Update concepts branch to revision 131834
[official-gcc.git] / gcc / config / ia64 / ia64.h
blob60934f2f38b9fa60caa3a6d68dc44ab0bbf08de7
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson <wilson@cygnus.com> and
5 David Mosberger <davidm@hpl.hp.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
30 /* Run-time target specifications */
32 /* Target CPU builtins. */
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do { \
35 builtin_assert("cpu=ia64"); \
36 builtin_assert("machine=ia64"); \
37 builtin_define("__ia64"); \
38 builtin_define("__ia64__"); \
39 builtin_define("__itanium__"); \
40 if (TARGET_BIG_ENDIAN) \
41 builtin_define("__BIG_ENDIAN__"); \
42 } while (0)
44 #ifndef SUBTARGET_EXTRA_SPECS
45 #define SUBTARGET_EXTRA_SPECS
46 #endif
48 #define EXTRA_SPECS \
49 { "asm_extra", ASM_EXTRA_SPEC }, \
50 SUBTARGET_EXTRA_SPECS
52 #define CC1_SPEC "%(cc1_cpu) "
54 #define ASM_EXTRA_SPEC ""
56 /* Variables which are this size or smaller are put in the sdata/sbss
57 sections. */
58 extern unsigned int ia64_section_threshold;
60 /* If the assembler supports thread-local storage, assume that the
61 system does as well. If a particular target system has an
62 assembler that supports TLS -- but the rest of the system does not
63 support TLS -- that system should explicit define TARGET_HAVE_TLS
64 to false in its own configuration file. */
65 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
66 #define TARGET_HAVE_TLS true
67 #endif
69 #define TARGET_TLS14 (ia64_tls_size == 14)
70 #define TARGET_TLS22 (ia64_tls_size == 22)
71 #define TARGET_TLS64 (ia64_tls_size == 64)
73 #define TARGET_HPUX 0
74 #define TARGET_HPUX_LD 0
76 #ifndef TARGET_ILP32
77 #define TARGET_ILP32 0
78 #endif
80 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
81 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
82 #endif
84 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
85 TARGET_INLINE_SQRT. */
87 enum ia64_inline_type
89 INL_NO = 0,
90 INL_MIN_LAT = 1,
91 INL_MAX_THR = 2
94 /* Default target_flags if no switches are specified */
96 #ifndef TARGET_DEFAULT
97 #define TARGET_DEFAULT (MASK_DWARF2_ASM)
98 #endif
100 #ifndef TARGET_CPU_DEFAULT
101 #define TARGET_CPU_DEFAULT 0
102 #endif
104 /* Which processor to schedule for. The cpu attribute defines a list
105 that mirrors this list, so changes to ia64.md must be made at the
106 same time. */
108 enum processor_type
110 PROCESSOR_ITANIUM, /* Original Itanium. */
111 PROCESSOR_ITANIUM2,
112 PROCESSOR_max
115 extern enum processor_type ia64_tune;
117 /* Sometimes certain combinations of command options do not make sense on a
118 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
119 take account of this. This macro, if defined, is executed once just after
120 all the command options have been parsed. */
122 #define OVERRIDE_OPTIONS ia64_override_options ()
124 /* Some machines may desire to change what optimizations are performed for
125 various optimization levels. This macro, if defined, is executed once just
126 after the optimization level is determined and before the remainder of the
127 command options have been parsed. Values set in this macro are used as the
128 default values for the other command line options. */
130 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
132 /* Driver configuration */
134 /* A C string constant that tells the GCC driver program options to pass to
135 `cc1'. It can also specify how to translate options you give to GCC into
136 options for GCC to pass to the `cc1'. */
138 #undef CC1_SPEC
139 #define CC1_SPEC "%{G*}"
141 /* A C string constant that tells the GCC driver program options to pass to
142 `cc1plus'. It can also specify how to translate options you give to GCC
143 into options for GCC to pass to the `cc1plus'. */
145 /* #define CC1PLUS_SPEC "" */
147 /* Storage Layout */
149 /* Define this macro to have the value 1 if the most significant bit in a byte
150 has the lowest number; otherwise define it to have the value zero. */
152 #define BITS_BIG_ENDIAN 0
154 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
156 /* Define this macro to have the value 1 if, in a multiword object, the most
157 significant word has the lowest number. */
159 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
161 #if defined(__BIG_ENDIAN__)
162 #define LIBGCC2_WORDS_BIG_ENDIAN 1
163 #else
164 #define LIBGCC2_WORDS_BIG_ENDIAN 0
165 #endif
167 #define UNITS_PER_WORD 8
169 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
171 /* A C expression whose value is zero if pointers that need to be extended
172 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
173 they are zero-extended and negative one if there is a ptr_extend operation.
175 You need not define this macro if the `POINTER_SIZE' is equal to the width
176 of `Pmode'. */
177 /* Need this for 32-bit pointers, see hpux.h for setting it. */
178 /* #define POINTERS_EXTEND_UNSIGNED */
180 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
181 which has the specified mode and signedness is to be stored in a register.
182 This macro is only called when TYPE is a scalar type. */
183 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
184 do \
186 if (GET_MODE_CLASS (MODE) == MODE_INT \
187 && GET_MODE_SIZE (MODE) < 4) \
188 (MODE) = SImode; \
190 while (0)
192 #define PARM_BOUNDARY 64
194 /* Define this macro if you wish to preserve a certain alignment for the stack
195 pointer. The definition is a C expression for the desired alignment
196 (measured in bits). */
198 #define STACK_BOUNDARY 128
200 /* Align frames on double word boundaries */
201 #ifndef IA64_STACK_ALIGN
202 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
203 #endif
205 #define FUNCTION_BOUNDARY 128
207 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
208 128-bit integers all require 128-bit alignment. */
209 #define BIGGEST_ALIGNMENT 128
211 /* If defined, a C expression to compute the alignment for a static variable.
212 TYPE is the data type, and ALIGN is the alignment that the object
213 would ordinarily have. The value of this macro is used instead of that
214 alignment to align the object. */
216 #define DATA_ALIGNMENT(TYPE, ALIGN) \
217 (TREE_CODE (TYPE) == ARRAY_TYPE \
218 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
219 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
221 /* If defined, a C expression to compute the alignment given to a constant that
222 is being placed in memory. CONSTANT is the constant and ALIGN is the
223 alignment that the object would ordinarily have. The value of this macro is
224 used instead of that alignment to align the object. */
226 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
227 (TREE_CODE (EXP) == STRING_CST \
228 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
230 #define STRICT_ALIGNMENT 1
232 /* Define this if you wish to imitate the way many other C compilers handle
233 alignment of bitfields and the structures that contain them.
234 The behavior is that the type written for a bit-field (`int', `short', or
235 other integer type) imposes an alignment for the entire structure, as if the
236 structure really did contain an ordinary field of that type. In addition,
237 the bit-field is placed within the structure so that it would fit within such
238 a field, not crossing a boundary for it. */
239 #define PCC_BITFIELD_TYPE_MATTERS 1
241 /* An integer expression for the size in bits of the largest integer machine
242 mode that should actually be used. */
244 /* Allow pairs of registers to be used, which is the intent of the default. */
245 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
247 /* By default, the C++ compiler will use function addresses in the
248 vtable entries. Setting this nonzero tells the compiler to use
249 function descriptors instead. The value of this macro says how
250 many words wide the descriptor is (normally 2). It is assumed
251 that the address of a function descriptor may be treated as a
252 pointer to a function.
254 For reasons known only to HP, the vtable entries (as opposed to
255 normal function descriptors) are 16 bytes wide in 32-bit mode as
256 well, even though the 3rd and 4th words are unused. */
257 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
259 /* Due to silliness in the HPUX linker, vtable entries must be
260 8-byte aligned even in 32-bit mode. Rather than create multiple
261 ABIs, force this restriction on everyone else too. */
262 #define TARGET_VTABLE_ENTRY_ALIGN 64
264 /* Due to the above, we need extra padding for the data entries below 0
265 to retain the alignment of the descriptors. */
266 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
268 /* Layout of Source Language Data Types */
270 #define INT_TYPE_SIZE 32
272 #define SHORT_TYPE_SIZE 16
274 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
276 #define LONG_LONG_TYPE_SIZE 64
278 #define FLOAT_TYPE_SIZE 32
280 #define DOUBLE_TYPE_SIZE 64
282 /* long double is XFmode normally, TFmode for HPUX. */
283 #define LONG_DOUBLE_TYPE_SIZE (TARGET_HPUX ? 128 : 80)
285 /* We always want the XFmode operations from libgcc2.c. */
286 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
288 /* On HP-UX, we use the l suffix for TFmode in libgcc2.c. */
289 #define LIBGCC2_TF_CEXT l
291 #define DEFAULT_SIGNED_CHAR 1
293 /* A C expression for a string describing the name of the data type to use for
294 size values. The typedef name `size_t' is defined using the contents of the
295 string. */
296 /* ??? Needs to be defined for P64 code. */
297 /* #define SIZE_TYPE */
299 /* A C expression for a string describing the name of the data type to use for
300 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
301 defined using the contents of the string. See `SIZE_TYPE' above for more
302 information. */
303 /* ??? Needs to be defined for P64 code. */
304 /* #define PTRDIFF_TYPE */
306 /* A C expression for a string describing the name of the data type to use for
307 wide characters. The typedef name `wchar_t' is defined using the contents
308 of the string. See `SIZE_TYPE' above for more information. */
309 /* #define WCHAR_TYPE */
311 /* A C expression for the size in bits of the data type for wide characters.
312 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
313 /* #define WCHAR_TYPE_SIZE */
316 /* Register Basics */
318 /* Number of hardware registers known to the compiler.
319 We have 128 general registers, 128 floating point registers,
320 64 predicate registers, 8 branch registers, one frame pointer,
321 and several "application" registers. */
323 #define FIRST_PSEUDO_REGISTER 334
325 /* Ranges for the various kinds of registers. */
326 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
327 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
328 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
329 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
330 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
331 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
332 #define GENERAL_REGNO_P(REGNO) \
333 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
335 #define GR_REG(REGNO) ((REGNO) + 0)
336 #define FR_REG(REGNO) ((REGNO) + 128)
337 #define PR_REG(REGNO) ((REGNO) + 256)
338 #define BR_REG(REGNO) ((REGNO) + 320)
339 #define OUT_REG(REGNO) ((REGNO) + 120)
340 #define IN_REG(REGNO) ((REGNO) + 112)
341 #define LOC_REG(REGNO) ((REGNO) + 32)
343 #define AR_CCV_REGNUM 329
344 #define AR_UNAT_REGNUM 330
345 #define AR_PFS_REGNUM 331
346 #define AR_LC_REGNUM 332
347 #define AR_EC_REGNUM 333
349 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
350 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
351 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
353 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
354 || (REGNO) == AR_UNAT_REGNUM)
355 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
356 && (REGNO) < FIRST_PSEUDO_REGISTER)
357 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
358 && (REGNO) < FIRST_PSEUDO_REGISTER)
361 /* ??? Don't really need two sets of macros. I like this one better because
362 it is less typing. */
363 #define R_GR(REGNO) GR_REG (REGNO)
364 #define R_FR(REGNO) FR_REG (REGNO)
365 #define R_PR(REGNO) PR_REG (REGNO)
366 #define R_BR(REGNO) BR_REG (REGNO)
368 /* An initializer that says which registers are used for fixed purposes all
369 throughout the compiled code and are therefore not available for general
370 allocation.
372 r0: constant 0
373 r1: global pointer (gp)
374 r12: stack pointer (sp)
375 r13: thread pointer (tp)
376 f0: constant 0.0
377 f1: constant 1.0
378 p0: constant true
379 fp: eliminable frame pointer */
381 /* The last 16 stacked regs are reserved for the 8 input and 8 output
382 registers. */
384 #define FIXED_REGISTERS \
385 { /* General registers. */ \
386 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
387 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
388 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
389 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
390 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
391 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
392 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
393 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
394 /* Floating-point registers. */ \
395 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
396 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
397 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
398 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
399 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
400 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
401 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
402 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
403 /* Predicate registers. */ \
404 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
405 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
406 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
407 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
408 /* Branch registers. */ \
409 0, 0, 0, 0, 0, 0, 0, 0, \
410 /*FP CCV UNAT PFS LC EC */ \
411 1, 1, 1, 1, 0, 1 \
414 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
415 (in general) by function calls as well as for fixed registers. This
416 macro therefore identifies the registers that are not available for
417 general allocation of values that must live across function calls. */
419 #define CALL_USED_REGISTERS \
420 { /* General registers. */ \
421 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
422 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
423 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
424 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
425 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
426 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
427 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
428 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
429 /* Floating-point registers. */ \
430 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
432 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
433 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
434 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
435 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
436 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
438 /* Predicate registers. */ \
439 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
440 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
441 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
442 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
443 /* Branch registers. */ \
444 1, 0, 0, 0, 0, 0, 1, 1, \
445 /*FP CCV UNAT PFS LC EC */ \
446 1, 1, 1, 1, 0, 1 \
449 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
450 problem which makes CALL_USED_REGISTERS *always* include
451 all the FIXED_REGISTERS. Until this problem has been
452 resolved this macro can be used to overcome this situation.
453 In particular, block_propagate() requires this list
454 be accurate, or we can remove registers which should be live.
455 This macro is used in regs_invalidated_by_call. */
457 #define CALL_REALLY_USED_REGISTERS \
458 { /* General registers. */ \
459 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, \
460 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
461 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
464 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
466 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
467 /* Floating-point registers. */ \
468 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
469 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
470 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
471 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
472 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
473 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
474 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
475 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
476 /* Predicate registers. */ \
477 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
478 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
479 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
480 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
481 /* Branch registers. */ \
482 1, 0, 0, 0, 0, 0, 1, 1, \
483 /*FP CCV UNAT PFS LC EC */ \
484 0, 1, 0, 1, 0, 0 \
488 /* Define this macro if the target machine has register windows. This C
489 expression returns the register number as seen by the called function
490 corresponding to the register number OUT as seen by the calling function.
491 Return OUT if register number OUT is not an outbound register. */
493 #define INCOMING_REGNO(OUT) \
494 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
496 /* Define this macro if the target machine has register windows. This C
497 expression returns the register number as seen by the calling function
498 corresponding to the register number IN as seen by the called function.
499 Return IN if register number IN is not an inbound register. */
501 #define OUTGOING_REGNO(IN) \
502 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
504 /* Define this macro if the target machine has register windows. This
505 C expression returns true if the register is call-saved but is in the
506 register window. */
508 #define LOCAL_REGNO(REGNO) \
509 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
511 /* We define CCImode in ia64-modes.def so we need a selector. */
513 #define SELECT_CC_MODE(OP,X,Y) CCmode
515 /* Order of allocation of registers */
517 /* If defined, an initializer for a vector of integers, containing the numbers
518 of hard registers in the order in which GCC should prefer to use them
519 (from most preferred to least).
521 If this macro is not defined, registers are used lowest numbered first (all
522 else being equal).
524 One use of this macro is on machines where the highest numbered registers
525 must always be saved and the save-multiple-registers instruction supports
526 only sequences of consecutive registers. On such machines, define
527 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
528 allocatable register first. */
530 /* ??? Should the GR return value registers come before or after the rest
531 of the caller-save GRs? */
533 #define REG_ALLOC_ORDER \
535 /* Caller-saved general registers. */ \
536 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
537 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
538 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
539 R_GR (30), R_GR (31), \
540 /* Output registers. */ \
541 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
542 R_GR (126), R_GR (127), \
543 /* Caller-saved general registers, also used for return values. */ \
544 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
545 /* addl caller-saved general registers. */ \
546 R_GR (2), R_GR (3), \
547 /* Caller-saved FP registers. */ \
548 R_FR (6), R_FR (7), \
549 /* Caller-saved FP registers, used for parameters and return values. */ \
550 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
551 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
552 /* Rotating caller-saved FP registers. */ \
553 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
554 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
555 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
556 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
557 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
558 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
559 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
560 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
561 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
562 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
563 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
564 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
565 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
566 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
567 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
568 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
569 R_FR (126), R_FR (127), \
570 /* Caller-saved predicate registers. */ \
571 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
572 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
573 /* Rotating caller-saved predicate registers. */ \
574 R_PR (16), R_PR (17), \
575 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
576 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
577 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
578 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
579 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
580 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
581 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
582 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
583 /* Caller-saved branch registers. */ \
584 R_BR (6), R_BR (7), \
586 /* Stacked callee-saved general registers. */ \
587 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
588 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
589 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
590 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
591 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
592 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
593 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
594 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
595 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
596 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
597 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
598 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
599 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
600 R_GR (108), \
601 /* Input registers. */ \
602 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
603 R_GR (118), R_GR (119), \
604 /* Callee-saved general registers. */ \
605 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
606 /* Callee-saved FP registers. */ \
607 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
608 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
609 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
610 R_FR (30), R_FR (31), \
611 /* Callee-saved predicate registers. */ \
612 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
613 /* Callee-saved branch registers. */ \
614 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
616 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
617 R_GR (109), R_GR (110), R_GR (111), \
619 /* Special general registers. */ \
620 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
621 /* Special FP registers. */ \
622 R_FR (0), R_FR (1), \
623 /* Special predicate registers. */ \
624 R_PR (0), \
625 /* Special branch registers. */ \
626 R_BR (0), \
627 /* Other fixed registers. */ \
628 FRAME_POINTER_REGNUM, \
629 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
630 AR_EC_REGNUM \
633 /* How Values Fit in Registers */
635 /* A C expression for the number of consecutive hard registers, starting at
636 register number REGNO, required to hold a value of mode MODE. */
638 /* ??? We say that BImode PR values require two registers. This allows us to
639 easily store the normal and inverted values. We use CCImode to indicate
640 a single predicate register. */
642 #define HARD_REGNO_NREGS(REGNO, MODE) \
643 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
644 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
645 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
646 : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1 \
647 : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1 \
648 : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2 \
649 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
651 /* A C expression that is nonzero if it is permissible to store a value of mode
652 MODE in hard register number REGNO (or in several registers starting with
653 that one). */
655 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
656 (FR_REGNO_P (REGNO) ? \
657 GET_MODE_CLASS (MODE) != MODE_CC && \
658 (MODE) != BImode && \
659 (MODE) != TFmode \
660 : PR_REGNO_P (REGNO) ? \
661 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
662 : GR_REGNO_P (REGNO) ? \
663 (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode \
664 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
665 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
666 : 0)
668 /* A C expression that is nonzero if it is desirable to choose register
669 allocation so as to avoid move instructions between a value of mode MODE1
670 and a value of mode MODE2.
672 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
673 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
674 zero. */
675 /* Don't tie integer and FP modes, as that causes us to get integer registers
676 allocated for FP instructions. XFmode only supported in FP registers so
677 we can't tie it with any other modes. */
678 #define MODES_TIEABLE_P(MODE1, MODE2) \
679 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
680 && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode)) \
681 == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode))) \
682 && (((MODE1) == BImode) == ((MODE2) == BImode)))
684 /* Specify the modes required to caller save a given hard regno.
685 We need to ensure floating pt regs are not saved as DImode. */
687 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
688 ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode \
689 : choose_hard_reg_mode ((REGNO), (NREGS), false))
691 /* Handling Leaf Functions */
693 /* A C initializer for a vector, indexed by hard register number, which
694 contains 1 for a register that is allowable in a candidate for leaf function
695 treatment. */
696 /* ??? This might be useful. */
697 /* #define LEAF_REGISTERS */
699 /* A C expression whose value is the register number to which REGNO should be
700 renumbered, when a function is treated as a leaf function. */
701 /* ??? This might be useful. */
702 /* #define LEAF_REG_REMAP(REGNO) */
705 /* Register Classes */
707 /* An enumeral type that must be defined with all the register class names as
708 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
709 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
710 which is not a register class but rather tells how many classes there
711 are. */
712 /* ??? When compiling without optimization, it is possible for the only use of
713 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
714 Regclass handles this case specially and does not assign any costs to the
715 pseudo. The pseudo then ends up using the last class before ALL_REGS.
716 Thus we must not let either PR_REGS or BR_REGS be the last class. The
717 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
718 enum reg_class
720 NO_REGS,
721 PR_REGS,
722 BR_REGS,
723 AR_M_REGS,
724 AR_I_REGS,
725 ADDL_REGS,
726 GR_REGS,
727 FP_REGS,
728 FR_REGS,
729 GR_AND_BR_REGS,
730 GR_AND_FR_REGS,
731 ALL_REGS,
732 LIM_REG_CLASSES
735 #define GENERAL_REGS GR_REGS
737 /* The number of distinct register classes. */
738 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
740 /* An initializer containing the names of the register classes as C string
741 constants. These names are used in writing some of the debugging dumps. */
742 #define REG_CLASS_NAMES \
743 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
744 "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
745 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
747 /* An initializer containing the contents of the register classes, as integers
748 which are bit masks. The Nth integer specifies the contents of class N.
749 The way the integer MASK is interpreted is that register R is in the class
750 if `MASK & (1 << R)' is 1. */
751 #define REG_CLASS_CONTENTS \
753 /* NO_REGS. */ \
754 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
755 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
756 0x00000000, 0x00000000, 0x0000 }, \
757 /* PR_REGS. */ \
758 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
759 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
760 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
761 /* BR_REGS. */ \
762 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
763 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
764 0x00000000, 0x00000000, 0x00FF }, \
765 /* AR_M_REGS. */ \
766 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
767 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
768 0x00000000, 0x00000000, 0x0600 }, \
769 /* AR_I_REGS. */ \
770 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
771 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
772 0x00000000, 0x00000000, 0x3800 }, \
773 /* ADDL_REGS. */ \
774 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
775 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
776 0x00000000, 0x00000000, 0x0000 }, \
777 /* GR_REGS. */ \
778 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
779 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
780 0x00000000, 0x00000000, 0x0100 }, \
781 /* FP_REGS. */ \
782 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
783 0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, \
784 0x00000000, 0x00000000, 0x0000 }, \
785 /* FR_REGS. */ \
786 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
787 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
788 0x00000000, 0x00000000, 0x0000 }, \
789 /* GR_AND_BR_REGS. */ \
790 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
791 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
792 0x00000000, 0x00000000, 0x01FF }, \
793 /* GR_AND_FR_REGS. */ \
794 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
795 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
796 0x00000000, 0x00000000, 0x0100 }, \
797 /* ALL_REGS. */ \
798 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
799 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
800 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
803 /* A C expression whose value is a register class containing hard register
804 REGNO. In general there is more than one such class; choose a class which
805 is "minimal", meaning that no smaller class also contains the register. */
806 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
807 may call here with private (invalid) register numbers, such as
808 REG_VOLATILE. */
809 #define REGNO_REG_CLASS(REGNO) \
810 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
811 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
812 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
813 && (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
814 : PR_REGNO_P (REGNO) ? PR_REGS \
815 : BR_REGNO_P (REGNO) ? BR_REGS \
816 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
817 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
818 : NO_REGS)
820 /* A macro whose definition is the name of the class to which a valid base
821 register must belong. A base register is one used in an address which is
822 the register value plus a displacement. */
823 #define BASE_REG_CLASS GENERAL_REGS
825 /* A macro whose definition is the name of the class to which a valid index
826 register must belong. An index register is one used in an address where its
827 value is either multiplied by a scale factor or added to another register
828 (as well as added to a displacement). This is needed for POST_MODIFY. */
829 #define INDEX_REG_CLASS GENERAL_REGS
831 /* A C expression which is nonzero if register number NUM is suitable for use
832 as a base register in operand addresses. It may be either a suitable hard
833 register or a pseudo register that has been allocated such a hard reg. */
834 #define REGNO_OK_FOR_BASE_P(REGNO) \
835 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
837 /* A C expression which is nonzero if register number NUM is suitable for use
838 as an index register in operand addresses. It may be either a suitable hard
839 register or a pseudo register that has been allocated such a hard reg.
840 This is needed for POST_MODIFY. */
841 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
843 /* A C expression that places additional restrictions on the register class to
844 use when it is necessary to copy value X into a register in class CLASS.
845 The value is a register class; perhaps CLASS, or perhaps another, smaller
846 class. */
848 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
849 ia64_preferred_reload_class (X, CLASS)
851 /* You should define this macro to indicate to the reload phase that it may
852 need to allocate at least one register for a reload in addition to the
853 register to contain the data. Specifically, if copying X to a register
854 CLASS in MODE requires an intermediate register, you should define this
855 to return the largest register class all of whose registers can be used
856 as intermediate registers or scratch registers. */
858 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
859 ia64_secondary_reload_class (CLASS, MODE, X)
861 /* Certain machines have the property that some registers cannot be copied to
862 some other registers without using memory. Define this macro on those
863 machines to be a C expression that is nonzero if objects of mode M in
864 registers of CLASS1 can only be copied to registers of class CLASS2 by
865 storing a register of CLASS1 into memory and loading that memory location
866 into a register of CLASS2. */
868 #if 0
869 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
870 I'm not quite sure how it could be invoked. The normal problems
871 with unions should be solved with the addressof fiddling done by
872 movxf and friends. */
873 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
874 (((MODE) == XFmode || (MODE) == XCmode) \
875 && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
876 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
877 #endif
879 /* A C expression for the maximum number of consecutive registers of
880 class CLASS needed to hold a value of mode MODE.
881 This is closely related to the macro `HARD_REGNO_NREGS'. */
883 #define CLASS_MAX_NREGS(CLASS, MODE) \
884 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
885 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
886 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
887 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
888 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
890 /* In BR regs, we can't change the DImode at all.
891 In FP regs, we can't change FP values to integer values and vice versa,
892 but we can change e.g. DImode to SImode, and V2SFmode into DImode. */
894 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
895 (reg_classes_intersect_p (CLASS, BR_REGS) \
896 ? (FROM) != (TO) \
897 : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO) \
898 ? reg_classes_intersect_p (CLASS, FR_REGS) \
899 : 0))
901 /* Basic Stack Layout */
903 /* Define this macro if pushing a word onto the stack moves the stack pointer
904 to a smaller address. */
905 #define STACK_GROWS_DOWNWARD 1
907 /* Define this macro to nonzero if the addresses of local variable slots
908 are at negative offsets from the frame pointer. */
909 #define FRAME_GROWS_DOWNWARD 0
911 /* Offset from the frame pointer to the first local variable slot to
912 be allocated. */
913 #define STARTING_FRAME_OFFSET 0
915 /* Offset from the stack pointer register to the first location at which
916 outgoing arguments are placed. If not specified, the default value of zero
917 is used. This is the proper value for most machines. */
918 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
919 #define STACK_POINTER_OFFSET 16
921 /* Offset from the argument pointer register to the first argument's address.
922 On some machines it may depend on the data type of the function. */
923 #define FIRST_PARM_OFFSET(FUNDECL) 0
925 /* A C expression whose value is RTL representing the value of the return
926 address for the frame COUNT steps up from the current frame, after the
927 prologue. */
929 /* ??? Frames other than zero would likely require interpreting the frame
930 unwind info, so we don't try to support them. We would also need to define
931 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
933 #define RETURN_ADDR_RTX(COUNT, FRAME) \
934 ia64_return_addr_rtx (COUNT, FRAME)
936 /* A C expression whose value is RTL representing the location of the incoming
937 return address at the beginning of any function, before the prologue. This
938 RTL is either a `REG', indicating that the return value is saved in `REG',
939 or a `MEM' representing a location in the stack. This enables DWARF2
940 unwind info for C++ EH. */
941 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
943 /* A C expression whose value is an integer giving the offset, in bytes, from
944 the value of the stack pointer register to the top of the stack frame at the
945 beginning of any function, before the prologue. The top of the frame is
946 defined to be the value of the stack pointer in the previous frame, just
947 before the call instruction. */
948 /* The CFA is past the red zone, not at the entry-point stack
949 pointer. */
950 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
952 /* We shorten debug info by using CFA-16 as DW_AT_frame_base. */
953 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
956 /* Register That Address the Stack Frame. */
958 /* The register number of the stack pointer register, which must also be a
959 fixed register according to `FIXED_REGISTERS'. On most machines, the
960 hardware determines which register this is. */
962 #define STACK_POINTER_REGNUM 12
964 /* The register number of the frame pointer register, which is used to access
965 automatic variables in the stack frame. On some machines, the hardware
966 determines which register this is. On other machines, you can choose any
967 register you wish for this purpose. */
969 #define FRAME_POINTER_REGNUM 328
971 /* Base register for access to local variables of the function. */
972 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
974 /* The register number of the arg pointer register, which is used to access the
975 function's argument list. */
976 /* r0 won't otherwise be used, so put the always eliminated argument pointer
977 in it. */
978 #define ARG_POINTER_REGNUM R_GR(0)
980 /* Due to the way varargs and argument spilling happens, the argument
981 pointer is not 16-byte aligned like the stack pointer. */
982 #define INIT_EXPANDERS \
983 do { \
984 ia64_init_expanders (); \
985 if (crtl->emit.regno_pointer_align) \
986 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
987 } while (0)
989 /* Register numbers used for passing a function's static chain pointer. */
990 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
991 #define STATIC_CHAIN_REGNUM 15
993 /* Eliminating the Frame Pointer and the Arg Pointer */
995 /* A C expression which is nonzero if a function must have and use a frame
996 pointer. This expression is evaluated in the reload pass. If its value is
997 nonzero the function will have a frame pointer. */
998 #define FRAME_POINTER_REQUIRED 0
1000 /* Show we can debug even without a frame pointer. */
1001 #define CAN_DEBUG_WITHOUT_FP
1003 /* If defined, this macro specifies a table of register pairs used to eliminate
1004 unneeded registers that point into the stack frame. */
1006 #define ELIMINABLE_REGS \
1008 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1009 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1010 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1011 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1014 /* A C expression that returns nonzero if the compiler is allowed to try to
1015 replace register number FROM with register number TO. The frame pointer
1016 is automatically handled. */
1018 #define CAN_ELIMINATE(FROM, TO) \
1019 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1021 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1022 specifies the initial difference between the specified pair of
1023 registers. This macro must be defined if `ELIMINABLE_REGS' is
1024 defined. */
1025 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1026 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1028 /* Passing Function Arguments on the Stack */
1030 /* If defined, the maximum amount of space required for outgoing arguments will
1031 be computed and placed into the variable
1032 `crtl->outgoing_args_size'. */
1034 #define ACCUMULATE_OUTGOING_ARGS 1
1036 /* A C expression that should indicate the number of bytes of its own arguments
1037 that a function pops on returning, or 0 if the function pops no arguments
1038 and the caller must therefore pop them all after the function returns. */
1040 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1043 /* Function Arguments in Registers */
1045 #define MAX_ARGUMENT_SLOTS 8
1046 #define MAX_INT_RETURN_SLOTS 4
1047 #define GR_ARG_FIRST IN_REG (0)
1048 #define GR_RET_FIRST GR_REG (8)
1049 #define GR_RET_LAST GR_REG (11)
1050 #define FR_ARG_FIRST FR_REG (8)
1051 #define FR_RET_FIRST FR_REG (8)
1052 #define FR_RET_LAST FR_REG (15)
1053 #define AR_ARG_FIRST OUT_REG (0)
1055 /* A C expression that controls whether a function argument is passed in a
1056 register, and which register. */
1058 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1059 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1061 /* Define this macro if the target machine has "register windows", so that the
1062 register in which a function sees an arguments is not necessarily the same
1063 as the one in which the caller passed the argument. */
1065 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1066 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1068 /* A C type for declaring a variable that is used as the first argument of
1069 `FUNCTION_ARG' and other related values. For some target machines, the type
1070 `int' suffices and can hold the number of bytes of argument so far. */
1072 typedef struct ia64_args
1074 int words; /* # words of arguments so far */
1075 int int_regs; /* # GR registers used so far */
1076 int fp_regs; /* # FR registers used so far */
1077 int prototype; /* whether function prototyped */
1078 } CUMULATIVE_ARGS;
1080 /* A C statement (sans semicolon) for initializing the variable CUM for the
1081 state at the beginning of the argument list. */
1083 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1084 do { \
1085 (CUM).words = 0; \
1086 (CUM).int_regs = 0; \
1087 (CUM).fp_regs = 0; \
1088 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1089 } while (0)
1091 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1092 arguments for the function being compiled. If this macro is undefined,
1093 `INIT_CUMULATIVE_ARGS' is used instead. */
1095 /* We set prototype to true so that we never try to return a PARALLEL from
1096 function_arg. */
1097 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1098 do { \
1099 (CUM).words = 0; \
1100 (CUM).int_regs = 0; \
1101 (CUM).fp_regs = 0; \
1102 (CUM).prototype = 1; \
1103 } while (0)
1105 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1106 advance past an argument in the argument list. The values MODE, TYPE and
1107 NAMED describe that argument. Once this is done, the variable CUM is
1108 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1110 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1111 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1113 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1114 argument with the specified mode and type. */
1116 /* Return the alignment boundary in bits for an argument with a specified
1117 mode and type. */
1119 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1120 ia64_function_arg_boundary (MODE, TYPE)
1122 /* A C expression that is nonzero if REGNO is the number of a hard register in
1123 which function arguments are sometimes passed. This does *not* include
1124 implicit arguments such as the static chain and the structure-value address.
1125 On many machines, no registers can be used for this purpose since all
1126 function arguments are pushed on the stack. */
1127 #define FUNCTION_ARG_REGNO_P(REGNO) \
1128 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1129 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1131 /* How Scalar Function Values are Returned */
1133 /* A C expression to create an RTX representing the place where a function
1134 returns a value of data type VALTYPE. */
1136 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1137 ia64_function_value (VALTYPE, FUNC)
1139 /* A C expression to create an RTX representing the place where a library
1140 function returns a value of mode MODE. */
1142 #define LIBCALL_VALUE(MODE) \
1143 gen_rtx_REG (MODE, \
1144 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1145 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1146 (MODE) != TFmode) \
1147 ? FR_RET_FIRST : GR_RET_FIRST))
1149 /* A C expression that is nonzero if REGNO is the number of a hard register in
1150 which the values of called function may come back. */
1152 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1153 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1154 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1157 /* How Large Values are Returned */
1159 #define DEFAULT_PCC_STRUCT_RETURN 0
1162 /* Caller-Saves Register Allocation */
1164 /* A C expression to determine whether it is worthwhile to consider placing a
1165 pseudo-register in a call-clobbered hard register and saving and restoring
1166 it around each function call. The expression should be 1 when this is worth
1167 doing, and 0 otherwise.
1169 If you don't define this macro, a default is used which is good on most
1170 machines: `4 * CALLS < REFS'. */
1171 /* ??? Investigate. */
1172 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1175 /* Function Entry and Exit */
1177 /* Define this macro as a C expression that is nonzero if the return
1178 instruction or the function epilogue ignores the value of the stack pointer;
1179 in other words, if it is safe to delete an instruction to adjust the stack
1180 pointer before a return from the function. */
1182 #define EXIT_IGNORE_STACK 1
1184 /* Define this macro as a C expression that is nonzero for registers
1185 used by the epilogue or the `return' pattern. */
1187 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1189 /* Nonzero for registers used by the exception handling mechanism. */
1191 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1193 /* Output part N of a function descriptor for DECL. For ia64, both
1194 words are emitted with a single relocation, so ignore N > 0. */
1195 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1196 do { \
1197 if ((PART) == 0) \
1199 if (TARGET_ILP32) \
1200 fputs ("\tdata8.ua @iplt(", FILE); \
1201 else \
1202 fputs ("\tdata16.ua @iplt(", FILE); \
1203 mark_decl_referenced (DECL); \
1204 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1205 fputs (")\n", FILE); \
1206 if (TARGET_ILP32) \
1207 fputs ("\tdata8.ua 0\n", FILE); \
1209 } while (0)
1211 /* Generating Code for Profiling. */
1213 /* A C statement or compound statement to output to FILE some assembler code to
1214 call the profiling subroutine `mcount'. */
1216 #undef FUNCTION_PROFILER
1217 #define FUNCTION_PROFILER(FILE, LABELNO) \
1218 ia64_output_function_profiler(FILE, LABELNO)
1220 /* Neither hpux nor linux use profile counters. */
1221 #define NO_PROFILE_COUNTERS 1
1223 /* Trampolines for Nested Functions. */
1225 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1226 the function containing a non-local goto target. */
1228 #define STACK_SAVEAREA_MODE(LEVEL) \
1229 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1231 /* Output assembler code for a block containing the constant parts of
1232 a trampoline, leaving space for the variable parts.
1234 The trampoline should set the static chain pointer to value placed
1235 into the trampoline and should branch to the specified routine.
1236 To make the normal indirect-subroutine calling convention work,
1237 the trampoline must look like a function descriptor; the first
1238 word being the target address and the second being the target's
1239 global pointer.
1241 We abuse the concept of a global pointer by arranging for it
1242 to point to the data we need to load. The complete trampoline
1243 has the following form:
1245 +-------------------+ \
1246 TRAMP: | __ia64_trampoline | |
1247 +-------------------+ > fake function descriptor
1248 | TRAMP+16 | |
1249 +-------------------+ /
1250 | target descriptor |
1251 +-------------------+
1252 | static link |
1253 +-------------------+
1256 /* A C expression for the size in bytes of the trampoline, as an integer. */
1258 #define TRAMPOLINE_SIZE 32
1260 /* Alignment required for trampolines, in bits. */
1262 #define TRAMPOLINE_ALIGNMENT 64
1264 /* A C statement to initialize the variable parts of a trampoline. */
1266 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1267 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1269 /* Addressing Modes */
1271 /* Define this macro if the machine supports post-increment addressing. */
1273 #define HAVE_POST_INCREMENT 1
1274 #define HAVE_POST_DECREMENT 1
1275 #define HAVE_POST_MODIFY_DISP 1
1276 #define HAVE_POST_MODIFY_REG 1
1278 /* A C expression that is 1 if the RTX X is a constant which is a valid
1279 address. */
1281 #define CONSTANT_ADDRESS_P(X) 0
1283 /* The max number of registers that can appear in a valid memory address. */
1285 #define MAX_REGS_PER_ADDRESS 2
1287 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1288 RTX) is a legitimate memory address on the target machine for a memory
1289 operand of mode MODE. */
1291 #define LEGITIMATE_ADDRESS_REG(X) \
1292 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1293 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1294 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1296 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1297 (GET_CODE (X) == PLUS \
1298 && rtx_equal_p (R, XEXP (X, 0)) \
1299 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1300 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1301 && INTVAL (XEXP (X, 1)) >= -256 \
1302 && INTVAL (XEXP (X, 1)) < 256)))
1304 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1305 do { \
1306 if (LEGITIMATE_ADDRESS_REG (X)) \
1307 goto LABEL; \
1308 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1309 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1310 && XEXP (X, 0) != arg_pointer_rtx) \
1311 goto LABEL; \
1312 else if (GET_CODE (X) == POST_MODIFY \
1313 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1314 && XEXP (X, 0) != arg_pointer_rtx \
1315 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1316 goto LABEL; \
1317 } while (0)
1319 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1320 use as a base register. */
1322 #ifdef REG_OK_STRICT
1323 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1324 #else
1325 #define REG_OK_FOR_BASE_P(X) \
1326 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1327 #endif
1329 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1330 use as an index register. This is needed for POST_MODIFY. */
1332 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1334 /* A C statement or compound statement with a conditional `goto LABEL;'
1335 executed if memory address X (an RTX) can have different meanings depending
1336 on the machine mode of the memory reference it is used for or if the address
1337 is valid for some modes but not others. */
1339 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1341 /* A C expression that is nonzero if X is a legitimate constant for an
1342 immediate operand on the target machine. */
1344 #define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1346 /* Condition Code Status */
1348 /* One some machines not all possible comparisons are defined, but you can
1349 convert an invalid comparison into a valid one. */
1350 /* ??? Investigate. See the alpha definition. */
1351 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1354 /* Describing Relative Costs of Operations */
1356 /* A C expression for the cost of moving data from a register in class FROM to
1357 one in class TO, using MODE. */
1359 #define REGISTER_MOVE_COST ia64_register_move_cost
1361 /* A C expression for the cost of moving data of mode M between a
1362 register and memory. */
1363 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1364 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS || (CLASS) == FP_REGS \
1365 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1367 /* A C expression for the cost of a branch instruction. A value of 1 is the
1368 default; other values are interpreted relative to that. Used by the
1369 if-conversion code as max instruction count. */
1370 /* ??? This requires investigation. The primary effect might be how
1371 many additional insn groups we run into, vs how good the dynamic
1372 branch predictor is. */
1374 #define BRANCH_COST 6
1376 /* Define this macro as a C expression which is nonzero if accessing less than
1377 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1378 word of memory. */
1380 #define SLOW_BYTE_ACCESS 1
1382 /* Define this macro if it is as good or better to call a constant function
1383 address than to call an address kept in a register.
1385 Indirect function calls are more expensive that direct function calls, so
1386 don't cse function addresses. */
1388 #define NO_FUNCTION_CSE
1391 /* Dividing the output into sections. */
1393 /* A C expression whose value is a string containing the assembler operation
1394 that should precede instructions and read-only data. */
1396 #define TEXT_SECTION_ASM_OP "\t.text"
1398 /* A C expression whose value is a string containing the assembler operation to
1399 identify the following data as writable initialized data. */
1401 #define DATA_SECTION_ASM_OP "\t.data"
1403 /* If defined, a C expression whose value is a string containing the assembler
1404 operation to identify the following data as uninitialized global data. */
1406 #define BSS_SECTION_ASM_OP "\t.bss"
1408 #define IA64_DEFAULT_GVALUE 8
1410 /* Position Independent Code. */
1412 /* The register number of the register used to address a table of static data
1413 addresses in memory. */
1415 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1416 gen_rtx_REG (DImode, 1). */
1418 /* ??? Should we set flag_pic? Probably need to define
1419 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1421 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1423 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1424 clobbered by calls. */
1426 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1429 /* The Overall Framework of an Assembler File. */
1431 /* A C string constant describing how to begin a comment in the target
1432 assembler language. The compiler assumes that the comment will end at the
1433 end of the line. */
1435 #define ASM_COMMENT_START "//"
1437 /* A C string constant for text to be output before each `asm' statement or
1438 group of consecutive ones. */
1440 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1442 /* A C string constant for text to be output after each `asm' statement or
1443 group of consecutive ones. */
1445 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1447 /* Output of Uninitialized Variables. */
1449 /* This is all handled by svr4.h. */
1452 /* Output and Generation of Labels. */
1454 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1455 assembler definition of a label named NAME. */
1457 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1458 why ia64_asm_output_label exists. */
1460 extern int ia64_asm_output_label;
1461 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1462 do { \
1463 ia64_asm_output_label = 1; \
1464 assemble_name (STREAM, NAME); \
1465 fputs (":\n", STREAM); \
1466 ia64_asm_output_label = 0; \
1467 } while (0)
1469 /* Globalizing directive for a label. */
1470 #define GLOBAL_ASM_OP "\t.global "
1472 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1473 necessary for declaring the name of an external symbol named NAME which is
1474 referenced in this compilation but not defined. */
1476 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1477 ia64_asm_output_external (FILE, DECL, NAME)
1479 /* A C statement to store into the string STRING a label whose name is made
1480 from the string PREFIX and the number NUM. */
1482 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1483 do { \
1484 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1485 } while (0)
1487 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1489 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1491 /* A C statement to output to the stdio stream STREAM assembler code which
1492 defines (equates) the symbol NAME to have the value VALUE. */
1494 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1495 do { \
1496 assemble_name (STREAM, NAME); \
1497 fputs (" = ", STREAM); \
1498 assemble_name (STREAM, VALUE); \
1499 fputc ('\n', STREAM); \
1500 } while (0)
1503 /* Macros Controlling Initialization Routines. */
1505 /* This is handled by svr4.h and sysv4.h. */
1508 /* Output of Assembler Instructions. */
1510 /* A C initializer containing the assembler's names for the machine registers,
1511 each one as a C string constant. */
1513 #define REGISTER_NAMES \
1515 /* General registers. */ \
1516 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1517 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1518 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1519 "r30", "r31", \
1520 /* Local registers. */ \
1521 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1522 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1523 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1524 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1525 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1526 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1527 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1528 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1529 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1530 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1531 /* Input registers. */ \
1532 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1533 /* Output registers. */ \
1534 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1535 /* Floating-point registers. */ \
1536 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1537 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1538 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1539 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1540 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1541 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1542 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1543 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1544 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1545 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1546 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1547 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1548 "f120","f121","f122","f123","f124","f125","f126","f127", \
1549 /* Predicate registers. */ \
1550 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1551 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1552 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1553 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1554 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1555 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1556 "p60", "p61", "p62", "p63", \
1557 /* Branch registers. */ \
1558 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1559 /* Frame pointer. Application registers. */ \
1560 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1563 /* If defined, a C initializer for an array of structures containing a name and
1564 a register number. This macro defines additional names for hard registers,
1565 thus allowing the `asm' option in declarations to refer to registers using
1566 alternate names. */
1568 #define ADDITIONAL_REGISTER_NAMES \
1570 { "gp", R_GR (1) }, \
1571 { "sp", R_GR (12) }, \
1572 { "in0", IN_REG (0) }, \
1573 { "in1", IN_REG (1) }, \
1574 { "in2", IN_REG (2) }, \
1575 { "in3", IN_REG (3) }, \
1576 { "in4", IN_REG (4) }, \
1577 { "in5", IN_REG (5) }, \
1578 { "in6", IN_REG (6) }, \
1579 { "in7", IN_REG (7) }, \
1580 { "out0", OUT_REG (0) }, \
1581 { "out1", OUT_REG (1) }, \
1582 { "out2", OUT_REG (2) }, \
1583 { "out3", OUT_REG (3) }, \
1584 { "out4", OUT_REG (4) }, \
1585 { "out5", OUT_REG (5) }, \
1586 { "out6", OUT_REG (6) }, \
1587 { "out7", OUT_REG (7) }, \
1588 { "loc0", LOC_REG (0) }, \
1589 { "loc1", LOC_REG (1) }, \
1590 { "loc2", LOC_REG (2) }, \
1591 { "loc3", LOC_REG (3) }, \
1592 { "loc4", LOC_REG (4) }, \
1593 { "loc5", LOC_REG (5) }, \
1594 { "loc6", LOC_REG (6) }, \
1595 { "loc7", LOC_REG (7) }, \
1596 { "loc8", LOC_REG (8) }, \
1597 { "loc9", LOC_REG (9) }, \
1598 { "loc10", LOC_REG (10) }, \
1599 { "loc11", LOC_REG (11) }, \
1600 { "loc12", LOC_REG (12) }, \
1601 { "loc13", LOC_REG (13) }, \
1602 { "loc14", LOC_REG (14) }, \
1603 { "loc15", LOC_REG (15) }, \
1604 { "loc16", LOC_REG (16) }, \
1605 { "loc17", LOC_REG (17) }, \
1606 { "loc18", LOC_REG (18) }, \
1607 { "loc19", LOC_REG (19) }, \
1608 { "loc20", LOC_REG (20) }, \
1609 { "loc21", LOC_REG (21) }, \
1610 { "loc22", LOC_REG (22) }, \
1611 { "loc23", LOC_REG (23) }, \
1612 { "loc24", LOC_REG (24) }, \
1613 { "loc25", LOC_REG (25) }, \
1614 { "loc26", LOC_REG (26) }, \
1615 { "loc27", LOC_REG (27) }, \
1616 { "loc28", LOC_REG (28) }, \
1617 { "loc29", LOC_REG (29) }, \
1618 { "loc30", LOC_REG (30) }, \
1619 { "loc31", LOC_REG (31) }, \
1620 { "loc32", LOC_REG (32) }, \
1621 { "loc33", LOC_REG (33) }, \
1622 { "loc34", LOC_REG (34) }, \
1623 { "loc35", LOC_REG (35) }, \
1624 { "loc36", LOC_REG (36) }, \
1625 { "loc37", LOC_REG (37) }, \
1626 { "loc38", LOC_REG (38) }, \
1627 { "loc39", LOC_REG (39) }, \
1628 { "loc40", LOC_REG (40) }, \
1629 { "loc41", LOC_REG (41) }, \
1630 { "loc42", LOC_REG (42) }, \
1631 { "loc43", LOC_REG (43) }, \
1632 { "loc44", LOC_REG (44) }, \
1633 { "loc45", LOC_REG (45) }, \
1634 { "loc46", LOC_REG (46) }, \
1635 { "loc47", LOC_REG (47) }, \
1636 { "loc48", LOC_REG (48) }, \
1637 { "loc49", LOC_REG (49) }, \
1638 { "loc50", LOC_REG (50) }, \
1639 { "loc51", LOC_REG (51) }, \
1640 { "loc52", LOC_REG (52) }, \
1641 { "loc53", LOC_REG (53) }, \
1642 { "loc54", LOC_REG (54) }, \
1643 { "loc55", LOC_REG (55) }, \
1644 { "loc56", LOC_REG (56) }, \
1645 { "loc57", LOC_REG (57) }, \
1646 { "loc58", LOC_REG (58) }, \
1647 { "loc59", LOC_REG (59) }, \
1648 { "loc60", LOC_REG (60) }, \
1649 { "loc61", LOC_REG (61) }, \
1650 { "loc62", LOC_REG (62) }, \
1651 { "loc63", LOC_REG (63) }, \
1652 { "loc64", LOC_REG (64) }, \
1653 { "loc65", LOC_REG (65) }, \
1654 { "loc66", LOC_REG (66) }, \
1655 { "loc67", LOC_REG (67) }, \
1656 { "loc68", LOC_REG (68) }, \
1657 { "loc69", LOC_REG (69) }, \
1658 { "loc70", LOC_REG (70) }, \
1659 { "loc71", LOC_REG (71) }, \
1660 { "loc72", LOC_REG (72) }, \
1661 { "loc73", LOC_REG (73) }, \
1662 { "loc74", LOC_REG (74) }, \
1663 { "loc75", LOC_REG (75) }, \
1664 { "loc76", LOC_REG (76) }, \
1665 { "loc77", LOC_REG (77) }, \
1666 { "loc78", LOC_REG (78) }, \
1667 { "loc79", LOC_REG (79) }, \
1670 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1671 for an instruction operand X. X is an RTL expression. */
1673 #define PRINT_OPERAND(STREAM, X, CODE) \
1674 ia64_print_operand (STREAM, X, CODE)
1676 /* A C expression which evaluates to true if CODE is a valid punctuation
1677 character for use in the `PRINT_OPERAND' macro. */
1679 /* ??? Keep this around for now, as we might need it later. */
1681 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1682 ((CODE) == '+' || (CODE) == ',')
1684 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1685 for an instruction operand that is a memory reference whose address is X. X
1686 is an RTL expression. */
1688 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
1689 ia64_print_operand_address (STREAM, X)
1691 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1692 `%I' options of `asm_fprintf' (see `final.c'). */
1694 #define REGISTER_PREFIX ""
1695 #define LOCAL_LABEL_PREFIX "."
1696 #define USER_LABEL_PREFIX ""
1697 #define IMMEDIATE_PREFIX ""
1700 /* Output of dispatch tables. */
1702 /* This macro should be provided on machines where the addresses in a dispatch
1703 table are relative to the table's own address. */
1705 /* ??? Depends on the pointer size. */
1707 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1708 do { \
1709 if (TARGET_ILP32) \
1710 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
1711 else \
1712 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
1713 } while (0)
1715 /* Jump tables only need 8 byte alignment. */
1717 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
1720 /* Assembler Commands for Exception Regions. */
1722 /* Select a format to encode pointers in exception handling data. CODE
1723 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1724 true if the symbol may be affected by dynamic relocations. */
1725 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1726 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
1727 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
1728 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1730 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1731 indirect are handled automatically. */
1732 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1733 do { \
1734 const char *reltag = NULL; \
1735 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
1736 reltag = "@segrel("; \
1737 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
1738 reltag = "@gprel("; \
1739 if (reltag) \
1741 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1742 fputs (reltag, FILE); \
1743 assemble_name (FILE, XSTR (ADDR, 0)); \
1744 fputc (')', FILE); \
1745 goto DONE; \
1747 } while (0)
1750 /* Assembler Commands for Alignment. */
1752 /* ??? Investigate. */
1754 /* The alignment (log base 2) to put in front of LABEL, which follows
1755 a BARRIER. */
1757 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1759 /* The desired alignment for the location counter at the beginning
1760 of a loop. */
1762 /* #define LOOP_ALIGN(LABEL) */
1764 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1765 section because it fails put zeros in the bytes that are skipped. */
1767 #define ASM_NO_SKIP_IN_TEXT 1
1769 /* A C statement to output to the stdio stream STREAM an assembler command to
1770 advance the location counter to a multiple of 2 to the POWER bytes. */
1772 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1773 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1776 /* Macros Affecting all Debug Formats. */
1778 /* This is handled in svr4.h and sysv4.h. */
1781 /* Specific Options for DBX Output. */
1783 /* This is handled by dbxelf.h which is included by svr4.h. */
1786 /* Open ended Hooks for DBX Output. */
1788 /* Likewise. */
1791 /* File names in DBX format. */
1793 /* Likewise. */
1796 /* Macros for SDB and Dwarf Output. */
1798 /* Define this macro if GCC should produce dwarf version 2 format debugging
1799 output in response to the `-g' option. */
1801 #define DWARF2_DEBUGGING_INFO 1
1803 /* We do not want call-frame info to be output, since debuggers are
1804 supposed to use the target unwind info. Leave this undefined it
1805 TARGET_UNWIND_INFO might ever be false. */
1807 #define DWARF2_FRAME_INFO 0
1809 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1811 /* Use tags for debug info labels, so that they don't break instruction
1812 bundles. This also avoids getting spurious DV warnings from the
1813 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
1814 add brackets around the label. */
1816 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1817 fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1819 /* Use section-relative relocations for debugging offsets. Unlike other
1820 targets that fake this by putting the section VMA at 0, IA-64 has
1821 proper relocations for them. */
1822 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION) \
1823 do { \
1824 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1825 fputs ("@secrel(", FILE); \
1826 assemble_name (FILE, LABEL); \
1827 fputc (')', FILE); \
1828 } while (0)
1830 /* Emit a PC-relative relocation. */
1831 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1832 do { \
1833 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1834 fputs ("@pcrel(", FILE); \
1835 assemble_name (FILE, LABEL); \
1836 fputc (')', FILE); \
1837 } while (0)
1839 /* Register Renaming Parameters. */
1841 /* A C expression that is nonzero if hard register number REGNO2 can be
1842 considered for use as a rename register for REGNO1 */
1844 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1845 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1848 /* Miscellaneous Parameters. */
1850 /* Flag to mark data that is in the small address area (addressable
1851 via "addl", that is, within a 2MByte offset of 0. */
1852 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
1853 #define SYMBOL_REF_SMALL_ADDR_P(X) \
1854 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1856 /* An alias for a machine mode name. This is the machine mode that elements of
1857 a jump-table should have. */
1859 #define CASE_VECTOR_MODE ptr_mode
1861 /* Define as C expression which evaluates to nonzero if the tablejump
1862 instruction expects the table to contain offsets from the address of the
1863 table. */
1865 #define CASE_VECTOR_PC_RELATIVE 1
1867 /* Define this macro if operations between registers with integral mode smaller
1868 than a word are always performed on the entire register. */
1870 #define WORD_REGISTER_OPERATIONS
1872 /* Define this macro to be a C expression indicating when insns that read
1873 memory in MODE, an integral mode narrower than a word, set the bits outside
1874 of MODE to be either the sign-extension or the zero-extension of the data
1875 read. */
1877 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1879 /* The maximum number of bytes that a single instruction can move quickly from
1880 memory to memory. */
1881 #define MOVE_MAX 8
1883 /* A C expression which is nonzero if on this machine it is safe to "convert"
1884 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1885 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
1887 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1889 /* A C expression describing the value returned by a comparison operator with
1890 an integral mode and stored by a store-flag instruction (`sCOND') when the
1891 condition is true. */
1893 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
1895 /* An alias for the machine mode for pointers. */
1897 /* ??? This would change if we had ILP32 support. */
1899 #define Pmode DImode
1901 /* An alias for the machine mode used for memory references to functions being
1902 called, in `call' RTL expressions. */
1904 #define FUNCTION_MODE Pmode
1906 /* Define this macro to handle System V style pragmas: #pragma pack and
1907 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
1908 defined. */
1910 #define HANDLE_SYSV_PRAGMA 1
1912 /* A C expression for the maximum number of instructions to execute via
1913 conditional execution instructions instead of a branch. A value of
1914 BRANCH_COST+1 is the default if the machine does not use
1915 cc0, and 1 if it does use cc0. */
1916 /* ??? Investigate. */
1917 #define MAX_CONDITIONAL_EXECUTE 12
1919 extern int ia64_final_schedule;
1921 #define TARGET_UNWIND_INFO 1
1923 #define TARGET_UNWIND_TABLES_DEFAULT true
1925 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1927 /* This function contains machine specific function data. */
1928 struct machine_function GTY(())
1930 /* The new stack pointer when unwinding from EH. */
1931 rtx ia64_eh_epilogue_sp;
1933 /* The new bsp value when unwinding from EH. */
1934 rtx ia64_eh_epilogue_bsp;
1936 /* The GP value save register. */
1937 rtx ia64_gp_save;
1939 /* The number of varargs registers to save. */
1940 int n_varargs;
1942 /* The number of the next unwind state to copy. */
1943 int state_num;
1946 #define DONT_USE_BUILTIN_SETJMP
1948 /* Output any profiling code before the prologue. */
1950 #undef PROFILE_BEFORE_PROLOGUE
1951 #define PROFILE_BEFORE_PROLOGUE 1
1953 /* Initialize library function table. */
1954 #undef TARGET_INIT_LIBFUNCS
1955 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1958 /* Switch on code for querying unit reservations. */
1959 #define CPU_UNITS_QUERY 1
1961 /* Define this to change the optimizations performed by default. */
1962 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
1963 ia64_optimization_options ((LEVEL), (SIZE))
1965 /* End of ia64.h */