Update concepts branch to revision 131834
[official-gcc.git] / gcc / ifcvt.c
blobe1601b1eacb0a469529fe06e4facc32c2443c954
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_execution
51 #define HAVE_conditional_execution 0
52 #endif
53 #ifndef HAVE_conditional_move
54 #define HAVE_conditional_move 0
55 #endif
56 #ifndef HAVE_incscc
57 #define HAVE_incscc 0
58 #endif
59 #ifndef HAVE_decscc
60 #define HAVE_decscc 0
61 #endif
62 #ifndef HAVE_trap
63 #define HAVE_trap 0
64 #endif
65 #ifndef HAVE_conditional_trap
66 #define HAVE_conditional_trap 0
67 #endif
69 #ifndef MAX_CONDITIONAL_EXECUTE
70 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
71 #endif
73 #define IFCVT_MULTIPLE_DUMPS 1
75 #define NULL_BLOCK ((basic_block) NULL)
77 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
78 static int num_possible_if_blocks;
80 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
81 execution. */
82 static int num_updated_if_blocks;
84 /* # of changes made. */
85 static int num_true_changes;
87 /* Whether conditional execution changes were made. */
88 static int cond_exec_changed_p;
90 /* Forward references. */
91 static int count_bb_insns (const_basic_block);
92 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
93 static rtx first_active_insn (basic_block);
94 static rtx last_active_insn (basic_block, int);
95 static basic_block block_fallthru (basic_block);
96 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
97 static rtx cond_exec_get_condition (rtx);
98 static rtx noce_get_condition (rtx, rtx *, bool);
99 static int noce_operand_ok (const_rtx);
100 static void merge_if_block (ce_if_block_t *);
101 static int find_cond_trap (basic_block, edge, edge);
102 static basic_block find_if_header (basic_block, int);
103 static int block_jumps_and_fallthru_p (basic_block, basic_block);
104 static int noce_find_if_block (basic_block, edge, edge, int);
105 static int cond_exec_find_if_block (ce_if_block_t *);
106 static int find_if_case_1 (basic_block, edge, edge);
107 static int find_if_case_2 (basic_block, edge, edge);
108 static int find_memory (rtx *, void *);
109 static int dead_or_predicable (basic_block, basic_block, basic_block,
110 basic_block, int);
111 static void noce_emit_move_insn (rtx, rtx);
112 static rtx block_has_only_trap (basic_block);
114 /* Count the number of non-jump active insns in BB. */
116 static int
117 count_bb_insns (const_basic_block bb)
119 int count = 0;
120 rtx insn = BB_HEAD (bb);
122 while (1)
124 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
125 count++;
127 if (insn == BB_END (bb))
128 break;
129 insn = NEXT_INSN (insn);
132 return count;
135 /* Determine whether the total insn_rtx_cost on non-jump insns in
136 basic block BB is less than MAX_COST. This function returns
137 false if the cost of any instruction could not be estimated. */
139 static bool
140 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
142 int count = 0;
143 rtx insn = BB_HEAD (bb);
145 while (1)
147 if (NONJUMP_INSN_P (insn))
149 int cost = insn_rtx_cost (PATTERN (insn));
150 if (cost == 0)
151 return false;
153 /* If this instruction is the load or set of a "stack" register,
154 such as a floating point register on x87, then the cost of
155 speculatively executing this insn may need to include
156 the additional cost of popping its result off of the
157 register stack. Unfortunately, correctly recognizing and
158 accounting for this additional overhead is tricky, so for
159 now we simply prohibit such speculative execution. */
160 #ifdef STACK_REGS
162 rtx set = single_set (insn);
163 if (set && STACK_REG_P (SET_DEST (set)))
164 return false;
166 #endif
168 count += cost;
169 if (count >= max_cost)
170 return false;
172 else if (CALL_P (insn))
173 return false;
175 if (insn == BB_END (bb))
176 break;
177 insn = NEXT_INSN (insn);
180 return true;
183 /* Return the first non-jump active insn in the basic block. */
185 static rtx
186 first_active_insn (basic_block bb)
188 rtx insn = BB_HEAD (bb);
190 if (LABEL_P (insn))
192 if (insn == BB_END (bb))
193 return NULL_RTX;
194 insn = NEXT_INSN (insn);
197 while (NOTE_P (insn))
199 if (insn == BB_END (bb))
200 return NULL_RTX;
201 insn = NEXT_INSN (insn);
204 if (JUMP_P (insn))
205 return NULL_RTX;
207 return insn;
210 /* Return the last non-jump active (non-jump) insn in the basic block. */
212 static rtx
213 last_active_insn (basic_block bb, int skip_use_p)
215 rtx insn = BB_END (bb);
216 rtx head = BB_HEAD (bb);
218 while (NOTE_P (insn)
219 || JUMP_P (insn)
220 || (skip_use_p
221 && NONJUMP_INSN_P (insn)
222 && GET_CODE (PATTERN (insn)) == USE))
224 if (insn == head)
225 return NULL_RTX;
226 insn = PREV_INSN (insn);
229 if (LABEL_P (insn))
230 return NULL_RTX;
232 return insn;
235 /* Return the basic block reached by falling though the basic block BB. */
237 static basic_block
238 block_fallthru (basic_block bb)
240 edge e;
241 edge_iterator ei;
243 FOR_EACH_EDGE (e, ei, bb->succs)
244 if (e->flags & EDGE_FALLTHRU)
245 break;
247 return (e) ? e->dest : NULL_BLOCK;
250 /* Go through a bunch of insns, converting them to conditional
251 execution format if possible. Return TRUE if all of the non-note
252 insns were processed. */
254 static int
255 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
256 /* if block information */rtx start,
257 /* first insn to look at */rtx end,
258 /* last insn to look at */rtx test,
259 /* conditional execution test */rtx prob_val,
260 /* probability of branch taken. */int mod_ok)
262 int must_be_last = FALSE;
263 rtx insn;
264 rtx xtest;
265 rtx pattern;
267 if (!start || !end)
268 return FALSE;
270 for (insn = start; ; insn = NEXT_INSN (insn))
272 if (NOTE_P (insn))
273 goto insn_done;
275 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
277 /* Remove USE insns that get in the way. */
278 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
280 /* ??? Ug. Actually unlinking the thing is problematic,
281 given what we'd have to coordinate with our callers. */
282 SET_INSN_DELETED (insn);
283 goto insn_done;
286 /* Last insn wasn't last? */
287 if (must_be_last)
288 return FALSE;
290 if (modified_in_p (test, insn))
292 if (!mod_ok)
293 return FALSE;
294 must_be_last = TRUE;
297 /* Now build the conditional form of the instruction. */
298 pattern = PATTERN (insn);
299 xtest = copy_rtx (test);
301 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
302 two conditions. */
303 if (GET_CODE (pattern) == COND_EXEC)
305 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
306 return FALSE;
308 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
309 COND_EXEC_TEST (pattern));
310 pattern = COND_EXEC_CODE (pattern);
313 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
315 /* If the machine needs to modify the insn being conditionally executed,
316 say for example to force a constant integer operand into a temp
317 register, do so here. */
318 #ifdef IFCVT_MODIFY_INSN
319 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
320 if (! pattern)
321 return FALSE;
322 #endif
324 validate_change (insn, &PATTERN (insn), pattern, 1);
326 if (CALL_P (insn) && prob_val)
327 validate_change (insn, &REG_NOTES (insn),
328 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
329 REG_NOTES (insn)), 1);
331 insn_done:
332 if (insn == end)
333 break;
336 return TRUE;
339 /* Return the condition for a jump. Do not do any special processing. */
341 static rtx
342 cond_exec_get_condition (rtx jump)
344 rtx test_if, cond;
346 if (any_condjump_p (jump))
347 test_if = SET_SRC (pc_set (jump));
348 else
349 return NULL_RTX;
350 cond = XEXP (test_if, 0);
352 /* If this branches to JUMP_LABEL when the condition is false,
353 reverse the condition. */
354 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
355 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
357 enum rtx_code rev = reversed_comparison_code (cond, jump);
358 if (rev == UNKNOWN)
359 return NULL_RTX;
361 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
362 XEXP (cond, 1));
365 return cond;
368 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
369 to conditional execution. Return TRUE if we were successful at
370 converting the block. */
372 static int
373 cond_exec_process_if_block (ce_if_block_t * ce_info,
374 /* if block information */int do_multiple_p)
376 basic_block test_bb = ce_info->test_bb; /* last test block */
377 basic_block then_bb = ce_info->then_bb; /* THEN */
378 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
379 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
380 rtx then_start; /* first insn in THEN block */
381 rtx then_end; /* last insn + 1 in THEN block */
382 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
383 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
384 int max; /* max # of insns to convert. */
385 int then_mod_ok; /* whether conditional mods are ok in THEN */
386 rtx true_expr; /* test for else block insns */
387 rtx false_expr; /* test for then block insns */
388 rtx true_prob_val; /* probability of else block */
389 rtx false_prob_val; /* probability of then block */
390 int n_insns;
391 enum rtx_code false_code;
393 /* If test is comprised of && or || elements, and we've failed at handling
394 all of them together, just use the last test if it is the special case of
395 && elements without an ELSE block. */
396 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
398 if (else_bb || ! ce_info->and_and_p)
399 return FALSE;
401 ce_info->test_bb = test_bb = ce_info->last_test_bb;
402 ce_info->num_multiple_test_blocks = 0;
403 ce_info->num_and_and_blocks = 0;
404 ce_info->num_or_or_blocks = 0;
407 /* Find the conditional jump to the ELSE or JOIN part, and isolate
408 the test. */
409 test_expr = cond_exec_get_condition (BB_END (test_bb));
410 if (! test_expr)
411 return FALSE;
413 /* If the conditional jump is more than just a conditional jump,
414 then we can not do conditional execution conversion on this block. */
415 if (! onlyjump_p (BB_END (test_bb)))
416 return FALSE;
418 /* Collect the bounds of where we're to search, skipping any labels, jumps
419 and notes at the beginning and end of the block. Then count the total
420 number of insns and see if it is small enough to convert. */
421 then_start = first_active_insn (then_bb);
422 then_end = last_active_insn (then_bb, TRUE);
423 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
424 max = MAX_CONDITIONAL_EXECUTE;
426 if (else_bb)
428 max *= 2;
429 else_start = first_active_insn (else_bb);
430 else_end = last_active_insn (else_bb, TRUE);
431 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
434 if (n_insns > max)
435 return FALSE;
437 /* Map test_expr/test_jump into the appropriate MD tests to use on
438 the conditionally executed code. */
440 true_expr = test_expr;
442 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
443 if (false_code != UNKNOWN)
444 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
445 XEXP (true_expr, 0), XEXP (true_expr, 1));
446 else
447 false_expr = NULL_RTX;
449 #ifdef IFCVT_MODIFY_TESTS
450 /* If the machine description needs to modify the tests, such as setting a
451 conditional execution register from a comparison, it can do so here. */
452 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
454 /* See if the conversion failed. */
455 if (!true_expr || !false_expr)
456 goto fail;
457 #endif
459 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
460 if (true_prob_val)
462 true_prob_val = XEXP (true_prob_val, 0);
463 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
465 else
466 false_prob_val = NULL_RTX;
468 /* If we have && or || tests, do them here. These tests are in the adjacent
469 blocks after the first block containing the test. */
470 if (ce_info->num_multiple_test_blocks > 0)
472 basic_block bb = test_bb;
473 basic_block last_test_bb = ce_info->last_test_bb;
475 if (! false_expr)
476 goto fail;
480 rtx start, end;
481 rtx t, f;
482 enum rtx_code f_code;
484 bb = block_fallthru (bb);
485 start = first_active_insn (bb);
486 end = last_active_insn (bb, TRUE);
487 if (start
488 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
489 false_prob_val, FALSE))
490 goto fail;
492 /* If the conditional jump is more than just a conditional jump, then
493 we can not do conditional execution conversion on this block. */
494 if (! onlyjump_p (BB_END (bb)))
495 goto fail;
497 /* Find the conditional jump and isolate the test. */
498 t = cond_exec_get_condition (BB_END (bb));
499 if (! t)
500 goto fail;
502 f_code = reversed_comparison_code (t, BB_END (bb));
503 if (f_code == UNKNOWN)
504 goto fail;
506 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
507 if (ce_info->and_and_p)
509 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
510 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
512 else
514 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
515 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
518 /* If the machine description needs to modify the tests, such as
519 setting a conditional execution register from a comparison, it can
520 do so here. */
521 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
522 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
524 /* See if the conversion failed. */
525 if (!t || !f)
526 goto fail;
527 #endif
529 true_expr = t;
530 false_expr = f;
532 while (bb != last_test_bb);
535 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
536 on then THEN block. */
537 then_mod_ok = (else_bb == NULL_BLOCK);
539 /* Go through the THEN and ELSE blocks converting the insns if possible
540 to conditional execution. */
542 if (then_end
543 && (! false_expr
544 || ! cond_exec_process_insns (ce_info, then_start, then_end,
545 false_expr, false_prob_val,
546 then_mod_ok)))
547 goto fail;
549 if (else_bb && else_end
550 && ! cond_exec_process_insns (ce_info, else_start, else_end,
551 true_expr, true_prob_val, TRUE))
552 goto fail;
554 /* If we cannot apply the changes, fail. Do not go through the normal fail
555 processing, since apply_change_group will call cancel_changes. */
556 if (! apply_change_group ())
558 #ifdef IFCVT_MODIFY_CANCEL
559 /* Cancel any machine dependent changes. */
560 IFCVT_MODIFY_CANCEL (ce_info);
561 #endif
562 return FALSE;
565 #ifdef IFCVT_MODIFY_FINAL
566 /* Do any machine dependent final modifications. */
567 IFCVT_MODIFY_FINAL (ce_info);
568 #endif
570 /* Conversion succeeded. */
571 if (dump_file)
572 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
573 n_insns, (n_insns == 1) ? " was" : "s were");
575 /* Merge the blocks! */
576 merge_if_block (ce_info);
577 cond_exec_changed_p = TRUE;
578 return TRUE;
580 fail:
581 #ifdef IFCVT_MODIFY_CANCEL
582 /* Cancel any machine dependent changes. */
583 IFCVT_MODIFY_CANCEL (ce_info);
584 #endif
586 cancel_changes (0);
587 return FALSE;
590 /* Used by noce_process_if_block to communicate with its subroutines.
592 The subroutines know that A and B may be evaluated freely. They
593 know that X is a register. They should insert new instructions
594 before cond_earliest. */
596 struct noce_if_info
598 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
599 basic_block test_bb, then_bb, else_bb, join_bb;
601 /* The jump that ends TEST_BB. */
602 rtx jump;
604 /* The jump condition. */
605 rtx cond;
607 /* New insns should be inserted before this one. */
608 rtx cond_earliest;
610 /* Insns in the THEN and ELSE block. There is always just this
611 one insns in those blocks. The insns are single_set insns.
612 If there was no ELSE block, INSN_B is the last insn before
613 COND_EARLIEST, or NULL_RTX. In the former case, the insn
614 operands are still valid, as if INSN_B was moved down below
615 the jump. */
616 rtx insn_a, insn_b;
618 /* The SET_SRC of INSN_A and INSN_B. */
619 rtx a, b;
621 /* The SET_DEST of INSN_A. */
622 rtx x;
624 /* True if this if block is not canonical. In the canonical form of
625 if blocks, the THEN_BB is the block reached via the fallthru edge
626 from TEST_BB. For the noce transformations, we allow the symmetric
627 form as well. */
628 bool then_else_reversed;
631 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
632 static int noce_try_move (struct noce_if_info *);
633 static int noce_try_store_flag (struct noce_if_info *);
634 static int noce_try_addcc (struct noce_if_info *);
635 static int noce_try_store_flag_constants (struct noce_if_info *);
636 static int noce_try_store_flag_mask (struct noce_if_info *);
637 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
638 rtx, rtx, rtx);
639 static int noce_try_cmove (struct noce_if_info *);
640 static int noce_try_cmove_arith (struct noce_if_info *);
641 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
642 static int noce_try_minmax (struct noce_if_info *);
643 static int noce_try_abs (struct noce_if_info *);
644 static int noce_try_sign_mask (struct noce_if_info *);
646 /* Helper function for noce_try_store_flag*. */
648 static rtx
649 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
650 int normalize)
652 rtx cond = if_info->cond;
653 int cond_complex;
654 enum rtx_code code;
656 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
657 || ! general_operand (XEXP (cond, 1), VOIDmode));
659 /* If earliest == jump, or when the condition is complex, try to
660 build the store_flag insn directly. */
662 if (cond_complex)
663 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
665 if (reversep)
666 code = reversed_comparison_code (cond, if_info->jump);
667 else
668 code = GET_CODE (cond);
670 if ((if_info->cond_earliest == if_info->jump || cond_complex)
671 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
673 rtx tmp;
675 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
676 XEXP (cond, 1));
677 tmp = gen_rtx_SET (VOIDmode, x, tmp);
679 start_sequence ();
680 tmp = emit_insn (tmp);
682 if (recog_memoized (tmp) >= 0)
684 tmp = get_insns ();
685 end_sequence ();
686 emit_insn (tmp);
688 if_info->cond_earliest = if_info->jump;
690 return x;
693 end_sequence ();
696 /* Don't even try if the comparison operands or the mode of X are weird. */
697 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
698 return NULL_RTX;
700 return emit_store_flag (x, code, XEXP (cond, 0),
701 XEXP (cond, 1), VOIDmode,
702 (code == LTU || code == LEU
703 || code == GEU || code == GTU), normalize);
706 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
707 X is the destination/target and Y is the value to copy. */
709 static void
710 noce_emit_move_insn (rtx x, rtx y)
712 enum machine_mode outmode;
713 rtx outer, inner;
714 int bitpos;
716 if (GET_CODE (x) != STRICT_LOW_PART)
718 rtx seq, insn, target;
719 optab ot;
721 start_sequence ();
722 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
723 otherwise construct a suitable SET pattern ourselves. */
724 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
725 ? emit_move_insn (x, y)
726 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
727 seq = get_insns ();
728 end_sequence ();
730 if (recog_memoized (insn) <= 0)
732 if (GET_CODE (x) == ZERO_EXTRACT)
734 rtx op = XEXP (x, 0);
735 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
736 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
738 /* store_bit_field expects START to be relative to
739 BYTES_BIG_ENDIAN and adjusts this value for machines with
740 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
741 invoke store_bit_field again it is necessary to have the START
742 value from the first call. */
743 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
745 if (MEM_P (op))
746 start = BITS_PER_UNIT - start - size;
747 else
749 gcc_assert (REG_P (op));
750 start = BITS_PER_WORD - start - size;
754 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
755 store_bit_field (op, size, start, GET_MODE (x), y);
756 return;
759 switch (GET_RTX_CLASS (GET_CODE (y)))
761 case RTX_UNARY:
762 ot = code_to_optab[GET_CODE (y)];
763 if (ot)
765 start_sequence ();
766 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
767 if (target != NULL_RTX)
769 if (target != x)
770 emit_move_insn (x, target);
771 seq = get_insns ();
773 end_sequence ();
775 break;
777 case RTX_BIN_ARITH:
778 case RTX_COMM_ARITH:
779 ot = code_to_optab[GET_CODE (y)];
780 if (ot)
782 start_sequence ();
783 target = expand_binop (GET_MODE (y), ot,
784 XEXP (y, 0), XEXP (y, 1),
785 x, 0, OPTAB_DIRECT);
786 if (target != NULL_RTX)
788 if (target != x)
789 emit_move_insn (x, target);
790 seq = get_insns ();
792 end_sequence ();
794 break;
796 default:
797 break;
801 emit_insn (seq);
802 return;
805 outer = XEXP (x, 0);
806 inner = XEXP (outer, 0);
807 outmode = GET_MODE (outer);
808 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
809 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
812 /* Return sequence of instructions generated by if conversion. This
813 function calls end_sequence() to end the current stream, ensures
814 that are instructions are unshared, recognizable non-jump insns.
815 On failure, this function returns a NULL_RTX. */
817 static rtx
818 end_ifcvt_sequence (struct noce_if_info *if_info)
820 rtx insn;
821 rtx seq = get_insns ();
823 set_used_flags (if_info->x);
824 set_used_flags (if_info->cond);
825 unshare_all_rtl_in_chain (seq);
826 end_sequence ();
828 /* Make sure that all of the instructions emitted are recognizable,
829 and that we haven't introduced a new jump instruction.
830 As an exercise for the reader, build a general mechanism that
831 allows proper placement of required clobbers. */
832 for (insn = seq; insn; insn = NEXT_INSN (insn))
833 if (JUMP_P (insn)
834 || recog_memoized (insn) == -1)
835 return NULL_RTX;
837 return seq;
840 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
841 "if (a == b) x = a; else x = b" into "x = b". */
843 static int
844 noce_try_move (struct noce_if_info *if_info)
846 rtx cond = if_info->cond;
847 enum rtx_code code = GET_CODE (cond);
848 rtx y, seq;
850 if (code != NE && code != EQ)
851 return FALSE;
853 /* This optimization isn't valid if either A or B could be a NaN
854 or a signed zero. */
855 if (HONOR_NANS (GET_MODE (if_info->x))
856 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
857 return FALSE;
859 /* Check whether the operands of the comparison are A and in
860 either order. */
861 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
862 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
863 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
864 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
866 y = (code == EQ) ? if_info->a : if_info->b;
868 /* Avoid generating the move if the source is the destination. */
869 if (! rtx_equal_p (if_info->x, y))
871 start_sequence ();
872 noce_emit_move_insn (if_info->x, y);
873 seq = end_ifcvt_sequence (if_info);
874 if (!seq)
875 return FALSE;
877 emit_insn_before_setloc (seq, if_info->jump,
878 INSN_LOCATOR (if_info->insn_a));
880 return TRUE;
882 return FALSE;
885 /* Convert "if (test) x = 1; else x = 0".
887 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
888 tried in noce_try_store_flag_constants after noce_try_cmove has had
889 a go at the conversion. */
891 static int
892 noce_try_store_flag (struct noce_if_info *if_info)
894 int reversep;
895 rtx target, seq;
897 if (GET_CODE (if_info->b) == CONST_INT
898 && INTVAL (if_info->b) == STORE_FLAG_VALUE
899 && if_info->a == const0_rtx)
900 reversep = 0;
901 else if (if_info->b == const0_rtx
902 && GET_CODE (if_info->a) == CONST_INT
903 && INTVAL (if_info->a) == STORE_FLAG_VALUE
904 && (reversed_comparison_code (if_info->cond, if_info->jump)
905 != UNKNOWN))
906 reversep = 1;
907 else
908 return FALSE;
910 start_sequence ();
912 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
913 if (target)
915 if (target != if_info->x)
916 noce_emit_move_insn (if_info->x, target);
918 seq = end_ifcvt_sequence (if_info);
919 if (! seq)
920 return FALSE;
922 emit_insn_before_setloc (seq, if_info->jump,
923 INSN_LOCATOR (if_info->insn_a));
924 return TRUE;
926 else
928 end_sequence ();
929 return FALSE;
933 /* Convert "if (test) x = a; else x = b", for A and B constant. */
935 static int
936 noce_try_store_flag_constants (struct noce_if_info *if_info)
938 rtx target, seq;
939 int reversep;
940 HOST_WIDE_INT itrue, ifalse, diff, tmp;
941 int normalize, can_reverse;
942 enum machine_mode mode;
944 if (GET_CODE (if_info->a) == CONST_INT
945 && GET_CODE (if_info->b) == CONST_INT)
947 mode = GET_MODE (if_info->x);
948 ifalse = INTVAL (if_info->a);
949 itrue = INTVAL (if_info->b);
951 /* Make sure we can represent the difference between the two values. */
952 if ((itrue - ifalse > 0)
953 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
954 return FALSE;
956 diff = trunc_int_for_mode (itrue - ifalse, mode);
958 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
959 != UNKNOWN);
961 reversep = 0;
962 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
963 normalize = 0;
964 else if (ifalse == 0 && exact_log2 (itrue) >= 0
965 && (STORE_FLAG_VALUE == 1
966 || BRANCH_COST >= 2))
967 normalize = 1;
968 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
969 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
970 normalize = 1, reversep = 1;
971 else if (itrue == -1
972 && (STORE_FLAG_VALUE == -1
973 || BRANCH_COST >= 2))
974 normalize = -1;
975 else if (ifalse == -1 && can_reverse
976 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
977 normalize = -1, reversep = 1;
978 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
979 || BRANCH_COST >= 3)
980 normalize = -1;
981 else
982 return FALSE;
984 if (reversep)
986 tmp = itrue; itrue = ifalse; ifalse = tmp;
987 diff = trunc_int_for_mode (-diff, mode);
990 start_sequence ();
991 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
992 if (! target)
994 end_sequence ();
995 return FALSE;
998 /* if (test) x = 3; else x = 4;
999 => x = 3 + (test == 0); */
1000 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1002 target = expand_simple_binop (mode,
1003 (diff == STORE_FLAG_VALUE
1004 ? PLUS : MINUS),
1005 GEN_INT (ifalse), target, if_info->x, 0,
1006 OPTAB_WIDEN);
1009 /* if (test) x = 8; else x = 0;
1010 => x = (test != 0) << 3; */
1011 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1013 target = expand_simple_binop (mode, ASHIFT,
1014 target, GEN_INT (tmp), if_info->x, 0,
1015 OPTAB_WIDEN);
1018 /* if (test) x = -1; else x = b;
1019 => x = -(test != 0) | b; */
1020 else if (itrue == -1)
1022 target = expand_simple_binop (mode, IOR,
1023 target, GEN_INT (ifalse), if_info->x, 0,
1024 OPTAB_WIDEN);
1027 /* if (test) x = a; else x = b;
1028 => x = (-(test != 0) & (b - a)) + a; */
1029 else
1031 target = expand_simple_binop (mode, AND,
1032 target, GEN_INT (diff), if_info->x, 0,
1033 OPTAB_WIDEN);
1034 if (target)
1035 target = expand_simple_binop (mode, PLUS,
1036 target, GEN_INT (ifalse),
1037 if_info->x, 0, OPTAB_WIDEN);
1040 if (! target)
1042 end_sequence ();
1043 return FALSE;
1046 if (target != if_info->x)
1047 noce_emit_move_insn (if_info->x, target);
1049 seq = end_ifcvt_sequence (if_info);
1050 if (!seq)
1051 return FALSE;
1053 emit_insn_before_setloc (seq, if_info->jump,
1054 INSN_LOCATOR (if_info->insn_a));
1055 return TRUE;
1058 return FALSE;
1061 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1062 similarly for "foo--". */
1064 static int
1065 noce_try_addcc (struct noce_if_info *if_info)
1067 rtx target, seq;
1068 int subtract, normalize;
1070 if (GET_CODE (if_info->a) == PLUS
1071 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1072 && (reversed_comparison_code (if_info->cond, if_info->jump)
1073 != UNKNOWN))
1075 rtx cond = if_info->cond;
1076 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1078 /* First try to use addcc pattern. */
1079 if (general_operand (XEXP (cond, 0), VOIDmode)
1080 && general_operand (XEXP (cond, 1), VOIDmode))
1082 start_sequence ();
1083 target = emit_conditional_add (if_info->x, code,
1084 XEXP (cond, 0),
1085 XEXP (cond, 1),
1086 VOIDmode,
1087 if_info->b,
1088 XEXP (if_info->a, 1),
1089 GET_MODE (if_info->x),
1090 (code == LTU || code == GEU
1091 || code == LEU || code == GTU));
1092 if (target)
1094 if (target != if_info->x)
1095 noce_emit_move_insn (if_info->x, target);
1097 seq = end_ifcvt_sequence (if_info);
1098 if (!seq)
1099 return FALSE;
1101 emit_insn_before_setloc (seq, if_info->jump,
1102 INSN_LOCATOR (if_info->insn_a));
1103 return TRUE;
1105 end_sequence ();
1108 /* If that fails, construct conditional increment or decrement using
1109 setcc. */
1110 if (BRANCH_COST >= 2
1111 && (XEXP (if_info->a, 1) == const1_rtx
1112 || XEXP (if_info->a, 1) == constm1_rtx))
1114 start_sequence ();
1115 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1116 subtract = 0, normalize = 0;
1117 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1118 subtract = 1, normalize = 0;
1119 else
1120 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1123 target = noce_emit_store_flag (if_info,
1124 gen_reg_rtx (GET_MODE (if_info->x)),
1125 1, normalize);
1127 if (target)
1128 target = expand_simple_binop (GET_MODE (if_info->x),
1129 subtract ? MINUS : PLUS,
1130 if_info->b, target, if_info->x,
1131 0, OPTAB_WIDEN);
1132 if (target)
1134 if (target != if_info->x)
1135 noce_emit_move_insn (if_info->x, target);
1137 seq = end_ifcvt_sequence (if_info);
1138 if (!seq)
1139 return FALSE;
1141 emit_insn_before_setloc (seq, if_info->jump,
1142 INSN_LOCATOR (if_info->insn_a));
1143 return TRUE;
1145 end_sequence ();
1149 return FALSE;
1152 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1154 static int
1155 noce_try_store_flag_mask (struct noce_if_info *if_info)
1157 rtx target, seq;
1158 int reversep;
1160 reversep = 0;
1161 if ((BRANCH_COST >= 2
1162 || STORE_FLAG_VALUE == -1)
1163 && ((if_info->a == const0_rtx
1164 && rtx_equal_p (if_info->b, if_info->x))
1165 || ((reversep = (reversed_comparison_code (if_info->cond,
1166 if_info->jump)
1167 != UNKNOWN))
1168 && if_info->b == const0_rtx
1169 && rtx_equal_p (if_info->a, if_info->x))))
1171 start_sequence ();
1172 target = noce_emit_store_flag (if_info,
1173 gen_reg_rtx (GET_MODE (if_info->x)),
1174 reversep, -1);
1175 if (target)
1176 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1177 if_info->x,
1178 target, if_info->x, 0,
1179 OPTAB_WIDEN);
1181 if (target)
1183 if (target != if_info->x)
1184 noce_emit_move_insn (if_info->x, target);
1186 seq = end_ifcvt_sequence (if_info);
1187 if (!seq)
1188 return FALSE;
1190 emit_insn_before_setloc (seq, if_info->jump,
1191 INSN_LOCATOR (if_info->insn_a));
1192 return TRUE;
1195 end_sequence ();
1198 return FALSE;
1201 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1203 static rtx
1204 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1205 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1207 /* If earliest == jump, try to build the cmove insn directly.
1208 This is helpful when combine has created some complex condition
1209 (like for alpha's cmovlbs) that we can't hope to regenerate
1210 through the normal interface. */
1212 if (if_info->cond_earliest == if_info->jump)
1214 rtx tmp;
1216 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1217 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1218 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1220 start_sequence ();
1221 tmp = emit_insn (tmp);
1223 if (recog_memoized (tmp) >= 0)
1225 tmp = get_insns ();
1226 end_sequence ();
1227 emit_insn (tmp);
1229 return x;
1232 end_sequence ();
1235 /* Don't even try if the comparison operands are weird. */
1236 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1237 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1238 return NULL_RTX;
1240 #if HAVE_conditional_move
1241 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1242 vtrue, vfalse, GET_MODE (x),
1243 (code == LTU || code == GEU
1244 || code == LEU || code == GTU));
1245 #else
1246 /* We'll never get here, as noce_process_if_block doesn't call the
1247 functions involved. Ifdef code, however, should be discouraged
1248 because it leads to typos in the code not selected. However,
1249 emit_conditional_move won't exist either. */
1250 return NULL_RTX;
1251 #endif
1254 /* Try only simple constants and registers here. More complex cases
1255 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1256 has had a go at it. */
1258 static int
1259 noce_try_cmove (struct noce_if_info *if_info)
1261 enum rtx_code code;
1262 rtx target, seq;
1264 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1265 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1267 start_sequence ();
1269 code = GET_CODE (if_info->cond);
1270 target = noce_emit_cmove (if_info, if_info->x, code,
1271 XEXP (if_info->cond, 0),
1272 XEXP (if_info->cond, 1),
1273 if_info->a, if_info->b);
1275 if (target)
1277 if (target != if_info->x)
1278 noce_emit_move_insn (if_info->x, target);
1280 seq = end_ifcvt_sequence (if_info);
1281 if (!seq)
1282 return FALSE;
1284 emit_insn_before_setloc (seq, if_info->jump,
1285 INSN_LOCATOR (if_info->insn_a));
1286 return TRUE;
1288 else
1290 end_sequence ();
1291 return FALSE;
1295 return FALSE;
1298 /* Try more complex cases involving conditional_move. */
1300 static int
1301 noce_try_cmove_arith (struct noce_if_info *if_info)
1303 rtx a = if_info->a;
1304 rtx b = if_info->b;
1305 rtx x = if_info->x;
1306 rtx orig_a, orig_b;
1307 rtx insn_a, insn_b;
1308 rtx tmp, target;
1309 int is_mem = 0;
1310 int insn_cost;
1311 enum rtx_code code;
1313 /* A conditional move from two memory sources is equivalent to a
1314 conditional on their addresses followed by a load. Don't do this
1315 early because it'll screw alias analysis. Note that we've
1316 already checked for no side effects. */
1317 /* ??? FIXME: Magic number 5. */
1318 if (cse_not_expected
1319 && MEM_P (a) && MEM_P (b)
1320 && BRANCH_COST >= 5)
1322 a = XEXP (a, 0);
1323 b = XEXP (b, 0);
1324 x = gen_reg_rtx (Pmode);
1325 is_mem = 1;
1328 /* ??? We could handle this if we knew that a load from A or B could
1329 not fault. This is also true if we've already loaded
1330 from the address along the path from ENTRY. */
1331 else if (may_trap_p (a) || may_trap_p (b))
1332 return FALSE;
1334 /* if (test) x = a + b; else x = c - d;
1335 => y = a + b;
1336 x = c - d;
1337 if (test)
1338 x = y;
1341 code = GET_CODE (if_info->cond);
1342 insn_a = if_info->insn_a;
1343 insn_b = if_info->insn_b;
1345 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1346 if insn_rtx_cost can't be estimated. */
1347 if (insn_a)
1349 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1350 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1351 return FALSE;
1353 else
1354 insn_cost = 0;
1356 if (insn_b)
1358 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1359 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1360 return FALSE;
1363 /* Possibly rearrange operands to make things come out more natural. */
1364 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1366 int reversep = 0;
1367 if (rtx_equal_p (b, x))
1368 reversep = 1;
1369 else if (general_operand (b, GET_MODE (b)))
1370 reversep = 1;
1372 if (reversep)
1374 code = reversed_comparison_code (if_info->cond, if_info->jump);
1375 tmp = a, a = b, b = tmp;
1376 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1380 start_sequence ();
1382 orig_a = a;
1383 orig_b = b;
1385 /* If either operand is complex, load it into a register first.
1386 The best way to do this is to copy the original insn. In this
1387 way we preserve any clobbers etc that the insn may have had.
1388 This is of course not possible in the IS_MEM case. */
1389 if (! general_operand (a, GET_MODE (a)))
1391 rtx set;
1393 if (is_mem)
1395 tmp = gen_reg_rtx (GET_MODE (a));
1396 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1398 else if (! insn_a)
1399 goto end_seq_and_fail;
1400 else
1402 a = gen_reg_rtx (GET_MODE (a));
1403 tmp = copy_rtx (insn_a);
1404 set = single_set (tmp);
1405 SET_DEST (set) = a;
1406 tmp = emit_insn (PATTERN (tmp));
1408 if (recog_memoized (tmp) < 0)
1409 goto end_seq_and_fail;
1411 if (! general_operand (b, GET_MODE (b)))
1413 rtx set, last;
1415 if (is_mem)
1417 tmp = gen_reg_rtx (GET_MODE (b));
1418 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1420 else if (! insn_b)
1421 goto end_seq_and_fail;
1422 else
1424 b = gen_reg_rtx (GET_MODE (b));
1425 tmp = copy_rtx (insn_b);
1426 set = single_set (tmp);
1427 SET_DEST (set) = b;
1428 tmp = PATTERN (tmp);
1431 /* If insn to set up A clobbers any registers B depends on, try to
1432 swap insn that sets up A with the one that sets up B. If even
1433 that doesn't help, punt. */
1434 last = get_last_insn ();
1435 if (last && modified_in_p (orig_b, last))
1437 tmp = emit_insn_before (tmp, get_insns ());
1438 if (modified_in_p (orig_a, tmp))
1439 goto end_seq_and_fail;
1441 else
1442 tmp = emit_insn (tmp);
1444 if (recog_memoized (tmp) < 0)
1445 goto end_seq_and_fail;
1448 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1449 XEXP (if_info->cond, 1), a, b);
1451 if (! target)
1452 goto end_seq_and_fail;
1454 /* If we're handling a memory for above, emit the load now. */
1455 if (is_mem)
1457 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1459 /* Copy over flags as appropriate. */
1460 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1461 MEM_VOLATILE_P (tmp) = 1;
1462 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1463 MEM_IN_STRUCT_P (tmp) = 1;
1464 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1465 MEM_SCALAR_P (tmp) = 1;
1466 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1467 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1468 set_mem_align (tmp,
1469 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1471 noce_emit_move_insn (if_info->x, tmp);
1473 else if (target != x)
1474 noce_emit_move_insn (x, target);
1476 tmp = end_ifcvt_sequence (if_info);
1477 if (!tmp)
1478 return FALSE;
1480 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1481 return TRUE;
1483 end_seq_and_fail:
1484 end_sequence ();
1485 return FALSE;
1488 /* For most cases, the simplified condition we found is the best
1489 choice, but this is not the case for the min/max/abs transforms.
1490 For these we wish to know that it is A or B in the condition. */
1492 static rtx
1493 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1494 rtx *earliest)
1496 rtx cond, set, insn;
1497 int reverse;
1499 /* If target is already mentioned in the known condition, return it. */
1500 if (reg_mentioned_p (target, if_info->cond))
1502 *earliest = if_info->cond_earliest;
1503 return if_info->cond;
1506 set = pc_set (if_info->jump);
1507 cond = XEXP (SET_SRC (set), 0);
1508 reverse
1509 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1510 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1511 if (if_info->then_else_reversed)
1512 reverse = !reverse;
1514 /* If we're looking for a constant, try to make the conditional
1515 have that constant in it. There are two reasons why it may
1516 not have the constant we want:
1518 1. GCC may have needed to put the constant in a register, because
1519 the target can't compare directly against that constant. For
1520 this case, we look for a SET immediately before the comparison
1521 that puts a constant in that register.
1523 2. GCC may have canonicalized the conditional, for example
1524 replacing "if x < 4" with "if x <= 3". We can undo that (or
1525 make equivalent types of changes) to get the constants we need
1526 if they're off by one in the right direction. */
1528 if (GET_CODE (target) == CONST_INT)
1530 enum rtx_code code = GET_CODE (if_info->cond);
1531 rtx op_a = XEXP (if_info->cond, 0);
1532 rtx op_b = XEXP (if_info->cond, 1);
1533 rtx prev_insn;
1535 /* First, look to see if we put a constant in a register. */
1536 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1537 if (prev_insn
1538 && BLOCK_NUM (prev_insn) == BLOCK_NUM (if_info->cond_earliest)
1539 && INSN_P (prev_insn)
1540 && GET_CODE (PATTERN (prev_insn)) == SET)
1542 rtx src = find_reg_equal_equiv_note (prev_insn);
1543 if (!src)
1544 src = SET_SRC (PATTERN (prev_insn));
1545 if (GET_CODE (src) == CONST_INT)
1547 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1548 op_a = src;
1549 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1550 op_b = src;
1552 if (GET_CODE (op_a) == CONST_INT)
1554 rtx tmp = op_a;
1555 op_a = op_b;
1556 op_b = tmp;
1557 code = swap_condition (code);
1562 /* Now, look to see if we can get the right constant by
1563 adjusting the conditional. */
1564 if (GET_CODE (op_b) == CONST_INT)
1566 HOST_WIDE_INT desired_val = INTVAL (target);
1567 HOST_WIDE_INT actual_val = INTVAL (op_b);
1569 switch (code)
1571 case LT:
1572 if (actual_val == desired_val + 1)
1574 code = LE;
1575 op_b = GEN_INT (desired_val);
1577 break;
1578 case LE:
1579 if (actual_val == desired_val - 1)
1581 code = LT;
1582 op_b = GEN_INT (desired_val);
1584 break;
1585 case GT:
1586 if (actual_val == desired_val - 1)
1588 code = GE;
1589 op_b = GEN_INT (desired_val);
1591 break;
1592 case GE:
1593 if (actual_val == desired_val + 1)
1595 code = GT;
1596 op_b = GEN_INT (desired_val);
1598 break;
1599 default:
1600 break;
1604 /* If we made any changes, generate a new conditional that is
1605 equivalent to what we started with, but has the right
1606 constants in it. */
1607 if (code != GET_CODE (if_info->cond)
1608 || op_a != XEXP (if_info->cond, 0)
1609 || op_b != XEXP (if_info->cond, 1))
1611 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1612 *earliest = if_info->cond_earliest;
1613 return cond;
1617 cond = canonicalize_condition (if_info->jump, cond, reverse,
1618 earliest, target, false, true);
1619 if (! cond || ! reg_mentioned_p (target, cond))
1620 return NULL;
1622 /* We almost certainly searched back to a different place.
1623 Need to re-verify correct lifetimes. */
1625 /* X may not be mentioned in the range (cond_earliest, jump]. */
1626 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1627 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1628 return NULL;
1630 /* A and B may not be modified in the range [cond_earliest, jump). */
1631 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1632 if (INSN_P (insn)
1633 && (modified_in_p (if_info->a, insn)
1634 || modified_in_p (if_info->b, insn)))
1635 return NULL;
1637 return cond;
1640 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1642 static int
1643 noce_try_minmax (struct noce_if_info *if_info)
1645 rtx cond, earliest, target, seq;
1646 enum rtx_code code, op;
1647 int unsignedp;
1649 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1650 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1651 to get the target to tell us... */
1652 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1653 || HONOR_NANS (GET_MODE (if_info->x)))
1654 return FALSE;
1656 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1657 if (!cond)
1658 return FALSE;
1660 /* Verify the condition is of the form we expect, and canonicalize
1661 the comparison code. */
1662 code = GET_CODE (cond);
1663 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1665 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1666 return FALSE;
1668 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1670 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1671 return FALSE;
1672 code = swap_condition (code);
1674 else
1675 return FALSE;
1677 /* Determine what sort of operation this is. Note that the code is for
1678 a taken branch, so the code->operation mapping appears backwards. */
1679 switch (code)
1681 case LT:
1682 case LE:
1683 case UNLT:
1684 case UNLE:
1685 op = SMAX;
1686 unsignedp = 0;
1687 break;
1688 case GT:
1689 case GE:
1690 case UNGT:
1691 case UNGE:
1692 op = SMIN;
1693 unsignedp = 0;
1694 break;
1695 case LTU:
1696 case LEU:
1697 op = UMAX;
1698 unsignedp = 1;
1699 break;
1700 case GTU:
1701 case GEU:
1702 op = UMIN;
1703 unsignedp = 1;
1704 break;
1705 default:
1706 return FALSE;
1709 start_sequence ();
1711 target = expand_simple_binop (GET_MODE (if_info->x), op,
1712 if_info->a, if_info->b,
1713 if_info->x, unsignedp, OPTAB_WIDEN);
1714 if (! target)
1716 end_sequence ();
1717 return FALSE;
1719 if (target != if_info->x)
1720 noce_emit_move_insn (if_info->x, target);
1722 seq = end_ifcvt_sequence (if_info);
1723 if (!seq)
1724 return FALSE;
1726 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1727 if_info->cond = cond;
1728 if_info->cond_earliest = earliest;
1730 return TRUE;
1733 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1735 static int
1736 noce_try_abs (struct noce_if_info *if_info)
1738 rtx cond, earliest, target, seq, a, b, c;
1739 int negate;
1741 /* Reject modes with signed zeros. */
1742 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1743 return FALSE;
1745 /* Recognize A and B as constituting an ABS or NABS. The canonical
1746 form is a branch around the negation, taken when the object is the
1747 first operand of a comparison against 0 that evaluates to true. */
1748 a = if_info->a;
1749 b = if_info->b;
1750 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1751 negate = 0;
1752 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1754 c = a; a = b; b = c;
1755 negate = 1;
1757 else
1758 return FALSE;
1760 cond = noce_get_alt_condition (if_info, b, &earliest);
1761 if (!cond)
1762 return FALSE;
1764 /* Verify the condition is of the form we expect. */
1765 if (rtx_equal_p (XEXP (cond, 0), b))
1766 c = XEXP (cond, 1);
1767 else if (rtx_equal_p (XEXP (cond, 1), b))
1769 c = XEXP (cond, 0);
1770 negate = !negate;
1772 else
1773 return FALSE;
1775 /* Verify that C is zero. Search one step backward for a
1776 REG_EQUAL note or a simple source if necessary. */
1777 if (REG_P (c))
1779 rtx set, insn = prev_nonnote_insn (earliest);
1780 if (insn
1781 && BLOCK_NUM (insn) == BLOCK_NUM (earliest)
1782 && (set = single_set (insn))
1783 && rtx_equal_p (SET_DEST (set), c))
1785 rtx note = find_reg_equal_equiv_note (insn);
1786 if (note)
1787 c = XEXP (note, 0);
1788 else
1789 c = SET_SRC (set);
1791 else
1792 return FALSE;
1794 if (MEM_P (c)
1795 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1796 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1797 c = get_pool_constant (XEXP (c, 0));
1799 /* Work around funny ideas get_condition has wrt canonicalization.
1800 Note that these rtx constants are known to be CONST_INT, and
1801 therefore imply integer comparisons. */
1802 if (c == constm1_rtx && GET_CODE (cond) == GT)
1804 else if (c == const1_rtx && GET_CODE (cond) == LT)
1806 else if (c != CONST0_RTX (GET_MODE (b)))
1807 return FALSE;
1809 /* Determine what sort of operation this is. */
1810 switch (GET_CODE (cond))
1812 case LT:
1813 case LE:
1814 case UNLT:
1815 case UNLE:
1816 negate = !negate;
1817 break;
1818 case GT:
1819 case GE:
1820 case UNGT:
1821 case UNGE:
1822 break;
1823 default:
1824 return FALSE;
1827 start_sequence ();
1829 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1831 /* ??? It's a quandary whether cmove would be better here, especially
1832 for integers. Perhaps combine will clean things up. */
1833 if (target && negate)
1834 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1836 if (! target)
1838 end_sequence ();
1839 return FALSE;
1842 if (target != if_info->x)
1843 noce_emit_move_insn (if_info->x, target);
1845 seq = end_ifcvt_sequence (if_info);
1846 if (!seq)
1847 return FALSE;
1849 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1850 if_info->cond = cond;
1851 if_info->cond_earliest = earliest;
1853 return TRUE;
1856 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1858 static int
1859 noce_try_sign_mask (struct noce_if_info *if_info)
1861 rtx cond, t, m, c, seq;
1862 enum machine_mode mode;
1863 enum rtx_code code;
1864 bool b_unconditional;
1866 cond = if_info->cond;
1867 code = GET_CODE (cond);
1868 m = XEXP (cond, 0);
1869 c = XEXP (cond, 1);
1871 t = NULL_RTX;
1872 if (if_info->a == const0_rtx)
1874 if ((code == LT && c == const0_rtx)
1875 || (code == LE && c == constm1_rtx))
1876 t = if_info->b;
1878 else if (if_info->b == const0_rtx)
1880 if ((code == GE && c == const0_rtx)
1881 || (code == GT && c == constm1_rtx))
1882 t = if_info->a;
1885 if (! t || side_effects_p (t))
1886 return FALSE;
1888 /* We currently don't handle different modes. */
1889 mode = GET_MODE (t);
1890 if (GET_MODE (m) != mode)
1891 return FALSE;
1893 /* This is only profitable if T is cheap, or T is unconditionally
1894 executed/evaluated in the original insn sequence. The latter
1895 happens if INSN_B was taken from TEST_BB, or if there was no
1896 INSN_B which can happen for e.g. conditional stores to memory. */
1897 b_unconditional = (if_info->insn_b == NULL_RTX
1898 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb);
1899 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1900 && (!b_unconditional
1901 || t != if_info->b))
1902 return FALSE;
1904 start_sequence ();
1905 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1906 "(signed) m >> 31" directly. This benefits targets with specialized
1907 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1908 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1909 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1910 : NULL_RTX;
1912 if (!t)
1914 end_sequence ();
1915 return FALSE;
1918 noce_emit_move_insn (if_info->x, t);
1920 seq = end_ifcvt_sequence (if_info);
1921 if (!seq)
1922 return FALSE;
1924 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1925 return TRUE;
1929 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1930 transformations. */
1932 static int
1933 noce_try_bitop (struct noce_if_info *if_info)
1935 rtx cond, x, a, result, seq;
1936 enum machine_mode mode;
1937 enum rtx_code code;
1938 int bitnum;
1940 x = if_info->x;
1941 cond = if_info->cond;
1942 code = GET_CODE (cond);
1944 /* Check for no else condition. */
1945 if (! rtx_equal_p (x, if_info->b))
1946 return FALSE;
1948 /* Check for a suitable condition. */
1949 if (code != NE && code != EQ)
1950 return FALSE;
1951 if (XEXP (cond, 1) != const0_rtx)
1952 return FALSE;
1953 cond = XEXP (cond, 0);
1955 /* ??? We could also handle AND here. */
1956 if (GET_CODE (cond) == ZERO_EXTRACT)
1958 if (XEXP (cond, 1) != const1_rtx
1959 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1960 || ! rtx_equal_p (x, XEXP (cond, 0)))
1961 return FALSE;
1962 bitnum = INTVAL (XEXP (cond, 2));
1963 mode = GET_MODE (x);
1964 if (BITS_BIG_ENDIAN)
1965 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1966 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1967 return FALSE;
1969 else
1970 return FALSE;
1972 a = if_info->a;
1973 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1975 /* Check for "if (X & C) x = x op C". */
1976 if (! rtx_equal_p (x, XEXP (a, 0))
1977 || GET_CODE (XEXP (a, 1)) != CONST_INT
1978 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1979 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1980 return FALSE;
1982 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1983 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1984 if (GET_CODE (a) == IOR)
1985 result = (code == NE) ? a : NULL_RTX;
1986 else if (code == NE)
1988 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1989 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1990 result = simplify_gen_binary (IOR, mode, x, result);
1992 else
1994 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
1995 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1996 result = simplify_gen_binary (AND, mode, x, result);
1999 else if (GET_CODE (a) == AND)
2001 /* Check for "if (X & C) x &= ~C". */
2002 if (! rtx_equal_p (x, XEXP (a, 0))
2003 || GET_CODE (XEXP (a, 1)) != CONST_INT
2004 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2005 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2006 return FALSE;
2008 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2009 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2010 result = (code == EQ) ? a : NULL_RTX;
2012 else
2013 return FALSE;
2015 if (result)
2017 start_sequence ();
2018 noce_emit_move_insn (x, result);
2019 seq = end_ifcvt_sequence (if_info);
2020 if (!seq)
2021 return FALSE;
2023 emit_insn_before_setloc (seq, if_info->jump,
2024 INSN_LOCATOR (if_info->insn_a));
2026 return TRUE;
2030 /* Similar to get_condition, only the resulting condition must be
2031 valid at JUMP, instead of at EARLIEST.
2033 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2034 THEN block of the caller, and we have to reverse the condition. */
2036 static rtx
2037 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2039 rtx cond, set, tmp;
2040 bool reverse;
2042 if (! any_condjump_p (jump))
2043 return NULL_RTX;
2045 set = pc_set (jump);
2047 /* If this branches to JUMP_LABEL when the condition is false,
2048 reverse the condition. */
2049 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2050 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2052 /* We may have to reverse because the caller's if block is not canonical,
2053 i.e. the THEN block isn't the fallthrough block for the TEST block
2054 (see find_if_header). */
2055 if (then_else_reversed)
2056 reverse = !reverse;
2058 /* If the condition variable is a register and is MODE_INT, accept it. */
2060 cond = XEXP (SET_SRC (set), 0);
2061 tmp = XEXP (cond, 0);
2062 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2064 *earliest = jump;
2066 if (reverse)
2067 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2068 GET_MODE (cond), tmp, XEXP (cond, 1));
2069 return cond;
2072 /* Otherwise, fall back on canonicalize_condition to do the dirty
2073 work of manipulating MODE_CC values and COMPARE rtx codes. */
2074 return canonicalize_condition (jump, cond, reverse, earliest,
2075 NULL_RTX, false, true);
2078 /* Return true if OP is ok for if-then-else processing. */
2080 static int
2081 noce_operand_ok (const_rtx op)
2083 /* We special-case memories, so handle any of them with
2084 no address side effects. */
2085 if (MEM_P (op))
2086 return ! side_effects_p (XEXP (op, 0));
2088 if (side_effects_p (op))
2089 return FALSE;
2091 return ! may_trap_p (op);
2094 /* Return true if a write into MEM may trap or fault. */
2096 static bool
2097 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2099 rtx addr;
2101 if (MEM_READONLY_P (mem))
2102 return true;
2104 if (may_trap_or_fault_p (mem))
2105 return true;
2107 addr = XEXP (mem, 0);
2109 /* Call target hook to avoid the effects of -fpic etc.... */
2110 addr = targetm.delegitimize_address (addr);
2112 while (addr)
2113 switch (GET_CODE (addr))
2115 case CONST:
2116 case PRE_DEC:
2117 case PRE_INC:
2118 case POST_DEC:
2119 case POST_INC:
2120 case POST_MODIFY:
2121 addr = XEXP (addr, 0);
2122 break;
2123 case LO_SUM:
2124 case PRE_MODIFY:
2125 addr = XEXP (addr, 1);
2126 break;
2127 case PLUS:
2128 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2129 addr = XEXP (addr, 0);
2130 else
2131 return false;
2132 break;
2133 case LABEL_REF:
2134 return true;
2135 case SYMBOL_REF:
2136 if (SYMBOL_REF_DECL (addr)
2137 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2138 return true;
2139 return false;
2140 default:
2141 return false;
2144 return false;
2147 /* Return whether we can use store speculation for MEM. TOP_BB is the
2148 basic block above the conditional block where we are considering
2149 doing the speculative store. We look for whether MEM is set
2150 unconditionally later in the function. */
2152 static bool
2153 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2155 basic_block dominator;
2157 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2158 dominator != NULL;
2159 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2161 rtx insn;
2163 FOR_BB_INSNS (dominator, insn)
2165 /* If we see something that might be a memory barrier, we
2166 have to stop looking. Even if the MEM is set later in
2167 the function, we still don't want to set it
2168 unconditionally before the barrier. */
2169 if (INSN_P (insn)
2170 && (volatile_insn_p (PATTERN (insn))
2171 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2172 return false;
2174 if (memory_modified_in_insn_p (mem, insn))
2175 return true;
2176 if (modified_in_p (XEXP (mem, 0), insn))
2177 return false;
2182 return false;
2185 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2186 it without using conditional execution. Return TRUE if we were successful
2187 at converting the block. */
2189 static int
2190 noce_process_if_block (struct noce_if_info *if_info)
2192 basic_block test_bb = if_info->test_bb; /* test block */
2193 basic_block then_bb = if_info->then_bb; /* THEN */
2194 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2195 basic_block join_bb = if_info->join_bb; /* JOIN */
2196 rtx jump = if_info->jump;
2197 rtx cond = if_info->cond;
2198 rtx insn_a, insn_b;
2199 rtx set_a, set_b;
2200 rtx orig_x, x, a, b;
2202 /* We're looking for patterns of the form
2204 (1) if (...) x = a; else x = b;
2205 (2) x = b; if (...) x = a;
2206 (3) if (...) x = a; // as if with an initial x = x.
2208 The later patterns require jumps to be more expensive.
2210 ??? For future expansion, look for multiple X in such patterns. */
2212 /* Look for one of the potential sets. */
2213 insn_a = first_active_insn (then_bb);
2214 if (! insn_a
2215 || insn_a != last_active_insn (then_bb, FALSE)
2216 || (set_a = single_set (insn_a)) == NULL_RTX)
2217 return FALSE;
2219 x = SET_DEST (set_a);
2220 a = SET_SRC (set_a);
2222 /* Look for the other potential set. Make sure we've got equivalent
2223 destinations. */
2224 /* ??? This is overconservative. Storing to two different mems is
2225 as easy as conditionally computing the address. Storing to a
2226 single mem merely requires a scratch memory to use as one of the
2227 destination addresses; often the memory immediately below the
2228 stack pointer is available for this. */
2229 set_b = NULL_RTX;
2230 if (else_bb)
2232 insn_b = first_active_insn (else_bb);
2233 if (! insn_b
2234 || insn_b != last_active_insn (else_bb, FALSE)
2235 || (set_b = single_set (insn_b)) == NULL_RTX
2236 || ! rtx_equal_p (x, SET_DEST (set_b)))
2237 return FALSE;
2239 else
2241 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2242 /* We're going to be moving the evaluation of B down from above
2243 COND_EARLIEST to JUMP. Make sure the relevant data is still
2244 intact. */
2245 if (! insn_b
2246 || BLOCK_NUM (insn_b) != BLOCK_NUM (if_info->cond_earliest)
2247 || !NONJUMP_INSN_P (insn_b)
2248 || (set_b = single_set (insn_b)) == NULL_RTX
2249 || ! rtx_equal_p (x, SET_DEST (set_b))
2250 || ! noce_operand_ok (SET_SRC (set_b))
2251 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2252 || modified_between_p (SET_SRC (set_b),
2253 PREV_INSN (if_info->cond_earliest), jump)
2254 /* Likewise with X. In particular this can happen when
2255 noce_get_condition looks farther back in the instruction
2256 stream than one might expect. */
2257 || reg_overlap_mentioned_p (x, cond)
2258 || reg_overlap_mentioned_p (x, a)
2259 || modified_between_p (x, PREV_INSN (if_info->cond_earliest), jump))
2260 insn_b = set_b = NULL_RTX;
2263 /* If x has side effects then only the if-then-else form is safe to
2264 convert. But even in that case we would need to restore any notes
2265 (such as REG_INC) at then end. That can be tricky if
2266 noce_emit_move_insn expands to more than one insn, so disable the
2267 optimization entirely for now if there are side effects. */
2268 if (side_effects_p (x))
2269 return FALSE;
2271 b = (set_b ? SET_SRC (set_b) : x);
2273 /* Only operate on register destinations, and even then avoid extending
2274 the lifetime of hard registers on small register class machines. */
2275 orig_x = x;
2276 if (!REG_P (x)
2277 || (SMALL_REGISTER_CLASSES
2278 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2280 if (GET_MODE (x) == BLKmode)
2281 return FALSE;
2283 if (GET_MODE (x) == ZERO_EXTRACT
2284 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2285 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2286 return FALSE;
2288 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2289 ? XEXP (x, 0) : x));
2292 /* Don't operate on sources that may trap or are volatile. */
2293 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2294 return FALSE;
2296 retry:
2297 /* Set up the info block for our subroutines. */
2298 if_info->insn_a = insn_a;
2299 if_info->insn_b = insn_b;
2300 if_info->x = x;
2301 if_info->a = a;
2302 if_info->b = b;
2304 /* Try optimizations in some approximation of a useful order. */
2305 /* ??? Should first look to see if X is live incoming at all. If it
2306 isn't, we don't need anything but an unconditional set. */
2308 /* Look and see if A and B are really the same. Avoid creating silly
2309 cmove constructs that no one will fix up later. */
2310 if (rtx_equal_p (a, b))
2312 /* If we have an INSN_B, we don't have to create any new rtl. Just
2313 move the instruction that we already have. If we don't have an
2314 INSN_B, that means that A == X, and we've got a noop move. In
2315 that case don't do anything and let the code below delete INSN_A. */
2316 if (insn_b && else_bb)
2318 rtx note;
2320 if (else_bb && insn_b == BB_END (else_bb))
2321 BB_END (else_bb) = PREV_INSN (insn_b);
2322 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2324 /* If there was a REG_EQUAL note, delete it since it may have been
2325 true due to this insn being after a jump. */
2326 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2327 remove_note (insn_b, note);
2329 insn_b = NULL_RTX;
2331 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2332 x must be executed twice. */
2333 else if (insn_b && side_effects_p (orig_x))
2334 return FALSE;
2336 x = orig_x;
2337 goto success;
2340 if (!set_b && MEM_P (orig_x))
2342 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2343 for optimizations if writing to x may trap or fault,
2344 i.e. it's a memory other than a static var or a stack slot,
2345 is misaligned on strict aligned machines or is read-only. If
2346 x is a read-only memory, then the program is valid only if we
2347 avoid the store into it. If there are stores on both the
2348 THEN and ELSE arms, then we can go ahead with the conversion;
2349 either the program is broken, or the condition is always
2350 false such that the other memory is selected. */
2351 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2352 return FALSE;
2354 /* Avoid store speculation: given "if (...) x = a" where x is a
2355 MEM, we only want to do the store if x is always set
2356 somewhere in the function. This avoids cases like
2357 if (pthread_mutex_trylock(mutex))
2358 ++global_variable;
2359 where we only want global_variable to be changed if the mutex
2360 is held. FIXME: This should ideally be expressed directly in
2361 RTL somehow. */
2362 if (!noce_can_store_speculate_p (test_bb, orig_x))
2363 return FALSE;
2366 if (noce_try_move (if_info))
2367 goto success;
2368 if (noce_try_store_flag (if_info))
2369 goto success;
2370 if (noce_try_bitop (if_info))
2371 goto success;
2372 if (noce_try_minmax (if_info))
2373 goto success;
2374 if (noce_try_abs (if_info))
2375 goto success;
2376 if (HAVE_conditional_move
2377 && noce_try_cmove (if_info))
2378 goto success;
2379 if (! HAVE_conditional_execution)
2381 if (noce_try_store_flag_constants (if_info))
2382 goto success;
2383 if (noce_try_addcc (if_info))
2384 goto success;
2385 if (noce_try_store_flag_mask (if_info))
2386 goto success;
2387 if (HAVE_conditional_move
2388 && noce_try_cmove_arith (if_info))
2389 goto success;
2390 if (noce_try_sign_mask (if_info))
2391 goto success;
2394 if (!else_bb && set_b)
2396 insn_b = set_b = NULL_RTX;
2397 b = orig_x;
2398 goto retry;
2401 return FALSE;
2403 success:
2405 /* If we used a temporary, fix it up now. */
2406 if (orig_x != x)
2408 rtx seq;
2410 start_sequence ();
2411 noce_emit_move_insn (orig_x, x);
2412 seq = get_insns ();
2413 set_used_flags (orig_x);
2414 unshare_all_rtl_in_chain (seq);
2415 end_sequence ();
2417 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2420 /* The original THEN and ELSE blocks may now be removed. The test block
2421 must now jump to the join block. If the test block and the join block
2422 can be merged, do so. */
2423 if (else_bb)
2425 delete_basic_block (else_bb);
2426 num_true_changes++;
2428 else
2429 remove_edge (find_edge (test_bb, join_bb));
2431 remove_edge (find_edge (then_bb, join_bb));
2432 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2433 delete_basic_block (then_bb);
2434 num_true_changes++;
2436 if (can_merge_blocks_p (test_bb, join_bb))
2438 merge_blocks (test_bb, join_bb);
2439 num_true_changes++;
2442 num_updated_if_blocks++;
2443 return TRUE;
2446 /* Check whether a block is suitable for conditional move conversion.
2447 Every insn must be a simple set of a register to a constant or a
2448 register. For each assignment, store the value in the array VALS,
2449 indexed by register number, then store the register number in
2450 REGS. COND is the condition we will test. */
2452 static int
2453 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) *regs, rtx cond)
2455 rtx insn;
2457 /* We can only handle simple jumps at the end of the basic block.
2458 It is almost impossible to update the CFG otherwise. */
2459 insn = BB_END (bb);
2460 if (JUMP_P (insn) && !onlyjump_p (insn))
2461 return FALSE;
2463 FOR_BB_INSNS (bb, insn)
2465 rtx set, dest, src;
2467 if (!INSN_P (insn) || JUMP_P (insn))
2468 continue;
2469 set = single_set (insn);
2470 if (!set)
2471 return FALSE;
2473 dest = SET_DEST (set);
2474 src = SET_SRC (set);
2475 if (!REG_P (dest)
2476 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2477 return FALSE;
2479 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2480 return FALSE;
2482 if (side_effects_p (src) || side_effects_p (dest))
2483 return FALSE;
2485 if (may_trap_p (src) || may_trap_p (dest))
2486 return FALSE;
2488 /* Don't try to handle this if the source register was
2489 modified earlier in the block. */
2490 if ((REG_P (src)
2491 && vals[REGNO (src)] != NULL)
2492 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2493 && vals[REGNO (SUBREG_REG (src))] != NULL))
2494 return FALSE;
2496 /* Don't try to handle this if the destination register was
2497 modified earlier in the block. */
2498 if (vals[REGNO (dest)] != NULL)
2499 return FALSE;
2501 /* Don't try to handle this if the condition uses the
2502 destination register. */
2503 if (reg_overlap_mentioned_p (dest, cond))
2504 return FALSE;
2506 /* Don't try to handle this if the source register is modified
2507 later in the block. */
2508 if (!CONSTANT_P (src)
2509 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2510 return FALSE;
2512 vals[REGNO (dest)] = src;
2514 VEC_safe_push (int, heap, regs, REGNO (dest));
2517 return TRUE;
2520 /* Given a basic block BB suitable for conditional move conversion,
2521 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2522 register values depending on COND, emit the insns in the block as
2523 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2524 processed. The caller has started a sequence for the conversion.
2525 Return true if successful, false if something goes wrong. */
2527 static bool
2528 cond_move_convert_if_block (struct noce_if_info *if_infop,
2529 basic_block bb, rtx cond,
2530 rtx *then_vals, rtx *else_vals,
2531 bool else_block_p)
2533 enum rtx_code code;
2534 rtx insn, cond_arg0, cond_arg1;
2536 code = GET_CODE (cond);
2537 cond_arg0 = XEXP (cond, 0);
2538 cond_arg1 = XEXP (cond, 1);
2540 FOR_BB_INSNS (bb, insn)
2542 rtx set, target, dest, t, e;
2543 unsigned int regno;
2545 if (!INSN_P (insn) || JUMP_P (insn))
2546 continue;
2547 set = single_set (insn);
2548 gcc_assert (set && REG_P (SET_DEST (set)));
2550 dest = SET_DEST (set);
2551 regno = REGNO (dest);
2553 t = then_vals[regno];
2554 e = else_vals[regno];
2556 if (else_block_p)
2558 /* If this register was set in the then block, we already
2559 handled this case there. */
2560 if (t)
2561 continue;
2562 t = dest;
2563 gcc_assert (e);
2565 else
2567 gcc_assert (t);
2568 if (!e)
2569 e = dest;
2572 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2573 t, e);
2574 if (!target)
2575 return false;
2577 if (target != dest)
2578 noce_emit_move_insn (dest, target);
2581 return true;
2584 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2585 it using only conditional moves. Return TRUE if we were successful at
2586 converting the block. */
2588 static int
2589 cond_move_process_if_block (struct noce_if_info *if_info)
2591 basic_block test_bb = if_info->test_bb;
2592 basic_block then_bb = if_info->then_bb;
2593 basic_block else_bb = if_info->else_bb;
2594 basic_block join_bb = if_info->join_bb;
2595 rtx jump = if_info->jump;
2596 rtx cond = if_info->cond;
2597 rtx seq, loc_insn;
2598 int max_reg, size, c, reg;
2599 rtx *then_vals;
2600 rtx *else_vals;
2601 VEC (int, heap) *then_regs = NULL;
2602 VEC (int, heap) *else_regs = NULL;
2603 unsigned int i;
2605 /* Build a mapping for each block to the value used for each
2606 register. */
2607 max_reg = max_reg_num ();
2608 size = (max_reg + 1) * sizeof (rtx);
2609 then_vals = (rtx *) alloca (size);
2610 else_vals = (rtx *) alloca (size);
2611 memset (then_vals, 0, size);
2612 memset (else_vals, 0, size);
2614 /* Make sure the blocks are suitable. */
2615 if (!check_cond_move_block (then_bb, then_vals, then_regs, cond)
2616 || (else_bb && !check_cond_move_block (else_bb, else_vals, else_regs, cond)))
2617 return FALSE;
2619 /* Make sure the blocks can be used together. If the same register
2620 is set in both blocks, and is not set to a constant in both
2621 cases, then both blocks must set it to the same register. We
2622 have already verified that if it is set to a register, that the
2623 source register does not change after the assignment. Also count
2624 the number of registers set in only one of the blocks. */
2625 c = 0;
2626 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2628 if (!then_vals[reg] && !else_vals[reg])
2629 continue;
2631 if (!else_vals[reg])
2632 ++c;
2633 else
2635 if (!CONSTANT_P (then_vals[reg])
2636 && !CONSTANT_P (else_vals[reg])
2637 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2638 return FALSE;
2642 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2643 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2644 if (!then_vals[reg])
2645 ++c;
2647 /* Make sure it is reasonable to convert this block. What matters
2648 is the number of assignments currently made in only one of the
2649 branches, since if we convert we are going to always execute
2650 them. */
2651 if (c > MAX_CONDITIONAL_EXECUTE)
2652 return FALSE;
2654 /* Try to emit the conditional moves. First do the then block,
2655 then do anything left in the else blocks. */
2656 start_sequence ();
2657 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2658 then_vals, else_vals, false)
2659 || (else_bb
2660 && !cond_move_convert_if_block (if_info, else_bb, cond,
2661 then_vals, else_vals, true)))
2663 end_sequence ();
2664 return FALSE;
2666 seq = end_ifcvt_sequence (if_info);
2667 if (!seq)
2668 return FALSE;
2670 loc_insn = first_active_insn (then_bb);
2671 if (!loc_insn)
2673 loc_insn = first_active_insn (else_bb);
2674 gcc_assert (loc_insn);
2676 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2678 if (else_bb)
2680 delete_basic_block (else_bb);
2681 num_true_changes++;
2683 else
2684 remove_edge (find_edge (test_bb, join_bb));
2686 remove_edge (find_edge (then_bb, join_bb));
2687 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2688 delete_basic_block (then_bb);
2689 num_true_changes++;
2691 if (can_merge_blocks_p (test_bb, join_bb))
2693 merge_blocks (test_bb, join_bb);
2694 num_true_changes++;
2697 num_updated_if_blocks++;
2699 VEC_free (int, heap, then_regs);
2700 VEC_free (int, heap, else_regs);
2702 return TRUE;
2706 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2707 IF-THEN-ELSE-JOIN block.
2709 If so, we'll try to convert the insns to not require the branch,
2710 using only transformations that do not require conditional execution.
2712 Return TRUE if we were successful at converting the block. */
2714 static int
2715 noce_find_if_block (basic_block test_bb,
2716 edge then_edge, edge else_edge,
2717 int pass)
2719 basic_block then_bb, else_bb, join_bb;
2720 bool then_else_reversed = false;
2721 rtx jump, cond;
2722 rtx cond_earliest;
2723 struct noce_if_info if_info;
2725 /* We only ever should get here before reload. */
2726 gcc_assert (!reload_completed);
2728 /* Recognize an IF-THEN-ELSE-JOIN block. */
2729 if (single_pred_p (then_edge->dest)
2730 && single_succ_p (then_edge->dest)
2731 && single_pred_p (else_edge->dest)
2732 && single_succ_p (else_edge->dest)
2733 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2735 then_bb = then_edge->dest;
2736 else_bb = else_edge->dest;
2737 join_bb = single_succ (then_bb);
2739 /* Recognize an IF-THEN-JOIN block. */
2740 else if (single_pred_p (then_edge->dest)
2741 && single_succ_p (then_edge->dest)
2742 && single_succ (then_edge->dest) == else_edge->dest)
2744 then_bb = then_edge->dest;
2745 else_bb = NULL_BLOCK;
2746 join_bb = else_edge->dest;
2748 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2749 of basic blocks in cfglayout mode does not matter, so the fallthrough
2750 edge can go to any basic block (and not just to bb->next_bb, like in
2751 cfgrtl mode). */
2752 else if (single_pred_p (else_edge->dest)
2753 && single_succ_p (else_edge->dest)
2754 && single_succ (else_edge->dest) == then_edge->dest)
2756 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2757 To make this work, we have to invert the THEN and ELSE blocks
2758 and reverse the jump condition. */
2759 then_bb = else_edge->dest;
2760 else_bb = NULL_BLOCK;
2761 join_bb = single_succ (then_bb);
2762 then_else_reversed = true;
2764 else
2765 /* Not a form we can handle. */
2766 return FALSE;
2768 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2769 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2770 return FALSE;
2771 if (else_bb
2772 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2773 return FALSE;
2775 num_possible_if_blocks++;
2777 if (dump_file)
2779 fprintf (dump_file,
2780 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2781 (else_bb) ? "-ELSE" : "",
2782 pass, test_bb->index, then_bb->index);
2784 if (else_bb)
2785 fprintf (dump_file, ", else %d", else_bb->index);
2787 fprintf (dump_file, ", join %d\n", join_bb->index);
2790 /* If the conditional jump is more than just a conditional
2791 jump, then we can not do if-conversion on this block. */
2792 jump = BB_END (test_bb);
2793 if (! onlyjump_p (jump))
2794 return FALSE;
2796 /* If this is not a standard conditional jump, we can't parse it. */
2797 cond = noce_get_condition (jump,
2798 &cond_earliest,
2799 then_else_reversed);
2800 if (!cond)
2801 return FALSE;
2803 /* We must be comparing objects whose modes imply the size. */
2804 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2805 return FALSE;
2807 /* Initialize an IF_INFO struct to pass around. */
2808 memset (&if_info, 0, sizeof if_info);
2809 if_info.test_bb = test_bb;
2810 if_info.then_bb = then_bb;
2811 if_info.else_bb = else_bb;
2812 if_info.join_bb = join_bb;
2813 if_info.cond = cond;
2814 if_info.cond_earliest = cond_earliest;
2815 if_info.jump = jump;
2816 if_info.then_else_reversed = then_else_reversed;
2818 /* Do the real work. */
2820 if (noce_process_if_block (&if_info))
2821 return TRUE;
2823 if (HAVE_conditional_move
2824 && cond_move_process_if_block (&if_info))
2825 return TRUE;
2827 return FALSE;
2831 /* Merge the blocks and mark for local life update. */
2833 static void
2834 merge_if_block (struct ce_if_block * ce_info)
2836 basic_block test_bb = ce_info->test_bb; /* last test block */
2837 basic_block then_bb = ce_info->then_bb; /* THEN */
2838 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2839 basic_block join_bb = ce_info->join_bb; /* join block */
2840 basic_block combo_bb;
2842 /* All block merging is done into the lower block numbers. */
2844 combo_bb = test_bb;
2845 df_set_bb_dirty (test_bb);
2847 /* Merge any basic blocks to handle && and || subtests. Each of
2848 the blocks are on the fallthru path from the predecessor block. */
2849 if (ce_info->num_multiple_test_blocks > 0)
2851 basic_block bb = test_bb;
2852 basic_block last_test_bb = ce_info->last_test_bb;
2853 basic_block fallthru = block_fallthru (bb);
2857 bb = fallthru;
2858 fallthru = block_fallthru (bb);
2859 merge_blocks (combo_bb, bb);
2860 num_true_changes++;
2862 while (bb != last_test_bb);
2865 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2866 label, but it might if there were || tests. That label's count should be
2867 zero, and it normally should be removed. */
2869 if (then_bb)
2871 merge_blocks (combo_bb, then_bb);
2872 num_true_changes++;
2875 /* The ELSE block, if it existed, had a label. That label count
2876 will almost always be zero, but odd things can happen when labels
2877 get their addresses taken. */
2878 if (else_bb)
2880 merge_blocks (combo_bb, else_bb);
2881 num_true_changes++;
2884 /* If there was no join block reported, that means it was not adjacent
2885 to the others, and so we cannot merge them. */
2887 if (! join_bb)
2889 rtx last = BB_END (combo_bb);
2891 /* The outgoing edge for the current COMBO block should already
2892 be correct. Verify this. */
2893 if (EDGE_COUNT (combo_bb->succs) == 0)
2894 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2895 || (NONJUMP_INSN_P (last)
2896 && GET_CODE (PATTERN (last)) == TRAP_IF
2897 && (TRAP_CONDITION (PATTERN (last))
2898 == const_true_rtx)));
2900 else
2901 /* There should still be something at the end of the THEN or ELSE
2902 blocks taking us to our final destination. */
2903 gcc_assert (JUMP_P (last)
2904 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2905 && CALL_P (last)
2906 && SIBLING_CALL_P (last))
2907 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2908 && can_throw_internal (last)));
2911 /* The JOIN block may have had quite a number of other predecessors too.
2912 Since we've already merged the TEST, THEN and ELSE blocks, we should
2913 have only one remaining edge from our if-then-else diamond. If there
2914 is more than one remaining edge, it must come from elsewhere. There
2915 may be zero incoming edges if the THEN block didn't actually join
2916 back up (as with a call to a non-return function). */
2917 else if (EDGE_COUNT (join_bb->preds) < 2
2918 && join_bb != EXIT_BLOCK_PTR)
2920 /* We can merge the JOIN cleanly and update the dataflow try
2921 again on this pass.*/
2922 merge_blocks (combo_bb, join_bb);
2923 num_true_changes++;
2925 else
2927 /* We cannot merge the JOIN. */
2929 /* The outgoing edge for the current COMBO block should already
2930 be correct. Verify this. */
2931 gcc_assert (single_succ_p (combo_bb)
2932 && single_succ (combo_bb) == join_bb);
2934 /* Remove the jump and cruft from the end of the COMBO block. */
2935 if (join_bb != EXIT_BLOCK_PTR)
2936 tidy_fallthru_edge (single_succ_edge (combo_bb));
2939 num_updated_if_blocks++;
2942 /* Find a block ending in a simple IF condition and try to transform it
2943 in some way. When converting a multi-block condition, put the new code
2944 in the first such block and delete the rest. Return a pointer to this
2945 first block if some transformation was done. Return NULL otherwise. */
2947 static basic_block
2948 find_if_header (basic_block test_bb, int pass)
2950 ce_if_block_t ce_info;
2951 edge then_edge;
2952 edge else_edge;
2954 /* The kind of block we're looking for has exactly two successors. */
2955 if (EDGE_COUNT (test_bb->succs) != 2)
2956 return NULL;
2958 then_edge = EDGE_SUCC (test_bb, 0);
2959 else_edge = EDGE_SUCC (test_bb, 1);
2961 if (df_get_bb_dirty (then_edge->dest))
2962 return NULL;
2963 if (df_get_bb_dirty (else_edge->dest))
2964 return NULL;
2966 /* Neither edge should be abnormal. */
2967 if ((then_edge->flags & EDGE_COMPLEX)
2968 || (else_edge->flags & EDGE_COMPLEX))
2969 return NULL;
2971 /* Nor exit the loop. */
2972 if ((then_edge->flags & EDGE_LOOP_EXIT)
2973 || (else_edge->flags & EDGE_LOOP_EXIT))
2974 return NULL;
2976 /* The THEN edge is canonically the one that falls through. */
2977 if (then_edge->flags & EDGE_FALLTHRU)
2979 else if (else_edge->flags & EDGE_FALLTHRU)
2981 edge e = else_edge;
2982 else_edge = then_edge;
2983 then_edge = e;
2985 else
2986 /* Otherwise this must be a multiway branch of some sort. */
2987 return NULL;
2989 memset (&ce_info, '\0', sizeof (ce_info));
2990 ce_info.test_bb = test_bb;
2991 ce_info.then_bb = then_edge->dest;
2992 ce_info.else_bb = else_edge->dest;
2993 ce_info.pass = pass;
2995 #ifdef IFCVT_INIT_EXTRA_FIELDS
2996 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2997 #endif
2999 if (! reload_completed
3000 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3001 goto success;
3003 if (HAVE_conditional_execution && reload_completed
3004 && cond_exec_find_if_block (&ce_info))
3005 goto success;
3007 if (HAVE_trap && HAVE_conditional_trap
3008 && find_cond_trap (test_bb, then_edge, else_edge))
3009 goto success;
3011 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3012 && (! HAVE_conditional_execution || reload_completed))
3014 if (find_if_case_1 (test_bb, then_edge, else_edge))
3015 goto success;
3016 if (find_if_case_2 (test_bb, then_edge, else_edge))
3017 goto success;
3020 return NULL;
3022 success:
3023 if (dump_file)
3024 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3025 /* Set this so we continue looking. */
3026 cond_exec_changed_p = TRUE;
3027 return ce_info.test_bb;
3030 /* Return true if a block has two edges, one of which falls through to the next
3031 block, and the other jumps to a specific block, so that we can tell if the
3032 block is part of an && test or an || test. Returns either -1 or the number
3033 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3035 static int
3036 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3038 edge cur_edge;
3039 int fallthru_p = FALSE;
3040 int jump_p = FALSE;
3041 rtx insn;
3042 rtx end;
3043 int n_insns = 0;
3044 edge_iterator ei;
3046 if (!cur_bb || !target_bb)
3047 return -1;
3049 /* If no edges, obviously it doesn't jump or fallthru. */
3050 if (EDGE_COUNT (cur_bb->succs) == 0)
3051 return FALSE;
3053 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3055 if (cur_edge->flags & EDGE_COMPLEX)
3056 /* Anything complex isn't what we want. */
3057 return -1;
3059 else if (cur_edge->flags & EDGE_FALLTHRU)
3060 fallthru_p = TRUE;
3062 else if (cur_edge->dest == target_bb)
3063 jump_p = TRUE;
3065 else
3066 return -1;
3069 if ((jump_p & fallthru_p) == 0)
3070 return -1;
3072 /* Don't allow calls in the block, since this is used to group && and ||
3073 together for conditional execution support. ??? we should support
3074 conditional execution support across calls for IA-64 some day, but
3075 for now it makes the code simpler. */
3076 end = BB_END (cur_bb);
3077 insn = BB_HEAD (cur_bb);
3079 while (insn != NULL_RTX)
3081 if (CALL_P (insn))
3082 return -1;
3084 if (INSN_P (insn)
3085 && !JUMP_P (insn)
3086 && GET_CODE (PATTERN (insn)) != USE
3087 && GET_CODE (PATTERN (insn)) != CLOBBER)
3088 n_insns++;
3090 if (insn == end)
3091 break;
3093 insn = NEXT_INSN (insn);
3096 return n_insns;
3099 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3100 block. If so, we'll try to convert the insns to not require the branch.
3101 Return TRUE if we were successful at converting the block. */
3103 static int
3104 cond_exec_find_if_block (struct ce_if_block * ce_info)
3106 basic_block test_bb = ce_info->test_bb;
3107 basic_block then_bb = ce_info->then_bb;
3108 basic_block else_bb = ce_info->else_bb;
3109 basic_block join_bb = NULL_BLOCK;
3110 edge cur_edge;
3111 basic_block next;
3112 edge_iterator ei;
3114 ce_info->last_test_bb = test_bb;
3116 /* We only ever should get here after reload,
3117 and only if we have conditional execution. */
3118 gcc_assert (HAVE_conditional_execution && reload_completed);
3120 /* Discover if any fall through predecessors of the current test basic block
3121 were && tests (which jump to the else block) or || tests (which jump to
3122 the then block). */
3123 if (single_pred_p (test_bb)
3124 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3126 basic_block bb = single_pred (test_bb);
3127 basic_block target_bb;
3128 int max_insns = MAX_CONDITIONAL_EXECUTE;
3129 int n_insns;
3131 /* Determine if the preceding block is an && or || block. */
3132 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3134 ce_info->and_and_p = TRUE;
3135 target_bb = else_bb;
3137 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3139 ce_info->and_and_p = FALSE;
3140 target_bb = then_bb;
3142 else
3143 target_bb = NULL_BLOCK;
3145 if (target_bb && n_insns <= max_insns)
3147 int total_insns = 0;
3148 int blocks = 0;
3150 ce_info->last_test_bb = test_bb;
3152 /* Found at least one && or || block, look for more. */
3155 ce_info->test_bb = test_bb = bb;
3156 total_insns += n_insns;
3157 blocks++;
3159 if (!single_pred_p (bb))
3160 break;
3162 bb = single_pred (bb);
3163 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3165 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3167 ce_info->num_multiple_test_blocks = blocks;
3168 ce_info->num_multiple_test_insns = total_insns;
3170 if (ce_info->and_and_p)
3171 ce_info->num_and_and_blocks = blocks;
3172 else
3173 ce_info->num_or_or_blocks = blocks;
3177 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3178 other than any || blocks which jump to the THEN block. */
3179 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3180 return FALSE;
3182 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3183 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3185 if (cur_edge->flags & EDGE_COMPLEX)
3186 return FALSE;
3189 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3191 if (cur_edge->flags & EDGE_COMPLEX)
3192 return FALSE;
3195 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3196 if (EDGE_COUNT (then_bb->succs) > 0
3197 && (!single_succ_p (then_bb)
3198 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3199 || (epilogue_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3200 return FALSE;
3202 /* If the THEN block has no successors, conditional execution can still
3203 make a conditional call. Don't do this unless the ELSE block has
3204 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3205 Check for the last insn of the THEN block being an indirect jump, which
3206 is listed as not having any successors, but confuses the rest of the CE
3207 code processing. ??? we should fix this in the future. */
3208 if (EDGE_COUNT (then_bb->succs) == 0)
3210 if (single_pred_p (else_bb))
3212 rtx last_insn = BB_END (then_bb);
3214 while (last_insn
3215 && NOTE_P (last_insn)
3216 && last_insn != BB_HEAD (then_bb))
3217 last_insn = PREV_INSN (last_insn);
3219 if (last_insn
3220 && JUMP_P (last_insn)
3221 && ! simplejump_p (last_insn))
3222 return FALSE;
3224 join_bb = else_bb;
3225 else_bb = NULL_BLOCK;
3227 else
3228 return FALSE;
3231 /* If the THEN block's successor is the other edge out of the TEST block,
3232 then we have an IF-THEN combo without an ELSE. */
3233 else if (single_succ (then_bb) == else_bb)
3235 join_bb = else_bb;
3236 else_bb = NULL_BLOCK;
3239 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3240 has exactly one predecessor and one successor, and the outgoing edge
3241 is not complex, then we have an IF-THEN-ELSE combo. */
3242 else if (single_succ_p (else_bb)
3243 && single_succ (then_bb) == single_succ (else_bb)
3244 && single_pred_p (else_bb)
3245 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3246 && ! (epilogue_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3247 join_bb = single_succ (else_bb);
3249 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3250 else
3251 return FALSE;
3253 num_possible_if_blocks++;
3255 if (dump_file)
3257 fprintf (dump_file,
3258 "\nIF-THEN%s block found, pass %d, start block %d "
3259 "[insn %d], then %d [%d]",
3260 (else_bb) ? "-ELSE" : "",
3261 ce_info->pass,
3262 test_bb->index,
3263 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3264 then_bb->index,
3265 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3267 if (else_bb)
3268 fprintf (dump_file, ", else %d [%d]",
3269 else_bb->index,
3270 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3272 fprintf (dump_file, ", join %d [%d]",
3273 join_bb->index,
3274 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3276 if (ce_info->num_multiple_test_blocks > 0)
3277 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3278 ce_info->num_multiple_test_blocks,
3279 (ce_info->and_and_p) ? "&&" : "||",
3280 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3281 ce_info->last_test_bb->index,
3282 ((BB_HEAD (ce_info->last_test_bb))
3283 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3284 : -1));
3286 fputc ('\n', dump_file);
3289 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3290 first condition for free, since we've already asserted that there's a
3291 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3292 we checked the FALLTHRU flag, those are already adjacent to the last IF
3293 block. */
3294 /* ??? As an enhancement, move the ELSE block. Have to deal with
3295 BLOCK notes, if by no other means than backing out the merge if they
3296 exist. Sticky enough I don't want to think about it now. */
3297 next = then_bb;
3298 if (else_bb && (next = next->next_bb) != else_bb)
3299 return FALSE;
3300 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3302 if (else_bb)
3303 join_bb = NULL;
3304 else
3305 return FALSE;
3308 /* Do the real work. */
3310 ce_info->else_bb = else_bb;
3311 ce_info->join_bb = join_bb;
3313 /* If we have && and || tests, try to first handle combining the && and ||
3314 tests into the conditional code, and if that fails, go back and handle
3315 it without the && and ||, which at present handles the && case if there
3316 was no ELSE block. */
3317 if (cond_exec_process_if_block (ce_info, TRUE))
3318 return TRUE;
3320 if (ce_info->num_multiple_test_blocks)
3322 cancel_changes (0);
3324 if (cond_exec_process_if_block (ce_info, FALSE))
3325 return TRUE;
3328 return FALSE;
3331 /* Convert a branch over a trap, or a branch
3332 to a trap, into a conditional trap. */
3334 static int
3335 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3337 basic_block then_bb = then_edge->dest;
3338 basic_block else_bb = else_edge->dest;
3339 basic_block other_bb, trap_bb;
3340 rtx trap, jump, cond, cond_earliest, seq;
3341 enum rtx_code code;
3343 /* Locate the block with the trap instruction. */
3344 /* ??? While we look for no successors, we really ought to allow
3345 EH successors. Need to fix merge_if_block for that to work. */
3346 if ((trap = block_has_only_trap (then_bb)) != NULL)
3347 trap_bb = then_bb, other_bb = else_bb;
3348 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3349 trap_bb = else_bb, other_bb = then_bb;
3350 else
3351 return FALSE;
3353 if (dump_file)
3355 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3356 test_bb->index, trap_bb->index);
3359 /* If this is not a standard conditional jump, we can't parse it. */
3360 jump = BB_END (test_bb);
3361 cond = noce_get_condition (jump, &cond_earliest, false);
3362 if (! cond)
3363 return FALSE;
3365 /* If the conditional jump is more than just a conditional jump, then
3366 we can not do if-conversion on this block. */
3367 if (! onlyjump_p (jump))
3368 return FALSE;
3370 /* We must be comparing objects whose modes imply the size. */
3371 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3372 return FALSE;
3374 /* Reverse the comparison code, if necessary. */
3375 code = GET_CODE (cond);
3376 if (then_bb == trap_bb)
3378 code = reversed_comparison_code (cond, jump);
3379 if (code == UNKNOWN)
3380 return FALSE;
3383 /* Attempt to generate the conditional trap. */
3384 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3385 copy_rtx (XEXP (cond, 1)),
3386 TRAP_CODE (PATTERN (trap)));
3387 if (seq == NULL)
3388 return FALSE;
3390 /* Emit the new insns before cond_earliest. */
3391 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3393 /* Delete the trap block if possible. */
3394 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3395 df_set_bb_dirty (test_bb);
3396 df_set_bb_dirty (then_bb);
3397 df_set_bb_dirty (else_bb);
3399 if (EDGE_COUNT (trap_bb->preds) == 0)
3401 delete_basic_block (trap_bb);
3402 num_true_changes++;
3405 /* Wire together the blocks again. */
3406 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3407 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3408 else
3410 rtx lab, newjump;
3412 lab = JUMP_LABEL (jump);
3413 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3414 LABEL_NUSES (lab) += 1;
3415 JUMP_LABEL (newjump) = lab;
3416 emit_barrier_after (newjump);
3418 delete_insn (jump);
3420 if (can_merge_blocks_p (test_bb, other_bb))
3422 merge_blocks (test_bb, other_bb);
3423 num_true_changes++;
3426 num_updated_if_blocks++;
3427 return TRUE;
3430 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3431 return it. */
3433 static rtx
3434 block_has_only_trap (basic_block bb)
3436 rtx trap;
3438 /* We're not the exit block. */
3439 if (bb == EXIT_BLOCK_PTR)
3440 return NULL_RTX;
3442 /* The block must have no successors. */
3443 if (EDGE_COUNT (bb->succs) > 0)
3444 return NULL_RTX;
3446 /* The only instruction in the THEN block must be the trap. */
3447 trap = first_active_insn (bb);
3448 if (! (trap == BB_END (bb)
3449 && GET_CODE (PATTERN (trap)) == TRAP_IF
3450 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3451 return NULL_RTX;
3453 return trap;
3456 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3457 transformable, but not necessarily the other. There need be no
3458 JOIN block.
3460 Return TRUE if we were successful at converting the block.
3462 Cases we'd like to look at:
3465 if (test) goto over; // x not live
3466 x = a;
3467 goto label;
3468 over:
3470 becomes
3472 x = a;
3473 if (! test) goto label;
3476 if (test) goto E; // x not live
3477 x = big();
3478 goto L;
3480 x = b;
3481 goto M;
3483 becomes
3485 x = b;
3486 if (test) goto M;
3487 x = big();
3488 goto L;
3490 (3) // This one's really only interesting for targets that can do
3491 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3492 // it results in multiple branches on a cache line, which often
3493 // does not sit well with predictors.
3495 if (test1) goto E; // predicted not taken
3496 x = a;
3497 if (test2) goto F;
3500 x = b;
3503 becomes
3505 x = a;
3506 if (test1) goto E;
3507 if (test2) goto F;
3509 Notes:
3511 (A) Don't do (2) if the branch is predicted against the block we're
3512 eliminating. Do it anyway if we can eliminate a branch; this requires
3513 that the sole successor of the eliminated block postdominate the other
3514 side of the if.
3516 (B) With CE, on (3) we can steal from both sides of the if, creating
3518 if (test1) x = a;
3519 if (!test1) x = b;
3520 if (test1) goto J;
3521 if (test2) goto F;
3525 Again, this is most useful if J postdominates.
3527 (C) CE substitutes for helpful life information.
3529 (D) These heuristics need a lot of work. */
3531 /* Tests for case 1 above. */
3533 static int
3534 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3536 basic_block then_bb = then_edge->dest;
3537 basic_block else_bb = else_edge->dest;
3538 basic_block new_bb;
3539 int then_bb_index;
3541 /* If we are partitioning hot/cold basic blocks, we don't want to
3542 mess up unconditional or indirect jumps that cross between hot
3543 and cold sections.
3545 Basic block partitioning may result in some jumps that appear to
3546 be optimizable (or blocks that appear to be mergeable), but which really
3547 must be left untouched (they are required to make it safely across
3548 partition boundaries). See the comments at the top of
3549 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3551 if ((BB_END (then_bb)
3552 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3553 || (BB_END (test_bb)
3554 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3555 || (BB_END (else_bb)
3556 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3557 NULL_RTX)))
3558 return FALSE;
3560 /* THEN has one successor. */
3561 if (!single_succ_p (then_bb))
3562 return FALSE;
3564 /* THEN does not fall through, but is not strange either. */
3565 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3566 return FALSE;
3568 /* THEN has one predecessor. */
3569 if (!single_pred_p (then_bb))
3570 return FALSE;
3572 /* THEN must do something. */
3573 if (forwarder_block_p (then_bb))
3574 return FALSE;
3576 num_possible_if_blocks++;
3577 if (dump_file)
3578 fprintf (dump_file,
3579 "\nIF-CASE-1 found, start %d, then %d\n",
3580 test_bb->index, then_bb->index);
3582 /* THEN is small. */
3583 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3584 return FALSE;
3586 /* Registers set are dead, or are predicable. */
3587 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3588 single_succ (then_bb), 1))
3589 return FALSE;
3591 /* Conversion went ok, including moving the insns and fixing up the
3592 jump. Adjust the CFG to match. */
3594 /* We can avoid creating a new basic block if then_bb is immediately
3595 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3596 thru to else_bb. */
3598 if (then_bb->next_bb == else_bb
3599 && then_bb->prev_bb == test_bb
3600 && else_bb != EXIT_BLOCK_PTR)
3602 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3603 new_bb = 0;
3605 else
3606 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3607 else_bb);
3609 df_set_bb_dirty (test_bb);
3610 df_set_bb_dirty (else_bb);
3612 then_bb_index = then_bb->index;
3613 delete_basic_block (then_bb);
3615 /* Make rest of code believe that the newly created block is the THEN_BB
3616 block we removed. */
3617 if (new_bb)
3619 df_bb_replace (then_bb_index, new_bb);
3620 /* Since the fallthru edge was redirected from test_bb to new_bb,
3621 we need to ensure that new_bb is in the same partition as
3622 test bb (you can not fall through across section boundaries). */
3623 BB_COPY_PARTITION (new_bb, test_bb);
3626 num_true_changes++;
3627 num_updated_if_blocks++;
3629 return TRUE;
3632 /* Test for case 2 above. */
3634 static int
3635 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3637 basic_block then_bb = then_edge->dest;
3638 basic_block else_bb = else_edge->dest;
3639 edge else_succ;
3640 rtx note;
3642 /* If we are partitioning hot/cold basic blocks, we don't want to
3643 mess up unconditional or indirect jumps that cross between hot
3644 and cold sections.
3646 Basic block partitioning may result in some jumps that appear to
3647 be optimizable (or blocks that appear to be mergeable), but which really
3648 must be left untouched (they are required to make it safely across
3649 partition boundaries). See the comments at the top of
3650 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3652 if ((BB_END (then_bb)
3653 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3654 || (BB_END (test_bb)
3655 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3656 || (BB_END (else_bb)
3657 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3658 NULL_RTX)))
3659 return FALSE;
3661 /* ELSE has one successor. */
3662 if (!single_succ_p (else_bb))
3663 return FALSE;
3664 else
3665 else_succ = single_succ_edge (else_bb);
3667 /* ELSE outgoing edge is not complex. */
3668 if (else_succ->flags & EDGE_COMPLEX)
3669 return FALSE;
3671 /* ELSE has one predecessor. */
3672 if (!single_pred_p (else_bb))
3673 return FALSE;
3675 /* THEN is not EXIT. */
3676 if (then_bb->index < NUM_FIXED_BLOCKS)
3677 return FALSE;
3679 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3680 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3681 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3683 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3684 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3685 else_succ->dest))
3687 else
3688 return FALSE;
3690 num_possible_if_blocks++;
3691 if (dump_file)
3692 fprintf (dump_file,
3693 "\nIF-CASE-2 found, start %d, else %d\n",
3694 test_bb->index, else_bb->index);
3696 /* ELSE is small. */
3697 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3698 return FALSE;
3700 /* Registers set are dead, or are predicable. */
3701 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3702 return FALSE;
3704 /* Conversion went ok, including moving the insns and fixing up the
3705 jump. Adjust the CFG to match. */
3707 df_set_bb_dirty (test_bb);
3708 df_set_bb_dirty (then_bb);
3709 delete_basic_block (else_bb);
3711 num_true_changes++;
3712 num_updated_if_blocks++;
3714 /* ??? We may now fallthru from one of THEN's successors into a join
3715 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3717 return TRUE;
3720 /* A subroutine of dead_or_predicable called through for_each_rtx.
3721 Return 1 if a memory is found. */
3723 static int
3724 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3726 return MEM_P (*px);
3729 /* Used by the code above to perform the actual rtl transformations.
3730 Return TRUE if successful.
3732 TEST_BB is the block containing the conditional branch. MERGE_BB
3733 is the block containing the code to manipulate. NEW_DEST is the
3734 label TEST_BB should be branching to after the conversion.
3735 REVERSEP is true if the sense of the branch should be reversed. */
3737 static int
3738 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3739 basic_block other_bb, basic_block new_dest, int reversep)
3741 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3743 jump = BB_END (test_bb);
3745 /* Find the extent of the real code in the merge block. */
3746 head = BB_HEAD (merge_bb);
3747 end = BB_END (merge_bb);
3749 /* If merge_bb ends with a tablejump, predicating/moving insn's
3750 into test_bb and then deleting merge_bb will result in the jumptable
3751 that follows merge_bb being removed along with merge_bb and then we
3752 get an unresolved reference to the jumptable. */
3753 if (tablejump_p (end, NULL, NULL))
3754 return FALSE;
3756 if (LABEL_P (head))
3757 head = NEXT_INSN (head);
3758 if (NOTE_P (head))
3760 if (head == end)
3762 head = end = NULL_RTX;
3763 goto no_body;
3765 head = NEXT_INSN (head);
3768 if (JUMP_P (end))
3770 if (head == end)
3772 head = end = NULL_RTX;
3773 goto no_body;
3775 end = PREV_INSN (end);
3778 /* Disable handling dead code by conditional execution if the machine needs
3779 to do anything funny with the tests, etc. */
3780 #ifndef IFCVT_MODIFY_TESTS
3781 if (HAVE_conditional_execution)
3783 /* In the conditional execution case, we have things easy. We know
3784 the condition is reversible. We don't have to check life info
3785 because we're going to conditionally execute the code anyway.
3786 All that's left is making sure the insns involved can actually
3787 be predicated. */
3789 rtx cond, prob_val;
3791 cond = cond_exec_get_condition (jump);
3792 if (! cond)
3793 return FALSE;
3795 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3796 if (prob_val)
3797 prob_val = XEXP (prob_val, 0);
3799 if (reversep)
3801 enum rtx_code rev = reversed_comparison_code (cond, jump);
3802 if (rev == UNKNOWN)
3803 return FALSE;
3804 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3805 XEXP (cond, 1));
3806 if (prob_val)
3807 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3810 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3811 prob_val, 0))
3812 goto cancel;
3814 earliest = jump;
3816 else
3817 #endif
3819 /* In the non-conditional execution case, we have to verify that there
3820 are no trapping operations, no calls, no references to memory, and
3821 that any registers modified are dead at the branch site. */
3823 rtx insn, cond, prev;
3824 bitmap merge_set, test_live, test_set;
3825 unsigned i, fail = 0;
3826 bitmap_iterator bi;
3828 /* Check for no calls or trapping operations. */
3829 for (insn = head; ; insn = NEXT_INSN (insn))
3831 if (CALL_P (insn))
3832 return FALSE;
3833 if (INSN_P (insn))
3835 if (may_trap_p (PATTERN (insn)))
3836 return FALSE;
3838 /* ??? Even non-trapping memories such as stack frame
3839 references must be avoided. For stores, we collect
3840 no lifetime info; for reads, we'd have to assert
3841 true_dependence false against every store in the
3842 TEST range. */
3843 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3844 return FALSE;
3846 if (insn == end)
3847 break;
3850 if (! any_condjump_p (jump))
3851 return FALSE;
3853 /* Find the extent of the conditional. */
3854 cond = noce_get_condition (jump, &earliest, false);
3855 if (! cond)
3856 return FALSE;
3858 /* Collect:
3859 MERGE_SET = set of registers set in MERGE_BB
3860 TEST_LIVE = set of registers live at EARLIEST
3861 TEST_SET = set of registers set between EARLIEST and the
3862 end of the block. */
3864 merge_set = BITMAP_ALLOC (&reg_obstack);
3865 test_live = BITMAP_ALLOC (&reg_obstack);
3866 test_set = BITMAP_ALLOC (&reg_obstack);
3868 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3869 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3870 since we've already asserted that MERGE_BB is small. */
3871 /* If we allocated new pseudos (e.g. in the conditional move
3872 expander called from noce_emit_cmove), we must resize the
3873 array first. */
3874 if (max_regno < max_reg_num ())
3875 max_regno = max_reg_num ();
3877 FOR_BB_INSNS (merge_bb, insn)
3879 if (INSN_P (insn))
3881 unsigned int uid = INSN_UID (insn);
3882 struct df_ref **def_rec;
3883 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3885 struct df_ref *def = *def_rec;
3886 bitmap_set_bit (merge_set, DF_REF_REGNO (def));
3891 /* For small register class machines, don't lengthen lifetimes of
3892 hard registers before reload. */
3893 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3895 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3897 if (i < FIRST_PSEUDO_REGISTER
3898 && ! fixed_regs[i]
3899 && ! global_regs[i])
3900 fail = 1;
3904 /* For TEST, we're interested in a range of insns, not a whole block.
3905 Moreover, we're interested in the insns live from OTHER_BB. */
3907 /* The loop below takes the set of live registers
3908 after JUMP, and calculates the live set before EARLIEST. */
3909 bitmap_copy (test_live, df_get_live_in (other_bb));
3910 df_simulate_artificial_refs_at_end (test_bb, test_live);
3911 for (insn = jump; ; insn = prev)
3913 if (INSN_P (insn))
3915 df_simulate_find_defs (insn, test_set);
3916 df_simulate_one_insn (test_bb, insn, test_live);
3918 prev = PREV_INSN (insn);
3919 if (insn == earliest)
3920 break;
3923 /* We can perform the transformation if
3924 MERGE_SET & (TEST_SET | TEST_LIVE)
3926 TEST_SET & DF_LIVE_IN (merge_bb)
3927 are empty. */
3929 if (bitmap_intersect_p (test_set, merge_set)
3930 || bitmap_intersect_p (test_live, merge_set)
3931 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
3932 fail = 1;
3934 BITMAP_FREE (merge_set);
3935 BITMAP_FREE (test_live);
3936 BITMAP_FREE (test_set);
3938 if (fail)
3939 return FALSE;
3942 no_body:
3943 /* We don't want to use normal invert_jump or redirect_jump because
3944 we don't want to delete_insn called. Also, we want to do our own
3945 change group management. */
3947 old_dest = JUMP_LABEL (jump);
3948 if (other_bb != new_dest)
3950 new_label = block_label (new_dest);
3951 if (reversep
3952 ? ! invert_jump_1 (jump, new_label)
3953 : ! redirect_jump_1 (jump, new_label))
3954 goto cancel;
3957 if (! apply_change_group ())
3958 return FALSE;
3960 if (other_bb != new_dest)
3962 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
3964 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3965 if (reversep)
3967 gcov_type count, probability;
3968 count = BRANCH_EDGE (test_bb)->count;
3969 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3970 FALLTHRU_EDGE (test_bb)->count = count;
3971 probability = BRANCH_EDGE (test_bb)->probability;
3972 BRANCH_EDGE (test_bb)->probability
3973 = FALLTHRU_EDGE (test_bb)->probability;
3974 FALLTHRU_EDGE (test_bb)->probability = probability;
3975 update_br_prob_note (test_bb);
3979 /* Move the insns out of MERGE_BB to before the branch. */
3980 if (head != NULL)
3982 rtx insn;
3984 if (end == BB_END (merge_bb))
3985 BB_END (merge_bb) = PREV_INSN (head);
3987 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3988 notes might become invalid. */
3989 insn = head;
3992 rtx note, set;
3994 if (! INSN_P (insn))
3995 continue;
3996 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3997 if (! note)
3998 continue;
3999 set = single_set (insn);
4000 if (!set || !function_invariant_p (SET_SRC (set)))
4001 remove_note (insn, note);
4002 } while (insn != end && (insn = NEXT_INSN (insn)));
4004 reorder_insns (head, end, PREV_INSN (earliest));
4007 /* Remove the jump and edge if we can. */
4008 if (other_bb == new_dest)
4010 delete_insn (jump);
4011 remove_edge (BRANCH_EDGE (test_bb));
4012 /* ??? Can't merge blocks here, as then_bb is still in use.
4013 At minimum, the merge will get done just before bb-reorder. */
4016 return TRUE;
4018 cancel:
4019 cancel_changes (0);
4020 return FALSE;
4023 /* Main entry point for all if-conversion. */
4025 static void
4026 if_convert (void)
4028 basic_block bb;
4029 int pass;
4031 if (optimize == 1)
4033 df_live_add_problem ();
4034 df_live_set_all_dirty ();
4037 num_possible_if_blocks = 0;
4038 num_updated_if_blocks = 0;
4039 num_true_changes = 0;
4041 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4042 mark_loop_exit_edges ();
4043 loop_optimizer_finalize ();
4044 free_dominance_info (CDI_DOMINATORS);
4046 /* Compute postdominators. */
4047 calculate_dominance_info (CDI_POST_DOMINATORS);
4049 df_set_flags (DF_LR_RUN_DCE);
4051 /* Go through each of the basic blocks looking for things to convert. If we
4052 have conditional execution, we make multiple passes to allow us to handle
4053 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4054 pass = 0;
4057 df_analyze ();
4058 /* Only need to do dce on the first pass. */
4059 df_clear_flags (DF_LR_RUN_DCE);
4060 cond_exec_changed_p = FALSE;
4061 pass++;
4063 #ifdef IFCVT_MULTIPLE_DUMPS
4064 if (dump_file && pass > 1)
4065 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4066 #endif
4068 FOR_EACH_BB (bb)
4070 basic_block new_bb;
4071 while (!df_get_bb_dirty (bb)
4072 && (new_bb = find_if_header (bb, pass)) != NULL)
4073 bb = new_bb;
4076 #ifdef IFCVT_MULTIPLE_DUMPS
4077 if (dump_file && cond_exec_changed_p)
4078 print_rtl_with_bb (dump_file, get_insns ());
4079 #endif
4081 while (cond_exec_changed_p);
4083 #ifdef IFCVT_MULTIPLE_DUMPS
4084 if (dump_file)
4085 fprintf (dump_file, "\n\n========== no more changes\n");
4086 #endif
4088 free_dominance_info (CDI_POST_DOMINATORS);
4090 if (dump_file)
4091 fflush (dump_file);
4093 clear_aux_for_blocks ();
4095 /* If we allocated new pseudos, we must resize the array for sched1. */
4096 if (max_regno < max_reg_num ())
4097 max_regno = max_reg_num ();
4099 /* Write the final stats. */
4100 if (dump_file && num_possible_if_blocks > 0)
4102 fprintf (dump_file,
4103 "\n%d possible IF blocks searched.\n",
4104 num_possible_if_blocks);
4105 fprintf (dump_file,
4106 "%d IF blocks converted.\n",
4107 num_updated_if_blocks);
4108 fprintf (dump_file,
4109 "%d true changes made.\n\n\n",
4110 num_true_changes);
4113 if (optimize == 1)
4114 df_remove_problem (df_live);
4116 #ifdef ENABLE_CHECKING
4117 verify_flow_info ();
4118 #endif
4121 static bool
4122 gate_handle_if_conversion (void)
4124 return (optimize > 0)
4125 && dbg_cnt (if_conversion);
4128 /* If-conversion and CFG cleanup. */
4129 static unsigned int
4130 rest_of_handle_if_conversion (void)
4132 if (flag_if_conversion)
4134 if (dump_file)
4135 dump_flow_info (dump_file, dump_flags);
4136 cleanup_cfg (CLEANUP_EXPENSIVE);
4137 if_convert ();
4140 cleanup_cfg (0);
4141 return 0;
4144 struct rtl_opt_pass pass_rtl_ifcvt =
4147 RTL_PASS,
4148 "ce1", /* name */
4149 gate_handle_if_conversion, /* gate */
4150 rest_of_handle_if_conversion, /* execute */
4151 NULL, /* sub */
4152 NULL, /* next */
4153 0, /* static_pass_number */
4154 TV_IFCVT, /* tv_id */
4155 0, /* properties_required */
4156 0, /* properties_provided */
4157 0, /* properties_destroyed */
4158 0, /* todo_flags_start */
4159 TODO_df_finish | TODO_verify_rtl_sharing |
4160 TODO_dump_func /* todo_flags_finish */
4164 static bool
4165 gate_handle_if_after_combine (void)
4167 return optimize > 0 && flag_if_conversion
4168 && dbg_cnt (if_after_combine);
4172 /* Rerun if-conversion, as combine may have simplified things enough
4173 to now meet sequence length restrictions. */
4174 static unsigned int
4175 rest_of_handle_if_after_combine (void)
4177 if_convert ();
4178 return 0;
4181 struct rtl_opt_pass pass_if_after_combine =
4184 RTL_PASS,
4185 "ce2", /* name */
4186 gate_handle_if_after_combine, /* gate */
4187 rest_of_handle_if_after_combine, /* execute */
4188 NULL, /* sub */
4189 NULL, /* next */
4190 0, /* static_pass_number */
4191 TV_IFCVT, /* tv_id */
4192 0, /* properties_required */
4193 0, /* properties_provided */
4194 0, /* properties_destroyed */
4195 0, /* todo_flags_start */
4196 TODO_df_finish | TODO_verify_rtl_sharing |
4197 TODO_dump_func |
4198 TODO_ggc_collect /* todo_flags_finish */
4203 static bool
4204 gate_handle_if_after_reload (void)
4206 return optimize > 0 && flag_if_conversion2
4207 && dbg_cnt (if_after_reload);
4210 static unsigned int
4211 rest_of_handle_if_after_reload (void)
4213 if_convert ();
4214 return 0;
4218 struct rtl_opt_pass pass_if_after_reload =
4221 RTL_PASS,
4222 "ce3", /* name */
4223 gate_handle_if_after_reload, /* gate */
4224 rest_of_handle_if_after_reload, /* execute */
4225 NULL, /* sub */
4226 NULL, /* next */
4227 0, /* static_pass_number */
4228 TV_IFCVT2, /* tv_id */
4229 0, /* properties_required */
4230 0, /* properties_provided */
4231 0, /* properties_destroyed */
4232 0, /* todo_flags_start */
4233 TODO_df_finish | TODO_verify_rtl_sharing |
4234 TODO_dump_func |
4235 TODO_ggc_collect /* todo_flags_finish */