Update concepts branch to revision 131834
[official-gcc.git] / gcc / ada / freeze.adb
blob31f93985c44c492c0ef2a7e24338e244376bfc55
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Cat; use Sem_Cat;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch7; use Sem_Ch7;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Mech; use Sem_Mech;
54 with Sem_Prag; use Sem_Prag;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sinfo; use Sinfo;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uintp; use Uintp;
64 with Urealp; use Urealp;
66 package body Freeze is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
83 -- Build body for a renaming declaration, insert in tree and analyze
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
87 -- at the point the object is frozen.
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
130 -- True if T is not private and has no private components, or has a full
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
218 function Build_Renamed_Body
219 (Decl : Node_Id;
220 New_S : Entity_Id) return Node_Id
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
247 begin
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
259 elsif Nkind (Nam) = N_Indexed_Component then
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
269 else
270 Old_S := Entity (Nam);
271 end if;
273 if Is_Entity_Name (Nam) then
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
286 else
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
324 Set_Must_Not_Freeze (Call_Name);
326 Formal := First_Formal (Defining_Entity (Decl));
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
333 begin
335 -- The controlling formal may be an access parameter, or the
336 -- actual may be an access value, so adjust accordingly.
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
356 elsif Present (Formal) then
357 Actuals := New_List;
359 else
360 Actuals := No_List;
361 end if;
363 if Present (Formal) then
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
378 Formal := First_Formal (Defining_Entity (Decl));
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
420 Make_Simple_Return_Statement (Loc,
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
428 Make_Simple_Return_Statement (Loc,
429 Expression => New_Occurrence_Of (Old_S, Loc));
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
433 Make_Simple_Return_Statement (Loc,
434 Expression => Call_Name);
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
443 -- Create entities for subprogram body and formals
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
448 Param_Spec := First (Parameter_Specifications (Spec));
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
471 -- Link the body to the entity whose declaration it completes. If
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
483 return Body_Node;
484 end Build_Renamed_Body;
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
516 if (No (Expression (Decl))
517 and then not Controlled_Type (Typ)
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
526 or else
527 Is_Access_Type (Typ)
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
540 else
541 Check_Constant_Address_Clause (Expr, E);
542 Set_Has_Delayed_Freeze (E, False);
543 end if;
545 if not Error_Posted (Expr)
546 and then not Controlled_Type (Typ)
547 then
548 Warn_Overlay (Expr, Typ, Name (Addr));
549 end if;
550 end if;
551 end Check_Address_Clause;
553 -----------------------------
554 -- Check_Compile_Time_Size --
555 -----------------------------
557 procedure Check_Compile_Time_Size (T : Entity_Id) is
559 procedure Set_Small_Size (T : Entity_Id; S : Uint);
560 -- Sets the compile time known size (32 bits or less) in the Esize
561 -- field, of T checking for a size clause that was given which attempts
562 -- to give a smaller size.
564 function Size_Known (T : Entity_Id) return Boolean;
565 -- Recursive function that does all the work
567 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
568 -- If T is a constrained subtype, its size is not known if any of its
569 -- discriminant constraints is not static and it is not a null record.
570 -- The test is conservative and doesn't check that the components are
571 -- in fact constrained by non-static discriminant values. Could be made
572 -- more precise ???
574 --------------------
575 -- Set_Small_Size --
576 --------------------
578 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
579 begin
580 if S > 32 then
581 return;
583 elsif Has_Size_Clause (T) then
584 if RM_Size (T) < S then
585 Error_Msg_Uint_1 := S;
586 Error_Msg_NE
587 ("size for & too small, minimum allowed is ^",
588 Size_Clause (T), T);
590 elsif Unknown_Esize (T) then
591 Set_Esize (T, S);
592 end if;
594 -- Set sizes if not set already
596 else
597 if Unknown_Esize (T) then
598 Set_Esize (T, S);
599 end if;
601 if Unknown_RM_Size (T) then
602 Set_RM_Size (T, S);
603 end if;
604 end if;
605 end Set_Small_Size;
607 ----------------
608 -- Size_Known --
609 ----------------
611 function Size_Known (T : Entity_Id) return Boolean is
612 Index : Entity_Id;
613 Comp : Entity_Id;
614 Ctyp : Entity_Id;
615 Low : Node_Id;
616 High : Node_Id;
618 begin
619 if Size_Known_At_Compile_Time (T) then
620 return True;
622 -- Always True for scalar types. This is true even for generic formal
623 -- scalar types. We used to return False in the latter case, but the
624 -- size is known at compile time, even in the template, we just do
625 -- not know the exact size but that's not the point of this routine.
627 elsif Is_Scalar_Type (T)
628 or else Is_Task_Type (T)
629 then
630 return True;
632 -- Array types
634 elsif Is_Array_Type (T) then
636 -- String literals always have known size, and we can set it
638 if Ekind (T) = E_String_Literal_Subtype then
639 Set_Small_Size (T, Component_Size (T)
640 * String_Literal_Length (T));
641 return True;
643 -- Unconstrained types never have known at compile time size
645 elsif not Is_Constrained (T) then
646 return False;
648 -- Don't do any recursion on type with error posted, since we may
649 -- have a malformed type that leads us into a loop.
651 elsif Error_Posted (T) then
652 return False;
654 -- Otherwise if component size unknown, then array size unknown
656 elsif not Size_Known (Component_Type (T)) then
657 return False;
658 end if;
660 -- Check for all indexes static, and also compute possible size
661 -- (in case it is less than 32 and may be packable).
663 declare
664 Esiz : Uint := Component_Size (T);
665 Dim : Uint;
667 begin
668 Index := First_Index (T);
669 while Present (Index) loop
670 if Nkind (Index) = N_Range then
671 Get_Index_Bounds (Index, Low, High);
673 elsif Error_Posted (Scalar_Range (Etype (Index))) then
674 return False;
676 else
677 Low := Type_Low_Bound (Etype (Index));
678 High := Type_High_Bound (Etype (Index));
679 end if;
681 if not Compile_Time_Known_Value (Low)
682 or else not Compile_Time_Known_Value (High)
683 or else Etype (Index) = Any_Type
684 then
685 return False;
687 else
688 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
690 if Dim >= 0 then
691 Esiz := Esiz * Dim;
692 else
693 Esiz := Uint_0;
694 end if;
695 end if;
697 Next_Index (Index);
698 end loop;
700 Set_Small_Size (T, Esiz);
701 return True;
702 end;
704 -- Access types always have known at compile time sizes
706 elsif Is_Access_Type (T) then
707 return True;
709 -- For non-generic private types, go to underlying type if present
711 elsif Is_Private_Type (T)
712 and then not Is_Generic_Type (T)
713 and then Present (Underlying_Type (T))
714 then
715 -- Don't do any recursion on type with error posted, since we may
716 -- have a malformed type that leads us into a loop.
718 if Error_Posted (T) then
719 return False;
720 else
721 return Size_Known (Underlying_Type (T));
722 end if;
724 -- Record types
726 elsif Is_Record_Type (T) then
728 -- A class-wide type is never considered to have a known size
730 if Is_Class_Wide_Type (T) then
731 return False;
733 -- A subtype of a variant record must not have non-static
734 -- discriminanted components.
736 elsif T /= Base_Type (T)
737 and then not Static_Discriminated_Components (T)
738 then
739 return False;
741 -- Don't do any recursion on type with error posted, since we may
742 -- have a malformed type that leads us into a loop.
744 elsif Error_Posted (T) then
745 return False;
746 end if;
748 -- Now look at the components of the record
750 declare
751 -- The following two variables are used to keep track of the
752 -- size of packed records if we can tell the size of the packed
753 -- record in the front end. Packed_Size_Known is True if so far
754 -- we can figure out the size. It is initialized to True for a
755 -- packed record, unless the record has discriminants. The
756 -- reason we eliminate the discriminated case is that we don't
757 -- know the way the back end lays out discriminated packed
758 -- records. If Packed_Size_Known is True, then Packed_Size is
759 -- the size in bits so far.
761 Packed_Size_Known : Boolean :=
762 Is_Packed (T)
763 and then not Has_Discriminants (T);
765 Packed_Size : Uint := Uint_0;
767 begin
768 -- Test for variant part present
770 if Has_Discriminants (T)
771 and then Present (Parent (T))
772 and then Nkind (Parent (T)) = N_Full_Type_Declaration
773 and then Nkind (Type_Definition (Parent (T))) =
774 N_Record_Definition
775 and then not Null_Present (Type_Definition (Parent (T)))
776 and then Present (Variant_Part
777 (Component_List (Type_Definition (Parent (T)))))
778 then
779 -- If variant part is present, and type is unconstrained,
780 -- then we must have defaulted discriminants, or a size
781 -- clause must be present for the type, or else the size
782 -- is definitely not known at compile time.
784 if not Is_Constrained (T)
785 and then
786 No (Discriminant_Default_Value
787 (First_Discriminant (T)))
788 and then Unknown_Esize (T)
789 then
790 return False;
791 end if;
792 end if;
794 -- Loop through components
796 Comp := First_Component_Or_Discriminant (T);
797 while Present (Comp) loop
798 Ctyp := Etype (Comp);
800 -- We do not know the packed size if there is a component
801 -- clause present (we possibly could, but this would only
802 -- help in the case of a record with partial rep clauses.
803 -- That's because in the case of full rep clauses, the
804 -- size gets figured out anyway by a different circuit).
806 if Present (Component_Clause (Comp)) then
807 Packed_Size_Known := False;
808 end if;
810 -- We need to identify a component that is an array where
811 -- the index type is an enumeration type with non-standard
812 -- representation, and some bound of the type depends on a
813 -- discriminant.
815 -- This is because gigi computes the size by doing a
816 -- substitution of the appropriate discriminant value in
817 -- the size expression for the base type, and gigi is not
818 -- clever enough to evaluate the resulting expression (which
819 -- involves a call to rep_to_pos) at compile time.
821 -- It would be nice if gigi would either recognize that
822 -- this expression can be computed at compile time, or
823 -- alternatively figured out the size from the subtype
824 -- directly, where all the information is at hand ???
826 if Is_Array_Type (Etype (Comp))
827 and then Present (Packed_Array_Type (Etype (Comp)))
828 then
829 declare
830 Ocomp : constant Entity_Id :=
831 Original_Record_Component (Comp);
832 OCtyp : constant Entity_Id := Etype (Ocomp);
833 Ind : Node_Id;
834 Indtyp : Entity_Id;
835 Lo, Hi : Node_Id;
837 begin
838 Ind := First_Index (OCtyp);
839 while Present (Ind) loop
840 Indtyp := Etype (Ind);
842 if Is_Enumeration_Type (Indtyp)
843 and then Has_Non_Standard_Rep (Indtyp)
844 then
845 Lo := Type_Low_Bound (Indtyp);
846 Hi := Type_High_Bound (Indtyp);
848 if Is_Entity_Name (Lo)
849 and then Ekind (Entity (Lo)) = E_Discriminant
850 then
851 return False;
853 elsif Is_Entity_Name (Hi)
854 and then Ekind (Entity (Hi)) = E_Discriminant
855 then
856 return False;
857 end if;
858 end if;
860 Next_Index (Ind);
861 end loop;
862 end;
863 end if;
865 -- Clearly size of record is not known if the size of one of
866 -- the components is not known.
868 if not Size_Known (Ctyp) then
869 return False;
870 end if;
872 -- Accumulate packed size if possible
874 if Packed_Size_Known then
876 -- We can only deal with elementary types, since for
877 -- non-elementary components, alignment enters into the
878 -- picture, and we don't know enough to handle proper
879 -- alignment in this context. Packed arrays count as
880 -- elementary if the representation is a modular type.
882 if Is_Elementary_Type (Ctyp)
883 or else (Is_Array_Type (Ctyp)
884 and then Present (Packed_Array_Type (Ctyp))
885 and then Is_Modular_Integer_Type
886 (Packed_Array_Type (Ctyp)))
887 then
888 -- If RM_Size is known and static, then we can
889 -- keep accumulating the packed size.
891 if Known_Static_RM_Size (Ctyp) then
893 -- A little glitch, to be removed sometime ???
894 -- gigi does not understand zero sizes yet.
896 if RM_Size (Ctyp) = Uint_0 then
897 Packed_Size_Known := False;
899 -- Normal case where we can keep accumulating the
900 -- packed array size.
902 else
903 Packed_Size := Packed_Size + RM_Size (Ctyp);
904 end if;
906 -- If we have a field whose RM_Size is not known then
907 -- we can't figure out the packed size here.
909 else
910 Packed_Size_Known := False;
911 end if;
913 -- If we have a non-elementary type we can't figure out
914 -- the packed array size (alignment issues).
916 else
917 Packed_Size_Known := False;
918 end if;
919 end if;
921 Next_Component_Or_Discriminant (Comp);
922 end loop;
924 if Packed_Size_Known then
925 Set_Small_Size (T, Packed_Size);
926 end if;
928 return True;
929 end;
931 -- All other cases, size not known at compile time
933 else
934 return False;
935 end if;
936 end Size_Known;
938 -------------------------------------
939 -- Static_Discriminated_Components --
940 -------------------------------------
942 function Static_Discriminated_Components
943 (T : Entity_Id) return Boolean
945 Constraint : Elmt_Id;
947 begin
948 if Has_Discriminants (T)
949 and then Present (Discriminant_Constraint (T))
950 and then Present (First_Component (T))
951 then
952 Constraint := First_Elmt (Discriminant_Constraint (T));
953 while Present (Constraint) loop
954 if not Compile_Time_Known_Value (Node (Constraint)) then
955 return False;
956 end if;
958 Next_Elmt (Constraint);
959 end loop;
960 end if;
962 return True;
963 end Static_Discriminated_Components;
965 -- Start of processing for Check_Compile_Time_Size
967 begin
968 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
969 end Check_Compile_Time_Size;
971 -----------------------------
972 -- Check_Debug_Info_Needed --
973 -----------------------------
975 procedure Check_Debug_Info_Needed (T : Entity_Id) is
976 begin
977 if Debug_Info_Off (T) then
978 return;
980 elsif Comes_From_Source (T)
981 or else Debug_Generated_Code
982 or else Debug_Flag_VV
983 or else Needs_Debug_Info (T)
984 then
985 Set_Debug_Info_Needed (T);
986 end if;
987 end Check_Debug_Info_Needed;
989 ----------------------------
990 -- Check_Strict_Alignment --
991 ----------------------------
993 procedure Check_Strict_Alignment (E : Entity_Id) is
994 Comp : Entity_Id;
996 begin
997 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
998 Set_Strict_Alignment (E);
1000 elsif Is_Array_Type (E) then
1001 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1003 elsif Is_Record_Type (E) then
1004 if Is_Limited_Record (E) then
1005 Set_Strict_Alignment (E);
1006 return;
1007 end if;
1009 Comp := First_Component (E);
1011 while Present (Comp) loop
1012 if not Is_Type (Comp)
1013 and then (Strict_Alignment (Etype (Comp))
1014 or else Is_Aliased (Comp))
1015 then
1016 Set_Strict_Alignment (E);
1017 return;
1018 end if;
1020 Next_Component (Comp);
1021 end loop;
1022 end if;
1023 end Check_Strict_Alignment;
1025 -------------------------
1026 -- Check_Unsigned_Type --
1027 -------------------------
1029 procedure Check_Unsigned_Type (E : Entity_Id) is
1030 Ancestor : Entity_Id;
1031 Lo_Bound : Node_Id;
1032 Btyp : Entity_Id;
1034 begin
1035 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1036 return;
1037 end if;
1039 -- Do not attempt to analyze case where range was in error
1041 if Error_Posted (Scalar_Range (E)) then
1042 return;
1043 end if;
1045 -- The situation that is non trivial is something like
1047 -- subtype x1 is integer range -10 .. +10;
1048 -- subtype x2 is x1 range 0 .. V1;
1049 -- subtype x3 is x2 range V2 .. V3;
1050 -- subtype x4 is x3 range V4 .. V5;
1052 -- where Vn are variables. Here the base type is signed, but we still
1053 -- know that x4 is unsigned because of the lower bound of x2.
1055 -- The only way to deal with this is to look up the ancestor chain
1057 Ancestor := E;
1058 loop
1059 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1060 return;
1061 end if;
1063 Lo_Bound := Type_Low_Bound (Ancestor);
1065 if Compile_Time_Known_Value (Lo_Bound) then
1067 if Expr_Rep_Value (Lo_Bound) >= 0 then
1068 Set_Is_Unsigned_Type (E, True);
1069 end if;
1071 return;
1073 else
1074 Ancestor := Ancestor_Subtype (Ancestor);
1076 -- If no ancestor had a static lower bound, go to base type
1078 if No (Ancestor) then
1080 -- Note: the reason we still check for a compile time known
1081 -- value for the base type is that at least in the case of
1082 -- generic formals, we can have bounds that fail this test,
1083 -- and there may be other cases in error situations.
1085 Btyp := Base_Type (E);
1087 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1088 return;
1089 end if;
1091 Lo_Bound := Type_Low_Bound (Base_Type (E));
1093 if Compile_Time_Known_Value (Lo_Bound)
1094 and then Expr_Rep_Value (Lo_Bound) >= 0
1095 then
1096 Set_Is_Unsigned_Type (E, True);
1097 end if;
1099 return;
1100 end if;
1101 end if;
1102 end loop;
1103 end Check_Unsigned_Type;
1105 -----------------------------
1106 -- Expand_Atomic_Aggregate --
1107 -----------------------------
1109 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1110 Loc : constant Source_Ptr := Sloc (E);
1111 New_N : Node_Id;
1112 Temp : Entity_Id;
1114 begin
1115 if (Nkind (Parent (E)) = N_Object_Declaration
1116 or else Nkind (Parent (E)) = N_Assignment_Statement)
1117 and then Comes_From_Source (Parent (E))
1118 and then Nkind (E) = N_Aggregate
1119 then
1120 Temp :=
1121 Make_Defining_Identifier (Loc,
1122 New_Internal_Name ('T'));
1124 New_N :=
1125 Make_Object_Declaration (Loc,
1126 Defining_Identifier => Temp,
1127 Object_Definition => New_Occurrence_Of (Typ, Loc),
1128 Expression => Relocate_Node (E));
1129 Insert_Before (Parent (E), New_N);
1130 Analyze (New_N);
1132 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1134 -- To prevent the temporary from being constant-folded (which would
1135 -- lead to the same piecemeal assignment on the original target)
1136 -- indicate to the back-end that the temporary is a variable with
1137 -- real storage. See description of this flag in Einfo, and the notes
1138 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
1140 Set_Is_True_Constant (Temp, False);
1141 end if;
1142 end Expand_Atomic_Aggregate;
1144 ----------------
1145 -- Freeze_All --
1146 ----------------
1148 -- Note: the easy coding for this procedure would be to just build a
1149 -- single list of freeze nodes and then insert them and analyze them
1150 -- all at once. This won't work, because the analysis of earlier freeze
1151 -- nodes may recursively freeze types which would otherwise appear later
1152 -- on in the freeze list. So we must analyze and expand the freeze nodes
1153 -- as they are generated.
1155 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1156 Loc : constant Source_Ptr := Sloc (After);
1157 E : Entity_Id;
1158 Decl : Node_Id;
1160 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1161 -- This is the internal recursive routine that does freezing of entities
1162 -- (but NOT the analysis of default expressions, which should not be
1163 -- recursive, we don't want to analyze those till we are sure that ALL
1164 -- the types are frozen).
1166 --------------------
1167 -- Freeze_All_Ent --
1168 --------------------
1170 procedure Freeze_All_Ent
1171 (From : Entity_Id;
1172 After : in out Node_Id)
1174 E : Entity_Id;
1175 Flist : List_Id;
1176 Lastn : Node_Id;
1178 procedure Process_Flist;
1179 -- If freeze nodes are present, insert and analyze, and reset cursor
1180 -- for next insertion.
1182 -------------------
1183 -- Process_Flist --
1184 -------------------
1186 procedure Process_Flist is
1187 begin
1188 if Is_Non_Empty_List (Flist) then
1189 Lastn := Next (After);
1190 Insert_List_After_And_Analyze (After, Flist);
1192 if Present (Lastn) then
1193 After := Prev (Lastn);
1194 else
1195 After := Last (List_Containing (After));
1196 end if;
1197 end if;
1198 end Process_Flist;
1200 -- Start or processing for Freeze_All_Ent
1202 begin
1203 E := From;
1204 while Present (E) loop
1206 -- If the entity is an inner package which is not a package
1207 -- renaming, then its entities must be frozen at this point. Note
1208 -- that such entities do NOT get frozen at the end of the nested
1209 -- package itself (only library packages freeze).
1211 -- Same is true for task declarations, where anonymous records
1212 -- created for entry parameters must be frozen.
1214 if Ekind (E) = E_Package
1215 and then No (Renamed_Object (E))
1216 and then not Is_Child_Unit (E)
1217 and then not Is_Frozen (E)
1218 then
1219 Push_Scope (E);
1220 Install_Visible_Declarations (E);
1221 Install_Private_Declarations (E);
1223 Freeze_All (First_Entity (E), After);
1225 End_Package_Scope (E);
1227 elsif Ekind (E) in Task_Kind
1228 and then
1229 (Nkind (Parent (E)) = N_Task_Type_Declaration
1230 or else
1231 Nkind (Parent (E)) = N_Single_Task_Declaration)
1232 then
1233 Push_Scope (E);
1234 Freeze_All (First_Entity (E), After);
1235 End_Scope;
1237 -- For a derived tagged type, we must ensure that all the
1238 -- primitive operations of the parent have been frozen, so that
1239 -- their addresses will be in the parent's dispatch table at the
1240 -- point it is inherited.
1242 elsif Ekind (E) = E_Record_Type
1243 and then Is_Tagged_Type (E)
1244 and then Is_Tagged_Type (Etype (E))
1245 and then Is_Derived_Type (E)
1246 then
1247 declare
1248 Prim_List : constant Elist_Id :=
1249 Primitive_Operations (Etype (E));
1251 Prim : Elmt_Id;
1252 Subp : Entity_Id;
1254 begin
1255 Prim := First_Elmt (Prim_List);
1257 while Present (Prim) loop
1258 Subp := Node (Prim);
1260 if Comes_From_Source (Subp)
1261 and then not Is_Frozen (Subp)
1262 then
1263 Flist := Freeze_Entity (Subp, Loc);
1264 Process_Flist;
1265 end if;
1267 Next_Elmt (Prim);
1268 end loop;
1269 end;
1270 end if;
1272 if not Is_Frozen (E) then
1273 Flist := Freeze_Entity (E, Loc);
1274 Process_Flist;
1275 end if;
1277 -- If an incomplete type is still not frozen, this may be a
1278 -- premature freezing because of a body declaration that follows.
1279 -- Indicate where the freezing took place.
1281 -- If the freezing is caused by the end of the current declarative
1282 -- part, it is a Taft Amendment type, and there is no error.
1284 if not Is_Frozen (E)
1285 and then Ekind (E) = E_Incomplete_Type
1286 then
1287 declare
1288 Bod : constant Node_Id := Next (After);
1290 begin
1291 if (Nkind (Bod) = N_Subprogram_Body
1292 or else Nkind (Bod) = N_Entry_Body
1293 or else Nkind (Bod) = N_Package_Body
1294 or else Nkind (Bod) = N_Protected_Body
1295 or else Nkind (Bod) = N_Task_Body
1296 or else Nkind (Bod) in N_Body_Stub)
1297 and then
1298 List_Containing (After) = List_Containing (Parent (E))
1299 then
1300 Error_Msg_Sloc := Sloc (Next (After));
1301 Error_Msg_NE
1302 ("type& is frozen# before its full declaration",
1303 Parent (E), E);
1304 end if;
1305 end;
1306 end if;
1308 Next_Entity (E);
1309 end loop;
1310 end Freeze_All_Ent;
1312 -- Start of processing for Freeze_All
1314 begin
1315 Freeze_All_Ent (From, After);
1317 -- Now that all types are frozen, we can deal with default expressions
1318 -- that require us to build a default expression functions. This is the
1319 -- point at which such functions are constructed (after all types that
1320 -- might be used in such expressions have been frozen).
1322 -- We also add finalization chains to access types whose designated
1323 -- types are controlled. This is normally done when freezing the type,
1324 -- but this misses recursive type definitions where the later members
1325 -- of the recursion introduce controlled components.
1327 -- Loop through entities
1329 E := From;
1330 while Present (E) loop
1331 if Is_Subprogram (E) then
1333 if not Default_Expressions_Processed (E) then
1334 Process_Default_Expressions (E, After);
1335 end if;
1337 if not Has_Completion (E) then
1338 Decl := Unit_Declaration_Node (E);
1340 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1341 Build_And_Analyze_Renamed_Body (Decl, E, After);
1343 elsif Nkind (Decl) = N_Subprogram_Declaration
1344 and then Present (Corresponding_Body (Decl))
1345 and then
1346 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1347 = N_Subprogram_Renaming_Declaration
1348 then
1349 Build_And_Analyze_Renamed_Body
1350 (Decl, Corresponding_Body (Decl), After);
1351 end if;
1352 end if;
1354 elsif Ekind (E) in Task_Kind
1355 and then
1356 (Nkind (Parent (E)) = N_Task_Type_Declaration
1357 or else
1358 Nkind (Parent (E)) = N_Single_Task_Declaration)
1359 then
1360 declare
1361 Ent : Entity_Id;
1362 begin
1363 Ent := First_Entity (E);
1365 while Present (Ent) loop
1367 if Is_Entry (Ent)
1368 and then not Default_Expressions_Processed (Ent)
1369 then
1370 Process_Default_Expressions (Ent, After);
1371 end if;
1373 Next_Entity (Ent);
1374 end loop;
1375 end;
1377 elsif Is_Access_Type (E)
1378 and then Comes_From_Source (E)
1379 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1380 and then Controlled_Type (Designated_Type (E))
1381 and then No (Associated_Final_Chain (E))
1382 then
1383 Build_Final_List (Parent (E), E);
1384 end if;
1386 Next_Entity (E);
1387 end loop;
1388 end Freeze_All;
1390 -----------------------
1391 -- Freeze_And_Append --
1392 -----------------------
1394 procedure Freeze_And_Append
1395 (Ent : Entity_Id;
1396 Loc : Source_Ptr;
1397 Result : in out List_Id)
1399 L : constant List_Id := Freeze_Entity (Ent, Loc);
1400 begin
1401 if Is_Non_Empty_List (L) then
1402 if Result = No_List then
1403 Result := L;
1404 else
1405 Append_List (L, Result);
1406 end if;
1407 end if;
1408 end Freeze_And_Append;
1410 -------------------
1411 -- Freeze_Before --
1412 -------------------
1414 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1415 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1416 begin
1417 if Is_Non_Empty_List (Freeze_Nodes) then
1418 Insert_Actions (N, Freeze_Nodes);
1419 end if;
1420 end Freeze_Before;
1422 -------------------
1423 -- Freeze_Entity --
1424 -------------------
1426 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1427 Test_E : Entity_Id := E;
1428 Comp : Entity_Id;
1429 F_Node : Node_Id;
1430 Result : List_Id;
1431 Indx : Node_Id;
1432 Formal : Entity_Id;
1433 Atype : Entity_Id;
1435 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1436 -- Check that an Access or Unchecked_Access attribute with a prefix
1437 -- which is the current instance type can only be applied when the type
1438 -- is limited.
1440 function After_Last_Declaration return Boolean;
1441 -- If Loc is a freeze_entity that appears after the last declaration
1442 -- in the scope, inhibit error messages on late completion.
1444 procedure Freeze_Record_Type (Rec : Entity_Id);
1445 -- Freeze each component, handle some representation clauses, and freeze
1446 -- primitive operations if this is a tagged type.
1448 ----------------------------
1449 -- After_Last_Declaration --
1450 ----------------------------
1452 function After_Last_Declaration return Boolean is
1453 Spec : constant Node_Id := Parent (Current_Scope);
1454 begin
1455 if Nkind (Spec) = N_Package_Specification then
1456 if Present (Private_Declarations (Spec)) then
1457 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1458 elsif Present (Visible_Declarations (Spec)) then
1459 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1460 else
1461 return False;
1462 end if;
1463 else
1464 return False;
1465 end if;
1466 end After_Last_Declaration;
1468 ----------------------------
1469 -- Check_Current_Instance --
1470 ----------------------------
1472 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1474 Rec_Type : constant Entity_Id :=
1475 Scope (Defining_Identifier (Comp_Decl));
1477 Decl : constant Node_Id := Parent (Rec_Type);
1479 function Process (N : Node_Id) return Traverse_Result;
1480 -- Process routine to apply check to given node
1482 -------------
1483 -- Process --
1484 -------------
1486 function Process (N : Node_Id) return Traverse_Result is
1487 begin
1488 case Nkind (N) is
1489 when N_Attribute_Reference =>
1490 if (Attribute_Name (N) = Name_Access
1491 or else
1492 Attribute_Name (N) = Name_Unchecked_Access)
1493 and then Is_Entity_Name (Prefix (N))
1494 and then Is_Type (Entity (Prefix (N)))
1495 and then Entity (Prefix (N)) = E
1496 then
1497 Error_Msg_N
1498 ("current instance must be a limited type", Prefix (N));
1499 return Abandon;
1500 else
1501 return OK;
1502 end if;
1504 when others => return OK;
1505 end case;
1506 end Process;
1508 procedure Traverse is new Traverse_Proc (Process);
1510 -- Start of processing for Check_Current_Instance
1512 begin
1513 -- In Ada95, the (imprecise) rule is that the current instance of a
1514 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1515 -- either a tagged type, or a limited record.
1517 if Is_Limited_Type (Rec_Type)
1518 and then
1519 (Ada_Version < Ada_05
1520 or else Is_Tagged_Type (Rec_Type))
1521 then
1522 return;
1524 elsif Nkind (Decl) = N_Full_Type_Declaration
1525 and then Limited_Present (Type_Definition (Decl))
1526 then
1527 return;
1529 else
1530 Traverse (Comp_Decl);
1531 end if;
1532 end Check_Current_Instance;
1534 ------------------------
1535 -- Freeze_Record_Type --
1536 ------------------------
1538 procedure Freeze_Record_Type (Rec : Entity_Id) is
1539 Comp : Entity_Id;
1540 IR : Node_Id;
1541 ADC : Node_Id;
1542 Prev : Entity_Id;
1544 Junk : Boolean;
1545 pragma Warnings (Off, Junk);
1547 Unplaced_Component : Boolean := False;
1548 -- Set True if we find at least one component with no component
1549 -- clause (used to warn about useless Pack pragmas).
1551 Placed_Component : Boolean := False;
1552 -- Set True if we find at least one component with a component
1553 -- clause (used to warn about useless Bit_Order pragmas).
1555 function Check_Allocator (N : Node_Id) return Node_Id;
1556 -- If N is an allocator, possibly wrapped in one or more level of
1557 -- qualified expression(s), return the inner allocator node, else
1558 -- return Empty.
1560 procedure Check_Itype (Typ : Entity_Id);
1561 -- If the component subtype is an access to a constrained subtype of
1562 -- an already frozen type, make the subtype frozen as well. It might
1563 -- otherwise be frozen in the wrong scope, and a freeze node on
1564 -- subtype has no effect. Similarly, if the component subtype is a
1565 -- regular (not protected) access to subprogram, set the anonymous
1566 -- subprogram type to frozen as well, to prevent an out-of-scope
1567 -- freeze node at some eventual point of call. Protected operations
1568 -- are handled elsewhere.
1570 ---------------------
1571 -- Check_Allocator --
1572 ---------------------
1574 function Check_Allocator (N : Node_Id) return Node_Id is
1575 Inner : Node_Id;
1576 begin
1577 Inner := N;
1578 loop
1579 if Nkind (Inner) = N_Allocator then
1580 return Inner;
1581 elsif Nkind (Inner) = N_Qualified_Expression then
1582 Inner := Expression (Inner);
1583 else
1584 return Empty;
1585 end if;
1586 end loop;
1587 end Check_Allocator;
1589 -----------------
1590 -- Check_Itype --
1591 -----------------
1593 procedure Check_Itype (Typ : Entity_Id) is
1594 Desig : constant Entity_Id := Designated_Type (Typ);
1596 begin
1597 if not Is_Frozen (Desig)
1598 and then Is_Frozen (Base_Type (Desig))
1599 then
1600 Set_Is_Frozen (Desig);
1602 -- In addition, add an Itype_Reference to ensure that the
1603 -- access subtype is elaborated early enough. This cannot be
1604 -- done if the subtype may depend on discriminants.
1606 if Ekind (Comp) = E_Component
1607 and then Is_Itype (Etype (Comp))
1608 and then not Has_Discriminants (Rec)
1609 then
1610 IR := Make_Itype_Reference (Sloc (Comp));
1611 Set_Itype (IR, Desig);
1613 if No (Result) then
1614 Result := New_List (IR);
1615 else
1616 Append (IR, Result);
1617 end if;
1618 end if;
1620 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1621 and then Convention (Desig) /= Convention_Protected
1622 then
1623 Set_Is_Frozen (Desig);
1624 end if;
1625 end Check_Itype;
1627 -- Start of processing for Freeze_Record_Type
1629 begin
1630 -- If this is a subtype of a controlled type, declared without a
1631 -- constraint, the _controller may not appear in the component list
1632 -- if the parent was not frozen at the point of subtype declaration.
1633 -- Inherit the _controller component now.
1635 if Rec /= Base_Type (Rec)
1636 and then Has_Controlled_Component (Rec)
1637 then
1638 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1639 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1640 then
1641 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1643 -- If this is an internal type without a declaration, as for
1644 -- record component, the base type may not yet be frozen, and its
1645 -- controller has not been created. Add an explicit freeze node
1646 -- for the itype, so it will be frozen after the base type. This
1647 -- freeze node is used to communicate with the expander, in order
1648 -- to create the controller for the enclosing record, and it is
1649 -- deleted afterwards (see exp_ch3). It must not be created when
1650 -- expansion is off, because it might appear in the wrong context
1651 -- for the back end.
1653 elsif Is_Itype (Rec)
1654 and then Has_Delayed_Freeze (Base_Type (Rec))
1655 and then
1656 Nkind (Associated_Node_For_Itype (Rec)) =
1657 N_Component_Declaration
1658 and then Expander_Active
1659 then
1660 Ensure_Freeze_Node (Rec);
1661 end if;
1662 end if;
1664 -- Freeze components and embedded subtypes
1666 Comp := First_Entity (Rec);
1667 Prev := Empty;
1668 while Present (Comp) loop
1670 -- First handle the (real) component case
1672 if Ekind (Comp) = E_Component
1673 or else Ekind (Comp) = E_Discriminant
1674 then
1675 declare
1676 CC : constant Node_Id := Component_Clause (Comp);
1678 begin
1679 -- Freezing a record type freezes the type of each of its
1680 -- components. However, if the type of the component is
1681 -- part of this record, we do not want or need a separate
1682 -- Freeze_Node. Note that Is_Itype is wrong because that's
1683 -- also set in private type cases. We also can't check for
1684 -- the Scope being exactly Rec because of private types and
1685 -- record extensions.
1687 if Is_Itype (Etype (Comp))
1688 and then Is_Record_Type (Underlying_Type
1689 (Scope (Etype (Comp))))
1690 then
1691 Undelay_Type (Etype (Comp));
1692 end if;
1694 Freeze_And_Append (Etype (Comp), Loc, Result);
1696 -- Check for error of component clause given for variable
1697 -- sized type. We have to delay this test till this point,
1698 -- since the component type has to be frozen for us to know
1699 -- if it is variable length. We omit this test in a generic
1700 -- context, it will be applied at instantiation time.
1702 if Present (CC) then
1703 Placed_Component := True;
1705 if Inside_A_Generic then
1706 null;
1708 elsif not
1709 Size_Known_At_Compile_Time
1710 (Underlying_Type (Etype (Comp)))
1711 then
1712 Error_Msg_N
1713 ("component clause not allowed for variable " &
1714 "length component", CC);
1715 end if;
1717 else
1718 Unplaced_Component := True;
1719 end if;
1721 -- Case of component requires byte alignment
1723 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1725 -- Set the enclosing record to also require byte align
1727 Set_Must_Be_On_Byte_Boundary (Rec);
1729 -- Check for component clause that is inconsistent with
1730 -- the required byte boundary alignment.
1732 if Present (CC)
1733 and then Normalized_First_Bit (Comp) mod
1734 System_Storage_Unit /= 0
1735 then
1736 Error_Msg_N
1737 ("component & must be byte aligned",
1738 Component_Name (Component_Clause (Comp)));
1739 end if;
1740 end if;
1742 -- If component clause is present, then deal with the non-
1743 -- default bit order case for Ada 95 mode. The required
1744 -- processing for Ada 2005 mode is handled separately after
1745 -- processing all components.
1747 -- We only do this processing for the base type, and in
1748 -- fact that's important, since otherwise if there are
1749 -- record subtypes, we could reverse the bits once for
1750 -- each subtype, which would be incorrect.
1752 if Present (CC)
1753 and then Reverse_Bit_Order (Rec)
1754 and then Ekind (E) = E_Record_Type
1755 and then Ada_Version <= Ada_95
1756 then
1757 declare
1758 CFB : constant Uint := Component_Bit_Offset (Comp);
1759 CSZ : constant Uint := Esize (Comp);
1760 CLC : constant Node_Id := Component_Clause (Comp);
1761 Pos : constant Node_Id := Position (CLC);
1762 FB : constant Node_Id := First_Bit (CLC);
1764 Storage_Unit_Offset : constant Uint :=
1765 CFB / System_Storage_Unit;
1767 Start_Bit : constant Uint :=
1768 CFB mod System_Storage_Unit;
1770 begin
1771 -- Cases where field goes over storage unit boundary
1773 if Start_Bit + CSZ > System_Storage_Unit then
1775 -- Allow multi-byte field but generate warning
1777 if Start_Bit mod System_Storage_Unit = 0
1778 and then CSZ mod System_Storage_Unit = 0
1779 then
1780 Error_Msg_N
1781 ("multi-byte field specified with non-standard"
1782 & " Bit_Order?", CLC);
1784 if Bytes_Big_Endian then
1785 Error_Msg_N
1786 ("bytes are not reversed "
1787 & "(component is big-endian)?", CLC);
1788 else
1789 Error_Msg_N
1790 ("bytes are not reversed "
1791 & "(component is little-endian)?", CLC);
1792 end if;
1794 -- Do not allow non-contiguous field
1796 else
1797 Error_Msg_N
1798 ("attempt to specify non-contiguous field"
1799 & " not permitted", CLC);
1800 Error_Msg_N
1801 ("\(caused by non-standard Bit_Order "
1802 & "specified)", CLC);
1803 end if;
1805 -- Case where field fits in one storage unit
1807 else
1808 -- Give warning if suspicious component clause
1810 if Intval (FB) >= System_Storage_Unit
1811 and then Warn_On_Reverse_Bit_Order
1812 then
1813 Error_Msg_N
1814 ("?Bit_Order clause does not affect " &
1815 "byte ordering", Pos);
1816 Error_Msg_Uint_1 :=
1817 Intval (Pos) + Intval (FB) /
1818 System_Storage_Unit;
1819 Error_Msg_N
1820 ("?position normalized to ^ before bit " &
1821 "order interpreted", Pos);
1822 end if;
1824 -- Here is where we fix up the Component_Bit_Offset
1825 -- value to account for the reverse bit order.
1826 -- Some examples of what needs to be done are:
1828 -- First_Bit .. Last_Bit Component_Bit_Offset
1829 -- old new old new
1831 -- 0 .. 0 7 .. 7 0 7
1832 -- 0 .. 1 6 .. 7 0 6
1833 -- 0 .. 2 5 .. 7 0 5
1834 -- 0 .. 7 0 .. 7 0 4
1836 -- 1 .. 1 6 .. 6 1 6
1837 -- 1 .. 4 3 .. 6 1 3
1838 -- 4 .. 7 0 .. 3 4 0
1840 -- The general rule is that the first bit is
1841 -- is obtained by subtracting the old ending bit
1842 -- from storage_unit - 1.
1844 Set_Component_Bit_Offset
1845 (Comp,
1846 (Storage_Unit_Offset * System_Storage_Unit) +
1847 (System_Storage_Unit - 1) -
1848 (Start_Bit + CSZ - 1));
1850 Set_Normalized_First_Bit
1851 (Comp,
1852 Component_Bit_Offset (Comp) mod
1853 System_Storage_Unit);
1854 end if;
1855 end;
1856 end if;
1857 end;
1858 end if;
1860 -- If the component is an Itype with Delayed_Freeze and is either
1861 -- a record or array subtype and its base type has not yet been
1862 -- frozen, we must remove this from the entity list of this
1863 -- record and put it on the entity list of the scope of its base
1864 -- type. Note that we know that this is not the type of a
1865 -- component since we cleared Has_Delayed_Freeze for it in the
1866 -- previous loop. Thus this must be the Designated_Type of an
1867 -- access type, which is the type of a component.
1869 if Is_Itype (Comp)
1870 and then Is_Type (Scope (Comp))
1871 and then Is_Composite_Type (Comp)
1872 and then Base_Type (Comp) /= Comp
1873 and then Has_Delayed_Freeze (Comp)
1874 and then not Is_Frozen (Base_Type (Comp))
1875 then
1876 declare
1877 Will_Be_Frozen : Boolean := False;
1878 S : Entity_Id;
1880 begin
1881 -- We have a pretty bad kludge here. Suppose Rec is subtype
1882 -- being defined in a subprogram that's created as part of
1883 -- the freezing of Rec'Base. In that case, we know that
1884 -- Comp'Base must have already been frozen by the time we
1885 -- get to elaborate this because Gigi doesn't elaborate any
1886 -- bodies until it has elaborated all of the declarative
1887 -- part. But Is_Frozen will not be set at this point because
1888 -- we are processing code in lexical order.
1890 -- We detect this case by going up the Scope chain of Rec
1891 -- and seeing if we have a subprogram scope before reaching
1892 -- the top of the scope chain or that of Comp'Base. If we
1893 -- do, then mark that Comp'Base will actually be frozen. If
1894 -- so, we merely undelay it.
1896 S := Scope (Rec);
1897 while Present (S) loop
1898 if Is_Subprogram (S) then
1899 Will_Be_Frozen := True;
1900 exit;
1901 elsif S = Scope (Base_Type (Comp)) then
1902 exit;
1903 end if;
1905 S := Scope (S);
1906 end loop;
1908 if Will_Be_Frozen then
1909 Undelay_Type (Comp);
1910 else
1911 if Present (Prev) then
1912 Set_Next_Entity (Prev, Next_Entity (Comp));
1913 else
1914 Set_First_Entity (Rec, Next_Entity (Comp));
1915 end if;
1917 -- Insert in entity list of scope of base type (which
1918 -- must be an enclosing scope, because still unfrozen).
1920 Append_Entity (Comp, Scope (Base_Type (Comp)));
1921 end if;
1922 end;
1924 -- If the component is an access type with an allocator as default
1925 -- value, the designated type will be frozen by the corresponding
1926 -- expression in init_proc. In order to place the freeze node for
1927 -- the designated type before that for the current record type,
1928 -- freeze it now.
1930 -- Same process if the component is an array of access types,
1931 -- initialized with an aggregate. If the designated type is
1932 -- private, it cannot contain allocators, and it is premature
1933 -- to freeze the type, so we check for this as well.
1935 elsif Is_Access_Type (Etype (Comp))
1936 and then Present (Parent (Comp))
1937 and then Present (Expression (Parent (Comp)))
1938 then
1939 declare
1940 Alloc : constant Node_Id :=
1941 Check_Allocator (Expression (Parent (Comp)));
1943 begin
1944 if Present (Alloc) then
1946 -- If component is pointer to a classwide type, freeze
1947 -- the specific type in the expression being allocated.
1948 -- The expression may be a subtype indication, in which
1949 -- case freeze the subtype mark.
1951 if Is_Class_Wide_Type
1952 (Designated_Type (Etype (Comp)))
1953 then
1954 if Is_Entity_Name (Expression (Alloc)) then
1955 Freeze_And_Append
1956 (Entity (Expression (Alloc)), Loc, Result);
1957 elsif
1958 Nkind (Expression (Alloc)) = N_Subtype_Indication
1959 then
1960 Freeze_And_Append
1961 (Entity (Subtype_Mark (Expression (Alloc))),
1962 Loc, Result);
1963 end if;
1965 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1966 Check_Itype (Etype (Comp));
1968 else
1969 Freeze_And_Append
1970 (Designated_Type (Etype (Comp)), Loc, Result);
1971 end if;
1972 end if;
1973 end;
1975 elsif Is_Access_Type (Etype (Comp))
1976 and then Is_Itype (Designated_Type (Etype (Comp)))
1977 then
1978 Check_Itype (Etype (Comp));
1980 elsif Is_Array_Type (Etype (Comp))
1981 and then Is_Access_Type (Component_Type (Etype (Comp)))
1982 and then Present (Parent (Comp))
1983 and then Nkind (Parent (Comp)) = N_Component_Declaration
1984 and then Present (Expression (Parent (Comp)))
1985 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1986 and then Is_Fully_Defined
1987 (Designated_Type (Component_Type (Etype (Comp))))
1988 then
1989 Freeze_And_Append
1990 (Designated_Type
1991 (Component_Type (Etype (Comp))), Loc, Result);
1992 end if;
1994 Prev := Comp;
1995 Next_Entity (Comp);
1996 end loop;
1998 -- Deal with pragma Bit_Order
2000 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2001 if not Placed_Component then
2002 ADC :=
2003 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2004 Error_Msg_N
2005 ("?Bit_Order specification has no effect", ADC);
2006 Error_Msg_N
2007 ("\?since no component clauses were specified", ADC);
2009 -- Here is where we do Ada 2005 processing for bit order (the Ada
2010 -- 95 case was already taken care of above).
2012 elsif Ada_Version >= Ada_05 then
2013 Adjust_Record_For_Reverse_Bit_Order (Rec);
2014 end if;
2015 end if;
2017 -- Set OK_To_Reorder_Components depending on debug flags
2019 if Rec = Base_Type (Rec)
2020 and then Convention (Rec) = Convention_Ada
2021 then
2022 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2023 or else
2024 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2025 then
2026 Set_OK_To_Reorder_Components (Rec);
2027 end if;
2028 end if;
2030 -- Check for useless pragma Pack when all components placed. We only
2031 -- do this check for record types, not subtypes, since a subtype may
2032 -- have all its components placed, and it still makes perfectly good
2033 -- sense to pack other subtypes or the parent type. We do not give
2034 -- this warning if Optimize_Alignment is set to Space, since the
2035 -- pragma Pack does have an effect in this case (it always resets
2036 -- the alignment to one).
2038 if Ekind (Rec) = E_Record_Type
2039 and then Is_Packed (Rec)
2040 and then not Unplaced_Component
2041 and then Optimize_Alignment /= 'S'
2042 then
2043 -- Reset packed status. Probably not necessary, but we do it so
2044 -- that there is no chance of the back end doing something strange
2045 -- with this redundant indication of packing.
2047 Set_Is_Packed (Rec, False);
2049 -- Give warning if redundant constructs warnings on
2051 if Warn_On_Redundant_Constructs then
2052 Error_Msg_N
2053 ("?pragma Pack has no effect, no unplaced components",
2054 Get_Rep_Pragma (Rec, Name_Pack));
2055 end if;
2056 end if;
2058 -- If this is the record corresponding to a remote type, freeze the
2059 -- remote type here since that is what we are semantically freezing.
2060 -- This prevents the freeze node for that type in an inner scope.
2062 -- Also, Check for controlled components and unchecked unions.
2063 -- Finally, enforce the restriction that access attributes with a
2064 -- current instance prefix can only apply to limited types.
2066 if Ekind (Rec) = E_Record_Type then
2067 if Present (Corresponding_Remote_Type (Rec)) then
2068 Freeze_And_Append
2069 (Corresponding_Remote_Type (Rec), Loc, Result);
2070 end if;
2072 Comp := First_Component (Rec);
2073 while Present (Comp) loop
2074 if Has_Controlled_Component (Etype (Comp))
2075 or else (Chars (Comp) /= Name_uParent
2076 and then Is_Controlled (Etype (Comp)))
2077 or else (Is_Protected_Type (Etype (Comp))
2078 and then Present
2079 (Corresponding_Record_Type (Etype (Comp)))
2080 and then Has_Controlled_Component
2081 (Corresponding_Record_Type (Etype (Comp))))
2082 then
2083 Set_Has_Controlled_Component (Rec);
2084 exit;
2085 end if;
2087 if Has_Unchecked_Union (Etype (Comp)) then
2088 Set_Has_Unchecked_Union (Rec);
2089 end if;
2091 if Has_Per_Object_Constraint (Comp) then
2093 -- Scan component declaration for likely misuses of current
2094 -- instance, either in a constraint or a default expression.
2096 Check_Current_Instance (Parent (Comp));
2097 end if;
2099 Next_Component (Comp);
2100 end loop;
2101 end if;
2103 Set_Component_Alignment_If_Not_Set (Rec);
2105 -- For first subtypes, check if there are any fixed-point fields with
2106 -- component clauses, where we must check the size. This is not done
2107 -- till the freeze point, since for fixed-point types, we do not know
2108 -- the size until the type is frozen. Similar processing applies to
2109 -- bit packed arrays.
2111 if Is_First_Subtype (Rec) then
2112 Comp := First_Component (Rec);
2114 while Present (Comp) loop
2115 if Present (Component_Clause (Comp))
2116 and then (Is_Fixed_Point_Type (Etype (Comp))
2117 or else
2118 Is_Bit_Packed_Array (Etype (Comp)))
2119 then
2120 Check_Size
2121 (Component_Name (Component_Clause (Comp)),
2122 Etype (Comp),
2123 Esize (Comp),
2124 Junk);
2125 end if;
2127 Next_Component (Comp);
2128 end loop;
2129 end if;
2131 -- Generate warning for applying C or C++ convention to a record
2132 -- with discriminants. This is suppressed for the unchecked union
2133 -- case, since the whole point in this case is interface C. We also
2134 -- do not generate this within instantiations, since we will have
2135 -- generated a message on the template.
2137 if Has_Discriminants (E)
2138 and then not Is_Unchecked_Union (E)
2139 and then (Convention (E) = Convention_C
2140 or else
2141 Convention (E) = Convention_CPP)
2142 and then Comes_From_Source (E)
2143 and then not In_Instance
2144 and then not Has_Warnings_Off (E)
2145 and then not Has_Warnings_Off (Base_Type (E))
2146 then
2147 declare
2148 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2149 A2 : Node_Id;
2151 begin
2152 if Present (Cprag) then
2153 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2155 if Convention (E) = Convention_C then
2156 Error_Msg_N
2157 ("?variant record has no direct equivalent in C", A2);
2158 else
2159 Error_Msg_N
2160 ("?variant record has no direct equivalent in C++", A2);
2161 end if;
2163 Error_Msg_NE
2164 ("\?use of convention for type& is dubious", A2, E);
2165 end if;
2166 end;
2167 end if;
2168 end Freeze_Record_Type;
2170 -- Start of processing for Freeze_Entity
2172 begin
2173 -- We are going to test for various reasons why this entity need not be
2174 -- frozen here, but in the case of an Itype that's defined within a
2175 -- record, that test actually applies to the record.
2177 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2178 Test_E := Scope (E);
2179 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2180 and then Is_Record_Type (Underlying_Type (Scope (E)))
2181 then
2182 Test_E := Underlying_Type (Scope (E));
2183 end if;
2185 -- Do not freeze if already frozen since we only need one freeze node
2187 if Is_Frozen (E) then
2188 return No_List;
2190 -- It is improper to freeze an external entity within a generic because
2191 -- its freeze node will appear in a non-valid context. The entity will
2192 -- be frozen in the proper scope after the current generic is analyzed.
2194 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2195 return No_List;
2197 -- Do not freeze a global entity within an inner scope created during
2198 -- expansion. A call to subprogram E within some internal procedure
2199 -- (a stream attribute for example) might require freezing E, but the
2200 -- freeze node must appear in the same declarative part as E itself.
2201 -- The two-pass elaboration mechanism in gigi guarantees that E will
2202 -- be frozen before the inner call is elaborated. We exclude constants
2203 -- from this test, because deferred constants may be frozen early, and
2204 -- must be diagnosed (e.g. in the case of a deferred constant being used
2205 -- in a default expression). If the enclosing subprogram comes from
2206 -- source, or is a generic instance, then the freeze point is the one
2207 -- mandated by the language, and we freeze the entity. A subprogram that
2208 -- is a child unit body that acts as a spec does not have a spec that
2209 -- comes from source, but can only come from source.
2211 elsif In_Open_Scopes (Scope (Test_E))
2212 and then Scope (Test_E) /= Current_Scope
2213 and then Ekind (Test_E) /= E_Constant
2214 then
2215 declare
2216 S : Entity_Id := Current_Scope;
2218 begin
2219 while Present (S) loop
2220 if Is_Overloadable (S) then
2221 if Comes_From_Source (S)
2222 or else Is_Generic_Instance (S)
2223 or else Is_Child_Unit (S)
2224 then
2225 exit;
2226 else
2227 return No_List;
2228 end if;
2229 end if;
2231 S := Scope (S);
2232 end loop;
2233 end;
2235 -- Similarly, an inlined instance body may make reference to global
2236 -- entities, but these references cannot be the proper freezing point
2237 -- for them, and in the absence of inlining freezing will take place in
2238 -- their own scope. Normally instance bodies are analyzed after the
2239 -- enclosing compilation, and everything has been frozen at the proper
2240 -- place, but with front-end inlining an instance body is compiled
2241 -- before the end of the enclosing scope, and as a result out-of-order
2242 -- freezing must be prevented.
2244 elsif Front_End_Inlining
2245 and then In_Instance_Body
2246 and then Present (Scope (Test_E))
2247 then
2248 declare
2249 S : Entity_Id := Scope (Test_E);
2251 begin
2252 while Present (S) loop
2253 if Is_Generic_Instance (S) then
2254 exit;
2255 else
2256 S := Scope (S);
2257 end if;
2258 end loop;
2260 if No (S) then
2261 return No_List;
2262 end if;
2263 end;
2264 end if;
2266 -- Here to freeze the entity
2268 Result := No_List;
2269 Set_Is_Frozen (E);
2271 -- Case of entity being frozen is other than a type
2273 if not Is_Type (E) then
2275 -- If entity is exported or imported and does not have an external
2276 -- name, now is the time to provide the appropriate default name.
2277 -- Skip this if the entity is stubbed, since we don't need a name
2278 -- for any stubbed routine.
2280 if (Is_Imported (E) or else Is_Exported (E))
2281 and then No (Interface_Name (E))
2282 and then Convention (E) /= Convention_Stubbed
2283 then
2284 Set_Encoded_Interface_Name
2285 (E, Get_Default_External_Name (E));
2287 -- Special processing for atomic objects appearing in object decls
2289 elsif Is_Atomic (E)
2290 and then Nkind (Parent (E)) = N_Object_Declaration
2291 and then Present (Expression (Parent (E)))
2292 then
2293 declare
2294 Expr : constant Node_Id := Expression (Parent (E));
2296 begin
2297 -- If expression is an aggregate, assign to a temporary to
2298 -- ensure that the actual assignment is done atomically rather
2299 -- than component-wise (the assignment to the temp may be done
2300 -- component-wise, but that is harmless).
2302 if Nkind (Expr) = N_Aggregate then
2303 Expand_Atomic_Aggregate (Expr, Etype (E));
2305 -- If the expression is a reference to a record or array object
2306 -- entity, then reset Is_True_Constant to False so that the
2307 -- compiler will not optimize away the intermediate object,
2308 -- which we need in this case for the same reason (to ensure
2309 -- that the actual assignment is atomic, rather than
2310 -- component-wise).
2312 elsif Is_Entity_Name (Expr)
2313 and then (Is_Record_Type (Etype (Expr))
2314 or else
2315 Is_Array_Type (Etype (Expr)))
2316 then
2317 Set_Is_True_Constant (Entity (Expr), False);
2318 end if;
2319 end;
2320 end if;
2322 -- For a subprogram, freeze all parameter types and also the return
2323 -- type (RM 13.14(14)). However skip this for internal subprograms.
2324 -- This is also the point where any extra formal parameters are
2325 -- created since we now know whether the subprogram will use
2326 -- a foreign convention.
2328 if Is_Subprogram (E) then
2329 if not Is_Internal (E) then
2330 declare
2331 F_Type : Entity_Id;
2332 R_Type : Entity_Id;
2333 Warn_Node : Node_Id;
2335 begin
2336 -- Loop through formals
2338 Formal := First_Formal (E);
2339 while Present (Formal) loop
2340 F_Type := Etype (Formal);
2341 Freeze_And_Append (F_Type, Loc, Result);
2343 if Is_Private_Type (F_Type)
2344 and then Is_Private_Type (Base_Type (F_Type))
2345 and then No (Full_View (Base_Type (F_Type)))
2346 and then not Is_Generic_Type (F_Type)
2347 and then not Is_Derived_Type (F_Type)
2348 then
2349 -- If the type of a formal is incomplete, subprogram
2350 -- is being frozen prematurely. Within an instance
2351 -- (but not within a wrapper package) this is an
2352 -- an artifact of our need to regard the end of an
2353 -- instantiation as a freeze point. Otherwise it is
2354 -- a definite error.
2356 -- and then not Is_Wrapper_Package (Current_Scope) ???
2358 if In_Instance then
2359 Set_Is_Frozen (E, False);
2360 return No_List;
2362 elsif not After_Last_Declaration
2363 and then not Freezing_Library_Level_Tagged_Type
2364 then
2365 Error_Msg_Node_1 := F_Type;
2366 Error_Msg
2367 ("type& must be fully defined before this point",
2368 Loc);
2369 end if;
2370 end if;
2372 -- Check suspicious parameter for C function. These tests
2373 -- apply only to exported/imported subprograms.
2375 if Warn_On_Export_Import
2376 and then Comes_From_Source (E)
2377 and then (Convention (E) = Convention_C
2378 or else
2379 Convention (E) = Convention_CPP)
2380 and then (Is_Imported (E) or else Is_Exported (E))
2381 and then Convention (E) /= Convention (Formal)
2382 and then not Has_Warnings_Off (E)
2383 and then not Has_Warnings_Off (F_Type)
2384 and then not Has_Warnings_Off (Formal)
2385 then
2386 Error_Msg_Qual_Level := 1;
2388 -- Check suspicious use of fat C pointer
2390 if Is_Access_Type (F_Type)
2391 and then Esize (F_Type) > Ttypes.System_Address_Size
2392 then
2393 Error_Msg_N
2394 ("?type of & does not correspond "
2395 & "to C pointer!", Formal);
2397 -- Check suspicious return of boolean
2399 elsif Root_Type (F_Type) = Standard_Boolean
2400 and then Convention (F_Type) = Convention_Ada
2401 then
2402 Error_Msg_N
2403 ("?& is an 8-bit Ada Boolean, "
2404 & "use char in C!", Formal);
2406 -- Check suspicious tagged type
2408 elsif (Is_Tagged_Type (F_Type)
2409 or else (Is_Access_Type (F_Type)
2410 and then
2411 Is_Tagged_Type
2412 (Designated_Type (F_Type))))
2413 and then Convention (E) = Convention_C
2414 then
2415 Error_Msg_N
2416 ("?& is a tagged type which does not "
2417 & "correspond to any C type!", Formal);
2419 -- Check wrong convention subprogram pointer
2421 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2422 and then not Has_Foreign_Convention (F_Type)
2423 then
2424 Error_Msg_N
2425 ("?subprogram pointer & should "
2426 & "have foreign convention!", Formal);
2427 Error_Msg_Sloc := Sloc (F_Type);
2428 Error_Msg_NE
2429 ("\?add Convention pragma to declaration of &#",
2430 Formal, F_Type);
2431 end if;
2433 Error_Msg_Qual_Level := 0;
2434 end if;
2436 -- Check for unconstrained array in exported foreign
2437 -- convention case.
2439 if Has_Foreign_Convention (E)
2440 and then not Is_Imported (E)
2441 and then Is_Array_Type (F_Type)
2442 and then not Is_Constrained (F_Type)
2443 and then Warn_On_Export_Import
2444 then
2445 Error_Msg_Qual_Level := 1;
2447 -- If this is an inherited operation, place the
2448 -- warning on the derived type declaration, rather
2449 -- than on the original subprogram.
2451 if Nkind (Original_Node (Parent (E))) =
2452 N_Full_Type_Declaration
2453 then
2454 Warn_Node := Parent (E);
2456 if Formal = First_Formal (E) then
2457 Error_Msg_NE
2458 ("?in inherited operation&", Warn_Node, E);
2459 end if;
2460 else
2461 Warn_Node := Formal;
2462 end if;
2464 Error_Msg_NE
2465 ("?type of argument& is unconstrained array",
2466 Warn_Node, Formal);
2467 Error_Msg_NE
2468 ("?foreign caller must pass bounds explicitly",
2469 Warn_Node, Formal);
2470 Error_Msg_Qual_Level := 0;
2471 end if;
2473 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2474 -- types with unknown discriminants. For example:
2476 -- type T (<>) is tagged;
2477 -- procedure P (X : access T); -- ERROR
2478 -- procedure P (X : T); -- ERROR
2480 if not From_With_Type (F_Type) then
2481 if Is_Access_Type (F_Type) then
2482 F_Type := Designated_Type (F_Type);
2483 end if;
2485 if Ekind (F_Type) = E_Incomplete_Type
2486 and then Is_Tagged_Type (F_Type)
2487 and then not Is_Class_Wide_Type (F_Type)
2488 and then No (Full_View (F_Type))
2489 and then Unknown_Discriminants_Present
2490 (Parent (F_Type))
2491 and then No (Stored_Constraint (F_Type))
2492 then
2493 Error_Msg_N
2494 ("(Ada 2005): invalid use of unconstrained tagged"
2495 & " incomplete type", E);
2497 -- If the formal is an anonymous_access_to_subprogram
2498 -- freeze the subprogram type as well, to prevent
2499 -- scope anomalies in gigi, because there is no other
2500 -- clear point at which it could be frozen.
2502 elsif Is_Itype (Etype (Formal))
2503 and then Ekind (F_Type) = E_Subprogram_Type
2504 then
2505 Freeze_And_Append (F_Type, Loc, Result);
2506 end if;
2507 end if;
2509 Next_Formal (Formal);
2510 end loop;
2512 -- Case of function
2514 if Ekind (E) = E_Function then
2516 -- Freeze return type
2518 R_Type := Etype (E);
2519 Freeze_And_Append (R_Type, Loc, Result);
2521 -- Check suspicious return type for C function
2523 if Warn_On_Export_Import
2524 and then (Convention (E) = Convention_C
2525 or else
2526 Convention (E) = Convention_CPP)
2527 and then (Is_Imported (E) or else Is_Exported (E))
2528 then
2529 -- Check suspicious return of fat C pointer
2531 if Is_Access_Type (R_Type)
2532 and then Esize (R_Type) > Ttypes.System_Address_Size
2533 and then not Has_Warnings_Off (E)
2534 and then not Has_Warnings_Off (R_Type)
2535 then
2536 Error_Msg_N
2537 ("?return type of& does not "
2538 & "correspond to C pointer!", E);
2540 -- Check suspicious return of boolean
2542 elsif Root_Type (R_Type) = Standard_Boolean
2543 and then Convention (R_Type) = Convention_Ada
2544 and then not Has_Warnings_Off (E)
2545 and then not Has_Warnings_Off (R_Type)
2546 then
2547 Error_Msg_N
2548 ("?return type of & is an 8-bit "
2549 & "Ada Boolean, use char in C!", E);
2551 -- Check suspicious return tagged type
2553 elsif (Is_Tagged_Type (R_Type)
2554 or else (Is_Access_Type (R_Type)
2555 and then
2556 Is_Tagged_Type
2557 (Designated_Type (R_Type))))
2558 and then Convention (E) = Convention_C
2559 and then not Has_Warnings_Off (E)
2560 and then not Has_Warnings_Off (R_Type)
2561 then
2562 Error_Msg_N
2563 ("?return type of & does not "
2564 & "correspond to C type!", E);
2566 -- Check return of wrong convention subprogram pointer
2568 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2569 and then not Has_Foreign_Convention (R_Type)
2570 and then not Has_Warnings_Off (E)
2571 and then not Has_Warnings_Off (R_Type)
2572 then
2573 Error_Msg_N
2574 ("?& should return a foreign "
2575 & "convention subprogram pointer", E);
2576 Error_Msg_Sloc := Sloc (R_Type);
2577 Error_Msg_NE
2578 ("\?add Convention pragma to declaration of& #",
2579 E, R_Type);
2580 end if;
2581 end if;
2583 if Is_Array_Type (Etype (E))
2584 and then not Is_Constrained (Etype (E))
2585 and then not Is_Imported (E)
2586 and then Has_Foreign_Convention (E)
2587 and then Warn_On_Export_Import
2588 and then not Has_Warnings_Off (E)
2589 and then not Has_Warnings_Off (Etype (E))
2590 then
2591 Error_Msg_N
2592 ("?foreign convention function& should not " &
2593 "return unconstrained array!", E);
2595 -- Ada 2005 (AI-326): Check wrong use of tagged
2596 -- incomplete type
2598 -- type T is tagged;
2599 -- function F (X : Boolean) return T; -- ERROR
2601 elsif Ekind (Etype (E)) = E_Incomplete_Type
2602 and then Is_Tagged_Type (Etype (E))
2603 and then No (Full_View (Etype (E)))
2604 and then not Is_Value_Type (Etype (E))
2605 then
2606 Error_Msg_N
2607 ("(Ada 2005): invalid use of tagged incomplete type",
2609 end if;
2610 end if;
2611 end;
2612 end if;
2614 -- Must freeze its parent first if it is a derived subprogram
2616 if Present (Alias (E)) then
2617 Freeze_And_Append (Alias (E), Loc, Result);
2618 end if;
2620 -- We don't freeze internal subprograms, because we don't normally
2621 -- want addition of extra formals or mechanism setting to happen
2622 -- for those. However we do pass through predefined dispatching
2623 -- cases, since extra formals may be needed in some cases, such as
2624 -- for the stream 'Input function (build-in-place formals).
2626 if not Is_Internal (E)
2627 or else Is_Predefined_Dispatching_Operation (E)
2628 then
2629 Freeze_Subprogram (E);
2630 end if;
2632 -- Here for other than a subprogram or type
2634 else
2635 -- If entity has a type, and it is not a generic unit, then
2636 -- freeze it first (RM 13.14(10)).
2638 if Present (Etype (E))
2639 and then Ekind (E) /= E_Generic_Function
2640 then
2641 Freeze_And_Append (Etype (E), Loc, Result);
2642 end if;
2644 -- Special processing for objects created by object declaration
2646 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2648 -- For object created by object declaration, perform required
2649 -- categorization (preelaborate and pure) checks. Defer these
2650 -- checks to freeze time since pragma Import inhibits default
2651 -- initialization and thus pragma Import affects these checks.
2653 Validate_Object_Declaration (Declaration_Node (E));
2655 -- If there is an address clause, check that it is valid
2657 Check_Address_Clause (E);
2659 -- If the object needs any kind of default initialization, an
2660 -- error must be issued if No_Default_Initialization applies.
2661 -- The check doesn't apply to imported objects, which are not
2662 -- ever default initialized, and is why the check is deferred
2663 -- until freezing, at which point we know if Import applies.
2665 if not Is_Imported (E)
2666 and then not Has_Init_Expression (Declaration_Node (E))
2667 and then
2668 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2669 and then not No_Initialization (Declaration_Node (E))
2670 and then not Is_Value_Type (Etype (E))
2671 and then not Suppress_Init_Proc (Etype (E)))
2672 or else
2673 (Needs_Simple_Initialization (Etype (E))
2674 and then not Is_Internal (E)))
2675 then
2676 Check_Restriction
2677 (No_Default_Initialization, Declaration_Node (E));
2678 end if;
2680 -- For imported objects, set Is_Public unless there is also an
2681 -- address clause, which means that there is no external symbol
2682 -- needed for the Import (Is_Public may still be set for other
2683 -- unrelated reasons). Note that we delayed this processing
2684 -- till freeze time so that we can be sure not to set the flag
2685 -- if there is an address clause. If there is such a clause,
2686 -- then the only purpose of the Import pragma is to suppress
2687 -- implicit initialization.
2689 if Is_Imported (E)
2690 and then No (Address_Clause (E))
2691 then
2692 Set_Is_Public (E);
2693 end if;
2695 -- For convention C objects of an enumeration type, warn if
2696 -- the size is not integer size and no explicit size given.
2697 -- Skip warning for Boolean, and Character, assume programmer
2698 -- expects 8-bit sizes for these cases.
2700 if (Convention (E) = Convention_C
2701 or else
2702 Convention (E) = Convention_CPP)
2703 and then Is_Enumeration_Type (Etype (E))
2704 and then not Is_Character_Type (Etype (E))
2705 and then not Is_Boolean_Type (Etype (E))
2706 and then Esize (Etype (E)) < Standard_Integer_Size
2707 and then not Has_Size_Clause (E)
2708 then
2709 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2710 Error_Msg_N
2711 ("?convention C enumeration object has size less than ^",
2713 Error_Msg_N ("\?use explicit size clause to set size", E);
2714 end if;
2715 end if;
2717 -- Check that a constant which has a pragma Volatile[_Components]
2718 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2720 -- Note: Atomic[_Components] also sets Volatile[_Components]
2722 if Ekind (E) = E_Constant
2723 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2724 and then not Is_Imported (E)
2725 then
2726 -- Make sure we actually have a pragma, and have not merely
2727 -- inherited the indication from elsewhere (e.g. an address
2728 -- clause, which is not good enough in RM terms!)
2730 if Has_Rep_Pragma (E, Name_Atomic)
2731 or else
2732 Has_Rep_Pragma (E, Name_Atomic_Components)
2733 then
2734 Error_Msg_N
2735 ("stand alone atomic constant must be " &
2736 "imported (RM C.6(13))", E);
2738 elsif Has_Rep_Pragma (E, Name_Volatile)
2739 or else
2740 Has_Rep_Pragma (E, Name_Volatile_Components)
2741 then
2742 Error_Msg_N
2743 ("stand alone volatile constant must be " &
2744 "imported (RM C.6(13))", E);
2745 end if;
2746 end if;
2748 -- Static objects require special handling
2750 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2751 and then Is_Statically_Allocated (E)
2752 then
2753 Freeze_Static_Object (E);
2754 end if;
2756 -- Remaining step is to layout objects
2758 if Ekind (E) = E_Variable
2759 or else
2760 Ekind (E) = E_Constant
2761 or else
2762 Ekind (E) = E_Loop_Parameter
2763 or else
2764 Is_Formal (E)
2765 then
2766 Layout_Object (E);
2767 end if;
2768 end if;
2770 -- Case of a type or subtype being frozen
2772 else
2773 -- We used to check here that a full type must have preelaborable
2774 -- initialization if it completes a private type specified with
2775 -- pragma Preelaborable_Intialization, but that missed cases where
2776 -- the types occur within a generic package, since the freezing
2777 -- that occurs within a containing scope generally skips traversal
2778 -- of a generic unit's declarations (those will be frozen within
2779 -- instances). This check was moved to Analyze_Package_Specification.
2781 -- The type may be defined in a generic unit. This can occur when
2782 -- freezing a generic function that returns the type (which is
2783 -- defined in a parent unit). It is clearly meaningless to freeze
2784 -- this type. However, if it is a subtype, its size may be determi-
2785 -- nable and used in subsequent checks, so might as well try to
2786 -- compute it.
2788 if Present (Scope (E))
2789 and then Is_Generic_Unit (Scope (E))
2790 then
2791 Check_Compile_Time_Size (E);
2792 return No_List;
2793 end if;
2795 -- Deal with special cases of freezing for subtype
2797 if E /= Base_Type (E) then
2799 -- Before we do anything else, a specialized test for the case of
2800 -- a size given for an array where the array needs to be packed,
2801 -- but was not so the size cannot be honored. This would of course
2802 -- be caught by the backend, and indeed we don't catch all cases.
2803 -- The point is that we can give a better error message in those
2804 -- cases that we do catch with the circuitry here. Also if pragma
2805 -- Implicit_Packing is set, this is where the packing occurs.
2807 -- The reason we do this so early is that the processing in the
2808 -- automatic packing case affects the layout of the base type, so
2809 -- it must be done before we freeze the base type.
2811 if Is_Array_Type (E) then
2812 declare
2813 Lo, Hi : Node_Id;
2814 Ctyp : constant Entity_Id := Component_Type (E);
2816 begin
2817 -- Check enabling conditions. These are straightforward
2818 -- except for the test for a limited composite type. This
2819 -- eliminates the rare case of a array of limited components
2820 -- where there are issues of whether or not we can go ahead
2821 -- and pack the array (since we can't freely pack and unpack
2822 -- arrays if they are limited).
2824 -- Note that we check the root type explicitly because the
2825 -- whole point is we are doing this test before we have had
2826 -- a chance to freeze the base type (and it is that freeze
2827 -- action that causes stuff to be inherited).
2829 if Present (Size_Clause (E))
2830 and then Known_Static_Esize (E)
2831 and then not Is_Packed (E)
2832 and then not Has_Pragma_Pack (E)
2833 and then Number_Dimensions (E) = 1
2834 and then not Has_Component_Size_Clause (E)
2835 and then Known_Static_Esize (Ctyp)
2836 and then not Is_Limited_Composite (E)
2837 and then not Is_Packed (Root_Type (E))
2838 and then not Has_Component_Size_Clause (Root_Type (E))
2839 then
2840 Get_Index_Bounds (First_Index (E), Lo, Hi);
2842 if Compile_Time_Known_Value (Lo)
2843 and then Compile_Time_Known_Value (Hi)
2844 and then Known_Static_RM_Size (Ctyp)
2845 and then RM_Size (Ctyp) < 64
2846 then
2847 declare
2848 Lov : constant Uint := Expr_Value (Lo);
2849 Hiv : constant Uint := Expr_Value (Hi);
2850 Len : constant Uint := UI_Max
2851 (Uint_0,
2852 Hiv - Lov + 1);
2853 Rsiz : constant Uint := RM_Size (Ctyp);
2854 SZ : constant Node_Id := Size_Clause (E);
2855 Btyp : constant Entity_Id := Base_Type (E);
2857 -- What we are looking for here is the situation where
2858 -- the RM_Size given would be exactly right if there
2859 -- was a pragma Pack (resulting in the component size
2860 -- being the same as the RM_Size). Furthermore, the
2861 -- component type size must be an odd size (not a
2862 -- multiple of storage unit)
2864 begin
2865 if RM_Size (E) = Len * Rsiz
2866 and then Rsiz mod System_Storage_Unit /= 0
2867 then
2868 -- For implicit packing mode, just set the
2869 -- component size silently
2871 if Implicit_Packing then
2872 Set_Component_Size (Btyp, Rsiz);
2873 Set_Is_Bit_Packed_Array (Btyp);
2874 Set_Is_Packed (Btyp);
2875 Set_Has_Non_Standard_Rep (Btyp);
2877 -- Otherwise give an error message
2879 else
2880 Error_Msg_NE
2881 ("size given for& too small", SZ, E);
2882 Error_Msg_N
2883 ("\use explicit pragma Pack "
2884 & "or use pragma Implicit_Packing", SZ);
2885 end if;
2886 end if;
2887 end;
2888 end if;
2889 end if;
2890 end;
2891 end if;
2893 -- If ancestor subtype present, freeze that first. Note that this
2894 -- will also get the base type frozen.
2896 Atype := Ancestor_Subtype (E);
2898 if Present (Atype) then
2899 Freeze_And_Append (Atype, Loc, Result);
2901 -- Otherwise freeze the base type of the entity before freezing
2902 -- the entity itself (RM 13.14(15)).
2904 elsif E /= Base_Type (E) then
2905 Freeze_And_Append (Base_Type (E), Loc, Result);
2906 end if;
2908 -- For a derived type, freeze its parent type first (RM 13.14(15))
2910 elsif Is_Derived_Type (E) then
2911 Freeze_And_Append (Etype (E), Loc, Result);
2912 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2913 end if;
2915 -- For array type, freeze index types and component type first
2916 -- before freezing the array (RM 13.14(15)).
2918 if Is_Array_Type (E) then
2919 declare
2920 Ctyp : constant Entity_Id := Component_Type (E);
2922 Non_Standard_Enum : Boolean := False;
2923 -- Set true if any of the index types is an enumeration type
2924 -- with a non-standard representation.
2926 begin
2927 Freeze_And_Append (Ctyp, Loc, Result);
2929 Indx := First_Index (E);
2930 while Present (Indx) loop
2931 Freeze_And_Append (Etype (Indx), Loc, Result);
2933 if Is_Enumeration_Type (Etype (Indx))
2934 and then Has_Non_Standard_Rep (Etype (Indx))
2935 then
2936 Non_Standard_Enum := True;
2937 end if;
2939 Next_Index (Indx);
2940 end loop;
2942 -- Processing that is done only for base types
2944 if Ekind (E) = E_Array_Type then
2946 -- Propagate flags for component type
2948 if Is_Controlled (Component_Type (E))
2949 or else Has_Controlled_Component (Ctyp)
2950 then
2951 Set_Has_Controlled_Component (E);
2952 end if;
2954 if Has_Unchecked_Union (Component_Type (E)) then
2955 Set_Has_Unchecked_Union (E);
2956 end if;
2958 -- If packing was requested or if the component size was set
2959 -- explicitly, then see if bit packing is required. This
2960 -- processing is only done for base types, since all the
2961 -- representation aspects involved are type-related. This
2962 -- is not just an optimization, if we start processing the
2963 -- subtypes, they interfere with the settings on the base
2964 -- type (this is because Is_Packed has a slightly different
2965 -- meaning before and after freezing).
2967 declare
2968 Csiz : Uint;
2969 Esiz : Uint;
2971 begin
2972 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2973 and then not Has_Atomic_Components (E)
2974 and then Known_Static_RM_Size (Ctyp)
2975 then
2976 Csiz := UI_Max (RM_Size (Ctyp), 1);
2978 elsif Known_Component_Size (E) then
2979 Csiz := Component_Size (E);
2981 elsif not Known_Static_Esize (Ctyp) then
2982 Csiz := Uint_0;
2984 else
2985 Esiz := Esize (Ctyp);
2987 -- We can set the component size if it is less than
2988 -- 16, rounding it up to the next storage unit size.
2990 if Esiz <= 8 then
2991 Csiz := Uint_8;
2992 elsif Esiz <= 16 then
2993 Csiz := Uint_16;
2994 else
2995 Csiz := Uint_0;
2996 end if;
2998 -- Set component size up to match alignment if it
2999 -- would otherwise be less than the alignment. This
3000 -- deals with cases of types whose alignment exceeds
3001 -- their size (padded types).
3003 if Csiz /= 0 then
3004 declare
3005 A : constant Uint := Alignment_In_Bits (Ctyp);
3006 begin
3007 if Csiz < A then
3008 Csiz := A;
3009 end if;
3010 end;
3011 end if;
3012 end if;
3014 -- Case of component size that may result in packing
3016 if 1 <= Csiz and then Csiz <= 64 then
3017 declare
3018 Ent : constant Entity_Id :=
3019 First_Subtype (E);
3020 Pack_Pragma : constant Node_Id :=
3021 Get_Rep_Pragma (Ent, Name_Pack);
3022 Comp_Size_C : constant Node_Id :=
3023 Get_Attribute_Definition_Clause
3024 (Ent, Attribute_Component_Size);
3025 begin
3026 -- Warn if we have pack and component size so that
3027 -- the pack is ignored.
3029 -- Note: here we must check for the presence of a
3030 -- component size before checking for a Pack pragma
3031 -- to deal with the case where the array type is a
3032 -- derived type whose parent is currently private.
3034 if Present (Comp_Size_C)
3035 and then Has_Pragma_Pack (Ent)
3036 then
3037 Error_Msg_Sloc := Sloc (Comp_Size_C);
3038 Error_Msg_NE
3039 ("?pragma Pack for& ignored!",
3040 Pack_Pragma, Ent);
3041 Error_Msg_N
3042 ("\?explicit component size given#!",
3043 Pack_Pragma);
3044 end if;
3046 -- Set component size if not already set by a
3047 -- component size clause.
3049 if not Present (Comp_Size_C) then
3050 Set_Component_Size (E, Csiz);
3051 end if;
3053 -- Check for base type of 8, 16, 32 bits, where an
3054 -- unsigned subtype has a length one less than the
3055 -- base type (e.g. Natural subtype of Integer).
3057 -- In such cases, if a component size was not set
3058 -- explicitly, then generate a warning.
3060 if Has_Pragma_Pack (E)
3061 and then not Present (Comp_Size_C)
3062 and then
3063 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3064 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3065 then
3066 Error_Msg_Uint_1 := Csiz;
3068 if Present (Pack_Pragma) then
3069 Error_Msg_N
3070 ("?pragma Pack causes component size "
3071 & "to be ^!", Pack_Pragma);
3072 Error_Msg_N
3073 ("\?use Component_Size to set "
3074 & "desired value!", Pack_Pragma);
3075 end if;
3076 end if;
3078 -- Actual packing is not needed for 8, 16, 32, 64.
3079 -- Also not needed for 24 if alignment is 1.
3081 if Csiz = 8
3082 or else Csiz = 16
3083 or else Csiz = 32
3084 or else Csiz = 64
3085 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3086 then
3087 -- Here the array was requested to be packed,
3088 -- but the packing request had no effect, so
3089 -- Is_Packed is reset.
3091 -- Note: semantically this means that we lose
3092 -- track of the fact that a derived type
3093 -- inherited a pragma Pack that was non-
3094 -- effective, but that seems fine.
3096 -- We regard a Pack pragma as a request to set
3097 -- a representation characteristic, and this
3098 -- request may be ignored.
3100 Set_Is_Packed (Base_Type (E), False);
3102 -- In all other cases, packing is indeed needed
3104 else
3105 Set_Has_Non_Standard_Rep (Base_Type (E));
3106 Set_Is_Bit_Packed_Array (Base_Type (E));
3107 Set_Is_Packed (Base_Type (E));
3108 end if;
3109 end;
3110 end if;
3111 end;
3113 -- Processing that is done only for subtypes
3115 else
3116 -- Acquire alignment from base type
3118 if Unknown_Alignment (E) then
3119 Set_Alignment (E, Alignment (Base_Type (E)));
3120 Adjust_Esize_Alignment (E);
3121 end if;
3122 end if;
3124 -- For bit-packed arrays, check the size
3126 if Is_Bit_Packed_Array (E)
3127 and then Known_RM_Size (E)
3128 then
3129 declare
3130 SizC : constant Node_Id := Size_Clause (E);
3132 Discard : Boolean;
3133 pragma Warnings (Off, Discard);
3135 begin
3136 -- It is not clear if it is possible to have no size
3137 -- clause at this stage, but it is not worth worrying
3138 -- about. Post error on the entity name in the size
3139 -- clause if present, else on the type entity itself.
3141 if Present (SizC) then
3142 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3143 else
3144 Check_Size (E, E, RM_Size (E), Discard);
3145 end if;
3146 end;
3147 end if;
3149 -- If any of the index types was an enumeration type with
3150 -- a non-standard rep clause, then we indicate that the
3151 -- array type is always packed (even if it is not bit packed).
3153 if Non_Standard_Enum then
3154 Set_Has_Non_Standard_Rep (Base_Type (E));
3155 Set_Is_Packed (Base_Type (E));
3156 end if;
3158 Set_Component_Alignment_If_Not_Set (E);
3160 -- If the array is packed, we must create the packed array
3161 -- type to be used to actually implement the type. This is
3162 -- only needed for real array types (not for string literal
3163 -- types, since they are present only for the front end).
3165 if Is_Packed (E)
3166 and then Ekind (E) /= E_String_Literal_Subtype
3167 then
3168 Create_Packed_Array_Type (E);
3169 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
3171 -- Size information of packed array type is copied to the
3172 -- array type, since this is really the representation. But
3173 -- do not override explicit existing size values. If the
3174 -- ancestor subtype is constrained the packed_array_type
3175 -- will be inherited from it, but the size may have been
3176 -- provided already, and must not be overridden either.
3178 if not Has_Size_Clause (E)
3179 and then
3180 (No (Ancestor_Subtype (E))
3181 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3182 then
3183 Set_Esize (E, Esize (Packed_Array_Type (E)));
3184 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3185 end if;
3187 if not Has_Alignment_Clause (E) then
3188 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3189 end if;
3190 end if;
3192 -- For non-packed arrays set the alignment of the array to the
3193 -- alignment of the component type if it is unknown. Skip this
3194 -- in atomic case (atomic arrays may need larger alignments).
3196 if not Is_Packed (E)
3197 and then Unknown_Alignment (E)
3198 and then Known_Alignment (Ctyp)
3199 and then Known_Static_Component_Size (E)
3200 and then Known_Static_Esize (Ctyp)
3201 and then Esize (Ctyp) = Component_Size (E)
3202 and then not Is_Atomic (E)
3203 then
3204 Set_Alignment (E, Alignment (Component_Type (E)));
3205 end if;
3206 end;
3208 -- For a class-wide type, the corresponding specific type is
3209 -- frozen as well (RM 13.14(15))
3211 elsif Is_Class_Wide_Type (E) then
3212 Freeze_And_Append (Root_Type (E), Loc, Result);
3214 -- If the base type of the class-wide type is still incomplete,
3215 -- the class-wide remains unfrozen as well. This is legal when
3216 -- E is the formal of a primitive operation of some other type
3217 -- which is being frozen.
3219 if not Is_Frozen (Root_Type (E)) then
3220 Set_Is_Frozen (E, False);
3221 return Result;
3222 end if;
3224 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3225 -- parent of a derived type) and it is a library-level entity,
3226 -- generate an itype reference for it. Otherwise, its first
3227 -- explicit reference may be in an inner scope, which will be
3228 -- rejected by the back-end.
3230 if Is_Itype (E)
3231 and then Is_Compilation_Unit (Scope (E))
3232 then
3233 declare
3234 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3236 begin
3237 Set_Itype (Ref, E);
3238 if No (Result) then
3239 Result := New_List (Ref);
3240 else
3241 Append (Ref, Result);
3242 end if;
3243 end;
3244 end if;
3246 -- The equivalent type associated with a class-wide subtype needs
3247 -- to be frozen to ensure that its layout is done. Class-wide
3248 -- subtypes are currently only frozen on targets requiring
3249 -- front-end layout (see New_Class_Wide_Subtype and
3250 -- Make_CW_Equivalent_Type in exp_util.adb).
3252 if Ekind (E) = E_Class_Wide_Subtype
3253 and then Present (Equivalent_Type (E))
3254 then
3255 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3256 end if;
3258 -- For a record (sub)type, freeze all the component types (RM
3259 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3260 -- Is_Record_Type, because we don't want to attempt the freeze for
3261 -- the case of a private type with record extension (we will do that
3262 -- later when the full type is frozen).
3264 elsif Ekind (E) = E_Record_Type
3265 or else Ekind (E) = E_Record_Subtype
3266 then
3267 Freeze_Record_Type (E);
3269 -- For a concurrent type, freeze corresponding record type. This
3270 -- does not correspond to any specific rule in the RM, but the
3271 -- record type is essentially part of the concurrent type.
3272 -- Freeze as well all local entities. This includes record types
3273 -- created for entry parameter blocks, and whatever local entities
3274 -- may appear in the private part.
3276 elsif Is_Concurrent_Type (E) then
3277 if Present (Corresponding_Record_Type (E)) then
3278 Freeze_And_Append
3279 (Corresponding_Record_Type (E), Loc, Result);
3280 end if;
3282 Comp := First_Entity (E);
3284 while Present (Comp) loop
3285 if Is_Type (Comp) then
3286 Freeze_And_Append (Comp, Loc, Result);
3288 elsif (Ekind (Comp)) /= E_Function then
3289 if Is_Itype (Etype (Comp))
3290 and then Underlying_Type (Scope (Etype (Comp))) = E
3291 then
3292 Undelay_Type (Etype (Comp));
3293 end if;
3295 Freeze_And_Append (Etype (Comp), Loc, Result);
3296 end if;
3298 Next_Entity (Comp);
3299 end loop;
3301 -- Private types are required to point to the same freeze node as
3302 -- their corresponding full views. The freeze node itself has to
3303 -- point to the partial view of the entity (because from the partial
3304 -- view, we can retrieve the full view, but not the reverse).
3305 -- However, in order to freeze correctly, we need to freeze the full
3306 -- view. If we are freezing at the end of a scope (or within the
3307 -- scope of the private type), the partial and full views will have
3308 -- been swapped, the full view appears first in the entity chain and
3309 -- the swapping mechanism ensures that the pointers are properly set
3310 -- (on scope exit).
3312 -- If we encounter the partial view before the full view (e.g. when
3313 -- freezing from another scope), we freeze the full view, and then
3314 -- set the pointers appropriately since we cannot rely on swapping to
3315 -- fix things up (subtypes in an outer scope might not get swapped).
3317 elsif Is_Incomplete_Or_Private_Type (E)
3318 and then not Is_Generic_Type (E)
3319 then
3320 -- The construction of the dispatch table associated with library
3321 -- level tagged types forces freezing of all the primitives of the
3322 -- type, which may cause premature freezing of the partial view.
3323 -- For example:
3325 -- package Pkg is
3326 -- type T is tagged private;
3327 -- type DT is new T with private;
3328 -- procedure Prim (X : in out T; Y : in out DT'class);
3329 -- private
3330 -- type T is tagged null record;
3331 -- Obj : T;
3332 -- type DT is new T with null record;
3333 -- end;
3335 -- In this case the type will be frozen later by the usual
3336 -- mechanism: an object declaration, an instantiation, or the
3337 -- end of a declarative part.
3339 if Is_Library_Level_Tagged_Type (E)
3340 and then not Present (Full_View (E))
3341 then
3342 Set_Is_Frozen (E, False);
3343 return Result;
3345 -- Case of full view present
3347 elsif Present (Full_View (E)) then
3349 -- If full view has already been frozen, then no further
3350 -- processing is required
3352 if Is_Frozen (Full_View (E)) then
3354 Set_Has_Delayed_Freeze (E, False);
3355 Set_Freeze_Node (E, Empty);
3356 Check_Debug_Info_Needed (E);
3358 -- Otherwise freeze full view and patch the pointers so that
3359 -- the freeze node will elaborate both views in the back-end.
3361 else
3362 declare
3363 Full : constant Entity_Id := Full_View (E);
3365 begin
3366 if Is_Private_Type (Full)
3367 and then Present (Underlying_Full_View (Full))
3368 then
3369 Freeze_And_Append
3370 (Underlying_Full_View (Full), Loc, Result);
3371 end if;
3373 Freeze_And_Append (Full, Loc, Result);
3375 if Has_Delayed_Freeze (E) then
3376 F_Node := Freeze_Node (Full);
3378 if Present (F_Node) then
3379 Set_Freeze_Node (E, F_Node);
3380 Set_Entity (F_Node, E);
3382 else
3383 -- {Incomplete,Private}_Subtypes with Full_Views
3384 -- constrained by discriminants.
3386 Set_Has_Delayed_Freeze (E, False);
3387 Set_Freeze_Node (E, Empty);
3388 end if;
3389 end if;
3390 end;
3392 Check_Debug_Info_Needed (E);
3393 end if;
3395 -- AI-117 requires that the convention of a partial view be the
3396 -- same as the convention of the full view. Note that this is a
3397 -- recognized breach of privacy, but it's essential for logical
3398 -- consistency of representation, and the lack of a rule in
3399 -- RM95 was an oversight.
3401 Set_Convention (E, Convention (Full_View (E)));
3403 Set_Size_Known_At_Compile_Time (E,
3404 Size_Known_At_Compile_Time (Full_View (E)));
3406 -- Size information is copied from the full view to the
3407 -- incomplete or private view for consistency.
3409 -- We skip this is the full view is not a type. This is very
3410 -- strange of course, and can only happen as a result of
3411 -- certain illegalities, such as a premature attempt to derive
3412 -- from an incomplete type.
3414 if Is_Type (Full_View (E)) then
3415 Set_Size_Info (E, Full_View (E));
3416 Set_RM_Size (E, RM_Size (Full_View (E)));
3417 end if;
3419 return Result;
3421 -- Case of no full view present. If entity is derived or subtype,
3422 -- it is safe to freeze, correctness depends on the frozen status
3423 -- of parent. Otherwise it is either premature usage, or a Taft
3424 -- amendment type, so diagnosis is at the point of use and the
3425 -- type might be frozen later.
3427 elsif E /= Base_Type (E)
3428 or else Is_Derived_Type (E)
3429 then
3430 null;
3432 else
3433 Set_Is_Frozen (E, False);
3434 return No_List;
3435 end if;
3437 -- For access subprogram, freeze types of all formals, the return
3438 -- type was already frozen, since it is the Etype of the function.
3440 elsif Ekind (E) = E_Subprogram_Type then
3441 Formal := First_Formal (E);
3442 while Present (Formal) loop
3443 Freeze_And_Append (Etype (Formal), Loc, Result);
3444 Next_Formal (Formal);
3445 end loop;
3447 Freeze_Subprogram (E);
3449 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
3451 -- type T is tagged;
3452 -- type Acc is access function (X : T) return T; -- ERROR
3454 if Ekind (Etype (E)) = E_Incomplete_Type
3455 and then Is_Tagged_Type (Etype (E))
3456 and then No (Full_View (Etype (E)))
3457 and then not Is_Value_Type (Etype (E))
3458 then
3459 Error_Msg_N
3460 ("(Ada 2005): invalid use of tagged incomplete type", E);
3461 end if;
3463 -- For access to a protected subprogram, freeze the equivalent type
3464 -- (however this is not set if we are not generating code or if this
3465 -- is an anonymous type used just for resolution).
3467 elsif Is_Access_Protected_Subprogram_Type (E) then
3469 -- AI-326: Check wrong use of tagged incomplete types
3471 -- type T is tagged;
3472 -- type As3D is access protected
3473 -- function (X : Float) return T; -- ERROR
3475 declare
3476 Etyp : Entity_Id;
3478 begin
3479 Etyp := Etype (Directly_Designated_Type (E));
3481 if Is_Class_Wide_Type (Etyp) then
3482 Etyp := Etype (Etyp);
3483 end if;
3485 if Ekind (Etyp) = E_Incomplete_Type
3486 and then Is_Tagged_Type (Etyp)
3487 and then No (Full_View (Etyp))
3488 and then not Is_Value_Type (Etype (E))
3489 then
3490 Error_Msg_N
3491 ("(Ada 2005): invalid use of tagged incomplete type", E);
3492 end if;
3493 end;
3495 if Present (Equivalent_Type (E)) then
3496 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3497 end if;
3498 end if;
3500 -- Generic types are never seen by the back-end, and are also not
3501 -- processed by the expander (since the expander is turned off for
3502 -- generic processing), so we never need freeze nodes for them.
3504 if Is_Generic_Type (E) then
3505 return Result;
3506 end if;
3508 -- Some special processing for non-generic types to complete
3509 -- representation details not known till the freeze point.
3511 if Is_Fixed_Point_Type (E) then
3512 Freeze_Fixed_Point_Type (E);
3514 -- Some error checks required for ordinary fixed-point type. Defer
3515 -- these till the freeze-point since we need the small and range
3516 -- values. We only do these checks for base types
3518 if Is_Ordinary_Fixed_Point_Type (E)
3519 and then E = Base_Type (E)
3520 then
3521 if Small_Value (E) < Ureal_2_M_80 then
3522 Error_Msg_Name_1 := Name_Small;
3523 Error_Msg_N
3524 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3526 elsif Small_Value (E) > Ureal_2_80 then
3527 Error_Msg_Name_1 := Name_Small;
3528 Error_Msg_N
3529 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3530 end if;
3532 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3533 Error_Msg_Name_1 := Name_First;
3534 Error_Msg_N
3535 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3536 end if;
3538 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3539 Error_Msg_Name_1 := Name_Last;
3540 Error_Msg_N
3541 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3542 end if;
3543 end if;
3545 elsif Is_Enumeration_Type (E) then
3546 Freeze_Enumeration_Type (E);
3548 elsif Is_Integer_Type (E) then
3549 Adjust_Esize_For_Alignment (E);
3551 elsif Is_Access_Type (E) then
3553 -- Check restriction for standard storage pool
3555 if No (Associated_Storage_Pool (E)) then
3556 Check_Restriction (No_Standard_Storage_Pools, E);
3557 end if;
3559 -- Deal with error message for pure access type. This is not an
3560 -- error in Ada 2005 if there is no pool (see AI-366).
3562 if Is_Pure_Unit_Access_Type (E)
3563 and then (Ada_Version < Ada_05
3564 or else not No_Pool_Assigned (E))
3565 then
3566 Error_Msg_N ("named access type not allowed in pure unit", E);
3568 if Ada_Version >= Ada_05 then
3569 Error_Msg_N
3570 ("\would be legal if Storage_Size of 0 given?", E);
3572 elsif No_Pool_Assigned (E) then
3573 Error_Msg_N
3574 ("\would be legal in Ada 2005?", E);
3576 else
3577 Error_Msg_N
3578 ("\would be legal in Ada 2005 if "
3579 & "Storage_Size of 0 given?", E);
3580 end if;
3581 end if;
3582 end if;
3584 -- Case of composite types
3586 if Is_Composite_Type (E) then
3588 -- AI-117 requires that all new primitives of a tagged type must
3589 -- inherit the convention of the full view of the type. Inherited
3590 -- and overriding operations are defined to inherit the convention
3591 -- of their parent or overridden subprogram (also specified in
3592 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3593 -- and New_Overloaded_Entity). Here we set the convention of
3594 -- primitives that are still convention Ada, which will ensure
3595 -- that any new primitives inherit the type's convention. Class-
3596 -- wide types can have a foreign convention inherited from their
3597 -- specific type, but are excluded from this since they don't have
3598 -- any associated primitives.
3600 if Is_Tagged_Type (E)
3601 and then not Is_Class_Wide_Type (E)
3602 and then Convention (E) /= Convention_Ada
3603 then
3604 declare
3605 Prim_List : constant Elist_Id := Primitive_Operations (E);
3606 Prim : Elmt_Id;
3607 begin
3608 Prim := First_Elmt (Prim_List);
3609 while Present (Prim) loop
3610 if Convention (Node (Prim)) = Convention_Ada then
3611 Set_Convention (Node (Prim), Convention (E));
3612 end if;
3614 Next_Elmt (Prim);
3615 end loop;
3616 end;
3617 end if;
3618 end if;
3620 -- Generate primitive operation references for a tagged type
3622 if Is_Tagged_Type (E)
3623 and then not Is_Class_Wide_Type (E)
3624 then
3625 declare
3626 Prim_List : Elist_Id;
3627 Prim : Elmt_Id;
3628 Ent : Entity_Id;
3629 Aux_E : Entity_Id;
3631 begin
3632 -- Handle subtypes
3634 if Ekind (E) = E_Protected_Subtype
3635 or else Ekind (E) = E_Task_Subtype
3636 then
3637 Aux_E := Etype (E);
3638 else
3639 Aux_E := E;
3640 end if;
3642 -- Ada 2005 (AI-345): In case of concurrent type generate
3643 -- reference to the wrapper that allow us to dispatch calls
3644 -- through their implemented abstract interface types.
3646 -- The check for Present here is to protect against previously
3647 -- reported critical errors.
3649 if Is_Concurrent_Type (Aux_E)
3650 and then Present (Corresponding_Record_Type (Aux_E))
3651 then
3652 Prim_List := Primitive_Operations
3653 (Corresponding_Record_Type (Aux_E));
3654 else
3655 Prim_List := Primitive_Operations (Aux_E);
3656 end if;
3658 -- Loop to generate references for primitive operations
3660 if Present (Prim_List) then
3661 Prim := First_Elmt (Prim_List);
3662 while Present (Prim) loop
3664 -- If the operation is derived, get the original for
3665 -- cross-reference purposes (it is the original for
3666 -- which we want the xref, and for which the comes
3667 -- from source test needs to be performed).
3669 Ent := Node (Prim);
3670 while Present (Alias (Ent)) loop
3671 Ent := Alias (Ent);
3672 end loop;
3674 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3675 Next_Elmt (Prim);
3676 end loop;
3677 end if;
3678 end;
3679 end if;
3681 -- Now that all types from which E may depend are frozen, see if the
3682 -- size is known at compile time, if it must be unsigned, or if
3683 -- strict alignment is required
3685 Check_Compile_Time_Size (E);
3686 Check_Unsigned_Type (E);
3688 if Base_Type (E) = E then
3689 Check_Strict_Alignment (E);
3690 end if;
3692 -- Do not allow a size clause for a type which does not have a size
3693 -- that is known at compile time
3695 if Has_Size_Clause (E)
3696 and then not Size_Known_At_Compile_Time (E)
3697 then
3698 -- Suppress this message if errors posted on E, even if we are
3699 -- in all errors mode, since this is often a junk message
3701 if not Error_Posted (E) then
3702 Error_Msg_N
3703 ("size clause not allowed for variable length type",
3704 Size_Clause (E));
3705 end if;
3706 end if;
3708 -- Remaining process is to set/verify the representation information,
3709 -- in particular the size and alignment values. This processing is
3710 -- not required for generic types, since generic types do not play
3711 -- any part in code generation, and so the size and alignment values
3712 -- for such types are irrelevant.
3714 if Is_Generic_Type (E) then
3715 return Result;
3717 -- Otherwise we call the layout procedure
3719 else
3720 Layout_Type (E);
3721 end if;
3723 -- End of freeze processing for type entities
3724 end if;
3726 -- Here is where we logically freeze the current entity. If it has a
3727 -- freeze node, then this is the point at which the freeze node is
3728 -- linked into the result list.
3730 if Has_Delayed_Freeze (E) then
3732 -- If a freeze node is already allocated, use it, otherwise allocate
3733 -- a new one. The preallocation happens in the case of anonymous base
3734 -- types, where we preallocate so that we can set First_Subtype_Link.
3735 -- Note that we reset the Sloc to the current freeze location.
3737 if Present (Freeze_Node (E)) then
3738 F_Node := Freeze_Node (E);
3739 Set_Sloc (F_Node, Loc);
3741 else
3742 F_Node := New_Node (N_Freeze_Entity, Loc);
3743 Set_Freeze_Node (E, F_Node);
3744 Set_Access_Types_To_Process (F_Node, No_Elist);
3745 Set_TSS_Elist (F_Node, No_Elist);
3746 Set_Actions (F_Node, No_List);
3747 end if;
3749 Set_Entity (F_Node, E);
3751 if Result = No_List then
3752 Result := New_List (F_Node);
3753 else
3754 Append (F_Node, Result);
3755 end if;
3757 -- A final pass over record types with discriminants. If the type
3758 -- has an incomplete declaration, there may be constrained access
3759 -- subtypes declared elsewhere, which do not depend on the discrimi-
3760 -- nants of the type, and which are used as component types (i.e.
3761 -- the full view is a recursive type). The designated types of these
3762 -- subtypes can only be elaborated after the type itself, and they
3763 -- need an itype reference.
3765 if Ekind (E) = E_Record_Type
3766 and then Has_Discriminants (E)
3767 then
3768 declare
3769 Comp : Entity_Id;
3770 IR : Node_Id;
3771 Typ : Entity_Id;
3773 begin
3774 Comp := First_Component (E);
3776 while Present (Comp) loop
3777 Typ := Etype (Comp);
3779 if Ekind (Comp) = E_Component
3780 and then Is_Access_Type (Typ)
3781 and then Scope (Typ) /= E
3782 and then Base_Type (Designated_Type (Typ)) = E
3783 and then Is_Itype (Designated_Type (Typ))
3784 then
3785 IR := Make_Itype_Reference (Sloc (Comp));
3786 Set_Itype (IR, Designated_Type (Typ));
3787 Append (IR, Result);
3788 end if;
3790 Next_Component (Comp);
3791 end loop;
3792 end;
3793 end if;
3794 end if;
3796 -- When a type is frozen, the first subtype of the type is frozen as
3797 -- well (RM 13.14(15)). This has to be done after freezing the type,
3798 -- since obviously the first subtype depends on its own base type.
3800 if Is_Type (E) then
3801 Freeze_And_Append (First_Subtype (E), Loc, Result);
3803 -- If we just froze a tagged non-class wide record, then freeze the
3804 -- corresponding class-wide type. This must be done after the tagged
3805 -- type itself is frozen, because the class-wide type refers to the
3806 -- tagged type which generates the class.
3808 if Is_Tagged_Type (E)
3809 and then not Is_Class_Wide_Type (E)
3810 and then Present (Class_Wide_Type (E))
3811 then
3812 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3813 end if;
3814 end if;
3816 Check_Debug_Info_Needed (E);
3818 -- Special handling for subprograms
3820 if Is_Subprogram (E) then
3822 -- If subprogram has address clause then reset Is_Public flag, since
3823 -- we do not want the backend to generate external references.
3825 if Present (Address_Clause (E))
3826 and then not Is_Library_Level_Entity (E)
3827 then
3828 Set_Is_Public (E, False);
3830 -- If no address clause and not intrinsic, then for imported
3831 -- subprogram in main unit, generate descriptor if we are in
3832 -- Propagate_Exceptions mode.
3834 elsif Propagate_Exceptions
3835 and then Is_Imported (E)
3836 and then not Is_Intrinsic_Subprogram (E)
3837 and then Convention (E) /= Convention_Stubbed
3838 then
3839 if Result = No_List then
3840 Result := Empty_List;
3841 end if;
3842 end if;
3843 end if;
3845 return Result;
3846 end Freeze_Entity;
3848 -----------------------------
3849 -- Freeze_Enumeration_Type --
3850 -----------------------------
3852 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3853 begin
3854 -- By default, if no size clause is present, an enumeration type with
3855 -- Convention C is assumed to interface to a C enum, and has integer
3856 -- size. This applies to types. For subtypes, verify that its base
3857 -- type has no size clause either.
3859 if Has_Foreign_Convention (Typ)
3860 and then not Has_Size_Clause (Typ)
3861 and then not Has_Size_Clause (Base_Type (Typ))
3862 and then Esize (Typ) < Standard_Integer_Size
3863 then
3864 Init_Esize (Typ, Standard_Integer_Size);
3866 else
3867 -- If the enumeration type interfaces to C, and it has a size clause
3868 -- that specifies less than int size, it warrants a warning. The
3869 -- user may intend the C type to be an enum or a char, so this is
3870 -- not by itself an error that the Ada compiler can detect, but it
3871 -- it is a worth a heads-up. For Boolean and Character types we
3872 -- assume that the programmer has the proper C type in mind.
3874 if Convention (Typ) = Convention_C
3875 and then Has_Size_Clause (Typ)
3876 and then Esize (Typ) /= Esize (Standard_Integer)
3877 and then not Is_Boolean_Type (Typ)
3878 and then not Is_Character_Type (Typ)
3879 then
3880 Error_Msg_N
3881 ("C enum types have the size of a C int?", Size_Clause (Typ));
3882 end if;
3884 Adjust_Esize_For_Alignment (Typ);
3885 end if;
3886 end Freeze_Enumeration_Type;
3888 -----------------------
3889 -- Freeze_Expression --
3890 -----------------------
3892 procedure Freeze_Expression (N : Node_Id) is
3893 In_Spec_Exp : constant Boolean := In_Spec_Expression;
3894 Typ : Entity_Id;
3895 Nam : Entity_Id;
3896 Desig_Typ : Entity_Id;
3897 P : Node_Id;
3898 Parent_P : Node_Id;
3900 Freeze_Outside : Boolean := False;
3901 -- This flag is set true if the entity must be frozen outside the
3902 -- current subprogram. This happens in the case of expander generated
3903 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3904 -- not freeze all entities like other bodies, but which nevertheless
3905 -- may reference entities that have to be frozen before the body and
3906 -- obviously cannot be frozen inside the body.
3908 function In_Exp_Body (N : Node_Id) return Boolean;
3909 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3910 -- it is the handled statement sequence of an expander-generated
3911 -- subprogram (init proc, stream subprogram, or renaming as body).
3912 -- If so, this is not a freezing context.
3914 -----------------
3915 -- In_Exp_Body --
3916 -----------------
3918 function In_Exp_Body (N : Node_Id) return Boolean is
3919 P : Node_Id;
3920 Id : Entity_Id;
3922 begin
3923 if Nkind (N) = N_Subprogram_Body then
3924 P := N;
3925 else
3926 P := Parent (N);
3927 end if;
3929 if Nkind (P) /= N_Subprogram_Body then
3930 return False;
3932 else
3933 Id := Defining_Unit_Name (Specification (P));
3935 if Nkind (Id) = N_Defining_Identifier
3936 and then (Is_Init_Proc (Id) or else
3937 Is_TSS (Id, TSS_Stream_Input) or else
3938 Is_TSS (Id, TSS_Stream_Output) or else
3939 Is_TSS (Id, TSS_Stream_Read) or else
3940 Is_TSS (Id, TSS_Stream_Write) or else
3941 Nkind (Original_Node (P)) =
3942 N_Subprogram_Renaming_Declaration)
3943 then
3944 return True;
3945 else
3946 return False;
3947 end if;
3948 end if;
3949 end In_Exp_Body;
3951 -- Start of processing for Freeze_Expression
3953 begin
3954 -- Immediate return if freezing is inhibited. This flag is set by the
3955 -- analyzer to stop freezing on generated expressions that would cause
3956 -- freezing if they were in the source program, but which are not
3957 -- supposed to freeze, since they are created.
3959 if Must_Not_Freeze (N) then
3960 return;
3961 end if;
3963 -- If expression is non-static, then it does not freeze in a default
3964 -- expression, see section "Handling of Default Expressions" in the
3965 -- spec of package Sem for further details. Note that we have to
3966 -- make sure that we actually have a real expression (if we have
3967 -- a subtype indication, we can't test Is_Static_Expression!)
3969 if In_Spec_Exp
3970 and then Nkind (N) in N_Subexpr
3971 and then not Is_Static_Expression (N)
3972 then
3973 return;
3974 end if;
3976 -- Freeze type of expression if not frozen already
3978 Typ := Empty;
3980 if Nkind (N) in N_Has_Etype then
3981 if not Is_Frozen (Etype (N)) then
3982 Typ := Etype (N);
3984 -- Base type may be an derived numeric type that is frozen at
3985 -- the point of declaration, but first_subtype is still unfrozen.
3987 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3988 Typ := First_Subtype (Etype (N));
3989 end if;
3990 end if;
3992 -- For entity name, freeze entity if not frozen already. A special
3993 -- exception occurs for an identifier that did not come from source.
3994 -- We don't let such identifiers freeze a non-internal entity, i.e.
3995 -- an entity that did come from source, since such an identifier was
3996 -- generated by the expander, and cannot have any semantic effect on
3997 -- the freezing semantics. For example, this stops the parameter of
3998 -- an initialization procedure from freezing the variable.
4000 if Is_Entity_Name (N)
4001 and then not Is_Frozen (Entity (N))
4002 and then (Nkind (N) /= N_Identifier
4003 or else Comes_From_Source (N)
4004 or else not Comes_From_Source (Entity (N)))
4005 then
4006 Nam := Entity (N);
4007 else
4008 Nam := Empty;
4009 end if;
4011 -- For an allocator freeze designated type if not frozen already
4013 -- For an aggregate whose component type is an access type, freeze the
4014 -- designated type now, so that its freeze does not appear within the
4015 -- loop that might be created in the expansion of the aggregate. If the
4016 -- designated type is a private type without full view, the expression
4017 -- cannot contain an allocator, so the type is not frozen.
4019 Desig_Typ := Empty;
4021 case Nkind (N) is
4022 when N_Allocator =>
4023 Desig_Typ := Designated_Type (Etype (N));
4025 when N_Aggregate =>
4026 if Is_Array_Type (Etype (N))
4027 and then Is_Access_Type (Component_Type (Etype (N)))
4028 then
4029 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4030 end if;
4032 when N_Selected_Component |
4033 N_Indexed_Component |
4034 N_Slice =>
4036 if Is_Access_Type (Etype (Prefix (N))) then
4037 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4038 end if;
4040 when others =>
4041 null;
4042 end case;
4044 if Desig_Typ /= Empty
4045 and then (Is_Frozen (Desig_Typ)
4046 or else (not Is_Fully_Defined (Desig_Typ)))
4047 then
4048 Desig_Typ := Empty;
4049 end if;
4051 -- All done if nothing needs freezing
4053 if No (Typ)
4054 and then No (Nam)
4055 and then No (Desig_Typ)
4056 then
4057 return;
4058 end if;
4060 -- Loop for looking at the right place to insert the freeze nodes
4061 -- exiting from the loop when it is appropriate to insert the freeze
4062 -- node before the current node P.
4064 -- Also checks some special exceptions to the freezing rules. These
4065 -- cases result in a direct return, bypassing the freeze action.
4067 P := N;
4068 loop
4069 Parent_P := Parent (P);
4071 -- If we don't have a parent, then we are not in a well-formed tree.
4072 -- This is an unusual case, but there are some legitimate situations
4073 -- in which this occurs, notably when the expressions in the range of
4074 -- a type declaration are resolved. We simply ignore the freeze
4075 -- request in this case. Is this right ???
4077 if No (Parent_P) then
4078 return;
4079 end if;
4081 -- See if we have got to an appropriate point in the tree
4083 case Nkind (Parent_P) is
4085 -- A special test for the exception of (RM 13.14(8)) for the case
4086 -- of per-object expressions (RM 3.8(18)) occurring in component
4087 -- definition or a discrete subtype definition. Note that we test
4088 -- for a component declaration which includes both cases we are
4089 -- interested in, and furthermore the tree does not have explicit
4090 -- nodes for either of these two constructs.
4092 when N_Component_Declaration =>
4094 -- The case we want to test for here is an identifier that is
4095 -- a per-object expression, this is either a discriminant that
4096 -- appears in a context other than the component declaration
4097 -- or it is a reference to the type of the enclosing construct.
4099 -- For either of these cases, we skip the freezing
4101 if not In_Spec_Expression
4102 and then Nkind (N) = N_Identifier
4103 and then (Present (Entity (N)))
4104 then
4105 -- We recognize the discriminant case by just looking for
4106 -- a reference to a discriminant. It can only be one for
4107 -- the enclosing construct. Skip freezing in this case.
4109 if Ekind (Entity (N)) = E_Discriminant then
4110 return;
4112 -- For the case of a reference to the enclosing record,
4113 -- (or task or protected type), we look for a type that
4114 -- matches the current scope.
4116 elsif Entity (N) = Current_Scope then
4117 return;
4118 end if;
4119 end if;
4121 -- If we have an enumeration literal that appears as the choice in
4122 -- the aggregate of an enumeration representation clause, then
4123 -- freezing does not occur (RM 13.14(10)).
4125 when N_Enumeration_Representation_Clause =>
4127 -- The case we are looking for is an enumeration literal
4129 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4130 and then Is_Enumeration_Type (Etype (N))
4131 then
4132 -- If enumeration literal appears directly as the choice,
4133 -- do not freeze (this is the normal non-overloaded case)
4135 if Nkind (Parent (N)) = N_Component_Association
4136 and then First (Choices (Parent (N))) = N
4137 then
4138 return;
4140 -- If enumeration literal appears as the name of function
4141 -- which is the choice, then also do not freeze. This
4142 -- happens in the overloaded literal case, where the
4143 -- enumeration literal is temporarily changed to a function
4144 -- call for overloading analysis purposes.
4146 elsif Nkind (Parent (N)) = N_Function_Call
4147 and then
4148 Nkind (Parent (Parent (N))) = N_Component_Association
4149 and then
4150 First (Choices (Parent (Parent (N)))) = Parent (N)
4151 then
4152 return;
4153 end if;
4154 end if;
4156 -- Normally if the parent is a handled sequence of statements,
4157 -- then the current node must be a statement, and that is an
4158 -- appropriate place to insert a freeze node.
4160 when N_Handled_Sequence_Of_Statements =>
4162 -- An exception occurs when the sequence of statements is for
4163 -- an expander generated body that did not do the usual freeze
4164 -- all operation. In this case we usually want to freeze
4165 -- outside this body, not inside it, and we skip past the
4166 -- subprogram body that we are inside.
4168 if In_Exp_Body (Parent_P) then
4170 -- However, we *do* want to freeze at this point if we have
4171 -- an entity to freeze, and that entity is declared *inside*
4172 -- the body of the expander generated procedure. This case
4173 -- is recognized by the scope of the type, which is either
4174 -- the spec for some enclosing body, or (in the case of
4175 -- init_procs, for which there are no separate specs) the
4176 -- current scope.
4178 declare
4179 Subp : constant Node_Id := Parent (Parent_P);
4180 Cspc : Entity_Id;
4182 begin
4183 if Nkind (Subp) = N_Subprogram_Body then
4184 Cspc := Corresponding_Spec (Subp);
4186 if (Present (Typ) and then Scope (Typ) = Cspc)
4187 or else
4188 (Present (Nam) and then Scope (Nam) = Cspc)
4189 then
4190 exit;
4192 elsif Present (Typ)
4193 and then Scope (Typ) = Current_Scope
4194 and then Current_Scope = Defining_Entity (Subp)
4195 then
4196 exit;
4197 end if;
4198 end if;
4199 end;
4201 -- If not that exception to the exception, then this is
4202 -- where we delay the freeze till outside the body.
4204 Parent_P := Parent (Parent_P);
4205 Freeze_Outside := True;
4207 -- Here if normal case where we are in handled statement
4208 -- sequence and want to do the insertion right there.
4210 else
4211 exit;
4212 end if;
4214 -- If parent is a body or a spec or a block, then the current node
4215 -- is a statement or declaration and we can insert the freeze node
4216 -- before it.
4218 when N_Package_Specification |
4219 N_Package_Body |
4220 N_Subprogram_Body |
4221 N_Task_Body |
4222 N_Protected_Body |
4223 N_Entry_Body |
4224 N_Block_Statement => exit;
4226 -- The expander is allowed to define types in any statements list,
4227 -- so any of the following parent nodes also mark a freezing point
4228 -- if the actual node is in a list of statements or declarations.
4230 when N_Exception_Handler |
4231 N_If_Statement |
4232 N_Elsif_Part |
4233 N_Case_Statement_Alternative |
4234 N_Compilation_Unit_Aux |
4235 N_Selective_Accept |
4236 N_Accept_Alternative |
4237 N_Delay_Alternative |
4238 N_Conditional_Entry_Call |
4239 N_Entry_Call_Alternative |
4240 N_Triggering_Alternative |
4241 N_Abortable_Part |
4242 N_Freeze_Entity =>
4244 exit when Is_List_Member (P);
4246 -- Note: The N_Loop_Statement is a special case. A type that
4247 -- appears in the source can never be frozen in a loop (this
4248 -- occurs only because of a loop expanded by the expander), so we
4249 -- keep on going. Otherwise we terminate the search. Same is true
4250 -- of any entity which comes from source. (if they have predefined
4251 -- type, that type does not appear to come from source, but the
4252 -- entity should not be frozen here).
4254 when N_Loop_Statement =>
4255 exit when not Comes_From_Source (Etype (N))
4256 and then (No (Nam) or else not Comes_From_Source (Nam));
4258 -- For all other cases, keep looking at parents
4260 when others =>
4261 null;
4262 end case;
4264 -- We fall through the case if we did not yet find the proper
4265 -- place in the free for inserting the freeze node, so climb!
4267 P := Parent_P;
4268 end loop;
4270 -- If the expression appears in a record or an initialization procedure,
4271 -- the freeze nodes are collected and attached to the current scope, to
4272 -- be inserted and analyzed on exit from the scope, to insure that
4273 -- generated entities appear in the correct scope. If the expression is
4274 -- a default for a discriminant specification, the scope is still void.
4275 -- The expression can also appear in the discriminant part of a private
4276 -- or concurrent type.
4278 -- If the expression appears in a constrained subcomponent of an
4279 -- enclosing record declaration, the freeze nodes must be attached to
4280 -- the outer record type so they can eventually be placed in the
4281 -- enclosing declaration list.
4283 -- The other case requiring this special handling is if we are in a
4284 -- default expression, since in that case we are about to freeze a
4285 -- static type, and the freeze scope needs to be the outer scope, not
4286 -- the scope of the subprogram with the default parameter.
4288 -- For default expressions and other spec expressions in generic units,
4289 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4290 -- placing them at the proper place, after the generic unit.
4292 if (In_Spec_Exp and not Inside_A_Generic)
4293 or else Freeze_Outside
4294 or else (Is_Type (Current_Scope)
4295 and then (not Is_Concurrent_Type (Current_Scope)
4296 or else not Has_Completion (Current_Scope)))
4297 or else Ekind (Current_Scope) = E_Void
4298 then
4299 declare
4300 Loc : constant Source_Ptr := Sloc (Current_Scope);
4301 Freeze_Nodes : List_Id := No_List;
4302 Pos : Int := Scope_Stack.Last;
4304 begin
4305 if Present (Desig_Typ) then
4306 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4307 end if;
4309 if Present (Typ) then
4310 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4311 end if;
4313 if Present (Nam) then
4314 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4315 end if;
4317 -- The current scope may be that of a constrained component of
4318 -- an enclosing record declaration, which is above the current
4319 -- scope in the scope stack.
4321 if Is_Record_Type (Scope (Current_Scope)) then
4322 Pos := Pos - 1;
4323 end if;
4325 if Is_Non_Empty_List (Freeze_Nodes) then
4326 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4327 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4328 Freeze_Nodes;
4329 else
4330 Append_List (Freeze_Nodes, Scope_Stack.Table
4331 (Pos).Pending_Freeze_Actions);
4332 end if;
4333 end if;
4334 end;
4336 return;
4337 end if;
4339 -- Now we have the right place to do the freezing. First, a special
4340 -- adjustment, if we are in spec-expression analysis mode, these freeze
4341 -- actions must not be thrown away (normally all inserted actions are
4342 -- thrown away in this mode. However, the freeze actions are from static
4343 -- expressions and one of the important reasons we are doing this
4344 -- special analysis is to get these freeze actions. Therefore we turn
4345 -- off the In_Spec_Expression mode to propagate these freeze actions.
4346 -- This also means they get properly analyzed and expanded.
4348 In_Spec_Expression := False;
4350 -- Freeze the designated type of an allocator (RM 13.14(13))
4352 if Present (Desig_Typ) then
4353 Freeze_Before (P, Desig_Typ);
4354 end if;
4356 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4357 -- the enumeration representation clause exception in the loop above.
4359 if Present (Typ) then
4360 Freeze_Before (P, Typ);
4361 end if;
4363 -- Freeze name if one is present (RM 13.14(11))
4365 if Present (Nam) then
4366 Freeze_Before (P, Nam);
4367 end if;
4369 -- Restore In_Spec_Expression flag
4371 In_Spec_Expression := In_Spec_Exp;
4372 end Freeze_Expression;
4374 -----------------------------
4375 -- Freeze_Fixed_Point_Type --
4376 -----------------------------
4378 -- Certain fixed-point types and subtypes, including implicit base types
4379 -- and declared first subtypes, have not yet set up a range. This is
4380 -- because the range cannot be set until the Small and Size values are
4381 -- known, and these are not known till the type is frozen.
4383 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4384 -- whose bounds are unanalyzed real literals. This routine will recognize
4385 -- this case, and transform this range node into a properly typed range
4386 -- with properly analyzed and resolved values.
4388 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4389 Rng : constant Node_Id := Scalar_Range (Typ);
4390 Lo : constant Node_Id := Low_Bound (Rng);
4391 Hi : constant Node_Id := High_Bound (Rng);
4392 Btyp : constant Entity_Id := Base_Type (Typ);
4393 Brng : constant Node_Id := Scalar_Range (Btyp);
4394 BLo : constant Node_Id := Low_Bound (Brng);
4395 BHi : constant Node_Id := High_Bound (Brng);
4396 Small : constant Ureal := Small_Value (Typ);
4397 Loval : Ureal;
4398 Hival : Ureal;
4399 Atype : Entity_Id;
4401 Actual_Size : Nat;
4403 function Fsize (Lov, Hiv : Ureal) return Nat;
4404 -- Returns size of type with given bounds. Also leaves these
4405 -- bounds set as the current bounds of the Typ.
4407 -----------
4408 -- Fsize --
4409 -----------
4411 function Fsize (Lov, Hiv : Ureal) return Nat is
4412 begin
4413 Set_Realval (Lo, Lov);
4414 Set_Realval (Hi, Hiv);
4415 return Minimum_Size (Typ);
4416 end Fsize;
4418 -- Start of processing for Freeze_Fixed_Point_Type
4420 begin
4421 -- If Esize of a subtype has not previously been set, set it now
4423 if Unknown_Esize (Typ) then
4424 Atype := Ancestor_Subtype (Typ);
4426 if Present (Atype) then
4427 Set_Esize (Typ, Esize (Atype));
4428 else
4429 Set_Esize (Typ, Esize (Base_Type (Typ)));
4430 end if;
4431 end if;
4433 -- Immediate return if the range is already analyzed. This means that
4434 -- the range is already set, and does not need to be computed by this
4435 -- routine.
4437 if Analyzed (Rng) then
4438 return;
4439 end if;
4441 -- Immediate return if either of the bounds raises Constraint_Error
4443 if Raises_Constraint_Error (Lo)
4444 or else Raises_Constraint_Error (Hi)
4445 then
4446 return;
4447 end if;
4449 Loval := Realval (Lo);
4450 Hival := Realval (Hi);
4452 -- Ordinary fixed-point case
4454 if Is_Ordinary_Fixed_Point_Type (Typ) then
4456 -- For the ordinary fixed-point case, we are allowed to fudge the
4457 -- end-points up or down by small. Generally we prefer to fudge up,
4458 -- i.e. widen the bounds for non-model numbers so that the end points
4459 -- are included. However there are cases in which this cannot be
4460 -- done, and indeed cases in which we may need to narrow the bounds.
4461 -- The following circuit makes the decision.
4463 -- Note: our terminology here is that Incl_EP means that the bounds
4464 -- are widened by Small if necessary to include the end points, and
4465 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4466 -- end-points if this reduces the size.
4468 -- Note that in the Incl case, all we care about is including the
4469 -- end-points. In the Excl case, we want to narrow the bounds as
4470 -- much as permitted by the RM, to give the smallest possible size.
4472 Fudge : declare
4473 Loval_Incl_EP : Ureal;
4474 Hival_Incl_EP : Ureal;
4476 Loval_Excl_EP : Ureal;
4477 Hival_Excl_EP : Ureal;
4479 Size_Incl_EP : Nat;
4480 Size_Excl_EP : Nat;
4482 Model_Num : Ureal;
4483 First_Subt : Entity_Id;
4484 Actual_Lo : Ureal;
4485 Actual_Hi : Ureal;
4487 begin
4488 -- First step. Base types are required to be symmetrical. Right
4489 -- now, the base type range is a copy of the first subtype range.
4490 -- This will be corrected before we are done, but right away we
4491 -- need to deal with the case where both bounds are non-negative.
4492 -- In this case, we set the low bound to the negative of the high
4493 -- bound, to make sure that the size is computed to include the
4494 -- required sign. Note that we do not need to worry about the
4495 -- case of both bounds negative, because the sign will be dealt
4496 -- with anyway. Furthermore we can't just go making such a bound
4497 -- symmetrical, since in a twos-complement system, there is an
4498 -- extra negative value which could not be accommodated on the
4499 -- positive side.
4501 if Typ = Btyp
4502 and then not UR_Is_Negative (Loval)
4503 and then Hival > Loval
4504 then
4505 Loval := -Hival;
4506 Set_Realval (Lo, Loval);
4507 end if;
4509 -- Compute the fudged bounds. If the number is a model number,
4510 -- then we do nothing to include it, but we are allowed to backoff
4511 -- to the next adjacent model number when we exclude it. If it is
4512 -- not a model number then we straddle the two values with the
4513 -- model numbers on either side.
4515 Model_Num := UR_Trunc (Loval / Small) * Small;
4517 if Loval = Model_Num then
4518 Loval_Incl_EP := Model_Num;
4519 else
4520 Loval_Incl_EP := Model_Num - Small;
4521 end if;
4523 -- The low value excluding the end point is Small greater, but
4524 -- we do not do this exclusion if the low value is positive,
4525 -- since it can't help the size and could actually hurt by
4526 -- crossing the high bound.
4528 if UR_Is_Negative (Loval_Incl_EP) then
4529 Loval_Excl_EP := Loval_Incl_EP + Small;
4531 -- If the value went from negative to zero, then we have the
4532 -- case where Loval_Incl_EP is the model number just below
4533 -- zero, so we want to stick to the negative value for the
4534 -- base type to maintain the condition that the size will
4535 -- include signed values.
4537 if Typ = Btyp
4538 and then UR_Is_Zero (Loval_Excl_EP)
4539 then
4540 Loval_Excl_EP := Loval_Incl_EP;
4541 end if;
4543 else
4544 Loval_Excl_EP := Loval_Incl_EP;
4545 end if;
4547 -- Similar processing for upper bound and high value
4549 Model_Num := UR_Trunc (Hival / Small) * Small;
4551 if Hival = Model_Num then
4552 Hival_Incl_EP := Model_Num;
4553 else
4554 Hival_Incl_EP := Model_Num + Small;
4555 end if;
4557 if UR_Is_Positive (Hival_Incl_EP) then
4558 Hival_Excl_EP := Hival_Incl_EP - Small;
4559 else
4560 Hival_Excl_EP := Hival_Incl_EP;
4561 end if;
4563 -- One further adjustment is needed. In the case of subtypes, we
4564 -- cannot go outside the range of the base type, or we get
4565 -- peculiarities, and the base type range is already set. This
4566 -- only applies to the Incl values, since clearly the Excl values
4567 -- are already as restricted as they are allowed to be.
4569 if Typ /= Btyp then
4570 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4571 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4572 end if;
4574 -- Get size including and excluding end points
4576 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4577 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4579 -- No need to exclude end-points if it does not reduce size
4581 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4582 Loval_Excl_EP := Loval_Incl_EP;
4583 end if;
4585 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4586 Hival_Excl_EP := Hival_Incl_EP;
4587 end if;
4589 -- Now we set the actual size to be used. We want to use the
4590 -- bounds fudged up to include the end-points but only if this
4591 -- can be done without violating a specifically given size
4592 -- size clause or causing an unacceptable increase in size.
4594 -- Case of size clause given
4596 if Has_Size_Clause (Typ) then
4598 -- Use the inclusive size only if it is consistent with
4599 -- the explicitly specified size.
4601 if Size_Incl_EP <= RM_Size (Typ) then
4602 Actual_Lo := Loval_Incl_EP;
4603 Actual_Hi := Hival_Incl_EP;
4604 Actual_Size := Size_Incl_EP;
4606 -- If the inclusive size is too large, we try excluding
4607 -- the end-points (will be caught later if does not work).
4609 else
4610 Actual_Lo := Loval_Excl_EP;
4611 Actual_Hi := Hival_Excl_EP;
4612 Actual_Size := Size_Excl_EP;
4613 end if;
4615 -- Case of size clause not given
4617 else
4618 -- If we have a base type whose corresponding first subtype
4619 -- has an explicit size that is large enough to include our
4620 -- end-points, then do so. There is no point in working hard
4621 -- to get a base type whose size is smaller than the specified
4622 -- size of the first subtype.
4624 First_Subt := First_Subtype (Typ);
4626 if Has_Size_Clause (First_Subt)
4627 and then Size_Incl_EP <= Esize (First_Subt)
4628 then
4629 Actual_Size := Size_Incl_EP;
4630 Actual_Lo := Loval_Incl_EP;
4631 Actual_Hi := Hival_Incl_EP;
4633 -- If excluding the end-points makes the size smaller and
4634 -- results in a size of 8,16,32,64, then we take the smaller
4635 -- size. For the 64 case, this is compulsory. For the other
4636 -- cases, it seems reasonable. We like to include end points
4637 -- if we can, but not at the expense of moving to the next
4638 -- natural boundary of size.
4640 elsif Size_Incl_EP /= Size_Excl_EP
4641 and then
4642 (Size_Excl_EP = 8 or else
4643 Size_Excl_EP = 16 or else
4644 Size_Excl_EP = 32 or else
4645 Size_Excl_EP = 64)
4646 then
4647 Actual_Size := Size_Excl_EP;
4648 Actual_Lo := Loval_Excl_EP;
4649 Actual_Hi := Hival_Excl_EP;
4651 -- Otherwise we can definitely include the end points
4653 else
4654 Actual_Size := Size_Incl_EP;
4655 Actual_Lo := Loval_Incl_EP;
4656 Actual_Hi := Hival_Incl_EP;
4657 end if;
4659 -- One pathological case: normally we never fudge a low bound
4660 -- down, since it would seem to increase the size (if it has
4661 -- any effect), but for ranges containing single value, or no
4662 -- values, the high bound can be small too large. Consider:
4664 -- type t is delta 2.0**(-14)
4665 -- range 131072.0 .. 0;
4667 -- That lower bound is *just* outside the range of 32 bits, and
4668 -- does need fudging down in this case. Note that the bounds
4669 -- will always have crossed here, since the high bound will be
4670 -- fudged down if necessary, as in the case of:
4672 -- type t is delta 2.0**(-14)
4673 -- range 131072.0 .. 131072.0;
4675 -- So we detect the situation by looking for crossed bounds,
4676 -- and if the bounds are crossed, and the low bound is greater
4677 -- than zero, we will always back it off by small, since this
4678 -- is completely harmless.
4680 if Actual_Lo > Actual_Hi then
4681 if UR_Is_Positive (Actual_Lo) then
4682 Actual_Lo := Loval_Incl_EP - Small;
4683 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4685 -- And of course, we need to do exactly the same parallel
4686 -- fudge for flat ranges in the negative region.
4688 elsif UR_Is_Negative (Actual_Hi) then
4689 Actual_Hi := Hival_Incl_EP + Small;
4690 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4691 end if;
4692 end if;
4693 end if;
4695 Set_Realval (Lo, Actual_Lo);
4696 Set_Realval (Hi, Actual_Hi);
4697 end Fudge;
4699 -- For the decimal case, none of this fudging is required, since there
4700 -- are no end-point problems in the decimal case (the end-points are
4701 -- always included).
4703 else
4704 Actual_Size := Fsize (Loval, Hival);
4705 end if;
4707 -- At this stage, the actual size has been calculated and the proper
4708 -- required bounds are stored in the low and high bounds.
4710 if Actual_Size > 64 then
4711 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4712 Error_Msg_N
4713 ("size required (^) for type& too large, maximum allowed is 64",
4714 Typ);
4715 Actual_Size := 64;
4716 end if;
4718 -- Check size against explicit given size
4720 if Has_Size_Clause (Typ) then
4721 if Actual_Size > RM_Size (Typ) then
4722 Error_Msg_Uint_1 := RM_Size (Typ);
4723 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4724 Error_Msg_NE
4725 ("size given (^) for type& too small, minimum allowed is ^",
4726 Size_Clause (Typ), Typ);
4728 else
4729 Actual_Size := UI_To_Int (Esize (Typ));
4730 end if;
4732 -- Increase size to next natural boundary if no size clause given
4734 else
4735 if Actual_Size <= 8 then
4736 Actual_Size := 8;
4737 elsif Actual_Size <= 16 then
4738 Actual_Size := 16;
4739 elsif Actual_Size <= 32 then
4740 Actual_Size := 32;
4741 else
4742 Actual_Size := 64;
4743 end if;
4745 Init_Esize (Typ, Actual_Size);
4746 Adjust_Esize_For_Alignment (Typ);
4747 end if;
4749 -- If we have a base type, then expand the bounds so that they extend to
4750 -- the full width of the allocated size in bits, to avoid junk range
4751 -- checks on intermediate computations.
4753 if Base_Type (Typ) = Typ then
4754 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4755 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4756 end if;
4758 -- Final step is to reanalyze the bounds using the proper type
4759 -- and set the Corresponding_Integer_Value fields of the literals.
4761 Set_Etype (Lo, Empty);
4762 Set_Analyzed (Lo, False);
4763 Analyze (Lo);
4765 -- Resolve with universal fixed if the base type, and the base type if
4766 -- it is a subtype. Note we can't resolve the base type with itself,
4767 -- that would be a reference before definition.
4769 if Typ = Btyp then
4770 Resolve (Lo, Universal_Fixed);
4771 else
4772 Resolve (Lo, Btyp);
4773 end if;
4775 -- Set corresponding integer value for bound
4777 Set_Corresponding_Integer_Value
4778 (Lo, UR_To_Uint (Realval (Lo) / Small));
4780 -- Similar processing for high bound
4782 Set_Etype (Hi, Empty);
4783 Set_Analyzed (Hi, False);
4784 Analyze (Hi);
4786 if Typ = Btyp then
4787 Resolve (Hi, Universal_Fixed);
4788 else
4789 Resolve (Hi, Btyp);
4790 end if;
4792 Set_Corresponding_Integer_Value
4793 (Hi, UR_To_Uint (Realval (Hi) / Small));
4795 -- Set type of range to correspond to bounds
4797 Set_Etype (Rng, Etype (Lo));
4799 -- Set Esize to calculated size if not set already
4801 if Unknown_Esize (Typ) then
4802 Init_Esize (Typ, Actual_Size);
4803 end if;
4805 -- Set RM_Size if not already set. If already set, check value
4807 declare
4808 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4810 begin
4811 if RM_Size (Typ) /= Uint_0 then
4812 if RM_Size (Typ) < Minsiz then
4813 Error_Msg_Uint_1 := RM_Size (Typ);
4814 Error_Msg_Uint_2 := Minsiz;
4815 Error_Msg_NE
4816 ("size given (^) for type& too small, minimum allowed is ^",
4817 Size_Clause (Typ), Typ);
4818 end if;
4820 else
4821 Set_RM_Size (Typ, Minsiz);
4822 end if;
4823 end;
4824 end Freeze_Fixed_Point_Type;
4826 ------------------
4827 -- Freeze_Itype --
4828 ------------------
4830 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4831 L : List_Id;
4833 begin
4834 Set_Has_Delayed_Freeze (T);
4835 L := Freeze_Entity (T, Sloc (N));
4837 if Is_Non_Empty_List (L) then
4838 Insert_Actions (N, L);
4839 end if;
4840 end Freeze_Itype;
4842 --------------------------
4843 -- Freeze_Static_Object --
4844 --------------------------
4846 procedure Freeze_Static_Object (E : Entity_Id) is
4848 Cannot_Be_Static : exception;
4849 -- Exception raised if the type of a static object cannot be made
4850 -- static. This happens if the type depends on non-global objects.
4852 procedure Ensure_Expression_Is_SA (N : Node_Id);
4853 -- Called to ensure that an expression used as part of a type definition
4854 -- is statically allocatable, which means that the expression type is
4855 -- statically allocatable, and the expression is either static, or a
4856 -- reference to a library level constant.
4858 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4859 -- Called to mark a type as static, checking that it is possible
4860 -- to set the type as static. If it is not possible, then the
4861 -- exception Cannot_Be_Static is raised.
4863 -----------------------------
4864 -- Ensure_Expression_Is_SA --
4865 -----------------------------
4867 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4868 Ent : Entity_Id;
4870 begin
4871 Ensure_Type_Is_SA (Etype (N));
4873 if Is_Static_Expression (N) then
4874 return;
4876 elsif Nkind (N) = N_Identifier then
4877 Ent := Entity (N);
4879 if Present (Ent)
4880 and then Ekind (Ent) = E_Constant
4881 and then Is_Library_Level_Entity (Ent)
4882 then
4883 return;
4884 end if;
4885 end if;
4887 raise Cannot_Be_Static;
4888 end Ensure_Expression_Is_SA;
4890 -----------------------
4891 -- Ensure_Type_Is_SA --
4892 -----------------------
4894 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4895 N : Node_Id;
4896 C : Entity_Id;
4898 begin
4899 -- If type is library level, we are all set
4901 if Is_Library_Level_Entity (Typ) then
4902 return;
4903 end if;
4905 -- We are also OK if the type already marked as statically allocated,
4906 -- which means we processed it before.
4908 if Is_Statically_Allocated (Typ) then
4909 return;
4910 end if;
4912 -- Mark type as statically allocated
4914 Set_Is_Statically_Allocated (Typ);
4916 -- Check that it is safe to statically allocate this type
4918 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4919 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4920 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4922 elsif Is_Array_Type (Typ) then
4923 N := First_Index (Typ);
4924 while Present (N) loop
4925 Ensure_Type_Is_SA (Etype (N));
4926 Next_Index (N);
4927 end loop;
4929 Ensure_Type_Is_SA (Component_Type (Typ));
4931 elsif Is_Access_Type (Typ) then
4932 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4934 declare
4935 F : Entity_Id;
4936 T : constant Entity_Id := Etype (Designated_Type (Typ));
4938 begin
4939 if T /= Standard_Void_Type then
4940 Ensure_Type_Is_SA (T);
4941 end if;
4943 F := First_Formal (Designated_Type (Typ));
4945 while Present (F) loop
4946 Ensure_Type_Is_SA (Etype (F));
4947 Next_Formal (F);
4948 end loop;
4949 end;
4951 else
4952 Ensure_Type_Is_SA (Designated_Type (Typ));
4953 end if;
4955 elsif Is_Record_Type (Typ) then
4956 C := First_Entity (Typ);
4957 while Present (C) loop
4958 if Ekind (C) = E_Discriminant
4959 or else Ekind (C) = E_Component
4960 then
4961 Ensure_Type_Is_SA (Etype (C));
4963 elsif Is_Type (C) then
4964 Ensure_Type_Is_SA (C);
4965 end if;
4967 Next_Entity (C);
4968 end loop;
4970 elsif Ekind (Typ) = E_Subprogram_Type then
4971 Ensure_Type_Is_SA (Etype (Typ));
4973 C := First_Formal (Typ);
4974 while Present (C) loop
4975 Ensure_Type_Is_SA (Etype (C));
4976 Next_Formal (C);
4977 end loop;
4979 else
4980 raise Cannot_Be_Static;
4981 end if;
4982 end Ensure_Type_Is_SA;
4984 -- Start of processing for Freeze_Static_Object
4986 begin
4987 Ensure_Type_Is_SA (Etype (E));
4989 exception
4990 when Cannot_Be_Static =>
4992 -- If the object that cannot be static is imported or exported,
4993 -- then we give an error message saying that this object cannot
4994 -- be imported or exported.
4996 if Is_Imported (E) then
4997 Error_Msg_N
4998 ("& cannot be imported (local type is not constant)", E);
5000 -- Otherwise must be exported, something is wrong if compiler
5001 -- is marking something as statically allocated which cannot be).
5003 else pragma Assert (Is_Exported (E));
5004 Error_Msg_N
5005 ("& cannot be exported (local type is not constant)", E);
5006 end if;
5007 end Freeze_Static_Object;
5009 -----------------------
5010 -- Freeze_Subprogram --
5011 -----------------------
5013 procedure Freeze_Subprogram (E : Entity_Id) is
5014 Retype : Entity_Id;
5015 F : Entity_Id;
5017 begin
5018 -- Subprogram may not have an address clause unless it is imported
5020 if Present (Address_Clause (E)) then
5021 if not Is_Imported (E) then
5022 Error_Msg_N
5023 ("address clause can only be given " &
5024 "for imported subprogram",
5025 Name (Address_Clause (E)));
5026 end if;
5027 end if;
5029 -- Reset the Pure indication on an imported subprogram unless an
5030 -- explicit Pure_Function pragma was present. We do this because
5031 -- otherwise it is an insidious error to call a non-pure function from
5032 -- pure unit and have calls mysteriously optimized away. What happens
5033 -- here is that the Import can bypass the normal check to ensure that
5034 -- pure units call only pure subprograms.
5036 if Is_Imported (E)
5037 and then Is_Pure (E)
5038 and then not Has_Pragma_Pure_Function (E)
5039 then
5040 Set_Is_Pure (E, False);
5041 end if;
5043 -- For non-foreign convention subprograms, this is where we create
5044 -- the extra formals (for accessibility level and constrained bit
5045 -- information). We delay this till the freeze point precisely so
5046 -- that we know the convention!
5048 if not Has_Foreign_Convention (E) then
5049 Create_Extra_Formals (E);
5050 Set_Mechanisms (E);
5052 -- If this is convention Ada and a Valued_Procedure, that's odd
5054 if Ekind (E) = E_Procedure
5055 and then Is_Valued_Procedure (E)
5056 and then Convention (E) = Convention_Ada
5057 and then Warn_On_Export_Import
5058 then
5059 Error_Msg_N
5060 ("?Valued_Procedure has no effect for convention Ada", E);
5061 Set_Is_Valued_Procedure (E, False);
5062 end if;
5064 -- Case of foreign convention
5066 else
5067 Set_Mechanisms (E);
5069 -- For foreign conventions, warn about return of an
5070 -- unconstrained array.
5072 -- Note: we *do* allow a return by descriptor for the VMS case,
5073 -- though here there is probably more to be done ???
5075 if Ekind (E) = E_Function then
5076 Retype := Underlying_Type (Etype (E));
5078 -- If no return type, probably some other error, e.g. a
5079 -- missing full declaration, so ignore.
5081 if No (Retype) then
5082 null;
5084 -- If the return type is generic, we have emitted a warning
5085 -- earlier on, and there is nothing else to check here. Specific
5086 -- instantiations may lead to erroneous behavior.
5088 elsif Is_Generic_Type (Etype (E)) then
5089 null;
5091 elsif Is_Array_Type (Retype)
5092 and then not Is_Constrained (Retype)
5093 and then Mechanism (E) not in Descriptor_Codes
5094 and then Warn_On_Export_Import
5095 then
5096 Error_Msg_N
5097 ("?foreign convention function& should not return " &
5098 "unconstrained array", E);
5099 return;
5100 end if;
5101 end if;
5103 -- If any of the formals for an exported foreign convention
5104 -- subprogram have defaults, then emit an appropriate warning since
5105 -- this is odd (default cannot be used from non-Ada code)
5107 if Is_Exported (E) then
5108 F := First_Formal (E);
5109 while Present (F) loop
5110 if Warn_On_Export_Import
5111 and then Present (Default_Value (F))
5112 then
5113 Error_Msg_N
5114 ("?parameter cannot be defaulted in non-Ada call",
5115 Default_Value (F));
5116 end if;
5118 Next_Formal (F);
5119 end loop;
5120 end if;
5121 end if;
5123 -- For VMS, descriptor mechanisms for parameters are allowed only
5124 -- for imported/exported subprograms. Moreover, the NCA descriptor
5125 -- is not allowed for parameters of exported subprograms.
5127 if OpenVMS_On_Target then
5128 if Is_Exported (E) then
5129 F := First_Formal (E);
5130 while Present (F) loop
5131 if Mechanism (F) = By_Descriptor_NCA then
5132 Error_Msg_N
5133 ("'N'C'A' descriptor for parameter not permitted", F);
5134 Error_Msg_N
5135 ("\can only be used for imported subprogram", F);
5136 end if;
5138 Next_Formal (F);
5139 end loop;
5141 elsif not Is_Imported (E) then
5142 F := First_Formal (E);
5143 while Present (F) loop
5144 if Mechanism (F) in Descriptor_Codes then
5145 Error_Msg_N
5146 ("descriptor mechanism for parameter not permitted", F);
5147 Error_Msg_N
5148 ("\can only be used for imported/exported subprogram", F);
5149 end if;
5151 Next_Formal (F);
5152 end loop;
5153 end if;
5154 end if;
5156 -- Pragma Inline_Always is disallowed for dispatching subprograms
5157 -- because the address of such subprograms is saved in the dispatch
5158 -- table to support dispatching calls, and dispatching calls cannot
5159 -- be inlined. This is consistent with the restriction against using
5160 -- 'Access or 'Address on an Inline_Always subprogram.
5162 if Is_Dispatching_Operation (E)
5163 and then Has_Pragma_Inline_Always (E)
5164 then
5165 Error_Msg_N
5166 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5167 end if;
5169 -- Because of the implicit representation of inherited predefined
5170 -- operators in the front-end, the overriding status of the operation
5171 -- may be affected when a full view of a type is analyzed, and this is
5172 -- not captured by the analysis of the corresponding type declaration.
5173 -- Therefore the correctness of a not-overriding indicator must be
5174 -- rechecked when the subprogram is frozen.
5176 if Nkind (E) = N_Defining_Operator_Symbol
5177 and then not Error_Posted (Parent (E))
5178 then
5179 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5180 end if;
5181 end Freeze_Subprogram;
5183 ----------------------
5184 -- Is_Fully_Defined --
5185 ----------------------
5187 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5188 begin
5189 if Ekind (T) = E_Class_Wide_Type then
5190 return Is_Fully_Defined (Etype (T));
5192 elsif Is_Array_Type (T) then
5193 return Is_Fully_Defined (Component_Type (T));
5195 elsif Is_Record_Type (T)
5196 and not Is_Private_Type (T)
5197 then
5198 -- Verify that the record type has no components with private types
5199 -- without completion.
5201 declare
5202 Comp : Entity_Id;
5204 begin
5205 Comp := First_Component (T);
5207 while Present (Comp) loop
5208 if not Is_Fully_Defined (Etype (Comp)) then
5209 return False;
5210 end if;
5212 Next_Component (Comp);
5213 end loop;
5214 return True;
5215 end;
5217 else
5218 return not Is_Private_Type (T)
5219 or else Present (Full_View (Base_Type (T)));
5220 end if;
5221 end Is_Fully_Defined;
5223 ---------------------------------
5224 -- Process_Default_Expressions --
5225 ---------------------------------
5227 procedure Process_Default_Expressions
5228 (E : Entity_Id;
5229 After : in out Node_Id)
5231 Loc : constant Source_Ptr := Sloc (E);
5232 Dbody : Node_Id;
5233 Formal : Node_Id;
5234 Dcopy : Node_Id;
5235 Dnam : Entity_Id;
5237 begin
5238 Set_Default_Expressions_Processed (E);
5240 -- A subprogram instance and its associated anonymous subprogram share
5241 -- their signature. The default expression functions are defined in the
5242 -- wrapper packages for the anonymous subprogram, and should not be
5243 -- generated again for the instance.
5245 if Is_Generic_Instance (E)
5246 and then Present (Alias (E))
5247 and then Default_Expressions_Processed (Alias (E))
5248 then
5249 return;
5250 end if;
5252 Formal := First_Formal (E);
5253 while Present (Formal) loop
5254 if Present (Default_Value (Formal)) then
5256 -- We work with a copy of the default expression because we
5257 -- do not want to disturb the original, since this would mess
5258 -- up the conformance checking.
5260 Dcopy := New_Copy_Tree (Default_Value (Formal));
5262 -- The analysis of the expression may generate insert actions,
5263 -- which of course must not be executed. We wrap those actions
5264 -- in a procedure that is not called, and later on eliminated.
5265 -- The following cases have no side-effects, and are analyzed
5266 -- directly.
5268 if Nkind (Dcopy) = N_Identifier
5269 or else Nkind (Dcopy) = N_Expanded_Name
5270 or else Nkind (Dcopy) = N_Integer_Literal
5271 or else (Nkind (Dcopy) = N_Real_Literal
5272 and then not Vax_Float (Etype (Dcopy)))
5273 or else Nkind (Dcopy) = N_Character_Literal
5274 or else Nkind (Dcopy) = N_String_Literal
5275 or else Known_Null (Dcopy)
5276 or else (Nkind (Dcopy) = N_Attribute_Reference
5277 and then
5278 Attribute_Name (Dcopy) = Name_Null_Parameter)
5279 then
5281 -- If there is no default function, we must still do a full
5282 -- analyze call on the default value, to ensure that all error
5283 -- checks are performed, e.g. those associated with static
5284 -- evaluation. Note: this branch will always be taken if the
5285 -- analyzer is turned off (but we still need the error checks).
5287 -- Note: the setting of parent here is to meet the requirement
5288 -- that we can only analyze the expression while attached to
5289 -- the tree. Really the requirement is that the parent chain
5290 -- be set, we don't actually need to be in the tree.
5292 Set_Parent (Dcopy, Declaration_Node (Formal));
5293 Analyze (Dcopy);
5295 -- Default expressions are resolved with their own type if the
5296 -- context is generic, to avoid anomalies with private types.
5298 if Ekind (Scope (E)) = E_Generic_Package then
5299 Resolve (Dcopy);
5300 else
5301 Resolve (Dcopy, Etype (Formal));
5302 end if;
5304 -- If that resolved expression will raise constraint error,
5305 -- then flag the default value as raising constraint error.
5306 -- This allows a proper error message on the calls.
5308 if Raises_Constraint_Error (Dcopy) then
5309 Set_Raises_Constraint_Error (Default_Value (Formal));
5310 end if;
5312 -- If the default is a parameterless call, we use the name of
5313 -- the called function directly, and there is no body to build.
5315 elsif Nkind (Dcopy) = N_Function_Call
5316 and then No (Parameter_Associations (Dcopy))
5317 then
5318 null;
5320 -- Else construct and analyze the body of a wrapper procedure
5321 -- that contains an object declaration to hold the expression.
5322 -- Given that this is done only to complete the analysis, it
5323 -- simpler to build a procedure than a function which might
5324 -- involve secondary stack expansion.
5326 else
5327 Dnam :=
5328 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5330 Dbody :=
5331 Make_Subprogram_Body (Loc,
5332 Specification =>
5333 Make_Procedure_Specification (Loc,
5334 Defining_Unit_Name => Dnam),
5336 Declarations => New_List (
5337 Make_Object_Declaration (Loc,
5338 Defining_Identifier =>
5339 Make_Defining_Identifier (Loc,
5340 New_Internal_Name ('T')),
5341 Object_Definition =>
5342 New_Occurrence_Of (Etype (Formal), Loc),
5343 Expression => New_Copy_Tree (Dcopy))),
5345 Handled_Statement_Sequence =>
5346 Make_Handled_Sequence_Of_Statements (Loc,
5347 Statements => New_List));
5349 Set_Scope (Dnam, Scope (E));
5350 Set_Assignment_OK (First (Declarations (Dbody)));
5351 Set_Is_Eliminated (Dnam);
5352 Insert_After (After, Dbody);
5353 Analyze (Dbody);
5354 After := Dbody;
5355 end if;
5356 end if;
5358 Next_Formal (Formal);
5359 end loop;
5360 end Process_Default_Expressions;
5362 ----------------------------------------
5363 -- Set_Component_Alignment_If_Not_Set --
5364 ----------------------------------------
5366 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5367 begin
5368 -- Ignore if not base type, subtypes don't need anything
5370 if Typ /= Base_Type (Typ) then
5371 return;
5372 end if;
5374 -- Do not override existing representation
5376 if Is_Packed (Typ) then
5377 return;
5379 elsif Has_Specified_Layout (Typ) then
5380 return;
5382 elsif Component_Alignment (Typ) /= Calign_Default then
5383 return;
5385 else
5386 Set_Component_Alignment
5387 (Typ, Scope_Stack.Table
5388 (Scope_Stack.Last).Component_Alignment_Default);
5389 end if;
5390 end Set_Component_Alignment_If_Not_Set;
5392 ------------------
5393 -- Undelay_Type --
5394 ------------------
5396 procedure Undelay_Type (T : Entity_Id) is
5397 begin
5398 Set_Has_Delayed_Freeze (T, False);
5399 Set_Freeze_Node (T, Empty);
5401 -- Since we don't want T to have a Freeze_Node, we don't want its
5402 -- Full_View or Corresponding_Record_Type to have one either.
5404 -- ??? Fundamentally, this whole handling is a kludge. What we really
5405 -- want is to be sure that for an Itype that's part of record R and is a
5406 -- subtype of type T, that it's frozen after the later of the freeze
5407 -- points of R and T. We have no way of doing that directly, so what we
5408 -- do is force most such Itypes to be frozen as part of freezing R via
5409 -- this procedure and only delay the ones that need to be delayed
5410 -- (mostly the designated types of access types that are defined as part
5411 -- of the record).
5413 if Is_Private_Type (T)
5414 and then Present (Full_View (T))
5415 and then Is_Itype (Full_View (T))
5416 and then Is_Record_Type (Scope (Full_View (T)))
5417 then
5418 Undelay_Type (Full_View (T));
5419 end if;
5421 if Is_Concurrent_Type (T)
5422 and then Present (Corresponding_Record_Type (T))
5423 and then Is_Itype (Corresponding_Record_Type (T))
5424 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5425 then
5426 Undelay_Type (Corresponding_Record_Type (T));
5427 end if;
5428 end Undelay_Type;
5430 ------------------
5431 -- Warn_Overlay --
5432 ------------------
5434 procedure Warn_Overlay
5435 (Expr : Node_Id;
5436 Typ : Entity_Id;
5437 Nam : Entity_Id)
5439 Ent : constant Entity_Id := Entity (Nam);
5440 -- The object to which the address clause applies
5442 Init : Node_Id;
5443 Old : Entity_Id := Empty;
5444 Decl : Node_Id;
5446 begin
5447 -- No warning if address clause overlay warnings are off
5449 if not Address_Clause_Overlay_Warnings then
5450 return;
5451 end if;
5453 -- No warning if there is an explicit initialization
5455 Init := Original_Node (Expression (Declaration_Node (Ent)));
5457 if Present (Init) and then Comes_From_Source (Init) then
5458 return;
5459 end if;
5461 -- We only give the warning for non-imported entities of a type for
5462 -- which a non-null base init proc is defined (or for access types which
5463 -- have implicit null initialization).
5465 if Present (Expr)
5466 and then (Has_Non_Null_Base_Init_Proc (Typ)
5467 or else Is_Access_Type (Typ))
5468 and then not Is_Imported (Ent)
5469 then
5470 if Nkind (Expr) = N_Attribute_Reference
5471 and then Is_Entity_Name (Prefix (Expr))
5472 then
5473 Old := Entity (Prefix (Expr));
5475 elsif Is_Entity_Name (Expr)
5476 and then Ekind (Entity (Expr)) = E_Constant
5477 then
5478 Decl := Declaration_Node (Entity (Expr));
5480 if Nkind (Decl) = N_Object_Declaration
5481 and then Present (Expression (Decl))
5482 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5483 and then Is_Entity_Name (Prefix (Expression (Decl)))
5484 then
5485 Old := Entity (Prefix (Expression (Decl)));
5487 elsif Nkind (Expr) = N_Function_Call then
5488 return;
5489 end if;
5491 -- A function call (most likely to To_Address) is probably not an
5492 -- overlay, so skip warning. Ditto if the function call was inlined
5493 -- and transformed into an entity.
5495 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5496 return;
5497 end if;
5499 Decl := Next (Parent (Expr));
5501 -- If a pragma Import follows, we assume that it is for the current
5502 -- target of the address clause, and skip the warning.
5504 if Present (Decl)
5505 and then Nkind (Decl) = N_Pragma
5506 and then Pragma_Name (Decl) = Name_Import
5507 then
5508 return;
5509 end if;
5511 if Present (Old) then
5512 Error_Msg_Node_2 := Old;
5513 Error_Msg_N
5514 ("default initialization of & may modify &?",
5515 Nam);
5516 else
5517 Error_Msg_N
5518 ("default initialization of & may modify overlaid storage?",
5519 Nam);
5520 end if;
5522 -- Add friendly warning if initialization comes from a packed array
5523 -- component.
5525 if Is_Record_Type (Typ) then
5526 declare
5527 Comp : Entity_Id;
5529 begin
5530 Comp := First_Component (Typ);
5532 while Present (Comp) loop
5533 if Nkind (Parent (Comp)) = N_Component_Declaration
5534 and then Present (Expression (Parent (Comp)))
5535 then
5536 exit;
5537 elsif Is_Array_Type (Etype (Comp))
5538 and then Present (Packed_Array_Type (Etype (Comp)))
5539 then
5540 Error_Msg_NE
5541 ("\packed array component& " &
5542 "will be initialized to zero?",
5543 Nam, Comp);
5544 exit;
5545 else
5546 Next_Component (Comp);
5547 end if;
5548 end loop;
5549 end;
5550 end if;
5552 Error_Msg_N
5553 ("\use pragma Import for & to " &
5554 "suppress initialization (RM B.1(24))?",
5555 Nam);
5556 end if;
5557 end Warn_Overlay;
5559 end Freeze;