Update concepts branch to revision 131834
[official-gcc.git] / gcc / regmove.c
blob81891b9661eb6da5edcf2b3e37353c7d54260749
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
48 #include "df.h"
50 static int perhaps_ends_bb_p (rtx);
51 static int optimize_reg_copy_1 (rtx, rtx, rtx);
52 static void optimize_reg_copy_2 (rtx, rtx, rtx);
53 static void optimize_reg_copy_3 (rtx, rtx, rtx);
54 static void copy_src_to_dest (rtx, rtx, rtx);
56 struct match {
57 int with[MAX_RECOG_OPERANDS];
58 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
59 int commutative[MAX_RECOG_OPERANDS];
60 int early_clobber[MAX_RECOG_OPERANDS];
63 static rtx discover_flags_reg (void);
64 static void mark_flags_life_zones (rtx);
65 static void flags_set_1 (rtx, const_rtx, void *);
67 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
68 static int find_matches (rtx, struct match *);
69 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
70 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
71 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
72 static int regclass_compatible_p (int, int);
73 static int replacement_quality (rtx);
74 static int fixup_match_2 (rtx, rtx, rtx, rtx);
76 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
77 causing too much register allocation problems. */
78 static int
79 regclass_compatible_p (int class0, int class1)
81 return (class0 == class1
82 || (reg_class_subset_p (class0, class1)
83 && ! CLASS_LIKELY_SPILLED_P (class0))
84 || (reg_class_subset_p (class1, class0)
85 && ! CLASS_LIKELY_SPILLED_P (class1)));
88 /* Find the place in the rtx X where REG is used as a memory address.
89 Return the MEM rtx that so uses it.
90 If PLUSCONST is nonzero, search instead for a memory address equivalent to
91 (plus REG (const_int PLUSCONST)).
93 If such an address does not appear, return 0.
94 If REG appears more than once, or is used other than in such an address,
95 return (rtx) 1. */
97 static rtx
98 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
100 enum rtx_code code = GET_CODE (x);
101 const char * const fmt = GET_RTX_FORMAT (code);
102 int i;
103 rtx value = 0;
104 rtx tem;
106 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
107 return x;
109 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
110 && XEXP (XEXP (x, 0), 0) == reg
111 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
112 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
113 return x;
115 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
117 /* If REG occurs inside a MEM used in a bit-field reference,
118 that is unacceptable. */
119 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
120 return (rtx) (size_t) 1;
123 if (x == reg)
124 return (rtx) (size_t) 1;
126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
128 if (fmt[i] == 'e')
130 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
131 if (value == 0)
132 value = tem;
133 else if (tem != 0)
134 return (rtx) (size_t) 1;
136 else if (fmt[i] == 'E')
138 int j;
139 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
141 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
142 if (value == 0)
143 value = tem;
144 else if (tem != 0)
145 return (rtx) (size_t) 1;
150 return value;
154 /* INC_INSN is an instruction that adds INCREMENT to REG.
155 Try to fold INC_INSN as a post/pre in/decrement into INSN.
156 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
157 Return nonzero for success. */
158 static int
159 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
160 HOST_WIDE_INT increment, int pre)
162 enum rtx_code inc_code;
164 rtx pset = single_set (insn);
165 if (pset)
167 /* Can't use the size of SET_SRC, we might have something like
168 (sign_extend:SI (mem:QI ... */
169 rtx use = find_use_as_address (pset, reg, 0);
170 if (use != 0 && use != (rtx) (size_t) 1)
172 int size = GET_MODE_SIZE (GET_MODE (use));
173 if (0
174 || (HAVE_POST_INCREMENT
175 && pre == 0 && (inc_code = POST_INC, increment == size))
176 || (HAVE_PRE_INCREMENT
177 && pre == 1 && (inc_code = PRE_INC, increment == size))
178 || (HAVE_POST_DECREMENT
179 && pre == 0 && (inc_code = POST_DEC, increment == -size))
180 || (HAVE_PRE_DECREMENT
181 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
184 if (inc_insn_set)
185 validate_change
186 (inc_insn,
187 &SET_SRC (inc_insn_set),
188 XEXP (SET_SRC (inc_insn_set), 0), 1);
189 validate_change (insn, &XEXP (use, 0),
190 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
191 if (apply_change_group ())
193 /* If there is a REG_DEAD note on this insn, we must
194 change this not to REG_UNUSED meaning that the register
195 is set, but the value is dead. Failure to do so will
196 result in sched1 dying -- when it recomputes lifetime
197 information, the number of REG_DEAD notes will have
198 changed. */
199 rtx note = find_reg_note (insn, REG_DEAD, reg);
200 if (note)
201 PUT_MODE (note, REG_UNUSED);
203 REG_NOTES (insn)
204 = gen_rtx_EXPR_LIST (REG_INC,
205 reg, REG_NOTES (insn));
206 if (! inc_insn_set)
207 delete_insn (inc_insn);
208 return 1;
213 return 0;
216 /* Determine if the pattern generated by add_optab has a clobber,
217 such as might be issued for a flags hard register. To make the
218 code elsewhere simpler, we handle cc0 in this same framework.
220 Return the register if one was discovered. Return NULL_RTX if
221 if no flags were found. Return pc_rtx if we got confused. */
223 static rtx
224 discover_flags_reg (void)
226 rtx tmp;
227 tmp = gen_rtx_REG (word_mode, 10000);
228 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
230 /* If we get something that isn't a simple set, or a
231 [(set ..) (clobber ..)], this whole function will go wrong. */
232 if (GET_CODE (tmp) == SET)
233 return NULL_RTX;
234 else if (GET_CODE (tmp) == PARALLEL)
236 int found;
238 if (XVECLEN (tmp, 0) != 2)
239 return pc_rtx;
240 tmp = XVECEXP (tmp, 0, 1);
241 if (GET_CODE (tmp) != CLOBBER)
242 return pc_rtx;
243 tmp = XEXP (tmp, 0);
245 /* Don't do anything foolish if the md wanted to clobber a
246 scratch or something. We only care about hard regs.
247 Moreover we don't like the notion of subregs of hard regs. */
248 if (GET_CODE (tmp) == SUBREG
249 && REG_P (SUBREG_REG (tmp))
250 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
251 return pc_rtx;
252 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
254 return (found ? tmp : NULL_RTX);
257 return pc_rtx;
260 /* It is a tedious task identifying when the flags register is live and
261 when it is safe to optimize. Since we process the instruction stream
262 multiple times, locate and record these live zones by marking the
263 mode of the instructions --
265 QImode is used on the instruction at which the flags becomes live.
267 HImode is used within the range (exclusive) that the flags are
268 live. Thus the user of the flags is not marked.
270 All other instructions are cleared to VOIDmode. */
272 /* Used to communicate with flags_set_1. */
273 static rtx flags_set_1_rtx;
274 static int flags_set_1_set;
276 static void
277 mark_flags_life_zones (rtx flags)
279 int flags_regno;
280 int flags_nregs;
281 basic_block block;
283 #ifdef HAVE_cc0
284 /* If we found a flags register on a cc0 host, bail. */
285 if (flags == NULL_RTX)
286 flags = cc0_rtx;
287 else if (flags != cc0_rtx)
288 flags = pc_rtx;
289 #endif
291 /* Simple cases first: if no flags, clear all modes. If confusing,
292 mark the entire function as being in a flags shadow. */
293 if (flags == NULL_RTX || flags == pc_rtx)
295 enum machine_mode mode = (flags ? HImode : VOIDmode);
296 rtx insn;
297 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
298 PUT_MODE (insn, mode);
299 return;
302 #ifdef HAVE_cc0
303 flags_regno = -1;
304 flags_nregs = 1;
305 #else
306 flags_regno = REGNO (flags);
307 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
308 #endif
309 flags_set_1_rtx = flags;
311 /* Process each basic block. */
312 FOR_EACH_BB_REVERSE (block)
314 rtx insn, end;
315 int live;
317 insn = BB_HEAD (block);
318 end = BB_END (block);
320 /* Look out for the (unlikely) case of flags being live across
321 basic block boundaries. */
322 live = 0;
323 #ifndef HAVE_cc0
325 int i;
326 for (i = 0; i < flags_nregs; ++i)
327 live |= REGNO_REG_SET_P (df_get_live_in (block), flags_regno + i);
329 #endif
331 while (1)
333 /* Process liveness in reverse order of importance --
334 alive, death, birth. This lets more important info
335 overwrite the mode of lesser info. */
337 if (INSN_P (insn))
339 #ifdef HAVE_cc0
340 /* In the cc0 case, death is not marked in reg notes,
341 but is instead the mere use of cc0 when it is alive. */
342 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
343 live = 0;
344 #else
345 /* In the hard reg case, we watch death notes. */
346 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
347 live = 0;
348 #endif
349 PUT_MODE (insn, (live ? HImode : VOIDmode));
351 /* In either case, birth is denoted simply by its presence
352 as the destination of a set. */
353 flags_set_1_set = 0;
354 note_stores (PATTERN (insn), flags_set_1, NULL);
355 if (flags_set_1_set)
357 live = 1;
358 PUT_MODE (insn, QImode);
361 else
362 PUT_MODE (insn, (live ? HImode : VOIDmode));
364 if (insn == end)
365 break;
366 insn = NEXT_INSN (insn);
371 /* A subroutine of mark_flags_life_zones, called through note_stores. */
373 static void
374 flags_set_1 (rtx x, const_rtx pat, void *data ATTRIBUTE_UNUSED)
376 if (GET_CODE (pat) == SET
377 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
378 flags_set_1_set = 1;
381 static int *regno_src_regno;
383 /* Indicate how good a choice REG (which appears as a source) is to replace
384 a destination register with. The higher the returned value, the better
385 the choice. The main objective is to avoid using a register that is
386 a candidate for tying to a hard register, since the output might in
387 turn be a candidate to be tied to a different hard register. */
388 static int
389 replacement_quality (rtx reg)
391 int src_regno;
393 /* Bad if this isn't a register at all. */
394 if (!REG_P (reg))
395 return 0;
397 /* If this register is not meant to get a hard register,
398 it is a poor choice. */
399 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
400 return 0;
402 src_regno = regno_src_regno[REGNO (reg)];
404 /* If it was not copied from another register, it is fine. */
405 if (src_regno < 0)
406 return 3;
408 /* Copied from a hard register? */
409 if (src_regno < FIRST_PSEUDO_REGISTER)
410 return 1;
412 /* Copied from a pseudo register - not as bad as from a hard register,
413 yet still cumbersome, since the register live length will be lengthened
414 when the registers get tied. */
415 return 2;
418 /* Return 1 if INSN might end a basic block. */
420 static int perhaps_ends_bb_p (rtx insn)
422 switch (GET_CODE (insn))
424 case CODE_LABEL:
425 case JUMP_INSN:
426 /* These always end a basic block. */
427 return 1;
429 case CALL_INSN:
430 /* A CALL_INSN might be the last insn of a basic block, if it is inside
431 an EH region or if there are nonlocal gotos. Note that this test is
432 very conservative. */
433 if (nonlocal_goto_handler_labels)
434 return 1;
435 /* Fall through. */
436 default:
437 return can_throw_internal (insn);
441 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
442 in INSN.
444 Search forward to see if SRC dies before either it or DEST is modified,
445 but don't scan past the end of a basic block. If so, we can replace SRC
446 with DEST and let SRC die in INSN.
448 This will reduce the number of registers live in that range and may enable
449 DEST to be tied to SRC, thus often saving one register in addition to a
450 register-register copy. */
452 static int
453 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
455 rtx p, q;
456 rtx note;
457 rtx dest_death = 0;
458 int sregno = REGNO (src);
459 int dregno = REGNO (dest);
461 /* We don't want to mess with hard regs if register classes are small. */
462 if (sregno == dregno
463 || (SMALL_REGISTER_CLASSES
464 && (sregno < FIRST_PSEUDO_REGISTER
465 || dregno < FIRST_PSEUDO_REGISTER))
466 /* We don't see all updates to SP if they are in an auto-inc memory
467 reference, so we must disallow this optimization on them. */
468 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
469 return 0;
471 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
473 /* ??? We can't scan past the end of a basic block without updating
474 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
475 if (perhaps_ends_bb_p (p))
476 break;
477 else if (! INSN_P (p))
478 continue;
480 if (reg_set_p (src, p) || reg_set_p (dest, p)
481 /* If SRC is an asm-declared register, it must not be replaced
482 in any asm. Unfortunately, the REG_EXPR tree for the asm
483 variable may be absent in the SRC rtx, so we can't check the
484 actual register declaration easily (the asm operand will have
485 it, though). To avoid complicating the test for a rare case,
486 we just don't perform register replacement for a hard reg
487 mentioned in an asm. */
488 || (sregno < FIRST_PSEUDO_REGISTER
489 && asm_noperands (PATTERN (p)) >= 0
490 && reg_overlap_mentioned_p (src, PATTERN (p)))
491 /* Don't change hard registers used by a call. */
492 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
493 && find_reg_fusage (p, USE, src))
494 /* Don't change a USE of a register. */
495 || (GET_CODE (PATTERN (p)) == USE
496 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
497 break;
499 /* See if all of SRC dies in P. This test is slightly more
500 conservative than it needs to be. */
501 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
502 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
504 int failed = 0;
505 int d_length = 0;
506 int s_length = 0;
507 int d_n_calls = 0;
508 int s_n_calls = 0;
509 int s_freq_calls = 0;
510 int d_freq_calls = 0;
512 /* We can do the optimization. Scan forward from INSN again,
513 replacing regs as we go. Set FAILED if a replacement can't
514 be done. In that case, we can't move the death note for SRC.
515 This should be rare. */
517 /* Set to stop at next insn. */
518 for (q = next_real_insn (insn);
519 q != next_real_insn (p);
520 q = next_real_insn (q))
522 if (reg_overlap_mentioned_p (src, PATTERN (q)))
524 /* If SRC is a hard register, we might miss some
525 overlapping registers with validate_replace_rtx,
526 so we would have to undo it. We can't if DEST is
527 present in the insn, so fail in that combination
528 of cases. */
529 if (sregno < FIRST_PSEUDO_REGISTER
530 && reg_mentioned_p (dest, PATTERN (q)))
531 failed = 1;
533 /* Attempt to replace all uses. */
534 else if (!validate_replace_rtx (src, dest, q))
535 failed = 1;
537 /* If this succeeded, but some part of the register
538 is still present, undo the replacement. */
539 else if (sregno < FIRST_PSEUDO_REGISTER
540 && reg_overlap_mentioned_p (src, PATTERN (q)))
542 validate_replace_rtx (dest, src, q);
543 failed = 1;
547 /* For SREGNO, count the total number of insns scanned.
548 For DREGNO, count the total number of insns scanned after
549 passing the death note for DREGNO. */
550 s_length++;
551 if (dest_death)
552 d_length++;
554 /* If the insn in which SRC dies is a CALL_INSN, don't count it
555 as a call that has been crossed. Otherwise, count it. */
556 if (q != p && CALL_P (q))
558 /* Similarly, total calls for SREGNO, total calls beyond
559 the death note for DREGNO. */
560 s_n_calls++;
561 s_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
562 if (dest_death)
564 d_n_calls++;
565 d_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
569 /* If DEST dies here, remove the death note and save it for
570 later. Make sure ALL of DEST dies here; again, this is
571 overly conservative. */
572 if (dest_death == 0
573 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
575 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
576 failed = 1, dest_death = 0;
577 else
578 remove_note (q, dest_death);
582 if (! failed)
584 /* These counters need to be updated if and only if we are
585 going to move the REG_DEAD note. */
586 if (sregno >= FIRST_PSEUDO_REGISTER)
588 if (REG_LIVE_LENGTH (sregno) >= 0)
590 REG_LIVE_LENGTH (sregno) -= s_length;
591 /* REG_LIVE_LENGTH is only an approximation after
592 combine if sched is not run, so make sure that we
593 still have a reasonable value. */
594 if (REG_LIVE_LENGTH (sregno) < 2)
595 REG_LIVE_LENGTH (sregno) = 2;
598 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
599 REG_FREQ_CALLS_CROSSED (sregno) -= s_freq_calls;
602 /* Move death note of SRC from P to INSN. */
603 remove_note (p, note);
604 XEXP (note, 1) = REG_NOTES (insn);
605 REG_NOTES (insn) = note;
608 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
609 if (! dest_death
610 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
612 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
613 remove_note (insn, dest_death);
616 /* Put death note of DEST on P if we saw it die. */
617 if (dest_death)
619 XEXP (dest_death, 1) = REG_NOTES (p);
620 REG_NOTES (p) = dest_death;
622 if (dregno >= FIRST_PSEUDO_REGISTER)
624 /* If and only if we are moving the death note for DREGNO,
625 then we need to update its counters. */
626 if (REG_LIVE_LENGTH (dregno) >= 0)
627 REG_LIVE_LENGTH (dregno) += d_length;
628 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
629 REG_FREQ_CALLS_CROSSED (dregno) += d_freq_calls;
633 return ! failed;
636 /* If SRC is a hard register which is set or killed in some other
637 way, we can't do this optimization. */
638 else if (sregno < FIRST_PSEUDO_REGISTER
639 && dead_or_set_p (p, src))
640 break;
642 return 0;
645 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
646 a sequence of insns that modify DEST followed by an insn that sets
647 SRC to DEST in which DEST dies, with no prior modification of DEST.
648 (There is no need to check if the insns in between actually modify
649 DEST. We should not have cases where DEST is not modified, but
650 the optimization is safe if no such modification is detected.)
651 In that case, we can replace all uses of DEST, starting with INSN and
652 ending with the set of SRC to DEST, with SRC. We do not do this
653 optimization if a CALL_INSN is crossed unless SRC already crosses a
654 call or if DEST dies before the copy back to SRC.
656 It is assumed that DEST and SRC are pseudos; it is too complicated to do
657 this for hard registers since the substitutions we may make might fail. */
659 static void
660 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
662 rtx p, q;
663 rtx set;
664 int sregno = REGNO (src);
665 int dregno = REGNO (dest);
667 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
669 /* ??? We can't scan past the end of a basic block without updating
670 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
671 if (perhaps_ends_bb_p (p))
672 break;
673 else if (! INSN_P (p))
674 continue;
676 set = single_set (p);
677 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
678 && find_reg_note (p, REG_DEAD, dest))
680 /* We can do the optimization. Scan forward from INSN again,
681 replacing regs as we go. */
683 /* Set to stop at next insn. */
684 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
685 if (INSN_P (q))
687 if (reg_mentioned_p (dest, PATTERN (q)))
689 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
690 df_insn_rescan (q);
693 if (CALL_P (q))
695 int freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
696 REG_N_CALLS_CROSSED (dregno)--;
697 REG_N_CALLS_CROSSED (sregno)++;
698 REG_FREQ_CALLS_CROSSED (dregno) -= freq;
699 REG_FREQ_CALLS_CROSSED (sregno) += freq;
703 remove_note (p, find_reg_note (p, REG_DEAD, dest));
704 REG_N_DEATHS (dregno)--;
705 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
706 REG_N_DEATHS (sregno)--;
707 return;
710 if (reg_set_p (src, p)
711 || find_reg_note (p, REG_DEAD, dest)
712 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
713 break;
717 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
718 Look if SRC dies there, and if it is only set once, by loading
719 it from memory. If so, try to incorporate the zero/sign extension
720 into the memory read, change SRC to the mode of DEST, and alter
721 the remaining accesses to use the appropriate SUBREG. This allows
722 SRC and DEST to be tied later. */
723 static void
724 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
726 rtx src_reg = XEXP (src, 0);
727 int src_no = REGNO (src_reg);
728 int dst_no = REGNO (dest);
729 rtx p, set;
730 enum machine_mode old_mode;
732 if (src_no < FIRST_PSEUDO_REGISTER
733 || dst_no < FIRST_PSEUDO_REGISTER
734 || ! find_reg_note (insn, REG_DEAD, src_reg)
735 || REG_N_DEATHS (src_no) != 1
736 || REG_N_SETS (src_no) != 1)
737 return;
738 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
739 /* ??? We can't scan past the end of a basic block without updating
740 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
741 if (perhaps_ends_bb_p (p))
742 break;
744 if (! p)
745 return;
747 if (! (set = single_set (p))
748 || !MEM_P (SET_SRC (set))
749 /* If there's a REG_EQUIV note, this must be an insn that loads an
750 argument. Prefer keeping the note over doing this optimization. */
751 || find_reg_note (p, REG_EQUIV, NULL_RTX)
752 || SET_DEST (set) != src_reg)
753 return;
755 /* Be conservative: although this optimization is also valid for
756 volatile memory references, that could cause trouble in later passes. */
757 if (MEM_VOLATILE_P (SET_SRC (set)))
758 return;
760 /* Do not use a SUBREG to truncate from one mode to another if truncation
761 is not a nop. */
762 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
763 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
764 GET_MODE_BITSIZE (GET_MODE (src_reg))))
765 return;
767 old_mode = GET_MODE (src_reg);
768 PUT_MODE (src_reg, GET_MODE (src));
769 XEXP (src, 0) = SET_SRC (set);
771 /* Include this change in the group so that it's easily undone if
772 one of the changes in the group is invalid. */
773 validate_change (p, &SET_SRC (set), src, 1);
775 /* Now walk forward making additional replacements. We want to be able
776 to undo all the changes if a later substitution fails. */
777 while (p = NEXT_INSN (p), p != insn)
779 if (! INSN_P (p))
780 continue;
782 /* Make a tentative change. */
783 validate_replace_rtx_group (src_reg,
784 gen_lowpart_SUBREG (old_mode, src_reg),
788 validate_replace_rtx_group (src, src_reg, insn);
790 /* Now see if all the changes are valid. */
791 if (! apply_change_group ())
793 /* One or more changes were no good. Back out everything. */
794 PUT_MODE (src_reg, old_mode);
795 XEXP (src, 0) = src_reg;
797 else
799 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
800 if (note)
801 remove_note (p, note);
806 /* If we were not able to update the users of src to use dest directly, try
807 instead moving the value to dest directly before the operation. */
809 static void
810 copy_src_to_dest (rtx insn, rtx src, rtx dest)
812 rtx seq;
813 rtx link;
814 rtx next;
815 rtx set;
816 rtx move_insn;
817 rtx *p_insn_notes;
818 rtx *p_move_notes;
819 int src_regno;
820 int dest_regno;
821 int insn_uid;
822 int move_uid;
824 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
825 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
826 parameter when there is no frame pointer that is not allocated a register.
827 For now, we just reject them, rather than incrementing the live length. */
829 if (REG_P (src)
830 && REG_LIVE_LENGTH (REGNO (src)) > 0
831 && REG_P (dest)
832 && REG_LIVE_LENGTH (REGNO (dest)) > 0
833 && (set = single_set (insn)) != NULL_RTX
834 && !reg_mentioned_p (dest, SET_SRC (set))
835 && GET_MODE (src) == GET_MODE (dest))
837 int old_num_regs = reg_rtx_no;
839 /* Generate the src->dest move. */
840 start_sequence ();
841 emit_move_insn (dest, src);
842 seq = get_insns ();
843 end_sequence ();
844 /* If this sequence uses new registers, we may not use it. */
845 if (old_num_regs != reg_rtx_no
846 || ! validate_replace_rtx (src, dest, insn))
848 /* We have to restore reg_rtx_no to its old value, lest
849 recompute_reg_usage will try to compute the usage of the
850 new regs, yet reg_n_info is not valid for them. */
851 reg_rtx_no = old_num_regs;
852 return;
854 emit_insn_before (seq, insn);
855 move_insn = PREV_INSN (insn);
856 p_move_notes = &REG_NOTES (move_insn);
857 p_insn_notes = &REG_NOTES (insn);
859 /* Move any notes mentioning src to the move instruction. */
860 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
862 next = XEXP (link, 1);
863 if (XEXP (link, 0) == src)
865 *p_move_notes = link;
866 p_move_notes = &XEXP (link, 1);
868 else
870 *p_insn_notes = link;
871 p_insn_notes = &XEXP (link, 1);
875 *p_move_notes = NULL_RTX;
876 *p_insn_notes = NULL_RTX;
878 insn_uid = INSN_UID (insn);
879 move_uid = INSN_UID (move_insn);
881 /* Update the various register tables. */
882 dest_regno = REGNO (dest);
883 INC_REG_N_SETS (dest_regno, 1);
884 REG_LIVE_LENGTH (dest_regno)++;
885 src_regno = REGNO (src);
886 if (! find_reg_note (move_insn, REG_DEAD, src))
887 REG_LIVE_LENGTH (src_regno)++;
891 /* reg_set_in_bb[REGNO] points to basic block iff the register is set
892 only once in the given block and has REG_EQUAL note. */
894 basic_block *reg_set_in_bb;
896 /* Size of reg_set_in_bb array. */
897 static unsigned int max_reg_computed;
900 /* Return whether REG is set in only one location, and is set to a
901 constant, but is set in a different basic block from INSN (an
902 instructions which uses REG). In this case REG is equivalent to a
903 constant, and we don't want to break that equivalence, because that
904 may increase register pressure and make reload harder. If REG is
905 set in the same basic block as INSN, we don't worry about it,
906 because we'll probably need a register anyhow (??? but what if REG
907 is used in a different basic block as well as this one?). */
909 static bool
910 reg_is_remote_constant_p (rtx reg, rtx insn)
912 basic_block bb;
913 rtx p;
914 int max;
916 if (!reg_set_in_bb)
918 max_reg_computed = max = max_reg_num ();
919 reg_set_in_bb = xcalloc (max, sizeof (*reg_set_in_bb));
921 FOR_EACH_BB (bb)
922 FOR_BB_INSNS (bb, p)
924 rtx s;
926 if (!INSN_P (p))
927 continue;
928 s = single_set (p);
929 /* This is the instruction which sets REG. If there is a
930 REG_EQUAL note, then REG is equivalent to a constant. */
931 if (s != 0
932 && REG_P (SET_DEST (s))
933 && REG_N_SETS (REGNO (SET_DEST (s))) == 1
934 && find_reg_note (p, REG_EQUAL, NULL_RTX))
935 reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
939 gcc_assert (REGNO (reg) < max_reg_computed);
940 if (reg_set_in_bb[REGNO (reg)] == NULL)
941 return false;
942 return (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn));
945 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
946 another add immediate instruction with the same source and dest registers,
947 and if we find one, we change INSN to an increment, and return 1. If
948 no changes are made, we return 0.
950 This changes
951 (set (reg100) (plus reg1 offset1))
953 (set (reg100) (plus reg1 offset2))
955 (set (reg100) (plus reg1 offset1))
957 (set (reg100) (plus reg100 offset2-offset1)) */
959 /* ??? What does this comment mean? */
960 /* cse disrupts preincrement / postdecrement sequences when it finds a
961 hard register as ultimate source, like the frame pointer. */
963 static int
964 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
966 rtx p, dst_death = 0;
967 int length, num_calls = 0, freq_calls = 0;
969 /* If SRC dies in INSN, we'd have to move the death note. This is
970 considered to be very unlikely, so we just skip the optimization
971 in this case. */
972 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
973 return 0;
975 /* Scan backward to find the first instruction that sets DST. */
977 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
979 rtx pset;
981 /* ??? We can't scan past the end of a basic block without updating
982 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
983 if (perhaps_ends_bb_p (p))
984 break;
985 else if (! INSN_P (p))
986 continue;
988 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
989 dst_death = p;
990 if (! dst_death)
991 length++;
993 pset = single_set (p);
994 if (pset && SET_DEST (pset) == dst
995 && GET_CODE (SET_SRC (pset)) == PLUS
996 && XEXP (SET_SRC (pset), 0) == src
997 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
999 HOST_WIDE_INT newconst
1000 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
1001 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
1003 if (add && validate_change (insn, &PATTERN (insn), add, 0))
1005 /* Remove the death note for DST from DST_DEATH. */
1006 if (dst_death)
1008 remove_death (REGNO (dst), dst_death);
1009 REG_LIVE_LENGTH (REGNO (dst)) += length;
1010 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
1011 REG_FREQ_CALLS_CROSSED (REGNO (dst)) += freq_calls;
1014 if (dump_file)
1015 fprintf (dump_file,
1016 "Fixed operand of insn %d.\n",
1017 INSN_UID (insn));
1019 #ifdef AUTO_INC_DEC
1020 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
1022 if (LABEL_P (p)
1023 || JUMP_P (p))
1024 break;
1025 if (! INSN_P (p))
1026 continue;
1027 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1029 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
1030 return 1;
1031 break;
1034 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1036 if (LABEL_P (p)
1037 || JUMP_P (p))
1038 break;
1039 if (! INSN_P (p))
1040 continue;
1041 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1043 try_auto_increment (p, insn, 0, dst, newconst, 1);
1044 break;
1047 #endif
1048 return 1;
1052 if (reg_set_p (dst, PATTERN (p)))
1053 break;
1055 /* If we have passed a call instruction, and the
1056 pseudo-reg SRC is not already live across a call,
1057 then don't perform the optimization. */
1058 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1059 hard regs are clobbered. Thus, we only use it for src for
1060 non-call insns. */
1061 if (CALL_P (p))
1063 if (! dst_death)
1065 num_calls++;
1066 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1069 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1070 break;
1072 if (call_used_regs [REGNO (dst)]
1073 || find_reg_fusage (p, CLOBBER, dst))
1074 break;
1076 else if (reg_set_p (src, PATTERN (p)))
1077 break;
1080 return 0;
1083 /* Main entry for the register move optimization.
1084 F is the first instruction.
1085 NREGS is one plus the highest pseudo-reg number used in the instruction.
1086 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1087 (or 0 if none should be output). */
1089 static void
1090 regmove_optimize (rtx f, int nregs)
1092 rtx insn;
1093 struct match match;
1094 int pass;
1095 int i;
1096 rtx copy_src, copy_dst;
1098 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1099 confused by non-call exceptions ending blocks. */
1100 if (flag_non_call_exceptions)
1101 return;
1103 df_note_add_problem ();
1104 df_analyze ();
1106 regstat_init_n_sets_and_refs ();
1107 regstat_compute_ri ();
1109 /* Find out where a potential flags register is live, and so that we
1110 can suppress some optimizations in those zones. */
1111 mark_flags_life_zones (discover_flags_reg ());
1113 regno_src_regno = XNEWVEC (int, nregs);
1114 for (i = nregs; --i >= 0; )
1115 regno_src_regno[i] = -1;
1117 /* A forward/backward pass. Replace output operands with input operands. */
1119 for (pass = 0; pass <= 2; pass++)
1121 if (! flag_regmove && pass >= flag_expensive_optimizations)
1122 goto done;
1124 if (dump_file)
1125 fprintf (dump_file, "Starting %s pass...\n",
1126 pass ? "backward" : "forward");
1128 for (insn = pass ? get_last_insn () : f; insn;
1129 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1131 rtx set;
1132 int op_no, match_no;
1134 set = single_set (insn);
1135 if (! set)
1136 continue;
1138 if (flag_expensive_optimizations && ! pass
1139 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1140 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1141 && REG_P (XEXP (SET_SRC (set), 0))
1142 && REG_P (SET_DEST (set)))
1143 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1145 if (flag_expensive_optimizations && ! pass
1146 && REG_P (SET_SRC (set))
1147 && REG_P (SET_DEST (set)))
1149 /* If this is a register-register copy where SRC is not dead,
1150 see if we can optimize it. If this optimization succeeds,
1151 it will become a copy where SRC is dead. */
1152 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1153 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1154 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1156 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1157 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1158 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1159 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1160 && SET_SRC (set) != SET_DEST (set))
1162 int srcregno = REGNO (SET_SRC (set));
1163 if (regno_src_regno[srcregno] >= 0)
1164 srcregno = regno_src_regno[srcregno];
1165 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1169 if (! flag_regmove)
1170 continue;
1172 if (! find_matches (insn, &match))
1173 continue;
1175 /* Now scan through the operands looking for a source operand
1176 which is supposed to match the destination operand.
1177 Then scan forward for an instruction which uses the dest
1178 operand.
1179 If it dies there, then replace the dest in both operands with
1180 the source operand. */
1182 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1184 rtx src, dst, src_subreg;
1185 enum reg_class src_class, dst_class;
1187 match_no = match.with[op_no];
1189 /* Nothing to do if the two operands aren't supposed to match. */
1190 if (match_no < 0)
1191 continue;
1193 src = recog_data.operand[op_no];
1194 dst = recog_data.operand[match_no];
1196 if (!REG_P (src))
1197 continue;
1199 src_subreg = src;
1200 if (GET_CODE (dst) == SUBREG
1201 && GET_MODE_SIZE (GET_MODE (dst))
1202 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1204 dst = SUBREG_REG (dst);
1205 src_subreg = lowpart_subreg (GET_MODE (dst),
1206 src, GET_MODE (src));
1207 if (!src_subreg)
1208 continue;
1210 if (!REG_P (dst)
1211 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1212 continue;
1214 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1216 if (match.commutative[op_no] < op_no)
1217 regno_src_regno[REGNO (dst)] = REGNO (src);
1218 continue;
1221 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1222 continue;
1224 /* op_no/src must be a read-only operand, and
1225 match_operand/dst must be a write-only operand. */
1226 if (match.use[op_no] != READ
1227 || match.use[match_no] != WRITE)
1228 continue;
1230 if (match.early_clobber[match_no]
1231 && count_occurrences (PATTERN (insn), src, 0) > 1)
1232 continue;
1234 /* Make sure match_operand is the destination. */
1235 if (recog_data.operand[match_no] != SET_DEST (set))
1236 continue;
1238 /* If the operands already match, then there is nothing to do. */
1239 if (operands_match_p (src, dst))
1240 continue;
1242 /* But in the commutative case, we might find a better match. */
1243 if (match.commutative[op_no] >= 0)
1245 rtx comm = recog_data.operand[match.commutative[op_no]];
1246 if (operands_match_p (comm, dst)
1247 && (replacement_quality (comm)
1248 >= replacement_quality (src)))
1249 continue;
1252 src_class = reg_preferred_class (REGNO (src));
1253 dst_class = reg_preferred_class (REGNO (dst));
1254 if (! regclass_compatible_p (src_class, dst_class))
1255 continue;
1257 if (GET_MODE (src) != GET_MODE (dst))
1258 continue;
1260 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1261 op_no, match_no))
1262 break;
1267 /* A backward pass. Replace input operands with output operands. */
1269 if (dump_file)
1270 fprintf (dump_file, "Starting backward pass...\n");
1272 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1274 if (INSN_P (insn))
1276 int op_no, match_no;
1277 int success = 0;
1279 if (! find_matches (insn, &match))
1280 continue;
1282 /* Now scan through the operands looking for a destination operand
1283 which is supposed to match a source operand.
1284 Then scan backward for an instruction which sets the source
1285 operand. If safe, then replace the source operand with the
1286 dest operand in both instructions. */
1288 copy_src = NULL_RTX;
1289 copy_dst = NULL_RTX;
1290 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1292 rtx set, p, src, dst;
1293 rtx src_note, dst_note;
1294 int num_calls = 0, freq_calls = 0;
1295 enum reg_class src_class, dst_class;
1296 int length;
1298 match_no = match.with[op_no];
1300 /* Nothing to do if the two operands aren't supposed to match. */
1301 if (match_no < 0)
1302 continue;
1304 dst = recog_data.operand[match_no];
1305 src = recog_data.operand[op_no];
1307 if (!REG_P (src))
1308 continue;
1310 if (!REG_P (dst)
1311 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1312 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1313 || GET_MODE (src) != GET_MODE (dst))
1314 continue;
1316 /* If the operands already match, then there is nothing to do. */
1317 if (operands_match_p (src, dst))
1318 continue;
1320 if (match.commutative[op_no] >= 0)
1322 rtx comm = recog_data.operand[match.commutative[op_no]];
1323 if (operands_match_p (comm, dst))
1324 continue;
1327 set = single_set (insn);
1328 if (! set)
1329 continue;
1331 /* Note that single_set ignores parts of a parallel set for
1332 which one of the destinations is REG_UNUSED. We can't
1333 handle that here, since we can wind up rewriting things
1334 such that a single register is set twice within a single
1335 parallel. */
1336 if (reg_set_p (src, insn))
1337 continue;
1339 /* match_no/dst must be a write-only operand, and
1340 operand_operand/src must be a read-only operand. */
1341 if (match.use[op_no] != READ
1342 || match.use[match_no] != WRITE)
1343 continue;
1345 if (match.early_clobber[match_no]
1346 && count_occurrences (PATTERN (insn), src, 0) > 1)
1347 continue;
1349 /* Make sure match_no is the destination. */
1350 if (recog_data.operand[match_no] != SET_DEST (set))
1351 continue;
1353 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1355 if (GET_CODE (SET_SRC (set)) == PLUS
1356 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1357 && XEXP (SET_SRC (set), 0) == src
1358 && fixup_match_2 (insn, dst, src,
1359 XEXP (SET_SRC (set), 1)))
1360 break;
1361 continue;
1363 src_class = reg_preferred_class (REGNO (src));
1364 dst_class = reg_preferred_class (REGNO (dst));
1366 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1368 /* We used to force the copy here like in other cases, but
1369 it produces worse code, as it eliminates no copy
1370 instructions and the copy emitted will be produced by
1371 reload anyway. On patterns with multiple alternatives,
1372 there may be better solution available.
1374 In particular this change produced slower code for numeric
1375 i387 programs. */
1377 continue;
1380 if (! regclass_compatible_p (src_class, dst_class))
1382 if (!copy_src)
1384 copy_src = src;
1385 copy_dst = dst;
1387 continue;
1390 /* Can not modify an earlier insn to set dst if this insn
1391 uses an old value in the source. */
1392 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1394 if (!copy_src)
1396 copy_src = src;
1397 copy_dst = dst;
1399 continue;
1402 /* If src is set once in a different basic block,
1403 and is set equal to a constant, then do not use
1404 it for this optimization, as this would make it
1405 no longer equivalent to a constant. */
1407 if (reg_is_remote_constant_p (src, insn))
1409 if (!copy_src)
1411 copy_src = src;
1412 copy_dst = dst;
1414 continue;
1418 if (dump_file)
1419 fprintf (dump_file,
1420 "Could fix operand %d of insn %d matching operand %d.\n",
1421 op_no, INSN_UID (insn), match_no);
1423 /* Scan backward to find the first instruction that uses
1424 the input operand. If the operand is set here, then
1425 replace it in both instructions with match_no. */
1427 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1429 rtx pset;
1431 /* ??? We can't scan past the end of a basic block without
1432 updating the register lifetime info
1433 (REG_DEAD/basic_block_live_at_start). */
1434 if (perhaps_ends_bb_p (p))
1435 break;
1436 else if (! INSN_P (p))
1437 continue;
1439 length++;
1441 /* ??? See if all of SRC is set in P. This test is much
1442 more conservative than it needs to be. */
1443 pset = single_set (p);
1444 if (pset && SET_DEST (pset) == src)
1446 /* We use validate_replace_rtx, in case there
1447 are multiple identical source operands. All of
1448 them have to be changed at the same time. */
1449 if (validate_replace_rtx (src, dst, insn))
1451 if (validate_change (p, &SET_DEST (pset),
1452 dst, 0))
1453 success = 1;
1454 else
1456 /* Change all source operands back.
1457 This modifies the dst as a side-effect. */
1458 validate_replace_rtx (dst, src, insn);
1459 /* Now make sure the dst is right. */
1460 validate_change (insn,
1461 recog_data.operand_loc[match_no],
1462 dst, 0);
1465 break;
1468 /* We can't make this change if SRC is read or
1469 partially written in P, since we are going to
1470 eliminate SRC. We can't make this change
1471 if DST is mentioned at all in P,
1472 since we are going to change its value. */
1473 if (reg_overlap_mentioned_p (src, PATTERN (p))
1474 || reg_mentioned_p (dst, PATTERN (p)))
1475 break;
1477 /* If we have passed a call instruction, and the
1478 pseudo-reg DST is not already live across a call,
1479 then don't perform the optimization. */
1480 if (CALL_P (p))
1482 num_calls++;
1483 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1485 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1486 break;
1490 if (success)
1492 int dstno, srcno;
1494 /* Remove the death note for SRC from INSN. */
1495 remove_note (insn, src_note);
1496 /* Move the death note for SRC to P if it is used
1497 there. */
1498 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1500 XEXP (src_note, 1) = REG_NOTES (p);
1501 REG_NOTES (p) = src_note;
1503 /* If there is a REG_DEAD note for DST on P, then remove
1504 it, because DST is now set there. */
1505 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1506 remove_note (p, dst_note);
1508 dstno = REGNO (dst);
1509 srcno = REGNO (src);
1511 INC_REG_N_SETS (dstno, 1);
1512 INC_REG_N_SETS (srcno, -1);
1514 REG_N_CALLS_CROSSED (dstno) += num_calls;
1515 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1516 REG_FREQ_CALLS_CROSSED (dstno) += freq_calls;
1517 REG_FREQ_CALLS_CROSSED (srcno) -= freq_calls;
1519 REG_LIVE_LENGTH (dstno) += length;
1520 if (REG_LIVE_LENGTH (srcno) >= 0)
1522 REG_LIVE_LENGTH (srcno) -= length;
1523 /* REG_LIVE_LENGTH is only an approximation after
1524 combine if sched is not run, so make sure that we
1525 still have a reasonable value. */
1526 if (REG_LIVE_LENGTH (srcno) < 2)
1527 REG_LIVE_LENGTH (srcno) = 2;
1530 if (dump_file)
1531 fprintf (dump_file,
1532 "Fixed operand %d of insn %d matching operand %d.\n",
1533 op_no, INSN_UID (insn), match_no);
1535 break;
1539 /* If we weren't able to replace any of the alternatives, try an
1540 alternative approach of copying the source to the destination. */
1541 if (!success && copy_src != NULL_RTX)
1542 copy_src_to_dest (insn, copy_src, copy_dst);
1546 done:
1547 /* Clean up. */
1548 free (regno_src_regno);
1549 if (reg_set_in_bb)
1551 free (reg_set_in_bb);
1552 reg_set_in_bb = NULL;
1554 regstat_free_n_sets_and_refs ();
1555 regstat_free_ri ();
1558 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1559 Returns 0 if INSN can't be recognized, or if the alternative can't be
1560 determined.
1562 Initialize the info in MATCHP based on the constraints. */
1564 static int
1565 find_matches (rtx insn, struct match *matchp)
1567 int likely_spilled[MAX_RECOG_OPERANDS];
1568 int op_no;
1569 int any_matches = 0;
1571 extract_insn (insn);
1572 if (! constrain_operands (0))
1573 return 0;
1575 /* Must initialize this before main loop, because the code for
1576 the commutative case may set matches for operands other than
1577 the current one. */
1578 for (op_no = recog_data.n_operands; --op_no >= 0; )
1579 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1581 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1583 const char *p;
1584 char c;
1585 int i = 0;
1587 p = recog_data.constraints[op_no];
1589 likely_spilled[op_no] = 0;
1590 matchp->use[op_no] = READ;
1591 matchp->early_clobber[op_no] = 0;
1592 if (*p == '=')
1593 matchp->use[op_no] = WRITE;
1594 else if (*p == '+')
1595 matchp->use[op_no] = READWRITE;
1597 for (;*p && i < which_alternative; p++)
1598 if (*p == ',')
1599 i++;
1601 while ((c = *p) != '\0' && c != ',')
1603 switch (c)
1605 case '=':
1606 break;
1607 case '+':
1608 break;
1609 case '&':
1610 matchp->early_clobber[op_no] = 1;
1611 break;
1612 case '%':
1613 matchp->commutative[op_no] = op_no + 1;
1614 matchp->commutative[op_no + 1] = op_no;
1615 break;
1617 case '0': case '1': case '2': case '3': case '4':
1618 case '5': case '6': case '7': case '8': case '9':
1620 char *end;
1621 unsigned long match_ul = strtoul (p, &end, 10);
1622 int match = match_ul;
1624 p = end;
1626 if (match < op_no && likely_spilled[match])
1627 continue;
1628 matchp->with[op_no] = match;
1629 any_matches = 1;
1630 if (matchp->commutative[op_no] >= 0)
1631 matchp->with[matchp->commutative[op_no]] = match;
1633 continue;
1635 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1636 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1637 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1638 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1639 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1640 likely_spilled[op_no] = 1;
1641 break;
1643 p += CONSTRAINT_LEN (c, p);
1646 return any_matches;
1649 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1650 assumed to be in INSN. */
1652 static void
1653 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1655 rtx x = *loc;
1656 enum rtx_code code;
1657 const char *fmt;
1658 int i, j;
1660 if (! x)
1661 return;
1663 code = GET_CODE (x);
1664 if (code == REG)
1666 if (REGNO (x) != dst_reg)
1667 return;
1669 validate_change (insn, loc, src, 1);
1671 return;
1674 /* Process each of our operands recursively. */
1675 fmt = GET_RTX_FORMAT (code);
1676 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1677 if (*fmt == 'e')
1678 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1679 else if (*fmt == 'E')
1680 for (j = 0; j < XVECLEN (x, i); j++)
1681 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1684 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1685 the only set in INSN. INSN has just been recognized and constrained.
1686 SRC is operand number OPERAND_NUMBER in INSN.
1687 DST is operand number MATCH_NUMBER in INSN.
1688 If BACKWARD is nonzero, we have been called in a backward pass.
1689 Return nonzero for success. */
1691 static int
1692 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1693 int backward, int operand_number, int match_number)
1695 rtx p;
1696 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1697 int success = 0;
1698 int num_calls = 0, freq_calls = 0, s_num_calls = 0, s_freq_calls = 0;
1699 enum rtx_code code = NOTE;
1700 HOST_WIDE_INT insn_const = 0, newconst = 0;
1701 rtx overlap = 0; /* need to move insn ? */
1702 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1703 int length, s_length;
1705 if (! src_note)
1707 /* Look for (set (regX) (op regA constX))
1708 (set (regY) (op regA constY))
1709 and change that to
1710 (set (regA) (op regA constX)).
1711 (set (regY) (op regA constY-constX)).
1712 This works for add and shift operations, if
1713 regA is dead after or set by the second insn. */
1715 code = GET_CODE (SET_SRC (set));
1716 if ((code == PLUS || code == LSHIFTRT
1717 || code == ASHIFT || code == ASHIFTRT)
1718 && XEXP (SET_SRC (set), 0) == src
1719 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1720 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1721 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1722 return 0;
1723 else
1724 /* We might find a src_note while scanning. */
1725 code = NOTE;
1728 if (dump_file)
1729 fprintf (dump_file,
1730 "Could fix operand %d of insn %d matching operand %d.\n",
1731 operand_number, INSN_UID (insn), match_number);
1733 /* If SRC is equivalent to a constant set in a different basic block,
1734 then do not use it for this optimization. We want the equivalence
1735 so that if we have to reload this register, we can reload the
1736 constant, rather than extending the lifespan of the register. */
1737 if (reg_is_remote_constant_p (src, insn))
1738 return 0;
1740 /* Scan forward to find the next instruction that
1741 uses the output operand. If the operand dies here,
1742 then replace it in both instructions with
1743 operand_number. */
1745 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1747 if (CALL_P (p))
1748 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1749 REGNO (dst), src, p);
1751 /* ??? We can't scan past the end of a basic block without updating
1752 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1753 if (perhaps_ends_bb_p (p))
1754 break;
1755 else if (! INSN_P (p))
1756 continue;
1758 length++;
1759 if (src_note)
1760 s_length++;
1762 if (reg_set_p (src, p) || reg_set_p (dst, p)
1763 || (GET_CODE (PATTERN (p)) == USE
1764 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1765 break;
1767 /* See if all of DST dies in P. This test is
1768 slightly more conservative than it needs to be. */
1769 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1770 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1772 /* If we would be moving INSN, check that we won't move it
1773 into the shadow of a live a live flags register. */
1774 /* ??? We only try to move it in front of P, although
1775 we could move it anywhere between OVERLAP and P. */
1776 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1777 break;
1779 if (! src_note)
1781 rtx q;
1782 rtx set2 = NULL_RTX;
1784 /* If an optimization is done, the value of SRC while P
1785 is executed will be changed. Check that this is OK. */
1786 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1787 break;
1788 for (q = p; q; q = NEXT_INSN (q))
1790 /* ??? We can't scan past the end of a basic block without
1791 updating the register lifetime info
1792 (REG_DEAD/basic_block_live_at_start). */
1793 if (perhaps_ends_bb_p (q))
1795 q = 0;
1796 break;
1798 else if (! INSN_P (q))
1799 continue;
1800 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1801 || reg_set_p (src, q))
1802 break;
1804 if (q)
1805 set2 = single_set (q);
1806 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1807 || XEXP (SET_SRC (set2), 0) != src
1808 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1809 || (SET_DEST (set2) != src
1810 && ! find_reg_note (q, REG_DEAD, src)))
1812 /* If this is a PLUS, we can still save a register by doing
1813 src += insn_const;
1815 src -= insn_const; .
1816 This also gives opportunities for subsequent
1817 optimizations in the backward pass, so do it there. */
1818 if (code == PLUS && backward
1819 /* Don't do this if we can likely tie DST to SET_DEST
1820 of P later; we can't do this tying here if we got a
1821 hard register. */
1822 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1823 && single_set (p)
1824 && REG_P (SET_DEST (single_set (p)))
1825 && (REGNO (SET_DEST (single_set (p)))
1826 < FIRST_PSEUDO_REGISTER))
1827 /* We may only emit an insn directly after P if we
1828 are not in the shadow of a live flags register. */
1829 && GET_MODE (p) == VOIDmode)
1831 search_end = q;
1832 q = insn;
1833 set2 = set;
1834 newconst = -insn_const;
1835 code = MINUS;
1837 else
1838 break;
1840 else
1842 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1843 /* Reject out of range shifts. */
1844 if (code != PLUS
1845 && (newconst < 0
1846 || ((unsigned HOST_WIDE_INT) newconst
1847 >= (GET_MODE_BITSIZE (GET_MODE
1848 (SET_SRC (set2)))))))
1849 break;
1850 if (code == PLUS)
1852 post_inc = q;
1853 if (SET_DEST (set2) != src)
1854 post_inc_set = set2;
1857 /* We use 1 as last argument to validate_change so that all
1858 changes are accepted or rejected together by apply_change_group
1859 when it is called by validate_replace_rtx . */
1860 validate_change (q, &XEXP (SET_SRC (set2), 1),
1861 GEN_INT (newconst), 1);
1863 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1864 if (validate_replace_rtx (dst, src_subreg, p))
1865 success = 1;
1866 break;
1869 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1870 break;
1871 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1873 /* INSN was already checked to be movable wrt. the registers that it
1874 sets / uses when we found no REG_DEAD note for src on it, but it
1875 still might clobber the flags register. We'll have to check that
1876 we won't insert it into the shadow of a live flags register when
1877 we finally know where we are to move it. */
1878 overlap = p;
1879 src_note = find_reg_note (p, REG_DEAD, src);
1882 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1883 already live across a call, then don't perform the optimization. */
1884 if (CALL_P (p))
1886 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1887 break;
1889 num_calls++;
1890 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1892 if (src_note)
1894 s_num_calls++;
1895 s_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1900 if (! success)
1901 return 0;
1903 /* Remove the death note for DST from P. */
1904 remove_note (p, dst_note);
1905 if (code == MINUS)
1907 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1908 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1909 && search_end
1910 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1911 post_inc = 0;
1912 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1913 INC_REG_N_SETS (REGNO (src), 1);
1914 REG_LIVE_LENGTH (REGNO (src))++;
1916 if (overlap)
1918 /* The lifetime of src and dest overlap,
1919 but we can change this by moving insn. */
1920 rtx pat = PATTERN (insn);
1921 if (src_note)
1922 remove_note (overlap, src_note);
1923 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1924 && code == PLUS
1925 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1926 insn = overlap;
1927 else
1929 rtx notes = REG_NOTES (insn);
1931 p = emit_insn_after_setloc (pat, PREV_INSN (p), INSN_LOCATOR (insn));
1932 delete_insn (insn);
1933 REG_NOTES (p) = notes;
1934 df_notes_rescan (p);
1937 /* Sometimes we'd generate src = const; src += n;
1938 if so, replace the instruction that set src
1939 in the first place. */
1941 if (! overlap && (code == PLUS || code == MINUS))
1943 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1944 rtx q, set2 = NULL_RTX;
1945 int num_calls2 = 0, s_length2 = 0, freq_calls2 = 0;
1947 if (note && CONSTANT_P (XEXP (note, 0)))
1949 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1951 /* ??? We can't scan past the end of a basic block without
1952 updating the register lifetime info
1953 (REG_DEAD/basic_block_live_at_start). */
1954 if (perhaps_ends_bb_p (q))
1956 q = 0;
1957 break;
1959 else if (! INSN_P (q))
1960 continue;
1962 s_length2++;
1963 if (reg_set_p (src, q))
1965 set2 = single_set (q);
1966 break;
1968 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1970 q = 0;
1971 break;
1973 if (CALL_P (p))
1975 num_calls2++;
1976 freq_calls2 += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1979 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1980 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1982 delete_insn (q);
1983 INC_REG_N_SETS (REGNO (src), -1);
1984 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1985 REG_FREQ_CALLS_CROSSED (REGNO (src)) -= freq_calls2;
1986 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1987 insn_const = 0;
1992 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1993 && (code == PLUS || code == MINUS) && insn_const
1994 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1995 insn = p;
1996 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1997 && post_inc
1998 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1999 post_inc = 0;
2000 /* If post_inc still prevails, try to find an
2001 insn where it can be used as a pre-in/decrement.
2002 If code is MINUS, this was already tried. */
2003 if (post_inc && code == PLUS
2004 /* Check that newconst is likely to be usable
2005 in a pre-in/decrement before starting the search. */
2006 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
2007 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
2008 && exact_log2 (newconst))
2010 rtx q, inc_dest;
2012 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
2013 for (q = post_inc; (q = NEXT_INSN (q)); )
2015 /* ??? We can't scan past the end of a basic block without updating
2016 the register lifetime info
2017 (REG_DEAD/basic_block_live_at_start). */
2018 if (perhaps_ends_bb_p (q))
2019 break;
2020 else if (! INSN_P (q))
2021 continue;
2022 else if (src != inc_dest
2023 && (reg_overlap_mentioned_p (src, PATTERN (q))
2024 || reg_set_p (src, q)))
2025 break;
2026 else if (reg_set_p (inc_dest, q))
2027 break;
2028 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
2030 try_auto_increment (q, post_inc,
2031 post_inc_set, inc_dest, newconst, 1);
2032 break;
2037 /* Move the death note for DST to INSN if it is used
2038 there. */
2039 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
2041 XEXP (dst_note, 1) = REG_NOTES (insn);
2042 REG_NOTES (insn) = dst_note;
2045 if (src_note)
2047 /* Move the death note for SRC from INSN to P. */
2048 if (! overlap)
2049 remove_note (insn, src_note);
2050 XEXP (src_note, 1) = REG_NOTES (p);
2051 REG_NOTES (p) = src_note;
2053 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2054 REG_FREQ_CALLS_CROSSED (REGNO (src)) += s_freq_calls;
2057 INC_REG_N_SETS (REGNO (src), 1);
2058 INC_REG_N_SETS (REGNO (dst), -1);
2060 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2061 REG_FREQ_CALLS_CROSSED (REGNO (dst)) -= freq_calls;
2063 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2064 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2066 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2067 /* REG_LIVE_LENGTH is only an approximation after
2068 combine if sched is not run, so make sure that we
2069 still have a reasonable value. */
2070 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2071 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2073 if (dump_file)
2074 fprintf (dump_file,
2075 "Fixed operand %d of insn %d matching operand %d.\n",
2076 operand_number, INSN_UID (insn), match_number);
2077 return 1;
2081 /* Return nonzero if X is stable and mentions no registers but for
2082 mentioning SRC or mentioning / changing DST . If in doubt, presume
2083 it is unstable.
2084 The rationale is that we want to check if we can move an insn easily
2085 while just paying attention to SRC and DST. */
2086 static int
2087 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2089 RTX_CODE code = GET_CODE (x);
2090 switch (GET_RTX_CLASS (code))
2092 case RTX_UNARY:
2093 case RTX_BIN_ARITH:
2094 case RTX_COMM_ARITH:
2095 case RTX_COMPARE:
2096 case RTX_COMM_COMPARE:
2097 case RTX_TERNARY:
2098 case RTX_BITFIELD_OPS:
2100 int i;
2101 const char *fmt = GET_RTX_FORMAT (code);
2102 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2103 if (fmt[i] == 'e'
2104 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2105 return 0;
2106 return 1;
2108 case RTX_OBJ:
2109 if (code == REG)
2110 return x == src || x == dst;
2111 /* If this is a MEM, look inside - there might be a register hidden in
2112 the address of an unchanging MEM. */
2113 if (code == MEM
2114 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2115 return 0;
2116 /* Fall through. */
2117 default:
2118 return ! rtx_unstable_p (x);
2123 static bool
2124 gate_handle_regmove (void)
2126 return (optimize > 0 && flag_regmove);
2129 /* Register allocation pre-pass, to reduce number of moves necessary
2130 for two-address machines. */
2131 static unsigned int
2132 rest_of_handle_regmove (void)
2134 regmove_optimize (get_insns (), max_reg_num ());
2135 return 0;
2138 struct rtl_opt_pass pass_regmove =
2141 RTL_PASS,
2142 "regmove", /* name */
2143 gate_handle_regmove, /* gate */
2144 rest_of_handle_regmove, /* execute */
2145 NULL, /* sub */
2146 NULL, /* next */
2147 0, /* static_pass_number */
2148 TV_REGMOVE, /* tv_id */
2149 0, /* properties_required */
2150 0, /* properties_provided */
2151 0, /* properties_destroyed */
2152 0, /* todo_flags_start */
2153 TODO_df_finish | TODO_verify_rtl_sharing |
2154 TODO_dump_func |
2155 TODO_ggc_collect /* todo_flags_finish */