New vectorizer messages; message format change.
[official-gcc.git] / gcc / function.c
blobc1550a25393d0ee24ced28f5a02c7ac49512ae61
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
65 /* So we can assign to cfun in this file. */
66 #undef cfun
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
104 /* The currently compiled function. */
105 struct function *cfun = 0;
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
117 /* Forward declarations. */
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
138 typedef struct function *function_p;
140 static vec<function_p> function_context_stack;
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
145 void
146 push_function_context (void)
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
158 void
159 pop_function_context (void)
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
174 void
175 free_after_parsing (struct function *f)
177 f->language = 0;
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
184 void
185 free_after_compilation (struct function *f)
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
190 free (crtl->emit.regno_pointer_align);
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
197 regno_reg_rtx = NULL;
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
204 HOST_WIDE_INT
205 get_frame_size (void)
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
231 return FALSE;
234 /* Return stack slot alignment in bits for TYPE and MODE. */
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
239 unsigned int alignment;
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
275 /* Round the frame offset to the specified alignment. */
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
305 *poffset = this_frame_offset;
306 return true;
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
338 We do not round to stack_boundary here. */
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
349 if (align == 0)
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
354 else if (align == -1)
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
364 alignment_in_bits = alignment * BITS_PER_UNIT;
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
373 if (SUPPORTS_STACK_ALIGNMENT)
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
408 if (mode != BLKmode || size != 0)
410 if (kind & ASLK_RECORD_PAD)
412 struct frame_space **psp;
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
430 else if (!STACK_ALIGNMENT_NEEDED)
432 slot_offset = frame_offset;
433 goto found_space;
436 old_frame_offset = frame_offset;
438 if (FRAME_GROWS_DOWNWARD)
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
443 if (kind & ASLK_RECORD_PAD)
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
451 else
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
456 if (kind & ASLK_RECORD_PAD)
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
494 return x;
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
559 /* Removes temporary slot TEMP from LIST. */
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
571 temp->prev = temp->next = NULL;
574 /* Inserts temporary slot TEMP to LIST. */
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
586 /* Returns the list of used temp slots at LEVEL. */
588 static struct temp_slot **
589 temp_slots_at_level (int level)
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
594 return &(*used_temp_slots)[level];
597 /* Returns the maximal temporary slot level. */
599 static int
600 max_slot_level (void)
602 if (!used_temp_slots)
603 return -1;
605 return used_temp_slots->length () - 1;
608 /* Moves temporary slot TEMP to LEVEL. */
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
618 /* Make temporary slot TEMP available. */
620 static void
621 make_slot_available (struct temp_slot *temp)
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
697 /* Find the temp slot corresponding to the object at address X. */
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
739 return NULL;
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
745 MODE is the machine mode to be given to the returned rtx.
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
750 TYPE is the type that will be used for the stack slot. */
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
764 align = get_stack_local_alignment (type, mode);
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
775 for (p = avail_temp_slots; p; p = p->next)
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
783 if (p->align == align && p->size == size)
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
790 best_p = p;
795 /* Make our best, if any, the one to use. */
796 if (best_p)
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
809 if (best_p->size - rounded_size >= alignment)
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
833 HOST_WIDE_INT frame_offset_old = frame_offset;
835 p = ggc_alloc_temp_slot ();
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
853 p->align = align;
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
873 else
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
879 selected = p;
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
907 return slot;
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
948 if (mode == BLKmode || memory_required)
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
984 return gen_reg_rtx (mode);
987 /* Combine temporary stack slots which are adjacent on the stack.
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
993 static void
994 combine_temp_slots (void)
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1011 for (p = avail_temp_slots; p; p = next)
1013 int delete_p = 0;
1015 next = p->next;
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1020 for (q = p->next; q; q = next_q)
1022 int delete_q = 0;
1024 next_q = q->next;
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1029 if (p->base_offset + p->full_size == q->base_offset)
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1036 else if (q->base_offset + q->full_size == p->base_offset)
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1060 struct temp_slot *p;
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1065 p = find_temp_slot_from_address (old_rtx);
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1078 if (REG_P (new_rtx))
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1096 return;
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1111 void
1112 preserve_temp_slots (rtx x)
1114 struct temp_slot *p = 0, *next;
1116 if (x == 0)
1117 return;
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1133 if (p != 0)
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1151 void
1152 free_temp_slots (void)
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1164 if (some_available)
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1171 /* Push deeper into the nesting level for stack temporaries. */
1173 void
1174 push_temp_slots (void)
1176 temp_slot_level++;
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1182 void
1183 pop_temp_slots (void)
1185 free_temp_slots ();
1186 temp_slot_level--;
1189 /* Initialize temporary slots. */
1191 void
1192 init_temp_slots (void)
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1232 get_hard_reg_initial_reg (rtx reg)
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1237 if (ivs == 0)
1238 return NULL_RTX;
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1244 return NULL_RTX;
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1270 if (ivs->num_entries >= ivs->max_entries)
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1280 return ivs->entries[ivs->num_entries++].pseudo;
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1290 struct initial_value_struct *ivs;
1291 int i;
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1300 return NULL_RTX;
1303 unsigned int
1304 emit_initial_value_sets (void)
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1310 if (ivs == 0)
1311 return 0;
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1319 emit_insn_at_entry (seq);
1320 return 0;
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1361 #ifndef STACK_DYNAMIC_OFFSET
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1396 if (x == virtual_incoming_args_rtx)
1398 if (stack_realign_drap)
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1428 else
1429 return NULL_RTX;
1431 *poffset = offset;
1432 return new_rtx;
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1452 switch (GET_CODE (x))
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1462 return -1;
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1481 default:
1482 break;
1485 return 0;
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1519 start_sequence ();
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 GEN_INT (-offset));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1528 seq = get_insns ();
1529 end_sequence ();
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1545 start_sequence ();
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1548 new_rtx, GEN_INT (offset), SET_DEST (set),
1549 1, OPTAB_LIB_WIDEN);
1550 if (x != SET_DEST (set))
1551 emit_move_insn (SET_DEST (set), x);
1553 seq = get_insns ();
1554 end_sequence ();
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1561 extract_insn (insn);
1562 insn_code = INSN_CODE (insn);
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set)) == PLUS
1567 && recog_data.n_operands >= 3
1568 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1569 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1570 && CONST_INT_P (recog_data.operand[2])
1571 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1573 offset += INTVAL (recog_data.operand[2]);
1575 /* If the sum is zero, then replace with a plain move. */
1576 if (offset == 0
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1580 start_sequence ();
1581 emit_move_insn (SET_DEST (set), new_rtx);
1582 seq = get_insns ();
1583 end_sequence ();
1585 emit_insn_before (seq, insn);
1586 delete_insn (insn);
1587 return;
1590 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code, 1, new_rtx)
1596 && safe_insn_predicate (insn_code, 2, x))
1598 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1599 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1600 any_change = true;
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1607 else
1609 extract_insn (insn);
1610 insn_code = INSN_CODE (insn);
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i = 0; i < recog_data.n_operands; ++i)
1617 x = recog_data.operand[i];
1618 switch (GET_CODE (x))
1620 case MEM:
1622 rtx addr = XEXP (x, 0);
1623 bool changed = false;
1625 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1626 if (!changed)
1627 continue;
1629 start_sequence ();
1630 x = replace_equiv_address (x, addr);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code, i, x))
1642 addr = force_reg (GET_MODE (addr), addr);
1643 x = replace_equiv_address (x, addr);
1645 seq = get_insns ();
1646 end_sequence ();
1647 if (seq)
1648 emit_insn_before (seq, insn);
1650 break;
1652 case REG:
1653 new_rtx = instantiate_new_reg (x, &offset);
1654 if (new_rtx == NULL)
1655 continue;
1656 if (offset == 0)
1657 x = new_rtx;
1658 else
1660 start_sequence ();
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1669 GEN_INT (offset), NULL_RTX,
1670 1, OPTAB_LIB_WIDEN);
1671 seq = get_insns ();
1672 end_sequence ();
1673 emit_insn_before (seq, insn);
1675 break;
1677 case SUBREG:
1678 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1679 if (new_rtx == NULL)
1680 continue;
1681 if (offset != 0)
1683 start_sequence ();
1684 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1685 GEN_INT (offset), NULL_RTX,
1686 1, OPTAB_LIB_WIDEN);
1687 seq = get_insns ();
1688 end_sequence ();
1689 emit_insn_before (seq, insn);
1691 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1692 GET_MODE (new_rtx), SUBREG_BYTE (x));
1693 gcc_assert (x);
1694 break;
1696 default:
1697 continue;
1700 /* At this point, X contains the new value for the operand.
1701 Validate the new value vs the insn predicate. Note that
1702 asm insns will have insn_code -1 here. */
1703 if (!safe_insn_predicate (insn_code, i, x))
1705 start_sequence ();
1706 if (REG_P (x))
1708 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1709 x = copy_to_reg (x);
1711 else
1712 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1713 seq = get_insns ();
1714 end_sequence ();
1715 if (seq)
1716 emit_insn_before (seq, insn);
1719 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1720 any_change = true;
1723 if (any_change)
1725 /* Propagate operand changes into the duplicates. */
1726 for (i = 0; i < recog_data.n_dups; ++i)
1727 *recog_data.dup_loc[i]
1728 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1730 /* Force re-recognition of the instruction for validation. */
1731 INSN_CODE (insn) = -1;
1734 if (asm_noperands (PATTERN (insn)) >= 0)
1736 if (!check_asm_operands (PATTERN (insn)))
1738 error_for_asm (insn, "impossible constraint in %<asm%>");
1739 /* For asm goto, instead of fixing up all the edges
1740 just clear the template and clear input operands
1741 (asm goto doesn't have any output operands). */
1742 if (JUMP_P (insn))
1744 rtx asm_op = extract_asm_operands (PATTERN (insn));
1745 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1746 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1747 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1749 else
1750 delete_insn (insn);
1753 else
1755 if (recog_memoized (insn) < 0)
1756 fatal_insn_not_found (insn);
1760 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1761 do any instantiation required. */
1763 void
1764 instantiate_decl_rtl (rtx x)
1766 rtx addr;
1768 if (x == 0)
1769 return;
1771 /* If this is a CONCAT, recurse for the pieces. */
1772 if (GET_CODE (x) == CONCAT)
1774 instantiate_decl_rtl (XEXP (x, 0));
1775 instantiate_decl_rtl (XEXP (x, 1));
1776 return;
1779 /* If this is not a MEM, no need to do anything. Similarly if the
1780 address is a constant or a register that is not a virtual register. */
1781 if (!MEM_P (x))
1782 return;
1784 addr = XEXP (x, 0);
1785 if (CONSTANT_P (addr)
1786 || (REG_P (addr)
1787 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1788 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1789 return;
1791 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1794 /* Helper for instantiate_decls called via walk_tree: Process all decls
1795 in the given DECL_VALUE_EXPR. */
1797 static tree
1798 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1800 tree t = *tp;
1801 if (! EXPR_P (t))
1803 *walk_subtrees = 0;
1804 if (DECL_P (t))
1806 if (DECL_RTL_SET_P (t))
1807 instantiate_decl_rtl (DECL_RTL (t));
1808 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1809 && DECL_INCOMING_RTL (t))
1810 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1811 if ((TREE_CODE (t) == VAR_DECL
1812 || TREE_CODE (t) == RESULT_DECL)
1813 && DECL_HAS_VALUE_EXPR_P (t))
1815 tree v = DECL_VALUE_EXPR (t);
1816 walk_tree (&v, instantiate_expr, NULL, NULL);
1820 return NULL;
1823 /* Subroutine of instantiate_decls: Process all decls in the given
1824 BLOCK node and all its subblocks. */
1826 static void
1827 instantiate_decls_1 (tree let)
1829 tree t;
1831 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1837 tree v = DECL_VALUE_EXPR (t);
1838 walk_tree (&v, instantiate_expr, NULL, NULL);
1842 /* Process all subblocks. */
1843 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1844 instantiate_decls_1 (t);
1847 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1848 all virtual registers in their DECL_RTL's. */
1850 static void
1851 instantiate_decls (tree fndecl)
1853 tree decl;
1854 unsigned ix;
1856 /* Process all parameters of the function. */
1857 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1859 instantiate_decl_rtl (DECL_RTL (decl));
1860 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1868 if ((decl = DECL_RESULT (fndecl))
1869 && TREE_CODE (decl) == RESULT_DECL)
1871 if (DECL_RTL_SET_P (decl))
1872 instantiate_decl_rtl (DECL_RTL (decl));
1873 if (DECL_HAS_VALUE_EXPR_P (decl))
1875 tree v = DECL_VALUE_EXPR (decl);
1876 walk_tree (&v, instantiate_expr, NULL, NULL);
1880 /* Now process all variables defined in the function or its subblocks. */
1881 instantiate_decls_1 (DECL_INITIAL (fndecl));
1883 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1884 if (DECL_RTL_SET_P (decl))
1885 instantiate_decl_rtl (DECL_RTL (decl));
1886 vec_free (cfun->local_decls);
1889 /* Pass through the INSNS of function FNDECL and convert virtual register
1890 references to hard register references. */
1892 static unsigned int
1893 instantiate_virtual_regs (void)
1895 rtx insn;
1897 /* Compute the offsets to use for this function. */
1898 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1899 var_offset = STARTING_FRAME_OFFSET;
1900 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1901 out_arg_offset = STACK_POINTER_OFFSET;
1902 #ifdef FRAME_POINTER_CFA_OFFSET
1903 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1904 #else
1905 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1906 #endif
1908 /* Initialize recognition, indicating that volatile is OK. */
1909 init_recog ();
1911 /* Scan through all the insns, instantiating every virtual register still
1912 present. */
1913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1914 if (INSN_P (insn))
1916 /* These patterns in the instruction stream can never be recognized.
1917 Fortunately, they shouldn't contain virtual registers either. */
1918 if (GET_CODE (PATTERN (insn)) == USE
1919 || GET_CODE (PATTERN (insn)) == CLOBBER
1920 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1921 continue;
1922 else if (DEBUG_INSN_P (insn))
1923 for_each_rtx (&INSN_VAR_LOCATION (insn),
1924 instantiate_virtual_regs_in_rtx, NULL);
1925 else
1926 instantiate_virtual_regs_in_insn (insn);
1928 if (INSN_DELETED_P (insn))
1929 continue;
1931 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1933 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1934 if (CALL_P (insn))
1935 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1936 instantiate_virtual_regs_in_rtx, NULL);
1939 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1940 instantiate_decls (current_function_decl);
1942 targetm.instantiate_decls ();
1944 /* Indicate that, from now on, assign_stack_local should use
1945 frame_pointer_rtx. */
1946 virtuals_instantiated = 1;
1948 return 0;
1951 namespace {
1953 const pass_data pass_data_instantiate_virtual_regs =
1955 RTL_PASS, /* type */
1956 "vregs", /* name */
1957 OPTGROUP_NONE, /* optinfo_flags */
1958 false, /* has_gate */
1959 true, /* has_execute */
1960 TV_NONE, /* tv_id */
1961 0, /* properties_required */
1962 0, /* properties_provided */
1963 0, /* properties_destroyed */
1964 0, /* todo_flags_start */
1965 0, /* todo_flags_finish */
1968 class pass_instantiate_virtual_regs : public rtl_opt_pass
1970 public:
1971 pass_instantiate_virtual_regs(gcc::context *ctxt)
1972 : rtl_opt_pass(pass_data_instantiate_virtual_regs, ctxt)
1975 /* opt_pass methods: */
1976 unsigned int execute () { return instantiate_virtual_regs (); }
1978 }; // class pass_instantiate_virtual_regs
1980 } // anon namespace
1982 rtl_opt_pass *
1983 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1985 return new pass_instantiate_virtual_regs (ctxt);
1989 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1990 This means a type for which function calls must pass an address to the
1991 function or get an address back from the function.
1992 EXP may be a type node or an expression (whose type is tested). */
1995 aggregate_value_p (const_tree exp, const_tree fntype)
1997 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1998 int i, regno, nregs;
1999 rtx reg;
2001 if (fntype)
2002 switch (TREE_CODE (fntype))
2004 case CALL_EXPR:
2006 tree fndecl = get_callee_fndecl (fntype);
2007 fntype = (fndecl
2008 ? TREE_TYPE (fndecl)
2009 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2011 break;
2012 case FUNCTION_DECL:
2013 fntype = TREE_TYPE (fntype);
2014 break;
2015 case FUNCTION_TYPE:
2016 case METHOD_TYPE:
2017 break;
2018 case IDENTIFIER_NODE:
2019 fntype = NULL_TREE;
2020 break;
2021 default:
2022 /* We don't expect other tree types here. */
2023 gcc_unreachable ();
2026 if (VOID_TYPE_P (type))
2027 return 0;
2029 /* If a record should be passed the same as its first (and only) member
2030 don't pass it as an aggregate. */
2031 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2032 return aggregate_value_p (first_field (type), fntype);
2034 /* If the front end has decided that this needs to be passed by
2035 reference, do so. */
2036 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2037 && DECL_BY_REFERENCE (exp))
2038 return 1;
2040 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2041 if (fntype && TREE_ADDRESSABLE (fntype))
2042 return 1;
2044 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2045 and thus can't be returned in registers. */
2046 if (TREE_ADDRESSABLE (type))
2047 return 1;
2049 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2050 return 1;
2052 if (targetm.calls.return_in_memory (type, fntype))
2053 return 1;
2055 /* Make sure we have suitable call-clobbered regs to return
2056 the value in; if not, we must return it in memory. */
2057 reg = hard_function_value (type, 0, fntype, 0);
2059 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2060 it is OK. */
2061 if (!REG_P (reg))
2062 return 0;
2064 regno = REGNO (reg);
2065 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2066 for (i = 0; i < nregs; i++)
2067 if (! call_used_regs[regno + i])
2068 return 1;
2070 return 0;
2073 /* Return true if we should assign DECL a pseudo register; false if it
2074 should live on the local stack. */
2076 bool
2077 use_register_for_decl (const_tree decl)
2079 if (!targetm.calls.allocate_stack_slots_for_args())
2080 return true;
2082 /* Honor volatile. */
2083 if (TREE_SIDE_EFFECTS (decl))
2084 return false;
2086 /* Honor addressability. */
2087 if (TREE_ADDRESSABLE (decl))
2088 return false;
2090 /* Only register-like things go in registers. */
2091 if (DECL_MODE (decl) == BLKmode)
2092 return false;
2094 /* If -ffloat-store specified, don't put explicit float variables
2095 into registers. */
2096 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2097 propagates values across these stores, and it probably shouldn't. */
2098 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2099 return false;
2101 /* If we're not interested in tracking debugging information for
2102 this decl, then we can certainly put it in a register. */
2103 if (DECL_IGNORED_P (decl))
2104 return true;
2106 if (optimize)
2107 return true;
2109 if (!DECL_REGISTER (decl))
2110 return false;
2112 switch (TREE_CODE (TREE_TYPE (decl)))
2114 case RECORD_TYPE:
2115 case UNION_TYPE:
2116 case QUAL_UNION_TYPE:
2117 /* When not optimizing, disregard register keyword for variables with
2118 types containing methods, otherwise the methods won't be callable
2119 from the debugger. */
2120 if (TYPE_METHODS (TREE_TYPE (decl)))
2121 return false;
2122 break;
2123 default:
2124 break;
2127 return true;
2130 /* Return true if TYPE should be passed by invisible reference. */
2132 bool
2133 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2134 tree type, bool named_arg)
2136 if (type)
2138 /* If this type contains non-trivial constructors, then it is
2139 forbidden for the middle-end to create any new copies. */
2140 if (TREE_ADDRESSABLE (type))
2141 return true;
2143 /* GCC post 3.4 passes *all* variable sized types by reference. */
2144 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2145 return true;
2147 /* If a record type should be passed the same as its first (and only)
2148 member, use the type and mode of that member. */
2149 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2151 type = TREE_TYPE (first_field (type));
2152 mode = TYPE_MODE (type);
2156 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2157 type, named_arg);
2160 /* Return true if TYPE, which is passed by reference, should be callee
2161 copied instead of caller copied. */
2163 bool
2164 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2165 tree type, bool named_arg)
2167 if (type && TREE_ADDRESSABLE (type))
2168 return false;
2169 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2170 named_arg);
2173 /* Structures to communicate between the subroutines of assign_parms.
2174 The first holds data persistent across all parameters, the second
2175 is cleared out for each parameter. */
2177 struct assign_parm_data_all
2179 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2180 should become a job of the target or otherwise encapsulated. */
2181 CUMULATIVE_ARGS args_so_far_v;
2182 cumulative_args_t args_so_far;
2183 struct args_size stack_args_size;
2184 tree function_result_decl;
2185 tree orig_fnargs;
2186 rtx first_conversion_insn;
2187 rtx last_conversion_insn;
2188 HOST_WIDE_INT pretend_args_size;
2189 HOST_WIDE_INT extra_pretend_bytes;
2190 int reg_parm_stack_space;
2193 struct assign_parm_data_one
2195 tree nominal_type;
2196 tree passed_type;
2197 rtx entry_parm;
2198 rtx stack_parm;
2199 enum machine_mode nominal_mode;
2200 enum machine_mode passed_mode;
2201 enum machine_mode promoted_mode;
2202 struct locate_and_pad_arg_data locate;
2203 int partial;
2204 BOOL_BITFIELD named_arg : 1;
2205 BOOL_BITFIELD passed_pointer : 1;
2206 BOOL_BITFIELD on_stack : 1;
2207 BOOL_BITFIELD loaded_in_reg : 1;
2210 /* A subroutine of assign_parms. Initialize ALL. */
2212 static void
2213 assign_parms_initialize_all (struct assign_parm_data_all *all)
2215 tree fntype ATTRIBUTE_UNUSED;
2217 memset (all, 0, sizeof (*all));
2219 fntype = TREE_TYPE (current_function_decl);
2221 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2222 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2223 #else
2224 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2225 current_function_decl, -1);
2226 #endif
2227 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2229 #ifdef REG_PARM_STACK_SPACE
2230 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2231 #endif
2234 /* If ARGS contains entries with complex types, split the entry into two
2235 entries of the component type. Return a new list of substitutions are
2236 needed, else the old list. */
2238 static void
2239 split_complex_args (vec<tree> *args)
2241 unsigned i;
2242 tree p;
2244 FOR_EACH_VEC_ELT (*args, i, p)
2246 tree type = TREE_TYPE (p);
2247 if (TREE_CODE (type) == COMPLEX_TYPE
2248 && targetm.calls.split_complex_arg (type))
2250 tree decl;
2251 tree subtype = TREE_TYPE (type);
2252 bool addressable = TREE_ADDRESSABLE (p);
2254 /* Rewrite the PARM_DECL's type with its component. */
2255 p = copy_node (p);
2256 TREE_TYPE (p) = subtype;
2257 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2258 DECL_MODE (p) = VOIDmode;
2259 DECL_SIZE (p) = NULL;
2260 DECL_SIZE_UNIT (p) = NULL;
2261 /* If this arg must go in memory, put it in a pseudo here.
2262 We can't allow it to go in memory as per normal parms,
2263 because the usual place might not have the imag part
2264 adjacent to the real part. */
2265 DECL_ARTIFICIAL (p) = addressable;
2266 DECL_IGNORED_P (p) = addressable;
2267 TREE_ADDRESSABLE (p) = 0;
2268 layout_decl (p, 0);
2269 (*args)[i] = p;
2271 /* Build a second synthetic decl. */
2272 decl = build_decl (EXPR_LOCATION (p),
2273 PARM_DECL, NULL_TREE, subtype);
2274 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2275 DECL_ARTIFICIAL (decl) = addressable;
2276 DECL_IGNORED_P (decl) = addressable;
2277 layout_decl (decl, 0);
2278 args->safe_insert (++i, decl);
2283 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2284 the hidden struct return argument, and (abi willing) complex args.
2285 Return the new parameter list. */
2287 static vec<tree>
2288 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2290 tree fndecl = current_function_decl;
2291 tree fntype = TREE_TYPE (fndecl);
2292 vec<tree> fnargs = vNULL;
2293 tree arg;
2295 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2296 fnargs.safe_push (arg);
2298 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2300 /* If struct value address is treated as the first argument, make it so. */
2301 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2302 && ! cfun->returns_pcc_struct
2303 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2305 tree type = build_pointer_type (TREE_TYPE (fntype));
2306 tree decl;
2308 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2309 PARM_DECL, get_identifier (".result_ptr"), type);
2310 DECL_ARG_TYPE (decl) = type;
2311 DECL_ARTIFICIAL (decl) = 1;
2312 DECL_NAMELESS (decl) = 1;
2313 TREE_CONSTANT (decl) = 1;
2315 DECL_CHAIN (decl) = all->orig_fnargs;
2316 all->orig_fnargs = decl;
2317 fnargs.safe_insert (0, decl);
2319 all->function_result_decl = decl;
2322 /* If the target wants to split complex arguments into scalars, do so. */
2323 if (targetm.calls.split_complex_arg)
2324 split_complex_args (&fnargs);
2326 return fnargs;
2329 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2330 data for the parameter. Incorporate ABI specifics such as pass-by-
2331 reference and type promotion. */
2333 static void
2334 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2335 struct assign_parm_data_one *data)
2337 tree nominal_type, passed_type;
2338 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2339 int unsignedp;
2341 memset (data, 0, sizeof (*data));
2343 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2344 if (!cfun->stdarg)
2345 data->named_arg = 1; /* No variadic parms. */
2346 else if (DECL_CHAIN (parm))
2347 data->named_arg = 1; /* Not the last non-variadic parm. */
2348 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2349 data->named_arg = 1; /* Only variadic ones are unnamed. */
2350 else
2351 data->named_arg = 0; /* Treat as variadic. */
2353 nominal_type = TREE_TYPE (parm);
2354 passed_type = DECL_ARG_TYPE (parm);
2356 /* Look out for errors propagating this far. Also, if the parameter's
2357 type is void then its value doesn't matter. */
2358 if (TREE_TYPE (parm) == error_mark_node
2359 /* This can happen after weird syntax errors
2360 or if an enum type is defined among the parms. */
2361 || TREE_CODE (parm) != PARM_DECL
2362 || passed_type == NULL
2363 || VOID_TYPE_P (nominal_type))
2365 nominal_type = passed_type = void_type_node;
2366 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2367 goto egress;
2370 /* Find mode of arg as it is passed, and mode of arg as it should be
2371 during execution of this function. */
2372 passed_mode = TYPE_MODE (passed_type);
2373 nominal_mode = TYPE_MODE (nominal_type);
2375 /* If the parm is to be passed as a transparent union or record, use the
2376 type of the first field for the tests below. We have already verified
2377 that the modes are the same. */
2378 if ((TREE_CODE (passed_type) == UNION_TYPE
2379 || TREE_CODE (passed_type) == RECORD_TYPE)
2380 && TYPE_TRANSPARENT_AGGR (passed_type))
2381 passed_type = TREE_TYPE (first_field (passed_type));
2383 /* See if this arg was passed by invisible reference. */
2384 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2385 passed_type, data->named_arg))
2387 passed_type = nominal_type = build_pointer_type (passed_type);
2388 data->passed_pointer = true;
2389 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2392 /* Find mode as it is passed by the ABI. */
2393 unsignedp = TYPE_UNSIGNED (passed_type);
2394 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2395 TREE_TYPE (current_function_decl), 0);
2397 egress:
2398 data->nominal_type = nominal_type;
2399 data->passed_type = passed_type;
2400 data->nominal_mode = nominal_mode;
2401 data->passed_mode = passed_mode;
2402 data->promoted_mode = promoted_mode;
2405 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2407 static void
2408 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2409 struct assign_parm_data_one *data, bool no_rtl)
2411 int varargs_pretend_bytes = 0;
2413 targetm.calls.setup_incoming_varargs (all->args_so_far,
2414 data->promoted_mode,
2415 data->passed_type,
2416 &varargs_pretend_bytes, no_rtl);
2418 /* If the back-end has requested extra stack space, record how much is
2419 needed. Do not change pretend_args_size otherwise since it may be
2420 nonzero from an earlier partial argument. */
2421 if (varargs_pretend_bytes > 0)
2422 all->pretend_args_size = varargs_pretend_bytes;
2425 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2426 the incoming location of the current parameter. */
2428 static void
2429 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2430 struct assign_parm_data_one *data)
2432 HOST_WIDE_INT pretend_bytes = 0;
2433 rtx entry_parm;
2434 bool in_regs;
2436 if (data->promoted_mode == VOIDmode)
2438 data->entry_parm = data->stack_parm = const0_rtx;
2439 return;
2442 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2443 data->promoted_mode,
2444 data->passed_type,
2445 data->named_arg);
2447 if (entry_parm == 0)
2448 data->promoted_mode = data->passed_mode;
2450 /* Determine parm's home in the stack, in case it arrives in the stack
2451 or we should pretend it did. Compute the stack position and rtx where
2452 the argument arrives and its size.
2454 There is one complexity here: If this was a parameter that would
2455 have been passed in registers, but wasn't only because it is
2456 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2457 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2458 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2459 as it was the previous time. */
2460 in_regs = entry_parm != 0;
2461 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2462 in_regs = true;
2463 #endif
2464 if (!in_regs && !data->named_arg)
2466 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2468 rtx tem;
2469 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2470 data->promoted_mode,
2471 data->passed_type, true);
2472 in_regs = tem != NULL;
2476 /* If this parameter was passed both in registers and in the stack, use
2477 the copy on the stack. */
2478 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2479 data->passed_type))
2480 entry_parm = 0;
2482 if (entry_parm)
2484 int partial;
2486 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2487 data->promoted_mode,
2488 data->passed_type,
2489 data->named_arg);
2490 data->partial = partial;
2492 /* The caller might already have allocated stack space for the
2493 register parameters. */
2494 if (partial != 0 && all->reg_parm_stack_space == 0)
2496 /* Part of this argument is passed in registers and part
2497 is passed on the stack. Ask the prologue code to extend
2498 the stack part so that we can recreate the full value.
2500 PRETEND_BYTES is the size of the registers we need to store.
2501 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2502 stack space that the prologue should allocate.
2504 Internally, gcc assumes that the argument pointer is aligned
2505 to STACK_BOUNDARY bits. This is used both for alignment
2506 optimizations (see init_emit) and to locate arguments that are
2507 aligned to more than PARM_BOUNDARY bits. We must preserve this
2508 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2509 a stack boundary. */
2511 /* We assume at most one partial arg, and it must be the first
2512 argument on the stack. */
2513 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2515 pretend_bytes = partial;
2516 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2518 /* We want to align relative to the actual stack pointer, so
2519 don't include this in the stack size until later. */
2520 all->extra_pretend_bytes = all->pretend_args_size;
2524 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2525 entry_parm ? data->partial : 0, current_function_decl,
2526 &all->stack_args_size, &data->locate);
2528 /* Update parm_stack_boundary if this parameter is passed in the
2529 stack. */
2530 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2531 crtl->parm_stack_boundary = data->locate.boundary;
2533 /* Adjust offsets to include the pretend args. */
2534 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2535 data->locate.slot_offset.constant += pretend_bytes;
2536 data->locate.offset.constant += pretend_bytes;
2538 data->entry_parm = entry_parm;
2541 /* A subroutine of assign_parms. If there is actually space on the stack
2542 for this parm, count it in stack_args_size and return true. */
2544 static bool
2545 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2546 struct assign_parm_data_one *data)
2548 /* Trivially true if we've no incoming register. */
2549 if (data->entry_parm == NULL)
2551 /* Also true if we're partially in registers and partially not,
2552 since we've arranged to drop the entire argument on the stack. */
2553 else if (data->partial != 0)
2555 /* Also true if the target says that it's passed in both registers
2556 and on the stack. */
2557 else if (GET_CODE (data->entry_parm) == PARALLEL
2558 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2560 /* Also true if the target says that there's stack allocated for
2561 all register parameters. */
2562 else if (all->reg_parm_stack_space > 0)
2564 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2565 else
2566 return false;
2568 all->stack_args_size.constant += data->locate.size.constant;
2569 if (data->locate.size.var)
2570 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2572 return true;
2575 /* A subroutine of assign_parms. Given that this parameter is allocated
2576 stack space by the ABI, find it. */
2578 static void
2579 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2581 rtx offset_rtx, stack_parm;
2582 unsigned int align, boundary;
2584 /* If we're passing this arg using a reg, make its stack home the
2585 aligned stack slot. */
2586 if (data->entry_parm)
2587 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2588 else
2589 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2591 stack_parm = crtl->args.internal_arg_pointer;
2592 if (offset_rtx != const0_rtx)
2593 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2594 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2596 if (!data->passed_pointer)
2598 set_mem_attributes (stack_parm, parm, 1);
2599 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2600 while promoted mode's size is needed. */
2601 if (data->promoted_mode != BLKmode
2602 && data->promoted_mode != DECL_MODE (parm))
2604 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2605 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2607 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2608 data->promoted_mode);
2609 if (offset)
2610 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2615 boundary = data->locate.boundary;
2616 align = BITS_PER_UNIT;
2618 /* If we're padding upward, we know that the alignment of the slot
2619 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2620 intentionally forcing upward padding. Otherwise we have to come
2621 up with a guess at the alignment based on OFFSET_RTX. */
2622 if (data->locate.where_pad != downward || data->entry_parm)
2623 align = boundary;
2624 else if (CONST_INT_P (offset_rtx))
2626 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2627 align = align & -align;
2629 set_mem_align (stack_parm, align);
2631 if (data->entry_parm)
2632 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2634 data->stack_parm = stack_parm;
2637 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2638 always valid and contiguous. */
2640 static void
2641 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2643 rtx entry_parm = data->entry_parm;
2644 rtx stack_parm = data->stack_parm;
2646 /* If this parm was passed part in regs and part in memory, pretend it
2647 arrived entirely in memory by pushing the register-part onto the stack.
2648 In the special case of a DImode or DFmode that is split, we could put
2649 it together in a pseudoreg directly, but for now that's not worth
2650 bothering with. */
2651 if (data->partial != 0)
2653 /* Handle calls that pass values in multiple non-contiguous
2654 locations. The Irix 6 ABI has examples of this. */
2655 if (GET_CODE (entry_parm) == PARALLEL)
2656 emit_group_store (validize_mem (stack_parm), entry_parm,
2657 data->passed_type,
2658 int_size_in_bytes (data->passed_type));
2659 else
2661 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2662 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2663 data->partial / UNITS_PER_WORD);
2666 entry_parm = stack_parm;
2669 /* If we didn't decide this parm came in a register, by default it came
2670 on the stack. */
2671 else if (entry_parm == NULL)
2672 entry_parm = stack_parm;
2674 /* When an argument is passed in multiple locations, we can't make use
2675 of this information, but we can save some copying if the whole argument
2676 is passed in a single register. */
2677 else if (GET_CODE (entry_parm) == PARALLEL
2678 && data->nominal_mode != BLKmode
2679 && data->passed_mode != BLKmode)
2681 size_t i, len = XVECLEN (entry_parm, 0);
2683 for (i = 0; i < len; i++)
2684 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2685 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2686 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2687 == data->passed_mode)
2688 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2690 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2691 break;
2695 data->entry_parm = entry_parm;
2698 /* A subroutine of assign_parms. Reconstitute any values which were
2699 passed in multiple registers and would fit in a single register. */
2701 static void
2702 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2704 rtx entry_parm = data->entry_parm;
2706 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2707 This can be done with register operations rather than on the
2708 stack, even if we will store the reconstituted parameter on the
2709 stack later. */
2710 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2712 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2713 emit_group_store (parmreg, entry_parm, data->passed_type,
2714 GET_MODE_SIZE (GET_MODE (entry_parm)));
2715 entry_parm = parmreg;
2718 data->entry_parm = entry_parm;
2721 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2722 always valid and properly aligned. */
2724 static void
2725 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2727 rtx stack_parm = data->stack_parm;
2729 /* If we can't trust the parm stack slot to be aligned enough for its
2730 ultimate type, don't use that slot after entry. We'll make another
2731 stack slot, if we need one. */
2732 if (stack_parm
2733 && ((STRICT_ALIGNMENT
2734 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2735 || (data->nominal_type
2736 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2737 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2738 stack_parm = NULL;
2740 /* If parm was passed in memory, and we need to convert it on entry,
2741 don't store it back in that same slot. */
2742 else if (data->entry_parm == stack_parm
2743 && data->nominal_mode != BLKmode
2744 && data->nominal_mode != data->passed_mode)
2745 stack_parm = NULL;
2747 /* If stack protection is in effect for this function, don't leave any
2748 pointers in their passed stack slots. */
2749 else if (crtl->stack_protect_guard
2750 && (flag_stack_protect == 2
2751 || data->passed_pointer
2752 || POINTER_TYPE_P (data->nominal_type)))
2753 stack_parm = NULL;
2755 data->stack_parm = stack_parm;
2758 /* A subroutine of assign_parms. Return true if the current parameter
2759 should be stored as a BLKmode in the current frame. */
2761 static bool
2762 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2764 if (data->nominal_mode == BLKmode)
2765 return true;
2766 if (GET_MODE (data->entry_parm) == BLKmode)
2767 return true;
2769 #ifdef BLOCK_REG_PADDING
2770 /* Only assign_parm_setup_block knows how to deal with register arguments
2771 that are padded at the least significant end. */
2772 if (REG_P (data->entry_parm)
2773 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2774 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2775 == (BYTES_BIG_ENDIAN ? upward : downward)))
2776 return true;
2777 #endif
2779 return false;
2782 /* A subroutine of assign_parms. Arrange for the parameter to be
2783 present and valid in DATA->STACK_RTL. */
2785 static void
2786 assign_parm_setup_block (struct assign_parm_data_all *all,
2787 tree parm, struct assign_parm_data_one *data)
2789 rtx entry_parm = data->entry_parm;
2790 rtx stack_parm = data->stack_parm;
2791 HOST_WIDE_INT size;
2792 HOST_WIDE_INT size_stored;
2794 if (GET_CODE (entry_parm) == PARALLEL)
2795 entry_parm = emit_group_move_into_temps (entry_parm);
2797 size = int_size_in_bytes (data->passed_type);
2798 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2799 if (stack_parm == 0)
2801 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2802 stack_parm = assign_stack_local (BLKmode, size_stored,
2803 DECL_ALIGN (parm));
2804 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2805 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2806 set_mem_attributes (stack_parm, parm, 1);
2809 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2810 calls that pass values in multiple non-contiguous locations. */
2811 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2813 rtx mem;
2815 /* Note that we will be storing an integral number of words.
2816 So we have to be careful to ensure that we allocate an
2817 integral number of words. We do this above when we call
2818 assign_stack_local if space was not allocated in the argument
2819 list. If it was, this will not work if PARM_BOUNDARY is not
2820 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2821 if it becomes a problem. Exception is when BLKmode arrives
2822 with arguments not conforming to word_mode. */
2824 if (data->stack_parm == 0)
2826 else if (GET_CODE (entry_parm) == PARALLEL)
2828 else
2829 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2831 mem = validize_mem (stack_parm);
2833 /* Handle values in multiple non-contiguous locations. */
2834 if (GET_CODE (entry_parm) == PARALLEL)
2836 push_to_sequence2 (all->first_conversion_insn,
2837 all->last_conversion_insn);
2838 emit_group_store (mem, entry_parm, data->passed_type, size);
2839 all->first_conversion_insn = get_insns ();
2840 all->last_conversion_insn = get_last_insn ();
2841 end_sequence ();
2844 else if (size == 0)
2847 /* If SIZE is that of a mode no bigger than a word, just use
2848 that mode's store operation. */
2849 else if (size <= UNITS_PER_WORD)
2851 enum machine_mode mode
2852 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2854 if (mode != BLKmode
2855 #ifdef BLOCK_REG_PADDING
2856 && (size == UNITS_PER_WORD
2857 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2858 != (BYTES_BIG_ENDIAN ? upward : downward)))
2859 #endif
2862 rtx reg;
2864 /* We are really truncating a word_mode value containing
2865 SIZE bytes into a value of mode MODE. If such an
2866 operation requires no actual instructions, we can refer
2867 to the value directly in mode MODE, otherwise we must
2868 start with the register in word_mode and explicitly
2869 convert it. */
2870 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2871 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2872 else
2874 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2875 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2877 emit_move_insn (change_address (mem, mode, 0), reg);
2880 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2881 machine must be aligned to the left before storing
2882 to memory. Note that the previous test doesn't
2883 handle all cases (e.g. SIZE == 3). */
2884 else if (size != UNITS_PER_WORD
2885 #ifdef BLOCK_REG_PADDING
2886 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2887 == downward)
2888 #else
2889 && BYTES_BIG_ENDIAN
2890 #endif
2893 rtx tem, x;
2894 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2895 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2897 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2898 tem = change_address (mem, word_mode, 0);
2899 emit_move_insn (tem, x);
2901 else
2902 move_block_from_reg (REGNO (entry_parm), mem,
2903 size_stored / UNITS_PER_WORD);
2905 else
2906 move_block_from_reg (REGNO (entry_parm), mem,
2907 size_stored / UNITS_PER_WORD);
2909 else if (data->stack_parm == 0)
2911 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2912 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2913 BLOCK_OP_NORMAL);
2914 all->first_conversion_insn = get_insns ();
2915 all->last_conversion_insn = get_last_insn ();
2916 end_sequence ();
2919 data->stack_parm = stack_parm;
2920 SET_DECL_RTL (parm, stack_parm);
2923 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2924 parameter. Get it there. Perform all ABI specified conversions. */
2926 static void
2927 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2928 struct assign_parm_data_one *data)
2930 rtx parmreg, validated_mem;
2931 rtx equiv_stack_parm;
2932 enum machine_mode promoted_nominal_mode;
2933 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2934 bool did_conversion = false;
2935 bool need_conversion, moved;
2937 /* Store the parm in a pseudoregister during the function, but we may
2938 need to do it in a wider mode. Using 2 here makes the result
2939 consistent with promote_decl_mode and thus expand_expr_real_1. */
2940 promoted_nominal_mode
2941 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2942 TREE_TYPE (current_function_decl), 2);
2944 parmreg = gen_reg_rtx (promoted_nominal_mode);
2946 if (!DECL_ARTIFICIAL (parm))
2947 mark_user_reg (parmreg);
2949 /* If this was an item that we received a pointer to,
2950 set DECL_RTL appropriately. */
2951 if (data->passed_pointer)
2953 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2954 set_mem_attributes (x, parm, 1);
2955 SET_DECL_RTL (parm, x);
2957 else
2958 SET_DECL_RTL (parm, parmreg);
2960 assign_parm_remove_parallels (data);
2962 /* Copy the value into the register, thus bridging between
2963 assign_parm_find_data_types and expand_expr_real_1. */
2965 equiv_stack_parm = data->stack_parm;
2966 validated_mem = validize_mem (data->entry_parm);
2968 need_conversion = (data->nominal_mode != data->passed_mode
2969 || promoted_nominal_mode != data->promoted_mode);
2970 moved = false;
2972 if (need_conversion
2973 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2974 && data->nominal_mode == data->passed_mode
2975 && data->nominal_mode == GET_MODE (data->entry_parm))
2977 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2978 mode, by the caller. We now have to convert it to
2979 NOMINAL_MODE, if different. However, PARMREG may be in
2980 a different mode than NOMINAL_MODE if it is being stored
2981 promoted.
2983 If ENTRY_PARM is a hard register, it might be in a register
2984 not valid for operating in its mode (e.g., an odd-numbered
2985 register for a DFmode). In that case, moves are the only
2986 thing valid, so we can't do a convert from there. This
2987 occurs when the calling sequence allow such misaligned
2988 usages.
2990 In addition, the conversion may involve a call, which could
2991 clobber parameters which haven't been copied to pseudo
2992 registers yet.
2994 First, we try to emit an insn which performs the necessary
2995 conversion. We verify that this insn does not clobber any
2996 hard registers. */
2998 enum insn_code icode;
2999 rtx op0, op1;
3001 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3002 unsignedp);
3004 op0 = parmreg;
3005 op1 = validated_mem;
3006 if (icode != CODE_FOR_nothing
3007 && insn_operand_matches (icode, 0, op0)
3008 && insn_operand_matches (icode, 1, op1))
3010 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3011 rtx insn, insns, t = op1;
3012 HARD_REG_SET hardregs;
3014 start_sequence ();
3015 /* If op1 is a hard register that is likely spilled, first
3016 force it into a pseudo, otherwise combiner might extend
3017 its lifetime too much. */
3018 if (GET_CODE (t) == SUBREG)
3019 t = SUBREG_REG (t);
3020 if (REG_P (t)
3021 && HARD_REGISTER_P (t)
3022 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3023 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3025 t = gen_reg_rtx (GET_MODE (op1));
3026 emit_move_insn (t, op1);
3028 else
3029 t = op1;
3030 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3031 data->passed_mode, unsignedp);
3032 emit_insn (insn);
3033 insns = get_insns ();
3035 moved = true;
3036 CLEAR_HARD_REG_SET (hardregs);
3037 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3039 if (INSN_P (insn))
3040 note_stores (PATTERN (insn), record_hard_reg_sets,
3041 &hardregs);
3042 if (!hard_reg_set_empty_p (hardregs))
3043 moved = false;
3046 end_sequence ();
3048 if (moved)
3050 emit_insn (insns);
3051 if (equiv_stack_parm != NULL_RTX)
3052 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3053 equiv_stack_parm);
3058 if (moved)
3059 /* Nothing to do. */
3061 else if (need_conversion)
3063 /* We did not have an insn to convert directly, or the sequence
3064 generated appeared unsafe. We must first copy the parm to a
3065 pseudo reg, and save the conversion until after all
3066 parameters have been moved. */
3068 int save_tree_used;
3069 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3071 emit_move_insn (tempreg, validated_mem);
3073 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3074 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3076 if (GET_CODE (tempreg) == SUBREG
3077 && GET_MODE (tempreg) == data->nominal_mode
3078 && REG_P (SUBREG_REG (tempreg))
3079 && data->nominal_mode == data->passed_mode
3080 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3081 && GET_MODE_SIZE (GET_MODE (tempreg))
3082 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3084 /* The argument is already sign/zero extended, so note it
3085 into the subreg. */
3086 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3087 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3090 /* TREE_USED gets set erroneously during expand_assignment. */
3091 save_tree_used = TREE_USED (parm);
3092 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3093 TREE_USED (parm) = save_tree_used;
3094 all->first_conversion_insn = get_insns ();
3095 all->last_conversion_insn = get_last_insn ();
3096 end_sequence ();
3098 did_conversion = true;
3100 else
3101 emit_move_insn (parmreg, validated_mem);
3103 /* If we were passed a pointer but the actual value can safely live
3104 in a register, put it in one. */
3105 if (data->passed_pointer
3106 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3107 /* If by-reference argument was promoted, demote it. */
3108 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3109 || use_register_for_decl (parm)))
3111 /* We can't use nominal_mode, because it will have been set to
3112 Pmode above. We must use the actual mode of the parm. */
3113 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3114 mark_user_reg (parmreg);
3116 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3118 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3119 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3121 push_to_sequence2 (all->first_conversion_insn,
3122 all->last_conversion_insn);
3123 emit_move_insn (tempreg, DECL_RTL (parm));
3124 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3125 emit_move_insn (parmreg, tempreg);
3126 all->first_conversion_insn = get_insns ();
3127 all->last_conversion_insn = get_last_insn ();
3128 end_sequence ();
3130 did_conversion = true;
3132 else
3133 emit_move_insn (parmreg, DECL_RTL (parm));
3135 SET_DECL_RTL (parm, parmreg);
3137 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3138 now the parm. */
3139 data->stack_parm = NULL;
3142 /* Mark the register as eliminable if we did no conversion and it was
3143 copied from memory at a fixed offset, and the arg pointer was not
3144 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3145 offset formed an invalid address, such memory-equivalences as we
3146 make here would screw up life analysis for it. */
3147 if (data->nominal_mode == data->passed_mode
3148 && !did_conversion
3149 && data->stack_parm != 0
3150 && MEM_P (data->stack_parm)
3151 && data->locate.offset.var == 0
3152 && reg_mentioned_p (virtual_incoming_args_rtx,
3153 XEXP (data->stack_parm, 0)))
3155 rtx linsn = get_last_insn ();
3156 rtx sinsn, set;
3158 /* Mark complex types separately. */
3159 if (GET_CODE (parmreg) == CONCAT)
3161 enum machine_mode submode
3162 = GET_MODE_INNER (GET_MODE (parmreg));
3163 int regnor = REGNO (XEXP (parmreg, 0));
3164 int regnoi = REGNO (XEXP (parmreg, 1));
3165 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3166 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3167 GET_MODE_SIZE (submode));
3169 /* Scan backwards for the set of the real and
3170 imaginary parts. */
3171 for (sinsn = linsn; sinsn != 0;
3172 sinsn = prev_nonnote_insn (sinsn))
3174 set = single_set (sinsn);
3175 if (set == 0)
3176 continue;
3178 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3179 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3180 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3181 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3184 else
3185 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3188 /* For pointer data type, suggest pointer register. */
3189 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3190 mark_reg_pointer (parmreg,
3191 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3194 /* A subroutine of assign_parms. Allocate stack space to hold the current
3195 parameter. Get it there. Perform all ABI specified conversions. */
3197 static void
3198 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3199 struct assign_parm_data_one *data)
3201 /* Value must be stored in the stack slot STACK_PARM during function
3202 execution. */
3203 bool to_conversion = false;
3205 assign_parm_remove_parallels (data);
3207 if (data->promoted_mode != data->nominal_mode)
3209 /* Conversion is required. */
3210 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3212 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3214 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3215 to_conversion = true;
3217 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3218 TYPE_UNSIGNED (TREE_TYPE (parm)));
3220 if (data->stack_parm)
3222 int offset = subreg_lowpart_offset (data->nominal_mode,
3223 GET_MODE (data->stack_parm));
3224 /* ??? This may need a big-endian conversion on sparc64. */
3225 data->stack_parm
3226 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3227 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3228 set_mem_offset (data->stack_parm,
3229 MEM_OFFSET (data->stack_parm) + offset);
3233 if (data->entry_parm != data->stack_parm)
3235 rtx src, dest;
3237 if (data->stack_parm == 0)
3239 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3240 GET_MODE (data->entry_parm),
3241 TYPE_ALIGN (data->passed_type));
3242 data->stack_parm
3243 = assign_stack_local (GET_MODE (data->entry_parm),
3244 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3245 align);
3246 set_mem_attributes (data->stack_parm, parm, 1);
3249 dest = validize_mem (data->stack_parm);
3250 src = validize_mem (data->entry_parm);
3252 if (MEM_P (src))
3254 /* Use a block move to handle potentially misaligned entry_parm. */
3255 if (!to_conversion)
3256 push_to_sequence2 (all->first_conversion_insn,
3257 all->last_conversion_insn);
3258 to_conversion = true;
3260 emit_block_move (dest, src,
3261 GEN_INT (int_size_in_bytes (data->passed_type)),
3262 BLOCK_OP_NORMAL);
3264 else
3265 emit_move_insn (dest, src);
3268 if (to_conversion)
3270 all->first_conversion_insn = get_insns ();
3271 all->last_conversion_insn = get_last_insn ();
3272 end_sequence ();
3275 SET_DECL_RTL (parm, data->stack_parm);
3278 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3279 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3281 static void
3282 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3283 vec<tree> fnargs)
3285 tree parm;
3286 tree orig_fnargs = all->orig_fnargs;
3287 unsigned i = 0;
3289 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3291 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3292 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3294 rtx tmp, real, imag;
3295 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3297 real = DECL_RTL (fnargs[i]);
3298 imag = DECL_RTL (fnargs[i + 1]);
3299 if (inner != GET_MODE (real))
3301 real = gen_lowpart_SUBREG (inner, real);
3302 imag = gen_lowpart_SUBREG (inner, imag);
3305 if (TREE_ADDRESSABLE (parm))
3307 rtx rmem, imem;
3308 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3309 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3310 DECL_MODE (parm),
3311 TYPE_ALIGN (TREE_TYPE (parm)));
3313 /* split_complex_arg put the real and imag parts in
3314 pseudos. Move them to memory. */
3315 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3316 set_mem_attributes (tmp, parm, 1);
3317 rmem = adjust_address_nv (tmp, inner, 0);
3318 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3319 push_to_sequence2 (all->first_conversion_insn,
3320 all->last_conversion_insn);
3321 emit_move_insn (rmem, real);
3322 emit_move_insn (imem, imag);
3323 all->first_conversion_insn = get_insns ();
3324 all->last_conversion_insn = get_last_insn ();
3325 end_sequence ();
3327 else
3328 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3329 SET_DECL_RTL (parm, tmp);
3331 real = DECL_INCOMING_RTL (fnargs[i]);
3332 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3333 if (inner != GET_MODE (real))
3335 real = gen_lowpart_SUBREG (inner, real);
3336 imag = gen_lowpart_SUBREG (inner, imag);
3338 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3339 set_decl_incoming_rtl (parm, tmp, false);
3340 i++;
3345 /* Assign RTL expressions to the function's parameters. This may involve
3346 copying them into registers and using those registers as the DECL_RTL. */
3348 static void
3349 assign_parms (tree fndecl)
3351 struct assign_parm_data_all all;
3352 tree parm;
3353 vec<tree> fnargs;
3354 unsigned i;
3356 crtl->args.internal_arg_pointer
3357 = targetm.calls.internal_arg_pointer ();
3359 assign_parms_initialize_all (&all);
3360 fnargs = assign_parms_augmented_arg_list (&all);
3362 FOR_EACH_VEC_ELT (fnargs, i, parm)
3364 struct assign_parm_data_one data;
3366 /* Extract the type of PARM; adjust it according to ABI. */
3367 assign_parm_find_data_types (&all, parm, &data);
3369 /* Early out for errors and void parameters. */
3370 if (data.passed_mode == VOIDmode)
3372 SET_DECL_RTL (parm, const0_rtx);
3373 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3374 continue;
3377 /* Estimate stack alignment from parameter alignment. */
3378 if (SUPPORTS_STACK_ALIGNMENT)
3380 unsigned int align
3381 = targetm.calls.function_arg_boundary (data.promoted_mode,
3382 data.passed_type);
3383 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3384 align);
3385 if (TYPE_ALIGN (data.nominal_type) > align)
3386 align = MINIMUM_ALIGNMENT (data.nominal_type,
3387 TYPE_MODE (data.nominal_type),
3388 TYPE_ALIGN (data.nominal_type));
3389 if (crtl->stack_alignment_estimated < align)
3391 gcc_assert (!crtl->stack_realign_processed);
3392 crtl->stack_alignment_estimated = align;
3396 if (cfun->stdarg && !DECL_CHAIN (parm))
3397 assign_parms_setup_varargs (&all, &data, false);
3399 /* Find out where the parameter arrives in this function. */
3400 assign_parm_find_entry_rtl (&all, &data);
3402 /* Find out where stack space for this parameter might be. */
3403 if (assign_parm_is_stack_parm (&all, &data))
3405 assign_parm_find_stack_rtl (parm, &data);
3406 assign_parm_adjust_entry_rtl (&data);
3409 /* Record permanently how this parm was passed. */
3410 if (data.passed_pointer)
3412 rtx incoming_rtl
3413 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3414 data.entry_parm);
3415 set_decl_incoming_rtl (parm, incoming_rtl, true);
3417 else
3418 set_decl_incoming_rtl (parm, data.entry_parm, false);
3420 /* Update info on where next arg arrives in registers. */
3421 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3422 data.passed_type, data.named_arg);
3424 assign_parm_adjust_stack_rtl (&data);
3426 if (assign_parm_setup_block_p (&data))
3427 assign_parm_setup_block (&all, parm, &data);
3428 else if (data.passed_pointer || use_register_for_decl (parm))
3429 assign_parm_setup_reg (&all, parm, &data);
3430 else
3431 assign_parm_setup_stack (&all, parm, &data);
3434 if (targetm.calls.split_complex_arg)
3435 assign_parms_unsplit_complex (&all, fnargs);
3437 fnargs.release ();
3439 /* Output all parameter conversion instructions (possibly including calls)
3440 now that all parameters have been copied out of hard registers. */
3441 emit_insn (all.first_conversion_insn);
3443 /* Estimate reload stack alignment from scalar return mode. */
3444 if (SUPPORTS_STACK_ALIGNMENT)
3446 if (DECL_RESULT (fndecl))
3448 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3449 enum machine_mode mode = TYPE_MODE (type);
3451 if (mode != BLKmode
3452 && mode != VOIDmode
3453 && !AGGREGATE_TYPE_P (type))
3455 unsigned int align = GET_MODE_ALIGNMENT (mode);
3456 if (crtl->stack_alignment_estimated < align)
3458 gcc_assert (!crtl->stack_realign_processed);
3459 crtl->stack_alignment_estimated = align;
3465 /* If we are receiving a struct value address as the first argument, set up
3466 the RTL for the function result. As this might require code to convert
3467 the transmitted address to Pmode, we do this here to ensure that possible
3468 preliminary conversions of the address have been emitted already. */
3469 if (all.function_result_decl)
3471 tree result = DECL_RESULT (current_function_decl);
3472 rtx addr = DECL_RTL (all.function_result_decl);
3473 rtx x;
3475 if (DECL_BY_REFERENCE (result))
3477 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3478 x = addr;
3480 else
3482 SET_DECL_VALUE_EXPR (result,
3483 build1 (INDIRECT_REF, TREE_TYPE (result),
3484 all.function_result_decl));
3485 addr = convert_memory_address (Pmode, addr);
3486 x = gen_rtx_MEM (DECL_MODE (result), addr);
3487 set_mem_attributes (x, result, 1);
3490 DECL_HAS_VALUE_EXPR_P (result) = 1;
3492 SET_DECL_RTL (result, x);
3495 /* We have aligned all the args, so add space for the pretend args. */
3496 crtl->args.pretend_args_size = all.pretend_args_size;
3497 all.stack_args_size.constant += all.extra_pretend_bytes;
3498 crtl->args.size = all.stack_args_size.constant;
3500 /* Adjust function incoming argument size for alignment and
3501 minimum length. */
3503 #ifdef REG_PARM_STACK_SPACE
3504 crtl->args.size = MAX (crtl->args.size,
3505 REG_PARM_STACK_SPACE (fndecl));
3506 #endif
3508 crtl->args.size = CEIL_ROUND (crtl->args.size,
3509 PARM_BOUNDARY / BITS_PER_UNIT);
3511 #ifdef ARGS_GROW_DOWNWARD
3512 crtl->args.arg_offset_rtx
3513 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3514 : expand_expr (size_diffop (all.stack_args_size.var,
3515 size_int (-all.stack_args_size.constant)),
3516 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3517 #else
3518 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3519 #endif
3521 /* See how many bytes, if any, of its args a function should try to pop
3522 on return. */
3524 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3525 TREE_TYPE (fndecl),
3526 crtl->args.size);
3528 /* For stdarg.h function, save info about
3529 regs and stack space used by the named args. */
3531 crtl->args.info = all.args_so_far_v;
3533 /* Set the rtx used for the function return value. Put this in its
3534 own variable so any optimizers that need this information don't have
3535 to include tree.h. Do this here so it gets done when an inlined
3536 function gets output. */
3538 crtl->return_rtx
3539 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3540 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3542 /* If scalar return value was computed in a pseudo-reg, or was a named
3543 return value that got dumped to the stack, copy that to the hard
3544 return register. */
3545 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3547 tree decl_result = DECL_RESULT (fndecl);
3548 rtx decl_rtl = DECL_RTL (decl_result);
3550 if (REG_P (decl_rtl)
3551 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3552 : DECL_REGISTER (decl_result))
3554 rtx real_decl_rtl;
3556 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3557 fndecl, true);
3558 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3559 /* The delay slot scheduler assumes that crtl->return_rtx
3560 holds the hard register containing the return value, not a
3561 temporary pseudo. */
3562 crtl->return_rtx = real_decl_rtl;
3567 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3568 For all seen types, gimplify their sizes. */
3570 static tree
3571 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3573 tree t = *tp;
3575 *walk_subtrees = 0;
3576 if (TYPE_P (t))
3578 if (POINTER_TYPE_P (t))
3579 *walk_subtrees = 1;
3580 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3581 && !TYPE_SIZES_GIMPLIFIED (t))
3583 gimplify_type_sizes (t, (gimple_seq *) data);
3584 *walk_subtrees = 1;
3588 return NULL;
3591 /* Gimplify the parameter list for current_function_decl. This involves
3592 evaluating SAVE_EXPRs of variable sized parameters and generating code
3593 to implement callee-copies reference parameters. Returns a sequence of
3594 statements to add to the beginning of the function. */
3596 gimple_seq
3597 gimplify_parameters (void)
3599 struct assign_parm_data_all all;
3600 tree parm;
3601 gimple_seq stmts = NULL;
3602 vec<tree> fnargs;
3603 unsigned i;
3605 assign_parms_initialize_all (&all);
3606 fnargs = assign_parms_augmented_arg_list (&all);
3608 FOR_EACH_VEC_ELT (fnargs, i, parm)
3610 struct assign_parm_data_one data;
3612 /* Extract the type of PARM; adjust it according to ABI. */
3613 assign_parm_find_data_types (&all, parm, &data);
3615 /* Early out for errors and void parameters. */
3616 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3617 continue;
3619 /* Update info on where next arg arrives in registers. */
3620 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3621 data.passed_type, data.named_arg);
3623 /* ??? Once upon a time variable_size stuffed parameter list
3624 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3625 turned out to be less than manageable in the gimple world.
3626 Now we have to hunt them down ourselves. */
3627 walk_tree_without_duplicates (&data.passed_type,
3628 gimplify_parm_type, &stmts);
3630 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3632 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3633 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3636 if (data.passed_pointer)
3638 tree type = TREE_TYPE (data.passed_type);
3639 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3640 type, data.named_arg))
3642 tree local, t;
3644 /* For constant-sized objects, this is trivial; for
3645 variable-sized objects, we have to play games. */
3646 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3647 && !(flag_stack_check == GENERIC_STACK_CHECK
3648 && compare_tree_int (DECL_SIZE_UNIT (parm),
3649 STACK_CHECK_MAX_VAR_SIZE) > 0))
3651 local = create_tmp_var (type, get_name (parm));
3652 DECL_IGNORED_P (local) = 0;
3653 /* If PARM was addressable, move that flag over
3654 to the local copy, as its address will be taken,
3655 not the PARMs. Keep the parms address taken
3656 as we'll query that flag during gimplification. */
3657 if (TREE_ADDRESSABLE (parm))
3658 TREE_ADDRESSABLE (local) = 1;
3659 else if (TREE_CODE (type) == COMPLEX_TYPE
3660 || TREE_CODE (type) == VECTOR_TYPE)
3661 DECL_GIMPLE_REG_P (local) = 1;
3663 else
3665 tree ptr_type, addr;
3667 ptr_type = build_pointer_type (type);
3668 addr = create_tmp_reg (ptr_type, get_name (parm));
3669 DECL_IGNORED_P (addr) = 0;
3670 local = build_fold_indirect_ref (addr);
3672 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3673 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3674 size_int (DECL_ALIGN (parm)));
3676 /* The call has been built for a variable-sized object. */
3677 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3678 t = fold_convert (ptr_type, t);
3679 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3680 gimplify_and_add (t, &stmts);
3683 gimplify_assign (local, parm, &stmts);
3685 SET_DECL_VALUE_EXPR (parm, local);
3686 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3691 fnargs.release ();
3693 return stmts;
3696 /* Compute the size and offset from the start of the stacked arguments for a
3697 parm passed in mode PASSED_MODE and with type TYPE.
3699 INITIAL_OFFSET_PTR points to the current offset into the stacked
3700 arguments.
3702 The starting offset and size for this parm are returned in
3703 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3704 nonzero, the offset is that of stack slot, which is returned in
3705 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3706 padding required from the initial offset ptr to the stack slot.
3708 IN_REGS is nonzero if the argument will be passed in registers. It will
3709 never be set if REG_PARM_STACK_SPACE is not defined.
3711 FNDECL is the function in which the argument was defined.
3713 There are two types of rounding that are done. The first, controlled by
3714 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3715 argument list to be aligned to the specific boundary (in bits). This
3716 rounding affects the initial and starting offsets, but not the argument
3717 size.
3719 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3720 optionally rounds the size of the parm to PARM_BOUNDARY. The
3721 initial offset is not affected by this rounding, while the size always
3722 is and the starting offset may be. */
3724 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3725 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3726 callers pass in the total size of args so far as
3727 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3729 void
3730 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3731 int partial, tree fndecl ATTRIBUTE_UNUSED,
3732 struct args_size *initial_offset_ptr,
3733 struct locate_and_pad_arg_data *locate)
3735 tree sizetree;
3736 enum direction where_pad;
3737 unsigned int boundary, round_boundary;
3738 int reg_parm_stack_space = 0;
3739 int part_size_in_regs;
3741 #ifdef REG_PARM_STACK_SPACE
3742 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3744 /* If we have found a stack parm before we reach the end of the
3745 area reserved for registers, skip that area. */
3746 if (! in_regs)
3748 if (reg_parm_stack_space > 0)
3750 if (initial_offset_ptr->var)
3752 initial_offset_ptr->var
3753 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3754 ssize_int (reg_parm_stack_space));
3755 initial_offset_ptr->constant = 0;
3757 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3758 initial_offset_ptr->constant = reg_parm_stack_space;
3761 #endif /* REG_PARM_STACK_SPACE */
3763 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3765 sizetree
3766 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3767 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3768 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3769 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3770 type);
3771 locate->where_pad = where_pad;
3773 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3774 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3775 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3777 locate->boundary = boundary;
3779 if (SUPPORTS_STACK_ALIGNMENT)
3781 /* stack_alignment_estimated can't change after stack has been
3782 realigned. */
3783 if (crtl->stack_alignment_estimated < boundary)
3785 if (!crtl->stack_realign_processed)
3786 crtl->stack_alignment_estimated = boundary;
3787 else
3789 /* If stack is realigned and stack alignment value
3790 hasn't been finalized, it is OK not to increase
3791 stack_alignment_estimated. The bigger alignment
3792 requirement is recorded in stack_alignment_needed
3793 below. */
3794 gcc_assert (!crtl->stack_realign_finalized
3795 && crtl->stack_realign_needed);
3800 /* Remember if the outgoing parameter requires extra alignment on the
3801 calling function side. */
3802 if (crtl->stack_alignment_needed < boundary)
3803 crtl->stack_alignment_needed = boundary;
3804 if (crtl->preferred_stack_boundary < boundary)
3805 crtl->preferred_stack_boundary = boundary;
3807 #ifdef ARGS_GROW_DOWNWARD
3808 locate->slot_offset.constant = -initial_offset_ptr->constant;
3809 if (initial_offset_ptr->var)
3810 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3811 initial_offset_ptr->var);
3814 tree s2 = sizetree;
3815 if (where_pad != none
3816 && (!host_integerp (sizetree, 1)
3817 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3818 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3819 SUB_PARM_SIZE (locate->slot_offset, s2);
3822 locate->slot_offset.constant += part_size_in_regs;
3824 if (!in_regs
3825 #ifdef REG_PARM_STACK_SPACE
3826 || REG_PARM_STACK_SPACE (fndecl) > 0
3827 #endif
3829 pad_to_arg_alignment (&locate->slot_offset, boundary,
3830 &locate->alignment_pad);
3832 locate->size.constant = (-initial_offset_ptr->constant
3833 - locate->slot_offset.constant);
3834 if (initial_offset_ptr->var)
3835 locate->size.var = size_binop (MINUS_EXPR,
3836 size_binop (MINUS_EXPR,
3837 ssize_int (0),
3838 initial_offset_ptr->var),
3839 locate->slot_offset.var);
3841 /* Pad_below needs the pre-rounded size to know how much to pad
3842 below. */
3843 locate->offset = locate->slot_offset;
3844 if (where_pad == downward)
3845 pad_below (&locate->offset, passed_mode, sizetree);
3847 #else /* !ARGS_GROW_DOWNWARD */
3848 if (!in_regs
3849 #ifdef REG_PARM_STACK_SPACE
3850 || REG_PARM_STACK_SPACE (fndecl) > 0
3851 #endif
3853 pad_to_arg_alignment (initial_offset_ptr, boundary,
3854 &locate->alignment_pad);
3855 locate->slot_offset = *initial_offset_ptr;
3857 #ifdef PUSH_ROUNDING
3858 if (passed_mode != BLKmode)
3859 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3860 #endif
3862 /* Pad_below needs the pre-rounded size to know how much to pad below
3863 so this must be done before rounding up. */
3864 locate->offset = locate->slot_offset;
3865 if (where_pad == downward)
3866 pad_below (&locate->offset, passed_mode, sizetree);
3868 if (where_pad != none
3869 && (!host_integerp (sizetree, 1)
3870 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3871 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3873 ADD_PARM_SIZE (locate->size, sizetree);
3875 locate->size.constant -= part_size_in_regs;
3876 #endif /* ARGS_GROW_DOWNWARD */
3878 #ifdef FUNCTION_ARG_OFFSET
3879 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3880 #endif
3883 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3884 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3886 static void
3887 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3888 struct args_size *alignment_pad)
3890 tree save_var = NULL_TREE;
3891 HOST_WIDE_INT save_constant = 0;
3892 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3893 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3895 #ifdef SPARC_STACK_BOUNDARY_HACK
3896 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3897 the real alignment of %sp. However, when it does this, the
3898 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3899 if (SPARC_STACK_BOUNDARY_HACK)
3900 sp_offset = 0;
3901 #endif
3903 if (boundary > PARM_BOUNDARY)
3905 save_var = offset_ptr->var;
3906 save_constant = offset_ptr->constant;
3909 alignment_pad->var = NULL_TREE;
3910 alignment_pad->constant = 0;
3912 if (boundary > BITS_PER_UNIT)
3914 if (offset_ptr->var)
3916 tree sp_offset_tree = ssize_int (sp_offset);
3917 tree offset = size_binop (PLUS_EXPR,
3918 ARGS_SIZE_TREE (*offset_ptr),
3919 sp_offset_tree);
3920 #ifdef ARGS_GROW_DOWNWARD
3921 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3922 #else
3923 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3924 #endif
3926 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3927 /* ARGS_SIZE_TREE includes constant term. */
3928 offset_ptr->constant = 0;
3929 if (boundary > PARM_BOUNDARY)
3930 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3931 save_var);
3933 else
3935 offset_ptr->constant = -sp_offset +
3936 #ifdef ARGS_GROW_DOWNWARD
3937 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3938 #else
3939 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3940 #endif
3941 if (boundary > PARM_BOUNDARY)
3942 alignment_pad->constant = offset_ptr->constant - save_constant;
3947 static void
3948 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3950 if (passed_mode != BLKmode)
3952 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3953 offset_ptr->constant
3954 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3955 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3956 - GET_MODE_SIZE (passed_mode));
3958 else
3960 if (TREE_CODE (sizetree) != INTEGER_CST
3961 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3963 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3964 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3965 /* Add it in. */
3966 ADD_PARM_SIZE (*offset_ptr, s2);
3967 SUB_PARM_SIZE (*offset_ptr, sizetree);
3973 /* True if register REGNO was alive at a place where `setjmp' was
3974 called and was set more than once or is an argument. Such regs may
3975 be clobbered by `longjmp'. */
3977 static bool
3978 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3980 /* There appear to be cases where some local vars never reach the
3981 backend but have bogus regnos. */
3982 if (regno >= max_reg_num ())
3983 return false;
3985 return ((REG_N_SETS (regno) > 1
3986 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3987 && REGNO_REG_SET_P (setjmp_crosses, regno));
3990 /* Walk the tree of blocks describing the binding levels within a
3991 function and warn about variables the might be killed by setjmp or
3992 vfork. This is done after calling flow_analysis before register
3993 allocation since that will clobber the pseudo-regs to hard
3994 regs. */
3996 static void
3997 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3999 tree decl, sub;
4001 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4003 if (TREE_CODE (decl) == VAR_DECL
4004 && DECL_RTL_SET_P (decl)
4005 && REG_P (DECL_RTL (decl))
4006 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4007 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4008 " %<longjmp%> or %<vfork%>", decl);
4011 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4012 setjmp_vars_warning (setjmp_crosses, sub);
4015 /* Do the appropriate part of setjmp_vars_warning
4016 but for arguments instead of local variables. */
4018 static void
4019 setjmp_args_warning (bitmap setjmp_crosses)
4021 tree decl;
4022 for (decl = DECL_ARGUMENTS (current_function_decl);
4023 decl; decl = DECL_CHAIN (decl))
4024 if (DECL_RTL (decl) != 0
4025 && REG_P (DECL_RTL (decl))
4026 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4027 warning (OPT_Wclobbered,
4028 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4029 decl);
4032 /* Generate warning messages for variables live across setjmp. */
4034 void
4035 generate_setjmp_warnings (void)
4037 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4039 if (n_basic_blocks == NUM_FIXED_BLOCKS
4040 || bitmap_empty_p (setjmp_crosses))
4041 return;
4043 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4044 setjmp_args_warning (setjmp_crosses);
4048 /* Reverse the order of elements in the fragment chain T of blocks,
4049 and return the new head of the chain (old last element).
4050 In addition to that clear BLOCK_SAME_RANGE flags when needed
4051 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4052 its super fragment origin. */
4054 static tree
4055 block_fragments_nreverse (tree t)
4057 tree prev = 0, block, next, prev_super = 0;
4058 tree super = BLOCK_SUPERCONTEXT (t);
4059 if (BLOCK_FRAGMENT_ORIGIN (super))
4060 super = BLOCK_FRAGMENT_ORIGIN (super);
4061 for (block = t; block; block = next)
4063 next = BLOCK_FRAGMENT_CHAIN (block);
4064 BLOCK_FRAGMENT_CHAIN (block) = prev;
4065 if ((prev && !BLOCK_SAME_RANGE (prev))
4066 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4067 != prev_super))
4068 BLOCK_SAME_RANGE (block) = 0;
4069 prev_super = BLOCK_SUPERCONTEXT (block);
4070 BLOCK_SUPERCONTEXT (block) = super;
4071 prev = block;
4073 t = BLOCK_FRAGMENT_ORIGIN (t);
4074 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4075 != prev_super)
4076 BLOCK_SAME_RANGE (t) = 0;
4077 BLOCK_SUPERCONTEXT (t) = super;
4078 return prev;
4081 /* Reverse the order of elements in the chain T of blocks,
4082 and return the new head of the chain (old last element).
4083 Also do the same on subblocks and reverse the order of elements
4084 in BLOCK_FRAGMENT_CHAIN as well. */
4086 static tree
4087 blocks_nreverse_all (tree t)
4089 tree prev = 0, block, next;
4090 for (block = t; block; block = next)
4092 next = BLOCK_CHAIN (block);
4093 BLOCK_CHAIN (block) = prev;
4094 if (BLOCK_FRAGMENT_CHAIN (block)
4095 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4097 BLOCK_FRAGMENT_CHAIN (block)
4098 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4099 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4100 BLOCK_SAME_RANGE (block) = 0;
4102 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4103 prev = block;
4105 return prev;
4109 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4110 and create duplicate blocks. */
4111 /* ??? Need an option to either create block fragments or to create
4112 abstract origin duplicates of a source block. It really depends
4113 on what optimization has been performed. */
4115 void
4116 reorder_blocks (void)
4118 tree block = DECL_INITIAL (current_function_decl);
4119 vec<tree> block_stack;
4121 if (block == NULL_TREE)
4122 return;
4124 block_stack.create (10);
4126 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4127 clear_block_marks (block);
4129 /* Prune the old trees away, so that they don't get in the way. */
4130 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4131 BLOCK_CHAIN (block) = NULL_TREE;
4133 /* Recreate the block tree from the note nesting. */
4134 reorder_blocks_1 (get_insns (), block, &block_stack);
4135 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4137 block_stack.release ();
4140 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4142 void
4143 clear_block_marks (tree block)
4145 while (block)
4147 TREE_ASM_WRITTEN (block) = 0;
4148 clear_block_marks (BLOCK_SUBBLOCKS (block));
4149 block = BLOCK_CHAIN (block);
4153 static void
4154 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4156 rtx insn;
4157 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4159 for (insn = insns; insn; insn = NEXT_INSN (insn))
4161 if (NOTE_P (insn))
4163 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4165 tree block = NOTE_BLOCK (insn);
4166 tree origin;
4168 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4169 origin = block;
4171 if (prev_end)
4172 BLOCK_SAME_RANGE (prev_end) = 0;
4173 prev_end = NULL_TREE;
4175 /* If we have seen this block before, that means it now
4176 spans multiple address regions. Create a new fragment. */
4177 if (TREE_ASM_WRITTEN (block))
4179 tree new_block = copy_node (block);
4181 BLOCK_SAME_RANGE (new_block) = 0;
4182 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4183 BLOCK_FRAGMENT_CHAIN (new_block)
4184 = BLOCK_FRAGMENT_CHAIN (origin);
4185 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4187 NOTE_BLOCK (insn) = new_block;
4188 block = new_block;
4191 if (prev_beg == current_block && prev_beg)
4192 BLOCK_SAME_RANGE (block) = 1;
4194 prev_beg = origin;
4196 BLOCK_SUBBLOCKS (block) = 0;
4197 TREE_ASM_WRITTEN (block) = 1;
4198 /* When there's only one block for the entire function,
4199 current_block == block and we mustn't do this, it
4200 will cause infinite recursion. */
4201 if (block != current_block)
4203 tree super;
4204 if (block != origin)
4205 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4206 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4207 (origin))
4208 == current_block);
4209 if (p_block_stack->is_empty ())
4210 super = current_block;
4211 else
4213 super = p_block_stack->last ();
4214 gcc_assert (super == current_block
4215 || BLOCK_FRAGMENT_ORIGIN (super)
4216 == current_block);
4218 BLOCK_SUPERCONTEXT (block) = super;
4219 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4220 BLOCK_SUBBLOCKS (current_block) = block;
4221 current_block = origin;
4223 p_block_stack->safe_push (block);
4225 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4227 NOTE_BLOCK (insn) = p_block_stack->pop ();
4228 current_block = BLOCK_SUPERCONTEXT (current_block);
4229 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4230 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4231 prev_beg = NULL_TREE;
4232 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4233 ? NOTE_BLOCK (insn) : NULL_TREE;
4236 else
4238 prev_beg = NULL_TREE;
4239 if (prev_end)
4240 BLOCK_SAME_RANGE (prev_end) = 0;
4241 prev_end = NULL_TREE;
4246 /* Reverse the order of elements in the chain T of blocks,
4247 and return the new head of the chain (old last element). */
4249 tree
4250 blocks_nreverse (tree t)
4252 tree prev = 0, block, next;
4253 for (block = t; block; block = next)
4255 next = BLOCK_CHAIN (block);
4256 BLOCK_CHAIN (block) = prev;
4257 prev = block;
4259 return prev;
4262 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4263 by modifying the last node in chain 1 to point to chain 2. */
4265 tree
4266 block_chainon (tree op1, tree op2)
4268 tree t1;
4270 if (!op1)
4271 return op2;
4272 if (!op2)
4273 return op1;
4275 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4276 continue;
4277 BLOCK_CHAIN (t1) = op2;
4279 #ifdef ENABLE_TREE_CHECKING
4281 tree t2;
4282 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4283 gcc_assert (t2 != t1);
4285 #endif
4287 return op1;
4290 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4291 non-NULL, list them all into VECTOR, in a depth-first preorder
4292 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4293 blocks. */
4295 static int
4296 all_blocks (tree block, tree *vector)
4298 int n_blocks = 0;
4300 while (block)
4302 TREE_ASM_WRITTEN (block) = 0;
4304 /* Record this block. */
4305 if (vector)
4306 vector[n_blocks] = block;
4308 ++n_blocks;
4310 /* Record the subblocks, and their subblocks... */
4311 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4312 vector ? vector + n_blocks : 0);
4313 block = BLOCK_CHAIN (block);
4316 return n_blocks;
4319 /* Return a vector containing all the blocks rooted at BLOCK. The
4320 number of elements in the vector is stored in N_BLOCKS_P. The
4321 vector is dynamically allocated; it is the caller's responsibility
4322 to call `free' on the pointer returned. */
4324 static tree *
4325 get_block_vector (tree block, int *n_blocks_p)
4327 tree *block_vector;
4329 *n_blocks_p = all_blocks (block, NULL);
4330 block_vector = XNEWVEC (tree, *n_blocks_p);
4331 all_blocks (block, block_vector);
4333 return block_vector;
4336 static GTY(()) int next_block_index = 2;
4338 /* Set BLOCK_NUMBER for all the blocks in FN. */
4340 void
4341 number_blocks (tree fn)
4343 int i;
4344 int n_blocks;
4345 tree *block_vector;
4347 /* For SDB and XCOFF debugging output, we start numbering the blocks
4348 from 1 within each function, rather than keeping a running
4349 count. */
4350 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4351 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4352 next_block_index = 1;
4353 #endif
4355 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4357 /* The top-level BLOCK isn't numbered at all. */
4358 for (i = 1; i < n_blocks; ++i)
4359 /* We number the blocks from two. */
4360 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4362 free (block_vector);
4364 return;
4367 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4369 DEBUG_FUNCTION tree
4370 debug_find_var_in_block_tree (tree var, tree block)
4372 tree t;
4374 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4375 if (t == var)
4376 return block;
4378 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4380 tree ret = debug_find_var_in_block_tree (var, t);
4381 if (ret)
4382 return ret;
4385 return NULL_TREE;
4388 /* Keep track of whether we're in a dummy function context. If we are,
4389 we don't want to invoke the set_current_function hook, because we'll
4390 get into trouble if the hook calls target_reinit () recursively or
4391 when the initial initialization is not yet complete. */
4393 static bool in_dummy_function;
4395 /* Invoke the target hook when setting cfun. Update the optimization options
4396 if the function uses different options than the default. */
4398 static void
4399 invoke_set_current_function_hook (tree fndecl)
4401 if (!in_dummy_function)
4403 tree opts = ((fndecl)
4404 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4405 : optimization_default_node);
4407 if (!opts)
4408 opts = optimization_default_node;
4410 /* Change optimization options if needed. */
4411 if (optimization_current_node != opts)
4413 optimization_current_node = opts;
4414 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4417 targetm.set_current_function (fndecl);
4418 this_fn_optabs = this_target_optabs;
4420 if (opts != optimization_default_node)
4422 init_tree_optimization_optabs (opts);
4423 if (TREE_OPTIMIZATION_OPTABS (opts))
4424 this_fn_optabs = (struct target_optabs *)
4425 TREE_OPTIMIZATION_OPTABS (opts);
4430 /* cfun should never be set directly; use this function. */
4432 void
4433 set_cfun (struct function *new_cfun)
4435 if (cfun != new_cfun)
4437 cfun = new_cfun;
4438 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4442 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4444 static vec<function_p> cfun_stack;
4446 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4447 current_function_decl accordingly. */
4449 void
4450 push_cfun (struct function *new_cfun)
4452 gcc_assert ((!cfun && !current_function_decl)
4453 || (cfun && current_function_decl == cfun->decl));
4454 cfun_stack.safe_push (cfun);
4455 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4456 set_cfun (new_cfun);
4459 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4461 void
4462 pop_cfun (void)
4464 struct function *new_cfun = cfun_stack.pop ();
4465 /* When in_dummy_function, we do have a cfun but current_function_decl is
4466 NULL. We also allow pushing NULL cfun and subsequently changing
4467 current_function_decl to something else and have both restored by
4468 pop_cfun. */
4469 gcc_checking_assert (in_dummy_function
4470 || !cfun
4471 || current_function_decl == cfun->decl);
4472 set_cfun (new_cfun);
4473 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4476 /* Return value of funcdef and increase it. */
4478 get_next_funcdef_no (void)
4480 return funcdef_no++;
4483 /* Return value of funcdef. */
4485 get_last_funcdef_no (void)
4487 return funcdef_no;
4490 /* Allocate a function structure for FNDECL and set its contents
4491 to the defaults. Set cfun to the newly-allocated object.
4492 Some of the helper functions invoked during initialization assume
4493 that cfun has already been set. Therefore, assign the new object
4494 directly into cfun and invoke the back end hook explicitly at the
4495 very end, rather than initializing a temporary and calling set_cfun
4496 on it.
4498 ABSTRACT_P is true if this is a function that will never be seen by
4499 the middle-end. Such functions are front-end concepts (like C++
4500 function templates) that do not correspond directly to functions
4501 placed in object files. */
4503 void
4504 allocate_struct_function (tree fndecl, bool abstract_p)
4506 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4508 cfun = ggc_alloc_cleared_function ();
4510 init_eh_for_function ();
4512 if (init_machine_status)
4513 cfun->machine = (*init_machine_status) ();
4515 #ifdef OVERRIDE_ABI_FORMAT
4516 OVERRIDE_ABI_FORMAT (fndecl);
4517 #endif
4519 if (fndecl != NULL_TREE)
4521 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4522 cfun->decl = fndecl;
4523 current_function_funcdef_no = get_next_funcdef_no ();
4526 invoke_set_current_function_hook (fndecl);
4528 if (fndecl != NULL_TREE)
4530 tree result = DECL_RESULT (fndecl);
4531 if (!abstract_p && aggregate_value_p (result, fndecl))
4533 #ifdef PCC_STATIC_STRUCT_RETURN
4534 cfun->returns_pcc_struct = 1;
4535 #endif
4536 cfun->returns_struct = 1;
4539 cfun->stdarg = stdarg_p (fntype);
4541 /* Assume all registers in stdarg functions need to be saved. */
4542 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4543 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4545 /* ??? This could be set on a per-function basis by the front-end
4546 but is this worth the hassle? */
4547 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4551 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4552 instead of just setting it. */
4554 void
4555 push_struct_function (tree fndecl)
4557 /* When in_dummy_function we might be in the middle of a pop_cfun and
4558 current_function_decl and cfun may not match. */
4559 gcc_assert (in_dummy_function
4560 || (!cfun && !current_function_decl)
4561 || (cfun && current_function_decl == cfun->decl));
4562 cfun_stack.safe_push (cfun);
4563 current_function_decl = fndecl;
4564 allocate_struct_function (fndecl, false);
4567 /* Reset crtl and other non-struct-function variables to defaults as
4568 appropriate for emitting rtl at the start of a function. */
4570 static void
4571 prepare_function_start (void)
4573 gcc_assert (!crtl->emit.x_last_insn);
4574 init_temp_slots ();
4575 init_emit ();
4576 init_varasm_status ();
4577 init_expr ();
4578 default_rtl_profile ();
4580 if (flag_stack_usage_info)
4582 cfun->su = ggc_alloc_cleared_stack_usage ();
4583 cfun->su->static_stack_size = -1;
4586 cse_not_expected = ! optimize;
4588 /* Caller save not needed yet. */
4589 caller_save_needed = 0;
4591 /* We haven't done register allocation yet. */
4592 reg_renumber = 0;
4594 /* Indicate that we have not instantiated virtual registers yet. */
4595 virtuals_instantiated = 0;
4597 /* Indicate that we want CONCATs now. */
4598 generating_concat_p = 1;
4600 /* Indicate we have no need of a frame pointer yet. */
4601 frame_pointer_needed = 0;
4604 /* Initialize the rtl expansion mechanism so that we can do simple things
4605 like generate sequences. This is used to provide a context during global
4606 initialization of some passes. You must call expand_dummy_function_end
4607 to exit this context. */
4609 void
4610 init_dummy_function_start (void)
4612 gcc_assert (!in_dummy_function);
4613 in_dummy_function = true;
4614 push_struct_function (NULL_TREE);
4615 prepare_function_start ();
4618 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4619 and initialize static variables for generating RTL for the statements
4620 of the function. */
4622 void
4623 init_function_start (tree subr)
4625 if (subr && DECL_STRUCT_FUNCTION (subr))
4626 set_cfun (DECL_STRUCT_FUNCTION (subr));
4627 else
4628 allocate_struct_function (subr, false);
4629 prepare_function_start ();
4630 decide_function_section (subr);
4632 /* Warn if this value is an aggregate type,
4633 regardless of which calling convention we are using for it. */
4634 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4635 warning (OPT_Waggregate_return, "function returns an aggregate");
4639 void
4640 expand_main_function (void)
4642 #if (defined(INVOKE__main) \
4643 || (!defined(HAS_INIT_SECTION) \
4644 && !defined(INIT_SECTION_ASM_OP) \
4645 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4646 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4647 #endif
4650 /* Expand code to initialize the stack_protect_guard. This is invoked at
4651 the beginning of a function to be protected. */
4653 #ifndef HAVE_stack_protect_set
4654 # define HAVE_stack_protect_set 0
4655 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4656 #endif
4658 void
4659 stack_protect_prologue (void)
4661 tree guard_decl = targetm.stack_protect_guard ();
4662 rtx x, y;
4664 x = expand_normal (crtl->stack_protect_guard);
4665 y = expand_normal (guard_decl);
4667 /* Allow the target to copy from Y to X without leaking Y into a
4668 register. */
4669 if (HAVE_stack_protect_set)
4671 rtx insn = gen_stack_protect_set (x, y);
4672 if (insn)
4674 emit_insn (insn);
4675 return;
4679 /* Otherwise do a straight move. */
4680 emit_move_insn (x, y);
4683 /* Expand code to verify the stack_protect_guard. This is invoked at
4684 the end of a function to be protected. */
4686 #ifndef HAVE_stack_protect_test
4687 # define HAVE_stack_protect_test 0
4688 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4689 #endif
4691 void
4692 stack_protect_epilogue (void)
4694 tree guard_decl = targetm.stack_protect_guard ();
4695 rtx label = gen_label_rtx ();
4696 rtx x, y, tmp;
4698 x = expand_normal (crtl->stack_protect_guard);
4699 y = expand_normal (guard_decl);
4701 /* Allow the target to compare Y with X without leaking either into
4702 a register. */
4703 switch (HAVE_stack_protect_test != 0)
4705 case 1:
4706 tmp = gen_stack_protect_test (x, y, label);
4707 if (tmp)
4709 emit_insn (tmp);
4710 break;
4712 /* FALLTHRU */
4714 default:
4715 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4716 break;
4719 /* The noreturn predictor has been moved to the tree level. The rtl-level
4720 predictors estimate this branch about 20%, which isn't enough to get
4721 things moved out of line. Since this is the only extant case of adding
4722 a noreturn function at the rtl level, it doesn't seem worth doing ought
4723 except adding the prediction by hand. */
4724 tmp = get_last_insn ();
4725 if (JUMP_P (tmp))
4726 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4728 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4729 free_temp_slots ();
4730 emit_label (label);
4733 /* Start the RTL for a new function, and set variables used for
4734 emitting RTL.
4735 SUBR is the FUNCTION_DECL node.
4736 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4737 the function's parameters, which must be run at any return statement. */
4739 void
4740 expand_function_start (tree subr)
4742 /* Make sure volatile mem refs aren't considered
4743 valid operands of arithmetic insns. */
4744 init_recog_no_volatile ();
4746 crtl->profile
4747 = (profile_flag
4748 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4750 crtl->limit_stack
4751 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4753 /* Make the label for return statements to jump to. Do not special
4754 case machines with special return instructions -- they will be
4755 handled later during jump, ifcvt, or epilogue creation. */
4756 return_label = gen_label_rtx ();
4758 /* Initialize rtx used to return the value. */
4759 /* Do this before assign_parms so that we copy the struct value address
4760 before any library calls that assign parms might generate. */
4762 /* Decide whether to return the value in memory or in a register. */
4763 if (aggregate_value_p (DECL_RESULT (subr), subr))
4765 /* Returning something that won't go in a register. */
4766 rtx value_address = 0;
4768 #ifdef PCC_STATIC_STRUCT_RETURN
4769 if (cfun->returns_pcc_struct)
4771 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4772 value_address = assemble_static_space (size);
4774 else
4775 #endif
4777 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4778 /* Expect to be passed the address of a place to store the value.
4779 If it is passed as an argument, assign_parms will take care of
4780 it. */
4781 if (sv)
4783 value_address = gen_reg_rtx (Pmode);
4784 emit_move_insn (value_address, sv);
4787 if (value_address)
4789 rtx x = value_address;
4790 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4792 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4793 set_mem_attributes (x, DECL_RESULT (subr), 1);
4795 SET_DECL_RTL (DECL_RESULT (subr), x);
4798 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4799 /* If return mode is void, this decl rtl should not be used. */
4800 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4801 else
4803 /* Compute the return values into a pseudo reg, which we will copy
4804 into the true return register after the cleanups are done. */
4805 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4806 if (TYPE_MODE (return_type) != BLKmode
4807 && targetm.calls.return_in_msb (return_type))
4808 /* expand_function_end will insert the appropriate padding in
4809 this case. Use the return value's natural (unpadded) mode
4810 within the function proper. */
4811 SET_DECL_RTL (DECL_RESULT (subr),
4812 gen_reg_rtx (TYPE_MODE (return_type)));
4813 else
4815 /* In order to figure out what mode to use for the pseudo, we
4816 figure out what the mode of the eventual return register will
4817 actually be, and use that. */
4818 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4820 /* Structures that are returned in registers are not
4821 aggregate_value_p, so we may see a PARALLEL or a REG. */
4822 if (REG_P (hard_reg))
4823 SET_DECL_RTL (DECL_RESULT (subr),
4824 gen_reg_rtx (GET_MODE (hard_reg)));
4825 else
4827 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4828 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4832 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4833 result to the real return register(s). */
4834 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4837 /* Initialize rtx for parameters and local variables.
4838 In some cases this requires emitting insns. */
4839 assign_parms (subr);
4841 /* If function gets a static chain arg, store it. */
4842 if (cfun->static_chain_decl)
4844 tree parm = cfun->static_chain_decl;
4845 rtx local, chain, insn;
4847 local = gen_reg_rtx (Pmode);
4848 chain = targetm.calls.static_chain (current_function_decl, true);
4850 set_decl_incoming_rtl (parm, chain, false);
4851 SET_DECL_RTL (parm, local);
4852 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4854 insn = emit_move_insn (local, chain);
4856 /* Mark the register as eliminable, similar to parameters. */
4857 if (MEM_P (chain)
4858 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4859 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4862 /* If the function receives a non-local goto, then store the
4863 bits we need to restore the frame pointer. */
4864 if (cfun->nonlocal_goto_save_area)
4866 tree t_save;
4867 rtx r_save;
4869 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4870 gcc_assert (DECL_RTL_SET_P (var));
4872 t_save = build4 (ARRAY_REF,
4873 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4874 cfun->nonlocal_goto_save_area,
4875 integer_zero_node, NULL_TREE, NULL_TREE);
4876 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4877 gcc_assert (GET_MODE (r_save) == Pmode);
4879 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4880 update_nonlocal_goto_save_area ();
4883 /* The following was moved from init_function_start.
4884 The move is supposed to make sdb output more accurate. */
4885 /* Indicate the beginning of the function body,
4886 as opposed to parm setup. */
4887 emit_note (NOTE_INSN_FUNCTION_BEG);
4889 gcc_assert (NOTE_P (get_last_insn ()));
4891 parm_birth_insn = get_last_insn ();
4893 if (crtl->profile)
4895 #ifdef PROFILE_HOOK
4896 PROFILE_HOOK (current_function_funcdef_no);
4897 #endif
4900 /* If we are doing generic stack checking, the probe should go here. */
4901 if (flag_stack_check == GENERIC_STACK_CHECK)
4902 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4905 /* Undo the effects of init_dummy_function_start. */
4906 void
4907 expand_dummy_function_end (void)
4909 gcc_assert (in_dummy_function);
4911 /* End any sequences that failed to be closed due to syntax errors. */
4912 while (in_sequence_p ())
4913 end_sequence ();
4915 /* Outside function body, can't compute type's actual size
4916 until next function's body starts. */
4918 free_after_parsing (cfun);
4919 free_after_compilation (cfun);
4920 pop_cfun ();
4921 in_dummy_function = false;
4924 /* Call DOIT for each hard register used as a return value from
4925 the current function. */
4927 void
4928 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4930 rtx outgoing = crtl->return_rtx;
4932 if (! outgoing)
4933 return;
4935 if (REG_P (outgoing))
4936 (*doit) (outgoing, arg);
4937 else if (GET_CODE (outgoing) == PARALLEL)
4939 int i;
4941 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4943 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4945 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4946 (*doit) (x, arg);
4951 static void
4952 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4954 emit_clobber (reg);
4957 void
4958 clobber_return_register (void)
4960 diddle_return_value (do_clobber_return_reg, NULL);
4962 /* In case we do use pseudo to return value, clobber it too. */
4963 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4965 tree decl_result = DECL_RESULT (current_function_decl);
4966 rtx decl_rtl = DECL_RTL (decl_result);
4967 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4969 do_clobber_return_reg (decl_rtl, NULL);
4974 static void
4975 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4977 emit_use (reg);
4980 static void
4981 use_return_register (void)
4983 diddle_return_value (do_use_return_reg, NULL);
4986 /* Possibly warn about unused parameters. */
4987 void
4988 do_warn_unused_parameter (tree fn)
4990 tree decl;
4992 for (decl = DECL_ARGUMENTS (fn);
4993 decl; decl = DECL_CHAIN (decl))
4994 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4995 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4996 && !TREE_NO_WARNING (decl))
4997 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5000 /* Generate RTL for the end of the current function. */
5002 void
5003 expand_function_end (void)
5005 rtx clobber_after;
5007 /* If arg_pointer_save_area was referenced only from a nested
5008 function, we will not have initialized it yet. Do that now. */
5009 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5010 get_arg_pointer_save_area ();
5012 /* If we are doing generic stack checking and this function makes calls,
5013 do a stack probe at the start of the function to ensure we have enough
5014 space for another stack frame. */
5015 if (flag_stack_check == GENERIC_STACK_CHECK)
5017 rtx insn, seq;
5019 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5020 if (CALL_P (insn))
5022 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5023 start_sequence ();
5024 if (STACK_CHECK_MOVING_SP)
5025 anti_adjust_stack_and_probe (max_frame_size, true);
5026 else
5027 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5028 seq = get_insns ();
5029 end_sequence ();
5030 set_insn_locations (seq, prologue_location);
5031 emit_insn_before (seq, stack_check_probe_note);
5032 break;
5036 /* End any sequences that failed to be closed due to syntax errors. */
5037 while (in_sequence_p ())
5038 end_sequence ();
5040 clear_pending_stack_adjust ();
5041 do_pending_stack_adjust ();
5043 /* Output a linenumber for the end of the function.
5044 SDB depends on this. */
5045 set_curr_insn_location (input_location);
5047 /* Before the return label (if any), clobber the return
5048 registers so that they are not propagated live to the rest of
5049 the function. This can only happen with functions that drop
5050 through; if there had been a return statement, there would
5051 have either been a return rtx, or a jump to the return label.
5053 We delay actual code generation after the current_function_value_rtx
5054 is computed. */
5055 clobber_after = get_last_insn ();
5057 /* Output the label for the actual return from the function. */
5058 emit_label (return_label);
5060 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5062 /* Let except.c know where it should emit the call to unregister
5063 the function context for sjlj exceptions. */
5064 if (flag_exceptions)
5065 sjlj_emit_function_exit_after (get_last_insn ());
5067 else
5069 /* We want to ensure that instructions that may trap are not
5070 moved into the epilogue by scheduling, because we don't
5071 always emit unwind information for the epilogue. */
5072 if (cfun->can_throw_non_call_exceptions)
5073 emit_insn (gen_blockage ());
5076 /* If this is an implementation of throw, do what's necessary to
5077 communicate between __builtin_eh_return and the epilogue. */
5078 expand_eh_return ();
5080 /* If scalar return value was computed in a pseudo-reg, or was a named
5081 return value that got dumped to the stack, copy that to the hard
5082 return register. */
5083 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5085 tree decl_result = DECL_RESULT (current_function_decl);
5086 rtx decl_rtl = DECL_RTL (decl_result);
5088 if (REG_P (decl_rtl)
5089 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5090 : DECL_REGISTER (decl_result))
5092 rtx real_decl_rtl = crtl->return_rtx;
5094 /* This should be set in assign_parms. */
5095 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5097 /* If this is a BLKmode structure being returned in registers,
5098 then use the mode computed in expand_return. Note that if
5099 decl_rtl is memory, then its mode may have been changed,
5100 but that crtl->return_rtx has not. */
5101 if (GET_MODE (real_decl_rtl) == BLKmode)
5102 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5104 /* If a non-BLKmode return value should be padded at the least
5105 significant end of the register, shift it left by the appropriate
5106 amount. BLKmode results are handled using the group load/store
5107 machinery. */
5108 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5109 && REG_P (real_decl_rtl)
5110 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5112 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5113 REGNO (real_decl_rtl)),
5114 decl_rtl);
5115 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5117 /* If a named return value dumped decl_return to memory, then
5118 we may need to re-do the PROMOTE_MODE signed/unsigned
5119 extension. */
5120 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5122 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5123 promote_function_mode (TREE_TYPE (decl_result),
5124 GET_MODE (decl_rtl), &unsignedp,
5125 TREE_TYPE (current_function_decl), 1);
5127 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5129 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5131 /* If expand_function_start has created a PARALLEL for decl_rtl,
5132 move the result to the real return registers. Otherwise, do
5133 a group load from decl_rtl for a named return. */
5134 if (GET_CODE (decl_rtl) == PARALLEL)
5135 emit_group_move (real_decl_rtl, decl_rtl);
5136 else
5137 emit_group_load (real_decl_rtl, decl_rtl,
5138 TREE_TYPE (decl_result),
5139 int_size_in_bytes (TREE_TYPE (decl_result)));
5141 /* In the case of complex integer modes smaller than a word, we'll
5142 need to generate some non-trivial bitfield insertions. Do that
5143 on a pseudo and not the hard register. */
5144 else if (GET_CODE (decl_rtl) == CONCAT
5145 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5146 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5148 int old_generating_concat_p;
5149 rtx tmp;
5151 old_generating_concat_p = generating_concat_p;
5152 generating_concat_p = 0;
5153 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5154 generating_concat_p = old_generating_concat_p;
5156 emit_move_insn (tmp, decl_rtl);
5157 emit_move_insn (real_decl_rtl, tmp);
5159 else
5160 emit_move_insn (real_decl_rtl, decl_rtl);
5164 /* If returning a structure, arrange to return the address of the value
5165 in a place where debuggers expect to find it.
5167 If returning a structure PCC style,
5168 the caller also depends on this value.
5169 And cfun->returns_pcc_struct is not necessarily set. */
5170 if (cfun->returns_struct
5171 || cfun->returns_pcc_struct)
5173 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5174 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5175 rtx outgoing;
5177 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5178 type = TREE_TYPE (type);
5179 else
5180 value_address = XEXP (value_address, 0);
5182 outgoing = targetm.calls.function_value (build_pointer_type (type),
5183 current_function_decl, true);
5185 /* Mark this as a function return value so integrate will delete the
5186 assignment and USE below when inlining this function. */
5187 REG_FUNCTION_VALUE_P (outgoing) = 1;
5189 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5190 value_address = convert_memory_address (GET_MODE (outgoing),
5191 value_address);
5193 emit_move_insn (outgoing, value_address);
5195 /* Show return register used to hold result (in this case the address
5196 of the result. */
5197 crtl->return_rtx = outgoing;
5200 /* Emit the actual code to clobber return register. */
5202 rtx seq;
5204 start_sequence ();
5205 clobber_return_register ();
5206 seq = get_insns ();
5207 end_sequence ();
5209 emit_insn_after (seq, clobber_after);
5212 /* Output the label for the naked return from the function. */
5213 if (naked_return_label)
5214 emit_label (naked_return_label);
5216 /* @@@ This is a kludge. We want to ensure that instructions that
5217 may trap are not moved into the epilogue by scheduling, because
5218 we don't always emit unwind information for the epilogue. */
5219 if (cfun->can_throw_non_call_exceptions
5220 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5221 emit_insn (gen_blockage ());
5223 /* If stack protection is enabled for this function, check the guard. */
5224 if (crtl->stack_protect_guard)
5225 stack_protect_epilogue ();
5227 /* If we had calls to alloca, and this machine needs
5228 an accurate stack pointer to exit the function,
5229 insert some code to save and restore the stack pointer. */
5230 if (! EXIT_IGNORE_STACK
5231 && cfun->calls_alloca)
5233 rtx tem = 0, seq;
5235 start_sequence ();
5236 emit_stack_save (SAVE_FUNCTION, &tem);
5237 seq = get_insns ();
5238 end_sequence ();
5239 emit_insn_before (seq, parm_birth_insn);
5241 emit_stack_restore (SAVE_FUNCTION, tem);
5244 /* ??? This should no longer be necessary since stupid is no longer with
5245 us, but there are some parts of the compiler (eg reload_combine, and
5246 sh mach_dep_reorg) that still try and compute their own lifetime info
5247 instead of using the general framework. */
5248 use_return_register ();
5252 get_arg_pointer_save_area (void)
5254 rtx ret = arg_pointer_save_area;
5256 if (! ret)
5258 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5259 arg_pointer_save_area = ret;
5262 if (! crtl->arg_pointer_save_area_init)
5264 rtx seq;
5266 /* Save the arg pointer at the beginning of the function. The
5267 generated stack slot may not be a valid memory address, so we
5268 have to check it and fix it if necessary. */
5269 start_sequence ();
5270 emit_move_insn (validize_mem (ret),
5271 crtl->args.internal_arg_pointer);
5272 seq = get_insns ();
5273 end_sequence ();
5275 push_topmost_sequence ();
5276 emit_insn_after (seq, entry_of_function ());
5277 pop_topmost_sequence ();
5279 crtl->arg_pointer_save_area_init = true;
5282 return ret;
5285 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5286 for the first time. */
5288 static void
5289 record_insns (rtx insns, rtx end, htab_t *hashp)
5291 rtx tmp;
5292 htab_t hash = *hashp;
5294 if (hash == NULL)
5295 *hashp = hash
5296 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5298 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5300 void **slot = htab_find_slot (hash, tmp, INSERT);
5301 gcc_assert (*slot == NULL);
5302 *slot = tmp;
5306 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5307 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5308 insn, then record COPY as well. */
5310 void
5311 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5313 htab_t hash;
5314 void **slot;
5316 hash = epilogue_insn_hash;
5317 if (!hash || !htab_find (hash, insn))
5319 hash = prologue_insn_hash;
5320 if (!hash || !htab_find (hash, insn))
5321 return;
5324 slot = htab_find_slot (hash, copy, INSERT);
5325 gcc_assert (*slot == NULL);
5326 *slot = copy;
5329 /* Set the location of the insn chain starting at INSN to LOC. */
5330 static void
5331 set_insn_locations (rtx insn, int loc)
5333 while (insn != NULL_RTX)
5335 if (INSN_P (insn))
5336 INSN_LOCATION (insn) = loc;
5337 insn = NEXT_INSN (insn);
5341 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5342 we can be running after reorg, SEQUENCE rtl is possible. */
5344 static bool
5345 contains (const_rtx insn, htab_t hash)
5347 if (hash == NULL)
5348 return false;
5350 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5352 int i;
5353 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5354 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5355 return true;
5356 return false;
5359 return htab_find (hash, insn) != NULL;
5363 prologue_epilogue_contains (const_rtx insn)
5365 if (contains (insn, prologue_insn_hash))
5366 return 1;
5367 if (contains (insn, epilogue_insn_hash))
5368 return 1;
5369 return 0;
5372 #ifdef HAVE_simple_return
5374 /* Return true if INSN requires the stack frame to be set up.
5375 PROLOGUE_USED contains the hard registers used in the function
5376 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5377 prologue to set up for the function. */
5378 bool
5379 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5380 HARD_REG_SET set_up_by_prologue)
5382 df_ref *df_rec;
5383 HARD_REG_SET hardregs;
5384 unsigned regno;
5386 if (CALL_P (insn))
5387 return !SIBLING_CALL_P (insn);
5389 /* We need a frame to get the unique CFA expected by the unwinder. */
5390 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5391 return true;
5393 CLEAR_HARD_REG_SET (hardregs);
5394 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5396 rtx dreg = DF_REF_REG (*df_rec);
5398 if (!REG_P (dreg))
5399 continue;
5401 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5402 REGNO (dreg));
5404 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5405 return true;
5406 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5407 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5408 if (TEST_HARD_REG_BIT (hardregs, regno)
5409 && df_regs_ever_live_p (regno))
5410 return true;
5412 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5414 rtx reg = DF_REF_REG (*df_rec);
5416 if (!REG_P (reg))
5417 continue;
5419 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5420 REGNO (reg));
5422 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5423 return true;
5425 return false;
5428 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5429 and if BB is its only predecessor. Return that block if so,
5430 otherwise return null. */
5432 static basic_block
5433 next_block_for_reg (basic_block bb, int regno, int end_regno)
5435 edge e, live_edge;
5436 edge_iterator ei;
5437 bitmap live;
5438 int i;
5440 live_edge = NULL;
5441 FOR_EACH_EDGE (e, ei, bb->succs)
5443 live = df_get_live_in (e->dest);
5444 for (i = regno; i < end_regno; i++)
5445 if (REGNO_REG_SET_P (live, i))
5447 if (live_edge && live_edge != e)
5448 return NULL;
5449 live_edge = e;
5453 /* We can sometimes encounter dead code. Don't try to move it
5454 into the exit block. */
5455 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5456 return NULL;
5458 /* Reject targets of abnormal edges. This is needed for correctness
5459 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5460 exception edges even though it is generally treated as call-saved
5461 for the majority of the compilation. Moving across abnormal edges
5462 isn't going to be interesting for shrink-wrap usage anyway. */
5463 if (live_edge->flags & EDGE_ABNORMAL)
5464 return NULL;
5466 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5467 return NULL;
5469 return live_edge->dest;
5472 /* Try to move INSN from BB to a successor. Return true on success.
5473 USES and DEFS are the set of registers that are used and defined
5474 after INSN in BB. */
5476 static bool
5477 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5478 const HARD_REG_SET uses,
5479 const HARD_REG_SET defs)
5481 rtx set, src, dest;
5482 bitmap live_out, live_in, bb_uses, bb_defs;
5483 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5484 basic_block next_block;
5486 /* Look for a simple register copy. */
5487 set = single_set (insn);
5488 if (!set)
5489 return false;
5490 src = SET_SRC (set);
5491 dest = SET_DEST (set);
5492 if (!REG_P (dest) || !REG_P (src))
5493 return false;
5495 /* Make sure that the source register isn't defined later in BB. */
5496 sregno = REGNO (src);
5497 end_sregno = END_REGNO (src);
5498 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5499 return false;
5501 /* Make sure that the destination register isn't referenced later in BB. */
5502 dregno = REGNO (dest);
5503 end_dregno = END_REGNO (dest);
5504 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5505 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5506 return false;
5508 /* See whether there is a successor block to which we could move INSN. */
5509 next_block = next_block_for_reg (bb, dregno, end_dregno);
5510 if (!next_block)
5511 return false;
5513 /* At this point we are committed to moving INSN, but let's try to
5514 move it as far as we can. */
5517 live_out = df_get_live_out (bb);
5518 live_in = df_get_live_in (next_block);
5519 bb = next_block;
5521 /* Check whether BB uses DEST or clobbers DEST. We need to add
5522 INSN to BB if so. Either way, DEST is no longer live on entry,
5523 except for any part that overlaps SRC (next loop). */
5524 bb_uses = &DF_LR_BB_INFO (bb)->use;
5525 bb_defs = &DF_LR_BB_INFO (bb)->def;
5526 if (df_live)
5528 for (i = dregno; i < end_dregno; i++)
5530 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5531 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5532 next_block = NULL;
5533 CLEAR_REGNO_REG_SET (live_out, i);
5534 CLEAR_REGNO_REG_SET (live_in, i);
5537 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5538 Either way, SRC is now live on entry. */
5539 for (i = sregno; i < end_sregno; i++)
5541 if (REGNO_REG_SET_P (bb_defs, i)
5542 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5543 next_block = NULL;
5544 SET_REGNO_REG_SET (live_out, i);
5545 SET_REGNO_REG_SET (live_in, i);
5548 else
5550 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5551 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5552 at -O1, just give up searching NEXT_BLOCK. */
5553 next_block = NULL;
5554 for (i = dregno; i < end_dregno; i++)
5556 CLEAR_REGNO_REG_SET (live_out, i);
5557 CLEAR_REGNO_REG_SET (live_in, i);
5560 for (i = sregno; i < end_sregno; i++)
5562 SET_REGNO_REG_SET (live_out, i);
5563 SET_REGNO_REG_SET (live_in, i);
5567 /* If we don't need to add the move to BB, look for a single
5568 successor block. */
5569 if (next_block)
5570 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5572 while (next_block);
5574 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5575 (next loop). */
5576 for (i = dregno; i < end_dregno; i++)
5578 CLEAR_REGNO_REG_SET (bb_uses, i);
5579 SET_REGNO_REG_SET (bb_defs, i);
5582 /* BB now uses SRC. */
5583 for (i = sregno; i < end_sregno; i++)
5584 SET_REGNO_REG_SET (bb_uses, i);
5586 emit_insn_after (PATTERN (insn), bb_note (bb));
5587 delete_insn (insn);
5588 return true;
5591 /* Look for register copies in the first block of the function, and move
5592 them down into successor blocks if the register is used only on one
5593 path. This exposes more opportunities for shrink-wrapping. These
5594 kinds of sets often occur when incoming argument registers are moved
5595 to call-saved registers because their values are live across one or
5596 more calls during the function. */
5598 static void
5599 prepare_shrink_wrap (basic_block entry_block)
5601 rtx insn, curr, x;
5602 HARD_REG_SET uses, defs;
5603 df_ref *ref;
5605 CLEAR_HARD_REG_SET (uses);
5606 CLEAR_HARD_REG_SET (defs);
5607 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5608 if (NONDEBUG_INSN_P (insn)
5609 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5611 /* Add all defined registers to DEFs. */
5612 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5614 x = DF_REF_REG (*ref);
5615 if (REG_P (x) && HARD_REGISTER_P (x))
5616 SET_HARD_REG_BIT (defs, REGNO (x));
5619 /* Add all used registers to USESs. */
5620 for (ref = DF_INSN_USES (insn); *ref; ref++)
5622 x = DF_REF_REG (*ref);
5623 if (REG_P (x) && HARD_REGISTER_P (x))
5624 SET_HARD_REG_BIT (uses, REGNO (x));
5629 #endif
5631 #ifdef HAVE_return
5632 /* Insert use of return register before the end of BB. */
5634 static void
5635 emit_use_return_register_into_block (basic_block bb)
5637 rtx seq, insn;
5638 start_sequence ();
5639 use_return_register ();
5640 seq = get_insns ();
5641 end_sequence ();
5642 insn = BB_END (bb);
5643 #ifdef HAVE_cc0
5644 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5645 insn = prev_cc0_setter (insn);
5646 #endif
5647 emit_insn_before (seq, insn);
5651 /* Create a return pattern, either simple_return or return, depending on
5652 simple_p. */
5654 static rtx
5655 gen_return_pattern (bool simple_p)
5657 #ifdef HAVE_simple_return
5658 return simple_p ? gen_simple_return () : gen_return ();
5659 #else
5660 gcc_assert (!simple_p);
5661 return gen_return ();
5662 #endif
5665 /* Insert an appropriate return pattern at the end of block BB. This
5666 also means updating block_for_insn appropriately. SIMPLE_P is
5667 the same as in gen_return_pattern and passed to it. */
5669 static void
5670 emit_return_into_block (bool simple_p, basic_block bb)
5672 rtx jump, pat;
5673 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5674 pat = PATTERN (jump);
5675 if (GET_CODE (pat) == PARALLEL)
5676 pat = XVECEXP (pat, 0, 0);
5677 gcc_assert (ANY_RETURN_P (pat));
5678 JUMP_LABEL (jump) = pat;
5680 #endif
5682 /* Set JUMP_LABEL for a return insn. */
5684 void
5685 set_return_jump_label (rtx returnjump)
5687 rtx pat = PATTERN (returnjump);
5688 if (GET_CODE (pat) == PARALLEL)
5689 pat = XVECEXP (pat, 0, 0);
5690 if (ANY_RETURN_P (pat))
5691 JUMP_LABEL (returnjump) = pat;
5692 else
5693 JUMP_LABEL (returnjump) = ret_rtx;
5696 #ifdef HAVE_simple_return
5697 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5698 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5699 static void
5700 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5701 bitmap_head *need_prologue)
5703 edge_iterator ei;
5704 edge e;
5705 rtx insn = BB_END (bb);
5707 /* We know BB has a single successor, so there is no need to copy a
5708 simple jump at the end of BB. */
5709 if (simplejump_p (insn))
5710 insn = PREV_INSN (insn);
5712 start_sequence ();
5713 duplicate_insn_chain (BB_HEAD (bb), insn);
5714 if (dump_file)
5716 unsigned count = 0;
5717 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5718 if (active_insn_p (insn))
5719 ++count;
5720 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5721 bb->index, copy_bb->index, count);
5723 insn = get_insns ();
5724 end_sequence ();
5725 emit_insn_before (insn, before);
5727 /* Redirect all the paths that need no prologue into copy_bb. */
5728 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5729 if (!bitmap_bit_p (need_prologue, e->src->index))
5731 int freq = EDGE_FREQUENCY (e);
5732 copy_bb->count += e->count;
5733 copy_bb->frequency += EDGE_FREQUENCY (e);
5734 e->dest->count -= e->count;
5735 if (e->dest->count < 0)
5736 e->dest->count = 0;
5737 e->dest->frequency -= freq;
5738 if (e->dest->frequency < 0)
5739 e->dest->frequency = 0;
5740 redirect_edge_and_branch_force (e, copy_bb);
5741 continue;
5743 else
5744 ei_next (&ei);
5746 #endif
5748 #if defined (HAVE_return) || defined (HAVE_simple_return)
5749 /* Return true if there are any active insns between HEAD and TAIL. */
5750 static bool
5751 active_insn_between (rtx head, rtx tail)
5753 while (tail)
5755 if (active_insn_p (tail))
5756 return true;
5757 if (tail == head)
5758 return false;
5759 tail = PREV_INSN (tail);
5761 return false;
5764 /* LAST_BB is a block that exits, and empty of active instructions.
5765 Examine its predecessors for jumps that can be converted to
5766 (conditional) returns. */
5767 static vec<edge>
5768 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5769 vec<edge> unconverted ATTRIBUTE_UNUSED)
5771 int i;
5772 basic_block bb;
5773 rtx label;
5774 edge_iterator ei;
5775 edge e;
5776 vec<basic_block> src_bbs;
5778 src_bbs.create (EDGE_COUNT (last_bb->preds));
5779 FOR_EACH_EDGE (e, ei, last_bb->preds)
5780 if (e->src != ENTRY_BLOCK_PTR)
5781 src_bbs.quick_push (e->src);
5783 label = BB_HEAD (last_bb);
5785 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5787 rtx jump = BB_END (bb);
5789 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5790 continue;
5792 e = find_edge (bb, last_bb);
5794 /* If we have an unconditional jump, we can replace that
5795 with a simple return instruction. */
5796 if (simplejump_p (jump))
5798 /* The use of the return register might be present in the exit
5799 fallthru block. Either:
5800 - removing the use is safe, and we should remove the use in
5801 the exit fallthru block, or
5802 - removing the use is not safe, and we should add it here.
5803 For now, we conservatively choose the latter. Either of the
5804 2 helps in crossjumping. */
5805 emit_use_return_register_into_block (bb);
5807 emit_return_into_block (simple_p, bb);
5808 delete_insn (jump);
5811 /* If we have a conditional jump branching to the last
5812 block, we can try to replace that with a conditional
5813 return instruction. */
5814 else if (condjump_p (jump))
5816 rtx dest;
5818 if (simple_p)
5819 dest = simple_return_rtx;
5820 else
5821 dest = ret_rtx;
5822 if (!redirect_jump (jump, dest, 0))
5824 #ifdef HAVE_simple_return
5825 if (simple_p)
5827 if (dump_file)
5828 fprintf (dump_file,
5829 "Failed to redirect bb %d branch.\n", bb->index);
5830 unconverted.safe_push (e);
5832 #endif
5833 continue;
5836 /* See comment in simplejump_p case above. */
5837 emit_use_return_register_into_block (bb);
5839 /* If this block has only one successor, it both jumps
5840 and falls through to the fallthru block, so we can't
5841 delete the edge. */
5842 if (single_succ_p (bb))
5843 continue;
5845 else
5847 #ifdef HAVE_simple_return
5848 if (simple_p)
5850 if (dump_file)
5851 fprintf (dump_file,
5852 "Failed to redirect bb %d branch.\n", bb->index);
5853 unconverted.safe_push (e);
5855 #endif
5856 continue;
5859 /* Fix up the CFG for the successful change we just made. */
5860 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5861 e->flags &= ~EDGE_CROSSING;
5863 src_bbs.release ();
5864 return unconverted;
5867 /* Emit a return insn for the exit fallthru block. */
5868 static basic_block
5869 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5871 basic_block last_bb = exit_fallthru_edge->src;
5873 if (JUMP_P (BB_END (last_bb)))
5875 last_bb = split_edge (exit_fallthru_edge);
5876 exit_fallthru_edge = single_succ_edge (last_bb);
5878 emit_barrier_after (BB_END (last_bb));
5879 emit_return_into_block (simple_p, last_bb);
5880 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5881 return last_bb;
5883 #endif
5886 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5887 this into place with notes indicating where the prologue ends and where
5888 the epilogue begins. Update the basic block information when possible.
5890 Notes on epilogue placement:
5891 There are several kinds of edges to the exit block:
5892 * a single fallthru edge from LAST_BB
5893 * possibly, edges from blocks containing sibcalls
5894 * possibly, fake edges from infinite loops
5896 The epilogue is always emitted on the fallthru edge from the last basic
5897 block in the function, LAST_BB, into the exit block.
5899 If LAST_BB is empty except for a label, it is the target of every
5900 other basic block in the function that ends in a return. If a
5901 target has a return or simple_return pattern (possibly with
5902 conditional variants), these basic blocks can be changed so that a
5903 return insn is emitted into them, and their target is adjusted to
5904 the real exit block.
5906 Notes on shrink wrapping: We implement a fairly conservative
5907 version of shrink-wrapping rather than the textbook one. We only
5908 generate a single prologue and a single epilogue. This is
5909 sufficient to catch a number of interesting cases involving early
5910 exits.
5912 First, we identify the blocks that require the prologue to occur before
5913 them. These are the ones that modify a call-saved register, or reference
5914 any of the stack or frame pointer registers. To simplify things, we then
5915 mark everything reachable from these blocks as also requiring a prologue.
5916 This takes care of loops automatically, and avoids the need to examine
5917 whether MEMs reference the frame, since it is sufficient to check for
5918 occurrences of the stack or frame pointer.
5920 We then compute the set of blocks for which the need for a prologue
5921 is anticipatable (borrowing terminology from the shrink-wrapping
5922 description in Muchnick's book). These are the blocks which either
5923 require a prologue themselves, or those that have only successors
5924 where the prologue is anticipatable. The prologue needs to be
5925 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5926 is not. For the moment, we ensure that only one such edge exists.
5928 The epilogue is placed as described above, but we make a
5929 distinction between inserting return and simple_return patterns
5930 when modifying other blocks that end in a return. Blocks that end
5931 in a sibcall omit the sibcall_epilogue if the block is not in
5932 ANTIC. */
5934 static void
5935 thread_prologue_and_epilogue_insns (void)
5937 bool inserted;
5938 #ifdef HAVE_simple_return
5939 vec<edge> unconverted_simple_returns = vNULL;
5940 bool nonempty_prologue;
5941 bitmap_head bb_flags;
5942 unsigned max_grow_size;
5943 #endif
5944 rtx returnjump;
5945 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5946 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5947 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5948 edge_iterator ei;
5950 df_analyze ();
5952 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5954 inserted = false;
5955 seq = NULL_RTX;
5956 epilogue_end = NULL_RTX;
5957 returnjump = NULL_RTX;
5959 /* Can't deal with multiple successors of the entry block at the
5960 moment. Function should always have at least one entry
5961 point. */
5962 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5963 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5964 orig_entry_edge = entry_edge;
5966 split_prologue_seq = NULL_RTX;
5967 if (flag_split_stack
5968 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5969 == NULL))
5971 #ifndef HAVE_split_stack_prologue
5972 gcc_unreachable ();
5973 #else
5974 gcc_assert (HAVE_split_stack_prologue);
5976 start_sequence ();
5977 emit_insn (gen_split_stack_prologue ());
5978 split_prologue_seq = get_insns ();
5979 end_sequence ();
5981 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5982 set_insn_locations (split_prologue_seq, prologue_location);
5983 #endif
5986 prologue_seq = NULL_RTX;
5987 #ifdef HAVE_prologue
5988 if (HAVE_prologue)
5990 start_sequence ();
5991 seq = gen_prologue ();
5992 emit_insn (seq);
5994 /* Insert an explicit USE for the frame pointer
5995 if the profiling is on and the frame pointer is required. */
5996 if (crtl->profile && frame_pointer_needed)
5997 emit_use (hard_frame_pointer_rtx);
5999 /* Retain a map of the prologue insns. */
6000 record_insns (seq, NULL, &prologue_insn_hash);
6001 emit_note (NOTE_INSN_PROLOGUE_END);
6003 /* Ensure that instructions are not moved into the prologue when
6004 profiling is on. The call to the profiling routine can be
6005 emitted within the live range of a call-clobbered register. */
6006 if (!targetm.profile_before_prologue () && crtl->profile)
6007 emit_insn (gen_blockage ());
6009 prologue_seq = get_insns ();
6010 end_sequence ();
6011 set_insn_locations (prologue_seq, prologue_location);
6013 #endif
6015 #ifdef HAVE_simple_return
6016 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
6018 /* Try to perform a kind of shrink-wrapping, making sure the
6019 prologue/epilogue is emitted only around those parts of the
6020 function that require it. */
6022 nonempty_prologue = false;
6023 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
6024 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
6026 nonempty_prologue = true;
6027 break;
6030 if (flag_shrink_wrap && HAVE_simple_return
6031 && (targetm.profile_before_prologue () || !crtl->profile)
6032 && nonempty_prologue && !crtl->calls_eh_return)
6034 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
6035 struct hard_reg_set_container set_up_by_prologue;
6036 rtx p_insn;
6037 vec<basic_block> vec;
6038 basic_block bb;
6039 bitmap_head bb_antic_flags;
6040 bitmap_head bb_on_list;
6041 bitmap_head bb_tail;
6043 if (dump_file)
6044 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6046 /* Compute the registers set and used in the prologue. */
6047 CLEAR_HARD_REG_SET (prologue_clobbered);
6048 CLEAR_HARD_REG_SET (prologue_used);
6049 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6051 HARD_REG_SET this_used;
6052 if (!NONDEBUG_INSN_P (p_insn))
6053 continue;
6055 CLEAR_HARD_REG_SET (this_used);
6056 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6057 &this_used);
6058 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6059 IOR_HARD_REG_SET (prologue_used, this_used);
6060 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6061 &prologue_clobbered);
6064 prepare_shrink_wrap (entry_edge->dest);
6066 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6067 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6068 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6070 /* Find the set of basic blocks that require a stack frame,
6071 and blocks that are too big to be duplicated. */
6073 vec.create (n_basic_blocks);
6075 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6076 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6077 STACK_POINTER_REGNUM);
6078 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6079 if (frame_pointer_needed)
6080 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6081 HARD_FRAME_POINTER_REGNUM);
6082 if (pic_offset_table_rtx)
6083 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6084 PIC_OFFSET_TABLE_REGNUM);
6085 if (crtl->drap_reg)
6086 add_to_hard_reg_set (&set_up_by_prologue.set,
6087 GET_MODE (crtl->drap_reg),
6088 REGNO (crtl->drap_reg));
6089 if (targetm.set_up_by_prologue)
6090 targetm.set_up_by_prologue (&set_up_by_prologue);
6092 /* We don't use a different max size depending on
6093 optimize_bb_for_speed_p because increasing shrink-wrapping
6094 opportunities by duplicating tail blocks can actually result
6095 in an overall decrease in code size. */
6096 max_grow_size = get_uncond_jump_length ();
6097 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6099 FOR_EACH_BB (bb)
6101 rtx insn;
6102 unsigned size = 0;
6104 FOR_BB_INSNS (bb, insn)
6105 if (NONDEBUG_INSN_P (insn))
6107 if (requires_stack_frame_p (insn, prologue_used,
6108 set_up_by_prologue.set))
6110 if (bb == entry_edge->dest)
6111 goto fail_shrinkwrap;
6112 bitmap_set_bit (&bb_flags, bb->index);
6113 vec.quick_push (bb);
6114 break;
6116 else if (size <= max_grow_size)
6118 size += get_attr_min_length (insn);
6119 if (size > max_grow_size)
6120 bitmap_set_bit (&bb_on_list, bb->index);
6125 /* Blocks that really need a prologue, or are too big for tails. */
6126 bitmap_ior_into (&bb_on_list, &bb_flags);
6128 /* For every basic block that needs a prologue, mark all blocks
6129 reachable from it, so as to ensure they are also seen as
6130 requiring a prologue. */
6131 while (!vec.is_empty ())
6133 basic_block tmp_bb = vec.pop ();
6135 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6136 if (e->dest != EXIT_BLOCK_PTR
6137 && bitmap_set_bit (&bb_flags, e->dest->index))
6138 vec.quick_push (e->dest);
6141 /* Find the set of basic blocks that need no prologue, have a
6142 single successor, can be duplicated, meet a max size
6143 requirement, and go to the exit via like blocks. */
6144 vec.quick_push (EXIT_BLOCK_PTR);
6145 while (!vec.is_empty ())
6147 basic_block tmp_bb = vec.pop ();
6149 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6150 if (single_succ_p (e->src)
6151 && !bitmap_bit_p (&bb_on_list, e->src->index)
6152 && can_duplicate_block_p (e->src))
6154 edge pe;
6155 edge_iterator pei;
6157 /* If there is predecessor of e->src which doesn't
6158 need prologue and the edge is complex,
6159 we might not be able to redirect the branch
6160 to a copy of e->src. */
6161 FOR_EACH_EDGE (pe, pei, e->src->preds)
6162 if ((pe->flags & EDGE_COMPLEX) != 0
6163 && !bitmap_bit_p (&bb_flags, pe->src->index))
6164 break;
6165 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6166 vec.quick_push (e->src);
6170 /* Now walk backwards from every block that is marked as needing
6171 a prologue to compute the bb_antic_flags bitmap. Exclude
6172 tail blocks; They can be duplicated to be used on paths not
6173 needing a prologue. */
6174 bitmap_clear (&bb_on_list);
6175 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6176 FOR_EACH_BB (bb)
6178 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6179 continue;
6180 FOR_EACH_EDGE (e, ei, bb->preds)
6181 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6182 && bitmap_set_bit (&bb_on_list, e->src->index))
6183 vec.quick_push (e->src);
6185 while (!vec.is_empty ())
6187 basic_block tmp_bb = vec.pop ();
6188 bool all_set = true;
6190 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6191 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6192 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6194 all_set = false;
6195 break;
6198 if (all_set)
6200 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6201 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6202 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6203 && bitmap_set_bit (&bb_on_list, e->src->index))
6204 vec.quick_push (e->src);
6207 /* Find exactly one edge that leads to a block in ANTIC from
6208 a block that isn't. */
6209 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6210 FOR_EACH_BB (bb)
6212 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6213 continue;
6214 FOR_EACH_EDGE (e, ei, bb->preds)
6215 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6217 if (entry_edge != orig_entry_edge)
6219 entry_edge = orig_entry_edge;
6220 if (dump_file)
6221 fprintf (dump_file, "More than one candidate edge.\n");
6222 goto fail_shrinkwrap;
6224 if (dump_file)
6225 fprintf (dump_file, "Found candidate edge for "
6226 "shrink-wrapping, %d->%d.\n", e->src->index,
6227 e->dest->index);
6228 entry_edge = e;
6232 if (entry_edge != orig_entry_edge)
6234 /* Test whether the prologue is known to clobber any register
6235 (other than FP or SP) which are live on the edge. */
6236 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6237 if (frame_pointer_needed)
6238 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6239 REG_SET_TO_HARD_REG_SET (live_on_edge,
6240 df_get_live_in (entry_edge->dest));
6241 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6243 entry_edge = orig_entry_edge;
6244 if (dump_file)
6245 fprintf (dump_file,
6246 "Shrink-wrapping aborted due to clobber.\n");
6249 if (entry_edge != orig_entry_edge)
6251 crtl->shrink_wrapped = true;
6252 if (dump_file)
6253 fprintf (dump_file, "Performing shrink-wrapping.\n");
6255 /* Find tail blocks reachable from both blocks needing a
6256 prologue and blocks not needing a prologue. */
6257 if (!bitmap_empty_p (&bb_tail))
6258 FOR_EACH_BB (bb)
6260 bool some_pro, some_no_pro;
6261 if (!bitmap_bit_p (&bb_tail, bb->index))
6262 continue;
6263 some_pro = some_no_pro = false;
6264 FOR_EACH_EDGE (e, ei, bb->preds)
6266 if (bitmap_bit_p (&bb_flags, e->src->index))
6267 some_pro = true;
6268 else
6269 some_no_pro = true;
6271 if (some_pro && some_no_pro)
6272 vec.quick_push (bb);
6273 else
6274 bitmap_clear_bit (&bb_tail, bb->index);
6276 /* Find the head of each tail. */
6277 while (!vec.is_empty ())
6279 basic_block tbb = vec.pop ();
6281 if (!bitmap_bit_p (&bb_tail, tbb->index))
6282 continue;
6284 while (single_succ_p (tbb))
6286 tbb = single_succ (tbb);
6287 bitmap_clear_bit (&bb_tail, tbb->index);
6290 /* Now duplicate the tails. */
6291 if (!bitmap_empty_p (&bb_tail))
6292 FOR_EACH_BB_REVERSE (bb)
6294 basic_block copy_bb, tbb;
6295 rtx insert_point;
6296 int eflags;
6298 if (!bitmap_clear_bit (&bb_tail, bb->index))
6299 continue;
6301 /* Create a copy of BB, instructions and all, for
6302 use on paths that don't need a prologue.
6303 Ideal placement of the copy is on a fall-thru edge
6304 or after a block that would jump to the copy. */
6305 FOR_EACH_EDGE (e, ei, bb->preds)
6306 if (!bitmap_bit_p (&bb_flags, e->src->index)
6307 && single_succ_p (e->src))
6308 break;
6309 if (e)
6311 /* Make sure we insert after any barriers. */
6312 rtx end = get_last_bb_insn (e->src);
6313 copy_bb = create_basic_block (NEXT_INSN (end),
6314 NULL_RTX, e->src);
6315 BB_COPY_PARTITION (copy_bb, e->src);
6317 else
6319 /* Otherwise put the copy at the end of the function. */
6320 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6321 EXIT_BLOCK_PTR->prev_bb);
6322 BB_COPY_PARTITION (copy_bb, bb);
6325 insert_point = emit_note_after (NOTE_INSN_DELETED,
6326 BB_END (copy_bb));
6327 emit_barrier_after (BB_END (copy_bb));
6329 tbb = bb;
6330 while (1)
6332 dup_block_and_redirect (tbb, copy_bb, insert_point,
6333 &bb_flags);
6334 tbb = single_succ (tbb);
6335 if (tbb == EXIT_BLOCK_PTR)
6336 break;
6337 e = split_block (copy_bb, PREV_INSN (insert_point));
6338 copy_bb = e->dest;
6341 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6342 We have yet to add a simple_return to the tails,
6343 as we'd like to first convert_jumps_to_returns in
6344 case the block is no longer used after that. */
6345 eflags = EDGE_FAKE;
6346 if (CALL_P (PREV_INSN (insert_point))
6347 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6348 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6349 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6351 /* verify_flow_info doesn't like a note after a
6352 sibling call. */
6353 delete_insn (insert_point);
6354 if (bitmap_empty_p (&bb_tail))
6355 break;
6359 fail_shrinkwrap:
6360 bitmap_clear (&bb_tail);
6361 bitmap_clear (&bb_antic_flags);
6362 bitmap_clear (&bb_on_list);
6363 vec.release ();
6365 #endif
6367 if (split_prologue_seq != NULL_RTX)
6369 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6370 inserted = true;
6372 if (prologue_seq != NULL_RTX)
6374 insert_insn_on_edge (prologue_seq, entry_edge);
6375 inserted = true;
6378 /* If the exit block has no non-fake predecessors, we don't need
6379 an epilogue. */
6380 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6381 if ((e->flags & EDGE_FAKE) == 0)
6382 break;
6383 if (e == NULL)
6384 goto epilogue_done;
6386 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6388 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6390 /* If we're allowed to generate a simple return instruction, then by
6391 definition we don't need a full epilogue. If the last basic
6392 block before the exit block does not contain active instructions,
6393 examine its predecessors and try to emit (conditional) return
6394 instructions. */
6395 #ifdef HAVE_simple_return
6396 if (entry_edge != orig_entry_edge)
6398 if (optimize)
6400 unsigned i, last;
6402 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6403 (but won't remove). Stop at end of current preds. */
6404 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6405 for (i = 0; i < last; i++)
6407 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6408 if (LABEL_P (BB_HEAD (e->src))
6409 && !bitmap_bit_p (&bb_flags, e->src->index)
6410 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6411 unconverted_simple_returns
6412 = convert_jumps_to_returns (e->src, true,
6413 unconverted_simple_returns);
6417 if (exit_fallthru_edge != NULL
6418 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6419 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6421 basic_block last_bb;
6423 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6424 returnjump = BB_END (last_bb);
6425 exit_fallthru_edge = NULL;
6428 #endif
6429 #ifdef HAVE_return
6430 if (HAVE_return)
6432 if (exit_fallthru_edge == NULL)
6433 goto epilogue_done;
6435 if (optimize)
6437 basic_block last_bb = exit_fallthru_edge->src;
6439 if (LABEL_P (BB_HEAD (last_bb))
6440 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6441 convert_jumps_to_returns (last_bb, false, vNULL);
6443 if (EDGE_COUNT (last_bb->preds) != 0
6444 && single_succ_p (last_bb))
6446 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6447 epilogue_end = returnjump = BB_END (last_bb);
6448 #ifdef HAVE_simple_return
6449 /* Emitting the return may add a basic block.
6450 Fix bb_flags for the added block. */
6451 if (last_bb != exit_fallthru_edge->src)
6452 bitmap_set_bit (&bb_flags, last_bb->index);
6453 #endif
6454 goto epilogue_done;
6458 #endif
6460 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6461 this marker for the splits of EH_RETURN patterns, and nothing else
6462 uses the flag in the meantime. */
6463 epilogue_completed = 1;
6465 #ifdef HAVE_eh_return
6466 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6467 some targets, these get split to a special version of the epilogue
6468 code. In order to be able to properly annotate these with unwind
6469 info, try to split them now. If we get a valid split, drop an
6470 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6471 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6473 rtx prev, last, trial;
6475 if (e->flags & EDGE_FALLTHRU)
6476 continue;
6477 last = BB_END (e->src);
6478 if (!eh_returnjump_p (last))
6479 continue;
6481 prev = PREV_INSN (last);
6482 trial = try_split (PATTERN (last), last, 1);
6483 if (trial == last)
6484 continue;
6486 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6487 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6489 #endif
6491 /* If nothing falls through into the exit block, we don't need an
6492 epilogue. */
6494 if (exit_fallthru_edge == NULL)
6495 goto epilogue_done;
6497 #ifdef HAVE_epilogue
6498 if (HAVE_epilogue)
6500 start_sequence ();
6501 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6502 seq = gen_epilogue ();
6503 if (seq)
6504 emit_jump_insn (seq);
6506 /* Retain a map of the epilogue insns. */
6507 record_insns (seq, NULL, &epilogue_insn_hash);
6508 set_insn_locations (seq, epilogue_location);
6510 seq = get_insns ();
6511 returnjump = get_last_insn ();
6512 end_sequence ();
6514 insert_insn_on_edge (seq, exit_fallthru_edge);
6515 inserted = true;
6517 if (JUMP_P (returnjump))
6518 set_return_jump_label (returnjump);
6520 else
6521 #endif
6523 basic_block cur_bb;
6525 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6526 goto epilogue_done;
6527 /* We have a fall-through edge to the exit block, the source is not
6528 at the end of the function, and there will be an assembler epilogue
6529 at the end of the function.
6530 We can't use force_nonfallthru here, because that would try to
6531 use return. Inserting a jump 'by hand' is extremely messy, so
6532 we take advantage of cfg_layout_finalize using
6533 fixup_fallthru_exit_predecessor. */
6534 cfg_layout_initialize (0);
6535 FOR_EACH_BB (cur_bb)
6536 if (cur_bb->index >= NUM_FIXED_BLOCKS
6537 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6538 cur_bb->aux = cur_bb->next_bb;
6539 cfg_layout_finalize ();
6542 epilogue_done:
6544 default_rtl_profile ();
6546 if (inserted)
6548 sbitmap blocks;
6550 commit_edge_insertions ();
6552 /* Look for basic blocks within the prologue insns. */
6553 blocks = sbitmap_alloc (last_basic_block);
6554 bitmap_clear (blocks);
6555 bitmap_set_bit (blocks, entry_edge->dest->index);
6556 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6557 find_many_sub_basic_blocks (blocks);
6558 sbitmap_free (blocks);
6560 /* The epilogue insns we inserted may cause the exit edge to no longer
6561 be fallthru. */
6562 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6564 if (((e->flags & EDGE_FALLTHRU) != 0)
6565 && returnjump_p (BB_END (e->src)))
6566 e->flags &= ~EDGE_FALLTHRU;
6570 #ifdef HAVE_simple_return
6571 /* If there were branches to an empty LAST_BB which we tried to
6572 convert to conditional simple_returns, but couldn't for some
6573 reason, create a block to hold a simple_return insn and redirect
6574 those remaining edges. */
6575 if (!unconverted_simple_returns.is_empty ())
6577 basic_block simple_return_block_hot = NULL;
6578 basic_block simple_return_block_cold = NULL;
6579 edge pending_edge_hot = NULL;
6580 edge pending_edge_cold = NULL;
6581 basic_block exit_pred;
6582 int i;
6584 gcc_assert (entry_edge != orig_entry_edge);
6586 /* See if we can reuse the last insn that was emitted for the
6587 epilogue. */
6588 if (returnjump != NULL_RTX
6589 && JUMP_LABEL (returnjump) == simple_return_rtx)
6591 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6592 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6593 simple_return_block_hot = e->dest;
6594 else
6595 simple_return_block_cold = e->dest;
6598 /* Also check returns we might need to add to tail blocks. */
6599 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6600 if (EDGE_COUNT (e->src->preds) != 0
6601 && (e->flags & EDGE_FAKE) != 0
6602 && !bitmap_bit_p (&bb_flags, e->src->index))
6604 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6605 pending_edge_hot = e;
6606 else
6607 pending_edge_cold = e;
6610 /* Save a pointer to the exit's predecessor BB for use in
6611 inserting new BBs at the end of the function. Do this
6612 after the call to split_block above which may split
6613 the original exit pred. */
6614 exit_pred = EXIT_BLOCK_PTR->prev_bb;
6616 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6618 basic_block *pdest_bb;
6619 edge pending;
6621 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6623 pdest_bb = &simple_return_block_hot;
6624 pending = pending_edge_hot;
6626 else
6628 pdest_bb = &simple_return_block_cold;
6629 pending = pending_edge_cold;
6632 if (*pdest_bb == NULL && pending != NULL)
6634 emit_return_into_block (true, pending->src);
6635 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6636 *pdest_bb = pending->src;
6638 else if (*pdest_bb == NULL)
6640 basic_block bb;
6641 rtx start;
6643 bb = create_basic_block (NULL, NULL, exit_pred);
6644 BB_COPY_PARTITION (bb, e->src);
6645 start = emit_jump_insn_after (gen_simple_return (),
6646 BB_END (bb));
6647 JUMP_LABEL (start) = simple_return_rtx;
6648 emit_barrier_after (start);
6650 *pdest_bb = bb;
6651 make_edge (bb, EXIT_BLOCK_PTR, 0);
6653 redirect_edge_and_branch_force (e, *pdest_bb);
6655 unconverted_simple_returns.release ();
6658 if (entry_edge != orig_entry_edge)
6660 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6661 if (EDGE_COUNT (e->src->preds) != 0
6662 && (e->flags & EDGE_FAKE) != 0
6663 && !bitmap_bit_p (&bb_flags, e->src->index))
6665 emit_return_into_block (true, e->src);
6666 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6669 #endif
6671 #ifdef HAVE_sibcall_epilogue
6672 /* Emit sibling epilogues before any sibling call sites. */
6673 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6675 basic_block bb = e->src;
6676 rtx insn = BB_END (bb);
6677 rtx ep_seq;
6679 if (!CALL_P (insn)
6680 || ! SIBLING_CALL_P (insn)
6681 #ifdef HAVE_simple_return
6682 || (entry_edge != orig_entry_edge
6683 && !bitmap_bit_p (&bb_flags, bb->index))
6684 #endif
6687 ei_next (&ei);
6688 continue;
6691 ep_seq = gen_sibcall_epilogue ();
6692 if (ep_seq)
6694 start_sequence ();
6695 emit_note (NOTE_INSN_EPILOGUE_BEG);
6696 emit_insn (ep_seq);
6697 seq = get_insns ();
6698 end_sequence ();
6700 /* Retain a map of the epilogue insns. Used in life analysis to
6701 avoid getting rid of sibcall epilogue insns. Do this before we
6702 actually emit the sequence. */
6703 record_insns (seq, NULL, &epilogue_insn_hash);
6704 set_insn_locations (seq, epilogue_location);
6706 emit_insn_before (seq, insn);
6708 ei_next (&ei);
6710 #endif
6712 #ifdef HAVE_epilogue
6713 if (epilogue_end)
6715 rtx insn, next;
6717 /* Similarly, move any line notes that appear after the epilogue.
6718 There is no need, however, to be quite so anal about the existence
6719 of such a note. Also possibly move
6720 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6721 info generation. */
6722 for (insn = epilogue_end; insn; insn = next)
6724 next = NEXT_INSN (insn);
6725 if (NOTE_P (insn)
6726 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6727 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6730 #endif
6732 #ifdef HAVE_simple_return
6733 bitmap_clear (&bb_flags);
6734 #endif
6736 /* Threading the prologue and epilogue changes the artificial refs
6737 in the entry and exit blocks. */
6738 epilogue_completed = 1;
6739 df_update_entry_exit_and_calls ();
6742 /* Reposition the prologue-end and epilogue-begin notes after
6743 instruction scheduling. */
6745 void
6746 reposition_prologue_and_epilogue_notes (void)
6748 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6749 || defined (HAVE_sibcall_epilogue)
6750 /* Since the hash table is created on demand, the fact that it is
6751 non-null is a signal that it is non-empty. */
6752 if (prologue_insn_hash != NULL)
6754 size_t len = htab_elements (prologue_insn_hash);
6755 rtx insn, last = NULL, note = NULL;
6757 /* Scan from the beginning until we reach the last prologue insn. */
6758 /* ??? While we do have the CFG intact, there are two problems:
6759 (1) The prologue can contain loops (typically probing the stack),
6760 which means that the end of the prologue isn't in the first bb.
6761 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6762 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6764 if (NOTE_P (insn))
6766 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6767 note = insn;
6769 else if (contains (insn, prologue_insn_hash))
6771 last = insn;
6772 if (--len == 0)
6773 break;
6777 if (last)
6779 if (note == NULL)
6781 /* Scan forward looking for the PROLOGUE_END note. It should
6782 be right at the beginning of the block, possibly with other
6783 insn notes that got moved there. */
6784 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6786 if (NOTE_P (note)
6787 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6788 break;
6792 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6793 if (LABEL_P (last))
6794 last = NEXT_INSN (last);
6795 reorder_insns (note, note, last);
6799 if (epilogue_insn_hash != NULL)
6801 edge_iterator ei;
6802 edge e;
6804 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6806 rtx insn, first = NULL, note = NULL;
6807 basic_block bb = e->src;
6809 /* Scan from the beginning until we reach the first epilogue insn. */
6810 FOR_BB_INSNS (bb, insn)
6812 if (NOTE_P (insn))
6814 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6816 note = insn;
6817 if (first != NULL)
6818 break;
6821 else if (first == NULL && contains (insn, epilogue_insn_hash))
6823 first = insn;
6824 if (note != NULL)
6825 break;
6829 if (note)
6831 /* If the function has a single basic block, and no real
6832 epilogue insns (e.g. sibcall with no cleanup), the
6833 epilogue note can get scheduled before the prologue
6834 note. If we have frame related prologue insns, having
6835 them scanned during the epilogue will result in a crash.
6836 In this case re-order the epilogue note to just before
6837 the last insn in the block. */
6838 if (first == NULL)
6839 first = BB_END (bb);
6841 if (PREV_INSN (first) != note)
6842 reorder_insns (note, note, PREV_INSN (first));
6846 #endif /* HAVE_prologue or HAVE_epilogue */
6849 /* Returns the name of function declared by FNDECL. */
6850 const char *
6851 fndecl_name (tree fndecl)
6853 if (fndecl == NULL)
6854 return "(nofn)";
6855 return lang_hooks.decl_printable_name (fndecl, 2);
6858 /* Returns the name of function FN. */
6859 const char *
6860 function_name (struct function *fn)
6862 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6863 return fndecl_name (fndecl);
6866 /* Returns the name of the current function. */
6867 const char *
6868 current_function_name (void)
6870 return function_name (cfun);
6874 static unsigned int
6875 rest_of_handle_check_leaf_regs (void)
6877 #ifdef LEAF_REGISTERS
6878 crtl->uses_only_leaf_regs
6879 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6880 #endif
6881 return 0;
6884 /* Insert a TYPE into the used types hash table of CFUN. */
6886 static void
6887 used_types_insert_helper (tree type, struct function *func)
6889 if (type != NULL && func != NULL)
6891 void **slot;
6893 if (func->used_types_hash == NULL)
6894 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6895 htab_eq_pointer, NULL);
6896 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6897 if (*slot == NULL)
6898 *slot = type;
6902 /* Given a type, insert it into the used hash table in cfun. */
6903 void
6904 used_types_insert (tree t)
6906 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6907 if (TYPE_NAME (t))
6908 break;
6909 else
6910 t = TREE_TYPE (t);
6911 if (TREE_CODE (t) == ERROR_MARK)
6912 return;
6913 if (TYPE_NAME (t) == NULL_TREE
6914 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6915 t = TYPE_MAIN_VARIANT (t);
6916 if (debug_info_level > DINFO_LEVEL_NONE)
6918 if (cfun)
6919 used_types_insert_helper (t, cfun);
6920 else
6922 /* So this might be a type referenced by a global variable.
6923 Record that type so that we can later decide to emit its
6924 debug information. */
6925 vec_safe_push (types_used_by_cur_var_decl, t);
6930 /* Helper to Hash a struct types_used_by_vars_entry. */
6932 static hashval_t
6933 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6935 gcc_assert (entry && entry->var_decl && entry->type);
6937 return iterative_hash_object (entry->type,
6938 iterative_hash_object (entry->var_decl, 0));
6941 /* Hash function of the types_used_by_vars_entry hash table. */
6943 hashval_t
6944 types_used_by_vars_do_hash (const void *x)
6946 const struct types_used_by_vars_entry *entry =
6947 (const struct types_used_by_vars_entry *) x;
6949 return hash_types_used_by_vars_entry (entry);
6952 /*Equality function of the types_used_by_vars_entry hash table. */
6955 types_used_by_vars_eq (const void *x1, const void *x2)
6957 const struct types_used_by_vars_entry *e1 =
6958 (const struct types_used_by_vars_entry *) x1;
6959 const struct types_used_by_vars_entry *e2 =
6960 (const struct types_used_by_vars_entry *)x2;
6962 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6965 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6967 void
6968 types_used_by_var_decl_insert (tree type, tree var_decl)
6970 if (type != NULL && var_decl != NULL)
6972 void **slot;
6973 struct types_used_by_vars_entry e;
6974 e.var_decl = var_decl;
6975 e.type = type;
6976 if (types_used_by_vars_hash == NULL)
6977 types_used_by_vars_hash =
6978 htab_create_ggc (37, types_used_by_vars_do_hash,
6979 types_used_by_vars_eq, NULL);
6980 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6981 hash_types_used_by_vars_entry (&e), INSERT);
6982 if (*slot == NULL)
6984 struct types_used_by_vars_entry *entry;
6985 entry = ggc_alloc_types_used_by_vars_entry ();
6986 entry->type = type;
6987 entry->var_decl = var_decl;
6988 *slot = entry;
6993 namespace {
6995 const pass_data pass_data_leaf_regs =
6997 RTL_PASS, /* type */
6998 "*leaf_regs", /* name */
6999 OPTGROUP_NONE, /* optinfo_flags */
7000 false, /* has_gate */
7001 true, /* has_execute */
7002 TV_NONE, /* tv_id */
7003 0, /* properties_required */
7004 0, /* properties_provided */
7005 0, /* properties_destroyed */
7006 0, /* todo_flags_start */
7007 0, /* todo_flags_finish */
7010 class pass_leaf_regs : public rtl_opt_pass
7012 public:
7013 pass_leaf_regs(gcc::context *ctxt)
7014 : rtl_opt_pass(pass_data_leaf_regs, ctxt)
7017 /* opt_pass methods: */
7018 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
7020 }; // class pass_leaf_regs
7022 } // anon namespace
7024 rtl_opt_pass *
7025 make_pass_leaf_regs (gcc::context *ctxt)
7027 return new pass_leaf_regs (ctxt);
7030 static unsigned int
7031 rest_of_handle_thread_prologue_and_epilogue (void)
7033 if (optimize)
7034 cleanup_cfg (CLEANUP_EXPENSIVE);
7036 /* On some machines, the prologue and epilogue code, or parts thereof,
7037 can be represented as RTL. Doing so lets us schedule insns between
7038 it and the rest of the code and also allows delayed branch
7039 scheduling to operate in the epilogue. */
7040 thread_prologue_and_epilogue_insns ();
7042 /* The stack usage info is finalized during prologue expansion. */
7043 if (flag_stack_usage_info)
7044 output_stack_usage ();
7046 return 0;
7049 namespace {
7051 const pass_data pass_data_thread_prologue_and_epilogue =
7053 RTL_PASS, /* type */
7054 "pro_and_epilogue", /* name */
7055 OPTGROUP_NONE, /* optinfo_flags */
7056 false, /* has_gate */
7057 true, /* has_execute */
7058 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7059 0, /* properties_required */
7060 0, /* properties_provided */
7061 0, /* properties_destroyed */
7062 TODO_verify_flow, /* todo_flags_start */
7063 ( TODO_df_verify | TODO_df_finish
7064 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7067 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7069 public:
7070 pass_thread_prologue_and_epilogue(gcc::context *ctxt)
7071 : rtl_opt_pass(pass_data_thread_prologue_and_epilogue, ctxt)
7074 /* opt_pass methods: */
7075 unsigned int execute () {
7076 return rest_of_handle_thread_prologue_and_epilogue ();
7079 }; // class pass_thread_prologue_and_epilogue
7081 } // anon namespace
7083 rtl_opt_pass *
7084 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7086 return new pass_thread_prologue_and_epilogue (ctxt);
7090 /* This mini-pass fixes fall-out from SSA in asm statements that have
7091 in-out constraints. Say you start with
7093 orig = inout;
7094 asm ("": "+mr" (inout));
7095 use (orig);
7097 which is transformed very early to use explicit output and match operands:
7099 orig = inout;
7100 asm ("": "=mr" (inout) : "0" (inout));
7101 use (orig);
7103 Or, after SSA and copyprop,
7105 asm ("": "=mr" (inout_2) : "0" (inout_1));
7106 use (inout_1);
7108 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7109 they represent two separate values, so they will get different pseudo
7110 registers during expansion. Then, since the two operands need to match
7111 per the constraints, but use different pseudo registers, reload can
7112 only register a reload for these operands. But reloads can only be
7113 satisfied by hardregs, not by memory, so we need a register for this
7114 reload, just because we are presented with non-matching operands.
7115 So, even though we allow memory for this operand, no memory can be
7116 used for it, just because the two operands don't match. This can
7117 cause reload failures on register-starved targets.
7119 So it's a symptom of reload not being able to use memory for reloads
7120 or, alternatively it's also a symptom of both operands not coming into
7121 reload as matching (in which case the pseudo could go to memory just
7122 fine, as the alternative allows it, and no reload would be necessary).
7123 We fix the latter problem here, by transforming
7125 asm ("": "=mr" (inout_2) : "0" (inout_1));
7127 back to
7129 inout_2 = inout_1;
7130 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7132 static void
7133 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7135 int i;
7136 bool changed = false;
7137 rtx op = SET_SRC (p_sets[0]);
7138 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7139 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7140 bool *output_matched = XALLOCAVEC (bool, noutputs);
7142 memset (output_matched, 0, noutputs * sizeof (bool));
7143 for (i = 0; i < ninputs; i++)
7145 rtx input, output, insns;
7146 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7147 char *end;
7148 int match, j;
7150 if (*constraint == '%')
7151 constraint++;
7153 match = strtoul (constraint, &end, 10);
7154 if (end == constraint)
7155 continue;
7157 gcc_assert (match < noutputs);
7158 output = SET_DEST (p_sets[match]);
7159 input = RTVEC_ELT (inputs, i);
7160 /* Only do the transformation for pseudos. */
7161 if (! REG_P (output)
7162 || rtx_equal_p (output, input)
7163 || (GET_MODE (input) != VOIDmode
7164 && GET_MODE (input) != GET_MODE (output)))
7165 continue;
7167 /* We can't do anything if the output is also used as input,
7168 as we're going to overwrite it. */
7169 for (j = 0; j < ninputs; j++)
7170 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7171 break;
7172 if (j != ninputs)
7173 continue;
7175 /* Avoid changing the same input several times. For
7176 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7177 only change in once (to out1), rather than changing it
7178 first to out1 and afterwards to out2. */
7179 if (i > 0)
7181 for (j = 0; j < noutputs; j++)
7182 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7183 break;
7184 if (j != noutputs)
7185 continue;
7187 output_matched[match] = true;
7189 start_sequence ();
7190 emit_move_insn (output, input);
7191 insns = get_insns ();
7192 end_sequence ();
7193 emit_insn_before (insns, insn);
7195 /* Now replace all mentions of the input with output. We can't
7196 just replace the occurrence in inputs[i], as the register might
7197 also be used in some other input (or even in an address of an
7198 output), which would mean possibly increasing the number of
7199 inputs by one (namely 'output' in addition), which might pose
7200 a too complicated problem for reload to solve. E.g. this situation:
7202 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7204 Here 'input' is used in two occurrences as input (once for the
7205 input operand, once for the address in the second output operand).
7206 If we would replace only the occurrence of the input operand (to
7207 make the matching) we would be left with this:
7209 output = input
7210 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7212 Now we suddenly have two different input values (containing the same
7213 value, but different pseudos) where we formerly had only one.
7214 With more complicated asms this might lead to reload failures
7215 which wouldn't have happen without this pass. So, iterate over
7216 all operands and replace all occurrences of the register used. */
7217 for (j = 0; j < noutputs; j++)
7218 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7219 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7220 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7221 input, output);
7222 for (j = 0; j < ninputs; j++)
7223 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7224 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7225 input, output);
7227 changed = true;
7230 if (changed)
7231 df_insn_rescan (insn);
7234 static unsigned
7235 rest_of_match_asm_constraints (void)
7237 basic_block bb;
7238 rtx insn, pat, *p_sets;
7239 int noutputs;
7241 if (!crtl->has_asm_statement)
7242 return 0;
7244 df_set_flags (DF_DEFER_INSN_RESCAN);
7245 FOR_EACH_BB (bb)
7247 FOR_BB_INSNS (bb, insn)
7249 if (!INSN_P (insn))
7250 continue;
7252 pat = PATTERN (insn);
7253 if (GET_CODE (pat) == PARALLEL)
7254 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7255 else if (GET_CODE (pat) == SET)
7256 p_sets = &PATTERN (insn), noutputs = 1;
7257 else
7258 continue;
7260 if (GET_CODE (*p_sets) == SET
7261 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7262 match_asm_constraints_1 (insn, p_sets, noutputs);
7266 return TODO_df_finish;
7269 namespace {
7271 const pass_data pass_data_match_asm_constraints =
7273 RTL_PASS, /* type */
7274 "asmcons", /* name */
7275 OPTGROUP_NONE, /* optinfo_flags */
7276 false, /* has_gate */
7277 true, /* has_execute */
7278 TV_NONE, /* tv_id */
7279 0, /* properties_required */
7280 0, /* properties_provided */
7281 0, /* properties_destroyed */
7282 0, /* todo_flags_start */
7283 0, /* todo_flags_finish */
7286 class pass_match_asm_constraints : public rtl_opt_pass
7288 public:
7289 pass_match_asm_constraints(gcc::context *ctxt)
7290 : rtl_opt_pass(pass_data_match_asm_constraints, ctxt)
7293 /* opt_pass methods: */
7294 unsigned int execute () { return rest_of_match_asm_constraints (); }
7296 }; // class pass_match_asm_constraints
7298 } // anon namespace
7300 rtl_opt_pass *
7301 make_pass_match_asm_constraints (gcc::context *ctxt)
7303 return new pass_match_asm_constraints (ctxt);
7307 #include "gt-function.h"