Update concepts branch to revision 131834
[official-gcc.git] / gcc / config / alpha / alpha.h
blob5f2431e2978e53d8cf934b9c14aa17029cb1d432
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004, 2005, 2007 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Target CPU builtins. */
23 #define TARGET_CPU_CPP_BUILTINS() \
24 do \
25 { \
26 builtin_define ("__alpha"); \
27 builtin_define ("__alpha__"); \
28 builtin_assert ("cpu=alpha"); \
29 builtin_assert ("machine=alpha"); \
30 if (TARGET_CIX) \
31 { \
32 builtin_define ("__alpha_cix__"); \
33 builtin_assert ("cpu=cix"); \
34 } \
35 if (TARGET_FIX) \
36 { \
37 builtin_define ("__alpha_fix__"); \
38 builtin_assert ("cpu=fix"); \
39 } \
40 if (TARGET_BWX) \
41 { \
42 builtin_define ("__alpha_bwx__"); \
43 builtin_assert ("cpu=bwx"); \
44 } \
45 if (TARGET_MAX) \
46 { \
47 builtin_define ("__alpha_max__"); \
48 builtin_assert ("cpu=max"); \
49 } \
50 if (alpha_cpu == PROCESSOR_EV6) \
51 { \
52 builtin_define ("__alpha_ev6__"); \
53 builtin_assert ("cpu=ev6"); \
54 } \
55 else if (alpha_cpu == PROCESSOR_EV5) \
56 { \
57 builtin_define ("__alpha_ev5__"); \
58 builtin_assert ("cpu=ev5"); \
59 } \
60 else /* Presumably ev4. */ \
61 { \
62 builtin_define ("__alpha_ev4__"); \
63 builtin_assert ("cpu=ev4"); \
64 } \
65 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
66 builtin_define ("_IEEE_FP"); \
67 if (TARGET_IEEE_WITH_INEXACT) \
68 builtin_define ("_IEEE_FP_INEXACT"); \
69 if (TARGET_LONG_DOUBLE_128) \
70 builtin_define ("__LONG_DOUBLE_128__"); \
72 /* Macros dependent on the C dialect. */ \
73 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
74 } while (0)
76 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
77 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
78 do \
79 { \
80 if (preprocessing_asm_p ()) \
81 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
82 else if (c_dialect_cxx ()) \
83 { \
84 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
86 } \
87 else \
88 builtin_define_std ("LANGUAGE_C"); \
89 if (c_dialect_objc ()) \
90 { \
91 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
93 } \
94 } \
95 while (0)
96 #endif
98 #define WORD_SWITCH_TAKES_ARG(STR) \
99 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
101 /* Print subsidiary information on the compiler version in use. */
102 #define TARGET_VERSION
104 /* Run-time compilation parameters selecting different hardware subsets. */
106 /* Which processor to schedule for. The cpu attribute defines a list that
107 mirrors this list, so changes to alpha.md must be made at the same time. */
109 enum processor_type
111 PROCESSOR_EV4, /* 2106[46]{a,} */
112 PROCESSOR_EV5, /* 21164{a,pc,} */
113 PROCESSOR_EV6, /* 21264 */
114 PROCESSOR_MAX
117 extern enum processor_type alpha_cpu;
118 extern enum processor_type alpha_tune;
120 enum alpha_trap_precision
122 ALPHA_TP_PROG, /* No precision (default). */
123 ALPHA_TP_FUNC, /* Trap contained within originating function. */
124 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
127 enum alpha_fp_rounding_mode
129 ALPHA_FPRM_NORM, /* Normal rounding mode. */
130 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
131 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
132 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
135 enum alpha_fp_trap_mode
137 ALPHA_FPTM_N, /* Normal trap mode. */
138 ALPHA_FPTM_U, /* Underflow traps enabled. */
139 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
140 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
143 extern int target_flags;
145 extern enum alpha_trap_precision alpha_tp;
146 extern enum alpha_fp_rounding_mode alpha_fprm;
147 extern enum alpha_fp_trap_mode alpha_fptm;
149 /* Invert the easy way to make options work. */
150 #define TARGET_FP (!TARGET_SOFT_FP)
152 /* These are for target os support and cannot be changed at runtime. */
153 #define TARGET_ABI_WINDOWS_NT 0
154 #define TARGET_ABI_OPEN_VMS 0
155 #define TARGET_ABI_UNICOSMK 0
156 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
157 && !TARGET_ABI_OPEN_VMS \
158 && !TARGET_ABI_UNICOSMK)
160 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
161 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
162 #endif
163 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
164 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
165 #endif
166 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
167 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
168 #endif
169 #ifndef TARGET_HAS_XFLOATING_LIBS
170 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
171 #endif
172 #ifndef TARGET_PROFILING_NEEDS_GP
173 #define TARGET_PROFILING_NEEDS_GP 0
174 #endif
175 #ifndef TARGET_LD_BUGGY_LDGP
176 #define TARGET_LD_BUGGY_LDGP 0
177 #endif
178 #ifndef TARGET_FIXUP_EV5_PREFETCH
179 #define TARGET_FIXUP_EV5_PREFETCH 0
180 #endif
181 #ifndef HAVE_AS_TLS
182 #define HAVE_AS_TLS 0
183 #endif
185 #define TARGET_DEFAULT MASK_FPREGS
187 #ifndef TARGET_CPU_DEFAULT
188 #define TARGET_CPU_DEFAULT 0
189 #endif
191 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
192 #ifdef HAVE_AS_EXPLICIT_RELOCS
193 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
194 #define TARGET_SUPPORT_ARCH 1
195 #else
196 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
197 #endif
198 #endif
200 #ifndef TARGET_SUPPORT_ARCH
201 #define TARGET_SUPPORT_ARCH 0
202 #endif
204 /* Support for a compile-time default CPU, et cetera. The rules are:
205 --with-cpu is ignored if -mcpu is specified.
206 --with-tune is ignored if -mtune is specified. */
207 #define OPTION_DEFAULT_SPECS \
208 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
209 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
211 /* Sometimes certain combinations of command options do not make sense
212 on a particular target machine. You can define a macro
213 `OVERRIDE_OPTIONS' to take account of this. This macro, if
214 defined, is executed once just after all the command options have
215 been parsed.
217 On the Alpha, it is used to translate target-option strings into
218 numeric values. */
220 #define OVERRIDE_OPTIONS override_options ()
223 /* Define this macro to change register usage conditional on target flags.
225 On the Alpha, we use this to disable the floating-point registers when
226 they don't exist. */
228 #define CONDITIONAL_REGISTER_USAGE \
230 int i; \
231 if (! TARGET_FPREGS) \
232 for (i = 32; i < 63; i++) \
233 fixed_regs[i] = call_used_regs[i] = 1; \
237 /* Show we can debug even without a frame pointer. */
238 #define CAN_DEBUG_WITHOUT_FP
240 /* target machine storage layout */
242 /* Define the size of `int'. The default is the same as the word size. */
243 #define INT_TYPE_SIZE 32
245 /* Define the size of `long long'. The default is the twice the word size. */
246 #define LONG_LONG_TYPE_SIZE 64
248 /* We're IEEE unless someone says to use VAX. */
249 #define TARGET_FLOAT_FORMAT \
250 (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
252 /* The two floating-point formats we support are S-floating, which is
253 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
254 and `long double' are T. */
256 #define FLOAT_TYPE_SIZE 32
257 #define DOUBLE_TYPE_SIZE 64
258 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
260 /* Define this to set long double type size to use in libgcc2.c, which can
261 not depend on target_flags. */
262 #ifdef __LONG_DOUBLE_128__
263 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
264 #else
265 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
266 #endif
268 /* Work around target_flags dependency in ada/targtyps.c. */
269 #define WIDEST_HARDWARE_FP_SIZE 64
271 #define WCHAR_TYPE "unsigned int"
272 #define WCHAR_TYPE_SIZE 32
274 /* Define this macro if it is advisable to hold scalars in registers
275 in a wider mode than that declared by the program. In such cases,
276 the value is constrained to be within the bounds of the declared
277 type, but kept valid in the wider mode. The signedness of the
278 extension may differ from that of the type.
280 For Alpha, we always store objects in a full register. 32-bit integers
281 are always sign-extended, but smaller objects retain their signedness.
283 Note that small vector types can get mapped onto integer modes at the
284 whim of not appearing in alpha-modes.def. We never promoted these
285 values before; don't do so now that we've trimmed the set of modes to
286 those actually implemented in the backend. */
288 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
289 if (GET_MODE_CLASS (MODE) == MODE_INT \
290 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
291 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
293 if ((MODE) == SImode) \
294 (UNSIGNEDP) = 0; \
295 (MODE) = DImode; \
298 /* Define this if most significant bit is lowest numbered
299 in instructions that operate on numbered bit-fields.
301 There are no such instructions on the Alpha, but the documentation
302 is little endian. */
303 #define BITS_BIG_ENDIAN 0
305 /* Define this if most significant byte of a word is the lowest numbered.
306 This is false on the Alpha. */
307 #define BYTES_BIG_ENDIAN 0
309 /* Define this if most significant word of a multiword number is lowest
310 numbered.
312 For Alpha we can decide arbitrarily since there are no machine instructions
313 for them. Might as well be consistent with bytes. */
314 #define WORDS_BIG_ENDIAN 0
316 /* Width of a word, in units (bytes). */
317 #define UNITS_PER_WORD 8
319 /* Width in bits of a pointer.
320 See also the macro `Pmode' defined below. */
321 #define POINTER_SIZE 64
323 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
324 #define PARM_BOUNDARY 64
326 /* Boundary (in *bits*) on which stack pointer should be aligned. */
327 #define STACK_BOUNDARY 128
329 /* Allocation boundary (in *bits*) for the code of a function. */
330 #define FUNCTION_BOUNDARY 32
332 /* Alignment of field after `int : 0' in a structure. */
333 #define EMPTY_FIELD_BOUNDARY 64
335 /* Every structure's size must be a multiple of this. */
336 #define STRUCTURE_SIZE_BOUNDARY 8
338 /* A bit-field declared as `int' forces `int' alignment for the struct. */
339 #define PCC_BITFIELD_TYPE_MATTERS 1
341 /* No data type wants to be aligned rounder than this. */
342 #define BIGGEST_ALIGNMENT 128
344 /* For atomic access to objects, must have at least 32-bit alignment
345 unless the machine has byte operations. */
346 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
348 /* Align all constants and variables to at least a word boundary so
349 we can pick up pieces of them faster. */
350 /* ??? Only if block-move stuff knows about different source/destination
351 alignment. */
352 #if 0
353 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
354 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
355 #endif
357 /* Set this nonzero if move instructions will actually fail to work
358 when given unaligned data.
360 Since we get an error message when we do one, call them invalid. */
362 #define STRICT_ALIGNMENT 1
364 /* Set this nonzero if unaligned move instructions are extremely slow.
366 On the Alpha, they trap. */
368 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
370 /* Standard register usage. */
372 /* Number of actual hardware registers.
373 The hardware registers are assigned numbers for the compiler
374 from 0 to just below FIRST_PSEUDO_REGISTER.
375 All registers that the compiler knows about must be given numbers,
376 even those that are not normally considered general registers.
378 We define all 32 integer registers, even though $31 is always zero,
379 and all 32 floating-point registers, even though $f31 is also
380 always zero. We do not bother defining the FP status register and
381 there are no other registers.
383 Since $31 is always zero, we will use register number 31 as the
384 argument pointer. It will never appear in the generated code
385 because we will always be eliminating it in favor of the stack
386 pointer or hardware frame pointer.
388 Likewise, we use $f31 for the frame pointer, which will always
389 be eliminated in favor of the hardware frame pointer or the
390 stack pointer. */
392 #define FIRST_PSEUDO_REGISTER 64
394 /* 1 for registers that have pervasive standard uses
395 and are not available for the register allocator. */
397 #define FIXED_REGISTERS \
398 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
399 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
400 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
401 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
403 /* 1 for registers not available across function calls.
404 These must include the FIXED_REGISTERS and also any
405 registers that can be used without being saved.
406 The latter must include the registers where values are returned
407 and the register where structure-value addresses are passed.
408 Aside from that, you can include as many other registers as you like. */
409 #define CALL_USED_REGISTERS \
410 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
411 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
412 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
413 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
415 /* List the order in which to allocate registers. Each register must be
416 listed once, even those in FIXED_REGISTERS. */
418 #define REG_ALLOC_ORDER { \
419 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
420 22, 23, 24, 25, 28, /* likewise */ \
421 0, /* likewise, but return value */ \
422 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
423 27, /* likewise, but OSF procedure value */ \
425 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
426 54, 55, 56, 57, 58, 59, /* likewise */ \
427 60, 61, 62, /* likewise */ \
428 32, 33, /* likewise, but return values */ \
429 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
431 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
432 26, /* return address */ \
433 15, /* hard frame pointer */ \
435 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
436 40, 41, /* likewise */ \
438 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
441 /* Return number of consecutive hard regs needed starting at reg REGNO
442 to hold something of mode MODE.
443 This is ordinarily the length in words of a value of mode MODE
444 but can be less for certain modes in special long registers. */
446 #define HARD_REGNO_NREGS(REGNO, MODE) \
447 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
449 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
450 On Alpha, the integer registers can hold any mode. The floating-point
451 registers can hold 64-bit integers as well, but not smaller values. */
453 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
454 ((REGNO) >= 32 && (REGNO) <= 62 \
455 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
456 || (MODE) == SCmode || (MODE) == DCmode \
457 : 1)
459 /* A C expression that is nonzero if a value of mode
460 MODE1 is accessible in mode MODE2 without copying.
462 This asymmetric test is true when MODE1 could be put
463 in an FP register but MODE2 could not. */
465 #define MODES_TIEABLE_P(MODE1, MODE2) \
466 (HARD_REGNO_MODE_OK (32, (MODE1)) \
467 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
468 : 1)
470 /* Specify the registers used for certain standard purposes.
471 The values of these macros are register numbers. */
473 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
474 /* #define PC_REGNUM */
476 /* Register to use for pushing function arguments. */
477 #define STACK_POINTER_REGNUM 30
479 /* Base register for access to local variables of the function. */
480 #define HARD_FRAME_POINTER_REGNUM 15
482 /* Value should be nonzero if functions must have frame pointers.
483 Zero means the frame pointer need not be set up (and parms
484 may be accessed via the stack pointer) in functions that seem suitable.
485 This is computed in `reload', in reload1.c. */
486 #define FRAME_POINTER_REQUIRED 0
488 /* Base register for access to arguments of the function. */
489 #define ARG_POINTER_REGNUM 31
491 /* Base register for access to local variables of function. */
492 #define FRAME_POINTER_REGNUM 63
494 /* Register in which static-chain is passed to a function.
496 For the Alpha, this is based on an example; the calling sequence
497 doesn't seem to specify this. */
498 #define STATIC_CHAIN_REGNUM 1
500 /* The register number of the register used to address a table of
501 static data addresses in memory. */
502 #define PIC_OFFSET_TABLE_REGNUM 29
504 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
505 is clobbered by calls. */
506 /* ??? It is and it isn't. It's required to be valid for a given
507 function when the function returns. It isn't clobbered by
508 current_file functions. Moreover, we do not expose the ldgp
509 until after reload, so we're probably safe. */
510 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
512 /* Define the classes of registers for register constraints in the
513 machine description. Also define ranges of constants.
515 One of the classes must always be named ALL_REGS and include all hard regs.
516 If there is more than one class, another class must be named NO_REGS
517 and contain no registers.
519 The name GENERAL_REGS must be the name of a class (or an alias for
520 another name such as ALL_REGS). This is the class of registers
521 that is allowed by "g" or "r" in a register constraint.
522 Also, registers outside this class are allocated only when
523 instructions express preferences for them.
525 The classes must be numbered in nondecreasing order; that is,
526 a larger-numbered class must never be contained completely
527 in a smaller-numbered class.
529 For any two classes, it is very desirable that there be another
530 class that represents their union. */
532 enum reg_class {
533 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
534 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
535 LIM_REG_CLASSES
538 #define N_REG_CLASSES (int) LIM_REG_CLASSES
540 /* Give names of register classes as strings for dump file. */
542 #define REG_CLASS_NAMES \
543 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
544 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
546 /* Define which registers fit in which classes.
547 This is an initializer for a vector of HARD_REG_SET
548 of length N_REG_CLASSES. */
550 #define REG_CLASS_CONTENTS \
551 { {0x00000000, 0x00000000}, /* NO_REGS */ \
552 {0x00000001, 0x00000000}, /* R0_REG */ \
553 {0x01000000, 0x00000000}, /* R24_REG */ \
554 {0x02000000, 0x00000000}, /* R25_REG */ \
555 {0x08000000, 0x00000000}, /* R27_REG */ \
556 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
557 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
558 {0xffffffff, 0xffffffff} }
560 /* The same information, inverted:
561 Return the class number of the smallest class containing
562 reg number REGNO. This could be a conditional expression
563 or could index an array. */
565 #define REGNO_REG_CLASS(REGNO) \
566 ((REGNO) == 0 ? R0_REG \
567 : (REGNO) == 24 ? R24_REG \
568 : (REGNO) == 25 ? R25_REG \
569 : (REGNO) == 27 ? R27_REG \
570 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
571 : GENERAL_REGS)
573 /* The class value for index registers, and the one for base regs. */
574 #define INDEX_REG_CLASS NO_REGS
575 #define BASE_REG_CLASS GENERAL_REGS
577 /* Given an rtx X being reloaded into a reg required to be
578 in class CLASS, return the class of reg to actually use.
579 In general this is just CLASS; but on some machines
580 in some cases it is preferable to use a more restrictive class. */
582 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
584 /* If we are copying between general and FP registers, we need a memory
585 location unless the FIX extension is available. */
587 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
588 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
589 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
591 /* Specify the mode to be used for memory when a secondary memory
592 location is needed. If MODE is floating-point, use it. Otherwise,
593 widen to a word like the default. This is needed because we always
594 store integers in FP registers in quadword format. This whole
595 area is very tricky! */
596 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
597 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
598 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
599 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
601 /* Return the maximum number of consecutive registers
602 needed to represent mode MODE in a register of class CLASS. */
604 #define CLASS_MAX_NREGS(CLASS, MODE) \
605 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
607 /* Return the class of registers that cannot change mode from FROM to TO. */
609 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
610 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
611 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
613 /* Define the cost of moving between registers of various classes. Moving
614 between FLOAT_REGS and anything else except float regs is expensive.
615 In fact, we make it quite expensive because we really don't want to
616 do these moves unless it is clearly worth it. Optimizations may
617 reduce the impact of not being able to allocate a pseudo to a
618 hard register. */
620 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
621 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
622 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
623 : 4+2*alpha_memory_latency)
625 /* A C expressions returning the cost of moving data of MODE from a register to
626 or from memory.
628 On the Alpha, bump this up a bit. */
630 extern int alpha_memory_latency;
631 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
633 /* Provide the cost of a branch. Exact meaning under development. */
634 #define BRANCH_COST 5
636 /* Stack layout; function entry, exit and calling. */
638 /* Define this if pushing a word on the stack
639 makes the stack pointer a smaller address. */
640 #define STACK_GROWS_DOWNWARD
642 /* Define this to nonzero if the nominal address of the stack frame
643 is at the high-address end of the local variables;
644 that is, each additional local variable allocated
645 goes at a more negative offset in the frame. */
646 /* #define FRAME_GROWS_DOWNWARD 0 */
648 /* Offset within stack frame to start allocating local variables at.
649 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
650 first local allocated. Otherwise, it is the offset to the BEGINNING
651 of the first local allocated. */
653 #define STARTING_FRAME_OFFSET 0
655 /* If we generate an insn to push BYTES bytes,
656 this says how many the stack pointer really advances by.
657 On Alpha, don't define this because there are no push insns. */
658 /* #define PUSH_ROUNDING(BYTES) */
660 /* Define this to be nonzero if stack checking is built into the ABI. */
661 #define STACK_CHECK_BUILTIN 1
663 /* Define this if the maximum size of all the outgoing args is to be
664 accumulated and pushed during the prologue. The amount can be
665 found in the variable crtl->outgoing_args_size. */
666 #define ACCUMULATE_OUTGOING_ARGS 1
668 /* Offset of first parameter from the argument pointer register value. */
670 #define FIRST_PARM_OFFSET(FNDECL) 0
672 /* Definitions for register eliminations.
674 We have two registers that can be eliminated on the Alpha. First, the
675 frame pointer register can often be eliminated in favor of the stack
676 pointer register. Secondly, the argument pointer register can always be
677 eliminated; it is replaced with either the stack or frame pointer. */
679 /* This is an array of structures. Each structure initializes one pair
680 of eliminable registers. The "from" register number is given first,
681 followed by "to". Eliminations of the same "from" register are listed
682 in order of preference. */
684 #define ELIMINABLE_REGS \
685 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
686 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
687 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
688 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
690 /* Given FROM and TO register numbers, say whether this elimination is allowed.
691 Frame pointer elimination is automatically handled.
693 All eliminations are valid since the cases where FP can't be
694 eliminated are already handled. */
696 #define CAN_ELIMINATE(FROM, TO) 1
698 /* Round up to a multiple of 16 bytes. */
699 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
701 /* Define the offset between two registers, one to be eliminated, and the other
702 its replacement, at the start of a routine. */
703 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
704 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
706 /* Define this if stack space is still allocated for a parameter passed
707 in a register. */
708 /* #define REG_PARM_STACK_SPACE */
710 /* Value is the number of bytes of arguments automatically
711 popped when returning from a subroutine call.
712 FUNDECL is the declaration node of the function (as a tree),
713 FUNTYPE is the data type of the function (as a tree),
714 or for a library call it is an identifier node for the subroutine name.
715 SIZE is the number of bytes of arguments passed on the stack. */
717 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
719 /* Define how to find the value returned by a function.
720 VALTYPE is the data type of the value (as a tree).
721 If the precise function being called is known, FUNC is its FUNCTION_DECL;
722 otherwise, FUNC is 0.
724 On Alpha the value is found in $0 for integer functions and
725 $f0 for floating-point functions. */
727 #define FUNCTION_VALUE(VALTYPE, FUNC) \
728 function_value (VALTYPE, FUNC, VOIDmode)
730 /* Define how to find the value returned by a library function
731 assuming the value has mode MODE. */
733 #define LIBCALL_VALUE(MODE) \
734 function_value (NULL, NULL, MODE)
736 /* 1 if N is a possible register number for a function value
737 as seen by the caller. */
739 #define FUNCTION_VALUE_REGNO_P(N) \
740 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
742 /* 1 if N is a possible register number for function argument passing.
743 On Alpha, these are $16-$21 and $f16-$f21. */
745 #define FUNCTION_ARG_REGNO_P(N) \
746 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
748 /* Define a data type for recording info about an argument list
749 during the scan of that argument list. This data type should
750 hold all necessary information about the function itself
751 and about the args processed so far, enough to enable macros
752 such as FUNCTION_ARG to determine where the next arg should go.
754 On Alpha, this is a single integer, which is a number of words
755 of arguments scanned so far.
756 Thus 6 or more means all following args should go on the stack. */
758 #define CUMULATIVE_ARGS int
760 /* Initialize a variable CUM of type CUMULATIVE_ARGS
761 for a call to a function whose data type is FNTYPE.
762 For a library call, FNTYPE is 0. */
764 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
765 (CUM) = 0
767 /* Define intermediate macro to compute the size (in registers) of an argument
768 for the Alpha. */
770 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
771 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
772 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
773 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
775 /* Update the data in CUM to advance over an argument
776 of mode MODE and data type TYPE.
777 (TYPE is null for libcalls where that information may not be available.) */
779 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
780 ((CUM) += \
781 (targetm.calls.must_pass_in_stack (MODE, TYPE)) \
782 ? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
784 /* Determine where to put an argument to a function.
785 Value is zero to push the argument on the stack,
786 or a hard register in which to store the argument.
788 MODE is the argument's machine mode.
789 TYPE is the data type of the argument (as a tree).
790 This is null for libcalls where that information may
791 not be available.
792 CUM is a variable of type CUMULATIVE_ARGS which gives info about
793 the preceding args and about the function being called.
794 NAMED is nonzero if this argument is a named parameter
795 (otherwise it is an extra parameter matching an ellipsis).
797 On Alpha the first 6 words of args are normally in registers
798 and the rest are pushed. */
800 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
801 function_arg((CUM), (MODE), (TYPE), (NAMED))
803 /* Try to output insns to set TARGET equal to the constant C if it can be
804 done in less than N insns. Do all computations in MODE. Returns the place
805 where the output has been placed if it can be done and the insns have been
806 emitted. If it would take more than N insns, zero is returned and no
807 insns and emitted. */
809 /* Define the information needed to generate branch and scc insns. This is
810 stored from the compare operation. Note that we can't use "rtx" here
811 since it hasn't been defined! */
813 struct alpha_compare
815 struct rtx_def *op0, *op1;
816 int fp_p;
819 extern struct alpha_compare alpha_compare;
821 /* Make (or fake) .linkage entry for function call.
822 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
824 /* This macro defines the start of an assembly comment. */
826 #define ASM_COMMENT_START " #"
828 /* This macro produces the initial definition of a function. */
830 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
831 alpha_start_function(FILE,NAME,DECL);
833 /* This macro closes up a function definition for the assembler. */
835 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
836 alpha_end_function(FILE,NAME,DECL)
838 /* Output any profiling code before the prologue. */
840 #define PROFILE_BEFORE_PROLOGUE 1
842 /* Never use profile counters. */
844 #define NO_PROFILE_COUNTERS 1
846 /* Output assembler code to FILE to increment profiler label # LABELNO
847 for profiling a function entry. Under OSF/1, profiling is enabled
848 by simply passing -pg to the assembler and linker. */
850 #define FUNCTION_PROFILER(FILE, LABELNO)
852 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
853 the stack pointer does not matter. The value is tested only in
854 functions that have frame pointers.
855 No definition is equivalent to always zero. */
857 #define EXIT_IGNORE_STACK 1
859 /* Define registers used by the epilogue and return instruction. */
861 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
863 /* Output assembler code for a block containing the constant parts
864 of a trampoline, leaving space for the variable parts.
866 The trampoline should set the static chain pointer to value placed
867 into the trampoline and should branch to the specified routine.
868 Note that $27 has been set to the address of the trampoline, so we can
869 use it for addressability of the two data items. */
871 #define TRAMPOLINE_TEMPLATE(FILE) \
872 do { \
873 fprintf (FILE, "\tldq $1,24($27)\n"); \
874 fprintf (FILE, "\tldq $27,16($27)\n"); \
875 fprintf (FILE, "\tjmp $31,($27),0\n"); \
876 fprintf (FILE, "\tnop\n"); \
877 fprintf (FILE, "\t.quad 0,0\n"); \
878 } while (0)
880 /* Section in which to place the trampoline. On Alpha, instructions
881 may only be placed in a text segment. */
883 #define TRAMPOLINE_SECTION text_section
885 /* Length in units of the trampoline for entering a nested function. */
887 #define TRAMPOLINE_SIZE 32
889 /* The alignment of a trampoline, in bits. */
891 #define TRAMPOLINE_ALIGNMENT 64
893 /* Emit RTL insns to initialize the variable parts of a trampoline.
894 FNADDR is an RTX for the address of the function's pure code.
895 CXT is an RTX for the static chain value for the function. */
897 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
898 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
900 /* A C expression whose value is RTL representing the value of the return
901 address for the frame COUNT steps up from the current frame.
902 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
903 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
905 #define RETURN_ADDR_RTX alpha_return_addr
907 /* Before the prologue, RA lives in $26. */
908 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
909 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
910 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
911 #define DWARF_ZERO_REG 31
913 /* Describe how we implement __builtin_eh_return. */
914 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
915 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
916 #define EH_RETURN_HANDLER_RTX \
917 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
918 crtl->outgoing_args_size))
920 /* Addressing modes, and classification of registers for them. */
922 /* Macros to check register numbers against specific register classes. */
924 /* These assume that REGNO is a hard or pseudo reg number.
925 They give nonzero only if REGNO is a hard reg of the suitable class
926 or a pseudo reg currently allocated to a suitable hard reg.
927 Since they use reg_renumber, they are safe only once reg_renumber
928 has been allocated, which happens in local-alloc.c. */
930 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
931 #define REGNO_OK_FOR_BASE_P(REGNO) \
932 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
933 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
935 /* Maximum number of registers that can appear in a valid memory address. */
936 #define MAX_REGS_PER_ADDRESS 1
938 /* Recognize any constant value that is a valid address. For the Alpha,
939 there are only constants none since we want to use LDA to load any
940 symbolic addresses into registers. */
942 #define CONSTANT_ADDRESS_P(X) \
943 (GET_CODE (X) == CONST_INT \
944 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
946 /* Include all constant integers and constant doubles, but not
947 floating-point, except for floating-point zero. */
949 #define LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
951 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
952 and check its validity for a certain class.
953 We have two alternate definitions for each of them.
954 The usual definition accepts all pseudo regs; the other rejects
955 them unless they have been allocated suitable hard regs.
956 The symbol REG_OK_STRICT causes the latter definition to be used.
958 Most source files want to accept pseudo regs in the hope that
959 they will get allocated to the class that the insn wants them to be in.
960 Source files for reload pass need to be strict.
961 After reload, it makes no difference, since pseudo regs have
962 been eliminated by then. */
964 /* Nonzero if X is a hard reg that can be used as an index
965 or if it is a pseudo reg. */
966 #define REG_OK_FOR_INDEX_P(X) 0
968 /* Nonzero if X is a hard reg that can be used as a base reg
969 or if it is a pseudo reg. */
970 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
971 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
973 /* ??? Nonzero if X is the frame pointer, or some virtual register
974 that may eliminate to the frame pointer. These will be allowed to
975 have offsets greater than 32K. This is done because register
976 elimination offsets will change the hi/lo split, and if we split
977 before reload, we will require additional instructions. */
978 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
979 (REGNO (X) == 31 || REGNO (X) == 63 \
980 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
981 && REGNO (X) < LAST_VIRTUAL_REGISTER))
983 /* Nonzero if X is a hard reg that can be used as a base reg. */
984 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
986 #ifdef REG_OK_STRICT
987 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
988 #else
989 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
990 #endif
992 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
993 valid memory address for an instruction. */
995 #ifdef REG_OK_STRICT
996 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
997 do { \
998 if (alpha_legitimate_address_p (MODE, X, 1)) \
999 goto WIN; \
1000 } while (0)
1001 #else
1002 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1003 do { \
1004 if (alpha_legitimate_address_p (MODE, X, 0)) \
1005 goto WIN; \
1006 } while (0)
1007 #endif
1009 /* Try machine-dependent ways of modifying an illegitimate address
1010 to be legitimate. If we find one, return the new, valid address.
1011 This macro is used in only one place: `memory_address' in explow.c. */
1013 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1014 do { \
1015 rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE); \
1016 if (new_x) \
1018 X = new_x; \
1019 goto WIN; \
1021 } while (0)
1023 /* Try a machine-dependent way of reloading an illegitimate address
1024 operand. If we find one, push the reload and jump to WIN. This
1025 macro is used in only one place: `find_reloads_address' in reload.c. */
1027 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
1028 do { \
1029 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1030 if (new_x) \
1032 X = new_x; \
1033 goto WIN; \
1035 } while (0)
1037 /* Go to LABEL if ADDR (a legitimate address expression)
1038 has an effect that depends on the machine mode it is used for.
1039 On the Alpha this is true only for the unaligned modes. We can
1040 simplify this test since we know that the address must be valid. */
1042 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1043 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1045 /* Specify the machine mode that this machine uses
1046 for the index in the tablejump instruction. */
1047 #define CASE_VECTOR_MODE SImode
1049 /* Define as C expression which evaluates to nonzero if the tablejump
1050 instruction expects the table to contain offsets from the address of the
1051 table.
1053 Do not define this if the table should contain absolute addresses.
1054 On the Alpha, the table is really GP-relative, not relative to the PC
1055 of the table, but we pretend that it is PC-relative; this should be OK,
1056 but we should try to find some better way sometime. */
1057 #define CASE_VECTOR_PC_RELATIVE 1
1059 /* Define this as 1 if `char' should by default be signed; else as 0. */
1060 #define DEFAULT_SIGNED_CHAR 1
1062 /* Max number of bytes we can move to or from memory
1063 in one reasonably fast instruction. */
1065 #define MOVE_MAX 8
1067 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1068 move-instruction pairs, we will do a movmem or libcall instead.
1070 Without byte/word accesses, we want no more than four instructions;
1071 with, several single byte accesses are better. */
1073 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1075 /* Largest number of bytes of an object that can be placed in a register.
1076 On the Alpha we have plenty of registers, so use TImode. */
1077 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1079 /* Nonzero if access to memory by bytes is no faster than for words.
1080 Also nonzero if doing byte operations (specifically shifts) in registers
1081 is undesirable.
1083 On the Alpha, we want to not use the byte operation and instead use
1084 masking operations to access fields; these will save instructions. */
1086 #define SLOW_BYTE_ACCESS 1
1088 /* Define if operations between registers always perform the operation
1089 on the full register even if a narrower mode is specified. */
1090 #define WORD_REGISTER_OPERATIONS
1092 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1093 will either zero-extend or sign-extend. The value of this macro should
1094 be the code that says which one of the two operations is implicitly
1095 done, UNKNOWN if none. */
1096 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1098 /* Define if loading short immediate values into registers sign extends. */
1099 #define SHORT_IMMEDIATES_SIGN_EXTEND
1101 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1102 is done just by pretending it is already truncated. */
1103 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1105 /* The CIX ctlz and cttz instructions return 64 for zero. */
1106 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1107 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1109 /* Define the value returned by a floating-point comparison instruction. */
1111 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1112 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1114 /* Canonicalize a comparison from one we don't have to one we do have. */
1116 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1117 do { \
1118 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1119 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1121 rtx tem = (OP0); \
1122 (OP0) = (OP1); \
1123 (OP1) = tem; \
1124 (CODE) = swap_condition (CODE); \
1126 if (((CODE) == LT || (CODE) == LTU) \
1127 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1129 (CODE) = (CODE) == LT ? LE : LEU; \
1130 (OP1) = GEN_INT (255); \
1132 } while (0)
1134 /* Specify the machine mode that pointers have.
1135 After generation of rtl, the compiler makes no further distinction
1136 between pointers and any other objects of this machine mode. */
1137 #define Pmode DImode
1139 /* Mode of a function address in a call instruction (for indexing purposes). */
1141 #define FUNCTION_MODE Pmode
1143 /* Define this if addresses of constant functions
1144 shouldn't be put through pseudo regs where they can be cse'd.
1145 Desirable on machines where ordinary constants are expensive
1146 but a CALL with constant address is cheap.
1148 We define this on the Alpha so that gen_call and gen_call_value
1149 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1150 then copy it into a register, thus actually letting the address be
1151 cse'ed. */
1153 #define NO_FUNCTION_CSE
1155 /* Define this to be nonzero if shift instructions ignore all but the low-order
1156 few bits. */
1157 #define SHIFT_COUNT_TRUNCATED 1
1159 /* Control the assembler format that we output. */
1161 /* Output to assembler file text saying following lines
1162 may contain character constants, extra white space, comments, etc. */
1163 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1165 /* Output to assembler file text saying following lines
1166 no longer contain unusual constructs. */
1167 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1169 #define TEXT_SECTION_ASM_OP "\t.text"
1171 /* Output before read-only data. */
1173 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1175 /* Output before writable data. */
1177 #define DATA_SECTION_ASM_OP "\t.data"
1179 /* How to refer to registers in assembler output.
1180 This sequence is indexed by compiler's hard-register-number (see above). */
1182 #define REGISTER_NAMES \
1183 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1184 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1185 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1186 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1187 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1188 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1189 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1190 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1192 /* Strip name encoding when emitting labels. */
1194 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1195 do { \
1196 const char *name_ = NAME; \
1197 if (*name_ == '@' || *name_ == '%') \
1198 name_ += 2; \
1199 if (*name_ == '*') \
1200 name_++; \
1201 else \
1202 fputs (user_label_prefix, STREAM); \
1203 fputs (name_, STREAM); \
1204 } while (0)
1206 /* Globalizing directive for a label. */
1207 #define GLOBAL_ASM_OP "\t.globl "
1209 /* The prefix to add to user-visible assembler symbols. */
1211 #define USER_LABEL_PREFIX ""
1213 /* This is how to output a label for a jump table. Arguments are the same as
1214 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1215 passed. */
1217 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1218 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1220 /* This is how to store into the string LABEL
1221 the symbol_ref name of an internal numbered label where
1222 PREFIX is the class of label and NUM is the number within the class.
1223 This is suitable for output with `assemble_name'. */
1225 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1226 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1228 /* We use the default ASCII-output routine, except that we don't write more
1229 than 50 characters since the assembler doesn't support very long lines. */
1231 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1232 do { \
1233 FILE *_hide_asm_out_file = (MYFILE); \
1234 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1235 int _hide_thissize = (MYLENGTH); \
1236 int _size_so_far = 0; \
1238 FILE *asm_out_file = _hide_asm_out_file; \
1239 const unsigned char *p = _hide_p; \
1240 int thissize = _hide_thissize; \
1241 int i; \
1242 fprintf (asm_out_file, "\t.ascii \""); \
1244 for (i = 0; i < thissize; i++) \
1246 register int c = p[i]; \
1248 if (_size_so_far ++ > 50 && i < thissize - 4) \
1249 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1251 if (c == '\"' || c == '\\') \
1252 putc ('\\', asm_out_file); \
1253 if (c >= ' ' && c < 0177) \
1254 putc (c, asm_out_file); \
1255 else \
1257 fprintf (asm_out_file, "\\%o", c); \
1258 /* After an octal-escape, if a digit follows, \
1259 terminate one string constant and start another. \
1260 The VAX assembler fails to stop reading the escape \
1261 after three digits, so this is the only way we \
1262 can get it to parse the data properly. */ \
1263 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1264 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1267 fprintf (asm_out_file, "\"\n"); \
1270 while (0)
1272 /* This is how to output an element of a case-vector that is relative. */
1274 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1275 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1276 (VALUE))
1278 /* This is how to output an assembler line
1279 that says to advance the location counter
1280 to a multiple of 2**LOG bytes. */
1282 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1283 if ((LOG) != 0) \
1284 fprintf (FILE, "\t.align %d\n", LOG);
1286 /* This is how to advance the location counter by SIZE bytes. */
1288 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1289 fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1291 /* This says how to output an assembler line
1292 to define a global common symbol. */
1294 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1295 ( fputs ("\t.comm ", (FILE)), \
1296 assemble_name ((FILE), (NAME)), \
1297 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1299 /* This says how to output an assembler line
1300 to define a local common symbol. */
1302 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1303 ( fputs ("\t.lcomm ", (FILE)), \
1304 assemble_name ((FILE), (NAME)), \
1305 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1308 /* Print operand X (an rtx) in assembler syntax to file FILE.
1309 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1310 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1312 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1314 /* Determine which codes are valid without a following integer. These must
1315 not be alphabetic.
1317 ~ Generates the name of the current function.
1319 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1320 attributes are examined to determine what is appropriate.
1322 , Generates single precision suffix for floating point
1323 instructions (s for IEEE, f for VAX)
1325 - Generates double precision suffix for floating point
1326 instructions (t for IEEE, g for VAX)
1329 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1330 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1331 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1333 /* Print a memory address as an operand to reference that memory location. */
1335 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1336 print_operand_address((FILE), (ADDR))
1338 /* Tell collect that the object format is ECOFF. */
1339 #define OBJECT_FORMAT_COFF
1340 #define EXTENDED_COFF
1342 /* If we use NM, pass -g to it so it only lists globals. */
1343 #define NM_FLAGS "-pg"
1345 /* Definitions for debugging. */
1347 #define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1348 #define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
1349 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1351 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1352 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1353 #endif
1356 /* Correct the offset of automatic variables and arguments. Note that
1357 the Alpha debug format wants all automatic variables and arguments
1358 to be in terms of two different offsets from the virtual frame pointer,
1359 which is the stack pointer before any adjustment in the function.
1360 The offset for the argument pointer is fixed for the native compiler,
1361 it is either zero (for the no arguments case) or large enough to hold
1362 all argument registers.
1363 The offset for the auto pointer is the fourth argument to the .frame
1364 directive (local_offset).
1365 To stay compatible with the native tools we use the same offsets
1366 from the virtual frame pointer and adjust the debugger arg/auto offsets
1367 accordingly. These debugger offsets are set up in output_prolog. */
1369 extern long alpha_arg_offset;
1370 extern long alpha_auto_offset;
1371 #define DEBUGGER_AUTO_OFFSET(X) \
1372 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1373 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1375 /* mips-tfile doesn't understand .stabd directives. */
1376 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
1377 dbxout_begin_stabn_sline (LINE); \
1378 dbxout_stab_value_internal_label ("LM", &COUNTER); \
1379 } while (0)
1381 /* We want to use MIPS-style .loc directives for SDB line numbers. */
1382 extern int num_source_filenames;
1383 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1384 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1386 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1387 alpha_output_filename (STREAM, NAME)
1389 /* mips-tfile.c limits us to strings of one page. We must underestimate this
1390 number, because the real length runs past this up to the next
1391 continuation point. This is really a dbxout.c bug. */
1392 #define DBX_CONTIN_LENGTH 3000
1394 /* By default, turn on GDB extensions. */
1395 #define DEFAULT_GDB_EXTENSIONS 1
1397 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
1398 #define NO_DBX_FUNCTION_END 1
1400 /* If we are smuggling stabs through the ALPHA ECOFF object
1401 format, put a comment in front of the .stab<x> operation so
1402 that the ALPHA assembler does not choke. The mips-tfile program
1403 will correctly put the stab into the object file. */
1405 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1406 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1407 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1409 /* Forward references to tags are allowed. */
1410 #define SDB_ALLOW_FORWARD_REFERENCES
1412 /* Unknown tags are also allowed. */
1413 #define SDB_ALLOW_UNKNOWN_REFERENCES
1415 #define PUT_SDB_DEF(a) \
1416 do { \
1417 fprintf (asm_out_file, "\t%s.def\t", \
1418 (TARGET_GAS) ? "" : "#"); \
1419 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1420 fputc (';', asm_out_file); \
1421 } while (0)
1423 #define PUT_SDB_PLAIN_DEF(a) \
1424 do { \
1425 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1426 (TARGET_GAS) ? "" : "#", (a)); \
1427 } while (0)
1429 #define PUT_SDB_TYPE(a) \
1430 do { \
1431 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1432 } while (0)
1434 /* For block start and end, we create labels, so that
1435 later we can figure out where the correct offset is.
1436 The normal .ent/.end serve well enough for functions,
1437 so those are just commented out. */
1439 extern int sdb_label_count; /* block start/end next label # */
1441 #define PUT_SDB_BLOCK_START(LINE) \
1442 do { \
1443 fprintf (asm_out_file, \
1444 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1445 sdb_label_count, \
1446 (TARGET_GAS) ? "" : "#", \
1447 sdb_label_count, \
1448 (LINE)); \
1449 sdb_label_count++; \
1450 } while (0)
1452 #define PUT_SDB_BLOCK_END(LINE) \
1453 do { \
1454 fprintf (asm_out_file, \
1455 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1456 sdb_label_count, \
1457 (TARGET_GAS) ? "" : "#", \
1458 sdb_label_count, \
1459 (LINE)); \
1460 sdb_label_count++; \
1461 } while (0)
1463 #define PUT_SDB_FUNCTION_START(LINE)
1465 #define PUT_SDB_FUNCTION_END(LINE)
1467 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1469 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1470 mips-tdump.c to print them out.
1472 These must match the corresponding definitions in gdb/mipsread.c.
1473 Unfortunately, gcc and gdb do not currently share any directories. */
1475 #define CODE_MASK 0x8F300
1476 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1477 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1478 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1480 /* Override some mips-tfile definitions. */
1482 #define SHASH_SIZE 511
1483 #define THASH_SIZE 55
1485 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1487 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1489 /* The system headers under Alpha systems are generally C++-aware. */
1490 #define NO_IMPLICIT_EXTERN_C