;
4387 else
4388 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4389 known_x, known_mode, known_ret);
4391 case UMOD:
4392 /* The result must be <= the second operand. */
4393 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4394 known_x, known_mode, known_ret);
4396 case DIV:
4397 /* Similar to unsigned division, except that we have to worry about
4398 the case where the divisor is negative, in which case we have
4399 to add 1. */
4400 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4401 known_x, known_mode, known_ret);
4402 if (result > 1
4403 && (bitwidth > HOST_BITS_PER_WIDE_INT
4404 || (nonzero_bits (XEXP (x, 1), mode)
4405 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4406 result--;
4408 return result;
4410 case MOD:
4411 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4412 known_x, known_mode, known_ret);
4413 if (result > 1
4414 && (bitwidth > HOST_BITS_PER_WIDE_INT
4415 || (nonzero_bits (XEXP (x, 1), mode)
4416 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4417 result--;
4419 return result;
4421 case ASHIFTRT:
4422 /* Shifts by a constant add to the number of bits equal to the
4423 sign bit. */
4424 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4425 known_x, known_mode, known_ret);
4426 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4427 && INTVAL (XEXP (x, 1)) > 0)
4428 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4430 return num0;
4432 case ASHIFT:
4433 /* Left shifts destroy copies. */
4434 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4435 || INTVAL (XEXP (x, 1)) < 0
4436 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4437 return 1;
4439 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4440 known_x, known_mode, known_ret);
4441 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4443 case IF_THEN_ELSE:
4444 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4445 known_x, known_mode, known_ret);
4446 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4447 known_x, known_mode, known_ret);
4448 return MIN (num0, num1);
4450 case EQ: case NE: case GE: case GT: case LE: case LT:
4451 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4452 case GEU: case GTU: case LEU: case LTU:
4453 case UNORDERED: case ORDERED:
4454 /* If the constant is negative, take its 1's complement and remask.
4455 Then see how many zero bits we have. */
4456 nonzero = STORE_FLAG_VALUE;
4457 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4458 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4459 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4461 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4463 default:
4464 break;
4467 /* If we haven't been able to figure it out by one of the above rules,
4468 see if some of the high-order bits are known to be zero. If so,
4469 count those bits and return one less than that amount. If we can't
4470 safely compute the mask for this mode, always return BITWIDTH. */
4472 bitwidth = GET_MODE_BITSIZE (mode);
4473 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4474 return 1;
4476 nonzero = nonzero_bits (x, mode);
4477 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4478 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4481 /* Calculate the rtx_cost of a single instruction. A return value of
4482 zero indicates an instruction pattern without a known cost. */
4485 insn_rtx_cost (rtx pat)
4487 int i, cost;
4488 rtx set;
4490 /* Extract the single set rtx from the instruction pattern.
4491 We can't use single_set since we only have the pattern. */
4492 if (GET_CODE (pat) == SET)
4493 set = pat;
4494 else if (GET_CODE (pat) == PARALLEL)
4496 set = NULL_RTX;
4497 for (i = 0; i < XVECLEN (pat, 0); i++)
4499 rtx x = XVECEXP (pat, 0, i);
4500 if (GET_CODE (x) == SET)
4502 if (set)
4503 return 0;
4504 set = x;
4507 if (!set)
4508 return 0;
4510 else
4511 return 0;
4513 cost = rtx_cost (SET_SRC (set), SET);
4514 return cost > 0 ? cost : COSTS_N_INSNS (1);
4517 /* Given an insn INSN and condition COND, return the condition in a
4518 canonical form to simplify testing by callers. Specifically:
4520 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4521 (2) Both operands will be machine operands; (cc0) will have been replaced.
4522 (3) If an operand is a constant, it will be the second operand.
4523 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4524 for GE, GEU, and LEU.
4526 If the condition cannot be understood, or is an inequality floating-point
4527 comparison which needs to be reversed, 0 will be returned.
4529 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4531 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4532 insn used in locating the condition was found. If a replacement test
4533 of the condition is desired, it should be placed in front of that
4534 insn and we will be sure that the inputs are still valid.
4536 If WANT_REG is nonzero, we wish the condition to be relative to that
4537 register, if possible. Therefore, do not canonicalize the condition
4538 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4539 to be a compare to a CC mode register.
4541 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4542 and at INSN. */
4545 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4546 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4548 enum rtx_code code;
4549 rtx prev = insn;
4550 const_rtx set;
4551 rtx tem;
4552 rtx op0, op1;
4553 int reverse_code = 0;
4554 enum machine_mode mode;
4555 basic_block bb = BLOCK_FOR_INSN (insn);
4557 code = GET_CODE (cond);
4558 mode = GET_MODE (cond);
4559 op0 = XEXP (cond, 0);
4560 op1 = XEXP (cond, 1);
4562 if (reverse)
4563 code = reversed_comparison_code (cond, insn);
4564 if (code == UNKNOWN)
4565 return 0;
4567 if (earliest)
4568 *earliest = insn;
4570 /* If we are comparing a register with zero, see if the register is set
4571 in the previous insn to a COMPARE or a comparison operation. Perform
4572 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4573 in cse.c */
4575 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4576 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4577 && op1 == CONST0_RTX (GET_MODE (op0))
4578 && op0 != want_reg)
4580 /* Set nonzero when we find something of interest. */
4581 rtx x = 0;
4583 #ifdef HAVE_cc0
4584 /* If comparison with cc0, import actual comparison from compare
4585 insn. */
4586 if (op0 == cc0_rtx)
4588 if ((prev = prev_nonnote_insn (prev)) == 0
4589 || !NONJUMP_INSN_P (prev)
4590 || (set = single_set (prev)) == 0
4591 || SET_DEST (set) != cc0_rtx)
4592 return 0;
4594 op0 = SET_SRC (set);
4595 op1 = CONST0_RTX (GET_MODE (op0));
4596 if (earliest)
4597 *earliest = prev;
4599 #endif
4601 /* If this is a COMPARE, pick up the two things being compared. */
4602 if (GET_CODE (op0) == COMPARE)
4604 op1 = XEXP (op0, 1);
4605 op0 = XEXP (op0, 0);
4606 continue;
4608 else if (!REG_P (op0))
4609 break;
4611 /* Go back to the previous insn. Stop if it is not an INSN. We also
4612 stop if it isn't a single set or if it has a REG_INC note because
4613 we don't want to bother dealing with it. */
4615 if ((prev = prev_nonnote_insn (prev)) == 0
4616 || !NONJUMP_INSN_P (prev)
4617 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4618 /* In cfglayout mode, there do not have to be labels at the
4619 beginning of a block, or jumps at the end, so the previous
4620 conditions would not stop us when we reach bb boundary. */
4621 || BLOCK_FOR_INSN (prev) != bb)
4622 break;
4624 set = set_of (op0, prev);
4626 if (set
4627 && (GET_CODE (set) != SET
4628 || !rtx_equal_p (SET_DEST (set), op0)))
4629 break;
4631 /* If this is setting OP0, get what it sets it to if it looks
4632 relevant. */
4633 if (set)
4635 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4636 #ifdef FLOAT_STORE_FLAG_VALUE
4637 REAL_VALUE_TYPE fsfv;
4638 #endif
4640 /* ??? We may not combine comparisons done in a CCmode with
4641 comparisons not done in a CCmode. This is to aid targets
4642 like Alpha that have an IEEE compliant EQ instruction, and
4643 a non-IEEE compliant BEQ instruction. The use of CCmode is
4644 actually artificial, simply to prevent the combination, but
4645 should not affect other platforms.
4647 However, we must allow VOIDmode comparisons to match either
4648 CCmode or non-CCmode comparison, because some ports have
4649 modeless comparisons inside branch patterns.
4651 ??? This mode check should perhaps look more like the mode check
4652 in simplify_comparison in combine. */
4654 if ((GET_CODE (SET_SRC (set)) == COMPARE
4655 || (((code == NE
4656 || (code == LT
4657 && GET_MODE_CLASS (inner_mode) == MODE_INT
4658 && (GET_MODE_BITSIZE (inner_mode)
4659 <= HOST_BITS_PER_WIDE_INT)
4660 && (STORE_FLAG_VALUE
4661 & ((HOST_WIDE_INT) 1
4662 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4663 #ifdef FLOAT_STORE_FLAG_VALUE
4664 || (code == LT
4665 && SCALAR_FLOAT_MODE_P (inner_mode)
4666 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4667 REAL_VALUE_NEGATIVE (fsfv)))
4668 #endif
4670 && COMPARISON_P (SET_SRC (set))))
4671 && (((GET_MODE_CLASS (mode) == MODE_CC)
4672 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4673 || mode == VOIDmode || inner_mode == VOIDmode))
4674 x = SET_SRC (set);
4675 else if (((code == EQ
4676 || (code == GE
4677 && (GET_MODE_BITSIZE (inner_mode)
4678 <= HOST_BITS_PER_WIDE_INT)
4679 && GET_MODE_CLASS (inner_mode) == MODE_INT
4680 && (STORE_FLAG_VALUE
4681 & ((HOST_WIDE_INT) 1
4682 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4683 #ifdef FLOAT_STORE_FLAG_VALUE
4684 || (code == GE
4685 && SCALAR_FLOAT_MODE_P (inner_mode)
4686 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4687 REAL_VALUE_NEGATIVE (fsfv)))
4688 #endif
4690 && COMPARISON_P (SET_SRC (set))
4691 && (((GET_MODE_CLASS (mode) == MODE_CC)
4692 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4693 || mode == VOIDmode || inner_mode == VOIDmode))
4696 reverse_code = 1;
4697 x = SET_SRC (set);
4699 else
4700 break;
4703 else if (reg_set_p (op0, prev))
4704 /* If this sets OP0, but not directly, we have to give up. */
4705 break;
4707 if (x)
4709 /* If the caller is expecting the condition to be valid at INSN,
4710 make sure X doesn't change before INSN. */
4711 if (valid_at_insn_p)
4712 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4713 break;
4714 if (COMPARISON_P (x))
4715 code = GET_CODE (x);
4716 if (reverse_code)
4718 code = reversed_comparison_code (x, prev);
4719 if (code == UNKNOWN)
4720 return 0;
4721 reverse_code = 0;
4724 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4725 if (earliest)
4726 *earliest = prev;
4730 /* If constant is first, put it last. */
4731 if (CONSTANT_P (op0))
4732 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4734 /* If OP0 is the result of a comparison, we weren't able to find what
4735 was really being compared, so fail. */
4736 if (!allow_cc_mode
4737 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4738 return 0;
4740 /* Canonicalize any ordered comparison with integers involving equality
4741 if we can do computations in the relevant mode and we do not
4742 overflow. */
4744 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4745 && GET_CODE (op1) == CONST_INT
4746 && GET_MODE (op0) != VOIDmode
4747 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4749 HOST_WIDE_INT const_val = INTVAL (op1);
4750 unsigned HOST_WIDE_INT uconst_val = const_val;
4751 unsigned HOST_WIDE_INT max_val
4752 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4754 switch (code)
4756 case LE:
4757 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4758 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4759 break;
4761 /* When cross-compiling, const_val might be sign-extended from
4762 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4763 case GE:
4764 if ((HOST_WIDE_INT) (const_val & max_val)
4765 != (((HOST_WIDE_INT) 1
4766 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4767 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4768 break;
4770 case LEU:
4771 if (uconst_val < max_val)
4772 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4773 break;
4775 case GEU:
4776 if (uconst_val != 0)
4777 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4778 break;
4780 default:
4781 break;
4785 /* Never return CC0; return zero instead. */
4786 if (CC0_P (op0))
4787 return 0;
4789 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4792 /* Given a jump insn JUMP, return the condition that will cause it to branch
4793 to its JUMP_LABEL. If the condition cannot be understood, or is an
4794 inequality floating-point comparison which needs to be reversed, 0 will
4795 be returned.
4797 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4798 insn used in locating the condition was found. If a replacement test
4799 of the condition is desired, it should be placed in front of that
4800 insn and we will be sure that the inputs are still valid. If EARLIEST
4801 is null, the returned condition will be valid at INSN.
4803 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4804 compare CC mode register.
4806 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4809 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4811 rtx cond;
4812 int reverse;
4813 rtx set;
4815 /* If this is not a standard conditional jump, we can't parse it. */
4816 if (!JUMP_P (jump)
4817 || ! any_condjump_p (jump))
4818 return 0;
4819 set = pc_set (jump);
4821 cond = XEXP (SET_SRC (set), 0);
4823 /* If this branches to JUMP_LABEL when the condition is false, reverse
4824 the condition. */
4825 reverse
4826 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4827 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4829 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4830 allow_cc_mode, valid_at_insn_p);
4833 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4834 TARGET_MODE_REP_EXTENDED.
4836 Note that we assume that the property of
4837 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4838 narrower than mode B. I.e., if A is a mode narrower than B then in
4839 order to be able to operate on it in mode B, mode A needs to
4840 satisfy the requirements set by the representation of mode B. */
4842 static void
4843 init_num_sign_bit_copies_in_rep (void)
4845 enum machine_mode mode, in_mode;
4847 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4848 in_mode = GET_MODE_WIDER_MODE (mode))
4849 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4850 mode = GET_MODE_WIDER_MODE (mode))
4852 enum machine_mode i;
4854 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4855 extends to the next widest mode. */
4856 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4857 || GET_MODE_WIDER_MODE (mode) == in_mode);
4859 /* We are in in_mode. Count how many bits outside of mode
4860 have to be copies of the sign-bit. */
4861 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4863 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4865 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4866 /* We can only check sign-bit copies starting from the
4867 top-bit. In order to be able to check the bits we
4868 have already seen we pretend that subsequent bits
4869 have to be sign-bit copies too. */
4870 || num_sign_bit_copies_in_rep [in_mode][mode])
4871 num_sign_bit_copies_in_rep [in_mode][mode]
4872 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4877 /* Suppose that truncation from the machine mode of X to MODE is not a
4878 no-op. See if there is anything special about X so that we can
4879 assume it already contains a truncated value of MODE. */
4881 bool
4882 truncated_to_mode (enum machine_mode mode, const_rtx x)
4884 /* This register has already been used in MODE without explicit
4885 truncation. */
4886 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4887 return true;
4889 /* See if we already satisfy the requirements of MODE. If yes we
4890 can just switch to MODE. */
4891 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4892 && (num_sign_bit_copies (x, GET_MODE (x))
4893 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4894 return true;
4896 return false;
4899 /* Initialize non_rtx_starting_operands, which is used to speed up
4900 for_each_rtx. */
4901 void
4902 init_rtlanal (void)
4904 int i;
4905 for (i = 0; i < NUM_RTX_CODE; i++)
4907 const char *format = GET_RTX_FORMAT (i);
4908 const char *first = strpbrk (format, "eEV");
4909 non_rtx_starting_operands[i] = first ? first - format : -1;
4912 init_num_sign_bit_copies_in_rep ();
4915 /* Check whether this is a constant pool constant. */
4916 bool
4917 constant_pool_constant_p (rtx x)
4919 x = avoid_constant_pool_reference (x);
4920 return GET_CODE (x) == CONST_DOUBLE;