2016-01-29 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ira-lives.c
blob6950ffb17b31cd5e52dfd948a00645ae163f9ac9
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "ira.h"
33 #include "ira-int.h"
34 #include "sparseset.h"
36 /* The code in this file is similar to one in global but the code
37 works on the allocno basis and creates live ranges instead of
38 pseudo-register conflicts. */
40 /* Program points are enumerated by numbers from range
41 0..IRA_MAX_POINT-1. There are approximately two times more program
42 points than insns. Program points are places in the program where
43 liveness info can be changed. In most general case (there are more
44 complicated cases too) some program points correspond to places
45 where input operand dies and other ones correspond to places where
46 output operands are born. */
47 int ira_max_point;
49 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
50 live ranges with given start/finish point. */
51 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
53 /* Number of the current program point. */
54 static int curr_point;
56 /* Point where register pressure excess started or -1 if there is no
57 register pressure excess. Excess pressure for a register class at
58 some point means that there are more allocnos of given register
59 class living at the point than number of hard-registers of the
60 class available for the allocation. It is defined only for
61 pressure classes. */
62 static int high_pressure_start_point[N_REG_CLASSES];
64 /* Objects live at current point in the scan. */
65 static sparseset objects_live;
67 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
68 multiple times. */
69 static sparseset allocnos_processed;
71 /* Set of hard regs (except eliminable ones) currently live. */
72 static HARD_REG_SET hard_regs_live;
74 /* The loop tree node corresponding to the current basic block. */
75 static ira_loop_tree_node_t curr_bb_node;
77 /* The number of the last processed call. */
78 static int last_call_num;
79 /* The number of last call at which given allocno was saved. */
80 static int *allocno_saved_at_call;
82 /* The value of get_preferred_alternatives for the current instruction,
83 supplemental to recog_data. */
84 static alternative_mask preferred_alternatives;
86 /* Record the birth of hard register REGNO, updating hard_regs_live and
87 hard reg conflict information for living allocnos. */
88 static void
89 make_hard_regno_born (int regno)
91 unsigned int i;
93 SET_HARD_REG_BIT (hard_regs_live, regno);
94 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
96 ira_object_t obj = ira_object_id_map[i];
98 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
99 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
103 /* Process the death of hard register REGNO. This updates
104 hard_regs_live. */
105 static void
106 make_hard_regno_dead (int regno)
108 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
111 /* Record the birth of object OBJ. Set a bit for it in objects_live,
112 start a new live range for it if necessary and update hard register
113 conflicts. */
114 static void
115 make_object_born (ira_object_t obj)
117 live_range_t lr = OBJECT_LIVE_RANGES (obj);
119 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
120 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
121 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
123 if (lr == NULL
124 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
125 ira_add_live_range_to_object (obj, curr_point, -1);
128 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
129 associated with object OBJ. */
130 static void
131 update_allocno_pressure_excess_length (ira_object_t obj)
133 ira_allocno_t a = OBJECT_ALLOCNO (obj);
134 int start, i;
135 enum reg_class aclass, pclass, cl;
136 live_range_t p;
138 aclass = ALLOCNO_CLASS (a);
139 pclass = ira_pressure_class_translate[aclass];
140 for (i = 0;
141 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
142 i++)
144 if (! ira_reg_pressure_class_p[cl])
145 continue;
146 if (high_pressure_start_point[cl] < 0)
147 continue;
148 p = OBJECT_LIVE_RANGES (obj);
149 ira_assert (p != NULL);
150 start = (high_pressure_start_point[cl] > p->start
151 ? high_pressure_start_point[cl] : p->start);
152 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
156 /* Process the death of object OBJ, which is associated with allocno
157 A. This finishes the current live range for it. */
158 static void
159 make_object_dead (ira_object_t obj)
161 live_range_t lr;
163 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
164 lr = OBJECT_LIVE_RANGES (obj);
165 ira_assert (lr != NULL);
166 lr->finish = curr_point;
167 update_allocno_pressure_excess_length (obj);
170 /* The current register pressures for each pressure class for the current
171 basic block. */
172 static int curr_reg_pressure[N_REG_CLASSES];
174 /* Record that register pressure for PCLASS increased by N registers.
175 Update the current register pressure, maximal register pressure for
176 the current BB and the start point of the register pressure
177 excess. */
178 static void
179 inc_register_pressure (enum reg_class pclass, int n)
181 int i;
182 enum reg_class cl;
184 for (i = 0;
185 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
186 i++)
188 if (! ira_reg_pressure_class_p[cl])
189 continue;
190 curr_reg_pressure[cl] += n;
191 if (high_pressure_start_point[cl] < 0
192 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
193 high_pressure_start_point[cl] = curr_point;
194 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
195 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
199 /* Record that register pressure for PCLASS has decreased by NREGS
200 registers; update current register pressure, start point of the
201 register pressure excess, and register pressure excess length for
202 living allocnos. */
204 static void
205 dec_register_pressure (enum reg_class pclass, int nregs)
207 int i;
208 unsigned int j;
209 enum reg_class cl;
210 bool set_p = false;
212 for (i = 0;
213 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
214 i++)
216 if (! ira_reg_pressure_class_p[cl])
217 continue;
218 curr_reg_pressure[cl] -= nregs;
219 ira_assert (curr_reg_pressure[cl] >= 0);
220 if (high_pressure_start_point[cl] >= 0
221 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
222 set_p = true;
224 if (set_p)
226 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
227 update_allocno_pressure_excess_length (ira_object_id_map[j]);
228 for (i = 0;
229 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
230 i++)
232 if (! ira_reg_pressure_class_p[cl])
233 continue;
234 if (high_pressure_start_point[cl] >= 0
235 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
236 high_pressure_start_point[cl] = -1;
241 /* Determine from the objects_live bitmap whether REGNO is currently live,
242 and occupies only one object. Return false if we have no information. */
243 static bool
244 pseudo_regno_single_word_and_live_p (int regno)
246 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
247 ira_object_t obj;
249 if (a == NULL)
250 return false;
251 if (ALLOCNO_NUM_OBJECTS (a) > 1)
252 return false;
254 obj = ALLOCNO_OBJECT (a, 0);
256 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
259 /* Mark the pseudo register REGNO as live. Update all information about
260 live ranges and register pressure. */
261 static void
262 mark_pseudo_regno_live (int regno)
264 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
265 enum reg_class pclass;
266 int i, n, nregs;
268 if (a == NULL)
269 return;
271 /* Invalidate because it is referenced. */
272 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
274 n = ALLOCNO_NUM_OBJECTS (a);
275 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
276 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
277 if (n > 1)
279 /* We track every subobject separately. */
280 gcc_assert (nregs == n);
281 nregs = 1;
284 for (i = 0; i < n; i++)
286 ira_object_t obj = ALLOCNO_OBJECT (a, i);
288 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
289 continue;
291 inc_register_pressure (pclass, nregs);
292 make_object_born (obj);
296 /* Like mark_pseudo_regno_live, but try to only mark one subword of
297 the pseudo as live. SUBWORD indicates which; a value of 0
298 indicates the low part. */
299 static void
300 mark_pseudo_regno_subword_live (int regno, int subword)
302 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
303 int n;
304 enum reg_class pclass;
305 ira_object_t obj;
307 if (a == NULL)
308 return;
310 /* Invalidate because it is referenced. */
311 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
313 n = ALLOCNO_NUM_OBJECTS (a);
314 if (n == 1)
316 mark_pseudo_regno_live (regno);
317 return;
320 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
321 gcc_assert
322 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
323 obj = ALLOCNO_OBJECT (a, subword);
325 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
326 return;
328 inc_register_pressure (pclass, 1);
329 make_object_born (obj);
332 /* Mark the register REG as live. Store a 1 in hard_regs_live for
333 this register, record how many consecutive hardware registers it
334 actually needs. */
335 static void
336 mark_hard_reg_live (rtx reg)
338 int regno = REGNO (reg);
340 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
342 int last = END_REGNO (reg);
343 enum reg_class aclass, pclass;
345 while (regno < last)
347 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
348 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
350 aclass = ira_hard_regno_allocno_class[regno];
351 pclass = ira_pressure_class_translate[aclass];
352 inc_register_pressure (pclass, 1);
353 make_hard_regno_born (regno);
355 regno++;
360 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
361 register number; ORIG_REG is the access in the insn, which may be a
362 subreg. */
363 static void
364 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
366 if (df_read_modify_subreg_p (orig_reg))
368 mark_pseudo_regno_subword_live (regno,
369 subreg_lowpart_p (orig_reg) ? 0 : 1);
371 else
372 mark_pseudo_regno_live (regno);
375 /* Mark the register referenced by use or def REF as live. */
376 static void
377 mark_ref_live (df_ref ref)
379 rtx reg = DF_REF_REG (ref);
380 rtx orig_reg = reg;
382 if (GET_CODE (reg) == SUBREG)
383 reg = SUBREG_REG (reg);
385 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
386 mark_pseudo_reg_live (orig_reg, REGNO (reg));
387 else
388 mark_hard_reg_live (reg);
391 /* Mark the pseudo register REGNO as dead. Update all information about
392 live ranges and register pressure. */
393 static void
394 mark_pseudo_regno_dead (int regno)
396 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
397 int n, i, nregs;
398 enum reg_class cl;
400 if (a == NULL)
401 return;
403 /* Invalidate because it is referenced. */
404 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
406 n = ALLOCNO_NUM_OBJECTS (a);
407 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
408 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
409 if (n > 1)
411 /* We track every subobject separately. */
412 gcc_assert (nregs == n);
413 nregs = 1;
415 for (i = 0; i < n; i++)
417 ira_object_t obj = ALLOCNO_OBJECT (a, i);
418 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
419 continue;
421 dec_register_pressure (cl, nregs);
422 make_object_dead (obj);
426 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
427 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
428 static void
429 mark_pseudo_regno_subword_dead (int regno, int subword)
431 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
432 int n;
433 enum reg_class cl;
434 ira_object_t obj;
436 if (a == NULL)
437 return;
439 /* Invalidate because it is referenced. */
440 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
442 n = ALLOCNO_NUM_OBJECTS (a);
443 if (n == 1)
444 /* The allocno as a whole doesn't die in this case. */
445 return;
447 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
448 gcc_assert
449 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
451 obj = ALLOCNO_OBJECT (a, subword);
452 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
453 return;
455 dec_register_pressure (cl, 1);
456 make_object_dead (obj);
459 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
460 register. */
461 static void
462 mark_hard_reg_dead (rtx reg)
464 int regno = REGNO (reg);
466 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
468 int last = END_REGNO (reg);
469 enum reg_class aclass, pclass;
471 while (regno < last)
473 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
475 aclass = ira_hard_regno_allocno_class[regno];
476 pclass = ira_pressure_class_translate[aclass];
477 dec_register_pressure (pclass, 1);
478 make_hard_regno_dead (regno);
480 regno++;
485 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
486 register number; ORIG_REG is the access in the insn, which may be a
487 subreg. */
488 static void
489 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
491 if (df_read_modify_subreg_p (orig_reg))
493 mark_pseudo_regno_subword_dead (regno,
494 subreg_lowpart_p (orig_reg) ? 0 : 1);
496 else
497 mark_pseudo_regno_dead (regno);
500 /* Mark the register referenced by definition DEF as dead, if the
501 definition is a total one. */
502 static void
503 mark_ref_dead (df_ref def)
505 rtx reg = DF_REF_REG (def);
506 rtx orig_reg = reg;
508 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
509 return;
511 if (GET_CODE (reg) == SUBREG)
512 reg = SUBREG_REG (reg);
514 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
515 && (GET_CODE (orig_reg) != SUBREG
516 || REGNO (reg) < FIRST_PSEUDO_REGISTER
517 || !df_read_modify_subreg_p (orig_reg)))
518 return;
520 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
521 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
522 else
523 mark_hard_reg_dead (reg);
526 /* If REG is a pseudo or a subreg of it, and the class of its allocno
527 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
528 rtx actually accessed, it may be identical to DREG or a subreg of it.
529 Advance the current program point before making the conflict if
530 ADVANCE_P. Return TRUE if we will need to advance the current
531 program point. */
532 static bool
533 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
534 bool advance_p)
536 rtx orig_reg = reg;
537 ira_allocno_t a;
539 if (GET_CODE (reg) == SUBREG)
540 reg = SUBREG_REG (reg);
542 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
543 return advance_p;
545 a = ira_curr_regno_allocno_map[REGNO (reg)];
546 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
547 return advance_p;
549 if (advance_p)
550 curr_point++;
552 mark_pseudo_reg_live (orig_reg, REGNO (reg));
553 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
554 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
555 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
557 return false;
560 /* Check and make if necessary conflicts for pseudo DREG of class
561 DEF_CL of the current insn with input operand USE of class USE_CL.
562 ORIG_DREG is the rtx actually accessed, it may be identical to
563 DREG or a subreg of it. Advance the current program point before
564 making the conflict if ADVANCE_P. Return TRUE if we will need to
565 advance the current program point. */
566 static bool
567 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
568 enum reg_class def_cl, int use,
569 enum reg_class use_cl, bool advance_p)
571 if (! reg_classes_intersect_p (def_cl, use_cl))
572 return advance_p;
574 advance_p = make_pseudo_conflict (recog_data.operand[use],
575 use_cl, dreg, orig_dreg, advance_p);
577 /* Reload may end up swapping commutative operands, so you
578 have to take both orderings into account. The
579 constraints for the two operands can be completely
580 different. (Indeed, if the constraints for the two
581 operands are the same for all alternatives, there's no
582 point marking them as commutative.) */
583 if (use < recog_data.n_operands - 1
584 && recog_data.constraints[use][0] == '%')
585 advance_p
586 = make_pseudo_conflict (recog_data.operand[use + 1],
587 use_cl, dreg, orig_dreg, advance_p);
588 if (use >= 1
589 && recog_data.constraints[use - 1][0] == '%')
590 advance_p
591 = make_pseudo_conflict (recog_data.operand[use - 1],
592 use_cl, dreg, orig_dreg, advance_p);
593 return advance_p;
596 /* Check and make if necessary conflicts for definition DEF of class
597 DEF_CL of the current insn with input operands. Process only
598 constraints of alternative ALT. */
599 static void
600 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
602 int use, use_match;
603 ira_allocno_t a;
604 enum reg_class use_cl, acl;
605 bool advance_p;
606 rtx dreg = recog_data.operand[def];
607 rtx orig_dreg = dreg;
609 if (def_cl == NO_REGS)
610 return;
612 if (GET_CODE (dreg) == SUBREG)
613 dreg = SUBREG_REG (dreg);
615 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
616 return;
618 a = ira_curr_regno_allocno_map[REGNO (dreg)];
619 acl = ALLOCNO_CLASS (a);
620 if (! reg_classes_intersect_p (acl, def_cl))
621 return;
623 advance_p = true;
625 int n_operands = recog_data.n_operands;
626 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
627 for (use = 0; use < n_operands; use++)
629 int alt1;
631 if (use == def || recog_data.operand_type[use] == OP_OUT)
632 continue;
634 if (op_alt[use].anything_ok)
635 use_cl = ALL_REGS;
636 else
637 use_cl = op_alt[use].cl;
639 /* If there's any alternative that allows USE to match DEF, do not
640 record a conflict. If that causes us to create an invalid
641 instruction due to the earlyclobber, reload must fix it up. */
642 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
644 if (!TEST_BIT (preferred_alternatives, alt1))
645 continue;
646 const operand_alternative *op_alt1
647 = &recog_op_alt[alt1 * n_operands];
648 if (op_alt1[use].matches == def
649 || (use < n_operands - 1
650 && recog_data.constraints[use][0] == '%'
651 && op_alt1[use + 1].matches == def)
652 || (use >= 1
653 && recog_data.constraints[use - 1][0] == '%'
654 && op_alt1[use - 1].matches == def))
655 break;
658 if (alt1 < recog_data.n_alternatives)
659 continue;
661 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
662 use, use_cl, advance_p);
664 if ((use_match = op_alt[use].matches) >= 0)
666 if (use_match == def)
667 continue;
669 if (op_alt[use_match].anything_ok)
670 use_cl = ALL_REGS;
671 else
672 use_cl = op_alt[use_match].cl;
673 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
674 use, use_cl, advance_p);
679 /* Make conflicts of early clobber pseudo registers of the current
680 insn with its inputs. Avoid introducing unnecessary conflicts by
681 checking classes of the constraints and pseudos because otherwise
682 significant code degradation is possible for some targets. */
683 static void
684 make_early_clobber_and_input_conflicts (void)
686 int alt;
687 int def, def_match;
688 enum reg_class def_cl;
690 int n_alternatives = recog_data.n_alternatives;
691 int n_operands = recog_data.n_operands;
692 const operand_alternative *op_alt = recog_op_alt;
693 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
694 if (TEST_BIT (preferred_alternatives, alt))
695 for (def = 0; def < n_operands; def++)
697 def_cl = NO_REGS;
698 if (op_alt[def].earlyclobber)
700 if (op_alt[def].anything_ok)
701 def_cl = ALL_REGS;
702 else
703 def_cl = op_alt[def].cl;
704 check_and_make_def_conflict (alt, def, def_cl);
706 if ((def_match = op_alt[def].matches) >= 0
707 && (op_alt[def_match].earlyclobber
708 || op_alt[def].earlyclobber))
710 if (op_alt[def_match].anything_ok)
711 def_cl = ALL_REGS;
712 else
713 def_cl = op_alt[def_match].cl;
714 check_and_make_def_conflict (alt, def, def_cl);
719 /* Mark early clobber hard registers of the current INSN as live (if
720 LIVE_P) or dead. Return true if there are such registers. */
721 static bool
722 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
724 df_ref def;
725 bool set_p = false;
727 FOR_EACH_INSN_DEF (def, insn)
728 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
730 rtx dreg = DF_REF_REG (def);
732 if (GET_CODE (dreg) == SUBREG)
733 dreg = SUBREG_REG (dreg);
734 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
735 continue;
737 /* Hard register clobbers are believed to be early clobber
738 because there is no way to say that non-operand hard
739 register clobbers are not early ones. */
740 if (live_p)
741 mark_ref_live (def);
742 else
743 mark_ref_dead (def);
744 set_p = true;
747 return set_p;
750 /* Checks that CONSTRAINTS permits to use only one hard register. If
751 it is so, the function returns the class of the hard register.
752 Otherwise it returns NO_REGS. */
753 static enum reg_class
754 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
756 int c;
757 enum reg_class cl, next_cl;
758 enum constraint_num cn;
760 cl = NO_REGS;
761 alternative_mask preferred = preferred_alternatives;
762 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
763 if (c == '#')
764 preferred &= ~ALTERNATIVE_BIT (0);
765 else if (c == ',')
766 preferred >>= 1;
767 else if (preferred & 1)
768 switch (c)
770 case 'g':
771 return NO_REGS;
773 default:
774 /* ??? Is this the best way to handle memory constraints? */
775 cn = lookup_constraint (constraints);
776 if (insn_extra_memory_constraint (cn)
777 || insn_extra_special_memory_constraint (cn)
778 || insn_extra_address_constraint (cn))
779 return NO_REGS;
780 if (constraint_satisfied_p (op, cn)
781 || (equiv_const != NULL_RTX
782 && CONSTANT_P (equiv_const)
783 && constraint_satisfied_p (equiv_const, cn)))
784 return NO_REGS;
785 next_cl = reg_class_for_constraint (cn);
786 if (next_cl == NO_REGS)
787 break;
788 if (cl == NO_REGS
789 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
790 : (ira_class_singleton[cl][GET_MODE (op)]
791 != ira_class_singleton[next_cl][GET_MODE (op)]))
792 return NO_REGS;
793 cl = next_cl;
794 break;
796 case '0': case '1': case '2': case '3': case '4':
797 case '5': case '6': case '7': case '8': case '9':
798 next_cl
799 = single_reg_class (recog_data.constraints[c - '0'],
800 recog_data.operand[c - '0'], NULL_RTX);
801 if (cl == NO_REGS
802 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
803 : (ira_class_singleton[cl][GET_MODE (op)]
804 != ira_class_singleton[next_cl][GET_MODE (op)]))
805 return NO_REGS;
806 cl = next_cl;
807 break;
809 return cl;
812 /* The function checks that operand OP_NUM of the current insn can use
813 only one hard register. If it is so, the function returns the
814 class of the hard register. Otherwise it returns NO_REGS. */
815 static enum reg_class
816 single_reg_operand_class (int op_num)
818 if (op_num < 0 || recog_data.n_alternatives == 0)
819 return NO_REGS;
820 return single_reg_class (recog_data.constraints[op_num],
821 recog_data.operand[op_num], NULL_RTX);
824 /* The function sets up hard register set *SET to hard registers which
825 might be used by insn reloads because the constraints are too
826 strict. */
827 void
828 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set,
829 alternative_mask preferred)
831 int i, c, regno = 0;
832 enum reg_class cl;
833 rtx op;
834 machine_mode mode;
836 CLEAR_HARD_REG_SET (*set);
837 for (i = 0; i < recog_data.n_operands; i++)
839 op = recog_data.operand[i];
841 if (GET_CODE (op) == SUBREG)
842 op = SUBREG_REG (op);
844 if (GET_CODE (op) == SCRATCH
845 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
847 const char *p = recog_data.constraints[i];
849 mode = (GET_CODE (op) == SCRATCH
850 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
851 cl = NO_REGS;
852 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
853 if (c == '#')
854 preferred &= ~ALTERNATIVE_BIT (0);
855 else if (c == ',')
856 preferred >>= 1;
857 else if (preferred & 1)
859 cl = reg_class_for_constraint (lookup_constraint (p));
860 if (cl != NO_REGS)
862 /* There is no register pressure problem if all of the
863 regs in this class are fixed. */
864 int regno = ira_class_singleton[cl][mode];
865 if (regno >= 0)
866 add_to_hard_reg_set (set, mode, regno);
872 /* Processes input operands, if IN_P, or output operands otherwise of
873 the current insn with FREQ to find allocno which can use only one
874 hard register and makes other currently living allocnos conflicting
875 with the hard register. */
876 static void
877 process_single_reg_class_operands (bool in_p, int freq)
879 int i, regno;
880 unsigned int px;
881 enum reg_class cl;
882 rtx operand;
883 ira_allocno_t operand_a, a;
885 for (i = 0; i < recog_data.n_operands; i++)
887 operand = recog_data.operand[i];
888 if (in_p && recog_data.operand_type[i] != OP_IN
889 && recog_data.operand_type[i] != OP_INOUT)
890 continue;
891 if (! in_p && recog_data.operand_type[i] != OP_OUT
892 && recog_data.operand_type[i] != OP_INOUT)
893 continue;
894 cl = single_reg_operand_class (i);
895 if (cl == NO_REGS)
896 continue;
898 operand_a = NULL;
900 if (GET_CODE (operand) == SUBREG)
901 operand = SUBREG_REG (operand);
903 if (REG_P (operand)
904 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
906 enum reg_class aclass;
908 operand_a = ira_curr_regno_allocno_map[regno];
909 aclass = ALLOCNO_CLASS (operand_a);
910 if (ira_class_subset_p[cl][aclass])
912 /* View the desired allocation of OPERAND as:
914 (REG:YMODE YREGNO),
916 a simplification of:
918 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
919 machine_mode ymode, xmode;
920 int xregno, yregno;
921 HOST_WIDE_INT offset;
923 xmode = recog_data.operand_mode[i];
924 xregno = ira_class_singleton[cl][xmode];
925 gcc_assert (xregno >= 0);
926 ymode = ALLOCNO_MODE (operand_a);
927 offset = subreg_lowpart_offset (ymode, xmode);
928 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
929 if (yregno >= 0
930 && ira_class_hard_reg_index[aclass][yregno] >= 0)
932 int cost;
934 ira_allocate_and_set_costs
935 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
936 aclass, 0);
937 ira_init_register_move_cost_if_necessary (xmode);
938 cost = freq * (in_p
939 ? ira_register_move_cost[xmode][aclass][cl]
940 : ira_register_move_cost[xmode][cl][aclass]);
941 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
942 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
947 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
949 ira_object_t obj = ira_object_id_map[px];
950 a = OBJECT_ALLOCNO (obj);
951 if (a != operand_a)
953 /* We could increase costs of A instead of making it
954 conflicting with the hard register. But it works worse
955 because it will be spilled in reload in anyway. */
956 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
957 reg_class_contents[cl]);
958 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
959 reg_class_contents[cl]);
965 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
966 we find a SET rtx that we can use to deduce that a register can be cheaply
967 caller-saved. Return such a register, or NULL_RTX if none is found. */
968 static rtx
969 find_call_crossed_cheap_reg (rtx_insn *insn)
971 rtx cheap_reg = NULL_RTX;
972 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
974 while (exp != NULL)
976 rtx x = XEXP (exp, 0);
977 if (GET_CODE (x) == SET)
979 exp = x;
980 break;
982 exp = XEXP (exp, 1);
984 if (exp != NULL)
986 basic_block bb = BLOCK_FOR_INSN (insn);
987 rtx reg = SET_SRC (exp);
988 rtx_insn *prev = PREV_INSN (insn);
989 while (prev && !(INSN_P (prev)
990 && BLOCK_FOR_INSN (prev) != bb))
992 if (NONDEBUG_INSN_P (prev))
994 rtx set = single_set (prev);
996 if (set && rtx_equal_p (SET_DEST (set), reg))
998 rtx src = SET_SRC (set);
999 if (!REG_P (src) || HARD_REGISTER_P (src)
1000 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1001 break;
1002 if (!modified_between_p (src, prev, insn))
1003 cheap_reg = src;
1004 break;
1006 if (set && rtx_equal_p (SET_SRC (set), reg))
1008 rtx dest = SET_DEST (set);
1009 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1010 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1011 break;
1012 if (!modified_between_p (dest, prev, insn))
1013 cheap_reg = dest;
1014 break;
1017 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1018 break;
1020 prev = PREV_INSN (prev);
1023 return cheap_reg;
1026 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1027 update allocno live ranges, allocno hard register conflicts,
1028 intersected calls, and register pressure info for allocnos for the
1029 basic block for and regions containing the basic block. */
1030 static void
1031 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1033 int i, freq;
1034 unsigned int j;
1035 basic_block bb;
1036 rtx_insn *insn;
1037 bitmap_iterator bi;
1038 bitmap reg_live_out;
1039 unsigned int px;
1040 bool set_p;
1042 bb = loop_tree_node->bb;
1043 if (bb != NULL)
1045 for (i = 0; i < ira_pressure_classes_num; i++)
1047 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1048 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1050 curr_bb_node = loop_tree_node;
1051 reg_live_out = df_get_live_out (bb);
1052 sparseset_clear (objects_live);
1053 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1054 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1055 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1056 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1057 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1059 enum reg_class aclass, pclass, cl;
1061 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1062 pclass = ira_pressure_class_translate[aclass];
1063 for (j = 0;
1064 (cl = ira_reg_class_super_classes[pclass][j])
1065 != LIM_REG_CLASSES;
1066 j++)
1068 if (! ira_reg_pressure_class_p[cl])
1069 continue;
1070 curr_reg_pressure[cl]++;
1071 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1072 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1073 ira_assert (curr_reg_pressure[cl]
1074 <= ira_class_hard_regs_num[cl]);
1077 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1078 mark_pseudo_regno_live (j);
1080 freq = REG_FREQ_FROM_BB (bb);
1081 if (freq == 0)
1082 freq = 1;
1084 /* Invalidate all allocno_saved_at_call entries. */
1085 last_call_num++;
1087 /* Scan the code of this basic block, noting which allocnos and
1088 hard regs are born or die.
1090 Note that this loop treats uninitialized values as live until
1091 the beginning of the block. For example, if an instruction
1092 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1093 set, FOO will remain live until the beginning of the block.
1094 Likewise if FOO is not set at all. This is unnecessarily
1095 pessimistic, but it probably doesn't matter much in practice. */
1096 FOR_BB_INSNS_REVERSE (bb, insn)
1098 ira_allocno_t a;
1099 df_ref def, use;
1100 bool call_p;
1102 if (!NONDEBUG_INSN_P (insn))
1103 continue;
1105 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1106 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1107 INSN_UID (insn), loop_tree_node->parent->loop_num,
1108 curr_point);
1110 call_p = CALL_P (insn);
1111 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1112 int regno;
1113 bool clear_pic_use_conflict_p = false;
1114 /* Processing insn usage in call insn can create conflict
1115 with pic pseudo and pic hard reg and that is wrong.
1116 Check this situation and fix it at the end of the insn
1117 processing. */
1118 if (call_p && pic_offset_table_rtx != NULL_RTX
1119 && (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER
1120 && (a = ira_curr_regno_allocno_map[regno]) != NULL)
1121 clear_pic_use_conflict_p
1122 = (find_regno_fusage (insn, USE, REAL_PIC_OFFSET_TABLE_REGNUM)
1123 && ! TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS
1124 (ALLOCNO_OBJECT (a, 0)),
1125 REAL_PIC_OFFSET_TABLE_REGNUM));
1126 #endif
1128 /* Mark each defined value as live. We need to do this for
1129 unused values because they still conflict with quantities
1130 that are live at the time of the definition.
1132 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1133 references represent the effect of the called function
1134 on a call-clobbered register. Marking the register as
1135 live would stop us from allocating it to a call-crossing
1136 allocno. */
1137 FOR_EACH_INSN_DEF (def, insn)
1138 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1139 mark_ref_live (def);
1141 /* If INSN has multiple outputs, then any value used in one
1142 of the outputs conflicts with the other outputs. Model this
1143 by making the used value live during the output phase.
1145 It is unsafe to use !single_set here since it will ignore
1146 an unused output. Just because an output is unused does
1147 not mean the compiler can assume the side effect will not
1148 occur. Consider if ALLOCNO appears in the address of an
1149 output and we reload the output. If we allocate ALLOCNO
1150 to the same hard register as an unused output we could
1151 set the hard register before the output reload insn. */
1152 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1153 FOR_EACH_INSN_USE (use, insn)
1155 int i;
1156 rtx reg;
1158 reg = DF_REF_REG (use);
1159 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1161 rtx set;
1163 set = XVECEXP (PATTERN (insn), 0, i);
1164 if (GET_CODE (set) == SET
1165 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1167 /* After the previous loop, this is a no-op if
1168 REG is contained within SET_DEST (SET). */
1169 mark_ref_live (use);
1170 break;
1175 extract_insn (insn);
1176 preferred_alternatives = get_preferred_alternatives (insn);
1177 preprocess_constraints (insn);
1178 process_single_reg_class_operands (false, freq);
1180 /* See which defined values die here. */
1181 FOR_EACH_INSN_DEF (def, insn)
1182 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1183 mark_ref_dead (def);
1185 if (call_p)
1187 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1188 there, try to find a pseudo that is live across the call but
1189 can be cheaply reconstructed from the return value. */
1190 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1191 if (cheap_reg != NULL_RTX)
1192 add_reg_note (insn, REG_RETURNED, cheap_reg);
1194 last_call_num++;
1195 sparseset_clear (allocnos_processed);
1196 /* The current set of live allocnos are live across the call. */
1197 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1199 ira_object_t obj = ira_object_id_map[i];
1200 a = OBJECT_ALLOCNO (obj);
1201 int num = ALLOCNO_NUM (a);
1202 HARD_REG_SET this_call_used_reg_set;
1204 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1205 call_used_reg_set);
1207 /* Don't allocate allocnos that cross setjmps or any
1208 call, if this function receives a nonlocal
1209 goto. */
1210 if (cfun->has_nonlocal_label
1211 || find_reg_note (insn, REG_SETJMP,
1212 NULL_RTX) != NULL_RTX)
1214 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1215 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1217 if (can_throw_internal (insn))
1219 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1220 this_call_used_reg_set);
1221 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1222 this_call_used_reg_set);
1225 if (sparseset_bit_p (allocnos_processed, num))
1226 continue;
1227 sparseset_set_bit (allocnos_processed, num);
1229 if (allocno_saved_at_call[num] != last_call_num)
1230 /* Here we are mimicking caller-save.c behavior
1231 which does not save hard register at a call if
1232 it was saved on previous call in the same basic
1233 block and the hard register was not mentioned
1234 between the two calls. */
1235 ALLOCNO_CALL_FREQ (a) += freq;
1236 /* Mark it as saved at the next call. */
1237 allocno_saved_at_call[num] = last_call_num + 1;
1238 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1239 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1240 this_call_used_reg_set);
1241 if (cheap_reg != NULL_RTX
1242 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1243 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1247 make_early_clobber_and_input_conflicts ();
1249 curr_point++;
1251 /* Mark each used value as live. */
1252 FOR_EACH_INSN_USE (use, insn)
1253 mark_ref_live (use);
1255 process_single_reg_class_operands (true, freq);
1257 set_p = mark_hard_reg_early_clobbers (insn, true);
1259 if (set_p)
1261 mark_hard_reg_early_clobbers (insn, false);
1263 /* Mark each hard reg as live again. For example, a
1264 hard register can be in clobber and in an insn
1265 input. */
1266 FOR_EACH_INSN_USE (use, insn)
1268 rtx ureg = DF_REF_REG (use);
1270 if (GET_CODE (ureg) == SUBREG)
1271 ureg = SUBREG_REG (ureg);
1272 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1273 continue;
1275 mark_ref_live (use);
1279 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1280 if (clear_pic_use_conflict_p)
1282 regno = REGNO (pic_offset_table_rtx);
1283 a = ira_curr_regno_allocno_map[regno];
1284 CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (ALLOCNO_OBJECT (a, 0)),
1285 REAL_PIC_OFFSET_TABLE_REGNUM);
1286 CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS
1287 (ALLOCNO_OBJECT (a, 0)),
1288 REAL_PIC_OFFSET_TABLE_REGNUM);
1290 #endif
1291 curr_point++;
1294 if (bb_has_eh_pred (bb))
1295 for (j = 0; ; ++j)
1297 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1298 if (regno == INVALID_REGNUM)
1299 break;
1300 make_hard_regno_born (regno);
1303 /* Allocnos can't go in stack regs at the start of a basic block
1304 that is reached by an abnormal edge. Likewise for call
1305 clobbered regs, because caller-save, fixup_abnormal_edges and
1306 possibly the table driven EH machinery are not quite ready to
1307 handle such allocnos live across such edges. */
1308 if (bb_has_abnormal_pred (bb))
1310 #ifdef STACK_REGS
1311 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1313 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1315 ALLOCNO_NO_STACK_REG_P (a) = true;
1316 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1318 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1319 make_hard_regno_born (px);
1320 #endif
1321 /* No need to record conflicts for call clobbered regs if we
1322 have nonlocal labels around, as we don't ever try to
1323 allocate such regs in this case. */
1324 if (!cfun->has_nonlocal_label
1325 && has_abnormal_call_or_eh_pred_edge_p (bb))
1326 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1327 if (call_used_regs[px]
1328 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1329 /* We should create a conflict of PIC pseudo with
1330 PIC hard reg as PIC hard reg can have a wrong
1331 value after jump described by the abnormal edge.
1332 In this case we can not allocate PIC hard reg to
1333 PIC pseudo as PIC pseudo will also have a wrong
1334 value. This code is not critical as LRA can fix
1335 it but it is better to have the right allocation
1336 earlier. */
1337 || (px == REAL_PIC_OFFSET_TABLE_REGNUM
1338 && pic_offset_table_rtx != NULL_RTX
1339 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
1340 #endif
1342 make_hard_regno_born (px);
1345 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1346 make_object_dead (ira_object_id_map[i]);
1348 curr_point++;
1351 /* Propagate register pressure to upper loop tree nodes. */
1352 if (loop_tree_node != ira_loop_tree_root)
1353 for (i = 0; i < ira_pressure_classes_num; i++)
1355 enum reg_class pclass;
1357 pclass = ira_pressure_classes[i];
1358 if (loop_tree_node->reg_pressure[pclass]
1359 > loop_tree_node->parent->reg_pressure[pclass])
1360 loop_tree_node->parent->reg_pressure[pclass]
1361 = loop_tree_node->reg_pressure[pclass];
1365 /* Create and set up IRA_START_POINT_RANGES and
1366 IRA_FINISH_POINT_RANGES. */
1367 static void
1368 create_start_finish_chains (void)
1370 ira_object_t obj;
1371 ira_object_iterator oi;
1372 live_range_t r;
1374 ira_start_point_ranges
1375 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1376 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1377 ira_finish_point_ranges
1378 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1379 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1380 FOR_EACH_OBJECT (obj, oi)
1381 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1383 r->start_next = ira_start_point_ranges[r->start];
1384 ira_start_point_ranges[r->start] = r;
1385 r->finish_next = ira_finish_point_ranges[r->finish];
1386 ira_finish_point_ranges[r->finish] = r;
1390 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1391 new live ranges and program points were added as a result if new
1392 insn generation. */
1393 void
1394 ira_rebuild_start_finish_chains (void)
1396 ira_free (ira_finish_point_ranges);
1397 ira_free (ira_start_point_ranges);
1398 create_start_finish_chains ();
1401 /* Compress allocno live ranges by removing program points where
1402 nothing happens. */
1403 static void
1404 remove_some_program_points_and_update_live_ranges (void)
1406 unsigned i;
1407 int n;
1408 int *map;
1409 ira_object_t obj;
1410 ira_object_iterator oi;
1411 live_range_t r, prev_r, next_r;
1412 sbitmap born_or_dead, born, dead;
1413 sbitmap_iterator sbi;
1414 bool born_p, dead_p, prev_born_p, prev_dead_p;
1416 born = sbitmap_alloc (ira_max_point);
1417 dead = sbitmap_alloc (ira_max_point);
1418 bitmap_clear (born);
1419 bitmap_clear (dead);
1420 FOR_EACH_OBJECT (obj, oi)
1421 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1423 ira_assert (r->start <= r->finish);
1424 bitmap_set_bit (born, r->start);
1425 bitmap_set_bit (dead, r->finish);
1428 born_or_dead = sbitmap_alloc (ira_max_point);
1429 bitmap_ior (born_or_dead, born, dead);
1430 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1431 n = -1;
1432 prev_born_p = prev_dead_p = false;
1433 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1435 born_p = bitmap_bit_p (born, i);
1436 dead_p = bitmap_bit_p (dead, i);
1437 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1438 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1439 map[i] = n;
1440 else
1441 map[i] = ++n;
1442 prev_born_p = born_p;
1443 prev_dead_p = dead_p;
1445 sbitmap_free (born_or_dead);
1446 sbitmap_free (born);
1447 sbitmap_free (dead);
1448 n++;
1449 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1450 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1451 ira_max_point, n, 100 * n / ira_max_point);
1452 ira_max_point = n;
1454 FOR_EACH_OBJECT (obj, oi)
1455 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1457 next_r = r->next;
1458 r->start = map[r->start];
1459 r->finish = map[r->finish];
1460 if (prev_r == NULL || prev_r->start > r->finish + 1)
1462 prev_r = r;
1463 continue;
1465 prev_r->start = r->start;
1466 prev_r->next = next_r;
1467 ira_finish_live_range (r);
1470 ira_free (map);
1473 /* Print live ranges R to file F. */
1474 void
1475 ira_print_live_range_list (FILE *f, live_range_t r)
1477 for (; r != NULL; r = r->next)
1478 fprintf (f, " [%d..%d]", r->start, r->finish);
1479 fprintf (f, "\n");
1482 DEBUG_FUNCTION void
1483 debug (live_range &ref)
1485 ira_print_live_range_list (stderr, &ref);
1488 DEBUG_FUNCTION void
1489 debug (live_range *ptr)
1491 if (ptr)
1492 debug (*ptr);
1493 else
1494 fprintf (stderr, "<nil>\n");
1497 /* Print live ranges R to stderr. */
1498 void
1499 ira_debug_live_range_list (live_range_t r)
1501 ira_print_live_range_list (stderr, r);
1504 /* Print live ranges of object OBJ to file F. */
1505 static void
1506 print_object_live_ranges (FILE *f, ira_object_t obj)
1508 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1511 /* Print live ranges of allocno A to file F. */
1512 static void
1513 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1515 int n = ALLOCNO_NUM_OBJECTS (a);
1516 int i;
1518 for (i = 0; i < n; i++)
1520 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1521 if (n > 1)
1522 fprintf (f, " [%d]", i);
1523 fprintf (f, "):");
1524 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1528 /* Print live ranges of allocno A to stderr. */
1529 void
1530 ira_debug_allocno_live_ranges (ira_allocno_t a)
1532 print_allocno_live_ranges (stderr, a);
1535 /* Print live ranges of all allocnos to file F. */
1536 static void
1537 print_live_ranges (FILE *f)
1539 ira_allocno_t a;
1540 ira_allocno_iterator ai;
1542 FOR_EACH_ALLOCNO (a, ai)
1543 print_allocno_live_ranges (f, a);
1546 /* Print live ranges of all allocnos to stderr. */
1547 void
1548 ira_debug_live_ranges (void)
1550 print_live_ranges (stderr);
1553 /* The main entry function creates live ranges, set up
1554 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1555 calculate register pressure info. */
1556 void
1557 ira_create_allocno_live_ranges (void)
1559 objects_live = sparseset_alloc (ira_objects_num);
1560 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1561 curr_point = 0;
1562 last_call_num = 0;
1563 allocno_saved_at_call
1564 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1565 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1566 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1567 process_bb_node_lives);
1568 ira_max_point = curr_point;
1569 create_start_finish_chains ();
1570 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1571 print_live_ranges (ira_dump_file);
1572 /* Clean up. */
1573 ira_free (allocno_saved_at_call);
1574 sparseset_free (objects_live);
1575 sparseset_free (allocnos_processed);
1578 /* Compress allocno live ranges. */
1579 void
1580 ira_compress_allocno_live_ranges (void)
1582 remove_some_program_points_and_update_live_ranges ();
1583 ira_rebuild_start_finish_chains ();
1584 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1586 fprintf (ira_dump_file, "Ranges after the compression:\n");
1587 print_live_ranges (ira_dump_file);
1591 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1592 void
1593 ira_finish_allocno_live_ranges (void)
1595 ira_free (ira_finish_point_ranges);
1596 ira_free (ira_start_point_ranges);